WO2010143238A1 - Vehicle vibration control device and control method for same - Google Patents

Vehicle vibration control device and control method for same Download PDF

Info

Publication number
WO2010143238A1
WO2010143238A1 PCT/JP2009/002683 JP2009002683W WO2010143238A1 WO 2010143238 A1 WO2010143238 A1 WO 2010143238A1 JP 2009002683 W JP2009002683 W JP 2009002683W WO 2010143238 A1 WO2010143238 A1 WO 2010143238A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
vibration
center
torque
control
Prior art date
Application number
PCT/JP2009/002683
Other languages
French (fr)
Japanese (ja)
Inventor
水野浩
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP2010538659A priority Critical patent/JPWO2010143238A1/en
Priority to PCT/JP2009/002683 priority patent/WO2010143238A1/en
Publication of WO2010143238A1 publication Critical patent/WO2010143238A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/20Reducing vibrations in the driveline

Definitions

  • the present invention relates to a vehicle damping control device and a control method for the vehicle damping control device.
  • the sprung vibration of the vehicle is a frequency component (1 to 4 Hz) of the vibration generated in the vehicle body via the suspension by the input from the road surface to the vehicle wheel when the excitation source is the road surface (vehicle type or vehicle).
  • the sprung vibrations of this vehicle include components in the vehicle pitch direction or bounce direction (vertical direction). It is included.
  • the sprung mass damping referred to here is to suppress the sprung mass vibration of the vehicle.
  • a device that performs sprung mass damping by controlling a braking / driving force according to a required braking / driving force filtered by a damping filter Proposed.
  • This conventional vehicle vibration suppression control device corrects the filter characteristics based on the vehicle load weight, so that the actual vehicle sprung vibration characteristic and the vibration suppression control characteristic shift due to the increase or decrease of the vehicle load weight. The purpose is to suppress a reduction in vibration reduction effect due to control.
  • a device that performs sprung damping by wheel torque control based on power control of power generated by a power source mounted on a vehicle is proposed.
  • This conventional vehicle damping control device performs sprung mass damping by means of wheel torque.
  • a dynamic motion model such as a sprung vibration model or a sprung / lower vibration model is used. Is used to predict the sprung vibration of the vehicle and control the power generated by the power source so as to generate the wheel torque that suppresses the predicted sprung vibration of the vehicle.
  • the wheel torque control is performed so as to predict the displacement in the pitch direction around the center of gravity of the vehicle or the displacement in the bounce direction at the center of gravity and suppress the displacement.
  • the position of the center of gravity of the vehicle changes depending on the behavior of the vehicle, the number of passengers, the presence or absence of luggage, and the like. Therefore, in the dynamic motion model based on the center of gravity position set in advance according to the specifications of the vehicle, the accuracy of the center of gravity assumed in the mechanical motion model is different from the actual center of gravity position of the vehicle. There was a risk of lowering. In other words, the conventional vehicle vibration suppression control device may not be able to obtain a sufficient vibration reduction effect.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a vehicle vibration suppression control device and a vehicle vibration suppression control device control method capable of sufficiently obtaining a vibration reduction effect.
  • the present invention controls the power generated by a power source mounted on a vehicle, thereby suppressing sprung vibration on a drive wheel that transmits the power.
  • the power is changed so that the vibration suppression torque is generated based on the position of the center of gravity of the vehicle.
  • the damping torque includes a parameter relating to a position of the center of gravity of the vehicle, and the power is controlled based on at least a mechanical motion model based on the sprung vibration of the vehicle. It is preferable that the parameter is corrected based on a change in the center of gravity position of the vehicle.
  • the center of gravity position of the vehicle is preferably estimated based on a detection value detected by a center-of-gravity position change detecting unit that detects a change in the center of gravity position of the vehicle.
  • the center-of-gravity position change detecting unit detects whether or not an occupant sitting on the vehicle is seated.
  • the present invention also provides a control of a vehicle damping control device that generates a damping torque that suppresses sprung vibration on a driving wheel that transmits the power by controlling the power generated by a power source mounted on the vehicle.
  • the power for generating a vibration damping torque changed based on a position of the center of gravity of the vehicle is generated.
  • the vehicle vibration suppression control device and the vehicle vibration suppression control device control method according to the present invention have an effect that a vibration reduction effect can be sufficiently obtained by improving the accuracy of the mechanical motion model.
  • FIG. 1 is a diagram illustrating a schematic configuration example of a vehicle on which the vehicle vibration suppression control device according to the embodiment is mounted.
  • FIG. 2 is a schematic diagram showing a functional configuration example of the vehicle vibration control unit in the form of a control block.
  • FIG. 3 is a diagram for explaining the state variables of the vehicle body vibration that are suppressed in the vehicle vibration suppression control unit.
  • FIG. 4 is a diagram illustrating an example of a dynamic motion model of vehicle body vibration assumed in the vehicle vibration suppression control unit.
  • FIG. 5 is a diagram illustrating an example of a dynamic motion model of vehicle body vibration assumed in the vehicle vibration suppression control unit.
  • FIG. 6 is a diagram illustrating a flowchart of the center-of-gravity position estimation method by the center-of-gravity position estimation unit.
  • FIG. 1 is a diagram illustrating a schematic configuration example of a vehicle on which a vehicle vibration control device according to the embodiment is mounted.
  • FIG. 2 is a schematic diagram showing a functional configuration example of the vehicle vibration control unit in the form of a control block.
  • FIG. 3 is a diagram for explaining the state variables of the vehicle body vibration that are suppressed in the vehicle vibration suppression control unit.
  • FIG. 4 is a diagram for explaining an example of a dynamic motion model of vehicle body vibration assumed in the vehicle vibration suppression control unit.
  • FIG. 5 is a diagram illustrating an example of a dynamic motion model of vehicle body vibration assumed in the vehicle vibration suppression control unit.
  • FIG. 6 is a diagram illustrating a flowchart of the center-of-gravity position estimation method by the center-of-gravity position estimation unit.
  • the vehicle vibration suppression control device 1 is applied to a vehicle 10 equipped with a gasoline engine 21 (hereinafter simply referred to as “engine”) as a power source, as shown in FIG.
  • engine a gasoline engine 21
  • the engine 21 is mounted on the front portion in the forward traveling direction of the vehicle 10 and the driving wheels are the left and right rear wheels 30RL, 30RR.
  • the rear wheel drive the mounting position of the engine 21 of the vehicle 10 is not limited to only the front portion, and may be mounted on either the rear portion or the central portion.
  • the drive format of the vehicle 10 is not limited to only the rear wheel drive, and may be any format of front wheel drive and four wheel drive.
  • the vehicle 10 to which the vehicle vibration damping control device 1 is applied has wheels 30FL and 30FR which are left and right front wheels and wheels 30RL and 30RR which are left and right rear wheels, as shown in FIG. Further, the vehicle 10 detects an accelerator pedal 60 operated by the driver and a request value by the driver's accelerator operation, that is, an accelerator pedal depression amount ⁇ a that is a depression amount of the accelerator pedal 60, and corresponds to the accelerator pedal depression amount ⁇ a. It has an accelerator pedal sensor 70 that outputs an electrical signal to an ECU (Electric Control Unit) 50.
  • the vehicle 10 is mounted with a driving device 20 that applies driving force to the wheels 30RL and 30RR in accordance with the driver's accelerator operation in various known modes.
  • the drive device 20 is configured such that power (drive torque) generated by the engine 21 is transmitted to the wheels 30RL and 30RR via the AT 22, the differential gear device 23, and the like.
  • the vehicle 10 is provided with a braking device for generating a braking force on each wheel and a steering device for controlling the steering angle of the front wheels or the front and rear wheels, as in various known vehicles. It is done.
  • the operation of the drive device 20 is controlled by an ECU 50 that is also used as the vehicle vibration damping control device 1.
  • the ECU 50 may include various known types of microcomputers and drive circuits having a CPU, ROM, RAM and input / output port devices interconnected by a bidirectional common bus.
  • signals of the engine rotation speed (output rotation speed of the engine 21) Er and the accelerator pedal depression amount ⁇ a from the sensors provided in each part of the vehicle 10 are input.
  • the ECU 50 detects various detection signals for obtaining various parameters necessary for various controls to be executed in the vehicle 10 of the present embodiment, for example, parameters corresponding to the operating environment of the engine 21 (cooling water). Temperature, intake air temperature, intake air pressure, atmospheric pressure, oil temperature, etc.).
  • the ECU 50 controls the operation of the engine 21, in particular, the power generated by the engine 21 based on a controlled variable, in this embodiment, a drive control device that also functions as a drive control device that controls the required torque Te.
  • the vibration control device 1 includes a vibration control device 2 that controls the operation of a brake device (not shown).
  • the driving force control device is described as being configured to be shared by the vehicle vibration suppression control device 1, but the present invention is not limited to this, and the driving force control device and the ECU 50 are configured separately.
  • the driving force control device may be connected to the ECU 50.
  • the brake control device 2 may be individually configured, and the brake control device 2 may be connected to the ECU 50.
  • the braking control device 2 determines the average value r ⁇ ⁇ of the wheel speeds VwFL, VwFR, VwRL, and VwRR corresponding to the wheels 30FL, 30FR, 30RL, and 30RR, respectively. Then, it outputs to the vehicle vibration suppression control part 4).
  • the calculation from the wheel rotation speed to the wheel speed may be performed by the vehicle vibration suppression control device 1. In that case, the wheel rotation speed is output from the braking control device 2 to the vehicle vibration suppression control device 1).
  • the braking control device 2 also performs various types of known ABS control, automatic braking control such as VSC (Vehicle Stability Control), TRC (Traction Control), that is, frictional force between the wheels 30FL, 30FR, 30RL, 30RR and the road surface.
  • VSC Vehicle Stability Control
  • TRC Traction Control
  • the vector sum of the longitudinal force and lateral force of the wheels 30FL, 30FR, 30RL, and 30RR is excessively suppressed and exceeds the limit, or the frictional force of the wheels 30FL, 30FR, 30RL, and 30RR exceeds the limit. It is possible to control the longitudinal force or slip rate on the wheels to suppress the deterioration of the behavior of the vehicle 10 due to exceeding, or the wheels 30FL, 30FR, 30RL, 30RR of ABS control, VSC, TRC.
  • VDIM Ve which stabilizes the behavior of the vehicle 10 including steering control in addition to slip ratio control hicle Dynamics Integrated Management.
  • the braking control apparatus 2 when VDIM is mounted, the braking control apparatus 2 will comprise a part of VDIM.
  • the braking control device 2 performs a control by changing the behavior of the vehicle 10 in the automatic braking control (ABS control, VSC, TRC, VDIM), that is, a stable behavior is obtained by changing the behavior of the vehicle 10.
  • the power generated by the engine 21 may be controlled.
  • the braking control device 2 changes the required torque Te when performing driving force control to change and control the behavior of the vehicle 10 based on automatic braking control.
  • the braking control device 2 also has a function as a vehicle behavior control unit.
  • the braking control device 2 determines the braking torque correction amount that can change the driving torque of the engine 21 so that the behavior of the vehicle 10 becomes a stable behavior.
  • the vibration control device 1 outputs to the vibration control device 1.
  • the braking torque correction amount output from the braking control device 2 to the vehicle damping control device 1 is added to or subtracted from the required torque Te calculated by the required torque calculation unit 3a.
  • the required torque Te is changed so as to change and control the behavior of the vehicle 10 based on the damping torque correction amount, and a control command corresponding to the changed required torque Te is sent from the control command determination unit 3c to the engine.
  • the braking control device 2 may calculate the accelerator pedal depression amount when controlling the engine torque in order to change and control the behavior of the vehicle 10 based on the automatic braking control. In this case, the calculated accelerator pedal depression amount is output to the required torque calculation unit 3a of the vehicle vibration suppression control device 1.
  • the vehicle vibration suppression control device 1 is a drive control device in which a drive request from the driver is a required torque that is a drive torque of the engine 21 requested by the driver based on the accelerator pedal depression amount ⁇ a. Determined as Te.
  • a drive request from the driver is a required torque that is a drive torque of the engine 21 requested by the driver based on the accelerator pedal depression amount ⁇ a. Determined as Te.
  • control for suppressing vibration in the pitch direction and bounce direction of the vehicle 10 by controlling the driving torque of the engine 21, that is, control for suppressing sprung vibration.
  • the required torque Te is corrected, and a control command corresponding to the corrected required torque Te is given to the engine 21.
  • the vehicle vibration damping control device 1 includes a drive control unit 3 and a vehicle vibration damping control unit 4.
  • the drive control unit 3 includes a required torque calculation unit 3a, an adder 3b, and a control command determination unit 3c.
  • the required torque calculation unit 3a calculates the required torque Te based on the accelerator depression amount ⁇ a by a known arbitrary method.
  • the adder 3b corrects the required torque Te calculated by the required torque calculation unit 3a with the damping torque correction amount calculated by the vehicle braking control unit 4, that is, the required torque Te calculated by the required torque calculation unit 3a. Is corrected based on the damping torque.
  • the control command determination unit 3c generates a control command for the engine 21 based on the required torque Te corrected by the damping torque correction amount, and outputs the generated control command to each controller (not shown) of the engine 21.
  • the vehicle vibration damping control unit 4 executes so-called sprung mass damping control that suppresses sprung vibration of the vehicle 10.
  • the sprung vibration of the vehicle 10 refers to an input from the road surface to the wheels 30FL and 30FR that are the left and right front wheels of the vehicle 10 and the wheels 30RL and 30RR that are the left and right rear wheels according to the unevenness of the road surface via the suspension.
  • the vibration generated in the vehicle body of the vehicle 10 is a vibration having a frequency component of 1 to 4 Hz, more specifically 1.5 Hz, and the sprung vibration of the vehicle 10 includes the pitch direction or the bounce direction (vertical direction) of the vehicle 10. ) Ingredients are included.
  • the sprung mass damping referred to here is to suppress the sprung mass vibration of the vehicle 10.
  • the vehicle vibration suppression control unit 4 receives a frequency component of 1 to 4 Hz (notably depending on the type of vehicle and the configuration of the vehicle) by inputting from the road surface to the wheels 30FL and 30FR that are the left and right front wheels of the vehicle 10 and the wheels 30RL and 30RR that are the left and right rear wheels.
  • the frequency components appearing in the motor are different, and in many vehicles, when the vibration in the pitch direction or the bounce direction (vertical direction) of the vehicle 10 occurs, the engine 21 generates power in the opposite phase. Then, the "wheel torque" (torque acting between the wheel and the grounding road surface) acting on the road surface by the wheel (drive wheel during driving) is adjusted to suppress the vibration.
  • the vehicle damping control unit 4 controls the power of the engine 21, that is, the driving torque, thereby generating the damping torque that suppresses the sprung vibration on the driving wheels 30RL and 30RR that transmit the driving torque. Torque control is performed to suppress the vibration. As a result, the vehicle vibration suppression control unit 4 of the vehicle 10 improves the driver's steering stability, the ride comfort of the occupant, and the like. Further, according to the control of the power generated by the engine 21, that is, the vibration suppression control by the power control, the vibration is suppressed rather than suppressed by absorbing the vibration energy generated as in the vibration suppression control by the suspension.
  • the vehicle damping control unit 4 (1) acquisition of wheel torque of a wheel by a force acting between the road surface and a wheel, (2) acquisition of a pitch / bounce vibration state quantity, and (3) pitch / bounce vibration state. The calculation of the correction amount of the wheel torque that suppresses the amount and the change of the required torque Te based on this are executed.
  • the wheel torque (1) is calculated based on the wheel speed (or the wheel rotation speed of the wheel) of the wheel received from the braking control device 2, but the present invention is not limited to this.
  • a wheel torque estimated value may be calculated based on the engine rotation speed, or a sensor that can directly detect the value of the wheel torque while the vehicle 10 is traveling, for example, a wheel torque sensor or a wheel halve. It may be a detected value of wheel torque actually generated in the wheel by a force meter or the like.
  • the vehicle damping control unit 4 is realized in the processing operations (1) to (3).
  • the vertical direction of the center of gravity Cg of the vehicle body Z-direction bounce vibration (bounce direction vibration) and pitch direction ( ⁇ direction) pitch vibration (pitch direction vibration) around the center of gravity of the vehicle body may occur.
  • an external force or torque disurbance
  • the disturbance is transmitted to the vehicle 10, Again, pitch / bounce vibration can occur in the car body.
  • the vehicle vibration suppression control unit 4 constructs a dynamic motion model of the pitch / bounce vibration of the vehicle body of the vehicle 10, and in the model, the requested torque Te (which is a control amount corresponding to the driving request of the driver is changed to the wheel torque. ) And the current wheel torque (estimated value) are input to the vehicle body displacements z and ⁇ and the rate of change dz / dt and d ⁇ / dt, that is, the state variables of the vehicle body vibration are calculated. Then, the power control of the engine 21 is performed so that the state variable obtained from the model converges to 0, that is, the pitch / bounce vibration can be suppressed (that is, a request that is a control amount corresponding to the driving request of the driver). The torque Te will be changed.)
  • the vehicle vibration suppression control unit 4 includes a feedforward control unit 4a, a feedback control unit 4b, a gravity center position estimation unit 4c, and a drive torque conversion unit 4d.
  • the feedforward control unit 4a has a so-called optimum regulator configuration, and here includes a wheel torque conversion unit 4e, a motion model unit 4f, and an FF secondary regulator unit 4g.
  • a value (driver requested wheel torque Two) obtained by converting the required torque Te into the wheel torque by the wheel torque conversion unit 4e is input to the motion model unit 4f of the pitch / bounce vibration of the vehicle body of the vehicle 10.
  • the motion model unit 4f the response of the state variable of the vehicle 10 to the input torque is calculated, and the driver request wheel that converges the state variable to the minimum based on a predetermined gain K described later in the FF secondary regulator unit 4g.
  • the FF vibration damping torque correction amount U ⁇ FF is calculated.
  • This FF system damping torque correction amount U ⁇ FF is the FF control amount of the required torque Te in the feedforward control unit 4a based on the required torque Te for the engine 21.
  • the feedback control unit 4b has a so-called optimal regulator configuration, and includes a wheel torque estimation unit 4h, a motion model unit 4f also used as a feedforward control unit 4a, and an FB secondary regulator unit 4i. Consists of. As will be described later in the wheel torque estimation unit 4h, the feedback control unit 4b calculates a wheel torque estimated value Tw based on the average value r ⁇ ⁇ of the wheel speed, and this wheel torque estimated value Tw Input to the model unit 4f.
  • the motion model unit of the feedforward control unit 4a and the motion model unit of the feedback control unit 4b are the same, they are also used by the motion model unit 4f, but may be provided separately.
  • the response of the state variable of the vehicle 10 to the input torque is calculated, and the driver request wheel that converges the state variable to the minimum based on a predetermined gain K described later in the FB secondary regulator unit 4i.
  • the FB vibration damping torque correction amount U ⁇ FB is calculated.
  • the feedback control unit according to the fluctuation of the wheel speed based on the external force or torque (disturbance) caused by the input from the road surface to the wheels 30FL, 30FR, 30RL, 30RR of the vehicle 10 from the road surface. This is the FB control amount of the required torque Te in 4b.
  • the FF system damping torque correction amount U ⁇ FF which is the FF control amount of the feedforward control unit 4a
  • the FB type damping torque correction amount U ⁇ FB which is the FB control amount of the feedback control unit 4b.
  • the adder 4k adds the FF vibration damping torque correction amount U ⁇ FF and the FB vibration damping torque correction amount U ⁇ FB to calculate the vibration damping torque, thereby converting the drive torque.
  • the part 4d converts the damping torque into a damping torque correction amount that is a value obtained by converting the damping torque into a unit of driving torque, and the converted damping torque correction amount is output to the adder 3b.
  • the vehicle vibration suppression control unit 4 corrects the required torque Te, which is a control amount, based on the vibration suppression torque acquired based on the mechanical motion model, and reduces the vibration suppression torque that suppresses the sprung vibration of the vehicle 10. Change to a value that can occur.
  • the vehicle vibration suppression control unit 4 changes the driving torque generated by the engine 21 to generate the wheel torque that reduces the fluctuation of the wheel speed that causes the vehicle 10 to generate the vibration of 1 to 4 Hz by the fluctuation of the driving torque. Can be performed.
  • the driver requested wheel torque Two the wheel are assumed assuming the dynamic motion model in the pitch direction and the bounce direction of the vehicle body of the vehicle 10.
  • a state equation of a state variable in the pitch direction or bounce direction is configured with the estimated torque value Tw (disturbance) as input. From such a state equation, the input (vibration torque) for converging the state variables in the pitch direction and the bounce direction to zero is determined using the theory of the optimal regulator, and the required torque Te is determined based on the obtained vibration damping torque. It is corrected.
  • the vehicle body is regarded as a rigid body S having a mass M and an inertia moment I, and this rigid body S has an elastic modulus kf and damping. It is assumed that the vehicle is supported by a front wheel suspension of a rate cf, a rear wheel suspension of an elastic modulus kr, and a damping rate cr (a vehicle body sprung vibration model).
  • the motion equation in the bounce direction (the mechanical motion model in the bounce direction) and the motion equation in the pitch direction (the mechanical motion model in the pitch direction) of the center of gravity Cg of the vehicle body are expressed as the following formula 1. be able to.
  • Lf and Lr are distances from the center of gravity Cg to the front wheel axis and the rear wheel axis, r is a wheel radius, and h is a height of the center of gravity Cg from the road surface.
  • the first and second terms are components of the force from the front wheel shaft
  • the third and fourth terms are components of the force from the rear wheel shaft.
  • the term is from the front wheel shaft
  • the second term is the moment component of the force from the rear wheel shaft.
  • the third term in the formula (1b) is a moment component of the force that the wheel torque T (Two, Tw) generated in the drive wheel gives around the center of gravity of the vehicle body.
  • X (t), A, and B are respectively
  • the elements a1 to a4 and b1 to b4 of the matrix A are given by putting together the coefficients of z, ⁇ , dz / dt, d ⁇ / dt in the above equations (1a) and (1b), respectively.
  • a1 ⁇ (kf + kr) / M
  • a2 ⁇ (cf + cr) / M
  • a3 ⁇ (kf ⁇ Lf ⁇ kr ⁇ Lr) / M
  • a4 ⁇ (cf ⁇ Lf ⁇ cr ⁇ Lr) / M
  • b1 ⁇ (Lf ⁇ kf ⁇ Lr ⁇ kr) / I
  • b2 ⁇ (Lf ⁇ cf ⁇ Lr ⁇ cr) / I
  • b3 ⁇ (Lf 2 ⁇ kf + Lr 2 ⁇ kr)
  • b4 ⁇ (Lf 2 ⁇ cf + Lr 2 ⁇ cr) / I It is.
  • the gain K can be determined using a so-called optimal regulator theory.
  • the Riccati equation can be solved by any method known in the field of linear systems, which determines the gain K.
  • Q and R in the evaluation function J and the Riccati equation are respectively a semi-positive definite symmetric matrix and a positive definite symmetric matrix, and are weight matrices of the evaluation function J determined by the system designer.
  • Q and R are In Equation (3a), the norm (magnitude) of a particular one of the state vector components, for example, dz / dt, d ⁇ / dt, is the other component, for example, the norm of z, ⁇ .
  • the component having the larger norm is converged relatively stably.
  • the gain K corresponding to the feedforward control unit 4a may be different from the gain K corresponding to the feedback control unit 4b.
  • the gain K corresponding to the feedforward control unit 4a may be a gain corresponding to the driver's feeling of acceleration
  • the gain K corresponding to the feedback control unit 4b may be a gain corresponding to the driver's response and responsiveness.
  • the motion model unit 4f uses the torque input value to calculate the differential equation of the equation (2a). By solving, the state variable vector X (t) is calculated. Next, the gain K determined to converge the state variable vector X (t) to 0 or the minimum value as described above by the FF secondary regulator unit 4g and the FB secondary regulator unit 4i is output from the motion model unit 4f.
  • the value u (t) obtained by multiplying the state vector X (t), that is, the FF system damping torque correction amount U ⁇ FF and the FB system damping torque correction amount U ⁇ FB is the engine 21 in the drive torque converter 4d.
  • the required torque Te is corrected by the adder 3b.
  • the system represented by the equations (1a) and (1b) is a resonant system, and the value of the state variable vector for an arbitrary input is substantially only the natural frequency component of the system. Therefore, by configuring so that the required torque Te is corrected by u (t) (converted value thereof), a component of the natural frequency of the system, that is, pitch / bounce in the vehicle body of the vehicle 10 among the required torque Te. The component causing the vibration is corrected, and the pitch / bounce vibration in the vehicle body of the vehicle 10 is suppressed.
  • the parameters of the mechanical motion model used in the motion model unit 4f are stored in the vehicle vibration control device 1.
  • the vehicle damping control device 1 stores parameters such as M, I, Lf, Lr, h, r, kf, cf, kr, cr, and the like, and the FF system damping torque correction amounts U / FF and FB This is used when calculating the system damping torque correction amount U ⁇ FB.
  • the vehicle vibration suppression control device 1 stores in advance reference specifications that are specifications of the vehicle 10 based on a state in which no occupant is in the vehicle and no load is loaded.
  • Lfb the distance from the center of gravity Cgb to the front wheel axis
  • Lrb the distance from the center of gravity Cgb to the rear wheel axis
  • hb the distance from the road surface to the center of gravity Cgb
  • Mb the mass at the center of gravity Cgb.
  • initial values of the parameters M, Lf, Lr, and h are Lfb, Lrb, hb, and Mb, respectively.
  • a model that takes into account the spring elasticity of the tires of the front wheels and the rear wheels in addition to the configuration of FIG. 4. (A sprung / lower vibration model of the vehicle body of the vehicle 10) may be employed. Assuming that the tires of the front wheels and the rear wheels have the elastic moduli ktf and ktr, respectively, as understood from FIG. 5, the motion equation in the bounce direction and the motion equation in the pitch direction of the center of gravity Cg of the vehicle body are , Which can be expressed as the following mathematical formula 4.
  • Equations (4a)-(4d) constitute a state equation like Equation (2a) as in FIG. 4 using z, ⁇ , xf, xr and their time differential values as state variable vectors (however, The matrix A has 8 rows and 8 columns, and the matrix B has 8 rows and 1 column.) According to the theory of the optimal regulator, the gain matrix K that converges the size of the state variable vector to 0 can be determined.
  • the actual vibration suppression control in the vehicle vibration suppression control unit 4 is the same as in the case of FIG.
  • the wheel torque input as a disturbance is actually detected by providing a torque sensor on each wheel 30FL, 30FR, 30RL, 30RR.
  • the wheel torque estimated value Tw estimated by the wheel torque estimating unit 4h from other detectable values in the traveling vehicle 10 is used here.
  • the estimated wheel torque value Tw is estimated by the following equation (5) using, for example, the average value ⁇ of the wheel rotation speed obtained from the wheel speed sensor corresponding to each wheel or the time derivative of the average value r ⁇ ⁇ of the wheel speed. Can be calculated.
  • Tw M ⁇ r 2 ⁇ d ⁇ / dt (5)
  • M is the mass of the vehicle
  • r is the wheel radius. That is, assuming that the sum of the driving forces generated at the ground contact points of the driving wheels is equal to the overall driving force M ⁇ G (G is acceleration) of the vehicle 10, the estimated wheel torque value Tw is given by (5a).
  • the vehicle vibration suppression control unit 4 of the present embodiment is an FF system control that is an FF control amount of the required torque Te in the feedforward control unit 4a based on the required torque Te that is a control amount according to the driving request of the driver.
  • Vehicle damping that sets damping torque on the basis of the amount of vibration torque correction and the amount of FB system damping torque correction that is the FB control amount of the required torque Te in the feedback control unit 4b based on the wheel speed of the wheel of the vehicle 10
  • the control unit 4 corrects the FF system damping torque correction amount or the FB system damping torque correction amount based on the driving state of the vehicle 10 to achieve appropriate damping control according to the driving state of the vehicle 10. ing.
  • the vehicle vibration suppression control unit 4 is basically an independent separate control system, although the feedforward control unit 4a and the feedback control unit 4b also serve as the motion model unit 4f. After calculating the FF system damping torque correction amount and the FB system damping torque correction amount, respectively, the FF system damping torque correction amount and the FB system damping torque correction amount are added to obtain the damping torque. It is set. For this reason, the vehicle vibration suppression control unit 4 performs the FF system damping torque correction amount of the feedforward control unit 4a and the FB system damping torque correction amount of the feedback control unit 4b before the actual damping torque is set. Thus, it is possible to individually perform upper and lower limit guards and to perform corrections. In addition, this makes it easy to block either one of the controls depending on the situation of the vehicle 10.
  • the vehicle vibration suppression control unit 4 of this embodiment includes an FF control correction unit 4l and an FF control gain setting unit 4m in the feedforward control unit 4a, and an FB control correction unit 4n and an FB control gain in the feedback control unit 4b. And a setting unit 4o.
  • the vehicle damping control unit 4 corrects the FF system damping torque correction amount by the FF control correcting unit 4l and the FF control gain setting unit 4m, while the FB control correcting unit 4n and the FB control gain setting unit 4o The damping torque correction amount is corrected.
  • the vehicle damping control unit 4 sets the FF control gain according to the state of the vehicle 10 with respect to the FF system damping torque correction amount, and multiplies the FF system damping torque correction amount by the FF control gain.
  • the FB By correcting the system damping torque correction amount, setting the FB control gain according to the state of the vehicle 10 with respect to the FB system damping torque correction amount, and multiplying the FB system damping torque correction amount by this FB control gain, the FB Correct the system damping torque correction amount.
  • the FF control correction unit 4l is positioned after the FF secondary regulator unit 4g and before the adder 4k, and the FF system damping torque correction amount U / FF is input from the FF secondary regulator unit 4g to correct the FF system control.
  • the vibration torque correction amount U ⁇ FF is output to the adder 4k.
  • the FF control correction unit 4l multiplies the FF system damping torque correction amount U ⁇ FF by the FF control gain K ⁇ FF set by the FF control gain setting unit 4m, thereby FF system damping torque correction amount U ⁇ FF. -Correct FF based on FF control gain K-FF.
  • the FF control gain setting unit 4m sets the FF control gain K ⁇ FF according to the state of the vehicle 10.
  • the FF system damping torque correction amount U / FF input from the FF secondary regulator unit 4g to the FF control correction unit 4l is changed according to the state of the vehicle 10 by the FF control gain setting unit 4m.
  • the FF control correction unit 4l corrects it according to the state of the vehicle 10.
  • the FF control correction unit 4l may perform upper and lower limit guards so that the FF system damping torque correction amount U ⁇ FF is within a preset upper and lower limit guard value range.
  • the FF control correction unit 4l is, for example, an allowable engine torque fluctuation as an allowable driving force fluctuation value of the engine 21 set in advance for the FF system damping torque correction amount U ⁇ FF input from the FF secondary regulator unit 4g.
  • the upper / lower limit guard value is set to a value corresponding to the upper / lower limit guard value (for example, a value converted to the unit of the drive torque of the engine 21 from the range of tens of Nm to 0 Nm), and the FF system damping torque correction amount U ⁇ FF may be corrected.
  • the FF control correction unit 41 can set an appropriate FF system damping torque correction amount U / FF taking into account other controls than the sprung mass damping control by the vehicle damping control unit 4, for example. That is, interference between the sprung mass damping control by the vehicle damping control unit 4 and other controls can be suppressed. Further, the FF control correction unit 4l sets, for example, a value corresponding to an allowable acceleration / deceleration of the vehicle 10 set in advance to the FF system damping torque correction amount U ⁇ FF before being output to the adder 4k as an upper limit guard.
  • Upper limit guarding may be performed as a value (for example, a range that is less than +0.00 G when acceleration / deceleration is converted), and the FF vibration damping torque correction amount U / FF may be corrected.
  • the FF control correction unit 4l is driven by a change in motion of the vehicle 10 by sprung mass damping control by the vehicle vibration damping control unit 4 for improving the driving stability of the driver, the ride comfort of the occupant, and the like. It is possible to set an appropriate FF system damping torque correction amount U ⁇ FF that can prevent the driver from unexpectedly increasing and prevent the driver from feeling uncomfortable.
  • the FB control correction unit 4n is positioned after the FB secondary regulator unit 4i and before the adder 4k, and receives the FB system damping torque correction amounts U and FB from the FB secondary regulator unit 4i.
  • the vibration torque correction amount U ⁇ FB is output to the adder 4k.
  • the FB control correction unit 4n multiplies the FB system damping torque correction amount U ⁇ FB by the FB control gain K ⁇ FB set by the FB control gain setting unit 4o, thereby obtaining the FB system damping torque correction amount U ⁇ FB.
  • -Correct FB based on FB control gain K / FB.
  • the FB control gain setting unit 4o sets the FB control gain K ⁇ FB according to the driving state of the vehicle 10.
  • the FB system damping torque correction amount U / FB input from the FB secondary regulator unit 4i to the FB control correction unit 4n is set to the driving state of the vehicle 10 by the FB control gain setting unit 4o.
  • the FB control correction unit 4n will correct the vehicle 10 according to the driving state.
  • the FB control correction unit 4n may perform upper and lower limit guards so that the FB system damping torque correction amount U ⁇ FB is within a preset upper and lower limit guard value range.
  • the FB control correction unit 4n is, for example, an allowable engine torque fluctuation as an allowable driving force fluctuation value of the engine 21 set in advance for the FB system damping torque correction amount U ⁇ FB input from the FB secondary regulator unit 4i.
  • the upper / lower limit guard is performed with the value corresponding to the value as the upper / lower limit guard value (for example, a range of ⁇ several tens of Nm in terms of the drive torque unit of the engine 21), and the FB system damping torque correction amount U ⁇ FB is set to It may be corrected.
  • the FB control correction unit 4n can set an appropriate FB system damping torque correction amount U / FB taking into account other controls than the sprung mass damping control by the vehicle damping control unit 4, for example. That is, interference between the sprung mass damping control by the vehicle damping control unit 4 and other controls can be suppressed. Further, the FB control correction unit 4n sets, for example, values corresponding to the allowable acceleration / deceleration of the vehicle 10 set in advance to the FB system damping torque correction amount U ⁇ FB before being output to the adder 4k.
  • Upper and lower limit guards may be performed as a guard value (for example, a range that is within ⁇ a / 100 G when acceleration / deceleration is converted) to correct the FB system damping torque correction amount U ⁇ FB.
  • the FB control correction unit 4n is driven by a change in motion of the vehicle 10 by sprung mass damping control by the vehicle vibration damping control unit 4 for improving the driving stability of the driver, the ride comfort of the occupant, and the like. It is possible to set an appropriate FB system damping torque correction amount U ⁇ FB that can prevent the driver from unexpectedly increasing and prevent the driver from feeling uncomfortable.
  • the vehicle vibration suppression control unit 4 of the present embodiment uses the vehicle speed of the vehicle 10 as a parameter representing the state of the vehicle 10, the gear stage if the AT 22 mounted on the vehicle 10 has a plurality of gear stages, and the engine 21. Based on the engine rotation speed and the required torque Te as the output rotation speed, the FF control correction unit 4l and the FB control correction unit 4n may correct the FF system damping torque correction amount and the FB system damping torque correction amount. Further, the vehicle damping control unit 4 may correct the FB system damping torque correction amount based on the driving state of the AT 22 mounted on the vehicle 10 by the FB control correcting unit 4n.
  • the vehicle damping control unit 4 may correct the FB system damping torque correction amount based on the allowable target fuel injection amount of the diesel engine by the FB control correction unit 4n. That is, the FF control gain setting unit 4m and the FB control gain setting unit 4o may set the FF control gain K ⁇ FF and the FB control gain K ⁇ FB based on these.
  • the center-of-gravity position estimation unit 4 c estimates the center-of-gravity position of the actual vehicle 10.
  • the center-of-gravity position estimation unit 4 c estimates the actual center-of-gravity position of the vehicle 10 based on the detection value detected by the center-of-gravity position change detection unit that detects a change in the center-of-gravity position of the vehicle 10.
  • the center-of-gravity position estimation unit 4c is a parameter (hereinafter, referred to as a parameter relating to the center-of-gravity position of the vehicle 10 in the mechanical motion model) based on the load Fi (i ⁇ 1) detected by the load sensor 80i (i ⁇ 1).
  • the center of gravity position of the actual vehicle 10 is estimated by correcting the “center of gravity parameter”.
  • the center-of-gravity position estimation unit 4c corrects the center-of-gravity parameter based on the change in the center-of-gravity position of the vehicle.
  • the center-of-gravity parameter refers to a parameter related to the position of the center of gravity Cg in the longitudinal direction of the vehicle 10, a parameter related to the position of the center of gravity Cg in the vertical direction of the vehicle 10, and preferably includes a parameter related to the mass of the vehicle 10 at the center of gravity Cg. .
  • the center-of-gravity parameters are the distance Lf from the center of gravity Cg to the front wheel axis, the distance Lr from the center of gravity Cg to the rear wheel axis, the distance h from the road surface to the center of gravity Cg, and the mass M at the center of gravity Cg of the vehicle 10.
  • the load sensor 80i changes its output in accordance with the mass of the occupant who rides on the vehicle 10 and the mass of the luggage loaded on the vehicle 10, and is a detection value detected by the gravity center position estimation unit 4c.
  • the load Fi is output.
  • One or more load sensors 80i are provided in places such as each seat and trunk. That is, the center-of-gravity position estimation unit 4c is based on the load Fi (detected value detected as a change in the center-of-gravity position of the vehicle 10) output from the load sensor 80i and the installation distance Li, Lfb, Lrb, hb, Mb. Thus, Lf, Lr, h, and M are corrected.
  • the vehicle vibration suppression control device 1 includes an installation longitudinal distance Li (i ⁇ 1) that is a distance in the longitudinal direction of the vehicle 10 from the center of gravity Cgb of the reference specifications to the load sensor 80i, and from the center of gravity Cgb to the load sensor 80i.
  • a preset vertical distance hi (i ⁇ 1) that is a distance in the vertical direction of the vehicle 10 is stored in advance.
  • the method for correcting the centroid parameter in the centroid position estimating unit 4c is stored in advance in the vehicle vibration suppression control device 1 as a correction execution program, for example, and is repeatedly executed every control cycle.
  • the center-of-gravity position estimation unit 4c first determines whether or not the vehicle 10 is stopped (step ST1).
  • the center-of-gravity position estimation unit 4c determines, for example, whether or not the vehicle 10 is stopped based on the average wheel speed r ⁇ ⁇ that is output and acquired by the vehicle vibration suppression control device 1. Then, it is determined whether or not the vehicle 10 is stationary.
  • the center-of-gravity position estimation unit 4c acquires the load Fi.
  • the center-of-gravity position estimation unit 4c acquires the load Fi output from the load sensor 80i (step ST2).
  • the center-of-gravity position estimation unit 4c calculates a mass change amount ⁇ M (step ST3).
  • the center-of-gravity position estimation unit 4c calculates ⁇ M as a change amount with respect to Mb based on the acquired Fi.
  • the center-of-gravity position estimation unit 4c calculates ⁇ M based on Fi and the following equation (6).
  • g is a gravitational acceleration.
  • ⁇ M ⁇ Fi / g (6)
  • the center-of-gravity position estimation unit 4c calculates a change amount ⁇ L before and after the center-of-gravity position (step ST4).
  • the center-of-gravity position estimation unit 4c calculates ⁇ L as the amount of change in the front-rear direction of the vehicle 10 with respect to the center-of-gravity Cgb of the reference specifications, based on the acquired Fi, Li, and Mb.
  • the center-of-gravity position estimation unit 4c calculates ⁇ L based on Fi, Li, Mb, and the following equation (7).
  • Li is positive behind the vehicle 10.
  • ⁇ L ⁇ Mb ⁇ ((Fi / g) ⁇ (Li ⁇ L)) (7)
  • the center-of-gravity position estimation unit 4c calculates a center-of-gravity position vertical change amount ⁇ h (step ST5).
  • the center-of-gravity position estimation unit 4c calculates ⁇ h as the amount of change in the vertical direction of the vehicle 10 with respect to the center-of-gravity Cgb of the reference specifications based on the acquired Fi, hi, and Mb.
  • the center-of-gravity position estimation unit 4c calculates ⁇ h based on Fi, hi, Mb, and the following equation (8).
  • hi is positive above the vehicle 10.
  • ⁇ h ⁇ Mb ⁇ ((Fi / g) ⁇ (hi ⁇ h)) (8)
  • the center-of-gravity position estimation unit 4c corrects Lf, Lr, h, and M (step ST6).
  • the center-of-gravity position estimation unit 4c corrects Lf, Lr, h, and M based on the calculated ⁇ M, ⁇ L, and ⁇ H.
  • the center-of-gravity position estimation unit 4c calculates Lf based on ⁇ L, ⁇ H, ⁇ M, Lfb, Lrb, hb, Mb, and the following equations (9), (10), (11), and (12).
  • Lr, h, M are corrected. That is, Lf, Lr, h, M, that is, the centroid parameter is corrected based on the change in the centroid position.
  • Lf Lfb + ⁇ L (9)
  • M Mb + ⁇ M (12)
  • the vehicle vibration control device 1 updates the stored center-of-gravity parameters Lf, Lr, h, and M to the corrected values. Therefore, the vehicle damping control unit 4 acquires the damping torque based on the dynamic motion model using the corrected center-of-gravity parameter. That is, the vehicle vibration suppression control device 1 performs power control that causes the engine 21 to generate the required torque Te that can be generated by changing the vibration suppression torque based on the position of the center of gravity of the vehicle 10. As a result, the vehicle vibration suppression control device 1 changes the drive torque generated by the engine 21 so that the vibration suppression torque is generated based on the position of the center of gravity of the vehicle 10. Note that if the vehicle center position estimation unit 4c determines that the vehicle 10 is not stopped (No in step ST1), the vehicle vibration damping control device 1 does not update the gravity center parameter.
  • the vehicle vibration suppression control device 1 performs power control that causes the engine 21 to generate the required torque Te that can be generated by changing the vibration suppression torque based on the position of the center of gravity of the vehicle 10. Since the damping torque is acquired based on the dynamic motion model using the center of gravity parameter corrected based on the center of gravity position of the vehicle 10, the change of the center of gravity position (including the change of the mass of the vehicle 10) is also included. Accordingly, the damping torque calculated by the vehicle damping control unit 4b changes, and the required torque Te changes based on the changed damping torque.
  • vibration suppression is performed based on a highly accurate mechanical motion model corresponding to the actual vehicle 10. Control can be performed. Therefore, a vibration reduction effect can be sufficiently obtained by the vibration suppression control performed by the vehicle vibration suppression control device 1.
  • the load sensor 80i is used as the gravity center position changing means, but the present invention is not limited to this.
  • Center-of-gravity position detection means detects presence / absence of an occupant seated in the vehicle, for example, a seat detection switch that is turned on when the occupant is seated, or a seat belt connection switch that is turned on when the seat belt is worn by the occupant It may be.
  • the barycentric position estimating unit 4c outputs whether or not a passenger is seated as a detected value.
  • the vehicle vibration damping control device 1 stores in advance the mass Madd per passenger and the installation longitudinal distance Li (i ⁇ 1) and the set vertical distance hi (i ⁇ 1) as in the case of the load sensor 80i.
  • the center-of-gravity position estimation unit 4c has the number N of passengers seated on ⁇ M, ⁇ L, and ⁇ H, Madd, Mb, Li, hi, and the following equations (13), (14), (15 ), And Lf, Lr, h, and M may be corrected based on the calculated ⁇ M, ⁇ L, and ⁇ h.
  • an inexpensive center-of-gravity position detecting means is used as compared with the load sensor 80i or the like, the shift of the center-of-gravity position assumed in the dynamic motion model with respect to the actual center-of-gravity position of the vehicle 10 can be suppressed.
  • the vibration suppression control can be performed based on a highly accurate dynamic motion model corresponding to the actual vehicle 10. Therefore, a vibration reduction effect can be sufficiently obtained by the vibration suppression control performed by the vehicle vibration suppression control device 1.
  • ⁇ M ⁇ (Madd ⁇ N) (13)
  • ⁇ L ⁇ Mb ⁇ (Madd ⁇ (Li ⁇ L)) (14)
  • ⁇ h ⁇ Mb ⁇ (Madd ⁇ (hi ⁇ h)) (15)
  • the center-of-gravity position detection means detects a change in the vehicle height before and after the vehicle 10, for example, a front vehicle height that detects a front vehicle height change amount ⁇ hf that is a change in the vehicle height of the vehicle 10 on the front wheel axle.
  • a rear front vehicle height sensor or the like that detects a rear vehicle height change amount ⁇ hr that is a change amount of the vehicle height of the vehicle 10 on the sensor and the rear wheel shaft may be used.
  • ⁇ hf and ⁇ hr are output as detected values to the barycentric position estimating unit 4c.
  • the center-of-gravity position estimation unit 4c based on ⁇ hf, ⁇ hr, and the following formulas (16) and (17), the front mass change amount ⁇ Mf that is the change amount of the mass of the vehicle 10 on the front wheel shaft and the rear A rear mass change amount ⁇ Mr, which is a change amount of the mass of the vehicle 10 on the wheel shaft, is calculated.
  • ⁇ Mf ⁇ hf ⁇ Kf / g (16)
  • ⁇ Mr ⁇ hr ⁇ Kr / g (17)
  • the vibration suppression control can be performed based on a highly accurate dynamic motion model corresponding to the actual vehicle 10. Therefore, a vibration reduction effect can be sufficiently obtained by the vibration suppression control performed by the vehicle vibration suppression control device 1.
  • the change in the mass before and after the vehicle 10 is calculated based on the change in the vehicle height before and after the vehicle 10.
  • the center of gravity position detecting means directly detects the change in the mass before and after the vehicle 10. It may be used.
  • vibration suppression control is performed according to the change of a gravity center position by applying a load to the vehicle 10
  • this invention is not limited to this and comprises the vehicle 10.
  • the present invention may be applied when the position of the center of gravity changes due to a change in the position of the part, for example, the roof of an open car, relative to the vehicle 10.
  • the vibration suppression control is performed according to the change in the center of gravity position when the vehicle 10 is stationary, but the present invention is not limited to this, and the center of gravity position changes due to the behavior change of the vehicle 10. You may apply in.
  • the center-of-gravity position estimation unit 4c changes the mass of the vehicle 10 before and after the vehicle 10 based on the acceleration that is the detection value output from the acceleration sensor that detects the acceleration of the vehicle 10 provided in the vehicle 10, for example. It may be calculated. Further, when the driving torque of the engine 21 is the same, the mass increases as the acceleration of the vehicle 10 decreases. Therefore, the calculation of the mass change amount ⁇ M, that is, the estimation of the actual mass M of the vehicle 10 is not limited to the calculation method in the above embodiment, but is based on the driving torque of the engine 21 and the acceleration of the vehicle 10. It may be done.
  • the sprung mass damping control has been described as being performed using the theory of an optimal regulator assuming a sprung or sprung / unsprung motion model as a motion model.
  • a motion model using a center of gravity parameter or a control method other than the optimal regulator may be used.
  • the vehicle 10 may include an automatic travel control device and perform power control based on a required torque calculated when the engine 21 is controlled in the automatic travel control.
  • the control of the power generated by the power source mounted on the vehicle 10 based on the required torque Te has been described, but the present invention is not limited to this.
  • the power source is a gasoline engine
  • a target intake air amount that is a value that affects the required torque or a target throttle opening that is a valve opening of a throttle valve may be used.
  • the power source is a diesel engine
  • the required torque or a target fuel injection amount that is a value that affects the required torque may be used.
  • the power source is a motor
  • a required torque, a target current value, or the like may be used.
  • a target driving force that acts on the vehicle 10 may be used regardless of the type of power source.
  • the vehicle damping control device and the vehicle damping control device control method according to the present invention are useful for the vehicle damping control device and the vehicle damping control device control method for suppressing sprung vibration, In particular, it is suitable for obtaining a sufficient vibration reduction effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

Disclosed is a vehicle vibration control device that, by controlling the power generated by a vehicle-mounted power source, generates a vibration control torque that suppresses sprung vibration on the drive wheels to which this power is transmitted. The vibration control torque, which includes a parameter pertaining to the center of gravity of the vehicle, is generated as a result of the control of power in accordance with a dynamic motion model based on at least the sprung vibration of the vehicle. By correcting this parameter in accordance with a change in the center of gravity of the vehicle, the power is changed in such a way that the vibration control torque generated by the vehicle vibration control device is altered in accordance with the center of gravity of the vehicle. A sufficient vibration reduction effect is able to be produced thereby.

Description

車両制振制御装置および車両制振制御装置の制御方法Vehicle damping control device and control method for vehicle damping control device
 本発明は、車両制振制御装置および車両制振制御装置の制御方法に関する。 The present invention relates to a vehicle damping control device and a control method for the vehicle damping control device.
 従来、車両の振動を抑制する車両制振制御装置として、車両のバネ上振動を抑制するいわゆるバネ上制振制御を実行する車両制振制御装置が知られている。ここで、車両のバネ上振動とは、加振源を路面とし、路面から車両の車輪への入力により、サスペンションを介して車体に発生する振動のうち、1~4Hzの周波数成分(車種や車両の構成によって顕著にあらわれる周波数成分が異なり、多くの車両は1.5Hz近傍の周波数成分)の振動をいい、この車両のバネ上振動には、車両のピッチ方向またはバウンス方向(上下方向)の成分が含まれている。ここでいうバネ上制振とは、上記車両のバネ上振動を抑制するものである。 2. Description of the Related Art Conventionally, as a vehicle vibration suppression control device that suppresses vehicle vibration, a vehicle vibration suppression control device that executes so-called sprung mass vibration suppression control that suppresses vehicle sprung vibration is known. Here, the sprung vibration of the vehicle is a frequency component (1 to 4 Hz) of the vibration generated in the vehicle body via the suspension by the input from the road surface to the vehicle wheel when the excitation source is the road surface (vehicle type or vehicle). The frequency components that appear prominently differ depending on the configuration of the vehicle, and many vehicles refer to vibrations with a frequency component in the vicinity of 1.5 Hz. The sprung vibrations of this vehicle include components in the vehicle pitch direction or bounce direction (vertical direction). It is included. The sprung mass damping referred to here is to suppress the sprung mass vibration of the vehicle.
 従来の車両制振制御装置では、例えば、特許文献1に示すように、制振フィルタでフィルタリングされた要求制駆動力に応じて制駆動力を制御することで、バネ上制振を行うものが提案されている。この従来の車両制振制御装置は、車両積載重量に基づいてフィルタ特性を補正することで、車両積載重量の増減によって実際の車両のバネ上振動特性と制振制御の特性とがずれて制振制御による振動低減効果の低下を抑制することを目的としている。 In a conventional vehicle vibration damping control device, for example, as shown in Patent Document 1, a device that performs sprung mass damping by controlling a braking / driving force according to a required braking / driving force filtered by a damping filter. Proposed. This conventional vehicle vibration suppression control device corrects the filter characteristics based on the vehicle load weight, so that the actual vehicle sprung vibration characteristic and the vibration suppression control characteristic shift due to the increase or decrease of the vehicle load weight. The purpose is to suppress a reduction in vibration reduction effect due to control.
 また、従来の車両制振制御装置では、例えば、特許文献2に示すように、車両に搭載された動力源が発生する動力の動力制御に基づく車輪トルク制御によりバネ上制振を行うものが提案されている。この従来の車両制振制御装置は、車輪トルクによりバネ上制振を行うものであり、車輪トルクの変動があった場合に、力学的運動モデル、例えばバネ上振動モデルやバネ上・下振動モデルなどを用いて、車両のバネ上振動を予測し、予測された車両のバネ上振動が抑制される車輪トルクを発生できるように動力源が発生する動力の制御を行う。 Further, as a conventional vehicle damping control device, for example, as shown in Patent Document 2, a device that performs sprung damping by wheel torque control based on power control of power generated by a power source mounted on a vehicle is proposed. Has been. This conventional vehicle damping control device performs sprung mass damping by means of wheel torque. When there is fluctuation in wheel torque, a dynamic motion model such as a sprung vibration model or a sprung / lower vibration model is used. Is used to predict the sprung vibration of the vehicle and control the power generated by the power source so as to generate the wheel torque that suppresses the predicted sprung vibration of the vehicle.
特開2006-298293号公報JP 2006-298293 A 特開2004-168148号公報JP 2004-168148 A
 ところで、上記力学的運動モデルを用いた車両制振制御装置では、車両の重心周りのピッチ方向の変位または重心におけるバウンス方向の変位を予測して、その変位を抑制するように車輪トルク制御を行うことで、バネ上振動を抑制するものである。ここで、車両の重心位置は、車両の挙動や、乗員数や、荷物の有無などで変化するものである。従って、車両の諸元などにより予め設定された重心位置に基づいた力学的運動モデルでは、力学的運動モデルにおいて想定している重心位置と、実際の車両の重心位置とが相違することから精度が低下する虞があった。つまり、従来の車両制振制御装置では、振動低減効果が十分に得られない虞があった。 By the way, in the vehicle vibration damping control device using the dynamic motion model, the wheel torque control is performed so as to predict the displacement in the pitch direction around the center of gravity of the vehicle or the displacement in the bounce direction at the center of gravity and suppress the displacement. This suppresses the sprung vibration. Here, the position of the center of gravity of the vehicle changes depending on the behavior of the vehicle, the number of passengers, the presence or absence of luggage, and the like. Therefore, in the dynamic motion model based on the center of gravity position set in advance according to the specifications of the vehicle, the accuracy of the center of gravity assumed in the mechanical motion model is different from the actual center of gravity position of the vehicle. There was a risk of lowering. In other words, the conventional vehicle vibration suppression control device may not be able to obtain a sufficient vibration reduction effect.
 本発明は、上記に鑑みてなされたものであって、振動低減効果を十分に得ることができる車両制振制御装置および車両制振制御装置の制御方法を提供することを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to provide a vehicle vibration suppression control device and a vehicle vibration suppression control device control method capable of sufficiently obtaining a vibration reduction effect.
 上述した課題を解決し、目的を達成するために、本発明は、車両に搭載された動力源が発生する動力を制御することで、前記動力を伝達する駆動輪にバネ上振動を抑制する制振トルクを発生させる車両制振制御装置において、前記車両の重心位置に基づいて前記制振トルクが変化して発生するように前記動力を変化させることを特徴とする。 In order to solve the above-described problems and achieve the object, the present invention controls the power generated by a power source mounted on a vehicle, thereby suppressing sprung vibration on a drive wheel that transmits the power. In the vehicle vibration suppression control device that generates vibration torque, the power is changed so that the vibration suppression torque is generated based on the position of the center of gravity of the vehicle.
 また、上記車両制振制御装置において、前記制振トルクは、前記車両の重心位置に関するパラメータを含み、かつ少なくとも前記車両のバネ上振動に基づいた力学的運動モデルに基づいて前記動力が制御されることで発生するものであり、前記車両の重心位置の変化に基づいて前記パラメータを補正することが好ましい。 In the vehicle vibration damping control device, the damping torque includes a parameter relating to a position of the center of gravity of the vehicle, and the power is controlled based on at least a mechanical motion model based on the sprung vibration of the vehicle. It is preferable that the parameter is corrected based on a change in the center of gravity position of the vehicle.
 また、上記車両制振制御装置において、前記車両の重心位置は、前記車両の重心位置の変化を検出する重心位置変化検出手段により検出された検出値に基づいて推定されることが好ましい。 In the vehicle vibration control device, the center of gravity position of the vehicle is preferably estimated based on a detection value detected by a center-of-gravity position change detecting unit that detects a change in the center of gravity position of the vehicle.
 また、上記車両制振制御装置において、前記重心位置変化検出手段は、前記車両に乗車する乗員の着座の有無を検出することが好ましい。 In the vehicle vibration control device, it is preferable that the center-of-gravity position change detecting unit detects whether or not an occupant sitting on the vehicle is seated.
 また、本発明は、車両に搭載された動力源が発生する動力を制御することで、前記動力を伝達する駆動輪にバネ上振動を抑制する制振トルクを発生させる車両制振制御装置の制御方法において、前記車両の重心位置に基づいて変化した制振トルクを発生させる前記動力を発生させることを特徴とする。 The present invention also provides a control of a vehicle damping control device that generates a damping torque that suppresses sprung vibration on a driving wheel that transmits the power by controlling the power generated by a power source mounted on the vehicle. In the method, the power for generating a vibration damping torque changed based on a position of the center of gravity of the vehicle is generated.
 本発明にかかる車両制振制御装置および車両制振制御装置の制御方法は、力学的運動モデルの精度を向上することで、振動低減効果を十分に得ることができるという効果を奏する。 The vehicle vibration suppression control device and the vehicle vibration suppression control device control method according to the present invention have an effect that a vibration reduction effect can be sufficiently obtained by improving the accuracy of the mechanical motion model.
図1は、実施形態に係る車両制振制御装置が搭載された車両の概略構成例を示す図である。FIG. 1 is a diagram illustrating a schematic configuration example of a vehicle on which the vehicle vibration suppression control device according to the embodiment is mounted. 図2は、車両制振制御部の機能構成例を制御ブロックの形式で示した模式図である。FIG. 2 is a schematic diagram showing a functional configuration example of the vehicle vibration control unit in the form of a control block. 図3は、車両制振制御部において抑制される車体振動の状態変数を説明する図である。FIG. 3 is a diagram for explaining the state variables of the vehicle body vibration that are suppressed in the vehicle vibration suppression control unit. 図4は、車両制振制御部において仮定される車体振動の力学的運動モデルの一例を説明する図である。FIG. 4 is a diagram illustrating an example of a dynamic motion model of vehicle body vibration assumed in the vehicle vibration suppression control unit. 図5は、車両制振制御部において仮定される車体振動の力学的運動モデルの一例を説明する図である。FIG. 5 is a diagram illustrating an example of a dynamic motion model of vehicle body vibration assumed in the vehicle vibration suppression control unit. 図6は、重心位置推定部による重心位置推定方法のフローチャートを示す図である。FIG. 6 is a diagram illustrating a flowchart of the center-of-gravity position estimation method by the center-of-gravity position estimation unit.
 以下、本発明につき図面を参照しつつ詳細に説明する。なお、下記の実施形態により本発明が限定されるものではない。また、下記の実施形態における構成要素には、当業者が容易に想定できるもの、あるいは実質的に同一のものが含まれる。また、下記の実施形態では、動力を発生する動力源としてガソリンエンジンのみが搭載され、変速機として自動変速機であるATが搭載されている車両について説明する。 Hereinafter, the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited by the following embodiment. In addition, constituent elements in the following embodiments include those that can be easily assumed by those skilled in the art or those that are substantially the same. In the following embodiment, a vehicle will be described in which only a gasoline engine is mounted as a power source for generating power, and an AT that is an automatic transmission is mounted as a transmission.
 図1は、実施形態に係る車両制振制御装置が搭載された車両の概略構成例を示す図である。図2は、車両制振制御部の機能構成例を制御ブロックの形式で示した模式図である。図3は、車両制振制御部において抑制される車体振動の状態変数を説明する図である。図4は、車両制振制御部において仮定される車体振動の力学的運動モデルの一例を説明する図である。図5は、車両制振制御部において仮定される車体振動の力学的運動モデルの一例を説明する図である。図6は、重心位置推定部による重心位置推定方法のフローチャートを示す図である。 FIG. 1 is a diagram illustrating a schematic configuration example of a vehicle on which a vehicle vibration control device according to the embodiment is mounted. FIG. 2 is a schematic diagram showing a functional configuration example of the vehicle vibration control unit in the form of a control block. FIG. 3 is a diagram for explaining the state variables of the vehicle body vibration that are suppressed in the vehicle vibration suppression control unit. FIG. 4 is a diagram for explaining an example of a dynamic motion model of vehicle body vibration assumed in the vehicle vibration suppression control unit. FIG. 5 is a diagram illustrating an example of a dynamic motion model of vehicle body vibration assumed in the vehicle vibration suppression control unit. FIG. 6 is a diagram illustrating a flowchart of the center-of-gravity position estimation method by the center-of-gravity position estimation unit.
 本実施形態に係る車両制振制御装置1は、図1に示すように、動力源であるガソリンエンジン21(以下、単に「エンジン」と称する。)を搭載した車両10に適用されている。なお、本実施形態に係る車両制振制御装置1が適用された車両10は、エンジン21が車両10の前進行方向における前側部分に搭載され、駆動輪を左右の後輪である車輪30RL、30RRとする後輪駆動となっている。なお、車両10のエンジン21の搭載位置は、前側部分のみに限定されるものではなく、後側部分、中央部分のいずれに搭載されても良い。また、車両10の駆動形式は、後輪駆動のみに限定されるものではなく、前輪駆動、4輪駆動のいずれの形式であっても良い。 The vehicle vibration suppression control device 1 according to the present embodiment is applied to a vehicle 10 equipped with a gasoline engine 21 (hereinafter simply referred to as “engine”) as a power source, as shown in FIG. In the vehicle 10 to which the vehicle vibration suppression control device 1 according to the present embodiment is applied, the engine 21 is mounted on the front portion in the forward traveling direction of the vehicle 10 and the driving wheels are the left and right rear wheels 30RL, 30RR. The rear wheel drive. In addition, the mounting position of the engine 21 of the vehicle 10 is not limited to only the front portion, and may be mounted on either the rear portion or the central portion. Further, the drive format of the vehicle 10 is not limited to only the rear wheel drive, and may be any format of front wheel drive and four wheel drive.
 車両制振制御装置1が適用される車両10は、同図に示すように、左右前輪である車輪30FL、30FRと、左右後輪である車輪30RL、30RRとを有する。また、車両10は、運転者が操作するアクセルペダル60と、運転者のアクセル操作による要求値、すなわちアクセルペダル60の踏込量であるアクセルペダル踏込量θaを検出し、アクセルペダル踏込量θaに対応した電気信号をECU(Electric Control Unit)50に出力するアクセルペダルセンサ70を有する。車両10は、種々の公知の態様にて、運転者のアクセル操作に応じて車輪30RL、30RRに駆動力を作用させる駆動装置20が搭載される。駆動装置20は、図示の例では、エンジン21が発生する動力(駆動トルク)が、AT22、差動歯車装置23等を介して、車輪30RL、30RRへ伝達されるよう構成されている。なお、ここでは図示していないが、車両10には、種々の公知の車両と同様に各輪に制動力を発生する制動装置と前輪又は前後輪の舵角を制御するためのステアリング装置が設けられる。 The vehicle 10 to which the vehicle vibration damping control device 1 is applied has wheels 30FL and 30FR which are left and right front wheels and wheels 30RL and 30RR which are left and right rear wheels, as shown in FIG. Further, the vehicle 10 detects an accelerator pedal 60 operated by the driver and a request value by the driver's accelerator operation, that is, an accelerator pedal depression amount θa that is a depression amount of the accelerator pedal 60, and corresponds to the accelerator pedal depression amount θa. It has an accelerator pedal sensor 70 that outputs an electrical signal to an ECU (Electric Control Unit) 50. The vehicle 10 is mounted with a driving device 20 that applies driving force to the wheels 30RL and 30RR in accordance with the driver's accelerator operation in various known modes. In the illustrated example, the drive device 20 is configured such that power (drive torque) generated by the engine 21 is transmitted to the wheels 30RL and 30RR via the AT 22, the differential gear device 23, and the like. Although not shown here, the vehicle 10 is provided with a braking device for generating a braking force on each wheel and a steering device for controlling the steering angle of the front wheels or the front and rear wheels, as in various known vehicles. It is done.
 駆動装置20の作動は、車両制振制御装置1として兼用されるECU50により制御される。ECU50は、種々の公知の形式の、双方向コモン・バスにより相互に連結されたCPU、ROM、RAMおよび入出力ポート装置を有するマイクロコンピュータおよび駆動回路を含んでいてよい。ECU50には、車輪30FL、30FR、30RL、30RRに搭載された車輪速センサ40i(i=FL、FR、RL、RR)からの車輪速度Vwi(i=FL、FR、RL、RR)を表す信号と、車両10の各部に設けられたセンサからのエンジン回転速度(エンジン21の出力回転速度)Er、アクセルペダル踏込量θaの信号が入力される。また、ECU50は、上記以外に、本実施形態の車両10において実行されるべき各種制御に必要な種々のパラメータを得るための各種検出信号、例えば、エンジン21の運転環境に対応するパラメータ(冷却水温度、吸入空気温度、吸入空気圧、大気圧、油温など)等の信号が入力される。 The operation of the drive device 20 is controlled by an ECU 50 that is also used as the vehicle vibration damping control device 1. The ECU 50 may include various known types of microcomputers and drive circuits having a CPU, ROM, RAM and input / output port devices interconnected by a bidirectional common bus. The ECU 50 receives a signal representing a wheel speed Vwi (i = FL, FR, RL, RR) from a wheel speed sensor 40i (i = FL, FR, RL, RR) mounted on the wheels 30FL, 30FR, 30RL, 30RR. Then, signals of the engine rotation speed (output rotation speed of the engine 21) Er and the accelerator pedal depression amount θa from the sensors provided in each part of the vehicle 10 are input. In addition to the above, the ECU 50 detects various detection signals for obtaining various parameters necessary for various controls to be executed in the vehicle 10 of the present embodiment, for example, parameters corresponding to the operating environment of the engine 21 (cooling water). Temperature, intake air temperature, intake air pressure, atmospheric pressure, oil temperature, etc.).
 ECU50は、図2に示すように、例えば、エンジン21の作動、特にエンジン21が発生する動力を制御量、本実施形態では、要求トルクTeに基づいて制御する駆動制御装置としても機能する車両制振制御装置1と、図示しない制動装置の作動を制御する制動制御装置2とを含んで構成される。また、本実施形態では、駆動力制御装置を車両制振制御装置1により兼用して構成するものとして説明するが、これに限定されるものではなく、駆動力制御装置とECU50とを別個に構成し、駆動力制御装置をECU50に接続するようにして構成してもよい。また、制動制御装置2も同様に個別に構成し、制動制御装置2をECU50に接続するように構成しても良い。 As shown in FIG. 2, for example, the ECU 50 controls the operation of the engine 21, in particular, the power generated by the engine 21 based on a controlled variable, in this embodiment, a drive control device that also functions as a drive control device that controls the required torque Te. The vibration control device 1 includes a vibration control device 2 that controls the operation of a brake device (not shown). In the present embodiment, the driving force control device is described as being configured to be shared by the vehicle vibration suppression control device 1, but the present invention is not limited to this, and the driving force control device and the ECU 50 are configured separately. The driving force control device may be connected to the ECU 50. Similarly, the brake control device 2 may be individually configured, and the brake control device 2 may be connected to the ECU 50.
 制動制御装置2は、図1に示すように、各車輪30FL、30FR、30RL、30RRが所定量回転する毎に逐次的に生成されるパルス形式の電気信号が各車輪速センサ40FL、40FR、40RL、40RRから入力され、この逐次的に入力されるパルス信号の到来する時間間隔を計測することにより各車輪回転速度ωi(i=FL、FR、RL、RR)が算出され、これに車輪半径rが乗ぜられることにより、各車輪速度Vwiが算出される。制動制御装置2は、本実施形態では、各車輪30FL、30FR、30RL、30RRにそれぞれ対応する車輪速度VwFL、VwFR、VwRL、VwRRの平均値r・ωを車両制振制御装置1(本実施形態では、車両制振制御部4)に出力する。なお、車輪回転速度から車輪速度への演算は、車両制振制御装置1にて行われてもよい。その場合、車輪回転速度は制動制御装置2から車両制振制御装置1に出力される)。 As shown in FIG. 1, the braking control device 2 generates a pulse-type electrical signal that is sequentially generated each time the wheels 30FL, 30FR, 30RL, and 30RR rotate by a predetermined amount, and the wheel speed sensors 40FL, 40FR, and 40RL. 40RR, each wheel rotation speed ωi (i = FL, FR, RL, RR) is calculated by measuring the time interval at which this sequentially input pulse signal arrives, and the wheel radius r Each wheel speed Vwi is calculated by multiplying. In the present embodiment, the braking control device 2 determines the average value r · ω of the wheel speeds VwFL, VwFR, VwRL, and VwRR corresponding to the wheels 30FL, 30FR, 30RL, and 30RR, respectively. Then, it outputs to the vehicle vibration suppression control part 4). The calculation from the wheel rotation speed to the wheel speed may be performed by the vehicle vibration suppression control device 1. In that case, the wheel rotation speed is output from the braking control device 2 to the vehicle vibration suppression control device 1).
 また、制動制御装置2は、種々の公知のABS制御、VSC(Vehicle Stability Control)、TRC(Traction Control)といった自動制動制御、すなわち、車輪30FL、30FR、30RL、30RRと路面との間の摩擦力(車輪30FL、30FR、30RL、30RRの前後力と横力とのベクトル和)が過大になり限界を越えることを抑制し、あるいは、かかる車輪30FL、30FR、30RL、30RRの摩擦力がその限界を越えることに起因する車両10の挙動の悪化を抑制するべく車輪上の前後力又はスリップ率を制御するものであってよく、あるいは、ABS制御、VSC、TRCの車輪30FL、30FR、30RL、30RRのスリップ率制御に加えてステアリング制御等を含めて車両10の挙動の安定化を図るVDIM(Vehicle Dynamics Integrated Management)であってよい。なお、VDIMが搭載される場合には、制動制御装置2は、VDIMの一部を構成することとなる。ここで、制動制御装置2は、上記自動制動制御(ABS制御、VSC、TRC、VDIM)において、車両10の挙動を変化させて制御、すなわち車両10の挙動を変化させることで安定した挙動となるように積極的に制御するために、エンジン21が発生する動力を制御する場合がある。制動制御装置2は、本実施形態では、自動制動制御に基づいて車両10の挙動を変化させて制御するために駆動力制御を行う場合、要求トルクTeを変更する。つまり、制動制御装置2は、車両挙動制御部としての機能も有する。制動制御装置2は、自動制動制御に基づいて要求トルクTeを変更する場合、エンジン21の駆動トルクが車両10の挙動を安定した挙動となるように変化させることができる制動トルク修正量を車両制振制御装置1に出力する。ここで、制動制御装置2から車両制振制御装置1に出力された制動トルク修正量は、要求トルク算出部3aにおいて算出された要求トルクTeに加減算される。この結果、要求トルクTeが制振トルク修正量に基づいて車両10の挙動を変化させて制御するように変更され、変更された要求トルクTeに応じた制御指令が制御指令決定部3cより、エンジン21に出力されることとなる。なお、制動制御装置2は、自動制動制御に基づいて車両10の挙動を変化させて制御するためにエンジントルクを制御する場合、アクセルペダル踏込量を算出しても良い。この場合は、算出されたアクセルペダル踏込量が車両制振制御装置1の要求トルク算出部3aへ出力される。 The braking control device 2 also performs various types of known ABS control, automatic braking control such as VSC (Vehicle Stability Control), TRC (Traction Control), that is, frictional force between the wheels 30FL, 30FR, 30RL, 30RR and the road surface. (The vector sum of the longitudinal force and lateral force of the wheels 30FL, 30FR, 30RL, and 30RR) is excessively suppressed and exceeds the limit, or the frictional force of the wheels 30FL, 30FR, 30RL, and 30RR exceeds the limit. It is possible to control the longitudinal force or slip rate on the wheels to suppress the deterioration of the behavior of the vehicle 10 due to exceeding, or the wheels 30FL, 30FR, 30RL, 30RR of ABS control, VSC, TRC. VDIM (Ve) which stabilizes the behavior of the vehicle 10 including steering control in addition to slip ratio control hicle Dynamics Integrated Management). In addition, when VDIM is mounted, the braking control apparatus 2 will comprise a part of VDIM. Here, the braking control device 2 performs a control by changing the behavior of the vehicle 10 in the automatic braking control (ABS control, VSC, TRC, VDIM), that is, a stable behavior is obtained by changing the behavior of the vehicle 10. In order to positively control the power, the power generated by the engine 21 may be controlled. In the present embodiment, the braking control device 2 changes the required torque Te when performing driving force control to change and control the behavior of the vehicle 10 based on automatic braking control. That is, the braking control device 2 also has a function as a vehicle behavior control unit. When the required torque Te is changed based on the automatic braking control, the braking control device 2 determines the braking torque correction amount that can change the driving torque of the engine 21 so that the behavior of the vehicle 10 becomes a stable behavior. Output to the vibration control device 1. Here, the braking torque correction amount output from the braking control device 2 to the vehicle damping control device 1 is added to or subtracted from the required torque Te calculated by the required torque calculation unit 3a. As a result, the required torque Te is changed so as to change and control the behavior of the vehicle 10 based on the damping torque correction amount, and a control command corresponding to the changed required torque Te is sent from the control command determination unit 3c to the engine. 21 will be output. Note that the braking control device 2 may calculate the accelerator pedal depression amount when controlling the engine torque in order to change and control the behavior of the vehicle 10 based on the automatic braking control. In this case, the calculated accelerator pedal depression amount is output to the required torque calculation unit 3a of the vehicle vibration suppression control device 1.
 車両制振制御装置1は、図2に示すように、駆動制御装置として、運転者からの駆動要求が、アクセルペダル踏込量θaに基づいて運転者の要求するエンジン21の駆動トルクである要求トルクTeとして決定される。ここで、車両制振制御装置1では、エンジン21の駆動トルクを制御することによる車両10のピッチ方向の振動やバウンス方向の振動を抑制する制御、すなわちバネ上振動を抑制する制御である制振制御を実行すべく、要求トルクTeが修正され、その修正された要求トルクTeに対応する制御指令がエンジン21に与えられる。車両制振制御装置1は、駆動制御部3と、車両制振制御部4とを含んで構成されている。 As shown in FIG. 2, the vehicle vibration suppression control device 1 is a drive control device in which a drive request from the driver is a required torque that is a drive torque of the engine 21 requested by the driver based on the accelerator pedal depression amount θa. Determined as Te. Here, in the vehicle vibration suppression control device 1, control for suppressing vibration in the pitch direction and bounce direction of the vehicle 10 by controlling the driving torque of the engine 21, that is, control for suppressing sprung vibration. In order to execute the control, the required torque Te is corrected, and a control command corresponding to the corrected required torque Te is given to the engine 21. The vehicle vibration damping control device 1 includes a drive control unit 3 and a vehicle vibration damping control unit 4.
 駆動制御部3は、要求トルク算出部3aと、加算器3bと、制御指令決定部3cとを含んで構成されている。要求トルク算出部3aは、公知の任意の手法によりアクセル踏込量θaに基づいて要求トルクTeを算出するものである。加算器3bは、要求トルク算出部3aにより算出された要求トルクTeを車両制心制御部4により算出された制振トルク修正量で修正する、すなわち要求トルク算出部3aにより算出された要求トルクTeを制振トルクに基づいて補正するものである。制御指令決定部3cは、制振トルク修正量により修正された要求トルクTeをエンジン21の制御指令を生成し、生成された制御指令をエンジン21の図示しない各制御器に出力するものである。 The drive control unit 3 includes a required torque calculation unit 3a, an adder 3b, and a control command determination unit 3c. The required torque calculation unit 3a calculates the required torque Te based on the accelerator depression amount θa by a known arbitrary method. The adder 3b corrects the required torque Te calculated by the required torque calculation unit 3a with the damping torque correction amount calculated by the vehicle braking control unit 4, that is, the required torque Te calculated by the required torque calculation unit 3a. Is corrected based on the damping torque. The control command determination unit 3c generates a control command for the engine 21 based on the required torque Te corrected by the damping torque correction amount, and outputs the generated control command to each controller (not shown) of the engine 21.
 車両制振制御部4は、車両10のバネ上振動を抑制するいわゆるバネ上制振制御を実行するものである。ここで、車両10のバネ上振動とは、路面の凹凸に応じて路面から車両10の左右前輪である車輪30FL、30FR、左右後輪である車輪30RL、30RRへの入力により、サスペンションを介して車両10の車体に発生する振動のうち、1~4Hz、さらに言えば1.5Hz近傍の周波数成分の振動をいい、車両10のバネ上振動には、車両10のピッチ方向またはバウンス方向(上下方向)の成分が含まれている。ここでいうバネ上制振とは、上記車両10のバネ上振動を抑制するものである。車両制振制御部4は、路面から車両10の左右前輪である車輪30FL、30FR、左右後輪である車輪30RL、30RRへの入力により、1~4Hzの周波数成分(車種や車両の構成によって顕著にあらわれる周波数成分が異なり、多くの車両は1.5Hz近傍の周波数成分)の車両10のピッチ方向またはバウンス方向(上下方向)の振動が生じた場合にエンジン21に逆位相の動力を発生させることで車輪(駆動時には、駆動輪)が路面に対して作用している「車輪トルク」(車輪と接地路面上との間に作用するトルク)を調節し上記振動を抑制する。つまり、車両制振制御部4は、エンジン21の動力、すなわち駆動トルクを制御することで、駆動トルクを伝達する駆動輪である30RL、30RRにバネ上振動を抑制する制振トルクを発生させる車輪トルク制御を行い、上記振動を抑制する。これにより、車両10の車両制振制御部4は、運転者の操縦安定性、乗員の乗り心地等を改善している。また、このようなエンジン21が発生する動力の制御、すなわち動力制御による制振制御によれば、サスペンションによる制振制御のように発生した振動エネルギーを吸収することにより抑制するというよりは、振動を発生する力の源を調節して振動エネルギーの発生を抑えることになるので、制振作用が比較的速やかであり、また、エネルギー効率が良いなどの利点を有する。また、動力制御による制振制御においては、制御対象が動力源の動力(駆動トルク)に集約されるので、制御の調節が比較的に容易である。 The vehicle vibration damping control unit 4 executes so-called sprung mass damping control that suppresses sprung vibration of the vehicle 10. Here, the sprung vibration of the vehicle 10 refers to an input from the road surface to the wheels 30FL and 30FR that are the left and right front wheels of the vehicle 10 and the wheels 30RL and 30RR that are the left and right rear wheels according to the unevenness of the road surface via the suspension. The vibration generated in the vehicle body of the vehicle 10 is a vibration having a frequency component of 1 to 4 Hz, more specifically 1.5 Hz, and the sprung vibration of the vehicle 10 includes the pitch direction or the bounce direction (vertical direction) of the vehicle 10. ) Ingredients are included. The sprung mass damping referred to here is to suppress the sprung mass vibration of the vehicle 10. The vehicle vibration suppression control unit 4 receives a frequency component of 1 to 4 Hz (notably depending on the type of vehicle and the configuration of the vehicle) by inputting from the road surface to the wheels 30FL and 30FR that are the left and right front wheels of the vehicle 10 and the wheels 30RL and 30RR that are the left and right rear wheels. The frequency components appearing in the motor are different, and in many vehicles, when the vibration in the pitch direction or the bounce direction (vertical direction) of the vehicle 10 occurs, the engine 21 generates power in the opposite phase. Then, the "wheel torque" (torque acting between the wheel and the grounding road surface) acting on the road surface by the wheel (drive wheel during driving) is adjusted to suppress the vibration. In other words, the vehicle damping control unit 4 controls the power of the engine 21, that is, the driving torque, thereby generating the damping torque that suppresses the sprung vibration on the driving wheels 30RL and 30RR that transmit the driving torque. Torque control is performed to suppress the vibration. As a result, the vehicle vibration suppression control unit 4 of the vehicle 10 improves the driver's steering stability, the ride comfort of the occupant, and the like. Further, according to the control of the power generated by the engine 21, that is, the vibration suppression control by the power control, the vibration is suppressed rather than suppressed by absorbing the vibration energy generated as in the vibration suppression control by the suspension. Since the generation of vibration energy is suppressed by adjusting the source of the generated force, there is an advantage that the damping action is relatively quick and the energy efficiency is good. Further, in the vibration suppression control by power control, since the control target is concentrated on the power (drive torque) of the power source, the control adjustment is relatively easy.
 車両制振制御部4においては、(1)車輪において路面との間に作用する力による車輪の車輪トルクの取得、(2)ピッチ/バウンス振動状態量の取得、(3)ピッチ/バウンス振動状態量を抑制する車輪トルクの修正量の算出とこれに基づく要求トルクTeの変更が実行される。本実施形態では、(1)の車輪トルクは、制動制御装置2から受信した車輪の車輪速度(または、車輪の車輪回転速度)に基づいて車輪トルク推定値を算出するが、これに限らない。車輪トルクは、エンジン回転速度に基づいて車輪トルク推定値を算出してもよいし、車両10の走行中の車輪トルクの値が直接的に検出可能なセンサ、例えば、ホイールトルクセンサやホイール六分力計などにより、車輪において実際に発生している車輪トルクの検出値であってもよい。なお、車両制振制御部4は、(1)-(3)の処理作動において実現される。 In the vehicle damping control unit 4, (1) acquisition of wheel torque of a wheel by a force acting between the road surface and a wheel, (2) acquisition of a pitch / bounce vibration state quantity, and (3) pitch / bounce vibration state. The calculation of the correction amount of the wheel torque that suppresses the amount and the change of the required torque Te based on this are executed. In the present embodiment, the wheel torque (1) is calculated based on the wheel speed (or the wheel rotation speed of the wheel) of the wheel received from the braking control device 2, but the present invention is not limited to this. As the wheel torque, a wheel torque estimated value may be calculated based on the engine rotation speed, or a sensor that can directly detect the value of the wheel torque while the vehicle 10 is traveling, for example, a wheel torque sensor or a wheel halve. It may be a detected value of wheel torque actually generated in the wheel by a force meter or the like. The vehicle damping control unit 4 is realized in the processing operations (1) to (3).
 車両10において、例えば、運転者のアクセル操作、すなわち運転者の駆動要求に基づいて車輪トルクの変動が生ずると、図3に例示されている車両10の車体において、車体の重心Cgの鉛直方向(z方向)のバウンス振動(バウンス方向の振動)と、車体の重心周りのピッチ方向(θ方向)のピッチ振動(ピッチ方向の振動)が発生しうる。また、車両10の走行中に路面の凹凸に応じて路面から車両10の車輪30FL、30FR、30RL、30RRへの入力により外力またはトルク(外乱)が作用すると、その外乱が車両10に伝達され、やはり車体にピッチ/バウンス振動が発生しうる。そこで、車両制振制御部4は、車両10の車体のピッチ/バウンス振動の力学的運動モデルを構築し、そのモデルにおいて運転者の駆動要求に応じた制御量である要求トルクTe(を車輪トルクに換算した値)と、現在の車輪トルク(の推定値)とを入力した際の車体の変位z、θとその変化率dz/dt、dθ/dt、すなわち、車体振動の状態変数を算出し、モデルから得られた状態変数が0に収束するように、すなわち、ピッチ/バウンス振動を抑制できるようエンジン21の動力制御が行われる(つまり、運転者の駆動要求に応じた制御量である要求トルクTeの変更がされることとなる。)。 In the vehicle 10, for example, when a change in wheel torque occurs based on the driver's accelerator operation, that is, the driver's drive request, in the vehicle body of the vehicle 10 illustrated in FIG. 3, the vertical direction of the center of gravity Cg of the vehicle body ( Z-direction bounce vibration (bounce direction vibration) and pitch direction (θ direction) pitch vibration (pitch direction vibration) around the center of gravity of the vehicle body may occur. Further, when an external force or torque (disturbance) is applied by the input from the road surface to the wheels 30FL, 30FR, 30RL, 30RR of the vehicle 10 according to the unevenness of the road surface while the vehicle 10 is traveling, the disturbance is transmitted to the vehicle 10, Again, pitch / bounce vibration can occur in the car body. Therefore, the vehicle vibration suppression control unit 4 constructs a dynamic motion model of the pitch / bounce vibration of the vehicle body of the vehicle 10, and in the model, the requested torque Te (which is a control amount corresponding to the driving request of the driver is changed to the wheel torque. ) And the current wheel torque (estimated value) are input to the vehicle body displacements z and θ and the rate of change dz / dt and dθ / dt, that is, the state variables of the vehicle body vibration are calculated. Then, the power control of the engine 21 is performed so that the state variable obtained from the model converges to 0, that is, the pitch / bounce vibration can be suppressed (that is, a request that is a control amount corresponding to the driving request of the driver). The torque Te will be changed.)
 車両制振制御部4は、図2に示すように、フィードフォワード制御部4aと、フィードバック制御部4bと、重心位置推定部4cと、駆動トルク変換部4dとを含んで構成される。 As shown in FIG. 2, the vehicle vibration suppression control unit 4 includes a feedforward control unit 4a, a feedback control unit 4b, a gravity center position estimation unit 4c, and a drive torque conversion unit 4d.
 フィードフォワード制御部4aは、いわゆる、最適レギュレータの構成を有し、ここでは、車輪トルク変換部4eと、運動モデル部4fと、FF二次レギュレータ部4gとを含んで構成される。フィードフォワード制御部4aは、車輪トルク変換部4eにて要求トルクTeを車輪トルクに換算した値(ドライバ要求車輪トルクTwo)が車両10の車体のピッチ/バウンス振動の運動モデル部4fに入力される。運動モデル部4fでは、入力されたトルクに対する車両10の状態変数の応答が算出され、FF二次レギュレータ部4gにて後述する所定のゲインKに基づいてその状態変数を最小に収束するドライバ要求車輪トルクTwoの修正量として、FF系制振トルク修正量U・FFが算出される。このFF系制振トルク修正量U・FFは、エンジン21に対する要求トルクTeに基づいたフィードフォワード制御部4aにおける要求トルクTeのFF制御量である。 The feedforward control unit 4a has a so-called optimum regulator configuration, and here includes a wheel torque conversion unit 4e, a motion model unit 4f, and an FF secondary regulator unit 4g. In the feedforward control unit 4a, a value (driver requested wheel torque Two) obtained by converting the required torque Te into the wheel torque by the wheel torque conversion unit 4e is input to the motion model unit 4f of the pitch / bounce vibration of the vehicle body of the vehicle 10. . In the motion model unit 4f, the response of the state variable of the vehicle 10 to the input torque is calculated, and the driver request wheel that converges the state variable to the minimum based on a predetermined gain K described later in the FF secondary regulator unit 4g. As the correction amount of the torque Two, the FF vibration damping torque correction amount U · FF is calculated. This FF system damping torque correction amount U · FF is the FF control amount of the required torque Te in the feedforward control unit 4a based on the required torque Te for the engine 21.
 フィードバック制御部4bは、いわゆる、最適レギュレータの構成を有し、ここでは、車輪トルク推定部4hと、フィードフォワード制御部4aと兼用される運動モデル部4fと、FB二次レギュレータ部4iとを含んで構成される。フィードバック制御部4bは、車輪トルク推定部4hにて後述するように車輪速度の平均値r・ωに基づいて車輪トルク推定値Twが算出され、この車輪トルク推定値Twは、外乱入力として、運動モデル部4fへ入力される。なお、ここでは、フィードフォワード制御部4aの運動モデル部とフィードバック制御部4bの運動モデル部とは同じものであるので運動モデル部4fにより兼用するが、それぞれ別個に設けられていてもよい。運動モデル部4fでは、入力されたトルクに対する車両10の状態変数の応答が算出され、FB二次レギュレータ部4iにて後述する所定のゲインKに基づいてその状態変数を最小に収束するドライバ要求車輪トルクTwoの修正量として、FB系制振トルク修正量U・FBが算出される。このFB系制振トルク修正量U・FBは、路面から車両10の車輪30FL、30FR、30RL、30RRへの入力による外力又はトルク(外乱)に基づいた車輪速度の変動分に応じたフィードバック制御部4bにおける要求トルクTeのFB制御量である。 The feedback control unit 4b has a so-called optimal regulator configuration, and includes a wheel torque estimation unit 4h, a motion model unit 4f also used as a feedforward control unit 4a, and an FB secondary regulator unit 4i. Consists of. As will be described later in the wheel torque estimation unit 4h, the feedback control unit 4b calculates a wheel torque estimated value Tw based on the average value r · ω of the wheel speed, and this wheel torque estimated value Tw Input to the model unit 4f. Here, since the motion model unit of the feedforward control unit 4a and the motion model unit of the feedback control unit 4b are the same, they are also used by the motion model unit 4f, but may be provided separately. In the motion model unit 4f, the response of the state variable of the vehicle 10 to the input torque is calculated, and the driver request wheel that converges the state variable to the minimum based on a predetermined gain K described later in the FB secondary regulator unit 4i. As the correction amount of the torque Two, the FB vibration damping torque correction amount U · FB is calculated. The feedback control unit according to the fluctuation of the wheel speed based on the external force or torque (disturbance) caused by the input from the road surface to the wheels 30FL, 30FR, 30RL, 30RR of the vehicle 10 from the road surface. This is the FB control amount of the required torque Te in 4b.
 車両制振制御部4では、フィードフォワード制御部4aのFF制御量であるFF系制振トルク修正量U・FFとフィードバック制御部4bのFB制御量であるFB系制振トルク修正量U・FBとが加算器4kに出力され、加算器4kにてFF系制振トルク修正量U・FFとFB系制振トルク修正量U・FBとが加算されて制振トルクが算出され、駆動トルク変換部4dにて制振トルクを駆動トルクの単位に換算した値である制振トルク修正量に変換され、変換された制振トルク修正量が加算器3bに出力される。つまり、車両制振制御部4は、制御量である要求トルクTeを力学的運動モデルに基づいて取得された制振トルクに基づいて補正し、車両10のバネ上振動を抑制する制振トルクを発生することができる値に変更する。 In the vehicle damping control unit 4, the FF system damping torque correction amount U · FF, which is the FF control amount of the feedforward control unit 4a, and the FB type damping torque correction amount U · FB, which is the FB control amount of the feedback control unit 4b. Are added to the adder 4k, and the adder 4k adds the FF vibration damping torque correction amount U · FF and the FB vibration damping torque correction amount U · FB to calculate the vibration damping torque, thereby converting the drive torque. The part 4d converts the damping torque into a damping torque correction amount that is a value obtained by converting the damping torque into a unit of driving torque, and the converted damping torque correction amount is output to the adder 3b. That is, the vehicle vibration suppression control unit 4 corrects the required torque Te, which is a control amount, based on the vibration suppression torque acquired based on the mechanical motion model, and reduces the vibration suppression torque that suppresses the sprung vibration of the vehicle 10. Change to a value that can occur.
 従って、車両制振制御部4は、エンジン21が発生する駆動トルクに対して、車両10に1~4Hzの振動を発生させる車輪速度の変動を低減する車輪トルクを駆動トルクの変動で発生させる変更を行うことができることとなる。 Accordingly, the vehicle vibration suppression control unit 4 changes the driving torque generated by the engine 21 to generate the wheel torque that reduces the fluctuation of the wheel speed that causes the vehicle 10 to generate the vibration of 1 to 4 Hz by the fluctuation of the driving torque. Can be performed.
 ここで、車両制振制御部4におけるバネ上制振制御においては、上述したように、車両10の車体のピッチ方向およびバウンス方向の力学的運動モデルを仮定して、ドライバ要求車輪トルクTwo、車輪トルク推定値Tw(外乱)をそれぞれ入力としたピッチ方向またはバウンス方向の状態変数の状態方程式を構成する。そして、かかる状態方程式から、最適レギュレータの理論を用いてピッチ方向およびバウンス方向の状態変数を0に収束させる入力(制振トルク)を決定し、得られた制振トルクに基づいて要求トルクTeが補正される。 Here, in the sprung mass damping control in the vehicle damping control unit 4, as described above, the driver requested wheel torque Two, the wheel are assumed assuming the dynamic motion model in the pitch direction and the bounce direction of the vehicle body of the vehicle 10. A state equation of a state variable in the pitch direction or bounce direction is configured with the estimated torque value Tw (disturbance) as input. From such a state equation, the input (vibration torque) for converging the state variables in the pitch direction and the bounce direction to zero is determined using the theory of the optimal regulator, and the required torque Te is determined based on the obtained vibration damping torque. It is corrected.
 車両10の車体のバウンス方向またはピッチ方向の力学的運動モデルとして、例えば、図4に示すように、車体を質量Mおよび慣性モーメントIの剛体Sとみなし、この剛体Sが、弾性率kfと減衰率cfの前輪サスペンションと弾性率krと減衰率crの後輪サスペンションにより支持されているとする(車両10の車体のバネ上振動モデル)。この場合、車体の重心Cgのバウンス方向の運動方程式(バウンス方向の力学的運動モデル)とピッチ方向の運動方程式(ピッチ方向の力学的運動モデル)は、下記の数1に示す数式のように表すことができる。 As a dynamic motion model in the bounce direction or pitch direction of the vehicle body of the vehicle 10, for example, as shown in FIG. 4, the vehicle body is regarded as a rigid body S having a mass M and an inertia moment I, and this rigid body S has an elastic modulus kf and damping. It is assumed that the vehicle is supported by a front wheel suspension of a rate cf, a rear wheel suspension of an elastic modulus kr, and a damping rate cr (a vehicle body sprung vibration model). In this case, the motion equation in the bounce direction (the mechanical motion model in the bounce direction) and the motion equation in the pitch direction (the mechanical motion model in the pitch direction) of the center of gravity Cg of the vehicle body are expressed as the following formula 1. be able to.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 上記の数1において、Lf、Lrは、それぞれ、重心Cgから前車輪軸および後車輪軸までの距離であり、rは、車輪半径であり、hは、重心Cgの路面からの高さである。なお、式(1a)において、第1項、第2項は、前車輪軸から、第3項、第4項は、後車輪軸からの力の成分であり、式(1b)において、第1項は、前車輪軸から、第2項は、後車輪軸からの力のモーメント成分である。式(1b)における第3項は、駆動輪において発生している車輪トルクT(Two、Tw)が車体の重心周りに与える力のモーメント成分である。 In the above formula 1, Lf and Lr are distances from the center of gravity Cg to the front wheel axis and the rear wheel axis, r is a wheel radius, and h is a height of the center of gravity Cg from the road surface. . In Equation (1a), the first and second terms are components of the force from the front wheel shaft, and the third and fourth terms are components of the force from the rear wheel shaft. In Equation (1b), The term is from the front wheel shaft, and the second term is the moment component of the force from the rear wheel shaft. The third term in the formula (1b) is a moment component of the force that the wheel torque T (Two, Tw) generated in the drive wheel gives around the center of gravity of the vehicle body.
 上記の式(1a)および(1b)は、車両10の車体の変位z、θとその変化率dz/dt、dθ/dtを状態変数ベクトルX(t)として、下記の式(2a)に示すように、(線形システムの)状態方程式の形式に書き換えることができる。

 dX(t)/dt=A・X(t)+B・u(t) ・・・ (2a)
The above equations (1a) and (1b) are shown in the following equation (2a), with the displacements z and θ of the vehicle body of the vehicle 10 and their change rates dz / dt and dθ / dt as the state variable vector X (t). Can be rewritten in the form of a state equation (of a linear system).

dX (t) / dt = A · X (t) + B · u (t) (2a)
 上記の式(2a)において、X(t)、A、Bは、それぞれ、
Figure JPOXMLDOC01-appb-M000002

 であり、行列Aの各要素a1からa4およびb1からb4は、それぞれ、上記の式(1a)、(1b)にz、θ、dz/dt、dθ/dtの係数をまとめることにより与えられ、
 a1=-(kf+kr)/M、
 a2=-(cf+cr)/M、
 a3=-(kf・Lf-kr・Lr)/M、
 a4=-(cf・Lf-cr・Lr)/M、
 b1=-(Lf・kf-Lr・kr)/I、
 b2=-(Lf・cf-Lr・cr)/I、
 b3=-(Lf・kf+Lr・kr)/I、
 b4=-(Lf・cf+Lr・cr)/I
である。また、u(t)は、
 u(t)=T
であり、上記の状態方程式(2a)にて表されるシステムの入力である。したがって、上記の式(1b)より、行列Bの要素p1は、
 p1=h/(I・r)
である。
In the above formula (2a), X (t), A, and B are respectively
Figure JPOXMLDOC01-appb-M000002

The elements a1 to a4 and b1 to b4 of the matrix A are given by putting together the coefficients of z, θ, dz / dt, dθ / dt in the above equations (1a) and (1b), respectively.
a1 = − (kf + kr) / M,
a2 = − (cf + cr) / M,
a3 = − (kf · Lf−kr · Lr) / M,
a4 = − (cf · Lf−cr · Lr) / M,
b1 = − (Lf · kf−Lr · kr) / I,
b2 = − (Lf · cf−Lr · cr) / I,
b3 = − (Lf 2 · kf + Lr 2 · kr) / I,
b4 = − (Lf 2 · cf + Lr 2 · cr) / I
It is. U (t) is
u (t) = T
And is an input of the system represented by the above state equation (2a). Therefore, from the above equation (1b), the element p1 of the matrix B is
p1 = h / (I · r)
It is.
 上記の状態方程式(2a)において、

 u(t)=-K・X(t) ・・・(2b)

とおくと、状態方程式(2a)は、

 dX(t)/dt=(A-BK)・X(t) ・・・(2c)

となる。したがって、X(t)の初期値X(t)をX(t)=(0,0,0,0)と設定して(トルク入力がされる前には振動はないものとする。)、状態変数ベクトルX(t)の微分方程式(2c)を解いたときに、X(t)、すなわち、バウンス方向およびピッチ方向の変位およびその時間変化率、の大きさを0に収束させるゲインKが決定されれば、バウンス・ピッチ振動を抑制する制振トルクu(t)が決定されることとなる。
In the above state equation (2a),

u (t) = − K · X (t) (2b)

Then, the equation of state (2a) is

dX (t) / dt = (A−BK) · X (t) (2c)

It becomes. Therefore, the initial value X 0 (t) of X (t) is set as X 0 (t) = (0, 0, 0, 0) (assuming that there is no vibration before torque is input). ), A gain that converges the magnitude of X (t), that is, the displacement in the bounce direction and the pitch direction and its time change rate, to 0 when the differential equation (2c) of the state variable vector X (t) is solved If K is determined, the damping torque u (t) that suppresses the bounce / pitch vibration is determined.
 ゲインKは、いわゆる、最適レギュレータの理論を用いて決定することができる。この理論によれば、2次形式の評価関数(積分範囲は、0から∞)

 J=∫(XQX+uRu)dt ・・・(3a)

の値が最小になるとき、状態方程式(2a)においてX(t)が安定的に収束し、評価関数Jを最小にする行列Kは、
 K=R-1・B・P
により与えられることが知られている。ここで、Pは、リカッティ方程式
 -dP/dt=AP+PA+Q-PBR-1
の解である。リカッティ方程式は、線形システムの分野において知られている任意の方法により解くことができ、これにより、ゲインKが決定される。
The gain K can be determined using a so-called optimal regulator theory. According to this theory, a quadratic evaluation function (integral range is 0 to ∞)

J = ∫ (X T QX + u T Ru) dt (3a)

When the value of is minimized, the matrix K that minimizes the evaluation function J by the stable convergence of X (t) in the state equation (2a) is
K = R −1・ B T・ P
It is known to be given by Here, P is, Rikatti equation -dP / dt = A T P + PA + Q-PBR -1 B T P
Is the solution. The Riccati equation can be solved by any method known in the field of linear systems, which determines the gain K.
 なお、評価関数Jおよびリカッティ方程式中のQ、Rは、それぞれ、任意に設定される半正定対称行列、正定対称行列であり、システムの設計者により決定される評価関数Jの重み行列である。例えば、ここでの運動モデルの場合、Q、Rは、
Figure JPOXMLDOC01-appb-M000003

などと置いて、式(3a)において、状態ベクトルの成分うち、特定のもの、例えば、dz/dt、dθ/dt、のノルム(大きさ)をその他の成分、例えば、z、θ、のノルムより大きく設定すると、ノルムを大きく設定された成分が相対的に、より安定的に収束されることとなる。また、Qの成分の値を大きくすると、過渡特性重視、すなわち、状態ベクトルの値が速やかに安定値に収束し、Rの値を大きくすると、消費エネルギーが低減される。ここで、フィードフォワード制御部4aに対応するゲインKと、フィードバック制御部4bに対応するゲインKを異ならせても良い。例えば、フィードフォワード制御部4aに対応するゲインKは、運転者の加速感に対応するゲイン、フィードバック制御部4bに対応するゲインKは、運転者の手応えや応答性に対応するゲインとしても良い。
Note that Q and R in the evaluation function J and the Riccati equation are respectively a semi-positive definite symmetric matrix and a positive definite symmetric matrix, and are weight matrices of the evaluation function J determined by the system designer. For example, in the case of the motion model here, Q and R are
Figure JPOXMLDOC01-appb-M000003

In Equation (3a), the norm (magnitude) of a particular one of the state vector components, for example, dz / dt, dθ / dt, is the other component, for example, the norm of z, θ. When the value is set larger, the component having the larger norm is converged relatively stably. Further, when the value of the Q component is increased, the transient characteristics are emphasized, that is, the value of the state vector quickly converges to a stable value, and when the value of R is increased, the energy consumption is reduced. Here, the gain K corresponding to the feedforward control unit 4a may be different from the gain K corresponding to the feedback control unit 4b. For example, the gain K corresponding to the feedforward control unit 4a may be a gain corresponding to the driver's feeling of acceleration, and the gain K corresponding to the feedback control unit 4b may be a gain corresponding to the driver's response and responsiveness.
 車両制振制御部4における実際のバネ上制振制御においては、図2のブロック図に示されているように、運動モデル部4fにおいて、トルク入力値を用いて式(2a)の微分方程式を解くことにより、状態変数ベクトルX(t)が算出される。次いで、FF二次レギュレータ部4g、FB二次レギュレータ部4iにて、上記のように状態変数ベクトルX(t)を0又は最小値に収束させるべく決定されたゲインKを運動モデル部4fの出力である状態ベクトルX(t)に乗じた値u(t)、すなわち、FF系制振トルク修正量U・FFおよびFB系制振トルク修正量U・FBが、駆動トルク変換部4dにおいてエンジン21の要求トルクTeの単位に変換されて、加算器3bにおいて要求トルクTeが補正される。式(1a)および(1b)で表されるシステムは、共振システムであり、任意の入力に対して状態変数ベクトルの値は、実質的にシステムの固有振動数の成分のみとなる。したがって、u(t)(の換算値)により要求トルクTeが補正されるように構成することにより、要求トルクTeのうち、システムの固有振動数の成分、すなわち、車両10の車体においてピッチ/バウンス振動を引き起こす成分が修正され、車両10の車体におけるピッチ/バウンス振動を抑制することとなる。運転者の駆動要求に応じた要求トルクTeにおいて、システムの固有振動数の成分がなくなると、エンジン21に出力される要求トルクTeに応じた制御指令のうち、システムの固有振動数の成分は、-u(t)のみとなり、Tw(外乱)による振動が収束することとなる。 In the actual sprung mass damping control in the vehicle damping control unit 4, as shown in the block diagram of FIG. 2, the motion model unit 4f uses the torque input value to calculate the differential equation of the equation (2a). By solving, the state variable vector X (t) is calculated. Next, the gain K determined to converge the state variable vector X (t) to 0 or the minimum value as described above by the FF secondary regulator unit 4g and the FB secondary regulator unit 4i is output from the motion model unit 4f. The value u (t) obtained by multiplying the state vector X (t), that is, the FF system damping torque correction amount U · FF and the FB system damping torque correction amount U · FB is the engine 21 in the drive torque converter 4d. The required torque Te is corrected by the adder 3b. The system represented by the equations (1a) and (1b) is a resonant system, and the value of the state variable vector for an arbitrary input is substantially only the natural frequency component of the system. Therefore, by configuring so that the required torque Te is corrected by u (t) (converted value thereof), a component of the natural frequency of the system, that is, pitch / bounce in the vehicle body of the vehicle 10 among the required torque Te. The component causing the vibration is corrected, and the pitch / bounce vibration in the vehicle body of the vehicle 10 is suppressed. When the component of the natural frequency of the system disappears in the required torque Te according to the driving request of the driver, the component of the natural frequency of the system in the control command according to the required torque Te output to the engine 21 is -U (t) only, and vibration due to Tw (disturbance) converges.
 なお、運動モデル部4fにおいて用いられる力学的運動モデルのパラメータは、車両制振制御装置1に記憶されている。車両制振制御装置1は、パラメータ、例えば、M、I、Lf、Lr、h、r、kf、cf、kr、crなどが記憶されており、FF系制振トルク修正量U・FFおよびFB系制振トルク修正量U・FBを算出する際に用いられる。また、車両制振制御装置1は、乗員が乗車しておらず、荷物が積載されていない状態を基準とした車両10の諸元である基準諸元が予め記憶されており、基準諸元としては、基準諸元の重心Cgbから前車輪軸までの距離をLfb、重心Cgbから後車輪軸までの距離をLrb、路面から重心Cgbまでの距離をhb、重心Cgbにおける質量をMbなどがある。ここで、パラメータM、Lf、Lr、hの初期値は、それぞれLfb、Lrb、hb、Mbとなる。 The parameters of the mechanical motion model used in the motion model unit 4f are stored in the vehicle vibration control device 1. The vehicle damping control device 1 stores parameters such as M, I, Lf, Lr, h, r, kf, cf, kr, cr, and the like, and the FF system damping torque correction amounts U / FF and FB This is used when calculating the system damping torque correction amount U · FB. In addition, the vehicle vibration suppression control device 1 stores in advance reference specifications that are specifications of the vehicle 10 based on a state in which no occupant is in the vehicle and no load is loaded. Includes Lfb, the distance from the center of gravity Cgb to the front wheel axis, Lrb, the distance from the center of gravity Cgb to the rear wheel axis, hb, the distance from the road surface to the center of gravity Cgb, and Mb, the mass at the center of gravity Cgb. Here, initial values of the parameters M, Lf, Lr, and h are Lfb, Lrb, hb, and Mb, respectively.
 なお、車両10の車体のバウンス方向またはピッチ方向の力学的運動モデルとして、例えば、図5に示すように、図4の構成に加えて、前車輪および後車輪のタイヤのバネ弾性を考慮したモデル(車両10の車体のバネ上・下振動モデル)が採用されてもよい。前車輪および後車輪のタイヤが、それぞれ、弾性率ktf、ktrを有しているとすると、図5から理解されるように、車体の重心Cgのバウンス方向の運動方程式とピッチ方向の運動方程式は、下記の数4に示す数式のように表すことができる。 As a dynamic motion model in the bounce direction or pitch direction of the vehicle body of the vehicle 10, for example, as shown in FIG. 5, a model that takes into account the spring elasticity of the tires of the front wheels and the rear wheels in addition to the configuration of FIG. 4. (A sprung / lower vibration model of the vehicle body of the vehicle 10) may be employed. Assuming that the tires of the front wheels and the rear wheels have the elastic moduli ktf and ktr, respectively, as understood from FIG. 5, the motion equation in the bounce direction and the motion equation in the pitch direction of the center of gravity Cg of the vehicle body are , Which can be expressed as the following mathematical formula 4.
Figure JPOXMLDOC01-appb-M000004
 
Figure JPOXMLDOC01-appb-M000004
 
 上記の数4において、xf、xrは、前車輪、後車輪のばね下変位量であり、mf、mrは、前車輪、後車輪のばね下の質量である。式(4a)-(4d)は、z、θ、xf、xrとその時間微分値を状態変数ベクトルとして、図4の場合と同様に、式(2a)のような状態方程式を構成し(ただし、行列Aは、8行8列、行列Bは、8行1列となる。)最適レギュレータの理論にしたがって、状態変数ベクトルの大きさを0に収束させるゲイン行列Kを決定することができる。車両制振制御部4における実際の制振制御は、図4の場合と同様である。 In the above equation 4, xf and xr are unsprung displacement amounts of the front and rear wheels, and mf and mr are unsprung masses of the front and rear wheels. Equations (4a)-(4d) constitute a state equation like Equation (2a) as in FIG. 4 using z, θ, xf, xr and their time differential values as state variable vectors (however, The matrix A has 8 rows and 8 columns, and the matrix B has 8 rows and 1 column.) According to the theory of the optimal regulator, the gain matrix K that converges the size of the state variable vector to 0 can be determined. The actual vibration suppression control in the vehicle vibration suppression control unit 4 is the same as in the case of FIG.
 ここで、図2の車両制振制御部4のフィードバック制御部4bにおいて、外乱として入力される車輪トルクは、例えば、各車輪30FL、30FR、30RL、30RRにトルクセンサを設け実際に検出するように構成してもよいが、ここでは走行中の車両10におけるその他の検出可能な値から車輪トルク推定部4hにて推定された車輪トルク推定値Twが用いられる。 Here, in the feedback control unit 4b of the vehicle vibration suppression control unit 4 of FIG. 2, for example, the wheel torque input as a disturbance is actually detected by providing a torque sensor on each wheel 30FL, 30FR, 30RL, 30RR. Although it may be configured, the wheel torque estimated value Tw estimated by the wheel torque estimating unit 4h from other detectable values in the traveling vehicle 10 is used here.
 車輪トルク推定値Twは、例えば、各車輪に対応する車輪速センサから得られる車輪回転速度の平均値ω又は車輪速度の平均値r・ωの時間微分を用いて、次式(5)により推定、算出することができる。

 Tw=M・r・dω/dt ・・・(5)

 上記の式(5)において、Mは、車両の質量であり、rは、車輪半径である。すなわち、駆動輪が路面の接地個所において発生している駆動力の総和が、車両10の全体の駆動力M・G(Gは、加速度)に等しいとすると、車輪トルク推定値Twは、次式(5a)にて与えられる。

 Tw=M・G・r ・・・(5a)

車両の加速度Gは、車輪速度r・ωの微分値より、次式(5b)によって与えられる。

 G=r・dω/dt ・・・(5b)

 したがって、車輪トルクは、上記の式(5)のようにして推定される。
The estimated wheel torque value Tw is estimated by the following equation (5) using, for example, the average value ω of the wheel rotation speed obtained from the wheel speed sensor corresponding to each wheel or the time derivative of the average value r · ω of the wheel speed. Can be calculated.

Tw = M · r 2 · dω / dt (5)

In the above formula (5), M is the mass of the vehicle, and r is the wheel radius. That is, assuming that the sum of the driving forces generated at the ground contact points of the driving wheels is equal to the overall driving force M · G (G is acceleration) of the vehicle 10, the estimated wheel torque value Tw is given by (5a).

Tw = M · G · r (5a)

The acceleration G of the vehicle is given by the following equation (5b) from the differential value of the wheel speed r · ω.

G = r · dω / dt (5b)

Therefore, the wheel torque is estimated as in the above equation (5).
 ところで、本実施形態の車両制振制御部4は、運転者の駆動要求に応じた制御量である要求トルクTeに基づいたフィードフォワード制御部4aにおける要求トルクTeのFF制御量であるFF系制振トルク修正量と、車両10の車輪の車輪速度に基づいたフィードバック制御部4bにおける要求トルクTeのFB制御量であるFB系制振トルク修正量とに基づいて制振トルクを設定する車両制振制御部4が車両10の運転状態に基づいてFF系制振トルク修正量又はFB系制振トルク修正量を補正することで、車両10の運転状態に応じた適正な制振制御の実現を図っている。 By the way, the vehicle vibration suppression control unit 4 of the present embodiment is an FF system control that is an FF control amount of the required torque Te in the feedforward control unit 4a based on the required torque Te that is a control amount according to the driving request of the driver. Vehicle damping that sets damping torque on the basis of the amount of vibration torque correction and the amount of FB system damping torque correction that is the FB control amount of the required torque Te in the feedback control unit 4b based on the wheel speed of the wheel of the vehicle 10 The control unit 4 corrects the FF system damping torque correction amount or the FB system damping torque correction amount based on the driving state of the vehicle 10 to achieve appropriate damping control according to the driving state of the vehicle 10. ing.
 ここで、上述したように、車両制振制御部4は、フィードフォワード制御部4aとフィードバック制御部4bとが運動モデル部4fを兼用しているものの、基本的には独立した別個の制御系として構成され、FF系制振トルク修正量とFB系制振トルク修正量とをそれぞれ算出した後に、FF系制振トルク修正量とFB系制振トルク修正量とを加算することで制振トルクを設定している。このため、車両制振制御部4は、実際に制振トルクを設定する前段で、フィードフォワード制御部4aのFF系制振トルク修正量、フィードバック制御部4bのFB系制振トルク修正量に対して、それぞれ個別に上下限ガードを行ったり、補正を行ったりすることができる。また、これにより、車両10の状況に応じてどちらか一方の制御を遮断することも容易となる。 Here, as described above, the vehicle vibration suppression control unit 4 is basically an independent separate control system, although the feedforward control unit 4a and the feedback control unit 4b also serve as the motion model unit 4f. After calculating the FF system damping torque correction amount and the FB system damping torque correction amount, respectively, the FF system damping torque correction amount and the FB system damping torque correction amount are added to obtain the damping torque. It is set. For this reason, the vehicle vibration suppression control unit 4 performs the FF system damping torque correction amount of the feedforward control unit 4a and the FB system damping torque correction amount of the feedback control unit 4b before the actual damping torque is set. Thus, it is possible to individually perform upper and lower limit guards and to perform corrections. In addition, this makes it easy to block either one of the controls depending on the situation of the vehicle 10.
 そして、本実施形態の車両制振制御部4は、フィードフォワード制御部4aにFF制御補正部4lとFF制御ゲイン設定部4mとを備え、フィードバック制御部4bにFB制御補正部4nとFB制御ゲイン設定部4oとをさらに含んで構成される。車両制振制御部4は、FF制御補正部4lとFF制御ゲイン設定部4mとによってFF系制振トルク修正量を補正する一方、FB制御補正部4nとFB制御ゲイン設定部4oとによってFB系制振トルク修正量を補正している。つまり、車両制振制御部4は、FF系制振トルク修正量に対して車両10の状態に応じてFF制御ゲインを設定しFF系制振トルク修正量にこのFF制御ゲインを掛けることでFF系制振トルク修正量を補正し、FB系制振トルク修正量に対して車両10の状態に応じてFB制御ゲインを設定しFB系制振トルク修正量にこのFB制御ゲインを掛けることでFB系制振トルク修正量を補正する。 The vehicle vibration suppression control unit 4 of this embodiment includes an FF control correction unit 4l and an FF control gain setting unit 4m in the feedforward control unit 4a, and an FB control correction unit 4n and an FB control gain in the feedback control unit 4b. And a setting unit 4o. The vehicle damping control unit 4 corrects the FF system damping torque correction amount by the FF control correcting unit 4l and the FF control gain setting unit 4m, while the FB control correcting unit 4n and the FB control gain setting unit 4o The damping torque correction amount is corrected. That is, the vehicle damping control unit 4 sets the FF control gain according to the state of the vehicle 10 with respect to the FF system damping torque correction amount, and multiplies the FF system damping torque correction amount by the FF control gain. By correcting the system damping torque correction amount, setting the FB control gain according to the state of the vehicle 10 with respect to the FB system damping torque correction amount, and multiplying the FB system damping torque correction amount by this FB control gain, the FB Correct the system damping torque correction amount.
 FF制御補正部4lは、FF二次レギュレータ部4gの後段、加算器4kの前段に位置しFF二次レギュレータ部4gからFF系制振トルク修正量U・FFが入力され、補正したFF系制振トルク修正量U・FFを加算器4kに出力する。FF制御補正部4lは、このFF系制振トルク修正量U・FFに対してFF制御ゲイン設定部4mが設定するFF制御ゲインK・FFを乗算することで、FF系制振トルク修正量U・FFをFF制御ゲインK・FFに基づいて補正する。そして、FF制御ゲイン設定部4mは、このFF制御ゲインK・FFを車両10の状態に応じて設定する。つまり、FF二次レギュレータ部4gからFF制御補正部4lに入力されたFF系制振トルク修正量U・FFは、FF制御ゲイン設定部4mによりFF制御ゲインK・FFが車両10の状態に応じて設定されることで、FF制御補正部4lにて車両10の状態に応じて補正されることとなる。 The FF control correction unit 4l is positioned after the FF secondary regulator unit 4g and before the adder 4k, and the FF system damping torque correction amount U / FF is input from the FF secondary regulator unit 4g to correct the FF system control. The vibration torque correction amount U · FF is output to the adder 4k. The FF control correction unit 4l multiplies the FF system damping torque correction amount U · FF by the FF control gain K · FF set by the FF control gain setting unit 4m, thereby FF system damping torque correction amount U · FF. -Correct FF based on FF control gain K-FF. The FF control gain setting unit 4m sets the FF control gain K · FF according to the state of the vehicle 10. In other words, the FF system damping torque correction amount U / FF input from the FF secondary regulator unit 4g to the FF control correction unit 4l is changed according to the state of the vehicle 10 by the FF control gain setting unit 4m. Thus, the FF control correction unit 4l corrects it according to the state of the vehicle 10.
 なお、FF制御補正部4lは、FF系制振トルク修正量U・FFが予め設定される上下限ガード値の範囲内となるように上下限ガードを行ってもよい。FF制御補正部4lは、例えば、FF二次レギュレータ部4gから入力されたFF系制振トルク修正量U・FFに対して予め設定されるエンジン21の許容駆動力変動値としての許容エンジントルク変動値に応じた値を上下限ガード値(例えば、エンジン21の駆動トルクの単位に換算した値で-数十Nmから0Nmの範囲)として上下限ガードを行い、FF系制振トルク修正量U・FFを補正してもよい。これにより、FF制御補正部4lは、例えば、車両制振制御部4によるバネ上制振制御以外の他の制御を勘案した適正なFF系制振トルク修正量U・FFを設定することができ、つまり、車両制振制御部4によるバネ上制振制御と他の制御との干渉を抑制することができる。また、FF制御補正部4lは、例えば、加算器4kに出力される前のFF系制振トルク修正量U・FFに対して予め設定される車両10の許容加減速度に応じた値を上限ガード値(例えば、加減速度換算した場合に+0.00G相当未満となるような範囲)として上限ガードを行い、FF系制振トルク修正量U・FFを補正してもよい。これにより、FF制御補正部4lは、例えば、運転者の操縦安定性、乗員の乗り心地等を改善するための車両制振制御部4によるバネ上制振制御によって車両10の運動の変化が運転者の予期しないほど大きくなることを防止し、運転者に違和感を覚えさせることを防止することができる適正なFF系制振トルク修正量U・FFを設定することができる。 The FF control correction unit 4l may perform upper and lower limit guards so that the FF system damping torque correction amount U · FF is within a preset upper and lower limit guard value range. The FF control correction unit 4l is, for example, an allowable engine torque fluctuation as an allowable driving force fluctuation value of the engine 21 set in advance for the FF system damping torque correction amount U · FF input from the FF secondary regulator unit 4g. The upper / lower limit guard value is set to a value corresponding to the upper / lower limit guard value (for example, a value converted to the unit of the drive torque of the engine 21 from the range of tens of Nm to 0 Nm), and the FF system damping torque correction amount U · FF may be corrected. As a result, the FF control correction unit 41 can set an appropriate FF system damping torque correction amount U / FF taking into account other controls than the sprung mass damping control by the vehicle damping control unit 4, for example. That is, interference between the sprung mass damping control by the vehicle damping control unit 4 and other controls can be suppressed. Further, the FF control correction unit 4l sets, for example, a value corresponding to an allowable acceleration / deceleration of the vehicle 10 set in advance to the FF system damping torque correction amount U · FF before being output to the adder 4k as an upper limit guard. Upper limit guarding may be performed as a value (for example, a range that is less than +0.00 G when acceleration / deceleration is converted), and the FF vibration damping torque correction amount U / FF may be corrected. Thereby, the FF control correction unit 4l is driven by a change in motion of the vehicle 10 by sprung mass damping control by the vehicle vibration damping control unit 4 for improving the driving stability of the driver, the ride comfort of the occupant, and the like. It is possible to set an appropriate FF system damping torque correction amount U · FF that can prevent the driver from unexpectedly increasing and prevent the driver from feeling uncomfortable.
 FB制御補正部4nは、FB二次レギュレータ部4iの後段、加算器4kの前段に位置しFB二次レギュレータ部4iからFB系制振トルク修正量U・FBが入力され、補正したFB系制振トルク修正量U・FBを加算器4kに出力する。FB制御補正部4nは、このFB系制振トルク修正量U・FBに対してFB制御ゲイン設定部4oが設定するFB制御ゲインK・FBを乗算することで、FB系制振トルク修正量U・FBをFB制御ゲインK・FBに基づいて補正する。そして、FB制御ゲイン設定部4oは、このFB制御ゲインK・FBを車両10の運転状態に応じて設定する。つまり、FB二次レギュレータ部4iからFB制御補正部4nに入力されたFB系制振トルク修正量U・FBは、FB制御ゲイン設定部4oによりFB制御ゲインK・FBが車両10の運転状態に応じて設定されることで、FB制御補正部4nにて車両10の運転状態に応じて補正されることとなる。 The FB control correction unit 4n is positioned after the FB secondary regulator unit 4i and before the adder 4k, and receives the FB system damping torque correction amounts U and FB from the FB secondary regulator unit 4i. The vibration torque correction amount U · FB is output to the adder 4k. The FB control correction unit 4n multiplies the FB system damping torque correction amount U · FB by the FB control gain K · FB set by the FB control gain setting unit 4o, thereby obtaining the FB system damping torque correction amount U · FB. -Correct FB based on FB control gain K / FB. The FB control gain setting unit 4o sets the FB control gain K · FB according to the driving state of the vehicle 10. That is, the FB system damping torque correction amount U / FB input from the FB secondary regulator unit 4i to the FB control correction unit 4n is set to the driving state of the vehicle 10 by the FB control gain setting unit 4o. By setting accordingly, the FB control correction unit 4n will correct the vehicle 10 according to the driving state.
 なお、FB制御補正部4nは、FB系制振トルク修正量U・FBが予め設定される上下限ガード値の範囲内となるように上下限ガードを行ってもよい。FB制御補正部4nは、例えば、FB二次レギュレータ部4iから入力されたFB系制振トルク修正量U・FBに対して予め設定されるエンジン21の許容駆動力変動値としての許容エンジントルク変動値に応じた値を上下限ガード値(例えば、エンジン21の駆動トルクの単位に換算した値で±数十Nmの範囲)として上下限ガードを行い、FB系制振トルク修正量U・FBを補正してもよい。これにより、FB制御補正部4nは、例えば、車両制振制御部4によるバネ上制振制御以外の他の制御を勘案した適正なFB系制振トルク修正量U・FBを設定することができ、つまり、車両制振制御部4によるバネ上制振制御と他の制御との干渉を抑制することができる。また、FB制御補正部4nは、例えば、加算器4kに出力される前のFB系制振トルク修正量U・FBに対して予め設定される車両10の許容加減速度に応じた値を上下限ガード値(例えば、加減速度換算した場合に±a/100G相当以内となるような範囲)として上下限ガードを行い、FB系制振トルク修正量U・FBを補正してもよい。これにより、FB制御補正部4nは、例えば、運転者の操縦安定性、乗員の乗り心地等を改善するための車両制振制御部4によるバネ上制振制御によって車両10の運動の変化が運転者の予期しないほど大きくなることを防止し、運転者に違和感を覚えさせることを防止することができる適正なFB系制振トルク修正量U・FBを設定することができる。 The FB control correction unit 4n may perform upper and lower limit guards so that the FB system damping torque correction amount U · FB is within a preset upper and lower limit guard value range. The FB control correction unit 4n is, for example, an allowable engine torque fluctuation as an allowable driving force fluctuation value of the engine 21 set in advance for the FB system damping torque correction amount U · FB input from the FB secondary regulator unit 4i. The upper / lower limit guard is performed with the value corresponding to the value as the upper / lower limit guard value (for example, a range of ± several tens of Nm in terms of the drive torque unit of the engine 21), and the FB system damping torque correction amount U · FB is set to It may be corrected. As a result, the FB control correction unit 4n can set an appropriate FB system damping torque correction amount U / FB taking into account other controls than the sprung mass damping control by the vehicle damping control unit 4, for example. That is, interference between the sprung mass damping control by the vehicle damping control unit 4 and other controls can be suppressed. Further, the FB control correction unit 4n sets, for example, values corresponding to the allowable acceleration / deceleration of the vehicle 10 set in advance to the FB system damping torque correction amount U · FB before being output to the adder 4k. Upper and lower limit guards may be performed as a guard value (for example, a range that is within ± a / 100 G when acceleration / deceleration is converted) to correct the FB system damping torque correction amount U · FB. As a result, the FB control correction unit 4n is driven by a change in motion of the vehicle 10 by sprung mass damping control by the vehicle vibration damping control unit 4 for improving the driving stability of the driver, the ride comfort of the occupant, and the like. It is possible to set an appropriate FB system damping torque correction amount U · FB that can prevent the driver from unexpectedly increasing and prevent the driver from feeling uncomfortable.
 そして、本実施形態の車両制振制御部4は、車両10の状態を表すパラメータとして、車両10の車速、車両10が搭載するAT22が複数のギア段を有するものであればギア段、エンジン21の出力回転速度としてのエンジン回転速度と要求トルクTeに基づいて、FF制御補正部4l、FB制御補正部4nによってFF系制振トルク修正量、FB系制振トルク修正量を補正するとよい。また、車両制振制御部4は、FB制御補正部4nによって車両10が搭載するAT22の駆動状態に基づいてFB系制振トルク修正量を補正するとよい。さらに、車両制振制御部4は、動力源がディーゼルエンジンである場合は、FB制御補正部4nによってディーゼルエンジンの許容目標燃料噴射量に基づいてFB系制振トルク修正量を補正するとよい。つまり、FF制御ゲイン設定部4m、FB制御ゲイン設定部4oは、これらのものに基づいてFF制御ゲインK・FF、FB制御ゲインK・FBを設定するとよい。 The vehicle vibration suppression control unit 4 of the present embodiment uses the vehicle speed of the vehicle 10 as a parameter representing the state of the vehicle 10, the gear stage if the AT 22 mounted on the vehicle 10 has a plurality of gear stages, and the engine 21. Based on the engine rotation speed and the required torque Te as the output rotation speed, the FF control correction unit 4l and the FB control correction unit 4n may correct the FF system damping torque correction amount and the FB system damping torque correction amount. Further, the vehicle damping control unit 4 may correct the FB system damping torque correction amount based on the driving state of the AT 22 mounted on the vehicle 10 by the FB control correcting unit 4n. Further, when the power source is a diesel engine, the vehicle damping control unit 4 may correct the FB system damping torque correction amount based on the allowable target fuel injection amount of the diesel engine by the FB control correction unit 4n. That is, the FF control gain setting unit 4m and the FB control gain setting unit 4o may set the FF control gain K · FF and the FB control gain K · FB based on these.
 重心位置推定部4cは、実際の車両10の重心位置を推定するものである。重心位置推定部4cは、車両10の重心位置の変化を検出する重心位置変化検出手段により検出された検出値に基づいて、実際の車両10の重心位置を推定するものである。実施形態では、重心位置推定部4cは、荷重センサ80i(i≧1)により検出された荷重Fi(i≧1)に基づいて、上記力学的運動モデルにおける車両10の重心位置に関するパラメータ(以下、単に「重心パラメータ」と称する)を補正することで、実際の車両10の重心位置を推定するものである。つまり、重心位置推定部4cは、車両の重心位置の変化に基づいて重心パラメータを補正するものである。ここで、重心パラメータは、車両10の前後方向における重心Cgの位置に関するパラメータ、車両10の上下方向における重心Cgの位置に関するパラメータをいい、さらに重心Cgにおける車両10の質量に関するパラメータも含むことが好ましい。実施形態では、重心パラメータは、重心Cgから前車輪軸までの距離Lf、重心Cgから後車輪軸までの距離Lr、路面から重心Cgまでの距離h、車両10の重心Cgにおける質量Mである。 The center-of-gravity position estimation unit 4 c estimates the center-of-gravity position of the actual vehicle 10. The center-of-gravity position estimation unit 4 c estimates the actual center-of-gravity position of the vehicle 10 based on the detection value detected by the center-of-gravity position change detection unit that detects a change in the center-of-gravity position of the vehicle 10. In the embodiment, the center-of-gravity position estimation unit 4c is a parameter (hereinafter, referred to as a parameter relating to the center-of-gravity position of the vehicle 10 in the mechanical motion model) based on the load Fi (i ≧ 1) detected by the load sensor 80i (i ≧ 1). The center of gravity position of the actual vehicle 10 is estimated by correcting the “center of gravity parameter”. That is, the center-of-gravity position estimation unit 4c corrects the center-of-gravity parameter based on the change in the center-of-gravity position of the vehicle. Here, the center-of-gravity parameter refers to a parameter related to the position of the center of gravity Cg in the longitudinal direction of the vehicle 10, a parameter related to the position of the center of gravity Cg in the vertical direction of the vehicle 10, and preferably includes a parameter related to the mass of the vehicle 10 at the center of gravity Cg. . In the embodiment, the center-of-gravity parameters are the distance Lf from the center of gravity Cg to the front wheel axis, the distance Lr from the center of gravity Cg to the rear wheel axis, the distance h from the road surface to the center of gravity Cg, and the mass M at the center of gravity Cg of the vehicle 10.
 ここで、荷重センサ80iは、車両10に乗車する乗員の質量や車両10に積載される荷物の質量に応じて出力が変化するものであり、重心位置推定部4cに検出された検出値である荷重Fiを出力するものである。荷重センサ80iは、例えば各座席およびトランクなどの場所に1以上設けられている。つまり、重心位置推定部4cは、荷重センサ80iから出力されて取得した荷重Fi(車両10の重心位置の変化として検出された検出値)、上記設置距離Li、Lfb、Lrb、hb、Mbに基づいてLf、Lr、h、Mを補正するものである。なお、車両制振制御装置1には、基準諸元の重心Cgbから荷重センサ80iまでの車両10の前後方向における距離である設置前後距離Li(i≧1)と、重心Cgbから荷重センサ80iまでの車両10の上下方向における距離である設定上下距離hi(i≧1)が予め記憶されている。 Here, the load sensor 80i changes its output in accordance with the mass of the occupant who rides on the vehicle 10 and the mass of the luggage loaded on the vehicle 10, and is a detection value detected by the gravity center position estimation unit 4c. The load Fi is output. One or more load sensors 80i are provided in places such as each seat and trunk. That is, the center-of-gravity position estimation unit 4c is based on the load Fi (detected value detected as a change in the center-of-gravity position of the vehicle 10) output from the load sensor 80i and the installation distance Li, Lfb, Lrb, hb, Mb. Thus, Lf, Lr, h, and M are corrected. The vehicle vibration suppression control device 1 includes an installation longitudinal distance Li (i ≧ 1) that is a distance in the longitudinal direction of the vehicle 10 from the center of gravity Cgb of the reference specifications to the load sensor 80i, and from the center of gravity Cgb to the load sensor 80i. A preset vertical distance hi (i ≧ 1) that is a distance in the vertical direction of the vehicle 10 is stored in advance.
 次に、重心位置推定部4cにおける重心パラメータの補正方法について説明する。重心パラメータの補正方法は、例えば補正実行プログラムとして車両制振制御装置1に予め記憶されており、制御周期ごとに繰り返し実行される。重心位置推定部4cは、図6に示すように、まず、車両10が停止中であるか否かを判定する(ステップST1)。ここでは、重心位置推定部4cは、例えば、車両制振制御装置1に出力されて取得した車輪速度の平均値r・ωに基づいて車両10が停止中であるか否かを判定することで、車両10が静止した状態であるか否かを判定する。 Next, a method for correcting the centroid parameter in the centroid position estimating unit 4c will be described. The method for correcting the center-of-gravity parameter is stored in advance in the vehicle vibration suppression control device 1 as a correction execution program, for example, and is repeatedly executed every control cycle. As shown in FIG. 6, the center-of-gravity position estimation unit 4c first determines whether or not the vehicle 10 is stopped (step ST1). Here, the center-of-gravity position estimation unit 4c determines, for example, whether or not the vehicle 10 is stopped based on the average wheel speed r · ω that is output and acquired by the vehicle vibration suppression control device 1. Then, it is determined whether or not the vehicle 10 is stationary.
 次に、重心位置推定部4cは、車両10が停止中であると判定する(ステップST1肯定)と、荷重Fiを取得する。ここでは、重心位置推定部4cは、荷重センサ80iから出力された荷重Fiを取得する(ステップST2)。 Next, when it is determined that the vehicle 10 is stopped (Yes at step ST1), the center-of-gravity position estimation unit 4c acquires the load Fi. Here, the center-of-gravity position estimation unit 4c acquires the load Fi output from the load sensor 80i (step ST2).
 次に、重心位置推定部4cは、質量変化量ΔMを算出する(ステップST3)。ここでは、重心位置推定部4cは、取得されたFiに基づいて、Mbに対する変化量としてΔMを算出する。重心位置推定部4cは、Fiと、下記の式(6)とに基づいてΔMを算出する。ここで、gは、重力加速度である。

 ΔM=ΣFi/g ・・・(6)
Next, the center-of-gravity position estimation unit 4c calculates a mass change amount ΔM (step ST3). Here, the center-of-gravity position estimation unit 4c calculates ΔM as a change amount with respect to Mb based on the acquired Fi. The center-of-gravity position estimation unit 4c calculates ΔM based on Fi and the following equation (6). Here, g is a gravitational acceleration.

ΔM = ΣFi / g (6)
 次に、重心位置推定部4cは、重心位置前後変化量ΔLを算出する(ステップST4)。ここでは、重心位置推定部4cは、取得されたFiと、Liと、Mbとに基づいて、基準諸元の重心Cgbに対する車両10の前後方向における変化量としてΔLを算出する。重心位置推定部4cは、Fiと、Liと、Mbと、下記の式(7)とに基づいてΔLを算出する。ここで、Liは、車両10の後方を正とする。

 ΔL・Mb=Σ((Fi/g)・(Li-ΔL)) ・・・(7)
Next, the center-of-gravity position estimation unit 4c calculates a change amount ΔL before and after the center-of-gravity position (step ST4). Here, the center-of-gravity position estimation unit 4c calculates ΔL as the amount of change in the front-rear direction of the vehicle 10 with respect to the center-of-gravity Cgb of the reference specifications, based on the acquired Fi, Li, and Mb. The center-of-gravity position estimation unit 4c calculates ΔL based on Fi, Li, Mb, and the following equation (7). Here, Li is positive behind the vehicle 10.

ΔL · Mb = Σ ((Fi / g) · (Li−ΔL)) (7)
 次に、重心位置推定部4cは、重心位置上下変化量Δhを算出する(ステップST5)。ここでは、重心位置推定部4cは、取得されたFiと、hiと、Mbとに基づいて、基準諸元の重心Cgbに対する車両10の上下方向における変化量としてΔhを算出する。重心位置推定部4cは、Fiと、hiと、Mbと、下記の式(8)とに基づいてΔhを算出する。ここで、hiは、車両10の上方を正とする。

 Δh・Mb=Σ((Fi/g)・(hi-Δh)) ・・・(8)
Next, the center-of-gravity position estimation unit 4c calculates a center-of-gravity position vertical change amount Δh (step ST5). Here, the center-of-gravity position estimation unit 4c calculates Δh as the amount of change in the vertical direction of the vehicle 10 with respect to the center-of-gravity Cgb of the reference specifications based on the acquired Fi, hi, and Mb. The center-of-gravity position estimation unit 4c calculates Δh based on Fi, hi, Mb, and the following equation (8). Here, hi is positive above the vehicle 10.

Δh · Mb = Σ ((Fi / g) · (hi−Δh)) (8)
 次に、重心位置推定部4cは、Lf、Lr、h、Mを補正する(ステップST6)。ここでは、重心位置推定部4cは、上記算出されたΔMと、ΔLと、ΔHとに基づいて、Lf、Lr、h、Mを補正する。重心位置推定部4cは、ΔLと、ΔHと、ΔMと、Lfbと、Lrbと、hbと、Mbと、下記の式(9)、(10)、(11)(12)とに基づいてLf、Lr、h、Mを補正する。つまり、重心位置の変化に基づいて、Lf、Lr、h、M、すなわち重心パラメータを補正する。

 Lf=Lfb+ΔL ・・・(9)
 Lr=Lrb-ΔL ・・・(10)
 h=hb+Δh   ・・・(11)
 M=Mb+ΔM   ・・・(12)
Next, the center-of-gravity position estimation unit 4c corrects Lf, Lr, h, and M (step ST6). Here, the center-of-gravity position estimation unit 4c corrects Lf, Lr, h, and M based on the calculated ΔM, ΔL, and ΔH. The center-of-gravity position estimation unit 4c calculates Lf based on ΔL, ΔH, ΔM, Lfb, Lrb, hb, Mb, and the following equations (9), (10), (11), and (12). , Lr, h, M are corrected. That is, Lf, Lr, h, M, that is, the centroid parameter is corrected based on the change in the centroid position.

Lf = Lfb + ΔL (9)
Lr = Lrb−ΔL (10)
h = hb + Δh (11)
M = Mb + ΔM (12)
 そして、車両制振制御装置1は、記憶されている重心パラメータであるLf、Lr、h、Mを補正後の値に更新する。従って、車両制振制御部4では、補正後の重心パラメータを用いた力学的運動モデルに基づいて制振トルクが取得される。つまり、車両制振制御装置1は、車両10の重心位置に基づいて制振トルクが変化して発生できる要求トルクTeをエンジン21に発生させる動力制御を行う。これにより、車両制振制御装置1は、車両10の重心位置に基づいて制振トルクが変化して発生するようにエンジン21が発生する駆動トルクを変化させることとなる。なお、重心位置推定部4cにより車両10が停止中でないと判定される(ステップST1否定)と、車両制振制御装置1による重心パラメータの更新が行われない。 Then, the vehicle vibration control device 1 updates the stored center-of-gravity parameters Lf, Lr, h, and M to the corrected values. Therefore, the vehicle damping control unit 4 acquires the damping torque based on the dynamic motion model using the corrected center-of-gravity parameter. That is, the vehicle vibration suppression control device 1 performs power control that causes the engine 21 to generate the required torque Te that can be generated by changing the vibration suppression torque based on the position of the center of gravity of the vehicle 10. As a result, the vehicle vibration suppression control device 1 changes the drive torque generated by the engine 21 so that the vibration suppression torque is generated based on the position of the center of gravity of the vehicle 10. Note that if the vehicle center position estimation unit 4c determines that the vehicle 10 is not stopped (No in step ST1), the vehicle vibration damping control device 1 does not update the gravity center parameter.
 以上のように、実施形態にかかる車両制振制御装置1では、車両10の重心位置に基づいて制振トルクが変化して発生できる要求トルクTeをエンジン21に発生させる動力制御を行う、具体的には、車両10の重心位置に基づいて補正される重心パラメータを用いた力学的運動モデルに基づいて制振トルクが取得されるので、重心位置の変化(車両10の質量の変化も含まれる)に応じて、車両制振制御部4bにおいて算出される制振トルクが変化し、変化した制振トルクに基づいて要求トルクTeが変化する。つまり、実際の車両10の重心位置に対する力学的運動モデルにおいて想定している重心位置のずれを抑制することができるので、実際の車両10に対応した精度の高い力学的運動モデルに基づいて制振制御を行うことができる。従って、車両制振制御装置1が行う制振制御によって、振動低減効果が十分に得ることができる。 As described above, the vehicle vibration suppression control device 1 according to the embodiment performs power control that causes the engine 21 to generate the required torque Te that can be generated by changing the vibration suppression torque based on the position of the center of gravity of the vehicle 10. Since the damping torque is acquired based on the dynamic motion model using the center of gravity parameter corrected based on the center of gravity position of the vehicle 10, the change of the center of gravity position (including the change of the mass of the vehicle 10) is also included. Accordingly, the damping torque calculated by the vehicle damping control unit 4b changes, and the required torque Te changes based on the changed damping torque. That is, since the shift of the center of gravity position assumed in the dynamic motion model with respect to the center of gravity position of the actual vehicle 10 can be suppressed, vibration suppression is performed based on a highly accurate mechanical motion model corresponding to the actual vehicle 10. Control can be performed. Therefore, a vibration reduction effect can be sufficiently obtained by the vibration suppression control performed by the vehicle vibration suppression control device 1.
 なお、上記実施形態では、重心位置変化手段として荷重センサ80iを用いたが本発明はこれに限定されるものではない。重心位置検出手段は、車両に乗車する乗員の着座の有無を検出するもの、例えば乗員の着座によりONとなる着座検出スイッチや、乗員によりシートベルトが装着された場合にONとなるシートベルト接続スイッチなどであっても良い。これらの重心位置検出手段の場合は、重心位置推定部4cには、検出値として乗員の着座の有無が出力される。車両制振制御装置1には、乗員1人あたりの質量Maddと、荷重センサ80iの場合と同様に、設置前後距離Li(i≧1)および設定上下距離hi(i≧1)とが予め記憶されている。従って、重心位置推定部4cは、ΔM、ΔL、ΔHを着座している乗員の数Nと、Maddと、Mbと、Liと、hiと、下記の式(13)、(14)、(15)とに基づいて算出し、算出されたΔM、ΔL、Δhに基づいてLf、Lr、h、Mを補正しても良い。これにより、荷重センサ80iなどに比較して安価な重心位置検出手段を用いても、実際の車両10の重心位置に対する力学的運動モデルにおいて想定している重心位置のずれを抑制することができるので、実際の車両10に対応した精度の高い力学的運動モデルに基づいて制振制御を行うことができる。従って、車両制振制御装置1が行う制振制御によって、振動低減効果が十分に得ることができる。

 ΔM=Σ(Madd・N)          ・・・(13)
 ΔL・Mb=Σ(Madd・(Li-ΔL)) ・・・(14)
 Δh・Mb=Σ(Madd・(hi-Δh)) ・・・(15)
In the above embodiment, the load sensor 80i is used as the gravity center position changing means, but the present invention is not limited to this. Center-of-gravity position detection means detects presence / absence of an occupant seated in the vehicle, for example, a seat detection switch that is turned on when the occupant is seated, or a seat belt connection switch that is turned on when the seat belt is worn by the occupant It may be. In the case of these barycentric position detecting means, the barycentric position estimating unit 4c outputs whether or not a passenger is seated as a detected value. The vehicle vibration damping control device 1 stores in advance the mass Madd per passenger and the installation longitudinal distance Li (i ≧ 1) and the set vertical distance hi (i ≧ 1) as in the case of the load sensor 80i. Has been. Therefore, the center-of-gravity position estimation unit 4c has the number N of passengers seated on ΔM, ΔL, and ΔH, Madd, Mb, Li, hi, and the following equations (13), (14), (15 ), And Lf, Lr, h, and M may be corrected based on the calculated ΔM, ΔL, and Δh. As a result, even if an inexpensive center-of-gravity position detecting means is used as compared with the load sensor 80i or the like, the shift of the center-of-gravity position assumed in the dynamic motion model with respect to the actual center-of-gravity position of the vehicle 10 can be suppressed. The vibration suppression control can be performed based on a highly accurate dynamic motion model corresponding to the actual vehicle 10. Therefore, a vibration reduction effect can be sufficiently obtained by the vibration suppression control performed by the vehicle vibration suppression control device 1.

ΔM = Σ (Madd · N) (13)
ΔL · Mb = Σ (Madd · (Li−ΔL)) (14)
Δh · Mb = Σ (Madd · (hi−Δh)) (15)
 また、重心位置検出手段は、車両10の前後の車高の変化を検出するもの、例えば、前車輪軸における車両10の車高の変化量である前側車高変化量Δhfを検出する前側車高センサおよび後車輪軸における車両10の車高の変化量である後側車高変化量Δhrを検出する後前側車高センサなどのであっても良い。この重心位置検出手段の場合は、重心位置推定部4cには、検出値としてΔhf、Δhrが出力される。まず、重心位置推定部4cは、Δhfと、Δhrと、下記の式(16)、(17)とに基づいて、前車輪軸における車両10の質量の変化量である前側質量変化量ΔMfおよび後車輪軸における車両10の質量の変化量である後側質量変化量ΔMrを算出する。

 ΔMf=Δhf・Kf/g ・・・(16)
 ΔMr=Δhr・Kr/g ・・・(17)
The center-of-gravity position detection means detects a change in the vehicle height before and after the vehicle 10, for example, a front vehicle height that detects a front vehicle height change amount Δhf that is a change in the vehicle height of the vehicle 10 on the front wheel axle. A rear front vehicle height sensor or the like that detects a rear vehicle height change amount Δhr that is a change amount of the vehicle height of the vehicle 10 on the sensor and the rear wheel shaft may be used. In the case of this barycentric position detecting means, Δhf and Δhr are output as detected values to the barycentric position estimating unit 4c. First, the center-of-gravity position estimation unit 4c, based on Δhf, Δhr, and the following formulas (16) and (17), the front mass change amount ΔMf that is the change amount of the mass of the vehicle 10 on the front wheel shaft and the rear A rear mass change amount ΔMr, which is a change amount of the mass of the vehicle 10 on the wheel shaft, is calculated.

ΔMf = Δhf · Kf / g (16)
ΔMr = Δhr · Kr / g (17)
 次に、重心位置推定部4cは、ΔMを算出されたΔMfと、ΔMrとの合計とし(ΔM=ΔMf+ΔMr)、ΔLをΔMfと、ΔMrと、Lfと、Lrと、下記の式(18)とに基づいて算出し、算出されたΔM、ΔLに基づいてLf、Lr、Mを補正しても良い。これにより、荷重センサ80iなどに比較して安価な重心位置検出手段を用いても、実際の車両10の重心位置に対する力学的運動モデルにおいて想定している重心位置のずれを抑制することができるので、実際の車両10に対応した精度の高い力学的運動モデルに基づいて制振制御を行うことができる。従って、車両制振制御装置1が行う制振制御によって、振動低減効果が十分に得ることができる。なお、上記では、車両10の前後の車高の変化に基づいて、車両10の前後の質量の変化を算出するが、車両10の前後の質量の変化を直接検出するものを重心位置検出手段として用いても良い。

 ΔL・Mb=ΔMf(Lf+ΔL)+ΔMr(Lr-ΔL) ・・・(18)
Next, the center-of-gravity position estimation unit 4c sets ΔM as the sum of the calculated ΔMf and ΔMr (ΔM = ΔMf + ΔMr), ΔL becomes ΔMf, ΔMr, Lf, Lr, and the following equation (18): May be calculated, and Lf, Lr, and M may be corrected based on the calculated ΔM and ΔL. As a result, even if an inexpensive center-of-gravity position detecting means is used as compared with the load sensor 80i or the like, the shift of the center-of-gravity position assumed in the dynamic motion model with respect to the actual center-of-gravity position of the vehicle 10 can be suppressed. The vibration suppression control can be performed based on a highly accurate dynamic motion model corresponding to the actual vehicle 10. Therefore, a vibration reduction effect can be sufficiently obtained by the vibration suppression control performed by the vehicle vibration suppression control device 1. In the above description, the change in the mass before and after the vehicle 10 is calculated based on the change in the vehicle height before and after the vehicle 10. However, the center of gravity position detecting means directly detects the change in the mass before and after the vehicle 10. It may be used.

ΔL · Mb = ΔMf (Lf + ΔL) + ΔMr (Lr−ΔL) (18)
 また、上記実施形態では、車両10に荷重が加わることで、重心位置の変化に応じて制振制御を行っているが、本発明はこれにげんていされるものではなく、車両10を構成する部品、例えばオープンカーの屋根などの車両10に対する位置が変化することで、重心位置が変化した場合において適用しても良い。また、車両10が静止した状態での重心位置の変化に応じて制振制御を行っているが、本発明はこれに限定されるものではなく、車両10の挙動変化により重心位置が変化した場合において適用しても良い。この場合、重心位置推定部4cは、例えば、車両10に設けられている車両10の加速度を検出する加速度センサから出力された検出値である加速度に基づいて、車両10の前後の質量の変化を算出しても良い。また、エンジン21の駆動トルクが同一である場合に、車両10の加速度が小さいほど質量が増加していることとなる。このことから、質量変化量ΔMの算出、すなわち実際の車両10の質量Mの推定は、上記実施形態における算出方法に限定されるものではなく、エンジン21の駆動トルクと車両10の加速度とに基づいて行われても良い。 Moreover, in the said embodiment, although vibration suppression control is performed according to the change of a gravity center position by applying a load to the vehicle 10, this invention is not limited to this and comprises the vehicle 10. The present invention may be applied when the position of the center of gravity changes due to a change in the position of the part, for example, the roof of an open car, relative to the vehicle 10. Further, the vibration suppression control is performed according to the change in the center of gravity position when the vehicle 10 is stationary, but the present invention is not limited to this, and the center of gravity position changes due to the behavior change of the vehicle 10. You may apply in. In this case, the center-of-gravity position estimation unit 4c changes the mass of the vehicle 10 before and after the vehicle 10 based on the acceleration that is the detection value output from the acceleration sensor that detects the acceleration of the vehicle 10 provided in the vehicle 10, for example. It may be calculated. Further, when the driving torque of the engine 21 is the same, the mass increases as the acceleration of the vehicle 10 decreases. Therefore, the calculation of the mass change amount ΔM, that is, the estimation of the actual mass M of the vehicle 10 is not limited to the calculation method in the above embodiment, but is based on the driving torque of the engine 21 and the acceleration of the vehicle 10. It may be done.
 また、上述した実施形態では、バネ上制振制御は、運動モデルとしてバネ上又はバネ上・バネ下運動モデルを仮定し最適レギュレータの理論を利用して行うものとして説明したが、これに限らず、上記で説明したもの以外のうち、重心パラメータを用いる運動モデルを採用したものあるいは最適レギュレータ以外の制御手法により行うものであってもよい。 Further, in the above-described embodiment, the sprung mass damping control has been described as being performed using the theory of an optimal regulator assuming a sprung or sprung / unsprung motion model as a motion model. Of those other than those described above, a motion model using a center of gravity parameter or a control method other than the optimal regulator may be used.
 また、上記実施形態では、運転者の駆動要求に基づいて、エンジン21の動力制御を行う場合について説明したが本発明はこれに限定されるものではない。例えば、車両10は、自動走行制御装置を備え、自動走行制御においてエンジン21の制御を行う場合に算出される要求トルクに基づいて動力制御を行っても良い。 In the above embodiment, the case where the power control of the engine 21 is performed based on the driving request of the driver has been described, but the present invention is not limited to this. For example, the vehicle 10 may include an automatic travel control device and perform power control based on a required torque calculated when the engine 21 is controlled in the automatic travel control.
 また、上記実施形態では、車両10に搭載された動力源が発生する動力を要求トルクTeに基づいて制御することについて説明したが本発明はこれに限定されるものではない。例えば、動力源がガソリンエンジンである場合は、要求トルクに影響を与える値である目標吸入空気量やスロットルバルブのバルブの開度である目標スロットル開度を用いても良い。また、動力源がディーゼルエンジンである場合は、上記要求トルクや要求トルクに影響を与える値である目標燃料噴射量などを用いても良い。また、動力源がモータである場合は、要求トルクや目標電流値などを用いても良い。さらに、動力源の種類に拘わらず、車両10に作用させる目標駆動力を用いても良い。 In the above embodiment, the control of the power generated by the power source mounted on the vehicle 10 based on the required torque Te has been described, but the present invention is not limited to this. For example, when the power source is a gasoline engine, a target intake air amount that is a value that affects the required torque or a target throttle opening that is a valve opening of a throttle valve may be used. When the power source is a diesel engine, the required torque or a target fuel injection amount that is a value that affects the required torque may be used. Further, when the power source is a motor, a required torque, a target current value, or the like may be used. Furthermore, a target driving force that acts on the vehicle 10 may be used regardless of the type of power source.
 以上のように、本発明にかかる車両制振制御装置および車両制振制御装置の制御方法は、バネ上振動を抑制する車両制振制御装置および車両制振制御装置の制御方法に有用であり、特に、振動低減効果を十分に得るのに適している。 As described above, the vehicle damping control device and the vehicle damping control device control method according to the present invention are useful for the vehicle damping control device and the vehicle damping control device control method for suppressing sprung vibration, In particular, it is suitable for obtaining a sufficient vibration reduction effect.
 1 車両制振制御装置
 2 制動制御装置
 3 駆動制御部
 3a 要求トルク算出部
 3b 加算器
 3c 制御指令決定部
 4 車両制振制御部
 4a フィードフォワード制御部
 4b フィードバック制御部
 4c 重心位置推定部
 4d 駆動トルク変換部
 4e 車輪トルク変換部
 4f 運動モデル部
 4g FF二次レギュレータ部
 4h 車輪トルク推定部
 4i FB二次レギュレータ部
 4k 加算器
 4l FF制御補正部
 4m FF制御ゲイン設定部
 4n FB制御補正部
 4o FB制御ゲイン設定部
 10  車両
 20  駆動装置
 21  エンジン(動力源)
 22 AT
 23 差動歯車装置
 30FL、30FR、30RL、30RR 車輪
 40FL、40FR、40RL、40RR 車輪速センサ
 50 ECU
 60 アクセルペダル
 70 ペダルセンサ
 80i 荷重センサ
DESCRIPTION OF SYMBOLS 1 Vehicle damping control apparatus 2 Braking control apparatus 3 Drive control part 3a Request torque calculation part 3b Adder 3c Control command determination part 4 Vehicle damping control part 4a Feedforward control part 4b Feedback control part 4c Center-of-gravity position estimation part 4d Drive torque Conversion unit 4e Wheel torque conversion unit 4f Motion model unit 4g FF secondary regulator unit 4h Wheel torque estimation unit 4i FB secondary regulator unit 4k Adder 4l FF control correction unit 4m FF control gain setting unit 4n FB control correction unit 4o FB control Gain setting unit 10 Vehicle 20 Drive device 21 Engine (power source)
22 AT
23 Differential gear unit 30FL, 30FR, 30RL, 30RR Wheel 40FL, 40FR, 40RL, 40RR Wheel speed sensor 50 ECU
60 Accelerator pedal 70 Pedal sensor 80i Load sensor

Claims (5)

  1.  車両に搭載された動力源が発生する動力を制御することで、前記動力を伝達する駆動輪にバネ上振動を抑制する制振トルクを発生させる車両制振制御装置において、
     前記車両の重心位置に基づいて前記制振トルクが変化して発生するように前記動力を変化させることを特徴とする車両制振制御装置。
    In a vehicle vibration suppression control device that generates a vibration suppression torque that suppresses sprung vibration on a drive wheel that transmits the power by controlling power generated by a power source mounted on the vehicle.
    A vehicle damping control device, wherein the power is changed so that the damping torque is generated based on a position of the center of gravity of the vehicle.
  2.  前記制振トルクは、前記車両の重心位置に関するパラメータを含み、かつ少なくとも前記車両のバネ上振動に基づいた力学的運動モデルに基づいて前記動力が制御されることで発生するものであり、
     前記車両の重心位置の変化に基づいて前記パラメータを補正することを特徴とする請求項1に記載の車両制振制御装置。
    The vibration damping torque is generated by controlling the power based on a dynamic motion model based on at least a sprung vibration of the vehicle including a parameter related to a center of gravity position of the vehicle.
    The vehicle damping control device according to claim 1, wherein the parameter is corrected based on a change in a center of gravity position of the vehicle.
  3.  前記車両の重心位置は、前記車両の重心位置の変化を検出する重心位置変化検出手段により検出された検出値に基づいて推定されることを特徴とする請求項1または2に記載の車両制振制御装置。 3. The vehicle vibration control according to claim 1, wherein the center-of-gravity position of the vehicle is estimated based on a detected value detected by a center-of-gravity position change detecting unit that detects a change in the center-of-gravity position of the vehicle. Control device.
  4.  前記重心位置変化検出手段は、前記車両に乗車する乗員の着座の有無を検出することを特徴とする請求項3に記載の車両制振制御装置。 The vehicle vibration damping control device according to claim 3, wherein the center-of-gravity position change detecting means detects the presence or absence of a seat of an occupant riding in the vehicle.
  5.  車両に搭載された動力源が発生する動力を制御することで、前記動力を伝達する駆動輪にバネ上振動を抑制する制振トルクを発生させる車両制振制御装置の制御方法において、
     前記車両の重心位置に基づいて変化した制振トルクを発生させる前記動力を発生させることを特徴とする車両制振制御装置の制御方法。
    In a control method of a vehicle vibration suppression control device that generates a vibration suppression torque that suppresses sprung vibration on a drive wheel that transmits the power by controlling power generated by a power source mounted on the vehicle.
    A control method for a vehicle vibration control device, characterized in that the power for generating a vibration suppression torque changed based on a position of a center of gravity of the vehicle is generated.
PCT/JP2009/002683 2009-06-12 2009-06-12 Vehicle vibration control device and control method for same WO2010143238A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010538659A JPWO2010143238A1 (en) 2009-06-12 2009-06-12 Vehicle damping control device and control method for vehicle damping control device
PCT/JP2009/002683 WO2010143238A1 (en) 2009-06-12 2009-06-12 Vehicle vibration control device and control method for same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/002683 WO2010143238A1 (en) 2009-06-12 2009-06-12 Vehicle vibration control device and control method for same

Publications (1)

Publication Number Publication Date
WO2010143238A1 true WO2010143238A1 (en) 2010-12-16

Family

ID=43308510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/002683 WO2010143238A1 (en) 2009-06-12 2009-06-12 Vehicle vibration control device and control method for same

Country Status (2)

Country Link
JP (1) JPWO2010143238A1 (en)
WO (1) WO2010143238A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04201612A (en) * 1990-11-30 1992-07-22 Hitachi Ltd Vehicle movement control system
JPH07186666A (en) * 1993-12-24 1995-07-25 Nissan Motor Co Ltd Active type suspension
JP2005256636A (en) * 2004-03-09 2005-09-22 Denso Corp Vehicle stabilization control system
JP2005343294A (en) * 2004-06-02 2005-12-15 Hitachi Ltd Adaptive vehicle traveling control system and its method
JP2008068684A (en) * 2006-09-13 2008-03-27 Toyota Motor Corp Vibration damping apparatus
JP2009137410A (en) * 2007-12-05 2009-06-25 Toyota Motor Corp Travel track generation method and travel track generation device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009126418A (en) * 2007-11-26 2009-06-11 Toyota Motor Corp Vehicle movement control system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04201612A (en) * 1990-11-30 1992-07-22 Hitachi Ltd Vehicle movement control system
JPH07186666A (en) * 1993-12-24 1995-07-25 Nissan Motor Co Ltd Active type suspension
JP2005256636A (en) * 2004-03-09 2005-09-22 Denso Corp Vehicle stabilization control system
JP2005343294A (en) * 2004-06-02 2005-12-15 Hitachi Ltd Adaptive vehicle traveling control system and its method
JP2008068684A (en) * 2006-09-13 2008-03-27 Toyota Motor Corp Vibration damping apparatus
JP2009137410A (en) * 2007-12-05 2009-06-25 Toyota Motor Corp Travel track generation method and travel track generation device

Also Published As

Publication number Publication date
JPWO2010143238A1 (en) 2012-11-22

Similar Documents

Publication Publication Date Title
JP5146546B2 (en) Vehicle control device
WO2010050069A1 (en) Driving force controller and controlling method of driving force controller
EP2078653B1 (en) Vibration-damping control device for vehicle
EP2344368B1 (en) Sprung mass damping control system of vehicle
US9187080B2 (en) Control apparatus for vehicle
CN101528525B (en) Vibration-damping control device for vehicle
JP5488203B2 (en) Vehicle vibration suppression control device
WO2010050070A1 (en) Damping controller of vehicle
AU2016201638B2 (en) Vibration control device and vibration control system
CN109624947B (en) Braking force control device for vehicle
US20160114644A1 (en) Sprung vibration suppression device for vehicle
US20130166165A1 (en) Vehicle body vibration damping control device
JP4692499B2 (en) Vehicle vibration suppression control device
JP2009143402A (en) Vehicle vibration damping control device
US20170028983A1 (en) Electric vehicle
JP2008105471A (en) Vibration control device for vehicle
JP2010208633A (en) Vibration damping control device of vehicle
WO2012160701A1 (en) Vibration damping control device
JP4797586B2 (en) Vehicle braking / driving force control device
JP6252456B2 (en) Vehicle control device
JP4962292B2 (en) Damping control device for vehicle having openable / closable roof
WO2010143238A1 (en) Vehicle vibration control device and control method for same
JP2010137724A (en) Device and method for controlling vibration damping
JP5093359B2 (en) Vibration control device
KR20230122136A (en) Slip state detection device and suspension control device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2010538659

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09845763

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09845763

Country of ref document: EP

Kind code of ref document: A1