WO2010140807A2 - 중계국의 사운딩 참조신호 전송방법 및 장치 - Google Patents

중계국의 사운딩 참조신호 전송방법 및 장치 Download PDF

Info

Publication number
WO2010140807A2
WO2010140807A2 PCT/KR2010/003485 KR2010003485W WO2010140807A2 WO 2010140807 A2 WO2010140807 A2 WO 2010140807A2 KR 2010003485 W KR2010003485 W KR 2010003485W WO 2010140807 A2 WO2010140807 A2 WO 2010140807A2
Authority
WO
WIPO (PCT)
Prior art keywords
signal
symbol
sounding reference
reference signal
srs
Prior art date
Application number
PCT/KR2010/003485
Other languages
English (en)
French (fr)
Other versions
WO2010140807A3 (ko
Inventor
김학성
서한별
김병훈
김기준
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US13/375,140 priority Critical patent/US8503348B2/en
Publication of WO2010140807A2 publication Critical patent/WO2010140807A2/ko
Publication of WO2010140807A3 publication Critical patent/WO2010140807A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15528Control of operation parameters of a relay station to exploit the physical medium
    • H04B7/15542Selecting at relay station its transmit and receive resources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations

Definitions

  • the present invention relates to wireless communications, and more particularly, to a method and apparatus for transmitting a sounding reference signal by a relay station.
  • ITU-R International Telecommunication Union Radio communication sector
  • IP Internet Protocol
  • 3rd Generation Partnership Project is a system standard that meets the requirements of IMT-Advanced.
  • Long Term Evolution is based on Orthogonal Frequency Division Multiple Access (OFDMA) / Single Carrier-Frequency Division Multiple Access (SC-FDMA) transmission.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier-Frequency Division Multiple Access
  • LTE-Advanced is being prepared.
  • LTE-Advanced is one of the potential candidates for IMT-Advanced.
  • the main technologies of LTE-Advanced include relay station technology.
  • a relay station is a device for relaying a signal between a base station and a terminal, and is used to expand cell coverage and improve throughput of a wireless communication system.
  • a signal transmission method between the base station and the relay station is currently being studied. It is problematic to use the signal transmission method between the base station and the terminal as it is for signal transmission between the base station and the relay station.
  • the terminal In the conventional signal transmission method between the base station and the terminal, the terminal generally transmits a signal over one subframe in the time domain.
  • One reason for the UE to transmit a signal in the entire subframe is to set the duration of each channel transmitting the signal as long as possible to reduce the maximum power at the moment the UE consumes.
  • the RS may not transmit or receive a signal over one subframe in the time domain. Since the relay station usually relays signals to a plurality of terminals, frequent reception mode and transmission mode switching occurs. In addition, the RS may use the same frequency band to receive a signal from the BS or to transmit a signal to the RS. Alternatively, the RS may use the same frequency band to receive a signal from the RS or transmit a signal to the BS.
  • the guard interval is generally shorter than one symbol interval, but the entire symbol including the guard interval is wasted. This guard period may result in a restriction that the RS cannot receive or transmit a signal in the entire subframe.
  • the conventional terminal transmits a sounding reference signal (SRS) for uplink channel measurement in the last symbol of the subframe.
  • SRS sounding reference signal
  • the guard station since the guard station may be located in the last symbol of the subframe, it may be difficult to transmit the SRS in the same manner as the conventional UE.
  • An object of the present invention is to provide a signal transmission method and apparatus capable of utilizing a radio resource wasted in a subframe including a guard interval.
  • a method and apparatus for transmitting an SRS to a base station by a relay station using wasted radio resources are provided.
  • a method of transmitting a sounding reference signal of a relay station comprising: receiving sounding reference signal parameters; Allocating radio resources using the sounding reference signal parameters; And transmitting a sounding reference signal to a base station through the radio resource, wherein the radio resource indicated by the sounding reference signal parameters includes a symbol in which a guard interval for transmitting / receiving a signal in a time domain is located. It is characterized by.
  • a method of receiving a sounding reference signal of a base station includes transmitting sounding reference signal parameters to a relay station; And receiving a sounding reference signal transmitted from the relay station in a radio resource indicated by the sounding reference signal parameters, wherein the radio resource includes a guard interval for transmitting and receiving switching of a signal in a time domain. Characterized in that it comprises a symbol.
  • the relay station includes an RF unit for transmitting and receiving radio signals
  • the radio resource indicated by the sounding RS signal parameters may include a symbol in which a guard interval for transmitting / receiving a signal in a time domain is located.
  • the SRS may be transmitted using a symbol including a guard interval required for transmission and reception switching of the relay station.
  • the base station can simultaneously receive the SRS transmitted from the relay station and the macro SRS transmitted from the macro terminal to use for channel measurement of each link.
  • 1 shows a wireless communication system including a relay station.
  • FIG. 2 shows a radio frame structure of 3GPP LTE.
  • 3 is an exemplary diagram illustrating a resource grid for one downlink slot.
  • 5 shows a structure of an uplink subframe.
  • FIG. 6 shows an example of inserting a cyclic prefix (CP) into an OFDM symbol.
  • CP cyclic prefix
  • FIG 7 shows an example of the structure of an OFDM transmitter and an OFDM receiver.
  • FIG. 10 shows a conventional data transmission method in a subframe including a guard interval.
  • 11 shows an example of transmitting different data in two symbols including a guard interval.
  • FIG. 13 shows an example in which data is repeatedly transmitted only in partial symbols of two symbols including a guard period.
  • 15 shows an example of combining partial symbol data in a demodulation process of an OFDM receiver.
  • 16 shows an example of assigning a symbol index in a subframe including a guard period.
  • 17 illustrates a method for comparing a short block with a long block and generating a short block.
  • 19 shows an example of a radio resource location to which a short block can be allocated.
  • 20 and 21 illustrate an example of configuring a guard subcarrier in a resource block adjacent to a short block.
  • 22 to 26 show examples of setting a protection subcarrier in a short block.
  • 27 and 28 illustrate examples of allocation of short blocks and protection subcarriers included in a subframe in a multi-user environment.
  • 29 and 30 show an example of a subframe structure that can be used in the backhaul uplink.
  • FIG. 31 is a graph illustrating a sync function with f (x) of Equation 3.
  • 32 shows an example in which a plurality of terminals transmit a macro SRS to a base station.
  • FIG 33 shows an SRS transmission method of a relay station according to an embodiment of the present invention.
  • 34 shows an example of a structure of an uplink subframe in which an RS transmits SRS.
  • 35 to 38 show examples of the SRS transmission band of the relay station which may be set by the parameter 'srsBandwidth'.
  • 39 illustrates a process in which a relay station (or a terminal) generates and transmits a long block SRS, and receives a block SRS that is a base station.
  • FIG. 40 illustrates a process in which a relay station generates and transmits a short block SRS and a base station receives a short block SRS.
  • FIG. 41 shows the comparison between the subcarrier waveforms and the subcarrier spacing of the long block SRS and the short block SRS.
  • the receiver 43 illustrates a receiver according to an embodiment of the present invention.
  • the receiver may be part of a base station.
  • 44 illustrates a process of processing two SRSs when a long block SRS and a short block SRS are simultaneously received by a receiver of a base station.
  • 46 to 48 show signals in the frequency domain at processing points B, C, and E in the receiver of FIG. 44, respectively.
  • Fig. 49 is a block diagram showing a base station and a relay station.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16e (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA), and the like.
  • UTRA is part of the Universal Mobile Telecommunications System (UMTS).
  • 3rd Generation Partnership Project (3GPP) long term evolution (LTE) is part of an Evolved UMTS (E-UMTS) using E-UTRA, and employs OFDMA in downlink and SC-FDMA in uplink.
  • LTE-Advanced (LTE-A) is the evolution of 3GPP LTE.
  • 3GPP LTE / LET-A will be described as an example, but the technical spirit of the present invention is not limited thereto.
  • 1 shows a wireless communication system including a relay station.
  • a wireless communication system 10 including a relay station includes at least one base station 11 (BS).
  • Each base station 11 provides a communication service for a particular geographic area 15, commonly referred to as a cell.
  • the cell can be further divided into a plurality of areas, each of which is called a sector.
  • One or more cells may exist in one base station.
  • the base station 11 generally refers to a fixed station communicating with the terminal 13, and includes an evolved NodeB (eNB), a Base Transceiver System (BTS), an Access Point, an Access Network (AN), and the like. It may be called in other terms.
  • the base station 11 may perform functions such as connectivity, management, control, and resource allocation between the relay station 12 and the terminal 14.
  • a relay station (RS) 12 refers to a device that relays a signal between the base station 11 and the terminal 14 and may be referred to as another term such as a relay node, a repeater, a repeater, and the like.
  • a relay method used by the relay station any method such as AF and ADF may be used, and the technical spirit of the present invention is not limited thereto.
  • Terminals 13 and 14 may be fixed or mobile, and may include a mobile station (MS), a user terminal (UT), a subscriber station (SS), a wireless device, and a personal digital assistant (PDA). ), A wireless modem, a handheld device, and an access terminal (AT).
  • the macro UE (Mac UE, Ma UE, 13) is a terminal that communicates directly with the base station 11
  • the relay terminal refers to a terminal that communicates with the relay station. Even in the macro terminal 13 in the cell of the base station 11, it is possible to communicate with the base station 11 via the relay station 12 to improve the transmission rate according to the diversity effect.
  • the macro link may be divided into a macro downlink and a macro uplink.
  • a macro downlink (M-DL) means communication from the base station 11 to the macro terminal 13
  • a macro uplink , M-UL means communication from the macro terminal 13 to the base station 11.
  • the link between the base station 11 and the relay station 12 will be referred to as a backhaul link.
  • the backhaul link may be divided into a backhaul downlink (B-DL) and a backhaul uplink (B-UL).
  • B-DL backhaul downlink
  • B-UL backhaul uplink
  • the backhaul downlink means communication from the base station 11 to the relay station 12
  • the backhaul uplink means communication from the relay station 12 to the base station 11.
  • the link between the relay station 12 and the relay station terminal 14 will be referred to as an access link.
  • the access link may be divided into an access downlink (A-DL) and an access uplink (A-UL).
  • Access downlink means communication from the relay station 12 to the relay station terminal 14, and access uplink means communication from the relay station terminal 14 to the relay station 12.
  • the wireless communication system 10 including the relay station is a system supporting bidirectional communication.
  • Bidirectional communication may be performed using a time division duplex (TDD) mode, a frequency division duplex (FDD) mode, or the like.
  • TDD mode uses different time resources in uplink transmission and downlink transmission.
  • FDD mode uses different frequency resources in uplink transmission and downlink transmission.
  • FIG. 2 shows a radio frame structure of 3GPP LTE.
  • a radio frame consists of 10 subframes, and one subframe consists of two slots.
  • One subframe may have a length of 1 ms, and one slot may have a length of 0.5 ms.
  • the time taken for one subframe to be transmitted is called a transmission time interval (TTI).
  • TTI may be a minimum unit of scheduling.
  • One slot may include a plurality of orthogonal frequency division multiplexing (OFDM) symbols in the time domain.
  • the OFDM symbol is used to represent one symbol period since 3GPP LTE uses OFDMA in downlink, and may be called a different name according to a multiple access scheme.
  • SC-FDMA orthogonal frequency division multiplexing
  • One slot includes 7 OFDM symbols as an example, but the number of OFDM symbols included in one slot may vary according to the length of a cyclic prefix (CP).
  • CP cyclic prefix
  • one subframe includes 7 OFDM symbols in a normal CP and one subframe includes 6 OFDM symbols in an extended CP.
  • the structure of the radio frame is only an example, and the number of subframes included in the radio frame and the number of slots included in the subframe may be variously changed.
  • the structure of the radio frame described with reference to FIG. 2 is 3GPP TS 36.211 V8.3.0 (2008-05) "Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 8)" See sections 4.1 and 4.
  • 3 is an exemplary diagram illustrating a resource grid for one downlink slot.
  • One slot in the FDD and TDD radio frames includes a plurality of orthogonal frequency division multiplexing (OFDM) symbols in the time domain and includes a plurality of resource blocks (RBs) in the frequency domain.
  • OFDM orthogonal frequency division multiplexing
  • RBs resource blocks
  • the symbol may mean one OFDM symbol or one SC-FDMA symbol.
  • the resource block includes a plurality of consecutive subcarriers in one slot in resource allocation units.
  • a slot (eg, a downlink slot included in a downlink subframe) includes a plurality of OFDM symbols in a time domain.
  • one downlink slot includes 7 OFDM symbols and one resource block includes 12 subcarriers in a frequency domain, but is not limited thereto.
  • the subcarriers in the RB may have an interval of, for example, 15 KHz.
  • Each element on the resource grid is called a resource element, and one resource block includes 12 ⁇ 7 resource elements.
  • the number N DL of resource blocks included in the downlink slot depends on the downlink transmission bandwidth set in the cell.
  • the resource grid described in FIG. 3 may also be applied to uplink.
  • a subframe includes two consecutive slots.
  • the first 3 OFDM symbols of the first slot in the subframe are the control region to which the PDCCH is allocated, and the remaining OFDM symbols are the data region to which the PDSCH is allocated.
  • the control region may be allocated a control channel such as PCFICH and PHICH.
  • the UE may read the data information transmitted through the PDSCH by decoding the control information transmitted through the PDCCH.
  • the control region includes only 3 OFDM symbols, and the control region may include 2 OFDM symbols or 1 OFDM symbol.
  • the number of OFDM symbols included in the control region in the subframe can be known through the PCFICH.
  • the control region is composed of logical CCE columns that are a plurality of CCEs.
  • the CCE column is a collection of all CCEs constituting the control region in one subframe.
  • the CCE corresponds to a plurality of resource element groups.
  • the CCE may correspond to 9 resource element groups.
  • Resource element groups are used to define the mapping of control channels to resource elements.
  • one resource element group may consist of four resource elements.
  • a plurality of PDCCHs may be transmitted in the control region.
  • the PDCCH carries control information such as scheduling assignment.
  • the PDCCH is transmitted on an aggregation of one or several consecutive control channel elements (CCEs).
  • CCEs control channel elements
  • the format of the PDCCH and the number of bits of the PDCCH are determined according to the number of CCEs constituting the CCE group.
  • the number of CCEs used for PDCCH transmission is called a CCE aggregation level.
  • the CCE aggregation level is a CCE unit for searching a PDCCH.
  • the size of the CCE aggregation level is defined by the number of adjacent CCEs.
  • the CCE aggregation level may be an element of ⁇ 1, 2, 4, 8 ⁇ .
  • DCI downlink control information
  • DCI includes uplink scheduling information, downlink scheduling information, system information, system information, uplink power control command, control information for paging, control information for indicating a random access response, etc. It includes.
  • the DCI format includes format 0 for PUSCH scheduling, format 1 for scheduling one physical downlink shared channel (PDSCH) codeword, and format 1A for compact scheduling of one PDSCH codeword.
  • Format 1B for simple scheduling of rank-1 transmission of a single codeword in spatial multiplexing mode
  • format 1C for very simple scheduling of downlink shared channel (DL-SCH)
  • format for PDSCH scheduling in multi-user spatial multiplexing mode 1D format for PDSCH scheduling in multi-user spatial multiplexing mode 1D
  • format 2 for PDSCH scheduling in closed-loop spatial multiplexing mode format 2A for PDSCH scheduling in open-loop spatial multiplexing mode
  • TPC 2-bit power regulation for PUCCH and PUSCH Transmission power control
  • format 3A for transmission of 1-bit power control TPC commands for PUCCH and PUSCH.
  • 5 shows a structure of an uplink subframe.
  • the uplink subframe is allocated a control region in which a physical uplink control channel (PUCCH) carrying uplink control information is allocated in a frequency domain and a physical uplink shared channel (PUSCH) carrying user data. It can be divided into data areas.
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • the PUCCH for one UE is allocated to a resource block (RB) pair (51, 52) in a subframe, and the RBs 51 and 52 belonging to the RB pair occupy different subcarriers in each of two slots. do. This is said that the RB pair allocated to the PUCCH is frequency hopping at the slot boundary.
  • RB resource block
  • PUCCH may support multiple formats. That is, uplink control information having different numbers of bits per subframe may be transmitted according to a modulation scheme. For example, when using Binary Phase Shift Keying (BPSK) (PUCCH format 1a), uplink control information of 1 bit can be transmitted on PUCCH, and when using Quadrature Phase Shift Keying (QPSK) (PUCCH format 1b). 2 bits of uplink control information can be transmitted on the PUCCH.
  • BPSK Binary Phase Shift Keying
  • QPSK Quadrature Phase Shift Keying
  • Format 1 In addition to the PUCCH format, there are Format 1, Format 2, Format 2a, Format 2b, and the like (3GPP TS 36.211 V8.2.0 (2008-03) "Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); See Section 5.4 of “Physical Channels and Modulation (Release 8)”.
  • FIG. 6 shows an example of inserting a cyclic prefix (CP) into an OFDM symbol.
  • CP cyclic prefix
  • CP copies the last part of a symbol and adds it to the first part of the symbol to avoid inter symbol interference.
  • FIG 7 shows an example of the structure of an OFDM transmitter and an OFDM receiver.
  • the OFDM transmitter modulates the information bits to be transmitted through a modulator and inputs them to an S / P unit that converts a serial signal into a parallel signal.
  • Modulation of the modulator may use a variety of modulation methods, such as quadrature phase shift keying (QPSK), quadrature amplitude modulation (m-QAM).
  • QPSK quadrature phase shift keying
  • m-QAM quadrature amplitude modulation
  • the parallel signal converted by the S / P unit becomes a signal having a period longer than the channel delay spread.
  • the parallel signal is inputted to an Inverse Fast Fourier Transform (IFFT) unit representing a signal in the frequency domain as a signal in the time domain, IFFT is input, and then a CP is inserted and transmitted through the RF unit.
  • IFFT Inverse Fast Fourier Transform
  • the RF unit includes at least one antenna.
  • the OFDM receiver After receiving the radio signal through the RF unit, the OFDM receiver removes the CP through a cyclic prefix remover and converts the series signal into a parallel signal through the S / P unit.
  • the converted parallel signal is FFT through the FFT unit.
  • the FFT represents a signal in the time domain as a signal in the frequency domain.
  • the signal in the frequency domain is restored to data through an equalizer and a demodulator.
  • the equalizer multiplies each subcarrier by the estimated channel response to remove the influence of the channel on each subcarrier.
  • a demodulator demodulates data in a demodulation scheme corresponding to the modulation scheme used in the modulator.
  • the OFDM transmitter may be part of a base station or relay station.
  • the OFDM receiver may be part of a relay station or base station.
  • the relay station When a relay station is included in a wireless communication system, it is assumed that it is difficult for the relay station to transmit a signal while receiving a signal in the same frequency band. Thus, the relay station receives or transmits signals in the same frequency band at different times.
  • the RS may operate in a manner of receiving a signal from the base station in subframe #n and transmitting a signal to the RS in subframe # n + 1.
  • a guard time between the transmission and reception periods of the signal during transmission and reception switching of the signal is the time required to stabilize, protect, or generate a signal that meets the requirements of the system.
  • the guard period may include a transition time for stabilizing the operation of a power amplifier that amplifies the signal.
  • two guard periods are located at the boundaries of subframes, respectively. That is, the first symbol and the last symbol of the subframe include the guard period.
  • the guard period may be located not only at the symbol at the boundary of the subframe but also at other symbols.
  • one of two guard periods is located in a middle symbol of a subframe, that is, a symbol that is not a symbol at a boundary of the subframe.
  • the location of the guard interval is exemplified for the case where the scheduling unit is a subframe, but this is not a limitation. That is, if the scheduling unit is a slot, the guard period may be located at the boundary of the slot or the middle symbol of the slot (the same is the same below). This guard interval may be a time interval smaller than 1 symbol. The remainder of the symbol except for the guard interval is called a partial symbol.
  • FIG. 10 shows a conventional data transmission method in a subframe including a guard interval.
  • a guard interval when a guard interval is located within a symbol at the boundary of a subframe, the corresponding symbol is wasted without being used for data transmission except for the guard interval.
  • a subframe in the case of a normal CP in LTE, a subframe includes 14 symbols and in the case of an extended CP, 12 symbols. Two of these symbols cannot be used due to the guard interval. If scheduling is performed on a slot basis, two symbols in one slot may not be used due to the guard period and four symbols in one subframe may not be used due to the guard period. Therefore, there is a need for a method of transmitting a signal using a symbol including a guard interval.
  • 11 shows an example of transmitting different data in two symbols including a guard interval.
  • different data may be carried on two partial symbols and transmitted.
  • a section excluding a guard period from a symbol including a guard period is called a partial symbol.
  • PSD1 and PSD2 may be different data. If the guard period is short enough to be negligible compared to the symbol period, PSD1 and PSD2 may be properly demodulated.
  • PSD1 and PSD2 may need to perform stronger channel coding than other symbols to satisfy the error rate required by the system.
  • a new type of resource allocation rule that can be channel-coded and transmitted in symbol units can be defined.
  • additional coding gain may be obtained by repeating PSD1 and PSD2 in the channel coding process. More coding is imposed on PSD1 and PSD2, thereby reducing the error rate during the demodulation process.
  • the symbol including each partial symbol may be sequentially assigned to the last symbol index of a subframe in consideration of the fact that a difference may occur in channel coding or resource allocation rules compared to other symbols.
  • the symbol index # 0 is assigned to the second symbol of the subframe and the symbol index # 1 is assigned to the third symbol.
  • the symbol index # 12 and the last symbol may be assigned a symbol index # 13.
  • the guard period may be included in the first symbol and the last symbol of the subframe.
  • PSD-A Partial Symbol Data-A
  • PSD-B One symbol data transmitted in one symbol is referred to as full symbol data (FSD).
  • FSD full symbol data
  • PSD-A and PSD-B may correspond to a part of FSD that is one symbol data
  • PSD-A may correspond to a rear part of the FSD
  • PSD-B may correspond to a front part of the FSD.
  • the FSD is configured in the order of CP + data
  • the CP is a cyclically copied copy of the latter part of the data.
  • PSD-A and PSD-B are the same as if some data is cyclically copied from each other, and in this sense, a symbol to which PSD-A or PSD-B is transmitted may be referred to as a cyclic-copied symbol. have. There are two cases in which data is repeatedly transmitted in two symbols including a guard interval in detail.
  • the first method is to transmit data in the entire symbol including the partial symbol and the guard interval, that is, the guard interval. That is, in a symbol including a guard period located at the boundary of the subframe, the transmitter applies and amplifies a signal in the entire symbol despite the guard period and transmits the signal. Since the data is also transmitted in the guard interval, data distortion may occur in the guard interval. However, since the signal is transmitted through the same process as a symbol without the guard interval, the convenience of implementation is high. For example, in the first symbol, since the guard period is located at the front of the symbol, the data on the front of the symbol may be distorted. On the other hand, in the last symbol, since the guard period is located at the rear of the symbol, the data carried at the rear of the symbol may be distorted.
  • the second method is to transmit data only in partial symbols in a symbol including a guard interval. That is, in the symbol including the guard period, the data is transmitted using some or all of the partial symbols instead of the data in the guard period.
  • the second method is described in detail with reference to FIG.
  • FIG. 13 shows an example in which data is repeatedly transmitted only in partial symbols of two symbols including a guard period.
  • data is transmitted only in a partial symbol in a symbol including a guard period, and at this time, a signal may be transmitted from a specific time point of the partial symbol or may be transmitted by applying a signal only to a specific time point of the partial symbol. .
  • the guard period since data is distorted and loaded, it may not have much meaning. Therefore, the data is transmitted from a specific time point of the partial symbol in which no distortion of the data occurs.
  • PSD-A may include the second half of one symbol data
  • PSD-B may include the first half of the one symbol data.
  • PSD-A and PSD-B are generated from the same symbol data, but the contents of the PSD-A and PSD-B may be different since they are the back and the front of the 1 symbol data.
  • the t1 and t2 may be variously set according to the demodulation scheme of the OFDM receiver.
  • t1 and t2 may be set to ((1/2) * T sym + CP length) in consideration of CP of each symbol.
  • t1 and t2 may be set to sections excluding a guard period from T sym .
  • the OFDM transmitter may use a method of allocating and transmitting data to the entire partial symbols, and selecting and combining necessary parts from the OFDM receiver.
  • t1 and t2 may be set independently of each other.
  • 15 shows an example of combining partial symbol data in a demodulation process of an OFDM receiver.
  • one symbol data may be restored by combining PSD-B and PSD-A.
  • the combination of PSD-B and PSD-A is preferably performed at the front end of the FFT unit. That is, rather than combining the partial symbols after demodulation through the FFT process, it is preferable to combine the received radio signal itself first and then recover one symbol through the FFT process.
  • 16 shows an example of assigning a symbol index in a subframe including a guard period.
  • the index of the first symbol of a subframe is 0, the index of the second symbol is 1,...
  • the index of the last symbol is 13.
  • the first symbol or the last symbol including the guard period may or may not transmit data. That is, the first symbol and the last symbol may be punctured as in the prior art and thus do not transmit data, or transmit data according to the present invention.
  • the symbol including the guard interval can be used for a special purpose, so that the last symbol index available can be allocated without setting the index of the first symbol to zero.
  • the symbol index # 0 is assigned to the second symbol of the subframe and the symbol index # 1 is assigned to the third symbol. You can combine the partial symbols of a symbol to create a symbol and assign the last symbol index # 12.
  • the symbol indexing method can be used without changing the existing method of performing interleaving, puncturing, mapping, etc. according to the symbol index as in LTE.
  • the signal transmission method according to the present invention can be applied only to the symbol having the last symbol index. If the signal transmission method according to the present invention is not applied, the relay station in the backhaul link may puncture the unusable symbol and transmit data when the two symbols including the guard interval cannot be used. In the normal CP, the RS can puncture two symbols including a guard interval and transmit data using 12 symbols. If there is a guard period in the subframe and all 14 symbols are ignored, the RS may transmit the symbol without puncturing.
  • a method of transmitting data using a short block (SB) in a symbol including a guard interval will be described.
  • a method of transmitting data using a short block has the same meaning as a method of transmitting data using a shortened symbol in the time domain.
  • the short symbol means a symbol having a shorter interval in the time domain than a general symbol (see FIG. 3).
  • a method of transmitting data using a long block has the same meaning as a method of transmitting data using a general symbol in the time domain.
  • 17 illustrates a method for comparing a short block with a long block and generating a short block.
  • Short blocks are shorter time intervals than long blocks, and subcarrier spacing means wider radio resources in the frequency domain.
  • the subcarrier spacing may be 30 KHz.
  • the long block corresponds to the entire symbol in the time domain, and the subcarrier spacing may be a narrow radio resource compared to the short block.
  • the subcarrier spacing may be 15 KHz.
  • the short block may be composed of, for example, 1/2 time intervals of the long block. That is, if the time interval of the long block is T, the time interval of the short block may be T / 2. In this case, when comparing the subcarrier spacing in the long block and the frequency domain, the long block may be 15KHz and the short block may be 30KHz. The number of bits that a short block can transmit may be 1/2 of a long block. When a long block (LB) is generated through an N-point IFFT, a short block may be generated through an N / 2-point IFFT. Short blocks generally consist of 1/2 time intervals of long blocks, but this is not a limitation. The short block may consist of 2/3 time intervals (8 subcarriers in the frequency domain) of the long block according to the guard period in the symbol.
  • short blocks SB1 and SB2 may be allocated to partial symbols of the first symbol or the last symbol.
  • Data that can be transmitted in a symbol that does not include a guard interval can be divided into half, one can be transmitted through SB1, and the other half can be transmitted through SB2.
  • Receiving and combining SB1 + SB2 at the OFDM receiver results in receiving data transmitted in one symbol. Therefore, the number of symbols wasted due to the guard period can be reduced by one.
  • 19 shows an example of a radio resource location to which a short block can be allocated.
  • Short blocks may be allocated to bands favorable for signal transmission among frequency bands. It can also be assigned to the first slot or the second slot of a symbol in the time domain. That is, the short block may be allocated to any slot without the constraint of being allocated to a specific slot of a subframe.
  • 20 and 21 illustrate an example of configuring a guard subcarrier in a resource block adjacent to a short block.
  • the guard subcarrier may be set to a resource block adjacent to a short block in the frequency domain.
  • Subcarrier spacing within a short block is 30 KHz, twice that of a long block. Therefore, in the short block, the number of usable subcarriers is half of the long block. For example, if the number of subcarriers in the long block is 12, the number of subcarriers in the short block is six.
  • the guard subcarrier By not assigning a signal to a subcarrier of a long block adjacent to a short block, it may serve as a guard subcarrier. In this case, as shown in FIG. 21, all six subcarriers included in the short block may be used.
  • 22 to 26 show examples of setting a protection subcarrier in a short block.
  • protection subcarriers 22 to 24 show an example in which protection subcarriers are set at both boundaries in a frequency range of a short block, but this is not a limitation. That is, the protection subcarrier may be set only at one boundary as shown in FIG. 25 or FIG. 26. When the protection subcarriers are set at both boundaries, the number of usable subcarriers in the short block is reduced to 4, but there is an advantage of reducing interference on adjacent resource blocks. When the protection subcarriers are set only at one boundary, the number of subcarriers that can be used within a short block is five, and the number of usable subcarriers increases when the subcarriers are set at both boundaries.
  • the protection subcarriers set within a short block can reduce interference to adjacent resource blocks.
  • the protection subcarrier may be composed of a plurality of consecutive subcarriers.
  • 27 and 28 illustrate examples of allocation of short blocks and protection subcarriers included in a subframe in a multi-user environment.
  • a partial symbol of a symbol including a guard period in a frequency band allocated to the relay station may be configured as a short block. All symbols except the symbol including the guard period may be configured as a long block.
  • a protection subcarrier is set in a resource block adjacent to a short block in the frequency domain. That is, a guard subcarrier is located in a frequency band allocated to UE_a or UE_b.
  • a subcarrier located at a boundary within a short block in the frequency domain is set as a guard subcarrier.
  • FIG. 29 and 30 show an example of a subframe structure that can be used in the backhaul uplink.
  • an area in which the relay station transmits an uplink control signal to a base station is represented by an R-PUCCH, and an area in which data is transmitted is represented by an R-PUSCH.
  • a signal may not be transmitted in the partial symbols of the first symbol and the last symbol.
  • the partial symbol of the symbol including the guard period may serve as a guard band for preventing interference with the frequency band or the R-PUSCH band allocated to the macro terminal.
  • partial symbols of the first symbol and the last symbol may be referred to as guard resources. If the relay station has a large frequency band, the waste of resources does not matter because the proportion of protected resources is relatively small. The protected resource does not have to coincide with the partial symbol and may be set larger or smaller than the partial symbol.
  • partial symbols of the first symbol and the last symbol may be allocated to a macro terminal.
  • the protected resource may be set in the resource block adjacent to the partial symbols of the first symbol and the last symbol.
  • the macro terminal may not use at least one subcarrier adjacent to the partial symbols of the first symbol and the last symbol in the PUSCH band. In other words, some of the radio resources allocated to the macro terminal (which may vary from one subcarrier to a plurality of resource blocks) are not used to prevent interference.
  • the RS does not transmit a signal.
  • the macro terminal may transmit a signal in a partial symbol not used by the relay station, but may not transmit a signal in some radio resources of the PUSCH region adjacent to the partial symbol.
  • the uplink subframe has been described above, the same may be applied to the downlink subframe.
  • a (k) be the kth subcarrier signal of the first symbol and B (k) be the kth subcarrier signal of the last symbol. Then, the signal of the time domain of the first symbol and the last symbol may be determined as in the following equation.
  • Equation 1 N is the power of 2 as the FFT size. If c (n) is a time domain signal combining the signal of the first symbol and the signal of the last symbol, c (n) may be determined as in the following equation.
  • C (M) can be expressed as the following equation.
  • a (M) B (M).
  • Equation 3 ICI is affected by f (x).
  • FIG. 31 is a graph illustrating a sync function with f (x) of Equation 3.
  • f (x) in Equation 3 has a form similar to a sync function.
  • f (x) is zero when x is even. That is, when (k-M) is even in Equation 3, f (k-M) becomes 0.
  • f (k-M) becomes 0.
  • the cyclically copied subcarriers receive an ICI corresponding to the size of a sync function from the subcarriers that are not cyclically copied.
  • the frequency band allocated to the backhaul link between the base station and the relay station (relay station band) and the frequency band allocated to the link between the base station and the terminal (macro access band) are each composed of consecutive subcarriers in the frequency domain, the relay station band and the macro access band
  • ICI can overcome the ICI received from the macro access band through strong channel coding or signal repetition.
  • the demodulated signal is mathematically examined.
  • a (k) be the k-th subcarrier signal of a symbol composed of short blocks (hereinafter, referred to as a short block symbol), and B (k) be the k-th subcarrier signal of a symbol composed of a long block (hereinafter, referred to as a long block symbol).
  • the signal a (n) in the time domain of the short block symbol and the signal b (n) in the time domain of the long block symbol can be expressed by the following equation.
  • N is the power of 2 in the FFT size.
  • the signal c (n) received by the receiver can be expressed by the following equation.
  • the receiver may perform an N-FFT on c (n) and extract the Mth subcarrier signal to decode the long block symbol.
  • the M th subcarrier signal C (M) is given by the following equation.
  • the ICI element is A (k). That is, in order to use the Mth subcarrier of the long block symbol, the M / 2th subcarrier of the short block symbol should not be used. If k is not M / 2, then the ICI element is determined by f (x).
  • the receiver applies an N / 2-FFT at the second half of c (n) and extracts the Mth subcarrier signal to decode a short block symbol. If the M-th subcarrier signal of the short block symbol is C '(M), C' (M) is expressed by the following equation.
  • the ICI element is determined by f (x). Compared with the case of using the above-described cyclically copied symbols, the interference average effect is eliminated, and the interference power is increased by 3 dB. On the other hand, since there is one more short block symbol in the last symbol of the subframe, the use of this short block symbol can prevent the interference power from increasing by 3 dB.
  • a sounding reference signal is a reference signal transmitted from a terminal or a relay station to a base station and is a reference signal not related to uplink data or control signal transmission.
  • SRS is mainly used for channel quality estimation for frequency selective scheduling in uplink (macro uplink or backhaul uplink), but may be used for other purposes. For example, it can be used for power control, initial MCS selection, or initial power control for data transmission.
  • the SRS sequence used for the SRS may be the same as the sequence used for the DM RS.
  • the length of the SRS sequence may be limited by the resource block size * (a multiple of 2, 3, and / or 5).
  • the length of the smallest SRS sequence may be 12.
  • the transmittable SRS band N SRS RB and the SRS sequence length M SRS SC may be given as follows.
  • ⁇ 2, ⁇ 3, and ⁇ 5 are positive integer sets.
  • the SRS uses the same resource block and the same subcarrier, but maintains orthogonality by using different cyclic shift values in the same basic sequence.
  • the cyclic shift value may be set for each terminal or relay station.
  • 32 shows an example in which a plurality of terminals transmit a macro SRS to a base station.
  • UE # 1 transmits a macro SRS through a comb form, that is, one subcarrier of every two subcarriers, over the entire frequency band.
  • the terminals # 2 to # 4 transmit the macro SRS through a subcarrier allocated in the form of a comb in an SRS band allocated thereto (that is, a band for transmitting the SRS).
  • This allocation of subcarriers in the form of a comb is also referred to as interleaved FDMA.
  • each terminal repeatedly transmits the SRS twice in the SC-FDMA symbol when a long block is used in the SC-FDMA symbol in which the macro SRS is transmitted.
  • FIG 33 shows an SRS transmission method of a relay station according to an embodiment of the present invention.
  • the relay station receives sounding reference signal parameters from the base station (S100), the relay station allocates radio resources using the sounding reference signal parameters (S200), the base station through the allocated radio resources
  • the step of transmitting the SRS (S300).
  • the radio resource indicated by the sounding reference signal parameters includes a symbol in which a guard interval is located in the time domain.
  • Sounding reference signal parameters received by the relay station from the base station in step S100 may be, for example, as shown in the following table.
  • SRS parameter meaning Signal transmission type srsBandwidthConfiguration Maximum SRS Band in a Cell Cell-specific srsSubframeConfiguration Set of subframes in which an SRS can be transmitted in a cell Cell-specific srsBandwidth SRS transmission band of the relay station Relay station specific frequencyDomainPosition Frequency domain position Relay station specific srsHoppingBandwidth Frequency hop size Relay station specific Duration Indicates whether it is a single SRS or a periodic SRS Relay station specific srsConfigurationIndex Period and Subframe Offsets Relay station specific transmissionComb Transmission comb offset Relay station specific n CS SRS Cyclic shift Relay station specific srsResourcetype Indicate the type of resource block to which the SRS is transmitted Cell specific or relay station specific
  • 'srsBandwidthConfiguration' represents a maximum band in which an SRS can be transmitted in a cell.
  • 'SrsSubframeConfiguration' indicates a possible set of subframes in which an SRS can be transmitted in each radio frame.
  • 'SrsSubframeConfiguration' is a cell-specific broadcast signal transmitted to a relay station in a cell, and may be configured of, for example, 4 bits.
  • the SRS may be sent in the last SC-FDMA symbol within the subframes in which the SRS may be sent. In the SC-FDMA symbol in which the SRS is transmitted, the backhaul uplink data transmission of the relay station may not be allowed.
  • 'SrsBandwidth' represents the SRS transmission band of the relay station.
  • the SRS transmission band may be determined according to the transmission power of the relay station, the number of relay stations that the base station can support, and the like.
  • the SRS transmission band of the relay station indicated by 'srsBandwidth' will be described later.
  • 'Duration' is a parameter that indicates whether the base station requests the RS to transmit one SRS or periodically transmits the SRS. By this parameter, the relay station may transmit the SRS only once or periodically transmit the SRS to the base station.
  • 'RansmissionComb' indicates to which subcarrier the SRS transmitted by the RS is allocated.
  • IFDMA interleaved FDMA
  • RPF RePetition Factor
  • the subcarrier on which the SRS is transmitted has a comb-like spectrum.
  • the subcarrier on which the SRS is transmitted is composed of only even subcarriers (or odd subcarriers) in the allocated sounding band.
  • the relay station is assigned a parameter called 'transmissionComb'. ‘TransmissionComb’ has a value of 0 or 1 and indicates where the SRS is sent.
  • this is not a limitation and may indicate how many subcarriers are allocated to every four subcarriers, such as 4n, 4n + 1, 4n + 2, and 4n + 3th subcarriers.
  • the SRS occupies 1/4 symbol in the time domain.
  • 'SrsResourcetype' is a parameter indicating whether a resource block to which an SRS is allocated is a long block or a short block. That is, the RS may allocate and transmit an SRS to a short block according to this parameter, or may allocate and transmit an SRS to a long block.
  • the relay station allocates radio resources using sounding reference signal parameters as described above.
  • 34 shows an example of a structure of an uplink subframe in which an RS transmits SRS.
  • a resource block positioned at a boundary in the frequency domain of an uplink subframe is allocated a PUCCH for transmitting an uplink control signal of a terminal, and a backhaul PUCCH for transmitting a backhaul uplink control signal to a relay station adjacent to the PUCCH is provided.
  • a backhaul PUCCH region or a backhaul PUSCH (region indicated as backhaul in FIG. 34) through which backhaul uplink data is transmitted may include a guard period at a boundary of a subframe. Therefore, it is difficult for the relay station to use the entire last symbol of the subframe.
  • the RS transmits an SRS to the BS only a part of the last symbol may be used. For example, a short block may be allocated to the first half of the last symbol and SRS (SB-SRS) may be transmitted using this short block.
  • SB-SRS may refer to an SRS allocated to a short symbol in terms of time.
  • the UE may transmit the macro SRS using the entire symbol. That is, SRS (LB-SRS) using a long block can be transmitted.
  • the LB-SRS may mean an SRS allocated to a normal symbol generally in terms of time. In this case, whether the RS transmits the SRS may be a problem even in the frequency band to which the PUCCH is allocated.
  • 35 to 38 show examples of the SRS transmission band of the relay station which may be set by the parameter 'srsBandwidth'.
  • FIG. 35 illustrates a case in which the transmission band of the SRS transmitted by the relay station excludes the PUCCH region of the terminal.
  • 36 illustrates a case in which a transmission band of an SRS transmitted by a relay station includes a PUCCH region of a terminal.
  • the SRS transmission band transmitted by the RS may exclude the backhaul PUCCH region as shown in FIG. 37 or may include as shown in FIG. 38.
  • the UE may not transmit the SRS in the band in which the backhaul PUCCH is transmitted. As a result, the last symbol of the backhaul PUCCH region can be prevented from being punctured by the macro SRS.
  • short block SRS can be spread by constant amplitude zero autocorrelation (CAZAC) or Zadoff-Chu sequences to reduce interference and maintain low PAPR / CM characteristics.
  • CAZAC constant amplitude zero autocorrelation
  • the transmission bands and frequency positions of the short block SRS and the long block SRS may be the same in order to obtain high processing gain by this sequence.
  • the transmission band, transmission comb, cyclic shift, hopping rule, etc. for the short block SRS may be known to the relay station by the sounding reference signal parameter.
  • a new rule may be defined or the same rule used for the long block SRS may be used, but only newly required parameters may be added.
  • 39 illustrates a process in which a relay station (or a terminal) generates and transmits a long block SRS, and receives a block SRS that is a base station.
  • the RS converts A1, which is a long block SRS to be transmitted, into a parallel signal, and then maps to a subcarrier using a Discrete Fourier Transform (DFT). It then converts it to a serial signal via an N-point Inverse Fast Fourier Transform (IFFT). Then, the signal A1 to be transmitted by the relay station becomes a signal that is repeated twice in one symbol (B1 repeats twice).
  • DFT Discrete Fourier Transform
  • IFFT N-point Inverse Fast Fourier Transform
  • the base station restores the long block SRS through the N-point FFT, subcarrier demapping, and IDFT of the signal received through the radio channel.
  • FIG. 40 illustrates a process in which a relay station generates and transmits a short block SRS and a base station receives a short block SRS.
  • A2 which is a short block SRS, performs N / 2-point IFFT instead of N-point in the process of performing IFFT. That is, the number of points to be sampled is half as compared to that of the long block SRS. Then, in the short block SRS, a signal is placed only in 1/2 symbol in one symbol (see B2). In addition, the base station reconstructs the short block SRS through the subcarrier demapping through the N / 2-point FFT and the IDFT through the signal received through the radio channel.
  • FIG. 41 shows the comparison between the subcarrier waveforms and the subcarrier spacing of the long block SRS and the short block SRS.
  • a long block SRS is allocated to odd subcarriers (or even subcarriers) among subcarriers having a 15 KHz subcarrier spacing
  • a short block SRS is allocated to subcarriers having a 30 KHZ subcarrier spacing.
  • the long block SRS or the short block SRS or the allocated subcarriers have the same interval as 30 kHz.
  • the long block SRS and the short block SRS may have different waveforms. That is, each subcarrier has a form of a sync function in the frequency domain.
  • two subcarriers are twice as wide as the long block SRS. Therefore, since each subcarrier on which the long block SRS is transmitted has a maximum value, the value of each subcarrier on which the short block SRS is transmitted is not exactly zero. However, the effect is not large because the value at that time is not large.
  • the transmitter can be part of a relay station.
  • the transmitter may include a modulator, a DFT unit, a subcarrier mapper, an IFFT unit, and an RF unit.
  • the modulator maps the encoded bit into a symbol representing a location on a signal constellation to produce modulated symbols.
  • the modulation scheme is not limited and may be m-Phase Shift Keying (m-PSK) or m-Quadrature Amplitude Modulation (m-QAM).
  • m-PSK m-Phase Shift Keying
  • m-QAM m-Quadrature Amplitude Modulation
  • the modulated symbols are input to the DFT unit.
  • the DFT unit performs a DFT on the input symbols and outputs complex-valued symbols. For example, if K symbols are input, the DFT size is K (K is a natural number).
  • the subcarrier mapper maps the complex symbols to each subcarrier in the frequency domain. Complex symbols may be mapped to resource elements corresponding to resource blocks allocated for data transmission.
  • the IFFT unit performs an IFFT on the input symbol and outputs a baseband signal for data which is a time domain signal. When the IFFT size is N, N may be determined by channel bandwidth (N is a natural number).
  • the CP inserter (not shown) copies a part of the rear part of the baseband signal for data and inserts it in front of the baseband signal for data. By interpolating CP, Inter Symbol Interference (ISI) and Inter Carrier Interference (ICI) are prevented, so that orthogonality can be maintained even in a multipath channel.
  • ISI Inter Symbol Interference
  • ICI Inter Carrier Interference
  • SC-FDMA single-carrier frequency division multiple access
  • SC-FDMA may also be referred to as FTTS-OFDM (DFT spread-OFDM).
  • FTTS-OFDM DFT spread-OFDM
  • PAPR peak-to-average power ratio
  • CM cubic metric
  • transmission power efficiency may be increased.
  • the receiver 43 illustrates a receiver according to an embodiment of the present invention.
  • the receiver may be part of a base station.
  • the receiver may include an RF unit, an FFT unit, a demapper, and an IDFT unit. It may also include an IFFT unit and a short block signal cancellation unit.
  • the RF unit may comprise at least one antenna and receives a radio signal via a radio channel.
  • the received radio signal is converted from a serial signal to a parallel signal and then converted into a frequency domain signal by the FFT unit.
  • the signal in the frequency domain is converted into a signal in the time domain through a demapper and an IDFT unit.
  • the IFFT unit converts a received signal converted into a signal in the frequency domain through the FFT unit to a signal in the time domain.
  • the FFT unit performs an N-point FFT
  • the IFFT unit may perform an N / 2-point IFFT.
  • the short block signal removal unit subtracts the short block signal received from the IFFT unit from the signal received through the RF unit. That is, it serves to remove a short block signal from the signal received through the RF unit.
  • 44 illustrates a process of processing two SRSs when a long block SRS and a short block SRS are simultaneously received by a receiver of a base station.
  • the base station may simultaneously receive the long block SRS transmitted by the terminal and the short block SRS transmitted by the relay station in the last symbol of the subframe. That is, the analog signal (the signal at point A) received by the RF unit of the receiver may be a signal in which a long block signal and a short block signal are mixed.
  • the receiver samples the received analog signal and then converts the sampled signal into a parallel signal (signal B point).
  • the receiver then performs an N-point FFT on the paralan signal.
  • the number N of signal samples input to the FFT process may be 2048.
  • the receiver can obtain 1024 samples (which can be obtained only by obtaining signals of even or odd carriers) from the signal obtained after performing the FFT, which corresponds to samples of the short block signal (signal C). Samples of the short block signal are restored to the short block signal via the IDFT.
  • the long block signal included in the signal at point A cannot be directly obtained from the sampled signal. This is because the sampled signal contains both a short block signal and a long block signal. Therefore, additional processing is required to extract only samples for long block signals.
  • the signal at point C corresponds to a sample of the short block signal.
  • the receiver generates a sample of this short block signal into the same signal as the short block signal generated at the transmitter.
  • the receiver may subtract the generated short block signal from the signal at point A to remove interference due to the short block signal from the signal at point A.
  • this process may be implemented by removing the short block signal from the signal of the B point, not the signal of the A point.
  • the receiver converts the signal from which the short block signal is removed from the received signal into a parallel signal (signal D), and performs an N-point FFT again (signal E). The IDFT then recovers the long block signal.
  • FIG. 45 illustrates the signal in the frequency domain at processing point A in the receiver of FIG. 45 illustrates the waveforms of each subcarrier in parallel, not the actual waveform of the long block SRS or the short block SRS.
  • the actual waveform is the same as the sum of each subcarrier.
  • the long block SRS and the short block SRS have the same subcarrier spacing of 30 kHz, but have different waveforms in the frequency domain.
  • the spacing of zero crossing points of the short block SRS has a wider shape.
  • the sampling points may be configured at 15 KHz intervals.
  • 46 to 48 show signals in the frequency domain at processing points B, C, and E in the receiver of FIG. 44, respectively.
  • the long block SRS and the short block SRS are both present in a mixed form.
  • the long block SRS may have a value at odd subcarriers
  • the short block SRS may have a value at even subcarriers and an odd subcarrier. Since the short block SRS has a value even in the odd subcarriers, it interferes with the long block SRS.
  • a signal at point C has a value at an even subcarrier and an odd subcarrier. That is, the signal at point C may include only a short block SRS.
  • a signal at point E that is, a signal passing through an N-point FFT may include only a long block SRS.
  • Fig. 49 is a block diagram showing a base station and a relay station.
  • the base station 100 includes a processor 110, a memory 120, and an RF unit 130.
  • the processor 110 implements the proposed functions, processes and / or methods. That is, it transmits the sounding reference signal parameters to the relay station and receives and demodulates the sounding reference signal transmitted from the relay station in the radio resource indicated by the sounding reference signal parameters.
  • the function of the above-described receiver may be implemented by the processor 110.
  • the memory 120 is connected to the processor 110 and stores various information for driving the processor 110.
  • the RF unit 130 is connected to the processor 110 and transmits and / or receives a radio signal.
  • the relay station 200 includes a processor 210, a memory 220, and an RF unit 230.
  • the processor 210 receives sounding reference signal parameters, allocates a radio resource using the sounding reference signal parameters, and transmits a sounding reference signal to the base station through the radio resource.
  • the function of the above-described transmitter may be implemented by the processor 210.
  • the layers of the air interface protocol may be implemented by the processor 210.
  • the memory 220 is connected to the processor 210 and stores various information for driving the processor 210.
  • the RF unit 230 is connected to the processor 210 to transmit and / or receive a radio signal.
  • Processors 110 and 210 may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, data processing devices, and / or converters for interconverting baseband signals and wireless signals.
  • ASICs application-specific integrated circuits
  • the OFDM transmitter and OFDM receiver of FIG. 7 may be implemented within processors 110 and 210.
  • the memory 120, 220 may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium, and / or other storage device.
  • the RF unit 130 and 230 may include one or more antennas for transmitting and / or receiving a radio signal.
  • the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function.
  • the module may be stored in the memories 120 and 220 and executed by the processors 110 and 210.
  • the memories 120 and 220 may be inside or outside the processors 110 and 210, and may be connected to the processors 110 and 210 by various well-known means.
  • the SRS transmitted from the relay station to the base station may be allocated to a part of a symbol, for example, a first half half symbol or a second half half symbol, in a symbol including a guard period in a subframe. In this way, the SRS can be prevented from being degraded due to the guard period included in the symbol of the subframe.
  • the transmission capacity of the backhaul link is increased. This is because, in case of transmitting a signal through a normal normal symbol, radio resources to be wasted due to a guard interval are used for backhaul link signal transmission. If the RS does not transmit the SRS in the last symbol of the subframe, it should transmit in other symbols. Accordingly, the RS must puncture symbols transmitting SRSs, resulting in puncturing symbols to be used for backhaul data transmission.
  • the present invention is not limited to this. That is, the present invention can be applied even when data is transmitted in the last symbol.
  • the last symbol may be applied to a case in which there is no guard interval, that is, a general symbol.
  • the present invention may be applied after dividing a general symbol into 1/2.

Abstract

본 발명의 일 측면에 따른 중계국의 사운딩 참조신호 전송방법은 사운딩 참조신호 파라미터들을 수신하는 단계; 상기 사운딩 참조신호 파라미터들을 이용하여 무선자원을 할당하는 단계; 및 상기 무선자원을 통해 기지국에게 사운딩 참조신호를 전송하는 단계를 포함하되, 상기 사운딩 참조신호 파라미터들이 지시하는 무선자원은 시간 영역에서 신호의 송수신 스위칭을 위한 보호 구간이 위치하는 심벌을 포함하는 것을 특징으로 한다.

Description

중계국의 사운딩 참조신호 전송방법 및 장치
본 발명은 무선통신에 관한 것으로, 보다 상세하게는 중계국이 사운딩 참조신호를 전송하는 방법 및 장치에 관한 것이다.
ITU-R(International Telecommunication Union Radio communication sector)에서는 3세대 이후의 차세대 이동통신 시스템인 IMT(International Mobile Telecommunication)-Advanced의 표준화 작업을 진행하고 있다. IMT-Advanced는 정지 및 저속 이동 상태에서 1Gbps, 고속 이동 상태에서 100Mbps의 데이터 전송률로 IP(Internet Protocol)기반의 멀티미디어 서비스 지원을 목표로 한다.
3GPP(3rd Generation Partnership Project)는 IMT-Advanced의 요구 사항을 충족시키는 시스템 표준으로 OFDMA(Orthogonal Frequency Division Multiple Access)/SC-FDMA(Single Carrier-Frequency Division Multiple Access) 전송방식 기반인 LTE(Long Term Evolution)를 개선한 LTE-Advanced를 준비하고 있다. LTE-Advanced는 IMT-Advanced를 위한 유력한 후보 중의 하나이다. LTE-Advanced의 주요 기술에 중계국(relay station) 기술이 포함된다.
중계국은 기지국과 단말 사이에서 신호를 중계하는 장치로, 무선통신 시스템의 셀 커버리지(cell coverage)를 확장시키고 처리량(throughput)을 향상시키기 위해 사용된다.
중계국을 포함하는 무선통신 시스템에서 기지국과 중계국 간의 신호 전송 방법은 현재 많은 연구가 진행 중이다. 기지국과 중계국 간의 신호 전송에 종래 기지국과 단말 간의 신호 전송 방법을 그대로 사용하는 것은 문제가 있다.
종래 기지국과 단말 간의 신호 전송방법에서, 일반적으로 단말은 시간 영역에서 볼 때 하나의 서브프레임 전체에 걸쳐 신호를 전송한다. 단말이 서브프레임 전체에서 신호를 전송하는 한 가지 이유는 단말이 소모하는 순간 최대 전력을 줄이기 위해 신호를 전송하는 각 채널의 지속 시간을 가능한 길게 설정하기 위한 것이다.
그런데, 중계국은 시간 영역에서 볼 때 하나의 서브프레임 전체에 걸쳐 신호를 전송하거나 수신할 수 없는 경우가 발생한다. 중계국은 보통 다수의 단말들을 대상으로 신호를 중계하므로 잦은 수신 모드 및 전송 모드 스위칭(switching)이 발생한다. 그리고 중계국은 기지국으로부터 신호를 수신하거나 중계국 단말에게 신호를 전송하는데 동일한 주파수 대역을 이용할 수 있다. 또는 중계국은 중계국 단말로부터 신호를 수신하거나 기지국에게 신호를 전송하는데 동일한 주파수 대역을 이용할 수 있다. 중계국의 수신 모드 및 전송 모드 간의 스위칭 시 수신 모드 구간과 전송 모드 구간 사이에는 신호간 간섭을 방지하고 동작 안정화를 위해 중계국이 신호를 전송하거나 수신하지 않는 소정의 시간 구간(이를 이하에서 보호 구간(guard time)이라 칭한다)이 필요하다. 보호 구간은 일반적으로 1 심벌 구간보다 짧지만, 보호 구간을 포함하는 심벌 전체가 낭비된다. 이러한 보호 구간으로 인해 중계국은 서브프레임 전체에서 신호를 수신하거나 전송할 수 없는 제약이 발생할 수 있다.
종래 단말은 서브프레임의 마지막 심벌에서 상향링크 채널 측정을 위한 사운딩 참조신호(sounding reference signal, SRS)를 전송한다. 그런데 중계국은 보호 구간이 서브프레임의 마지막 심벌에 위치할 수 있으므로 종래의 단말과 같은 방법으로 SRS를 전송하는 것이 어려울 수 있다.
무선통신 시스템에 포함된 중계국에서 SRS를 전송하는 새로운 방법이 필요하다.
중계국이 보호 구간을 포함하는 서브프레임에서 낭비되는 무선자원을 활용할 수 있을 신호 전송 방법 및 장치를 제공하고자 한다. 특히, 낭비되는 무선자원을 이용하여 중계국이 기지국으로 SRS를 전송하는 방법 및 장치를 제공하고자 한다.
본 발명의 일 측면에 따른 중계국의 사운딩 참조신호 전송방법은 사운딩 참조신호 파라미터들을 수신하는 단계; 상기 사운딩 참조신호 파라미터들을 이용하여 무선자원을 할당하는 단계; 및 상기 무선자원을 통해 기지국에게 사운딩 참조신호를 전송하는 단계를 포함하되, 상기 사운딩 참조신호 파라미터들이 지시하는 무선자원은 시간 영역에서 신호의 송수신 스위칭을 위한 보호 구간이 위치하는 심벌을 포함하는 것을 특징으로 한다.
본 발명의 다른 측면에 따른 무선통신 시스템에서 기지국의 사운딩 참조신호 수신 방법은 중계국에게 사운딩 참조신호 파라미터들을 전송하는 단계; 및 상기 사운딩 참조신호 파라미터들에 의해 지시되는 무선자원에서 상기 중계국으로부터 전송되는 사운딩 참조신호를 수신하는 단계를 포함하되, 상기 무선자원은 시간 영역에서 신호의 송수신 스위칭을 위한 보호 구간이 위치하는 심벌을 포함하는 것을 특징으로 한다.
본 발명의 또 다른 측면에 따른 중계국은 무선신호를 송수신하는 RF부; 및
상기 RF부에 연결되는 프로세서를 포함하되, 상기 프로세서는 사운딩 참조신호 파라미터들을 수신하고, 상기 사운딩 참조신호 파라미터들을 이용하여 무선자원을 할당하며, 상기 무선자원을 통해 기지국에게 사운딩 참조신호를 전송하되, 상기 사운딩 참조신호 파라미터들이 지시하는 무선자원은 시간 영역에서 신호의 송수신 스위칭을 위한 보호 구간이 위치하는 심벌을 포함하는 것을 특징으로 한다.
중계국을 포함하는 무선통신 시스템에서 중계국의 송수신 스위칭에 필요한 보호 구간을 포함하는 심벌을 활용하여 SRS를 전송할 수 있다. 기지국은 중계국이 전송하는 SRS와 매크로 단말이 전송하는 매크로 SRS를 동시에 수신하여 각 링크의 채널 측정에 이용할 수 있다.
도 1은 중계국을 포함하는 무선통신 시스템을 나타낸다.
도 2는 3GPP LTE의 무선 프레임(radio frame) 구조를 나타낸다.
도 3은 하나의 하향링크 슬롯에 대한 자원 그리드(resource grid)를 나타낸 예시도이다.
도 4는 하향링크 서브프레임의 구조를 나타낸다.
도 5는 상향링크 서브프레임의 구조를 나타낸다.
도 6은 OFDM 심벌에 CP(cyclic prefix)를 삽입하는 예를 나타낸다.
도 7은 OFDM 전송기와 OFDM 수신기의 구조를 나타내는 예이다.
도 8 및 도 9는 보호 구간이 서브프레임 내에 위치하는 예를 나타낸다.
도 10은 보호 구간을 포함하는 서브프레임에서 종래 데이터 전송 방법을 나타낸다.
도 11은 보호 구간을 포함하는 2개의 심벌에서 서로 다른 데이터를 전송하는 예를 나타낸다.
도 12는 보호 구간을 포함하는 2개의 심벌에서 데이터를 중복하여 전송하는 예를 나타낸다.
도 13은 보호 구간을 포함하는 2개의 심벌의 부분심벌에서만 데이터를 중복하여 전송하는 예를 나타낸다.
도 14는 보호 구간을 포함하는 2개의 심벌의 부분심벌에서 데이터를 중복하여 전송하는 다른 예를 나타낸다.
도 15는 OFDM 수신기의 복조과정에서 부분심벌의 데이터를 결합하는 예를 나타낸다.
도 16은 보호 구간을 포함하는 서브프레임에서 심벌 인덱스를 부여하는 일 예를 나타낸다.
도 17은 짧은 블록과 긴 블록을 비교하고, 짧은 블록을 생성하는 방법을 나타낸다.
도 18은 짧은 블록을 보호 구간을 포함하는 심벌에 할당하는 예를 나타낸다.
도 19는 짧은 블록이 할당될 수 있는 무선자원 위치의 예를 나타낸다.
도 20 및 도 21은 짧은 블록에 인접한 자원블록에 보호 부반송파(guard subcarrier)를 설정하는 예를 나타낸다.
도 22 내지 도 26은 짧은 블록 내에 보호 부반송파를 설정하는 예를 나타낸다.
도 27 및 도 28은 다중 사용자 환경에서 서브프레임에 포함되는 짧은 블록과 보호 부반송파의 할당 예들을 나타낸다.
도 29 및 도 30은 백홀 상향링크에서 사용될 수 있는 서브프레임 구조의 예를 나타낸다.
도 31은 수학식 3의 f(x)와 sync함수를 나타내는 그래프이다.
도 32는 복수의 단말이 기지국으로 매크로 SRS를 전송하는 예를 나타낸다.
도 33은 본 발명의 일 실시예에 따른 중계국의 SRS 전송 방법을 나타낸다.
도 34는 중계국이 SRS를 전송하는 상향링크 서브프레임의 구조의 예를 나타낸다.
도 35 내지 도 38은 ‘srsBandwidth’파라미터에 의해 설정될 수 있는 중계국의 SRS 전송 대역의 예들을 나타낸다.
도 39는 중계국(또는 단말)이 긴 블록 SRS를 생성하여 전송하고, 기지국이긴 블록 SRS를 수신하는 과정을 나타낸다.
도 40은 중계국이 짧은 블록 SRS를 생성하여 전송하고, 기지국이 짧은 블록 SRS를 수신하는 과정을 나타낸다.
도 41은 긴 블록 SRS와 짧은 블록 SRS의 각 부반송파 파형과 부반송파 간격을 비교하여 나타낸다.
도 42는 본 발명의 일 실시예에 따른 전송기를 나타낸다.
도 43은 본 발명의 일 실시예에 따른 수신기를 나타낸다. 수신기는 기지국의 일 부분일 수 있다.
도 44는 기지국의 수신기에서 긴 블록 SRS와 짧은 블록 SRS를 동시에 수신한 경우, 2개의 SRS를 처리하는 과정을 나타낸다.
도 45는 도 44의 수신기에서 처리지점 A에서의 주파수 영역에서의 신호를 나타낸다.
도 46 내지 도 48은 각각 도 44의 수신기에서 처리지점 B, C, E 에서의 주파수 영역에서의 신호를 나타낸다.
도 49는 기지국 및 중계국을 나타내는 블록도이다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 통신 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16e (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(long term evolution)은 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-Advanced(LTE-A)는 3GPP LTE의 진화이다. 이하에서 설명을 명확하게 하기 위해, 3GPP LTE/LET-A를 예로 설명하나 본 발명의 기술적 사상이 이에 제한되는 것은 아니다.
도 1은 중계국을 포함하는 무선통신 시스템을 나타낸다.
도 1을 참조하면, 중계국을 포함하는 무선통신 시스템(10)은 적어도 하나의 기지국(11; Base Station, BS)을 포함한다. 각 기지국(11)은 일반적으로 셀(cell)이라고 불리는 특정한 지리적 영역 (15)에 대해 통신 서비스를 제공한다. 셀은 다시 다수의 영역으로 나누어 질 수 있는데 각각의 영역은 섹터(sector)라고 칭한다. 하나의 기지국에는 하나 이상의 셀이 존재할 수 있다. 기지국(11)은 일반적으로 단말(13)과 통신하는 고정된 지점(fixed station)을 말하며, eNB(evolved NodeB), BTS(Base Transceiver System), 액세스 포인트(Access Point), AN(Access Network) 등 다른 용어로 불릴 수 있다. 기지국(11)은 중계국(12)과 단말(14) 간의 연결성(connectivity), 관리(management), 제어 및 자원 할당과 같은 기능을 수행할 수 있다.
중계국(Relay Station, RS, 12)은 기지국(11)과 단말(14) 사이에서 신호를 중계하는 기기를 말하며, RN(Relay Node), 리피터(repeater), 중계기 등의 다른 용어로 불릴 수 있다. 중계국에서 사용하는 중계 방식으로 AF(amplify and forward) 및 DF(decode and forward) 등 어떠한 방식을 사용할 수 있으며, 본 발명의 기술적 사상은 이에 제한되지 않는다.
단말(13, 14; User Equipment, UE)은 고정되거나 이동성을 가질 수 있으며, MS(Mobile Station), UT(User Terminal), SS(Subscriber Station), 무선기기(Wireless Device), PDA(Personal Digital Assistant), 무선 모뎀(Wireless Modem), 휴대기기(Handheld Device), AT(Access Terminal) 등 다른 용어로 불릴 수 있다. 이하에서 매크로 단말(macro UE, Ma UE, 13)은 기지국(11)과 직접 통신하는 단말이고, 중계국 단말(relay UE, Re UE, 14)은 중계국과 통신하는 단말을 칭한다. 기지국(11)의 셀 내에 있는 매크로 단말(13)이라 할지라도, 다이버시티 효과에 따른 전송속도의 향상을 위하여 중계국(12)을 거쳐서 기지국(11)과 통신할 수 있다.
이하에서 기지국(11)과 매크로 단말(13) 간의 링크를 매크로 링크(macro link)라 칭하기로 한다. 매크로 링크는 매크로 하향링크와 매크로 상향링크로 구분될 수 있다, 매크로 하향링크(macro downlink, M-DL)는 기지국(11)에서 매크로 단말(13)로의 통신을 의미하며, 매크로 상향링크(macro uplink, M-UL)는 매크로 단말(13)에서 기지국(11)으로의 통신을 의미한다.
기지국(11)과 중계국(12)간의 링크는 백홀(backhaul) 링크라 칭하기로 한다. 백홀 링크는 백홀 하향링크(backhaul downlink, B-DL)와 백홀 상향링크(backhaul uplink, B-UL)로 구분될 수 있다. 백홀 하향링크는 기지국(11)에서 중계국(12)으로의 통신을 의미하며, 백홀 상향링크는 중계국(12)에서 기지국(11)으로의 통신을 의미한다.
중계국(12)과 중계국 단말(14)간의 링크는 액세스 링크(access link)라 칭하기로 한다. 액세스 링크는 액세스 하향링크(access downlink, A-DL)와 액세스 상향링크(access uplink, A-UL)로 구분될 수 있다. 액세스 하향링크는 중계국(12)에서 중계국 단말(14)로의 통신을 의미하며, 액세스 상향링크는 중계국 단말(14)에서 중계국(12)으로의 통신을 의미한다.
중계국을 포함하는 무선통신 시스템(10)은 양방향 통신을 지원하는 시스템이다. 양방향 통신은 TDD(Time Division Duplex) 모드, FDD(Frequency Division Duplex) 모드 등을 이용하여 수행될 수 있다. TDD 모드는 상향링크 전송과 하향링크 전송에서 서로 다른 시간 자원을 사용한다. FDD 모드는 상향링크 전송과 하향링크 전송에서 서로 다른 주파수 자원을 사용한다.
도 2는 3GPP LTE의 무선 프레임(radio frame) 구조를 나타낸다.
도 2를 참조하면, 무선 프레임(radio frame)은 10개의 서브프레임(subframe)으로 구성되고, 하나의 서브프레임은 2개의 슬롯(slot)으로 구성된다. 하나의 서브프레임의 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms 일 수 있다. 하나의 서브 프레임이 전송되는 데 걸리는 시간을 TTI(transmission time interval)이라 한다. TTI는 스케줄링의 최소 단위일 수 있다.
하나의 슬롯은 시간 영역에서 복수의 OFDM(orthogonal frequency division multiplexing) 심벌을 포함할 수 있다. OFDM 심벌은 3GPP LTE가 하향링크에서 OFDMA를 사용하므로 하나의 심벌 구간(symbol period)을 표현하기 위한 것으로, 다중 접속 방식에 따라 다른 명칭으로 불리울 수 있다. 예를 들어, 상향링크 다중 접속 방식으로 SC-FDMA가 사용될 경우 SC-FDMA 심벌이라고 할 수 있다. 하나의 슬롯은 7 OFDM 심벌을 포함하는 것을 예시적으로 기술하나, CP(Cyclic Prefix)의 길이에 따라 하나의 슬롯에 포함되는 OFDM 심벌의 수는 바뀔 수 있다. 3GPP TS 36.211 V8.5.0(2008-12)에 의하면, 노멀(normal) CP에서 1 서브프레임은 7 OFDM 심벌을 포함하고, 확장(extended) CP에서 1 서브프레임은 6 OFDM 심벌을 포함한다. 무선 프레임의 구조는 예시에 불과하고, 무선 프레임에 포함되는 서브프레임의 수 및 서브프레임에 포함되는 슬롯의 수는 다양하게 변경될 수 있다.
도 2를 참조하여 설명한 무선 프레임의 구조는 3GPP TS 36.211 V8.3.0 (2008-05) "Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 8)"의 4.1절 및 4. 2절을 참조할 수 있다.
도 3은 하나의 하향링크 슬롯에 대한 자원 그리드(resource grid)를 나타낸 예시도이다.
FDD 및 TDD 무선 프레임에서 하나의 슬롯은 시간 영역(time domain)에서 복수의 OFDM(orthogonal frequency division multiplexing) 심벌을 포함하고, 주파수 영역에서 다수의 자원블록(resource block, RB)을 포함한다. 이하에서 심벌은 하나의 OFDM 심벌 또는 하나의 SC-FDMA 심벌을 의미할 수 있다. 자원 블록은 자원 할당 단위로 하나의 슬롯에서 복수의 연속하는 부반송파(subcarrier)를 포함한다.
도 3을 참조하면, 슬롯(예를 들어, 하향링크 서브프레임에 포함된 하향링크 슬롯)은 시간 영역(time domain)에서 복수의 OFDM 심벌을 포함한다. 여기서, 하나의 하향링크 슬롯은 7 OFDM 심벌을 포함하고, 하나의 자원블록은 주파수 영역에서 12 부반송파를 포함하는 것을 예시적으로 기술하나, 이에 제한되는 것은 아니다. 자원블록에서 부반송파는 예컨대 15KHz의 간격을 가질 수 있다.
자원 그리드 상의 각 요소(element)를 자원요소(resource element)라 하며, 하나의 자원블록(resource block)은 12×7개의 자원요소를 포함한다. 하향링크 슬롯에 포함되는 자원블록의 수 NDL은 셀에서 설정되는 하향링크 전송 대역폭(bandwidth)에 종속한다. 도 3에서 설명한 자원 그리드는 상향링크에서도 적용될 수 있다.
도 4는 하향링크 서브프레임의 구조를 나타낸다.
도 4를 참조하면, 서브프레임은 2개의 연속적인(consecutive) 슬롯을 포함한다. 서브프레임 내에서 첫 번째 슬롯의 앞선 3 OFDM 심벌들이 PDCCH가 할당되는 제어영역(control region)이고, 나머지 OFDM 심벌들은 PDSCH가 할당되는 데이터영역(data region)이다. 제어영역에는 PDCCH 이외에도 PCFICH, PHICH 등의 제어채널이 할당될 수 있다. 단말은 PDCCH를 통해 전송되는 제어정보를 디코딩하여 PDSCH를 통해 전송되는 데이터 정보를 읽을 수 있다. 여기서, 제어영역이 3 OFDM 심벌을 포함하는 것은 예시에 불과하며, 제어영역에는 2 OFDM 심벌 또는 1 OFDM 심벌이 포함될 수 있다. 서브프레임 내 제어영역이 포함하는 OFDM 심벌의 수는 PCFICH를 통해 알 수 있다.
제어영역은 복수의 CCE(control channel elements)인 논리적인 CCE 열로 구성된다. CCE 열은 하나의 서브프레임 내에서 제어영역을 구성하는 전체 CCE들의 집합이다. CCE는 복수의 자원요소 그룹(resource element group)에 대응된다. 예를 들어, CCE는 9 자원요소 그룹에 대응될 수 있다. 자원요소 그룹은 자원요소로 제어채널을 맵핑하는 것을 정의하기 위해 사용된다. 예를 들어, 하나의 자원요소 그룹은 4개의 자원요소로 구성될 수 있다.
복수의 PDCCH가 제어영역 내에서 전송될 수 있다. PDCCH는 스케줄링 할당과 같은 제어정보(control information)를 나른다. PDCCH는 하나 또는 몇몇 연속적인 CCE(control channel elements)의 집단(aggregation) 상으로 전송된다. CCE 집단을 구성하는 CCE의 수(Number of CCEs)에 따라 PDCCH의 포맷 및 가능한 PDCCH의 비트 수가 결정된다. PDCCH 전송을 위해 사용되는 CCE의 수를 CCE 집단 레벨(aggregation level)이라 한다. 또한, CCE 집단 레벨은 PDCCH를 검색하기 위한 CCE 단위이다. CCE 집단 레벨의 크기는 인접하는 CCE들의 수로 정의된다. 예를 들어, CCE 집단 레벨은 {1, 2, 4, 8}의 원소일 수 있다.
PDCCH를 통해 전송되는 제어정보를 하향링크 제어정보(downlink control information, 이하 DCI)라고 한다. DCI는 상향링크 스케줄링 정보, 하향링크 스케줄링 정보, 시스템 정보(system information), 상향링크 전력 제어 명령(power control command), 페이징을 위한 제어정보, 랜덤 액세스 응답(RACH response)을 지시하기 위한 제어정보 등을 포함한다.
DCI 포맷으로는 PUSCH(Physical Uplink Shared Channel) 스케줄링을 위한 포맷 0, 하나의 PDSCH(Physical Downlink Shared channel) 코드워드의 스케줄링을 위한 포맷 1, 하나의 PDSCH 코드워드의 간단한(compact) 스케줄링을 위한 포맷 1A, 공간 다중화 모드에서 단일 코드워드의 랭크-1 전송에 대한 간단한 스케줄링을 위한 포맷 1B, DL-SCH(Downlink Shared Channel)의 매우 간단한 스케줄링을 위한 포맷 1C, 다중 사용자 공간 다중화 모드에서 PDSCH 스케줄링을 위한 포맷 1D, 폐루프(Closed-loop) 공간 다중화 모드에서 PDSCH 스케줄링을 위한 포맷 2, 개루프(Open-loop) 공간 다중화 모드에서 PDSCH 스케줄링을 위한 포맷 2A, PUCCH 및 PUSCH를 위한 2비트 전력 조절의 TPC(Transmission Power Control) 명령의 전송을 위한 포맷 3, 및 PUCCH 및 PUSCH를 위한 1비트 전력 조절의 TPC 명령의 전송을 위한 포맷 3A 등이 있다.
도 5는 상향링크 서브프레임의 구조를 나타낸다.
도 5를 참조하면, 상향링크 서브 프레임은 주파수 영역에서 상향링크 제어 정보를 나르는 PUCCH(Physical Uplink Control Channel)가 할당되는 제어영역(region)과 사용자 데이터를 나르는 PUSCH(Physical Uplink Shared Channel)가 할당되는 데이터영역으로 나눌 수 있다.
하나의 단말에 대한 PUCCH는 서브프레임에서 자원블록(RB) 쌍(pair, 51, 52)으로 할당되고, RB 쌍에 속하는 RB들(51,52)은 2개의 슬롯들 각각에서 서로 다른 부반송파를 차지한다. 이를 PUCCH에 할당되는 RB 쌍이 슬롯 경계(slot boundary)에서 주파수 도약(frequency hopping)된다고 한다.
PUCCH는 다중 포맷을 지원할 수 있다. 즉, 변조 방식(modualtion scheme)에 따라 서브프레임당 서로 다른 비트 수를 갖는 상향링크 제어 정보를 전송할 수 있다. 예를 들어, BPSK(Binary Phase Shift Keying)을 사용하는 경우(PUCCH 포맷 1a) 1비트의 상향링크 제어 정보를 PUCCH 상으로 전송할 수 있으며, QPSK(Quadrature Phase Shift Keying)을 사용하는 경우(PUCCH 포맷 1b) 2비트의 상향링크 제어 정보를 PUCCH 상으로 전송할 수 있다. PUCCH 포맷은 이외에도 포맷 1, 포맷 2, 포맷 2a, 포맷 2b 등이 있다(이는 3GPP TS 36.211 V8.2.0 (2008-03) "Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 8)"의 5.4절을 참조할 수 있다).
도 6은 OFDM 심벌에 CP(cyclic prefix)를 삽입하는 예를 나타낸다.
도 6을 참조하면, 노멀 CP의 경우, 노멀 CP가 삽입되는 시간 구간은 서브프레임의 첫번째 심벌에서는 160Ts, 나머지 심벌에서는 144 Ts일 수 있다(Ts = 1/(15000*2048)sec). CP는 심벌의 마지막 부분을 복사하여 심벌의 처음 부분에 추가하는 것으로 심벌 간의 간섭(inter symbol interference)를 피하기 위한 것이다.
도 7은 OFDM 전송기와 OFDM 수신기의 구조를 나타내는 예이다.
OFDM 전송기는 전송하려는 정보 비트들은 모듈레이터를 통해 변조한 후, 직렬 신호를 병렬 신호로 변환하는 S/P 유닛으로 입력한다. 모듈레이터의 변조 방식은 QPSK(quadrature phase shift keying), m-QAM(quadrature amplitude modulation) 등 다양한 변조 방식을 사용할 수 있다. S/P 유닛에 의해 변환된 병렬 신호는 채널 지연 확산(channel delay spread)보다 긴 주기를 가지는 신호가 된다. 병렬 신호는 주파수 영역의 신호를 시간 영역의 신호로 나타내는 IFFT(Inverse Fast Fourier Transform) 유닛으로 입력되어 IFFT된 후, CP가 삽입되고, RF 유닛을 통해 전송된다. RF 유닛은 적어도 하나의 안테나를 포함한다.
OFDM 수신기는 RF 유닛을 통해 무선 신호를 수신한 후, CP 제거기(cyclic prefix remover)를 통해 CP를 제거하고, S/P 유닛을 통해 직력 신호를 병렬 신호로 변환한다. 변환된 병렬 신호는 FFT 유닛을 통해 FFT된다. FFT는 시간 영역의 신호를 주파수 영역의 신호로 나타낸다. 주파수 영역의 신호는 이퀄라이저, 복조기를 거쳐 데이터로 복원된다. 이퀄라이저(equalizer)는 각 부반송파에 추정된 채널 응답을 곱하여 각 부반송파에 대한 채널의 영향을 제거한다. 복조기(demodulator)는 변조기에서 사용된 변조 방식에 대응한 복조 방식으로 데이터를 복조한다.
본 발명에서 OFDM 전송기는 기지국 또는 중계국의 일부일 수 있다. OFDM 수신기는 중계국 또는 기지국의 일부일 수 있다.
무선통신 시스템에 중계국을 포함하는 경우, 중계국은 동일한 주파수 대역에서 신호를 수신하는 동시에 신호를 전송하는 것은 어렵다고 가정한다. 따라서, 중계국은 서로 다른 시간에 동일한 주파수 대역의 신호를 수신하거나 전송한다. 예를 들어, 중계국은 서브프레임 #n에서 기지국으로부터 신호를 수신하고 서브프레임 #n+1에서 중계국 단말에게 신호를 전송하는 방식으로 동작할 수 있다.
그런데, 중계국이 동일 주파수 대역의 신호를 전송하다가 수신하는 경우, 또는 동일 주파수 대역의 신호를 수신하다가 전송하는 경우와 같이 신호의 송수신 스위칭 시에 신호의 송신구간과 수신구간 사이에 보호 구간(guard time)을 필요로 한다. 보호 구간은 시스템의 안정화, 보호 또는 시스템이 요구하는 요구 조건을 만족하는 신호를 생성하기 위해 필요로 하는 시간이다. 예를 들어, 보호 구간에는 신호를 증폭하는 파워 앰프(power amplifier)의 동작 안정화를 위한 천이 시간(transient time)이 포함될 수 있다.
도 8 및 도 9는 보호 구간이 서브프레임 내에 위치하는 예를 나타낸다.
도 8을 참조하면, 2개의 보호 구간이 각각 서브프레임의 경계에 위치한다. 즉, 서브프레임의 첫번째 심벌 및 마지막 심벌이 보호 구간을 포함한다. 보호 구간은 서브프레임의 경계에 있는 심벌이 아니라 그 외의 심벌에도 위치할 수 있다. 도 9에서는 2개의 보호 구간 중 하나의 보호 구간이 서브프레임의 중간 심벌, 즉 서브프레임의 경계에 있는 심벌이 아닌 심벌에 보호 구간이 위치한다. 상기 예에서는 스케줄링 단위가 서브프레임인 경우에 대해 보호 구간의 위치를 예로 들었으나 이는 제한이 아니다. 즉, 스케줄링 단위가 슬롯이라면 보호 구간은 슬롯의 경계 또는 슬롯의 중간 심벌에 위치할 수 있다(이하 모두 동일하다). 이러한 보호 구간은 1 심벌보다 작은 시간 구간일 수 있다. 하나의 심벌 내에서 보호 구간을 제외한 나머지 부분을 부분심벌(partial symbol)이라 칭한다.
도 10은 보호 구간을 포함하는 서브프레임에서 종래 데이터 전송 방법을 나타낸다.
보호 구간에서는 데이터를 전송하는 것이 어렵다. 도 10에 도시된 바와 같이 서브프레임의 경계에 있는 심벌 내에 보호 구간이 위치하는 경우, 해당 심벌은 보호 구간을 제외한 부분심벌도 데이터 전송에 사용되지 않고 낭비되었다. 예를 들어, LTE에서 노멀 CP의 경우, 서브프레임은 14개의 심벌을 포함하고 확장 CP의 경우 12개의 심벌을 포함한다. 이 중 2개의 심벌이 보호 구간으로 인하여 사용되지 못한다. 만약 슬롯 단위로 스케줄링을 수행하는 경우, 하나의 슬롯에서 2개의 심벌이 보호 구간으로 인해 사용되지 못할 수 있으며 하나의 서브프레임에서 4개의 심벌이 보호 구간으로 인해 사용되지 못할 수 있다. 따라서, 보호 구간을 포함하는 심벌을 활용하여 신호 전송에 사용하는 방법이 필요하다.
도 11은 보호 구간을 포함하는 2개의 심벌에서 서로 다른 데이터를 전송하는 예를 나타낸다.
도 11과 같이 2개의 부분심벌 전체에 서로 다른 데이터를 실어 전송할 수 있다(상술한 바와 같이 보호 구간을 포함하는 심벌에서 보호 구간을 제외한 구간을 부분심벌이라 칭한다).
첫번째 부분심벌에 실린 데이터를 PSD1, 두번째 부분심벌에 실린 데이터를 PSD2라 칭한다면 PSD1과 PSD2는 서로 다른 데이터일 수 있다. 만약, 보호 구간이 심벌 구간에 비해 무시할 수 있을만큼 짧다면 PSD1, PSD2는 적절히 복조될 수 있다.
PSD1, PSD2는 시스템에서 요구하는 오류율을 만족하기 위해 다른 심벌에 비해 강력한 채널코딩을 할 필요가 있을 수 있다. 이를 위해 심벌 단위로 채널 코딩하여 전송할 수 있는 새로운 형태의 자원할당규칙을 정의할 수 있다. 또는 채널 코딩 과정에서 PSD1, PSD2를 반복하여 추가적인 코딩이득을 얻을 수 있다. PSD1, PSD2에는 더 많은 코딩이 부과되므로 복조과정에서 오류율을 줄일 수 있다.
이처럼 서로 다른 부분심벌에 서로 다른 데이터를 전송하는 경우, 각 부분심벌을 포함하는 심벌에 대해 서로 다른 심벌 인덱스를 부여하는 것이 바람직하다. 또한, 각 부분심벌을 포함하는 심벌에 대해서는 다른 심벌과 비교하여 채널 코딩이나 자원할당 규칙에 차이가 발생할 수 있다는 점을 고려하여 서브프레임의 마지막 심벌 인덱스를 차례로 부여할 수 있다. 예를 들어, 노멀 CP의 경우 서브프레임의 두번째 심벌에 심벌 인덱스 #0을 부여하고 세번째 심벌에 심벌 인덱스 #1을 부여하는 식으로 13번째 심벌까지 심벌 인덱스를 오름차순으로 부여한 후, 서브프레임의 첫번째 심벌에 심벌 인덱스 #12, 마지막 심벌에 심벌 인덱스 #13을 부여할 수 있다. 이러한 심벌 인덱스 방법에 의하여 심벌 인덱스 #0부터 #11까지는 기존의 방법과 같이 데이터를 전송/수신하고, 서브프레임의 심벌 인덱스 #12, #13에 대해서는 상기 기존의 방법과 다른 데이터 전송/수신 방법을 적용할 수 있다.
이하에서는 보호 구간을 포함하는 2개의 심벌에서 데이터를 중복하여 전송하는 방법을 설명한다.
도 12는 보호 구간을 포함하는 2개의 심벌에서 데이터를 중복하여 전송하는 예를 나타낸다.
도 12를 참조하면, 보호 구간은 서브프레임의 첫번째 심벌, 마지막 심벌에 포함될 수 있다. 편의상 상기 첫번째 심벌의 부분심벌에서 전송되는 데이터를 PSD-A(partial symbol data-A), 마지막 심벌의 부분심벌에서 전송되는 데이터를 PSD-B라 칭한다. 그리고 1 심벌에서 전송되는 1 심벌 데이터는 FSD(full symbol data)라 칭한다. 그러면, PSD-A, PSD-B는 1 심벌 데이터인 FSD의 일부분으로 PSD-A는 FSD의 뒷부분, PSD-B는 FSD의 앞부분에 해당할 수 있다. 일반적으로 FSD는 CP + 데이터의 순으로 구성되는데 CP는 상기 데이터의 뒷부분을 순환 복사(cyclically copy)한 것이다. 따라서, PSD-A와 PSD-B는 서로 간에 일부 데이터가 순환 복사된 것과 마찬가지로 동일하며 이러한 의미에서 PSD-A 또는 PSD-B가 전송되는 심벌을 순환 복사된 심벌(cyclic-copied symbol)이라 부를 수도 있다. 보호 구간을 포함하는 2개의 심벌에서 데이터를 중복하여 전송하는 것은 구체적으로 다음 2가지 경우가 있을 수 있다.
1) 첫째는 부분심벌 및 보호 구간, 즉 보호 구간을 포함하는 심벌 전체에서 데이터를 전송하는 방법이다. 즉, 서브프레임의 경계에 위치한 보호 구간을 포함하는 심벌에서 전송기는 보호 구간에도 불구하고 심벌 전체에서 신호를 인가하고 증폭하여 전송한다. 보호 구간에서도 데이터를 실어 전송하므로 보호 구간에서는 데이터의 왜곡이 발생할 수 있으나, 보호 구간이 없는 심벌과 동일한 처리과정을 통해 신호를 전송하므로 구현의 편의성이 높다. 예컨대, 첫번째 심벌에서는 보호 구간이 심벌의 앞부분에 위치하므로 심벌의 앞부분에 실린 데이터가 왜곡될 수 있다. 반면, 마지막 심벌에서는 보호 구간이 심벌의 뒷부분에 위치하므로 심벌의 뒷부분에 실린 데이터가 왜곡될 수 있다.
2) 둘째는 보호 구간을 포함하는 심벌에서 부분심벌에서만 데이터를 전송하는 방법이다. 즉, 보호 구간을 포함하는 심벌에서 보호 구간에서는 데이터를 전송하지 않고 부분심벌의 일부 또는 전부를 이용하여 데이터를 전송한다. 둘째 방법은 도 13을 참조하여 상세히 설명한다.
도 13은 보호 구간을 포함하는 2개의 심벌의 부분심벌에서만 데이터를 중복하여 전송하는 예를 나타낸다.
도 13을 참조하면, 보호 구간을 포함하는 심벌에서 부분심벌에서만 데이터를 전송하며, 이 때, 부분심벌의 특정 시점부터 신호를 인가하여 전송하거나, 부분심벌의 특정 시점까지만 신호를 인가하여 전송할 수 있다. 보호 구간에서는 데이터가 왜곡되어 생성되므로 데이터를 싣는 것이 큰 의미가 없을 수 있다. 따라서, 데이터의 왜곡이 발생하지 않는 부분심벌의 특정 시점에서부터 데이터를 전송하는 것이다.
예를 들어, 서브프레임의 첫번째 심벌에서 전송되는 데이터는 첫번째 심벌의 부분심벌에서 t1만큼 인가해서 생성된다. 마지막 심벌에서 전송되는 데이터는 마지막 심벌의 부분심벌에서 t2만큼 생성된다. 도 13에서 PSD-A는 1 심벌 데이터의 후반부, PSD-B는 상기 1 심벌 데이터의 전반부를 포함할 수 있다. PSD-A, PSD-B는 동일한 1 심벌 데이터로부터 생성되었지만, 각각 상기 1 심벌 데이터의 뒷부분, 앞부분이므로 그 내용은 다를 수 있다.
상기 t1, t2는 OFDM 수신기의 복조 방식에 따라 다양하게 설정될 수 있다. t1, t2는 예를 들어, 1 심벌 구간이 Tsym이라 할 때 t1=t2=(1/2)*Tsym일 수 있다. 또는 t1 ≥(1/2) Tsym, t2 ≥ (1/2) Tsym 일 수 있다. OFDM 수신기의 복조 과정에서 정확한 신호 복원을 위해 t1, t2는 각 심벌의 CP를 고려하여 ((1/2)* Tsym + CP의 길이)로 설정될 수 있다.
도 14는 보호 구간을 포함하는 2개의 심벌의 부분심벌에서 데이터를 중복하여 전송하는 다른 예를 나타낸다.
도 14를 참조하면 t1, t2는 Tsym 에서 보호 구간을 제외한 구간으로 설정될 수도 있다. 이 때 OFDM 전송기에서는 부분심벌 전체에 데이터를 할당하여 전송하고 OFDM 수신기에서는 필요한 부분을 선택하여 결합하는 방법을 사용할 수 있다.
1 심벌 데이터를 복원할 수 있다면 t1, t2는 서로 독립적으로 설정될 수도 있다.
도 15는 OFDM 수신기의 복조과정에서 부분심벌의 데이터를 결합하는 예를 나타낸다.
OFDM 수신기의 복조과정에서 PSD-B와 PSD-A의 순서로 결합하여 1 심벌 데이터를 복원할 수 있다. 이 때 PSD-B와 PSD-A의 결합은 FFT 유닛의 전단에서 수행되는 것이 바람직하다. 즉, FFT과정을 거쳐 복조 후 부분심벌을 결합하는 것보다는 수신된 무선 신호 자체를 먼저 결합한 후 FFT과정을 거쳐 하나의 심벌을 복원하는 것이 바람직하다.
이제 보호 구간을 포함하는 서브프레임에서 심벌 인덱스를 부여하는 방법을 설명한다.
도 16은 보호 구간을 포함하는 서브프레임에서 심벌 인덱스를 부여하는 일 예를 나타낸다.
LTE에서 노멀 CP의 경우, 서브프레임의 첫번째 심벌의 인덱스가 0, 두번째 심벌의 인덱스가 1, …, 마지막 심벌의 인덱스가 13이다. 그런데, 보호 구간을 포함하는 첫번째 심벌 또는 마지막 심벌은 데이터를 전송하지 않거나 전송할 수 있다. 즉, 첫번째 심벌 및 마지막 심벌은 종래와 같이 천공하여 데이터를 전송하지 않거나 본 발명에 따라 데이터를 전송할 수 있다. 이처럼 보호 구간을 포함하는 심벌은 특별한 용도로 사용될 수 있으므로 첫번째 심벌의 인덱스를 0으로 하지 않고 사용 가능한 마지막 심벌 인덱스를 할당할 수 있다.
예컨대, 노멀 CP의 경우 서브프레임의 두번째 심벌에 심벌 인덱스 #0을 부여하고 세번째 심벌에 심벌 인덱스 #1을 부여하는 식으로 13번째 심벌까지 심벌 인덱스를 오름차순으로 부여한 후, 첫번째 심벌의 부분심벌과 마지막 심벌의 부분심벌을 합쳐 하나의 심벌을 만든 후 마지막 심벌 인덱스 #12를 할당할 수 있다.
이러한 심벌 인덱싱 방법에 의하면 LTE와 같이 심벌 인덱스에 따라 인터리빙, 천공, 맵핑 등을 수행하는 기존방식을 변경하지 않고 이용할 수 있다. 다만, 마지막 심벌 인덱스를 가지는 심벌에 대해서만 본 발명에 따른 신호 전송방법을 적용할 수 있다. 본 발명에 따른 신호 전송방법을 적용하지 않는다면, 백홀 링크에서 중계국은 보호 구간을 포함하는 2개의 심벌을 사용할 수 없게 되는 경우 그 사용할 수 없는 심벌을 천공하고 데이터를 전송할 수 있다. 노멀 CP에서 중계국은 보호 구간을 포함하는 2개의 심벌을 천공하고 12개의 심벌을 사용하여 데이터를 전송할 수 있다. 서브프레임 내에 보호 구간이 있더라도 이를 무시하고 14개의 심벌을 모두 사용하는 경우, 중계국은 심벌을 천공하지 않고 전송할 수도 있다.

이하에서는 보호 구간을 포함하는 심벌에서 짧은 블록(short block,SB)을 이용하여 데이터를 전송하는 방법을 설명한다. 이하에서 짧은 블록을 이용하여 데이터를 전송하는 방법은 시간 영역에서 볼 때 짧은 심벌(shortened symbol)을 이용하여 데이터를 전송하는 방법과 마찬가지의 의미를 가진다. 여기서 짧은 심벌은 일반적인 심벌(도 3 참조)에 비해 시간 영역에서 짧은 구간을 가지는 심벌을 의미한다. 또한, 긴 블록을 이용하여 데이터를 전송하는 방법은 시간 영역에서 볼 때, 일반적인 심벌을 이용하여 데이터를 전송하는 방법과 마찬가지의 의미를 가진다.
도 17은 짧은 블록과 긴 블록을 비교하고, 짧은 블록을 생성하는 방법을 나타낸다.
짧은 블록은 긴 블록에 비해 시간 구간은 짧고 주파수 영역에서는 부반송파의 간격은 넓은 무선자원을 의미한다. 예컨대 부반송파 간격은 30KHz일 수 있다. 긴 블록(long block)은 시간 영역에서 하나의 심벌 전체에 해당하고 부반송파 간격은 짧은 블록에 비해 좁은 무선자원일 수 있다. 예컨대 부반송파 간격은 15KHz일 수 있다.
짧은 블록은 예컨대, 긴 블록의 1/2 시간 구간으로 구성될 수 있다. 즉, 긴 블록의 시간 구간을 T라고 하면 짧은 블록의 시간 구간은 T/2일 수 있다. 이 경우, 긴 블록과 주파수 영역에서 부반송파 간격을 비교하면, 긴 블록은 15KHz이고 짧은 블록은 30KHz일 수 있다. 짧은 블록이 전송할 수 있는 비트수는 긴 블록의 1/2일 수 있다. 긴 블록(long block, LB)이 N-포인트 IFFT를 통해 생성되는 경우 짧은 블록은 N/2-포인트 IFFT를 통해 생성될 수 있다. 짧은 블록은 일반적으로 긴 블록의 1/2 시간 구간으로 구성되나, 이는 제한이 아니다. 심벌 내의 보호 구간에 따라 짧은 블록은 긴 블록의 2/3 시간 구간(주파수 영역에서는 8 부반송파)로 구성될 수도 있다.
도 18은 보호 구간을 포함하는 심벌에 짧은 블록을 할당하는 예를 나타낸다.
도 18을 참조하면, 짧은 블록(SB1, SB2)을 첫번째 심벌 또는 마지막 심벌의부분심벌에 할당하여 사용할 수 있다. 보호구간을 포함하지 않는 심벌에서 전송할 수 있는 데이터를 절반으로 분할하여 하나는 SB1을 통해 전송하고, 나머지 절반을 SB2를 통해 전송할 수 있다. OFDM 수신기에서 SB1 + SB2를 수신한 후 결합하면 하나의 심벌에서 전송되는 데이터를 수신하는 결과가 된다. 따라서, 보호 구간으로 인해 낭비되는 심벌의 수를 1개 줄일 수 있다.
짧은 심벌을 이용하는 경우에도 SB1 + SB2로 형성되는 심벌에 서브프레임의 마지막 심벌 인덱스를 할당하는 것이 바람직하다. 서브프레임의 첫번째 심벌에 인덱스’0’을 할당하지 않고 두번째 심벌에 인덱스’0’을 할당한다. 세번째 심벌부터 차례로 오름차순으로 심벌 인덱스를 할당한다. 서브프레임의 첫번째 심벌에 포함된 짧은 블록 심벌(SB1)과 마지막 심벌에 포함된 짧은 블록 심벌(SB2)를 결합하여 하나의 심벌을 형성하고 이 형성된 심벌에 대해 심벌 인덱스 ‘12’를 할당한다.
도 19는 짧은 블록이 할당될 수 있는 무선자원 위치의 예를 나타낸다.
짧은 블록은 주파수 대역 중에서 신호 전송에 유리한 대역에 할당될 수 있다. 또한, 시간 영역에서 심벌의 첫번째 슬롯 또는 두번째 슬롯에 할당될 수 있다. 즉, 짧은 블록은 서브프레임의 특정 슬롯에 한정되어 할당되는 제약 없이 어느 슬롯에나 할당될 수 있다.
도 20 및 도 21은 짧은 블록에 인접한 자원블록에 보호 부반송파(guard subcarrier)를 설정하는 예를 나타낸다.
도 20에 도시된 바와 같이 보호 부반송파는 주파수 영역에서 짧은 블록에 인접한 자원블록에 설정될 수 있다. 짧은 블록 내에서의 부반송파 간격(subcarrier spacing)은 긴 블록의 2배로 30KHz이다. 따라서, 짧은 블록 내에서는 사용할 수 있는 부반송파의 개수가 긴 블록의 절반이다. 예를 들어, 긴 블록의 부반송파 개수가 12개인 경우 짧은 블록의 부반송파 개수는 6개이다. 짧은 블록에 인접한 긴 블록의 부반송파에는 신호를 할당하지 않음으로써 보호 부반송파의 역할을 하게 할 수 있다. 이러한 경우, 도 21에 도시된 바와 같이 짧은 블록에 포함된 6개의 부반송파를 모두 사용할 수 있다.
도 22 내지 도 26은 짧은 블록 내에 보호 부반송파를 설정하는 예를 나타낸다.
도 22 내지 도 24에서는 짧은 블록의 주파수 영역에서의 양쪽 경계에 모두 보호 부반송파가 설정된 예를 나타내고 있으나 이는 제한이 아니다. 즉, 도 25 또는 도 26과 같이 어느 한쪽 경계에만 보호 부반송파가 설정될 수도 있다. 양쪽 경계에 모두 보호 부반송파가 설정되는 경우 짧은 블록 내에서 사용할 수 있는 부반송파의 개수가 4개로 줄어들게 되나 인접한 자원블록에 미치는 간섭을 줄일 수 있는 장점이 있다. 한쪽 경계에만 보호 부반송파를 설정하는 경우 짧은 블록 내에서 사용할 수 있는 부반송파의 개수가 5개로, 양쪽 경계에 모두 부반송파를 설정하는 경우보다 사용할 수 있는 부반송파의 개수가 증가한다. 따라서, 백홀 링크의 채널 상황 예를 들어 백홀 링크의 데이터 량이나 채널 상태 등을 고려하여 보호 부반송파를 어떻게 설정할 것인지를 결정할 수 있다. 짧은 블록 내에 설정되는 보호 부반송파로 인해 인접한 자원블록에 미치는 간섭을 줄일 수 있다. 도 20 내지 도 26과 달리 보호 부반송파는 연속하는 복수의 부반송파로 구성될 수도 있다.
도 27 및 도 28은 다중 사용자 환경에서 서브프레임에 포함되는 짧은 블록과 보호 부반송파의 할당 예들을 나타낸다.
도 27 및 도 28에 도시된 바와 같이 중계국에 할당되는 주파수 대역에서 보호 구간을 포함하는 심벌의 부분심벌은 짧은 블록으로 구성될 수 있다. 보호 구간을 포함하는 심벌을 제외한 나머지 심벌들은 모두 긴 블록으로 구성될 수 있다. 도 27에서는 주파수 영역에서 짧은 블록에 인접한 자원블록에 보호 부반송파가 설정된다. 즉, UE_a, 또는 UE_b에 할당된 주파수 대역에 보호 부반송파가 위치한다. 반면 도 28에서는 주파수 영역에서 짧은 블록 내의 경계에 위치한 부반송파가 보호 부반송파로 설정된다.
도 29 및 도 30은 백홀 상향링크에서 사용될 수 있는 서브프레임 구조의 예를 나타낸다. 도 29 및 도 30에서 중계국이 기지국으로 상향링크 제어신호를 전송하는 영역을 R-PUCCH로 나타내고, 데이터를 전송하는 영역을 R-PUSCH로 나타낸다.
도 29를 참조하면, R-PUCCH 영역에서 첫번째 심벌 및 마지막 심벌에 보호 구간이 포함되는 경우, 상기 첫번째 심벌 및 마지막 심벌의 부분심벌에서는 신호를 전송하지 않을 수 있다. 그러면, 보호 구간을 포함하는 심벌의 부분심벌은 매크로 단말에게 할당되는 주파수 대역 또는 R-PUSCH 대역과의 간섭을 방지하는 보호 밴드(guard band)의 역할을 수행할 수 있다. 이러한 의미에서 상기 첫번째 심벌 및 마지막 심벌의 부분심벌은 보호자원(guard resource)이라 칭할 수 있다. 중계국에 할당된 주파수 대역이 큰 경우 보호자원의 비율은 상대적으로 매우 작기 때문에 자원낭비는 크게 문제되지 않는다. 보호자원은 부분심벌과 반드시 일치할 필요는 없으며 부분심벌보다 크거나 작게 설정될 수 있다.
도 30을 참조하면, 중계국에 할당된 대역에서 첫번째 심벌 및 마지막 심벌에 보호 구간이 포함되는 경우, 상기 첫번째 심벌 및 마지막 심벌의 부분심벌은 매크로 단말에게 할당될 수 있다. 이러한 경우, 상기 첫번째 심벌 및 마지막 심벌의 부분심벌과 인접한 자원블록에 보호자원을 설정할 수 있다. 예컨대, 매크로 단말은 PUSCH 대역에서 상기 첫번째 심벌 및 마지막 심벌의 부분심벌과 인접한 적어도 하나의 부반송파는 사용하지 않을 수 있다. 다시 말해 매크로 단말에게 할당된 무선자원 중 일부(1 부반송파부터 복수의 자원블록까지 다양할 수 있다)를 간섭을 방지하기 위해 사용하지 않는 것이다.
상술한 도 29 및 도 30의 방법은 결합되어 사용될 수 있다. 즉, 보호 구간을 포함하는 심벌의 부분심벌에서 중계국은 신호를 전송하지 않는다. 그리고, 매크로 단말은 중계국에 의해 사용되지 않는 부분심벌에서 신호를 전송하되, 상기 부분심벌과 인접한 PUSCH 영역의 일부 무선자원에서는 신호를 전송하지 않을 수 있다. 이상에서 상향링크 서브프레임의 경우를 예로 하였으나 하향링크 서브프레임에서도 마찬가지로 적용될 수 있다.
이하에서는 도 12 내지 도 15를 참조하여 설명한 방법, 즉 보호구간을 포함하는 심벌의 부분심벌에서 데이터를 반복하여 전송하는 방법(순환 복사된 심벌을 사용하는 방법)에 의할 때 수신기에서 복조한 신호를 수학적으로 검토한다.
A(k)를 첫번째 심벌의 k번째 부반송파 신호, B(k)를 마지막 심벌의 k번째 부반송파 신호라 하자. 그러면, 첫번째 심벌, 마지막 심벌의 시간 영역의 신호는 다음 수학식과 같이 결정될 수 있다.
Figure PCTKR2010003485-appb-M000001
수학식 1에서 N은 FFT 사이즈로 2의 멱승값이다. 첫번째 심벌의 신호와 마지막 심벌의 신호를 결합한 시간 영역의 신호를 c(n)이라고 하면, c(n)은 다음 수학식과 같이 결정될 수 있다.
Figure PCTKR2010003485-appb-M000002
수신기에서 c(n)을 FFT한 후, 추출한 M번째 부반송파 신호를 C(M)이라 하면, C(M)은 다음 수학식과 같이 나타낼 수 있다. 여기서 M번째 부반송파 신호는 순환복사되어 A(M)=B(M)이라 가정한다.
Figure PCTKR2010003485-appb-M000003
즉, 원하는 신호 A(M)과 그 외의 부반송파 간 간섭(inter-carrier interference, ICI)으로 표현된다. 수학식 3에서 ICI는 f(x)의 영향을 받는다.
도 31은 수학식 3의 f(x)와 sync함수를 나타내는 그래프이다.
도 31을 참조하면, 수학식 3에서 f(x)는 싱크(sync) 함수와 유사한 형태를 가진다. f(x)는 x가 짝수일 때 0이다. 즉, 수학식 3에서 (k-M)이 짝수인 경우 f(k-M)은 0이 된다. 따라서, (k-M)을 짝수가 되게 하는 부반송파 k로부터는 ICI가 없음을 의미한다. (k-M)이 홀수가 되게 하는 부반송파 k에 대해서는 해당 부반송파 k에 순환 복사된 심벌이 실려있어 A(k)=B(k)가 성립한다면 마찬가지로 ICI가 없어진다.
즉, 순환 복사된 부반송파는 순환 복사되지 않은 부반송파로부터 싱크(sync) 함수의 크기에 상응하는 ICI를 받게 된다. 기지국-중계국 간의 백홀 링크에 할당되는 주파수 대역(중계국 대역)과 기지국-단말 간의 링크에 할당되는 주파수 대역(매크로 액세스 대역)이 각각 주파수 영역에서 연속한 부반송파들로 구성된다면, 중계국 대역과 매크로 액세스 대역 사이에 보호 부반송파를 두어 순환 복사된 부반송파에서 전송되는 심벌을 복원할 수 있다. 보호 부반송파를 두지 않는다면 강력한 채널 코딩이나 신호의 반복을 통해 매크로 액세스 대역으로부터 받는 ICI를 극복할 수 있다.
이하에서는 보호 구간을 포함하는 심벌에서 짧은 블록(short block, SB)을 이용하여 데이터를 전송하는 방법을 사용하는 경우, 수신기에서 복조한 신호를 수학적으로 검토한다.
A(k)를 짧은 블록으로 구성된 심벌(이하 짧은 블록 심벌)의 k번째 부반송파 신호라 하고, B(k)를 긴 블록으로 구성된 심벌(이하 긴 블록 심벌)의 k번째 부반송파 신호라 하자. 짧은 블록 심벌의 시간 영역에서의 신호 a(n), 긴 블록 심벌의 시간 영역에서의 신호 b(n)은 다음 수학식과 같이 나타낼 수 있다.
Figure PCTKR2010003485-appb-M000004
여기서, N은 FFT 사이즈로 2의 멱승값이다.
수신기에서 수신하는 신호 c(n)은 다음 수학식과 같이 나타낼 수 있다.
Figure PCTKR2010003485-appb-M000005
수신기는 긴 블록 심벌을 디코딩하기 위해 c(n)에 N-FFT를 하고 M번째 부반송파 신호를 추출할 수 있다. M번째 부반송파 신호 C(M)은 다음 수학식과 같다.
Figure PCTKR2010003485-appb-M000006
C(M)에 포함된 ICI 요소는
Figure PCTKR2010003485-appb-I000001
이다.
(2k-M)이 0이면(즉, k=M/2) ICI 요소는 A(k)가 된다. 즉, 긴 블록 심벌의 M번째 부반송파를 사용하기 위해서는 짧은 블록 심벌의 M/2번째 부반송파는 사용하지 않아야 한다. k가 M/2가 아니면 ICI 요소는 f(x)에 의해 결정된다.
수신기는 짧은 블록 심벌의 신호를 디코딩하기 위해 c(n)의 후반부에 N/2-FFT를 인가하고 M번째 부반송파 신호를 추출한다. 짧은 블록 심벌의 M번째 부반송파 신호를 C’(M)이라 하면, C’(M)은 다음 수학식과 같다.
Figure PCTKR2010003485-appb-M000007
C’(M)에 포함된 ICI 요소는
Figure PCTKR2010003485-appb-I000002
가 된다. 이 때, (k-2M)이 0 즉, k=2M이면 ICI 요소는 B(k)가 그대로 나온다. 즉, 짧은 블록 심벌의 M번째 부반송파를 사용하기 위해서는 긴 블록 심벌의 2M번째 부반송파는 사용되지 않아야 한다.
k가 2M이 아닌 경우에는 ICI 요소가 f(x)에 의해 결정된다. 상술한 순환 복사된 심벌을 사용하는 경우와 비교해보면, 간섭 평균 효과가 없어져서 간섭 전력이 3dB 높아진다. 반면 서브프레임의 마지막 심벌에 짧은 블록 심벌이 하나 더 존재하므로 이 짧은 블록 심벌을 활용하면 간섭 전력이 3dB 높아지는 것을 방지할 수 있다.

이하에서는 중계국이 보호 구간을 포함하는 서브프레임에서 SRS를 전송하는 방법을 설명한다.
사운딩 참조신호(sounding reference signal, SRS)은 단말이나 중계국이 기지국으로 전송하는 참조신호로 상향링크 데이터나 제어신호 전송과 관련되지 않는 참조신호이다. SRS는 주로 상향링크(매크로 상향링크 또는 백홀 상향링크)에서 주파수 선택적 스케줄링을 위한 채널 품질 추정을 위해 사용되나 다른 용도로 사용될 수도 있다. 예를 들면 파워 제어나 최초 MCS 선택, 데이터 전송을 위한 최초 파워 제어 등에도 사용될 수 있다.
SRS에 사용되는 SRS 시퀀스는 DM RS에 사용되는 시퀀스와 동일할 수 있다. SRS 시퀀스의 길이는 자원블록 사이즈*(2, 3, 및/또는 5의 배수)로 제한될 수 있다. 가장 작은 SRS 시퀀스의 길이는 12일 수 있다. 예컨대, 전송 가능한 SRS 대역 NSRS RB 와 SRS 시퀀스 길이 MSRS SC는 다음 식과 같이 주어질 수 있다.
Figure PCTKR2010003485-appb-M000008
여기서, α2, α3, α5는 양의 정수 집합이다. SRS는 동일한 자원블록 및 동일한 부반송파를 사용하되, 동일한 기본 시퀀스에 서로 다른 순환 쉬프트 값을 사용하여 직교한 성질을 유지할 수 있다. 순환 쉬프트 값은 각 단말 또는 중계국마다 설정될 수 있다.
먼저, 단말이 기지국으로 매크로 SRS를 전송하는 경우를 살펴보고 본 발명에 대해 설명한다.
도 32는 복수의 단말이 기지국으로 매크로 SRS를 전송하는 예를 나타낸다.
도 32를 참조하면, 단말 #1은 전 주파수 대역에 걸쳐 빗(comb) 형태 즉, 매 2개의 부반송파 중 하나의 부반송파를 통해 매크로 SRS를 전송한다. 그리고 단말 #2 내지 #4는 자신에게 할당된 SRS 대역(즉, SRS를 전송하는 대역)에서 빗 형태로 할당된 부반송파를 통해 매크로 SRS를 전송한다. 이처럼 빗 형태로 부반송파를 할당하는 것을 인터리브드 FDMA라 칭하기도 한다. 또한 각 단말은 매크로 SRS가 전송되는 SC-FDMA 심벌에서 긴 블록을 이용하는 경우, 상기 SC-FDMA 심벌 내에서 2번에 걸쳐 SRS를 반복하여 전송한다.
도 33은 본 발명의 일 실시예에 따른 중계국의 SRS 전송 방법을 나타낸다.
중계국의 SRS 전송방법은 중계국이 기지국으로부터 사운딩 참조신호 파라미터들을 수신하는 단계(S100), 중계국이 사운딩 참조신호 파라미터들을 이용하여 무선자원을 할당하는 단계(S200), 할당된 무선자원을 통해 기지국으로 SRS를 전송하는 단계(S300)를 포함한다. 여기서, 사운딩 참조신호 파라미터들이 지시하는 무선자원은 시간 영역에서 보호 구간이 위치하는 심벌을 포함한다. 이하 각 단계에 대해 상세히 설명한다.
상기 S100 단계에서 중계국이 기지국으로부터 수신하는 사운딩 참조신호 파라미터들은 예를 들어 다음 표와 같을 수 있다.
SRS parameter 의미 신호 전송 타입
srsBandwidthConfiguration 셀 내의 최대 SRS 대역 셀 특정적
srsSubframeConfiguration 셀 내에서 SRS가 전송될 수 있는 서브프레임들의 집합 셀 특정적
srsBandwidth 중계국의 SRS 전송 대역 중계국 특정적
frequencyDomainPosition 주파수 영역 위치 중계국 특정적
srsHoppingBandwidth 주파수 홉(hop) 크기 중계국 특정적
Duration 단일 SRS 또는 주기적 SRS 인지를 나타냄 중계국 특정적
srsConfigurationIndex 주기 및 서브프레임 오프셋 중계국 특정적
transmissionComb 전송 빗 오프셋 중계국 특정적
nCS SRS 순환 쉬프트 중계국 특정적
srsResourcetype SRS가 전송되는 자원블록의 타입을 지시 셀 특정적 또는 중계국 특정적
상기 표 1에서‘srsBandwidthConfiguration’은 셀 내에서 SRS가 전송될 수 있는 최대 대역을 나타낸다.
‘srsSubframeConfiguration’은 각 무선 프레임 내에서 SRS가 전송될 수 있는 서브프레임들의 가능한 집합을 지시한다. ‘srsSubframeConfiguration’은 셀 특정적으로 브로드캐스트되는 신호로 셀 내의 중계국에게 전달되며, 예를 들어, 4 비트로 구성될 수 있다. SRS는 SRS가 전송될 수 있는 서브프레임들 내에서 마지막 SC-FDMA 심벌에서 전송될 수 있다. SRS가 전송되는 SC-FDMA 심벌에서는 중계국의 백홀 상향링크 데이터 전송이 허용되지 않을 수 있다.
‘srsBandwidth’는 중계국의 SRS 전송 대역을 나타낸다. SRS 전송 대역은 중계국의 전송 전력, 기지국이 지원할 수 있는 중계국의 수 등에 따라 결정될 수 있다. ‘srsBandwidth’에 의해 지시되는 중계국의 SRS 전송 대역에 대해서는 후술한다.
‘Duration‘은 기지국이 중계국에게 한번의 SRS 전송을 요구하는지, 아니면 주기적으로 SRS를 전송하도록 설정하는지를 나타내는 파라미터이다. 이 파라미터에 의해 중계국은 한번만 SRS를 전송할 수도 있고, 또는 주기적으로 SRS를 기지국으로 전송할 수도 있다.
‘ransmissionComb’은 중계국이 전송하는 SRS가 어느 부반송파에 할당되는지를 나타낸다. 다중 사용자 환경에서 주파수 선택적 스케줄링을 지원하기 위해, 서로 다른 단말 또는 중계국으로부터 전송되고. 서로 다른 SRS 대역을 가지는 SRS가 겹칠 수 있게 하는 것이 필요하다. 이를 지원하기 위해 SRS가 전송되는 SC-FDMA 심벌에는 반복 팩터(RePetition Factor, RPF)가 2인 인터리브드 FDMA(interleaved FDMA, IFDMA)가 사용된다. 예를 들어, SRS 전송 대역에서 홀수번째 부반송파에서 SRS가 전송되는지 또는 짝수번째 부반송파에서 SRS가 전송되는지를 나타낼 수 있다. 시간 영역에서 RPF는 주파수 영역에서는 데시메이션 팩터(decimation factor)로 작용한다. SRS가 전송되는 SC-FDMA 심벌에서 시간 영역에서 SRS가 2번 반복되는 것에 의해 SRS가 전송되는 부반송파는 빗(comb)과 같은 스펙트럼(comb-like spectrum)을 가지게 된다. 다시 말해 SRS가 전송되는 부반송파는 할당된 사운딩 대역에서 짝수번째 부반송파(또는 홀수번째 부반송파)들로만 구성된다. SRS가 전송되는 심벌의 IFDMA 구조 때문에 중계국은 ‘transmissionComb’이라는 파라미터를 할당받는다. ‘transmissionComb’은 0 또는 1의 값을 가지며 어디서 SRS가 전송되는지 알려준다. 그러나, 이는 제한이 아니며 4n, 4n+1, 4n+2, 4n+3번째 부반송파 등과 같이 매 4개의 부반송파 중 몇번째 부반송파에 할당되는지를 나타낼 수도 있다. 이러한 경우 시간 영역에서 SRS는 1/4 심벌을 차지하게 된다.
‘srsResourcetype’는 SRS가 할당되는 자원블록이 긴 블록인지 아니면 짧은 블록인지를 나타내는 파라미터이다. 즉, 중계국은 이 파라미터에 따라 짧은 블록에 SRS를 할당하여 전송할 수도 있고, 긴 블록에 SRS를 할당하여 전송할 수도 있다.
중계국은 상술한 바와 같은 사운딩 참조신호 파라미터들을 이용하여 무선자원을 할당한다.
도 34는 중계국이 SRS를 전송하는 상향링크 서브프레임의 구조의 예를 나타낸다.
상향링크 서브프레임의 주파수 영역에서 경계에 위치한 자원블록에는 단말의 상향링크 제어신호가 전송되는 PUCCH가 할당되고, 이러한 PUCCH에 인접하여 중계국이 백홀 상향링크 제어신호를 전송하는 백홀 PUCCH(backhaul PUCCH)가 할당될 수 있다. 백홀 PUCCH 영역 또는 백홀 상향링크 데이터가 전송되는 백홀 PUSCH(도 34에서 backhaul이라 표시한 영역)영역은 서브프레임의 경계에서 보호 구간을 포함할 수 있다. 따라서, 중계국은 서브프레임의 마지막 심벌 전체를 사용하기는 어렵다. 중계국은 기지국으로 SRS를 전송하는 경우, 마지막 심벌의 일부만을 이용할 수 있다. 예를 들면, 마지막 심벌의 전반부에 짧은 블록을 할당하고 이러한 짧은 블록을 이용하여 SRS(SB-SRS)를 전송할 수 있다. SB-SRS는 시간 측면에서 짧은 심벌에 할당되는 SRS를 의미할 수 있다.
반면 단말은 서브프레임의 마지막 심벌에 보호 구간을 포함하지 않으므로 심벌 전체를 이용하여 매크로 SRS를 전송할 수 있다. 즉, 긴 블록을 이용한 SRS(LB-SRS)를 전송할 수 있다. LB-SRS는 시간 측면에서 일반적인 노멀 심벌에 할당되는 SRS를 의미할 수 있다. 이 때, PUCCH가 할당되는 주파수 대역에 대해서도 중계국이 SRS를 전송할 것인지 여부가 문제될 수 있다.
도 35 내지 도 38은 ‘srsBandwidth’파라미터에 의해 설정될 수 있는 중계국의 SRS 전송 대역의 예들을 나타낸다.
도 35에서는 중계국이 전송하는 SRS의 전송 대역이 단말의 PUCCH 영역은 제외하는 경우를 나타낸다. 도 36은 중계국이 전송하는 SRS의 전송 대역이 단말의 PUCCH영역을 포함하는 경우를 나타낸다.
도 37 및 도 38에서는 백홀 PUCCH가 서브프레임의 주파수 대역의 경계에 위치하는 경우를 나타낸다. 이 때 중계국이 전송하는 SRS 전송 대역은 도 37과 같이 백홀 PUCCH 영역을 제외할 수도 있고, 도 38과 같이 포함할 수도 있다. 또한, 단말은 백홀 PUCCH가 전송되는 대역에서는 SRS를 전송하지 않을 수 있다. 그 결과 매크로 SRS에 의하여 백홀 PUCCH 영역의 마지막 심벌이 천공(puncturing) 되는 것을 방지할 수 있다.
긴 블록 SRS와 같이 짧은 블록 SRS도 CAZAC(Constant amplitude zero autocorrelation) 또는 Zadoff-Chu 시퀀스에 의해 확산되어 간섭을 줄이고 낮은 PAPR/CM 특성을 유지할 수 있다. 특히, 이러한 시퀀스에 의한 높은 처리 이득을 얻기 위해 짧은 블록 SRS와 긴 블록 SRS의 전송 대역 및 주파수 위치는 동일할 수 있다.
짧은 블록 SRS를 위한 전송 대역, 전송 빗, 순환 쉬프트, 호핑 룰 등은 상기 사운딩 참조신호 파라미터에 의해 중계국에게 알려질 수 있다. 이 때 새로운 규칙을 정의할 수도 있고, 긴 블록 SRS에 사용되는 규칙을 동일하게 사용하되, 새롭게 요구되는 파라미터들만 추가할 수도 있다.

이제 중계국이 사운딩 참조신호 파라미터에 의해 할당된 무선자원을 통해 기지국으로 SRS를 전송하는 방법과 이러한 SRS를 기지국이 수신하는 과정을 설명한다.
도 39는 중계국(또는 단말)이 긴 블록 SRS를 생성하여 전송하고, 기지국이긴 블록 SRS를 수신하는 과정을 나타낸다.
도 39를 참조하면, 중계국은 전송하고자 하는 긴 블록 SRS인 A1을 패러랠 신호로 변환한 후, DFT(discrete Fourier Transform)하고 부반송파에 맵핑한다. 그 후 N-포인트 IFFT(Inverse Fast Fourier Transform)을 거쳐 시리얼 신호로 변환한다. 그러면, 중계국이 전송하고자 하는 신호 A1은 하나의 심벌에서 2번 반복되는 형태의 신호가 된다(B1이 두 번 반복).
기지국은 무선 채널을 통해 수신한 신호를 N-포인트 FFT, 부반송파 디맵핑, IDFT를 거쳐 긴 블록 SRS를 복원하게 된다.
도 40은 중계국이 짧은 블록 SRS를 생성하여 전송하고, 기지국이 짧은 블록 SRS를 수신하는 과정을 나타낸다.
도 39와 비교하여 짧은 블록 SRS인 A2는 IFFT를 수행하는 과정에서 N-포인트가 아니라 N/2-포인트 IFFT를 수행한다. 즉, 긴 블록 SRS에 비하여 샘플링하는 포인트의 수가 절반이다. 그러면, 짧은 블록 SRS는 1심벌에서 1/2 심벌에만 신호가 배치된다(B2 참고). 또한, 기지국은 무선 채널을 통해 수신한 신호를 N/2-포인트 FFT를 거쳐 부반송파 디맵핑, IDFT를 거쳐 짧은 블록 SRS를 복원한다.
도 41은 긴 블록 SRS와 짧은 블록 SRS의 각 부반송파 파형과 부반송파 간격을 비교하여 나타낸다.
도 41을 참조하면, 긴 블록 SRS는 15KHz 부반송파 간격을 가지는 부반송파들 중 홀수번째 부반송파들(또는 짝수번째 부반송파들)에 할당되며, 짧은 블록 SRS는 30KHZ 부반송파 간격을 가지는 부반송파들에 할당된다.
따라서, 긴 블록 SRS나 짧은 블록 SRS나 할당되는 부반송파들의 간격은 30kHz로 동일하나, 주파수 영역에서의 파형을 비교하면, 긴 블록 SRS와 짧은 블록 SRS는 서로 파형이 다를 수 있다. 즉 각 부반송파는 주파수 영역에서 싱크(sync) 함수의 형태를 가지는데 값이 0이 되는 점(zero crossing point)의 간격을 비교하면, 짧은 블록 SRS의 경우 긴 블록 SRS보다 2배가 넓은 형태가 된다. 따라서, 긴 블록 SRS가 전송되는 각 부반송파가 최대값을 가지는 점에서 짧은 블록 SRS가 전송되는 각 부반송파의 값이 정확히 0이 되는 것은 아니다. 그러나 그 때의 값의 크지 않기 때문에 미치는 영향은 크지 않다.

도 42는 본 발명의 일 실시예에 따른 전송기를 나타낸다.
전송기는 중계국의 일 부분일 수 있다. 전송기는 변조기, DFT유닛, 부반송파 맵퍼, IFFT 유닛, RF 유닛을 포함할 수 있다.
변조기는 부호화된 비트를 신호 성상(signal constellation) 상의 위치를 표현하는 심벌로 맵핑하여 변조된 심벌들을 생성한다. 변조 방식(modulation scheme)에는 제한이 없으며, m-PSK(m-Phase Shift Keying) 또는 m-QAM(m-Quadrature Amplitude Modulation)일 수 있다. 변조된 심벌들은 DFT 유닛에 입력된다. DFT 유닛은 입력되는 심벌들에 DFT를 수행하여 복소수 심벌들(complex-valued symbol)을 출력한다. 예를 들어, K 심벌들이 입력되면, DFT 크기(size)는 K이다(K는 자연수).
부반송파 맵퍼는 복소수 심벌들을 주파수 영역의 각 부반송파에 맵핑시킨다. 복소수 심벌들은 데이터 전송을 위해 할당된 자원블록에 대응하는 자원요소들에 맵핑될 수 있다. IFFT 유닛은 입력되는 심벌에 대해 IFFT를 수행하여 시간 영역 신호인 데이터를 위한 베이스밴드 신호를 출력한다. IFFT 크기를 N이라 할때, N은 채널 대역폭(channel bandwidth)에 의해 결정될 수 있다(N은 자연수). CP 삽입부(미도시)는 데이터를 위한 베이스밴드 신호의 뒷부분 일부를 복사하여 데이터를 위한 베이스밴드 신호 앞에 삽입한다. CP 삽입을 통해 ISI(Inter Symbol Interference), ICI(Inter Carrier Interference)가 방지되어 다중 경로 채널에서도 직교성이 유지될 수 있다.
이와 같이, DFT 확산(spreading) 후 IFFT가 수행되는 전송 방식을 SC-FDMA(single-carrier frequency division multiple access)라 한다. SC-FDMA는 DFTS-OFDM(DFT spread-OFDM)이라고도 할 수 있다. SC-FDMA에서는 PAPR(peak-to-average power ratio) 또는 CM(cubic metric)이 낮아질 수 있다. SC-FDMA 전송 방식을 이용하는 경우, 전송전력 효율이 높아질 수 있다.
도 43은 본 발명의 일 실시예에 따른 수신기를 나타낸다. 수신기는 기지국의 일 부분일 수 있다.
수신기는 RF유닛, FFT유닛, 디맵퍼(demapper), IDFT 유닛을 포함할 수 있다. 또한, IFFT 유닛, 짧은 블록 신호 제거 유닛(SB signal cancellation unit)을 포함할 수 있다.
RF 유닛은 적어도 하나의 안테나를 포함할 수 있으며 무선 채널을 통해 무선 신호를 수신한다. 수신된 무선 신호는 시리얼 신호에서 패러랠 신호로 변환된 후, FFT 유닛에 의해 주파수 영역의 신호로 변환된다. 상기 주파수 영역의 신호는 디맵퍼, IDFT 유닛을 통해 시간 영역의 신호로 변환된다.
IFFT 유닛은 FFT 유닛을 통해 주파수 영역의 신호로 변환된 수신 신호를 다시 시간 영역의 신호로 변환하는 역할을 수행한다. 이 때 FFT 유닛이 N-포인트 FFT를 수행하였다면, IFFT 유닛은 N/2-포인트 IFFT를 수행할 수 있다. 짧은 블록 신호 제거 유닛은 RF 유닛을 통해 수신한 신호에서 IFFT 유닛으로부터 입력받은 짧은 블록 신호를 빼는 역할을 수행한다. 즉, RF 유닛을 통해 수신한 신호에서 짧은 블록 신호를 제거하는 역할을 수행한다.

도 44는 기지국의 수신기에서 긴 블록 SRS와 짧은 블록 SRS를 동시에 수신한 경우, 2개의 SRS를 처리하는 과정을 나타낸다.
기지국은 서브프레임의 마지막 심벌에서 단말이 전송한 긴 블록 SRS와 중계국이 전송한 짧은 블록 SRS를 동시에 수신할 수 있다. 즉, 수신기의 RF 유닛에서 수신한 아날로그 신호(A 지점의 신호)는 긴 블록 신호와 짧은 블록 신호가 혼합된 신호일 수 있다.
이러한 경우, 수신기는 수신한 아날로그 신호를 샘플링을 한 후 샘플링된 신호를 패러랠한 신호(B 지점의신호)로 변환한다. 그 후, 수신기는 패러랜 신호를 N-포인트 FFT를 수행한다. 예컨대, 반송파 대역이 20MHz인 경우, FFT 처리에 입력되는 신호 샘플의 수 N은 2048일 수 있다. 수신기는 FFT 수행 후 얻어진 신호에서 1024 샘플(짝수번째 또는 홀수번째 반송파의 신호만을 획득하여 얻어질 수 있다)을 얻을 수 있는데 이는 짧은 블록 신호의 샘플에 해당한다(C 지점의 신호). 짧은 블록 신호의 샘플은 IDFT를 거쳐 짧은 블록 신호로 복원된다.
A 지점의 신호에 포함된 긴 블록 신호는 샘플링된 신호로부터 바로 얻을 수는 없다. 샘플링된 신호에 짧은 블록 신호와 긴 블록 신호가 둘다 포함되어 있기 때문이다. 따라서, 긴 블록 신호에 대한 샘플만을 뽑아내기 위해서 추가적인 처리가 필요하다.
상술한 바와 같이 C 지점의 신호는 짧은 블록 신호의 샘플에 해당한다. 수신기는 이러한 짧은 블록 신호의 샘플을 전송기에서 생성된 짧은 블록 신호와 동일한 신호로 생성시킨다. 수신기는 생성된 짧은 블록 신호를 A 지점의 신호에서 빼는 연산을 수행하여 A 지점의 신호에서 짧은 블록 신호로 인한 간섭을 제거 할 수 있다. 물론 이러한 과정은 A 지점의 신호가 아니라 B 지점의 신호에서 짧은 블록 신호를 제거하여 구현될 수도 있다.
수신기는 수신 신호에서 짧은 블록 신호가 제거된 신호를 패러랠 신호로 변환하고(D 지점의 신호), 다시 N-포인트 FFT를 수행한다(E 지점의 신호). 이 후 IDFT를 통해 긴 블록 신호를 복원한다.
이하에서는 상술한 도 44의 수신기에서 A, B, C, E 지점에서의 주파수 영역에서의 신호를 설명한다.
도 45는 도 44의 수신기에서 처리지점 A에서의 주파수 영역에서의 신호를 나타낸다. 도 45는 긴 블록 SRS 또는 짧은 블록 SRS의 실제 파형이 아니라 각 부반송파의 파형을 병렬적으로 나타낸 것이다. 실제 파형은 각 부반송파를 합한 결과와 동일한다. 긴 블록 SRS와 짧은 블록 SRS는 부반송파들의 간격은 30kHz로 동일하나, 주파수 영역에서의 파형은 서로 다르다. 짧은 블록 SRS의 제로 크로싱 포인트들의 간격이 더 넓은 형태를 가진다. A 지점의 신호에서 샘플링 포인트는 15KHz 간격으로 구성될 수 있다.
도 46 내지 도 48은 각각 도 44의 수신기에서 처리지점 B, C, E 에서의 주파수 영역에서의 신호를 나타낸다.
도 46을 참조하면, B지점에서 긴 블록 SRS와 짧은 블록 SRS는 서로 혼합된 형태로 모두 존재한다. 예를 들어, 긴 블록 SRS는 홀수번째 부반송파에서 값을 가지고, 짧은 블록 SRS는 짝수번째 부반송파 및 홀수번째 부반송파에서 값을 가질 수 있다. 짧은 블록 SRS는 홀수번째 부반송파에서도 값을 가지므로 긴 블록 SRS에 간섭을 미치게 된다.
도 47을 참조하면, C 지점의 신호는 짝수번째 부반송파 및 홀수번째 부반송파에서 값을 가진다. 즉, C 지점의 신호는 짧은 블록 SRS만 포함할 수 있다. 도 48을 참조하면, E 지점의 신호 즉, N-포인트 FFT를 거친 신호는 긴 블록 SRS만 포함할 수 있다.
도 49는 기지국 및 중계국을 나타내는 블록도이다.
기지국(100)은 프로세서(processor, 110), 메모리(memory, 120) 및 RF부(RF(radio frequency) unit, 130)를 포함한다. 프로세서(110)는 제안된 기능, 과정 및/또는 방법을 구현한다. 즉, 중계국에게 사운딩 참조신호 파라미터들을 전송하고, 사운딩 참조신호 파라미터들에 의해 지시되는 무선자원에서 중계국으로부터 전송되는 사운딩 참조신호를 수신하고 복조한다. 상술한 수신기의 기능은 프로세서(110)에 의해 구현될 수 있다. 메모리(120)는 프로세서(110)와 연결되어, 프로세서(110)를 구동하기 위한 다양한 정보를 저장한다. RF부(130)는 프로세서(110)와 연결되어, 무선 신호를 전송 및/또는 수신한다.
중계국(200)은 프로세서(210), 메모리(220) 및 RF부(230)를 포함한다. 프로세서(210)는 사운딩 참조신호 파라미터들을 수신하고, 사운딩 참조신호 파라미터들을 이용하여 무선자원을 할당하며, 상기 무선자원을 통해 기지국에게 사운딩 참조신호를 전송한다. 상술한 전송기의 기능은 프로세서(210)에 의해 구현될 수 있다. 또한, 무선 인터페이스 프로토콜의 계층들은 프로세서(210)에 의해 구현될 수 있다. 메모리(220)는 프로세서(210)와 연결되어, 프로세서(210)를 구동하기 위한 다양한 정보를 저장한다. RF부(230)는 프로세서(210)와 연결되어, 무선 신호를 전송 및/또는 수신한다.
프로세서(110,210)는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로, 데이터 처리 장치 및/또는 베이스밴드 신호 및 무선 신호를 상호 변환하는 변환기를 포함할 수 있다. 도 7의 OFDM 전송기 및 OFDM 수신기는 프로세서(110,210) 내에 구현될 수 있다. 메모리(120,220)는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. RF부(130,230)는 무선 신호를 전송 및/또는 수신하는 하나 이상의 안테나를 포함할 수 있다. 실시예가 소프트웨어로 구현될 때, 상술한 기법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리(120,220)에 저장되고, 프로세서(110,210)에 의해 실행될 수 있다. 메모리(120,220)는 프로세서(110,210) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서(110,210)와 연결될 수 있다.
상술한 바와 같이 중계국이 기지국으로 전송하는 SRS는 서브프레임 내 보호 구간을 포함하는 심벌에서 심벌의 일부 예를 들면 전반부 1/2 심벌 또는 후반부 1/2 심벌에 할당되어 전송될 수 있다. 이러한 방법에 의하여 SRS가 서브프레임의 심벌에 포함된 보호 구간으로 인해 열화되는 것을 방지할 수 있다.
또한, 본 발명에 의하면 백홀 링크의 전송 용량이 증가한다. 왜냐하면 일반적인 노멀 심벌을 통해 신호를 전송하는 경우에는 보호 구간으로 인해 낭비될 무선자원을 백홀 링크 신호 전송에 사용하는 효과가 있기 때문이다. 만약 중계국이 SRS를 서브프레임의 마지막 심벌에서 전송하지 않는다면 그 이외의 심벌에서 전송하여야 할 것이다. 따라서, 중계국은 SRS를 전송하는 심벌은 천공(puncturing)하여야 하며 그 결과 백홀 데이터 전송에 사용되어야 할 심벌을 천공하는 결과가 된다.
상술한 설명에서 중계국이 보호 구간을 포함하는 서브프레임의 마지막 심벌에 짧은 블록을 이용하여 SRS를 전송하는 예를 기술하였다. 그러나, 본 발명은 이에 제한되지 않는다. 즉, 상기 마지막 심벌에서 데이터를 전송하는 경우에도 본 발명은 적용될 수 있다. 또한, 상기 마지막 심벌에 보호 구간이 없는 경우 즉 일반적인 심벌에도 적용할 수 있다. 예를 들어 일반적인 심벌을 1/2로 분할한 후 본 발명을 적용할 수 있다.
이상 본 발명에 대하여 실시예를 참조하여 설명하였지만, 해당 기술 분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시켜 실시할 수 있음을 이해할 수 있을 것이다. 따라서 상술한 실시예에 한정되지 않고, 본 발명은 이하의 특허청구범위의 범위 내의 모든 실시예들을 포함한다고 할 것이다.

Claims (14)

  1. 중계국의 사운딩 참조신호 전송방법에 있어서, 사운딩 참조신호 파라미터들을 수신하는 단계; 상기 사운딩 참조신호 파라미터들을 이용하여 무선자원을 할당하는 단계; 및상기 무선자원을 통해 기지국에게 사운딩 참조신호를 전송하는 단계를 포함하되, 상기 사운딩 참조신호 파라미터들이 지시하는 무선자원은 시간 영역에서 신호의 송수신 스위칭을 위한 보호 구간이 위치하는 심벌을 포함하는 것을 특징으로 하는 방법.
  2. 제 1 항에 있어서, 상기 보호 구간이 위치하는 심벌은 SC-FDMA(single carrier-frequency division multiple access) 심벌인 것을 특징으로 하는 방법.
  3. 제 1 항에 있어서, 상기 무선자원은 시간 측면에서 상기 보호 구간이 위치하는 심벌의 첫번째 절반을 차지하고, 주파수 측면에서 상기 보호 구간이 위치하지 않는 심벌보다 부반송파 간격이 2배인 짧은 블록(short block)으로 구성되는 것을 특징으로 하는 방법.
  4. 제 1 항에 있어서, 상기 사운딩 참조신호 파라미터들은 사운딩 참조신호가 전송되는 사운딩 대역을 지시하는 파라미터를 포함하되, 상기 사운딩 대역을 지시하는 파라미터는 시스템 대역의 전부 또는 일부를 지시하는 것을 특징으로 하는 방법.
  5. 제 4 항에 있어서, 상기 사운딩 대역을 지시하는 파라미터가 시스템 대역의 일부를 지시하는 경우, 상기 사운딩 대역을 지시하는 파라미터는 상기 시스템 대역에서 매크로 단말이 상기 기지국으로 상향링크 제어신호를 전송하는 대역을 제외한 주파수 대역을 지시하는 것을 특징으로 하는 방법.
  6. 제 1 항에 있어서, 상기 보호 구간이 위치하는 심벌은 서브프레임의 마지막 심벌인 것을 특징으로 하는 방법.
  7. 제 1 항에 있어서, 상기 사운딩 참조신호 파라미터들 중 일부는 브로드캐스팅되고, 나머지는 중계국 특정적으로 유니캐스팅되는 것을 특징으로 하는 방법.
  8. 무선통신 시스템에서 기지국의 사운딩 참조신호 수신 방법에 있어서, 중계국에게 사운딩 참조신호 파라미터들을 전송하는 단계; 및상기 사운딩 참조신호 파라미터들에 의해 지시되는 무선자원에서 상기 중계국으로부터 전송되는 사운딩 참조신호를 수신하는 단계를 포함하되, 상기 무선자원은 시간 영역에서 신호의 송수신 스위칭을 위한 보호 구간이 위치하는 심벌을 포함하는 것을 특징으로 하는 방법.
  9. 제 8 항에 있어서, 상기 무선자원은 시간 측면에서 상기 보호 구간이 위치하는 심벌의 첫번째 절반을 차지하고, 주파수 측면에서 상기 보호 구간이 위치하지 않는 심벌보다 부반송파 간격이 2배인 짧은 블록(short block)으로 구성되는 것을 특징으로 하는 방법.
  10. 제 8 항에 있어서, 상기 사운딩 참조신호는 중계국으로부터 수신하는 것을 특징으로 하는 방법.
  11. 제 8 항에 있어서, 상기 사운딩 참조신호를 수신하는 심벌 전체에서 매크로 단말이 전송하는 매크로 사운딩 참조신호도 수신하는 경우,상기 사운딩 참조신호 및 상기 매크로 사운딩 참조신호를 모두 포함하는 제 1 신호를 FFT(Fast Fourier Transform)하여 주파수 영역의 신호로 변환하는 단계;상기 주파수 영역의 신호에서 상기 사운딩 참조신호에 대한 주파수 영역의 신호인 짧은 블록 신호를 추출하는 단계;상기 짧은 블록 신호를 IFFT(Inverse FFT)하여 상기 중계국이 전송한 형태의 사운딩 참조신호인 전송신호로 변환하는 단계;상기 제 1 신호에서 상기 전송신호를 차감하여 상기 매크로 사운딩 참조신호만을 포함하는 긴 블록 신호를 생성하는 단계; 및상기 긴 블록 신호로부터 상기 매크로 사운딩 참조신호를 복원하는 단계를 포함하는 것을 특징으로 하는 방법.
  12. 제 11 항에 있어서, 상기 짧은 블록 신호를 IDFT(Inverse Discrete Fourier Transform)하여 상기 사운딩 참조신호를 복원하는 단계를 더 포함하는 것을 특징으로 하는 방법.
  13. 제 11 항에 있어서, 상기 제 1 신호는 N 포인트 FFT에 의해 상기 주파수 영역의 신호로 변환되는 경우, 상기 짧은 블록 신호는 N/2 포인트 IFFT(Inverse FFT)에 의해 상기 전송신호로 변환되는 것을 특징으로 하는 방법. 여기서, N은 시스템 대역에 따라 설정되는 값으로 양의 정수
  14. 무선신호를 송수신하는 RF부; 및상기 RF부에 연결되는 프로세서를 포함하되, 상기 프로세서는 사운딩 참조신호 파라미터들을 수신하고, 상기 사운딩 참조신호 파라미터들을 이용하여 무선자원을 할당하며, 상기 무선자원을 통해 기지국에게 사운딩 참조신호를 전송하되, 상기 사운딩 참조신호 파라미터들이 지시하는 무선자원은 시간 영역에서 신호의 송수신 스위칭을 위한 보호 구간이 위치하는 심벌을 포함하는 것을 특징으로 하는 중계국.
PCT/KR2010/003485 2009-05-31 2010-05-31 중계국의 사운딩 참조신호 전송방법 및 장치 WO2010140807A2 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/375,140 US8503348B2 (en) 2009-05-31 2010-05-31 Method and apparatus in which a relay station transmits a sounding reference signal

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US18275109P 2009-05-31 2009-05-31
US61/182,751 2009-05-31
US18636209P 2009-06-11 2009-06-11
US61/186,362 2009-06-11
US23571409P 2009-08-21 2009-08-21
US61/235,714 2009-08-21

Publications (2)

Publication Number Publication Date
WO2010140807A2 true WO2010140807A2 (ko) 2010-12-09
WO2010140807A3 WO2010140807A3 (ko) 2011-03-03

Family

ID=43298294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/003485 WO2010140807A2 (ko) 2009-05-31 2010-05-31 중계국의 사운딩 참조신호 전송방법 및 장치

Country Status (3)

Country Link
US (1) US8503348B2 (ko)
KR (1) KR101617889B1 (ko)
WO (1) WO2010140807A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11528700B2 (en) 2011-04-01 2022-12-13 Mitsubishi Electric Corporation User equipment and radio communication system

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1936900A1 (de) * 2006-12-18 2008-06-25 Nokia Siemens Networks Gmbh & Co. Kg Verfahren bzw. OFDM-Vorrichtung zur SC-FDMA-Datenübertragung
KR101584820B1 (ko) * 2009-04-15 2016-01-13 엘지전자 주식회사 무선 통신 시스템에서 중계국에 의해 수행되는 신호 전송 방법 및 장치
US20120287885A1 (en) * 2010-04-28 2012-11-15 Qian Dai Method and Device for Distributing and Scheduling Wireless Resources in Orthogonal Frequency Division Multiplexing System
US9001641B2 (en) 2010-10-25 2015-04-07 Texas Instruments Incorporated Sounding reference signal processing for LTE
US9036573B2 (en) 2012-03-09 2015-05-19 Neocific, Inc. Multi-carrier modulation with hierarchical resource allocation
RU2635348C1 (ru) 2013-12-04 2017-11-13 Телефонактиеболагет Лм Эрикссон (Пабл) Сокращение подфрейма нисходящего канала передачи в системах дуплексной передачи с разделением ао времени (TDD)
JP6267796B2 (ja) 2013-12-04 2018-01-24 テレフオンアクチーボラゲット エルエム エリクソン(パブル) 時分割複信(tdd)システムにおけるアップリンクサブフレームの短縮
PT3161988T (pt) * 2014-06-24 2023-02-17 Ericsson Telefon Ab L M Método e aparelhos para operação de uma rede de comunicação sem fios
US20170047985A1 (en) 2015-08-14 2017-02-16 Higher Ground Llc Frequency compensation techniques and systems
US20170135078A1 (en) * 2015-11-10 2017-05-11 Electronics And Telecommunications Research Institute Method and apparatus for configuring subframe in mobile communication system
US11102775B2 (en) * 2015-11-26 2021-08-24 Huawei Technologies Co., Ltd. Resource block channelization for OFDM-based numerologies
JP6490867B1 (ja) * 2018-12-19 2019-03-27 テレフオンアクチーボラゲット エルエム エリクソン(パブル) 時分割複信(tdd)システムにおけるダウンリンクサブフレーム短縮

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080048292A (ko) * 2006-11-28 2008-06-02 삼성전자주식회사 통신 시스템에서 사운딩 자원 할당 정보 송수신 시스템 및 방법
KR20080093319A (ko) * 2007-04-16 2008-10-21 엘지전자 주식회사 광대역 무선 접속 시스템에서의 사운딩 신호 전송 제어방법
KR20080096334A (ko) * 2007-04-27 2008-10-30 삼성전자주식회사 무선통신 시스템에서 상향링크 채널사운딩 레퍼런스 신호의송수신 방법
KR20080112115A (ko) * 2007-06-19 2008-12-24 엘지전자 주식회사 사운딩 기준신호의 전송방법

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008133449A1 (en) 2007-04-27 2008-11-06 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving uplink channel sounding reference signals in a wireless communication system
US20100278123A1 (en) * 2007-12-10 2010-11-04 Nortel Networks Limited Wireless communication frame structure and apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080048292A (ko) * 2006-11-28 2008-06-02 삼성전자주식회사 통신 시스템에서 사운딩 자원 할당 정보 송수신 시스템 및 방법
KR20080093319A (ko) * 2007-04-16 2008-10-21 엘지전자 주식회사 광대역 무선 접속 시스템에서의 사운딩 신호 전송 제어방법
KR20080096334A (ko) * 2007-04-27 2008-10-30 삼성전자주식회사 무선통신 시스템에서 상향링크 채널사운딩 레퍼런스 신호의송수신 방법
KR20080112115A (ko) * 2007-06-19 2008-12-24 엘지전자 주식회사 사운딩 기준신호의 전송방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11528700B2 (en) 2011-04-01 2022-12-13 Mitsubishi Electric Corporation User equipment and radio communication system

Also Published As

Publication number Publication date
KR101617889B1 (ko) 2016-05-04
US20120069794A1 (en) 2012-03-22
US8503348B2 (en) 2013-08-06
WO2010140807A3 (ko) 2011-03-03
KR20100129705A (ko) 2010-12-09

Similar Documents

Publication Publication Date Title
KR101797494B1 (ko) 사운딩 참조신호 전송방법 및 장치
KR101617889B1 (ko) 중계국의 사운딩 참조신호 전송방법 및 장치
US9807719B2 (en) Method for receiving signal by using device-to-device communication in wireless communication system
KR101446321B1 (ko) 무선 통신 시스템에서 기준 신호 및 데이터를 다중화하기 위한 방법 및 장치
KR101584820B1 (ko) 무선 통신 시스템에서 중계국에 의해 수행되는 신호 전송 방법 및 장치
US9014082B2 (en) Method and device for signal transmission on a wireless communications system
WO2011008013A2 (ko) 백홀 링크 전송을 위한 전송 모드 구성 방법 및 장치
WO2010117240A2 (en) Method and apparatus for transmitting reference signal in wireless communication system
US20120236783A1 (en) Repeater apparatus for simultaneously transceiving signals in a wireless communication system, and method for same
KR20200058558A (ko) 무선 통신 시스템에서 데이터를 송수신하기 위한 방법 및 이를 위한 장치
US8773971B2 (en) Method and apparatus for transmitting/receiving a signal in a wireless communication system
US20120140698A1 (en) Method and apparatus for transmitting control signal of relay station in wireless communication system
WO2010151086A2 (ko) 무선통신 시스템에서 신호 전송 방법 및 장치
KR20100093503A (ko) 무선통신 시스템에서 중계국의 신호 송수신 방법 및 장치
WO2013012283A2 (ko) 무선접속시스템에서 향상된 물리하향링크제어채널 할당 방법 및 장치
WO2019029594A1 (en) PILOT SIGNALS
KR101639081B1 (ko) 무선통신 시스템에서 신호 전송 방법 및 장치
KR20130106814A (ko) 중계국을 포함하는 통신 시스템에서 신호를 송신하는 방법
WO2011002263A2 (ko) 중계국을 포함하는 무선통신 시스템에서 중계국의 제어 정보 수신 방법 및 장치
KR101659084B1 (ko) 무선통신 시스템에서 신호 전송 방법 및 장치
KR20100109836A (ko) 무선 통신 시스템에서 참조 신호 전송 방법 및 장치
EP3001624A1 (en) Choice of fourier transformation size, filter length and guard time in universal filtered multicarrier
KR101637588B1 (ko) 무선통신 시스템에서 신호 송수신 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10783556

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 13375140

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10783556

Country of ref document: EP

Kind code of ref document: A2