WO2010143239A1 - Direct-current power supply device and led lighting device - Google Patents

Direct-current power supply device and led lighting device Download PDF

Info

Publication number
WO2010143239A1
WO2010143239A1 PCT/JP2009/005117 JP2009005117W WO2010143239A1 WO 2010143239 A1 WO2010143239 A1 WO 2010143239A1 JP 2009005117 W JP2009005117 W JP 2009005117W WO 2010143239 A1 WO2010143239 A1 WO 2010143239A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
circuit
rectifier circuit
supply device
rectifier
Prior art date
Application number
PCT/JP2009/005117
Other languages
French (fr)
Japanese (ja)
Inventor
国華 王
Original Assignee
ニッタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009138380A external-priority patent/JP2010287340A/en
Priority claimed from JP2009138371A external-priority patent/JP2010288329A/en
Application filed by ニッタ株式会社 filed Critical ニッタ株式会社
Publication of WO2010143239A1 publication Critical patent/WO2010143239A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • H02M7/08Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode arranged for operation in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/385Switched mode power supply [SMPS] using flyback topology
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to a DC power supply for supplying DC power and an LED lighting device for lighting an LED (light emitting diode).
  • a DC power supply device that obtains a DC power supply using a commercial AC power supply rectifies the transformer (which may be transformerless) that steps down the voltage of the commercial AC power supply and rectifies the power source converted by this transformer.
  • a DC power supply device in order to suppress voltage fluctuation (ripple) at an AC frequency (50 Hz, 60 Hz, etc.), it is necessary to install a large capacity electrolytic capacitor in the smoothing circuit.
  • the electrolytic capacitor is weak against heat and overvoltage, and when used for a long time, the equivalent series resistance (ESR) increases and the function of smoothing the pulsating flow becomes weak.
  • ESR equivalent series resistance
  • the flickering of the light emission becomes remarkable and it becomes difficult to use as a light source. Therefore, there is a demand for the development of a DC power supply apparatus that does not use an electrolytic capacitor and that can ignore periodic voltage fluctuations (ripples).
  • an object of the present invention is to provide a DC power supply device and an LED lighting device that can reduce periodic voltage fluctuations (ripples) and have a small size and a long life.
  • the DC power supply device of the present invention is connected to a commercial AC power supply E, and generates a range from a first AC power supply to an nth (n is an integer of 2 or more) AC power supply having a phase difference from each other A phase shift circuit, a first rectifier circuit R0 that rectifies the first AC power supply to obtain a pulsating current, a second rectifier circuit R1 that rectifies the second AC power supply to obtain a pulsating current,... And an n-th rectifier circuit Rn-1 that rectifies the n-th AC power source to obtain a pulsating flow.
  • phase difference means a phase difference when one cycle of the commercial AC power source E is set to 360 degrees.
  • Pulsating flow means an output waveform of the rectifier circuit that is not smoothed by the smoothing circuit.
  • the symbol “...” Means that 1 to n are repeated.
  • the output line of the nth rectifier circuit Rn-1 are connected in series or in parallel to both terminals of the load. It is connected.
  • ZL indicates a load.
  • FIGS. 1 and 2 An example of the configuration of this apparatus is shown in FIGS. According to FIGS. 1 and 2, the phase shift circuit is inserted between the commercial AC power source E and the second to nth rectifier circuits R1 to Rn-1.
  • FIG. 1 shows a state in which output lines of first to nth rectifier circuits R0 to Rn-1 are connected in parallel to drive a load
  • FIG. 2 shows output lines of first to nth rectifier circuits R0 to Rn-1. Shows a state in which a load is driven by connecting them in series. With this configuration, pulsating currents out of phase with each other are output from the first to nth rectifier circuits R0 to Rn-1 for driving the load.
  • Each pulsating flow is connected in series or connected in parallel and supplied to both terminals of the load. Since the phase difference is set in the output waveform of the other rectifier circuit with respect to the output waveform of one of the rectifier circuits, the combined waveform has overlapping peaks and troughs of the pulsating current, and as a result It contains many frequency components higher than the fundamental frequency of the pulsating current (for example, if the commercial AC power supply E is 60 Hz, the fundamental frequency is 120 Hz). For this reason, voltage fluctuation and current fluctuation applied to the load are prevented.
  • both the first (hot side L) and second (cold side N) power lines of the commercial AC power source E and at least (n ⁇ 1) rectifier circuits A capacitor element may be inserted between each of the input lines.
  • the total number of capacitor elements is 2 (n ⁇ 1).
  • the outputs connected in series or in parallel from the first rectifier circuit R0,..., The nth rectifier circuit Rn-1 are symmetrical with respect to the hot side L and the cold side N of the commercial AC power source E, that is, with the hot side L. Even if the cold side N is replaced, the same configuration is obtained. Therefore, it is possible to reduce the influence of input voltage fluctuation and load fluctuation.
  • At least one of the power line on the hot side L or the cold side N of the commercial AC power source E and the first to nth rectifier circuits R0 to Rn ⁇ 1 (at least ( n-1)
  • a capacitor element inserted between one of the rectifier circuits and one input line may be used.
  • the total number of capacitor elements is (n ⁇ 1).
  • Outputs connected in series or in parallel from (n-1) rectifier circuits are not symmetric with respect to the commercial AC power supply E, but the effect of suppressing the ripple applied to the load can be sufficiently obtained. it can.
  • the DC power supply device of the present invention it is preferable that the first converter circuit for converting the output of the first rectifier circuit R0 is inserted into the output line of the first rectifier circuit R0.
  • 3 and 4 show a configuration example in which the converter circuit I0 is used between the output line of the first rectifier circuit R0 and the load. By adjusting the voltage of the converter circuit I0, the voltage or current applied to the load can be set to a desired value.
  • a second converter circuit I1 for converting the output of the second rectifier circuit R1 is inserted into the output line of the second rectifier circuit R1,.
  • the configuration may be such that the nth converter circuit In-1 for converting the output of the nth rectifier circuit Rn-1 is inserted into the output line of the n rectifier circuit Rn-1. Examples of this circuit configuration are shown in FIGS. With this circuit, the voltage or current applied to the load can be set to a desired value by adjusting the converter circuits I0 to In-1.
  • the ripple applied to the load can be suppressed.
  • the electrolytic capacitor which is said to have a short life, is not necessary, and the device can have a long life and can be downsized.
  • the flickering of the lighted LED can be suppressed to such an extent that it cannot be seen with the eyes.
  • FIG. 2 is a circuit diagram illustrating a configuration example of a DC power supply device of the present invention configured by adding one converter circuit to the circuit of FIG. 1.
  • FIG. 5 is a circuit diagram showing a modification of the DC power supply device of the present invention, which is configured by adding one converter circuit to the circuit of FIG. 2.
  • FIG. 2 is a circuit diagram showing a configuration example of a DC power supply device of the present invention configured by adding a plurality of converter circuits to the circuit of FIG. 1.
  • FIG. 3 is a circuit diagram showing a configuration example of a DC power supply device according to the present invention in which a plurality of converter circuits are added to the circuit of FIG. 2. It is a circuit diagram which shows the circuit structure of 10A (parallel connection) of DC power supply devices which concern on embodiment of this invention. It is a circuit diagram which shows the circuit structure of 10A (series connection) DC power supply device which concerns on embodiment of this invention.
  • FIG. 4 is a voltage waveform diagram at points a and b and a current waveform diagram at point c of the DC power supply device 10A.
  • the DC power supply device 10A is a device that drives a load.
  • the load is not particularly limited. Examples thereof include LEDs (light emitting diodes), discharge tubes such as cold cathode tubes, electronic devices such as personal computers, and electrical devices.
  • LEDs light emitting diodes
  • discharge tubes such as cold cathode tubes
  • electronic devices such as personal computers, and electrical devices.
  • electrical devices a case where an LED is used as a load will be described.
  • the DC power supply device 10A is connected to a commercial AC power supply E.
  • a phase shift circuit for generating an AC power supply having a phase difference ⁇ exceeding 0 degrees relative to each other (the AC cycle of the AC power supply is 360 degrees)
  • a hot side L and a cold side N of a commercial AC power supply E are used.
  • Capacitor elements C1 and C2 inserted between the power supply line and both input lines of the second rectifier circuit R1, respectively. With this capacitor element, it is possible to obtain a phase difference close to 90 degrees with respect to the power source input to the first rectifier circuit R0.
  • the DC power supply device 10A is connected to a commercial AC power supply E, and is connected to the first rectifier circuit R0 that rectifies the AC power supply to obtain a pulsating current through the capacitor elements C1 and C2, thereby obtaining the pulsating current. And a second rectifier circuit R1.
  • a DC / DC converter circuit for converting the output of the first rectifier circuit R0 is inserted into the output line of the first rectifier circuit R0.
  • This converter circuit is inserted in series with the output line of the first rectifier circuit R0, and the current maintaining diode that connects the switching elements SW1 and SW2 for switching the pulsating current output at a high frequency and the output lines of the switching elements.
  • D and current maintaining choke coils CH1 and CH2 inserted in series in the output lines of the switching elements SW1 and SW2, respectively.
  • In-phase pulse voltages are respectively supplied to the gates of the two switching elements SW1 and SW2. That is, when the gate of one switching element SW1 is turned on (off) by the pulse voltage, the gates of the other switching elements SW2 are also turned on (off).
  • the switching frequency that is, the frequency of the gate pulse voltage is not limited, but is set to about 10 2 to 10 4 times the frequency of the commercial AC power supply E.
  • the choke coils CH1 and CH2 are for absorbing the high frequency component of the switched high frequency current and maintaining the current applied to the load.
  • the voltage stepped down by the DC / DC converter circuit is applied to the load LED.
  • the difference between the stepped down voltage and the voltage of the commercial AC power supply E is applied to both ends of the capacitor element C1 and both ends of the capacitor element C2.
  • FIG. 9 (a) and 9 (b) are voltage waveform diagrams at points a and b of the DC power supply device 10A in FIG. 7, and FIG. 9 (c) is a current waveform diagram at point c.
  • FIG. 5A shows the voltage at the output point a of the first rectifier circuit R0, which is the pulsating output itself.
  • FIG. 2B shows the voltage at the output point b of the switching elements SW1 and SW2, which has a waveform in which the pulsating output is switched at a high frequency.
  • FIG. 4C shows the current flowing from the output point c of the choke coils CH1 and CH2 to the load.
  • the high-frequency current obtained by the on / off operation of the switching elements SW1 and SW2 is accumulated in the choke coils CH1 and CH2. Since the choke coils CH1 and CH2 absorb a high-frequency current having a frequency 10 2 to 10 4 times the frequency of the commercial AC power supply E, a large capacity is not necessary and a small one is sufficient.
  • the output lines of the two choke coils CH1 and CH2 and the output line of the second rectifier circuit R1 are connected in parallel as shown in FIG. This output line is connected to both terminals of the load LED.
  • the output lines of the two choke coils CH1 and CH2 and the output line of the second rectifier circuit R1 may be connected to each other in series as shown in FIG.
  • the output line of the choke coil CH1 and one output line of the second rectifier circuit R1 are connected to both terminals of the load LED.
  • the commercial alternating current rectified by the rectifying circuits R0 and R1 remains in the pulsating state, enters the switching circuits SW1 and SW2, is switched at a high frequency, and generally passes through the choke coils CH1 and CH2 and generally pulsating. It is supplied to the load LED as it is.
  • the phase advances as compared with the AC power source that enters the first rectifier circuit R0.
  • the phase difference ⁇ differs depending on the difference between the input voltage and the output voltage, but the closer the difference is, the closer to 90 degrees.
  • the material and type of the dielectric of the capacitor element can be arbitrarily selected from ceramic, paper, film and the like. Further, as described above, an inductor element which is a slow phase element may be used instead of the capacitor element.
  • the waveform combined by parallel or serial connection in this way overlaps the pulsating peaks and valleys, resulting in the pulsating flow frequency (for example, If the commercial AC power source E is 60 Hz, the frequency component is higher than 120 Hz). Therefore, voltage fluctuation and current fluctuation applied to the load LED can be suppressed.
  • a smoothing circuit including an electrolytic capacitor is not required, an electrolytic capacitor having a short lifetime is generally unnecessary, and the life and size of the DC power supply device can be increased.
  • FIG. 10 is a circuit diagram showing a DC power supply device 10B according to a modification obtained by partially modifying FIG.
  • the capacitor element C1 is inserted only between the power line on the hot side L of the commercial AC power supply E and one input line of the second rectifier circuit R1.
  • the phase difference ⁇ is obtained by the capacitor element C1, but since it is asymmetrical when viewed from the load, a ripple component increases in the synthesized waveform.
  • the effect of the present invention can be obtained in which the electrolytic capacitor is omitted and voltage fluctuation or current fluctuation applied to the load can be suppressed.
  • FIGS. 11 and 12 an improved version of FIG. 10 is shown in FIGS.
  • the capacitor element C1 is inserted only between the hot L power line of the commercial AC power supply E and one input line of the second rectifier circuit R1.
  • an inductor element that is a slow phase element may be employed.
  • the configuration and connection of the first rectifier circuit R0 and the second rectifier circuit R1 are the same as those shown in FIGS.
  • a transformer T0 having a function as an insulating circuit is connected to the output side of the converter circuit that converts the output of the first rectifier circuit R0.
  • a secondary rectifier circuit R ′ is connected to the secondary side of the transformer T0, and the secondary voltage of the transformer T0 is rectified and supplied to the load.
  • the converter circuit is connected to both output lines of the first rectifier circuit R0, and includes parallel switching elements SW3 and SW4 for switching the pulsating current output at high frequencies opposite to each other, and parallel switching elements SW3 and SW4. Capacitors C3 and C4 connected to both end points are provided.
  • the intermediate point of series switching elements SW3 and SW4 and the intermediate point of capacitors C3 and C4 are connected to the primary winding of transformer T0.
  • the opposite phase pulse voltages are supplied to the gates of the two switching elements SW3 and SW4.
  • the commercial AC rectified by the first rectifier circuit R0 enters the switching circuits SW3 and SW4 in a pulsating manner, is switched at a high frequency, and is stepped up or stepped down by the transformer T0 and supplied to the load.
  • the phase is advanced compared to the AC power source entering the first rectifier circuit R0.
  • the AC power supply whose phase has advanced and the AC power supply supplied from the secondary side of the transformer T0 are connected in parallel to each other and connected to both terminals of the load.
  • the two AC power supplies may be connected in series with each other and connected to both terminals of the load.
  • the peaks and valleys of the pulsating flow overlap each other (see FIG. 9C), and as a result, the waveform includes many frequency components higher than the frequency of the pulsating flow. . Therefore, voltage fluctuations and current fluctuations applied to the load can be suppressed.
  • the electrolytic capacitor which is said to have a short life, is not necessary, and the life and size of the DC power supply device can be increased.
  • a capacitor element C1 may be installed on the first rectifier circuit R0 side to advance the phase of the AC power supply entering the first rectifier circuit R0. .
  • FIGS. 13 and 14 are circuit diagrams showing the DC power supply device 10D when the capacitor element C1 is connected to the first rectifier circuit R0.
  • a voltage is directly applied from the second rectifier circuit R1 to the load.
  • the voltage applied to the load from the first rectifier circuit R0 is stepped down by the capacitor element C1 (that is, a voltage is applied to both ends of the capacitor element C1), and the stepped down voltage is applied to the load. Therefore, if it is desired to make the voltage applied to the load uniform, it is preferable to use a step-up transformer as the transformer T0.
  • FIGS. 17 and 18 show a circuit of a DC power supply device 10F that employs a switching element SW8 instead of the rectifier diode D.
  • FIG. A pulse voltage having the same frequency is applied to the gate of the switching element SW5 and the gate of the switching element SW8 in this circuit. Each pulse voltage has a phase opposite to each other, and when one gate is on, the other gate is off.
  • the same circuit as the circuit composed of the converter circuit, the transformer T0, and the subsequent rectifier circuit R ′ on the first rectifier circuit R0 side shown in FIGS. 13 and 14 is connected to the second rectifier circuit R1 side.
  • 19 and 20 are connected to both output lines of the second rectifier circuit R1, and are connected to the parallel switching elements SW6 and SW7 for switching the pulsating current outputs to each other, and both end points of the parallel switching elements SW6 and SW7.
  • Capacitors C6 and C7, a transformer T1, and a rectifier circuit R ′′ are shown.
  • the present invention is of course not limited to the embodiments.
  • a Cook method or the like other than the above-described chopper method may be used.
  • 21 and 22 show the converter circuit of the circuits of FIGS. 7 and 8 replaced with a Cuk type circuit. This Cuk-type converter circuit is inserted in parallel with both output lines of the first rectifier circuit R0, and a switching element SW9 for switching the pulsating current output at a high frequency, between both ends of the switching element SW9 and a load.
  • Capacitor elements C8 and C9 inserted into the capacitor elements, current maintaining diodes D connecting the output terminals of the capacitor elements C8 and C9, and current maintaining choke coils inserted in series at the output terminals of the capacitor elements C8 and C9, respectively. CH5 and CH6.
  • a high-frequency pulse voltage is supplied to the gate of the switching element SW9.
  • the switching frequency that is, the frequency of the gate pulse voltage is not limited, but is set to about 10 2 to 10 4 times the frequency of the commercial AC power supply E.
  • This high frequency is absorbed by the choke coils CH5 and CH6, but the pulsating current output from the first rectifier circuit R0 flows to the load.
  • a pulsating current also flows from the output line of the second rectifier circuit R1. Since the phase of these pulsating currents exceeds 0 degrees and shifts to 90 degrees due to the capacitor C1 inserted on the primary side of the second rectifier circuit R1, it is shown in FIG. As described above, a smooth current can be obtained.
  • the first rectifier circuit R0 and the second rectifier circuit R2 can be used without using a transformer. Another characteristic is that insulation with the rectifier circuit R1 is ensured. 21 and 22, the capacitor C1 is inserted only in the primary hot side L of the second rectifier circuit R1, but a capacitor may be inserted in the cold side N. The hot side L and the cold side N You may insert a capacitor in both. As a result, direct current insulation between the first rectifier circuit R0 and the second rectifier circuit R1 is ensured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

A direct-current power supply device is connected to a commercial alternating-current power supply (E) and provided with capacitor elements (C1, C2) for generating alternating-current power supplies with a phase difference (φ). The direct-current power supply device is also provided with a first rectifying circuit (R0) that obtains a pulsating flow by rectifying an alternating-current power supply, and a second rectifying circuit (R1) that is connected via the capacitor elements (C1, C2) and obtains a pulsating flow. A converter circuit is connected to the first rectifying circuit (R0), and outputs of the converter circuit and outputs of the second rectifying circuit (R1) are connected in parallel with each other and connected to both terminals of a load. Periodic voltage fluctuation and current fluctuation to be applied to the load can be suppressed by the converter circuit. Consequently, an electrolytic capacitor having a short life becomes unnecessary, thereby enabling an increase in the life of the device and a decrease in the size thereof.

Description

直流電源装置及びLED点灯装置DC power supply device and LED lighting device
 本発明は、直流電力を供給する直流電源装置、及びLED(発光ダイオード)を点灯させるLED点灯装置に関するものである。 The present invention relates to a DC power supply for supplying DC power and an LED lighting device for lighting an LED (light emitting diode).
 商用の交流電源を用いて直流電源を得る直流電源装置は、商用の交流電源の電圧を降圧する変圧器(トランスレスの場合もある)と、この変圧器で変換された電源を整流して脈流を得る整流回路と、この整流回路によって得られた脈流を平滑する平滑回路とを備えている。これにより、きれいな直流を得て負荷に供給することができる。
 このような直流電源装置においては、交流周波数(50Hz,60Hz等)での電圧変動(リップル)を抑えるために、平滑回路に大容量の電解キャパシタを設置する必要がなる。
A DC power supply device that obtains a DC power supply using a commercial AC power supply rectifies the transformer (which may be transformerless) that steps down the voltage of the commercial AC power supply and rectifies the power source converted by this transformer. A rectifier circuit for obtaining a flow, and a smoothing circuit for smoothing a pulsating flow obtained by the rectifier circuit. Thereby, a clean direct current can be obtained and supplied to the load.
In such a DC power supply device, in order to suppress voltage fluctuation (ripple) at an AC frequency (50 Hz, 60 Hz, etc.), it is necessary to install a large capacity electrolytic capacitor in the smoothing circuit.
特開2009-038954号公報JP 2009-038954
 ところが、電解キャパシタは周知のように、熱や過電圧に弱く、長期間使用すると等価直列抵抗(ESR)が増大して脈流を平滑する機能が弱くなってくる。こうなれば例えば負荷に蛍光灯や冷陰極管を採用したとき、発光のちらつきが顕著になり、光源として使用しづらいものになってしまう。
 そこで電解キャパシタを使用しないで、かつ、周期的な電圧変動(リップル)が無視できるような直流電源装置の開発が要望されている。
However, as is well known, the electrolytic capacitor is weak against heat and overvoltage, and when used for a long time, the equivalent series resistance (ESR) increases and the function of smoothing the pulsating flow becomes weak. In this case, for example, when a fluorescent lamp or a cold cathode tube is adopted as the load, the flickering of the light emission becomes remarkable and it becomes difficult to use as a light source.
Therefore, there is a demand for the development of a DC power supply apparatus that does not use an electrolytic capacitor and that can ignore periodic voltage fluctuations (ripples).
 そこで本発明は、周期的な電圧変動(リップル)が低減できると共に、小型で超寿命の直流電源装置及びLED点灯装置を提供することを目的とする。 Therefore, an object of the present invention is to provide a DC power supply device and an LED lighting device that can reduce periodic voltage fluctuations (ripples) and have a small size and a long life.
 本項において、参照符号は、後述する[発明を実施するための形態]における対応構成要素の参照符号を表すものであるが、これらの参照符号により特許請求の範囲を限定する趣旨ではない。
 本発明の直流電源装置は、商用の交流電源Eに対して接続され、互いに位相差がある、第1の交流電源から第n(nは2以上の整数)の交流電源までを生成するための移相回路と、第1の交流電源を整流して脈流を得る第1の整流回路R0と、第2の交流電源を整流して脈流を得る第2の整流回路R1と、・・・第nの交流電源を整流して脈流を得る第nの整流回路Rn-1とを備えるものである。
In this section, reference numerals represent reference numerals of corresponding constituent elements in [Mode for Carrying Out the Invention] to be described later, but the scope of the claims is not limited by these reference numerals.
The DC power supply device of the present invention is connected to a commercial AC power supply E, and generates a range from a first AC power supply to an nth (n is an integer of 2 or more) AC power supply having a phase difference from each other A phase shift circuit, a first rectifier circuit R0 that rectifies the first AC power supply to obtain a pulsating current, a second rectifier circuit R1 that rectifies the second AC power supply to obtain a pulsating current,... And an n-th rectifier circuit Rn-1 that rectifies the n-th AC power source to obtain a pulsating flow.
 「位相差」とは商用の交流電源Eの1サイクルを360度としたときの位相差をいう。「脈流」とは平滑回路で平滑しない、整流回路の出力波形をいう。符号"・・・"は1からnまで繰り返すことを意味する。
 第1の整流回路R0の出力線、第2の整流回路R1の出力線、・・・第nの整流回路Rn-1の出力線は、互いに直列又は並列に接続されて、負荷の両端子に接続されている。"ZL"は負荷を示す。
The “phase difference” means a phase difference when one cycle of the commercial AC power source E is set to 360 degrees. “Pulsating flow” means an output waveform of the rectifier circuit that is not smoothed by the smoothing circuit. The symbol “...” Means that 1 to n are repeated.
The output line of the first rectifier circuit R0, the output line of the second rectifier circuit R1,... The output line of the nth rectifier circuit Rn-1 are connected in series or in parallel to both terminals of the load. It is connected. “ZL” indicates a load.
 この装置構成例を図1、図2に示す。図1、図2によれば、移相回路は、商用の交流電源Eと第2~第nの整流回路R1~Rn-1との間にそれぞれ挿入されている。図1は第1~第nの整流回路R0~Rn-1の出力線を並列に接続して負荷を駆動する状態、図2は第1~第nの整流回路R0~Rn-1の出力線を直列に接続して負荷を駆動する状態を示す。
 この構成であれば、負荷の駆動のために、第1~第nの整流回路R0~Rn-1から、互いに位相のずれた脈流が出力される。それぞれの脈流は、直列に接続され又は並列に接続されて、負荷の両端子に供給される。いずれかの整流回路の出力波形に対して、他の整流回路の出力波形に位相差が設定されているために、合波した波形は、当該脈流の山と谷どうしが重なり、結果的に脈流の基本周波数(例えば商用の交流電源Eが60Hzであれば基本周波数は120Hzである)よりも高い周波数成分を多く含んでいる。このために負荷へ印加される電圧変動や電流変動が防止される。
An example of the configuration of this apparatus is shown in FIGS. According to FIGS. 1 and 2, the phase shift circuit is inserted between the commercial AC power source E and the second to nth rectifier circuits R1 to Rn-1. FIG. 1 shows a state in which output lines of first to nth rectifier circuits R0 to Rn-1 are connected in parallel to drive a load, and FIG. 2 shows output lines of first to nth rectifier circuits R0 to Rn-1. Shows a state in which a load is driven by connecting them in series.
With this configuration, pulsating currents out of phase with each other are output from the first to nth rectifier circuits R0 to Rn-1 for driving the load. Each pulsating flow is connected in series or connected in parallel and supplied to both terminals of the load. Since the phase difference is set in the output waveform of the other rectifier circuit with respect to the output waveform of one of the rectifier circuits, the combined waveform has overlapping peaks and troughs of the pulsating current, and as a result It contains many frequency components higher than the fundamental frequency of the pulsating current (for example, if the commercial AC power supply E is 60 Hz, the fundamental frequency is 120 Hz). For this reason, voltage fluctuation and current fluctuation applied to the load are prevented.
 移相回路の構成例を挙げると、商用の交流電源Eの第一側(ホット側L)及び第二側(コールド側N)の電源線と、少なくとも(n-1)個の整流回路の両方の入力線との間に、それぞれキャパシタ素子を挿入して構成してもよい。この場合、キャパシタ素子の数は、合計2(n-1)になる。第1の整流回路R0、・・・第nの整流回路Rn-1から直列又は並列に接続された出力は、商用の交流電源Eのホット側L及びコールド側Nに関して対称、すなわちホット側Lとコールド側Nを入れ替えてみても同じ構成となる。よって入力電圧の変動、負荷変動から受ける影響を減らすことができる。 As an example of the configuration of the phase shift circuit, both the first (hot side L) and second (cold side N) power lines of the commercial AC power source E and at least (n−1) rectifier circuits A capacitor element may be inserted between each of the input lines. In this case, the total number of capacitor elements is 2 (n−1). The outputs connected in series or in parallel from the first rectifier circuit R0,..., The nth rectifier circuit Rn-1 are symmetrical with respect to the hot side L and the cold side N of the commercial AC power source E, that is, with the hot side L. Even if the cold side N is replaced, the same configuration is obtained. Therefore, it is possible to reduce the influence of input voltage fluctuation and load fluctuation.
 移相回路の他の構成例を挙げると、商用の交流電源Eのホット側L又はコールド側Nのいずれかの電源線と、第1~第nの整流回路R0~Rn-1うち、少なくとも(n-1)個の整流回路の片方の入力線との間に挿入されたキャパシタ素子により構成してもよい。この場合、キャパシタ素子の数は、合計(n-1)になる。(n-1)個の整流回路から直列又は並列に接続された出力は、商用の交流電源Eに対して対称とならないが、負荷に印加されるリップルを抑えるという効果は、十分に得ることができる。 As another configuration example of the phase shift circuit, at least one of the power line on the hot side L or the cold side N of the commercial AC power source E and the first to nth rectifier circuits R0 to Rn−1 (at least ( n-1) A capacitor element inserted between one of the rectifier circuits and one input line may be used. In this case, the total number of capacitor elements is (n−1). Outputs connected in series or in parallel from (n-1) rectifier circuits are not symmetric with respect to the commercial AC power supply E, but the effect of suppressing the ripple applied to the load can be sufficiently obtained. it can.
 この場合、(n-1)個の整流回路を除いた、残り1個の整流回路の出力側と負荷との間を絶縁回路で絶縁することが好ましい。絶縁回路の例として、変圧器があげられる。
 また本発明の直流電源装置によれば、第1の整流回路R0の出力線に、第1の整流回路R0の出力を変換する第1のコンバータ回路が挿入されていることが好ましい。
 第1の整流回路R0の出力線と負荷との間にコンバータ回路I0を使った構成例を図3、図4に示す。コンバータ回路I0の電圧調整により、負荷にかかる電圧又は電流を所望の値に設定することができる。
In this case, it is preferable to insulate between the output side of the remaining one rectifier circuit and the load, excluding (n−1) rectifier circuits, with an insulating circuit. An example of an insulation circuit is a transformer.
According to the DC power supply device of the present invention, it is preferable that the first converter circuit for converting the output of the first rectifier circuit R0 is inserted into the output line of the first rectifier circuit R0.
3 and 4 show a configuration example in which the converter circuit I0 is used between the output line of the first rectifier circuit R0 and the load. By adjusting the voltage of the converter circuit I0, the voltage or current applied to the load can be set to a desired value.
 また、前述の第1のコンバータ回路I0に加えて、第2の整流回路R1の出力線に、第2の整流回路R1の出力を変換する第2のコンバータ回路I1が挿入され、・・・第nの整流回路Rn-1の出力線に、第nの整流回路Rn-1の出力を変換する第nのコンバータ回路In-1が挿入されている構成であってもよい。この回路構成例を図5,6に示す。この回路であれば、各コンバータ回路I0~In-1の調整により、負荷にかかる電圧又は電流を所望の値に設定することができる。 Further, in addition to the first converter circuit I0 described above, a second converter circuit I1 for converting the output of the second rectifier circuit R1 is inserted into the output line of the second rectifier circuit R1,. The configuration may be such that the nth converter circuit In-1 for converting the output of the nth rectifier circuit Rn-1 is inserted into the output line of the n rectifier circuit Rn-1. Examples of this circuit configuration are shown in FIGS. With this circuit, the voltage or current applied to the load can be set to a desired value by adjusting the converter circuits I0 to In-1.
 本発明によれば、負荷に印加されるリップルを抑えることができる。また、寿命が短いと言われる電解キャパシタが不要になり、装置の長寿命化と小型化を図ることが出来る。特にLEDの点灯に用いた場合、点灯するLEDの光のちらつきを、眼で見ても分からない程度にまで抑えることができる。
 本発明における上述の、又はさらに他の利点、特徴及び効果は、添付図面を参照して次に述べる実施形態の説明により明らかにされる。
According to the present invention, the ripple applied to the load can be suppressed. In addition, the electrolytic capacitor, which is said to have a short life, is not necessary, and the device can have a long life and can be downsized. In particular, when the LED is used for lighting, the flickering of the lighted LED can be suppressed to such an extent that it cannot be seen with the eyes.
The above-described or further advantages, features, and effects of the present invention will be made clear by the following description of embodiments with reference to the accompanying drawings.
移相回路と、複数の整流回路とを備え、整流回路の出力を並列に接続した、本発明の直流電源装置の構成例を示す回路図である。It is a circuit diagram which shows the structural example of the DC power supply device of this invention which provided with the phase-shift circuit and the some rectifier circuit, and connected the output of the rectifier circuit in parallel. 移相回路と、複数の整流回路とを備え、整流回路の出力を直列に接続した、本発明の直流電源装置の構成例を示す回路図である。It is a circuit diagram which shows the structural example of the direct-current power supply device of this invention which provided with the phase-shift circuit and the some rectifier circuit, and connected the output of the rectifier circuit in series. 図1の回路に、1つのコンバータ回路を追加して構成した、本発明の直流電源装置の構成例を示す回路図である。FIG. 2 is a circuit diagram illustrating a configuration example of a DC power supply device of the present invention configured by adding one converter circuit to the circuit of FIG. 1. 図2の回路に、1つのコンバータ回路を追加して構成した、本発明の直流電源装置の変形例を示す回路図である。FIG. 5 is a circuit diagram showing a modification of the DC power supply device of the present invention, which is configured by adding one converter circuit to the circuit of FIG. 2. 図1の回路に、複数のコンバータ回路を追加して構成した、本発明の直流電源装置の構成例を示す回路図である。FIG. 2 is a circuit diagram showing a configuration example of a DC power supply device of the present invention configured by adding a plurality of converter circuits to the circuit of FIG. 1. 図2の回路に、複数のコンバータ回路を追加して構成した、本発明の直流電源装置の構成例を示す回路図である。FIG. 3 is a circuit diagram showing a configuration example of a DC power supply device according to the present invention in which a plurality of converter circuits are added to the circuit of FIG. 2. 本発明の実施形態に係る直流電源装置10A(並列接続)の回路構成を示す回路図である。It is a circuit diagram which shows the circuit structure of 10A (parallel connection) of DC power supply devices which concern on embodiment of this invention. 本発明の実施形態に係る直流電源装置10A(直列接続)の回路構成を示す回路図である。It is a circuit diagram which shows the circuit structure of 10A (series connection) DC power supply device which concerns on embodiment of this invention. 直流電源装置10Aの各点a,bの電圧波形図、点cの電流波形図である。FIG. 4 is a voltage waveform diagram at points a and b and a current waveform diagram at point c of the DC power supply device 10A. 本発明の他の実施形態に係る直流電源装置10Bの回路構成を示す回路図である。It is a circuit diagram which shows the circuit structure of DC power supply device 10B which concerns on other embodiment of this invention. 本発明のさらに他の実施形態に係る直流電源装置10C(並列接続)の回路構成を示す回路図である。It is a circuit diagram which shows the circuit structure of 10 C (parallel connection) of DC power supply devices which concern on further another embodiment of this invention. 本発明のさらに他の実施形態に係る直流電源装置10C(直列接続)の回路構成を示す回路図である。It is a circuit diagram which shows the circuit structure of 10 C of DC power supply devices (series connection) which concerns on other embodiment of this invention. 本発明のさらに他の実施形態に係る直流電源装置10D(並列接続)の回路構成を示す回路図である。It is a circuit diagram which shows the circuit structure of DC power supply device 10D (parallel connection) which concerns on further another embodiment of this invention. 本発明のさらに他の実施形態に係る直流電源装置10D(直列接続)の回路構成を示す回路図である。It is a circuit diagram which shows the circuit structure of DC power supply device 10D (series connection) which concerns on other embodiment of this invention. 本発明のさらに他の実施形態に係る直流電源装置10E(並列接続)の回路構成を示す回路図である。It is a circuit diagram which shows the circuit structure of DC power supply device 10E (parallel connection) which concerns on further another embodiment of this invention. 本発明のさらに他の実施形態に係る直流電源装置10E(直列接続)の回路構成を示す回路図である。It is a circuit diagram which shows the circuit structure of DC power supply device 10E (series connection) which concerns on further another embodiment of this invention. 本発明のさらに他の実施形態に係る直流電源装置10F(並列接続)の回路構成を示す回路図である。It is a circuit diagram which shows the circuit structure of DC power supply device 10F (parallel connection) which concerns on further another embodiment of this invention. 本発明のさらに他の実施形態に係る直流電源装置10F(直列接続)の回路構成を示す回路図である。It is a circuit diagram which shows the circuit structure of DC power supply device 10F (series connection) which concerns on other embodiment of this invention. 本発明のさらに他の実施形態に係る直流電源装置10G(並列接続)の回路構成を示す回路図である。It is a circuit diagram which shows the circuit structure of DC power supply device 10G (parallel connection) which concerns on further another embodiment of this invention. 本発明のさらに他の実施形態に係る直流電源装置10G(直列接続)の回路構成を示す回路図である。It is a circuit diagram which shows the circuit structure of DC power supply device 10G (series connection) which concerns on other embodiment of this invention. 本発明のさらに他の実施形態に係る直流電源装置10H(並列接続)の回路構成を示す回路図である。It is a circuit diagram which shows the circuit structure of DC power supply device 10H (parallel connection) which concerns on further another embodiment of this invention. 本発明のさらに他の実施形態に係る直流電源装置10H(直列接続)の回路構成を示す回路図である。It is a circuit diagram which shows the circuit structure of DC power supply device 10H (series connection) which concerns on other embodiment of this invention.
 以下、本発明の実施の形態を、添付図面を参照しながら詳細に説明する。
 図7及び図8は、本発明が適用される直流電源装置10Aの具体的回路図である。この直流電源装置10Aは、負荷を駆動する装置である。負荷としては、特に限定されない。例えばLED(発光ダイオード)、冷陰極管などの放電管、パーソナルコンピュータなどの電子機器、電気機器などが挙げられる。以下、LEDを負荷に用いた場合を説明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
7 and 8 are specific circuit diagrams of the DC power supply device 10A to which the present invention is applied. The DC power supply device 10A is a device that drives a load. The load is not particularly limited. Examples thereof include LEDs (light emitting diodes), discharge tubes such as cold cathode tubes, electronic devices such as personal computers, and electrical devices. Hereinafter, a case where an LED is used as a load will be described.
 直流電源装置10Aは、商用の交流電源Eに対して接続されている。互いに0度を超える位相差φ(交流電源の交流1サイクルを360度とする)がある交流電源を生成するための「移相回路」として、商用の交流電源Eのホット側L及びコールド側Nの電源線と、第2の整流回路R1の両方の入力線との間にそれぞれ挿入されたキャパシタ素子C1,C2を備えている。このキャパシタ素子により、第1の整流回路R0に入力される電源に対して90度に近い位相差を得ることが出来る。 The DC power supply device 10A is connected to a commercial AC power supply E. As a “phase shift circuit” for generating an AC power supply having a phase difference φ exceeding 0 degrees relative to each other (the AC cycle of the AC power supply is 360 degrees), a hot side L and a cold side N of a commercial AC power supply E are used. Capacitor elements C1 and C2 inserted between the power supply line and both input lines of the second rectifier circuit R1, respectively. With this capacitor element, it is possible to obtain a phase difference close to 90 degrees with respect to the power source input to the first rectifier circuit R0.
 なお「移相回路」として、進相素子であるキャパシタを例示したが、これに代えて遅相素子であるインダクタ素子を採用することもできる。
 直流電源装置10Aは、商用の交流電源Eに対して接続され、交流電源を整流して脈流を得る第1の整流回路R0と、キャパシタ素子C1,C2を介して接続され、脈流を得る第2の整流回路R1とを備えている。
In addition, although the capacitor which is a phase advance element was illustrated as a "phase-shift circuit", it can replace with this and can also employ | adopt the inductor element which is a phase-lag element.
The DC power supply device 10A is connected to a commercial AC power supply E, and is connected to the first rectifier circuit R0 that rectifies the AC power supply to obtain a pulsating current through the capacitor elements C1 and C2, thereby obtaining the pulsating current. And a second rectifier circuit R1.
 第1の整流回路R0の出力線には、第1の整流回路R0の出力を変換するDC/DCコンバータ回路が挿入されている。このコンバータ回路は、第1の整流回路R0の出力線に直列に挿入され、当該脈流出力を高周波でスイッチングするためのスイッチング素子SW1,SW2と、スイッチング素子の出力線どうしを結ぶ電流維持用ダイオードDと、スイッチング素子SW1,SW2の出力線にそれぞれ直列に挿入された電流維持用チョークコイルCH1,CH2と、を備えている。 A DC / DC converter circuit for converting the output of the first rectifier circuit R0 is inserted into the output line of the first rectifier circuit R0. This converter circuit is inserted in series with the output line of the first rectifier circuit R0, and the current maintaining diode that connects the switching elements SW1 and SW2 for switching the pulsating current output at a high frequency and the output lines of the switching elements. D and current maintaining choke coils CH1 and CH2 inserted in series in the output lines of the switching elements SW1 and SW2, respectively.
 2つのスイッチング素子SW1,SW2のゲートには、それぞれ同相のパルス電圧が供給される。すなわちパルス電圧により、1つのスイッチング素子SW1のゲートがオン(オフ)のときに、他のスイッチング素子SW2のゲートもオン(オフ)となる。この2つのスイッチング素子SW1,SW2のオンオフ動作により、第1の整流回路R0の脈流出力は、高周波でスイッチングされる。このスイッチング周波数、すなわちゲートパルス電圧の周波数は限定されないが、商用の交流電源Eの周波数の102~104倍程度に設定される。 In-phase pulse voltages are respectively supplied to the gates of the two switching elements SW1 and SW2. That is, when the gate of one switching element SW1 is turned on (off) by the pulse voltage, the gates of the other switching elements SW2 are also turned on (off). By the on / off operation of the two switching elements SW1 and SW2, the pulsating output of the first rectifier circuit R0 is switched at a high frequency. The switching frequency, that is, the frequency of the gate pulse voltage is not limited, but is set to about 10 2 to 10 4 times the frequency of the commercial AC power supply E.
 チョークコイルCH1,CH2は、スイッチングされた高周波電流の高周波成分を吸収するとともに、負荷に印加される電流を維持するためのものである。
 DC/DCコンバータ回路で降圧された電圧は負荷LEDにかかるが、この降圧された電圧と商用の交流電源Eの電圧との差は、キャパシタ素子C1の両端と、キャパシタ素子C2の両端に印加される。
The choke coils CH1 and CH2 are for absorbing the high frequency component of the switched high frequency current and maintaining the current applied to the load.
The voltage stepped down by the DC / DC converter circuit is applied to the load LED. The difference between the stepped down voltage and the voltage of the commercial AC power supply E is applied to both ends of the capacitor element C1 and both ends of the capacitor element C2. The
 図9(a)(b)は、図7の直流電源装置10Aの各点a,bの電圧波形図、図9(c)は点cの電流波形図である。同図(a)は、第1の整流回路R0の出力点aの電圧を示し、これは脈流出力そのものである。同図(b)は、スイッチング素子SW1,SW2の出力点bの電圧を示し、これは脈流出力が高周波でスイッチングされた波形となる。同図(c)はチョークコイルCH1,CH2の出力点cから負荷に流れる電流を示す。 9 (a) and 9 (b) are voltage waveform diagrams at points a and b of the DC power supply device 10A in FIG. 7, and FIG. 9 (c) is a current waveform diagram at point c. FIG. 5A shows the voltage at the output point a of the first rectifier circuit R0, which is the pulsating output itself. FIG. 2B shows the voltage at the output point b of the switching elements SW1 and SW2, which has a waveform in which the pulsating output is switched at a high frequency. FIG. 4C shows the current flowing from the output point c of the choke coils CH1 and CH2 to the load.
 図7に示されているように、スイッチング素子SW1,SW2のオンオフ動作により得られた高周波電流はチョークコイルCH1,CH2に蓄積される。このチョークコイルCH1,CH2は、商用の交流電源Eの周波数の102~104倍の周波数の高周波電流を吸収するものであるので、大きな容量は必要なく、小型のもので十分である。
 2つのチョークコイルCH1,CH2の出力線と第2の整流回路R1の出力線は、図7に示すように、互いに並列に接続されている。この出力線が、負荷LEDの両端子に接続される。
As shown in FIG. 7, the high-frequency current obtained by the on / off operation of the switching elements SW1 and SW2 is accumulated in the choke coils CH1 and CH2. Since the choke coils CH1 and CH2 absorb a high-frequency current having a frequency 10 2 to 10 4 times the frequency of the commercial AC power supply E, a large capacity is not necessary and a small one is sufficient.
The output lines of the two choke coils CH1 and CH2 and the output line of the second rectifier circuit R1 are connected in parallel as shown in FIG. This output line is connected to both terminals of the load LED.
 また2つのチョークコイルCH1,CH2の出力線と第2の整流回路R1の出力線は、図8に示すように、互いに直列に接続されていてもよい。図示するように、チョークコイルCH1の出力線と、第2の整流回路R1の一方の出力線が負荷LEDの両端子に接続される。
 以上のように、整流回路R0,R1で整流された商用交流は脈流のまま、スイッチング回路SW1,SW2に入り、高周波でスイッチングされ、チョークコイルCH1,CH2を通って、一般的には脈流のまま負荷LEDに供給される。
Further, the output lines of the two choke coils CH1 and CH2 and the output line of the second rectifier circuit R1 may be connected to each other in series as shown in FIG. As shown in the drawing, the output line of the choke coil CH1 and one output line of the second rectifier circuit R1 are connected to both terminals of the load LED.
As described above, the commercial alternating current rectified by the rectifying circuits R0 and R1 remains in the pulsating state, enters the switching circuits SW1 and SW2, is switched at a high frequency, and generally passes through the choke coils CH1 and CH2 and generally pulsating. It is supplied to the load LED as it is.
 第2の整流回路R1に入る交流電源は、キャパシタ素子C1,C2を介しているので、第1の整流回路R0に入る交流電源に比べれば、位相が進む。その位相差φは入力電圧と出力電圧との差によって異なるが、差が大きくなればなるほど90度に近くなる。なおキャパシタ素子の誘電体の材質・種類はセラミック、紙、フィルムなど任意に選ぶことができる。また、キャパシタ素子に代えて遅相素子であるインダクタ素子を用いても良いことは、前述したとおりである。 Since the AC power source that enters the second rectifier circuit R1 passes through the capacitor elements C1 and C2, the phase advances as compared with the AC power source that enters the first rectifier circuit R0. The phase difference φ differs depending on the difference between the input voltage and the output voltage, but the closer the difference is, the closer to 90 degrees. The material and type of the dielectric of the capacitor element can be arbitrarily selected from ceramic, paper, film and the like. Further, as described above, an inductor element which is a slow phase element may be used instead of the capacitor element.
 このように並列又は直列接続により合波された波形は、図9(c)の実線と破線に示されるように、当該脈流の山と谷どうしが重なり、結果的に脈流の周波数(例えば商用の交流電源Eが60Hzであれば120Hzをいう)よりも高い周波数成分を多く含むことになる。したがって、負荷LEDに印加される電圧変動や電流変動を抑えることができる。また、電解キャパシタを含む平滑回路が必要ないので、一般に寿命が短い電解キャパシタが不要になり、直流電源装置の長寿命化と小型化を図ることが出来る。 As shown in the solid line and the broken line in FIG. 9C, the waveform combined by parallel or serial connection in this way overlaps the pulsating peaks and valleys, resulting in the pulsating flow frequency (for example, If the commercial AC power source E is 60 Hz, the frequency component is higher than 120 Hz). Therefore, voltage fluctuation and current fluctuation applied to the load LED can be suppressed. In addition, since a smoothing circuit including an electrolytic capacitor is not required, an electrolytic capacitor having a short lifetime is generally unnecessary, and the life and size of the DC power supply device can be increased.
 図10は、図7を一部変形した変形例に係る直流電源装置10Bを示す回路図である。この回路では、商用の交流電源Eのホット側Lの電源線と、第2の整流回路R1の片方の入力線との間にのみキャパシタ素子C1が挿入されている。この回路構成でも、キャパシタ素子C1により位相差φが得られるが、負荷から見て非対称になるので、合成された波形にはリップル成分が増える。しかしこの図10の回路でも、電解キャパシタを省略し、負荷に印加される電圧変動又は電流変動を抑えることができるという本発明の効果が得られる。 FIG. 10 is a circuit diagram showing a DC power supply device 10B according to a modification obtained by partially modifying FIG. In this circuit, the capacitor element C1 is inserted only between the power line on the hot side L of the commercial AC power supply E and one input line of the second rectifier circuit R1. Even in this circuit configuration, the phase difference φ is obtained by the capacitor element C1, but since it is asymmetrical when viewed from the load, a ripple component increases in the synthesized waveform. However, even in the circuit of FIG. 10, the effect of the present invention can be obtained in which the electrolytic capacitor is omitted and voltage fluctuation or current fluctuation applied to the load can be suppressed.
 次に、図10の改良形を図11及び図12に示す。この図11及び図12の直流電源装置10Cは商用の交流電源Eのホット側Lの電源線と、第2の整流回路R1の片方の入力線との間にのみキャパシタ素子C1を挿入している。なおキャパシタ素子に代えて遅相素子であるインダクタ素子を採用することもできる。第1の整流回路R0と第2の整流回路R1の構成、接続については、図7,図8,図10と同様である。 Next, an improved version of FIG. 10 is shown in FIGS. In the DC power supply device 10C shown in FIGS. 11 and 12, the capacitor element C1 is inserted only between the hot L power line of the commercial AC power supply E and one input line of the second rectifier circuit R1. . In place of the capacitor element, an inductor element that is a slow phase element may be employed. The configuration and connection of the first rectifier circuit R0 and the second rectifier circuit R1 are the same as those shown in FIGS.
 図7,図8,図10と異なるところは、第1の整流回路R0の出力を変換するコンバータ回路の出力側に、絶縁回路としての機能を備える変圧器T0が接続されていることである。さらに変圧器T0の二次側には、後段の整流回路R′が接続され、変圧器T0の二次電圧を整流して負荷に供給している。
 コンバータ回路は、第1の整流回路R0の両出力線に対して接続され、当該脈流出力を互いに逆相の高周波でスイッチングするための並列スイッチング素子SW3,SW4と、並列スイッチング素子SW3,SW4の両端点に接続されたキャパシタC3,C4とを備えている。
7, 8, and 10 is that a transformer T0 having a function as an insulating circuit is connected to the output side of the converter circuit that converts the output of the first rectifier circuit R0. Further, a secondary rectifier circuit R ′ is connected to the secondary side of the transformer T0, and the secondary voltage of the transformer T0 is rectified and supplied to the load.
The converter circuit is connected to both output lines of the first rectifier circuit R0, and includes parallel switching elements SW3 and SW4 for switching the pulsating current output at high frequencies opposite to each other, and parallel switching elements SW3 and SW4. Capacitors C3 and C4 connected to both end points are provided.
 直列スイッチング素子SW3,SW4の中間点と、キャパシタC3,C4の中間点は、変圧器T0の一次側巻き線に接続されている。2つのスイッチング素子SW3,SW4のゲートには、それぞれ逆相のパルス電圧が供給される。
 以上のように、第1の整流回路R0で整流された商用交流は脈流のまま、スイッチング回路SW3,SW4に入り、高周波でスイッチングされ、変圧器T0によって昇圧又は降圧されて、負荷に供給される。変圧器T0は、スイッチングされた高周波電圧を扱うので、小型のもので済むことも大きな利点である。
The intermediate point of series switching elements SW3 and SW4 and the intermediate point of capacitors C3 and C4 are connected to the primary winding of transformer T0. The opposite phase pulse voltages are supplied to the gates of the two switching elements SW3 and SW4.
As described above, the commercial AC rectified by the first rectifier circuit R0 enters the switching circuits SW3 and SW4 in a pulsating manner, is switched at a high frequency, and is stepped up or stepped down by the transformer T0 and supplied to the load. The Since the transformer T0 handles a switched high-frequency voltage, it is a great advantage that a small transformer is sufficient.
 一方、第2の整流回路R1に入る交流電源は、キャパシタ素子C1を介しているので、第1の整流回路R0に入る交流電源に比べれば、位相が進んでいる。
 この位相が進んだ交流電源と、変圧器T0の二次側から供給される交流電源とは、図11に示すように、互いに並列に接続されて、負荷の両端子に接続される。また2つの交流電源は、図12に示すように、互いに直列に接続されて、負荷の両端子に接続されてもよい。
On the other hand, since the AC power source entering the second rectifier circuit R1 is via the capacitor element C1, the phase is advanced compared to the AC power source entering the first rectifier circuit R0.
As shown in FIG. 11, the AC power supply whose phase has advanced and the AC power supply supplied from the secondary side of the transformer T0 are connected in parallel to each other and connected to both terminals of the load. Further, as shown in FIG. 12, the two AC power supplies may be connected in series with each other and connected to both terminals of the load.
 並列又は直列接続により合波された波形は、当該脈流の山と谷どうしが重なり(図9(c)参照)、結果的に当該脈流の周波数よりも高い周波数成分を多く含むことになる。したがって、負荷に印加される電圧変動や電流変動を抑えることができる。また、寿命が短いと言われる電解キャパシタが不要になり、直流電源装置の長寿命化と小型化を図ることが出来る。 In the waveform combined by the parallel or series connection, the peaks and valleys of the pulsating flow overlap each other (see FIG. 9C), and as a result, the waveform includes many frequency components higher than the frequency of the pulsating flow. . Therefore, voltage fluctuations and current fluctuations applied to the load can be suppressed. In addition, the electrolytic capacitor, which is said to have a short life, is not necessary, and the life and size of the DC power supply device can be increased.
 また、この図11、図12の回路構成では、第1の整流回路R0の出力側と第2の整流回路R1の出力側とが変圧器T0により絶縁されるため、第1の整流回路R0と第2の整流回路R1との間をノーマルモード・ノイズなどが通過するのを防ぐことができ、悪影響を遮断できる。したがって、安定した動作を期待することができる。
 また変形例として、図11、図12の回路構成において、第1の整流回路R0の側にキャパシタ素子C1を設置して、第1の整流回路R0に入る交流電源の位相を進めることとしてもよい。
Further, in the circuit configurations of FIGS. 11 and 12, since the output side of the first rectifier circuit R0 and the output side of the second rectifier circuit R1 are insulated by the transformer T0, the first rectifier circuit R0 Normal mode noise and the like can be prevented from passing between the second rectifier circuit R1, and adverse effects can be blocked. Therefore, stable operation can be expected.
As a modification, in the circuit configuration of FIGS. 11 and 12, a capacitor element C1 may be installed on the first rectifier circuit R0 side to advance the phase of the AC power supply entering the first rectifier circuit R0. .
 図13、図14は、キャパシタ素子C1が第1の整流回路R0の側に接続された場合の直流電源装置10Dを示す回路図である。この回路では、第2の整流回路R1から負荷に電圧が直接印加される。第1の整流回路R0から負荷にかかる電圧はキャパシタ素子C1のため降圧され(すなわちキャパシタ素子C1の両端に電圧がかかる)、その降圧された電圧が負荷に印加される。したがって、負荷に印加される電圧を揃えたいならば、変圧器T0として昇圧型の変圧器を使って昇圧することが好ましい。 FIGS. 13 and 14 are circuit diagrams showing the DC power supply device 10D when the capacitor element C1 is connected to the first rectifier circuit R0. In this circuit, a voltage is directly applied from the second rectifier circuit R1 to the load. The voltage applied to the load from the first rectifier circuit R0 is stepped down by the capacitor element C1 (that is, a voltage is applied to both ends of the capacitor element C1), and the stepped down voltage is applied to the load. Therefore, if it is desired to make the voltage applied to the load uniform, it is preferable to use a step-up transformer as the transformer T0.
 また、図13、図14に示した第2の整流回路R1の側に、チョッパ方式のコンバータ回路を構成するSW5と整流ダイオードDとチョークコイルCH3とを追加してもよい。このように追加した回路例を図15、図16に示す。
 さらに図17,図18は、整流ダイオードDに代えて、スイッチング素子SW8を採用した直流電源装置10Fの回路を示す。この回路のスイッチング素子SW5のゲートとスイッチング素子SW8のゲートには同一周波数のパルス電圧がそれぞれ印加される。各パルス電圧は互いに逆相であり、一方のゲートがオンのとき他方のゲートがオフになる。スイッチング素子SW5のゲート電圧が、パルスのオンオフサイクルの一周期に対してオンになる期間の比率(duration)が大きければ大きいほどコンバータ回路の出力電圧は大きくなる。スイッチング素子SW8のゲート電圧が、パルスのオンオフサイクルの一周期に対してオンになる期間の比率(duration)が大きければ大きいほどコンバータ回路の出力電圧は小さくなる。したがって、スイッチング素子SW5,SW8のゲートに印加されるパルス電圧の前記比率(duration)を0%から100%まで変化させることによって、負荷にかかる電圧を可変にすることができ、LEDの明るさの調節ができる。
Further, SW5, rectifier diode D, and choke coil CH3 constituting a chopper type converter circuit may be added on the second rectifier circuit R1 side shown in FIGS. Examples of circuits added in this way are shown in FIGS.
17 and 18 show a circuit of a DC power supply device 10F that employs a switching element SW8 instead of the rectifier diode D. FIG. A pulse voltage having the same frequency is applied to the gate of the switching element SW5 and the gate of the switching element SW8 in this circuit. Each pulse voltage has a phase opposite to each other, and when one gate is on, the other gate is off. The larger the ratio of the period during which the gate voltage of the switching element SW5 is turned on with respect to one cycle of the on / off cycle of the pulse, the greater the output voltage of the converter circuit. The larger the ratio of the period during which the gate voltage of the switching element SW8 is turned on with respect to one cycle of the pulse on / off cycle, the smaller the output voltage of the converter circuit. Therefore, by changing the duration of the pulse voltage applied to the gates of the switching elements SW5 and SW8 from 0% to 100%, the voltage applied to the load can be varied, and the brightness of the LED can be changed. You can adjust.
 また、図13、図14に示した第1の整流回路R0の側の、コンバータ回路と変圧器T0と後段の整流回路R′とからなる回路と同じ回路を、第2の整流回路R1の側にも追加して設けることができる。図19、図20は、第2の整流回路R1の両出力線に対して接続され、当該脈流出力を互いにスイッチングするための並列スイッチング素子SW6,SW7と、並列スイッチング素子SW6,SW7の両端点に接続されたキャパシタC6,C7と、変圧器T1と、整流回路R″とを示している。 Further, the same circuit as the circuit composed of the converter circuit, the transformer T0, and the subsequent rectifier circuit R ′ on the first rectifier circuit R0 side shown in FIGS. 13 and 14 is connected to the second rectifier circuit R1 side. Can also be provided. 19 and 20 are connected to both output lines of the second rectifier circuit R1, and are connected to the parallel switching elements SW6 and SW7 for switching the pulsating current outputs to each other, and both end points of the parallel switching elements SW6 and SW7. Capacitors C6 and C7, a transformer T1, and a rectifier circuit R ″ are shown.
 いままで本発明の実施の形態を説明したが、本発明は、実施の形態に限られるものでないことはもちろんである。例えば、DC/DCコンバータとして、前述したチョッパ方式以外にクック(Cuk)方式などを用いても良い。
 図21、図22は、図7、図8の回路のコンバータ回路をCuk型の回路に置き換えたものを示す。このCuk型のコンバータ回路は、第1の整流回路R0の両出力線に並列に挿入され、当該脈流出力を高周波でスイッチングするためのスイッチング素子SW9と、スイッチング素子SW9の両端と負荷との間にそれぞれ挿入されたキャパシタ素子C8,C9と、キャパシタ素子C8,C9の出力端どうしを結ぶ電流維持用ダイオードDと、キャパシタ素子C8,C9の出力端にそれぞれ直列に挿入された電流維持用チョークコイルCH5,CH6と、を備えている。
Although the embodiments of the present invention have been described so far, the present invention is of course not limited to the embodiments. For example, as the DC / DC converter, a Cook method or the like other than the above-described chopper method may be used.
21 and 22 show the converter circuit of the circuits of FIGS. 7 and 8 replaced with a Cuk type circuit. This Cuk-type converter circuit is inserted in parallel with both output lines of the first rectifier circuit R0, and a switching element SW9 for switching the pulsating current output at a high frequency, between both ends of the switching element SW9 and a load. Capacitor elements C8 and C9 inserted into the capacitor elements, current maintaining diodes D connecting the output terminals of the capacitor elements C8 and C9, and current maintaining choke coils inserted in series at the output terminals of the capacitor elements C8 and C9, respectively. CH5 and CH6.
 スイッチング素子SW9のゲートには、高周波のパルス電圧が供給される。このスイッチング素子SW9のオンオフ動作により、第1の整流回路R0の脈流出力は高周波でスイッチングされる。このスイッチング周波数、すなわちゲートパルス電圧の周波数は限定されないが、商用の交流電源Eの周波数の102~104倍程度に設定される。この高周波はチョークコイルCH5,CH6で吸収されるが、第1の整流回路R0から出力される脈流電流は、負荷に流れる。一方、第2の整流回路R1の出力線からも脈流電流が流れる。これらの脈流電流の位相は、第2の整流回路R1の一次側に挿入されたキャパシタC1のために0度を超え90度までのずれを生じるので、総合すれば図9(c)に示したように、平滑な電流が得られる。 A high-frequency pulse voltage is supplied to the gate of the switching element SW9. By the on / off operation of the switching element SW9, the pulsating output of the first rectifier circuit R0 is switched at a high frequency. The switching frequency, that is, the frequency of the gate pulse voltage is not limited, but is set to about 10 2 to 10 4 times the frequency of the commercial AC power supply E. This high frequency is absorbed by the choke coils CH5 and CH6, but the pulsating current output from the first rectifier circuit R0 flows to the load. On the other hand, a pulsating current also flows from the output line of the second rectifier circuit R1. Since the phase of these pulsating currents exceeds 0 degrees and shifts to 90 degrees due to the capacitor C1 inserted on the primary side of the second rectifier circuit R1, it is shown in FIG. As described above, a smooth current can be obtained.
 また、この回路では、第1の整流回路R0と負荷との間にはキャパシタC8,C9が介在しているので、変圧器などを使用しなくても、第1の整流回路R0と第2の整流回路R1との間の絶縁が確保されているのも特徴である。
 図21、図22では、第2の整流回路R1の一次側のホット側LにのみキャパシタC1を挿入していたが、コールド側Nにキャパシタを挿入しても良く、ホット側Lおよびコールド側Nの両方にキャパシタを挿入しても良い。これにより、第1の整流回路R0と第2の整流回路R1との間の直流的な絶縁が確保される。
In this circuit, since the capacitors C8 and C9 are interposed between the first rectifier circuit R0 and the load, the first rectifier circuit R0 and the second rectifier circuit R2 can be used without using a transformer. Another characteristic is that insulation with the rectifier circuit R1 is ensured.
21 and 22, the capacitor C1 is inserted only in the primary hot side L of the second rectifier circuit R1, but a capacitor may be inserted in the cold side N. The hot side L and the cold side N You may insert a capacitor in both. As a result, direct current insulation between the first rectifier circuit R0 and the second rectifier circuit R1 is ensured.
E 商用の交流電源
φ1~φn-1  移相回路
I1~In-1  コンバータ回路
LED 負荷である発光ダイオード
R0  第1の整流回路
Rn-1  第nの整流回路
T0,T1  変圧器
ZL  負荷
10A~10H 直流電源装置
E Commercial AC power supply φ1 to φn-1 Phase shift circuit I1 to In-1 Converter circuit LED Light emitting diode R0 as load First rectifier circuit Rn-1 nth rectifier circuit T0, T1 Transformer ZL Load 10A to 10H DC power supply

Claims (11)

  1.  負荷を駆動するための直流電源装置であって、
     商用の交流電源に対して接続され、互いに位相差がある、第1の交流電源から第n(nは2以上の整数とする)の交流電源までを生成するための移相回路と、
     前記第1の交流電源を整流して脈流を得る第1の整流回路と、前記第2の交流電源を整流して脈流を得る第2の整流回路と、・・・前記第nの交流電源を整流して脈流を得る第nの整流回路とを備え(符号"・・・"は1からnまで繰り返すことを意味する。)、
     前記第1の整流回路の出力線、前記第2の整流回路の出力線、・・・前記第nの整流回路の出力線は、互いに直列又は互いに並列に接続されて、前記負荷の両端子に接続されることを特徴とする直流電源装置。
    A DC power supply device for driving a load,
    A phase shift circuit for generating from a first AC power source to an nth (n is an integer of 2 or more) AC power source connected to a commercial AC power source and having a phase difference from each other;
    A first rectifier circuit that rectifies the first AC power source to obtain a pulsating current, a second rectifier circuit that rectifies the second AC power source to obtain a pulsating current,. An n-th rectifier circuit that rectifies the power source to obtain a pulsating flow (the sign “...” Means that 1 to n are repeated).
    The output line of the first rectifier circuit, the output line of the second rectifier circuit, ..., the output line of the nth rectifier circuit are connected in series or in parallel with each other and connected to both terminals of the load. A DC power supply device characterized by being connected.
  2.  前記移相回路は、前記商用の交流電源の第一側及び第二側の電源線と、前記第1~第nの整流回路うちの少なくとも(n-1)個の整流回路の両方の入力線との間に、それぞれ挿入されたキャパシタ素子を含む請求項1記載の直流電源装置。 The phase shift circuit includes input lines for both the first and second power supply lines of the commercial AC power supply and at least (n−1) rectifier circuits among the first to nth rectifier circuits. The DC power supply device according to claim 1, further comprising capacitor elements respectively inserted between the first and second capacitor elements.
  3.  n=2であり、前記キャパシタ素子は、前記第2の整流回路の両方の入力線にそれぞれ挿入されている請求項2記載の直流電源装置。 3. The DC power supply device according to claim 2, wherein n = 2 and the capacitor element is inserted into both input lines of the second rectifier circuit.
  4.  前記移相回路は、前記商用の交流電源の第一側又は第二側のいずれかの電源線と、前記第1~第nの整流回路うち、少なくとも(n-1)個の整流回路の片方の入力線との間に挿入されたキャパシタ素子を含む請求項1記載の直流電源装置。 The phase shift circuit includes at least one of (n-1) rectifier circuits among the first or second power line of the commercial AC power supply and the first to nth rectifier circuits. The direct current power supply device according to claim 1, further comprising a capacitor element inserted between the first input line and the second input line.
  5.  前記(n-1)個の整流回路を除いた、残り1個の整流回路の出力側と前記負荷との間は絶縁回路で絶縁されている請求項4記載の直流電源装置。 5. The DC power supply device according to claim 4, wherein the output side of the remaining one rectifier circuit excluding the (n-1) rectifier circuits and the load are insulated by an insulation circuit.
  6.  n=2であり、前記キャパシタ素子は、前記第2の整流回路の片方の入力線に挿入されている請求項4記載の直流電源装置。 5. The DC power supply device according to claim 4, wherein n = 2 and the capacitor element is inserted into one input line of the second rectifier circuit.
  7.  前記第1の整流回路の出力側と前記負荷との間は第1の変圧器で絶縁されている請求項6記載の直流電源装置。 The DC power supply device according to claim 6, wherein the output side of the first rectifier circuit and the load are insulated by a first transformer.
  8.  前記第2の整流回路の出力側と前記負荷との間は第2の変圧器で絶縁されている請求項7記載の直流電源装置。 The DC power supply device according to claim 7, wherein the output side of the second rectifier circuit and the load are insulated by a second transformer.
  9.  前記第1の整流回路の出力線に、前記第1の整流回路の出力を変換する第1のコンバータ回路が挿入されている請求項1から請求項8のいずれか1項に記載の直流電源装置。 The DC power supply device according to any one of claims 1 to 8, wherein a first converter circuit for converting an output of the first rectifier circuit is inserted into an output line of the first rectifier circuit. .
  10.  前記第2の整流回路の出力線に、前記第2の整流回路の出力を変換する第2のコンバータ回路が挿入され、
     前記第3の整流回路の出力線に、前記第3の整流回路の出力を変換する第3のコンバータ回路が挿入され、・・・
     前記第nの整流回路の出力線に、前記第nの整流回路の出力を変換する第nのコンバータ回路が挿入されている請求項9記載の直流電源装置。
    A second converter circuit for converting the output of the second rectifier circuit is inserted into the output line of the second rectifier circuit;
    A third converter circuit for converting the output of the third rectifier circuit is inserted into the output line of the third rectifier circuit;
    10. The DC power supply device according to claim 9, wherein an n-th converter circuit for converting an output of the n-th rectifier circuit is inserted into an output line of the n-th rectifier circuit.
  11.  請求項1から請求項8のいずれか1項に記載の直流電源装置を、発光ダイオードを点灯させるために用いてなるLED点灯装置。 An LED lighting device using the DC power supply device according to any one of claims 1 to 8 for lighting a light emitting diode.
PCT/JP2009/005117 2009-06-09 2009-10-02 Direct-current power supply device and led lighting device WO2010143239A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-138380 2009-06-09
JP2009-138371 2009-06-09
JP2009138380A JP2010287340A (en) 2009-06-09 2009-06-09 Led lighting device
JP2009138371A JP2010288329A (en) 2009-06-09 2009-06-09 Dc power supply

Publications (1)

Publication Number Publication Date
WO2010143239A1 true WO2010143239A1 (en) 2010-12-16

Family

ID=43308511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/005117 WO2010143239A1 (en) 2009-06-09 2009-10-02 Direct-current power supply device and led lighting device

Country Status (2)

Country Link
TW (1) TW201044756A (en)
WO (1) WO2010143239A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102790540A (en) * 2012-08-29 2012-11-21 李蓉 LED (Light-Emitting Diode) light source
US9345080B2 (en) 2011-08-23 2016-05-17 Koninklijke Philips N.V. LED light source
WO2017181076A1 (en) * 2016-04-15 2017-10-19 Emerson Electric Co. Power factor correction circuits and methods including partial power factor correction operation for boost and buck power converters
US9933842B2 (en) 2016-04-15 2018-04-03 Emerson Climate Technologies, Inc. Microcontroller architecture for power factor correction converter
US9965928B2 (en) 2016-04-15 2018-05-08 Emerson Climate Technologies, Inc. System and method for displaying messages in a column-by-column format via an array of LEDs connected to a circuit of a compressor
US10075065B2 (en) 2016-04-15 2018-09-11 Emerson Climate Technologies, Inc. Choke and EMI filter circuits for power factor correction circuits
US10277115B2 (en) 2016-04-15 2019-04-30 Emerson Climate Technologies, Inc. Filtering systems and methods for voltage control
US10284132B2 (en) 2016-04-15 2019-05-07 Emerson Climate Technologies, Inc. Driver for high-frequency switching voltage converters
US10305373B2 (en) 2016-04-15 2019-05-28 Emerson Climate Technologies, Inc. Input reference signal generation systems and methods
US10656026B2 (en) 2016-04-15 2020-05-19 Emerson Climate Technologies, Inc. Temperature sensing circuit for transmitting data across isolation barrier
US10763740B2 (en) 2016-04-15 2020-09-01 Emerson Climate Technologies, Inc. Switch off time control systems and methods
JP2021517446A (en) * 2018-03-07 2021-07-15 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー Devices and methods with power conversion using multiple rectifier circuits
JP7509424B2 (en) 2018-03-07 2024-07-02 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー Apparatus and method with power conversion using multiple rectifier circuits

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI442811B (en) 2011-05-27 2014-06-21 Ind Tech Res Inst Light source driving device
US20140063877A1 (en) * 2011-08-01 2014-03-06 Mitsubishi Electric Corporation Power conversion apparatus
CN103944365B (en) * 2014-04-14 2016-05-18 山东大学 A kind of Single-phase PWM Rectifier is eliminated secondary ripple circuit
CN109428472A (en) * 2017-08-30 2019-03-05 中惠创智无线供电技术有限公司 A kind of doube bridge current rectifying and wave filtering circuit based on sensibility reciprocal control

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5553990U (en) * 1978-10-04 1980-04-11
JPS59148568A (en) * 1983-02-15 1984-08-25 Matsushita Electric Works Ltd Power source device
JPH0249380U (en) * 1988-09-27 1990-04-05
JPH0739159A (en) * 1993-07-20 1995-02-07 Rohm Co Ltd Power supply device and electronic apparatus using it
JPH08218254A (en) * 1994-12-16 1996-08-27 Tsudakoma Corp Power unit of linear motor for moving knitting needle
JPH10117476A (en) * 1996-10-11 1998-05-06 Kyosan Electric Mfg Co Ltd Rectifier

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5553990U (en) * 1978-10-04 1980-04-11
JPS59148568A (en) * 1983-02-15 1984-08-25 Matsushita Electric Works Ltd Power source device
JPH0249380U (en) * 1988-09-27 1990-04-05
JPH0739159A (en) * 1993-07-20 1995-02-07 Rohm Co Ltd Power supply device and electronic apparatus using it
JPH08218254A (en) * 1994-12-16 1996-08-27 Tsudakoma Corp Power unit of linear motor for moving knitting needle
JPH10117476A (en) * 1996-10-11 1998-05-06 Kyosan Electric Mfg Co Ltd Rectifier

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9345080B2 (en) 2011-08-23 2016-05-17 Koninklijke Philips N.V. LED light source
CN102790540A (en) * 2012-08-29 2012-11-21 李蓉 LED (Light-Emitting Diode) light source
US10320322B2 (en) 2016-04-15 2019-06-11 Emerson Climate Technologies, Inc. Switch actuation measurement circuit for voltage converter
US10437317B2 (en) 2016-04-15 2019-10-08 Emerson Climate Technologies, Inc. Microcontroller architecture for power factor correction converter
US9965928B2 (en) 2016-04-15 2018-05-08 Emerson Climate Technologies, Inc. System and method for displaying messages in a column-by-column format via an array of LEDs connected to a circuit of a compressor
US10075065B2 (en) 2016-04-15 2018-09-11 Emerson Climate Technologies, Inc. Choke and EMI filter circuits for power factor correction circuits
US10277115B2 (en) 2016-04-15 2019-04-30 Emerson Climate Technologies, Inc. Filtering systems and methods for voltage control
US10284132B2 (en) 2016-04-15 2019-05-07 Emerson Climate Technologies, Inc. Driver for high-frequency switching voltage converters
US10305373B2 (en) 2016-04-15 2019-05-28 Emerson Climate Technologies, Inc. Input reference signal generation systems and methods
US10312798B2 (en) 2016-04-15 2019-06-04 Emerson Electric Co. Power factor correction circuits and methods including partial power factor correction operation for boost and buck power converters
WO2017181076A1 (en) * 2016-04-15 2017-10-19 Emerson Electric Co. Power factor correction circuits and methods including partial power factor correction operation for boost and buck power converters
US9933842B2 (en) 2016-04-15 2018-04-03 Emerson Climate Technologies, Inc. Microcontroller architecture for power factor correction converter
US10656026B2 (en) 2016-04-15 2020-05-19 Emerson Climate Technologies, Inc. Temperature sensing circuit for transmitting data across isolation barrier
US10763740B2 (en) 2016-04-15 2020-09-01 Emerson Climate Technologies, Inc. Switch off time control systems and methods
US10770966B2 (en) 2016-04-15 2020-09-08 Emerson Climate Technologies, Inc. Power factor correction circuit and method including dual bridge rectifiers
US10928884B2 (en) 2016-04-15 2021-02-23 Emerson Climate Technologies, Inc. Microcontroller architecture for power factor correction converter
US11387729B2 (en) 2016-04-15 2022-07-12 Emerson Climate Technologies, Inc. Buck-converter-based drive circuits for driving motors of compressors and condenser fans
JP2021517446A (en) * 2018-03-07 2021-07-15 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー Devices and methods with power conversion using multiple rectifier circuits
US11843312B2 (en) 2018-03-07 2023-12-12 The Board Of Trustees Of The Leland Stanford Junior University Apparatuses and methods involving power conversion using multiple rectifier circuits
JP7509424B2 (en) 2018-03-07 2024-07-02 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー Apparatus and method with power conversion using multiple rectifier circuits

Also Published As

Publication number Publication date
TW201044756A (en) 2010-12-16

Similar Documents

Publication Publication Date Title
WO2010143239A1 (en) Direct-current power supply device and led lighting device
US8120278B2 (en) LED driving circuit
US8625310B2 (en) Method of supplying power, power supply apparatus for performing the method and display apparatus having the apparatus
JP5110197B2 (en) LED driving device and LED lighting device
JP6118316B2 (en) DC-DC driver device with input and output filters for driving a load, in particular an LED unit
KR100963138B1 (en) Apparatus of driving light emitting diode
US8773085B2 (en) Apparatus and method for efficient DC-to-DC conversion through wide voltage swings
RU2587676C2 (en) Driver device and method of exciting for excitation load, in particular, led unit
JP2010287340A (en) Led lighting device
US20070091647A1 (en) Switching power supply unit
WO2013128509A1 (en) Dc power supply circuit
US20140035477A1 (en) Single stage forward-flyback converter and power supply apparatus
JP2011041465A (en) Power supply
JP6417930B2 (en) Non-insulated power supply
JP2010288329A (en) Dc power supply
KR101496819B1 (en) Single stage forward-flyback converter, power supplying apparatus and power suppying apparatus for light emitting diode
JP2014011907A (en) Switching power-supply device
JP5551995B2 (en) Power supply device and lighting device provided with the power supply device
KR101528550B1 (en) Single-Stage Power Factor Correction Flyback Converter for LED Lighting
KR101454158B1 (en) Electrolytic Capacitor-less Power Supply for Lighting LED Drive and 120Hz Ripple Reduction Method of the Same
US8519638B2 (en) Electronic ballast for a high intesity discharge lamp
JP2015011831A (en) Low voltage lamp-lighting device including filament preheating circuit
TWI356568B (en) Power supply circuit and control method thereof
KR101005065B1 (en) A flyback and forward combination convertor circuit for dbd type mercury-free flat fluorescent lamp
JP2006059761A (en) High-frequency current lighting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09845764

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09845764

Country of ref document: EP

Kind code of ref document: A1