WO2010140010A1 - Máquina hidroneumática de tres brazos desbalanceados - Google Patents

Máquina hidroneumática de tres brazos desbalanceados Download PDF

Info

Publication number
WO2010140010A1
WO2010140010A1 PCT/GT2010/000001 GT2010000001W WO2010140010A1 WO 2010140010 A1 WO2010140010 A1 WO 2010140010A1 GT 2010000001 W GT2010000001 W GT 2010000001W WO 2010140010 A1 WO2010140010 A1 WO 2010140010A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
angled
chain
machine
bar
Prior art date
Application number
PCT/GT2010/000001
Other languages
English (en)
French (fr)
Inventor
Enrique Haluy LEÓN
Original Assignee
Leon Enrique Haluy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leon Enrique Haluy filed Critical Leon Enrique Haluy
Publication of WO2010140010A1 publication Critical patent/WO2010140010A1/es

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/141Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy with a static energy collector
    • F03B13/142Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy with a static energy collector which creates an oscillating water column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/50Kinematic linkage, i.e. transmission of position
    • F05B2260/502Kinematic linkage, i.e. transmission of position involving springs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Definitions

  • This machine is related to hydropneumatic machines. It is also related to hydraulic machines.
  • the designs are, for the most part, rigid, without flexibility which is a characteristic of great interest to adapt to the ever changing behavior of the sea.
  • turbines and compressors are used, involving large volumes of air or salt water, and high pressures (large sea waves) and large non-corrosive equipment.
  • This invention can be constructed with low-pressure and low-cost materials, such as wood or plastic, both available in many places and resistant to marine atmospheric conditions.
  • the dynamically flexible design supports a wide range of operating parameters, more suited to the ever changing mother nature, due to its prepared readiness for automation.
  • the operating costs are relatively low, because the machine is built with common materials and by its simple mechanical design. Its telemetric control and its remote reprogramming are also possible.
  • the learning curve for installers and maintenance people is very simple.
  • the units can be installed using little space and at different levels in the buildings.
  • FIG. 1 (Suggested as cover) shows in a 2-point perspective, the machine completed elbows (1401) are detached from the reactor (10) only for better understanding of the drawing. For this reason, hose (1418) and associated parts are not shown here (see Fig. 6).
  • FIG. 2 shows expanded view of the slave beam (3).
  • FIG. 3 shows the side view of the mass assembly (5). Its frontal view in Fig. 3 (A) and its lateral view in Fig. 3 (B).
  • FIG. 4 shows the expanded view of the master beam (6) and all its parts.
  • FIG. 5 Isometric view of the Reactor (10) and in Fig. 5 (A) the only perforated inner bar can be seen.
  • FIG. 6 Shows how the Reactor (10) and the strap (14) are connected to each other. Also shown are all associated plumbing parts.
  • FIG. 7 Front view of the Follower tank (13), its side view in Fig. 7 (A) and sectional view in Fig. 7 (B) I-I.
  • FIG. 8 Shows the front part of the Arenero tank (18), its side view in Fig. 8 (A) and its sectional view in Fig. 8 (B) I-I.
  • FIG. 9 Shows the front view of the Anchor tank (21), with the water pump (2102) fixed, Fig. 9 (A) I-I shows its sectional view. Fig. 9 (B) is a side view, showing the pump motor (2105) and Fig. 9 (C) I-I is a section showing the central handle.
  • Fig. 10 Shows the side view of the electric generator (2), with all the parts associated with the shaft (0207).
  • Fig. 10 (a) shows the Jug (1)
  • Fig. 10 (b) shows details of the chain adapter (0203)
  • Fig. 10 (c) I-I the cutting of the cylinder from the jar (l).
  • FIG. 11 Isometric view of the upper support plate (25), with its associated parts.
  • FIG. 12 is a schematic showing in the same plane, a simplified view of both beams and their related parts. The components are in calibration position.
  • FIG. 12 (a) is a scheme showing the calibration position for the start of the cycle.
  • FIG. 12 (b) is a scheme showing the starting position of the cycle.
  • FIG. 12 (c) is a scheme that shows the beams mid-cycle.
  • FIGS. 13, (a), (b) and (c) schematically show the movement of the actuator (reactor and transfer balance).
  • FIG. 13 (d) is an amplified and detailed image of the associated small components.
  • FIGS. 14 and 14 (a) show how the hydraulic actuator works.
  • FIG. 15 is a scheme of the pumping system.
  • FIG. 16 is an axis perspective (4) for extracting rotational energy.
  • FIG. 17 is a suggestion of a portable base structure for the Apernare.
  • FIGS. 18, (A) 3 (B) show parts of the electromagnetic ratchet.
  • FIG. 19 and Fig. 19 (A) II show the autosif ⁇ n tank and its sectional view.
  • the Atmospheric Potential Energy Reactor is an unbalanced three-radius energizing machine, (Atmospheric Potential Energy Reactor, a Three Unbalanced Radii Energizer engine), ⁇ APERTURE for short, (see figure (I)), is a machine that uses the vacuum coming mainly from an oscillating wave chamber (OWC), preferably located at sea, to shift the weight of a liquid, thanks to the atmospheric pressure at the site, along a system reciprocating beams, to accumulate potential energy, driving jugs as counterweights, in an alternate sequence to produce basically, rotational movement with ratchets, in a double axis electric generator.
  • O.W.C. oscillating wave chamber
  • the use of the vacuum allows the remote location of the O.W.C., with advantageous low losses in the pipeline (not shown), allowing the installation of the ground engineering. The same being a low pressure mechanism, it is possible to build it including plastic or wood parts.
  • the machine consists of:
  • a SLAVE BEAM (3) which constitutes the first radius (see fig. 2), has a shock absorber formed by a double angled rod (0301) with internal rim (0302), riveted in the hole (0303), (the rivet not shown) with stop hook (0304), cable (0305), short rod (0306), guide (0307), and spring (0308) connected to a vacuum pump (0309).
  • This beam (3) is articulated at one end, in the shaft tube (4) (shown in Fig. 1) with the clamp (0311), has a chain hook (0312) with a sensor plate (0313) and includes a cover (0314) for a sliding mass assembly (5).
  • Fig. 3 shows the mass assembly (5), with a long screw (0501), O-ring (0502), a small step motor (0503) with internal gearbox (not shown), bank plate ( 0505) with sensor holders (0504).
  • Fig. 3 (a) shows side view of the bank plate (0505), hole (0506) for long screw rubber gasket (gasket and motor screws not shown) and holes (0508) for Fix the engine.
  • Fig. 3 (b) shows the side view of the dough (5) and the internal thread hole (0507).
  • a MASTER BEAM (6) is shown in Fig. 4, divided along one end, resembling a letter Y.
  • the split ends are subject to articulated supports, forming a short radius and a long radius.
  • Clamps (0611) keep the supports fixed articulated on the shaft tube (4) (in this way, the long radius and the first radius are almost parallel, as seen in fig.
  • a HYDRONEUMATIC ACTUATOR which is basically a producer of load oscillations, formed with two main elements: a Reactor (10), shown in Fig. 5 and a Transfer Balance, detailed in Figs. 1, 7,8,9 and 13 (including its variants).
  • the Reactor (10) is an inclined rectangular chamber, elongated in shape, with an inverted entrance area (1007, (in Fig. 6) .In Fig. 1 it is shown under the master beam (6) from the holes (0615 ), hanging two chains (9) towards holes (1001) in the reactor (10), see Fig. 5.
  • the chain (11) couples the hook (1005) with the levitating lever (0606) and the chain (44) couples the hook (1004) to the hook (0401) of the tube axis (04), (shown in Fig. 6) or can be loosely tied around the tube axis (4).
  • the semi-armed reactor (10) is shown in Fig. 5 (a), the only element inside is seen that is a perforated tube (1003), which protrudes, with rotating seals (1002) at both ends. It also shows the hook (1006) for the spring cable (12) for auxiliary pull from the Follower tank (13) in the groove (1302), (explained later, in Fig. 13 (d)).
  • the tube (1003), bottom view of the reactor (10) is coupled to the vacuum belt (14), by means of the elbows (1401), the short tubes (1402) and the distributor (1403).
  • the vacuum belt assembly (14) has several small diameter hoses (1404), on a layer of flexible material (not shown) attached to the distributors (1403, 1412) at the ends.
  • the distributor (1412) at its left outlet (in fig. 6), has a coupling (1410), a reducer with internal check valve (1411), with an elbow (1407), a short tube of small diameter. ( 1409), an elbow (1407), a rotating seal (1414) with hose (1418) that goes to the inlet (1417) of the vacuum pump (0309), (in fig. 2). (not shown).
  • the right outlet of the distributor (1412) has a coupling (1410), a reducer (1413), with a t (1408), vacuum sensor (1406), a short tube (1415) and an elbow with internal rotary seal (1416), which is the inlet of the pipe (not shown) that comes from the OWC. (not shown).
  • Both rotary seals (1414, 1416) should be as concentric as possible with the axis of the tube (4), especially (1416).
  • the distributor (1412) must be sufficiently longer than the shaft tube (4), to avoid interference, and attached with clamps (1405) on the master beam (6).
  • the laying of the vacuum belt (14) is shown in Fig. 13 (d) where it passes between the split ends of the master beam (6).
  • the Transfer Balance is shown in Fig. 1, hangs from both holes (0612) on the master beam (6) (split ends of the short radius), vertical bars (15), they hold two angled bars (16) with end hooks to hold the follower tank (13) and also hold the sand tank (18) with the springs (28) and chains (17).
  • a chain (20) coupling the bottom of the plate (19) with the anchor tank (21), located below, in the hole (2101), (in fig. 9).
  • the follower tank (13) is detailed in fig 7, has two short shafts (1301) to support it; two grooves (1302) for overflow and for the spring cable (12).
  • Fig. 7 (a) shows two grooves (1303) for holding a small diameter hose (not shown) and a level sensor, (no shown).
  • the section in fig. 7 (b) I-I shows the internal simplicity of the tank.
  • the shape of the sand tank (18) is shown in Fig. 8.
  • Fig. 8 (a) the holes (1802) for the chains (17) are shown; overflow slot (1801) and padded blocks (1803,1804) made of flexible material.
  • fig. 8 (b) II shows two other holes (1802) for the chains (17) and also shows that the sand tank has two compartments for solid ballast (sand) and a central compartment for liquids, with another slot (1801 ) for hose clamp / sensor, (hose and sensor not shown). All these compartments are intercommunicated with holes, (these holes are not shown).
  • the Anchor tank (21) is shown in Fig. 9. It has a chain hole (2101) and a small bi-directional pump (2102).
  • Fig. 9 (a) II shows the overflow hole (2104), the grooves (2105) for sensor / hose (not shown) and a water pipe (2106) for the bi-directional pump (2102).
  • Fig. 9 (b) shows the location of said pump (2102), its electric motor (2105) and the outlet / inlet pumping duct (2108).
  • Fig. 9 (c) II-II shows the large groove (2107) for the passage of water between both reservoirs.
  • FIG. 10 An ELECTRIC GENERATOR (2), with dual axis (Fig. 10), which has on each side four holes (0201) to attach it to the clamps (2501) (shown in Fig. 1), four holes (0209) to hold the level sensor (not shown) and a small diameter hose (not shown). Part of this hose is shown in phantom view (0210) to highlight how the end of the hose reaches the bottom of the tank jar (1), when it is near the gear / ratchet (0204). In this way, short-term pumping can exist when the jar (l) is in a stationary high position, during the cycle.
  • the hook (0212) of the chain must be fixed to the hole (0106) of the cylindrical jug, in the
  • Fig. 10 (c) I-I also shows the internal parts of the jar (1) such as the bolt (0101), internal container (0102) with its central duct, mass (0107) and a drain hole (0108).
  • the ELECTRICAL GENERATOR (2) supports (in both axes) a temporary arrangement of accumulation of potential energy. Which is formed with two jugs (1) as counterweights and two chains (23), (Fig. 1) fixed to holes (0315, 0603) at the ends of both beams (see
  • Figs. 2 and 4 In Fig. 10 it is shown how the chains (23) are supported with gears (0204) with internal ratchets, which drive the double shafts (0207) of the generator (2), when both jugs (1) in a cylindrical shape, are lowering, in turn, when solenoid triggers (0202) are operated. (The ratchet gear teeth are opaque, to highlight the chain adapters (0203)).
  • the ratchet action occurs when the solenoid coils of the trigger (0202) are not energized, with the adapters (0203) in position, detailed in Fig. 0 (b). Also in that figure we can see the adapter isometrically, the plan view (0211); the side view (0205) on a chain link (0208) with rivet (0206) of the chain (23). Only few adapters (0203) are necessary, near each firing zone of the chain, whose jug (1) is in the top dead center position.
  • a TOP SUPPORT PLATE (25), requiring six fixing points (2502) is shown in Fig. 1.
  • Four are located at the corners of the piece and two closer to the clamps (2501) of the generator (2). These Embrace of Fás'are located under four points (2503); an electronic box (2504) has a service gate (2505) with handle and hinges, arranged to house electrical parts (not shown) and electronic parts (not shown), (computer, controller, backup battery, etc.) and must be positioned Under the two points (2506), a fastener (2508) is attached under the points (2507) where the pulleys (8) (Fig. 1) hang on the points (2509) and the sensors (not shown) for the plates (013,0313) can be set to (2510), (see also Fig.
  • Fig. 13 (d) shows many small details, in sketch, schematically.
  • a small stop bar (22) is also highlighted, which prevents the penetration of the reactor (10) during the discharge into the follower tank (13).
  • An auxiliary spring cable (12) is also highlighted, which provides additional draft to initiate the discharge of the reactor (10) from the liquid (1050), when the reactor (10) and the follower tank (13) are at maximum separation, And, (see Fig. 13 (c)) before the pulling action of the levitating lever (0606), which occurs when the end of the master beam (6) touches the floor, (the phantom line denotes the force (1201 ) at the center of gravity of such liquid (1050)).
  • the whole machine can be assembled using screw, welding, nail, glue, ties, hooks, etc. (these materials are not shown), because some parts of it can be made of plastic or wood.
  • CYCLE STARTING is shown in Fig. 12 (b), when the reactor (10) sucks through its inlet (1007) (the OWC level is going down (not shown)) inside the follower tank (13) , and the weight of this water causes a downward force as suggested by the arrow (1201). It is important to emphasize that the inclined position of the reactor (10) optimizes the point where the force (the liquid (1050) in fig.l3 (d)) is applied. Such figure 13 (d) shows the liquid (1050) at the furthest end of the inclined reactor (10), producing the best possible torque around the axis of rotation (4) of the master beam (6). Because the weight of the water was hanging on the transfer scale (1202, box), in this Fig.
  • both ratchet gears (0204) are arranged to rotate the generator shafts (2) only when each jar (1) is falling).
  • Completion of the Cycle occurs when the master beam (6) returns to its initial position, (shown in Fig. 12 (B)). This is done when the master beam (6) touches the floor as portrayed in Figure 12 (c), when the levitating lever (0606) receives the pull coming from the damping action. This causes the reactor (10) to discharge the liquid into the follower tank (13), then returning the system to the Cycle Start position. When it is returning, the pitcher (l) of the master beam (6) will be lowering, driving the generator shaft (2). In this way, when the machine is running, the generator (2) will always be rotating. (During the excursion time, the level of the liquid in the OWC.
  • Acceleration is a very important issue here, when the beams begin to move, this is when the ends of the beams begin to descend or rise.
  • Fig. 13 (b) shows the master beam (6) falling around the middle of the path. Now we are worried about starting to stop the acceleration of gravity. The rotation of the angled bar (16) is now carried out at the upper, tense end of the chain (20), causing the follower tank (13) to go down and the spring (28) begins to tighten. The clamp bar (15) transmits a counterclockwise moment in the articulated support (0350).
  • Fig. 13 (c) shows the master beam (6) at the end of the path.
  • the levitation action (suggested by the ghost curve arrow) causes that the liquid returns to the follower tank (13), adding its weight to the hole (0612).
  • SYNCHRONIZATION CONSIDERATIONS are necessary because Aperture is a tuned machine. Good performance is achieved only by playing with some variables, mainly by sliding the weight (mass (5)), pumping water between tanks (follower, sandpit and jugs) and the anchor tank.
  • Aperture is a machine designed to work periods over the range of 8-12 seconds. For example (10 sec. Period) when the OWC is in descent, the first 5 seconds are used for reactor loading, (meanwhile, the pitcher (1) of the master beam (6) is lowering, the curve of the chain, which was formed when the end of the master beam rose), then the solenoid trip occurs, (OWC starts rising) lowering the end of the master beam (6) using two seconds to fall. When it touches the floor, the reactor is discharged for two seconds into the follower tank (13). Then the master beam (6) takes a second to climb. During the development of the cycle, the slave beam (3) has a reversed behavior and each jug (1) could have a different duration of fall. (All times are approximate estimates). Of course there can be many variants, and require many computational calculations, for each case. Due to the asymmetry of the system and inertial factors, the behavior of the slave beam (3) is not necessarily an exact mirror function,
  • the waves are often less than 10 seconds and the triggers can be adjusted for two periods of the OWC. (and probably mixed with other variable settings).
  • the variability of the OWC (in other words: the variability of the sea, mainly), undergoes alterations in the period and in the amplitude (crest to crest) of the wave, variation in the baseline of reference (tide), in addition to an assortment of waves of many frequencies and sizes arriving at the same time to the OWC, disruptions caused by marine traffic, etc. plus the need to adjust the power available in the OWC and the service loads (which also fluctuate, along the hours)!
  • the computer-controlled system also allows to perform tasks on the electrical part itself, such as filtering hesitations, limiting electrical loads, as well as programming them, allowing the optimization of the availability of energy input / output, (it could also operate remote outlets, for the on off). It also allows to play with the dynamic braking of the electric generator (2).
  • pressurized air can be used for a different device, by installing a set of two large check valves (not shown), between the outlet of the pipeline (not shown) of the OWC (not shown) and the Aperture entrance. This is possible since this machine uses only the vacuum for the operation of the reactor (10).
  • a gearbox (not shown) can also be used to drive the generator (2), if multipolar generators were not suitable for particular cases.
  • the same parts of the structure can be used as vacuum ducts (not shown), including the replacement of the distributor (1412) by the shaft tube (4) for fixing the strap (14) and the hose (1417 ) (not shown).
  • An auxiliary spring (not shown) could also be placed below the reactor (10), near its lowest end, to aid in the levitation (as a rotational aid) of the angled bar (0606).
  • the Aperture machine Understood primarily for operation at sea, the Aperture machine can operate in rivers (only in hydraulic mode by replacing the actuator (reactor and transfer scale) with a hydraulic actuator, as shown schematically in Fig.
  • a tube (1401) fed upstream feeds an oscillating tray (1403), which unloads between the split ends of the master beam (6), (held on (0350) towards the fixed container (1406).
  • the precarious balance given by the support with stop (1402) contributes to the instability provided by the small barb (1404) attached to such a beam
  • Fig. 14 (a) shows the hydraulic actuator, when it discharges water to the floor, going towards the downstream stream. Meanwhile, the oscillating tray (I403) collects water.
  • the arrows in both figs. 14 and 14 (a) suggest water flow. The levitation action is not necessary in this case and should be disabled, (discarding or fixing the angled bar (0606)).
  • Fig. 15 is just a diagram diagram showing the anchor tank (21) with the bidirectional pump (2102), increasing through the Y filter (2107) and the distributor (2108) (constructed of two elbows with three t ), to four solenoid valves (213) to route to both jugs (l), in the generator (2) with the outputs (2109,2110), to the follower tank (13) with the outlet (2111) and to the tank sandbox (18) with the outlet (2112), all liquids are conducted with flexible hoses (not shown).
  • Each solenoid valve must have at least one internal circular filter and all of them must be electrically controlled by the computer, according to information provided by the sensors (not shown).
  • Fig. 17 shows a minimum structure for the Aperture, for portable use.
  • a tripod (77) could hold the upper support (25), under the narrow end of the trapezoid located upwards (7701), with the support (7702) and cables (7703) of the stiffening plate (7707), both subject to
  • the tripod legs (77) and angled bars (7706) with stabilizer (7706), through hooks (7704) and cables (7703) provide help to stabilize the trapezoid (7701).
  • An axis (4) can be located between the hooks (7704). (pad type bearings (not shown) can be used in this case). Disregarding the type of shape of the structure that is used, it must provide a suitable floor for hitting the angled bars (0301).
  • Fig. 18 shows a plate (88) for coils (8801), interconnecting cables (8802), an electromagnetic box (8803), (which internally contains the solenoid coil (not shown) and could have electronic parts (not shown) such as a bridge rectifier ac / dc, capacitors, etc.). It also has a retaining bar (8804) with its spring (8805) and a counterweight (8806). The central part of the plate (88) contains the ratchet gear (8810), attached to the shaft (0207) of the generator, with a sealed ball bearing (8809). Fig.
  • L8 (a) shows the magnets (8901), which are screwed (screws not shown) using the holes (8811), to the ratchet gear (8810). These screws could also be used to hold a simple ratchet (0204) located to the opposite side of the magnet plate (89).
  • Fig. L8 (B) shows the central hole of the coil plate, ready with its slot for cuffia (not shown), to be coupled to the generator shaft (0207).
  • Opening can be used in some lakes, with sufficient swell. And also in rivers, using the OWC (not shown) inside a wave emulator, see Fig. 19, formed by a buried cylindrical tank (85) with a self-priming siphon (8502), as shown in Fig. 19 ( a) II, where the outflow must be twice that of the inlet (8501). Some regulating valves (not shown) may be required.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Motor Or Generator Frames (AREA)

Abstract

Una maquina hidroneumática, que proporciona energía rotacional a muy bajas RPM, apropiada para impulsar un generador eléctrico directamente acoplado, usando como fuente de potencia la variaciones de la presión atmosférica, originadas por el vacío proveniente de una cámara oscilante de olas. Con resonancia variable dinámica para el ambiente de trabajo marino, fricción interna baja, pocas reacciones mecánicas internas y muy bajo nivel de ruido, este artefacto opera con múltiples conversiones de energía potencial/cinética, y utiliza como conversor de torsión un mecanismo similar a una turbina desbalanceada, con movimiento modificado, de cero flujo externo y sobresaliente mínima presión principal con liquido recirculante no corrosivo; operando en la linea de la costa o aguas costaneras, incluyendo localizaciones interiores o sótanos, operando aún en algunos lagos y en algunos ríos sin requerir represas, siendo como tal un diseño de bajo impacto ambiental.

Description

MAQUINA HIDRONEUMÁTICA DE TRES BRAZOS DESBALANCEADOS
Descripción: Campo de la invención
Esta máquina está relacionada con las máquinas hidroneumáticas. También se relaciona con las máquinas hidráulicas.
DESCRIPCIÓN DEL ARTE PREVIO
La Humanidad, en su eterna búsqueda de energía, desde hace largo tiempo, ha intentado capturar la energía del océano, donde hay poderosas fuerzas de la Naturaleza, almacenadas por influencias astronómicas. Ese objetivo, ha tenido limitado éxito pero encarándose con el ambiente marino, obteniendo algunas cantidades de energía. Pero tarde o temprano, a la larga tales intentos son destruidos, por un siempre ganador entorno ambiental. Y los requisitos de diseño, no permiten el uso extensivo de la potencia del mar.
En la mayoría de las veces, se ha observado que :
Métodos relativamente caros se han utilizado, expuestos a duras condiciones del mar.
Pocas localizaciones geográficas están disponibles, debido a los requisitos de diseño.
Invasión del ambiente marino, donde las fuerzas naturales conspiran contra la estabilidad de los equipos y aparejos de las instalaciones.
Se requieren altos niveles de tecnología No todas las naciones disponen de eso.
Los diseños son, en la mayor parte de las veces, rígidos, sin flexibilidad la cual es un característica de mucho interés para adaptarse al siempre cambiante comportamiento del mar.
Altos costos de mantenimiento, derivados de las complejas necesidades de la mayoría de los métodos utilizados actualmente.
En muchos de los métodos se utilizan turbinas y compresores, implicando grandes volúmenes de aire o agua salada, y altas presiones ( grandes olas del mar) y equipo grande no corrosivo.
Otros requisitos de los métodos no son simples de construir, operar o mantener funcionando, siendo en su mayoría son equipamientos fijos, grandes, difíciles de transportar en casos de emergencia.
Los diseños son relativamente pasivos, con limitado uso de los avances de la tecnología actual especialmente en los campos de la electrónica e informática. SUMARIO DE LA INVENCIÓN
Por consiguiente, muchas de las desventajas mencionadas previamente, son remediadas en mi invención.
Algunos objetos y ventajas son :
En general, es un diseño de relativo bajo costo de realizar. Puede operar en aguas costeras o en la orilla, admite montajes subterráneos incluyendo dentro de casas o edificios, por su bajo nivel de ruido, libre de combustible, opera en fiio y con bajas pérdidas en la tubería de alimentación de potencia.
El requisito de olas de poca altura de cresta a cresta; permite localizarlo en muchas playas alrededor del mundo.
Diseño ambientalmente no invasivo, con bajo impacto visual al paisaje, y también puede operar en rios, sin represarlos.
Este invento puede ser construido con materiales para poca presión y de de bajo costo, como madera o plástico, ambos disponibles en muchos lugares y resistentes a las condiciones atmosféricas marinas.
El diseño dinámicamente flexible admite amplio rango de parámetros de operación, mas adecuados a la siempre cambiante madre naturaleza, debido a su preparada disposición a la automatización.
Ventajoso doble uso de las partes electrónicas, controlando los aspectos mecánicos de la máquina y al mismo tiempo, haciendo tareas sobre las cargas eléctricas. De esta forma optimizando la entrada externa de potencia disponible en cualquier tiempo. Esto es muy importante en pequeñas redes eléctricas.
Los costos de operación son relativamente bajos, porque la máquina es construida con materiales comunes y por su simple diseño mecánico. También es posible su control telemétrico y su re-programación remota.
La curva de aprendizaje para instaladores y gente de mantenimiento, es muy simple.
Apilable, las unidades pueden ser instaladas usando poco espacio y a diferentes niveles en los edificios.
Portabilidad, por sus requisitos de poco peso y espacio de almacenaje, fácil manejo y embarque, instalación rápida, y de fácil transporte, incluyendo via aérea, para entretenimiento, trabajo o en caso de desastres naturales, como plantas de emergencia. BREVE DESCRIPCIÓN DE LOS DIBUJOS
FIG.1 (Sugerida como portada) muestra en una perspectiva de 2 puntos, la máquina completados codos (1401) están despegados del reactor (10) solo para mejor comprensión del dibujo. Por ésta razón, manguera (1418) y partes asociadas no se muestran aqui.(ver Fig. 6).
La FIG. 2 muestra vista expandida de la viga esclava (3).
FIG. 3 muestra la vista lateral del conjunto de la masa (5). Su vista frontal en la Fig.3(A) y su vista lateral en la Fig.3(B).
FIG. 4 muestra la vista expandida de la viga maestra (6) y todas sus partes.
FIG.5 Vista isométrica del Reactor (10) y en la Fig 5(A) se puede ver la única barra interior perforada.
FIG. 6 Muestra como el Reactor(10) y el cincho(14) están conectados entre si. Asimismo se muestran todas las partes de plomería asociadas.
FIG. 7 Vista frontal del tanque Seguidor(13), su vista lateral en la Fig.7(A) y vista en corte en laFig.7(B) I-I.
FIG. 8 Muestra la parte frontal del tanque Arenero (18), su vista lateral en Fig. 8(A).y su vista en corte en la Fig.8(B) I-I .
FIG. 9 Muestra la vista frontal del tanque Ancla (21), con la bomba de agua (2102) fijada, la Fig.9(A) I-I muestra su vista en corte. La Fig. 9 (B) es una vista lateral, mostrando el motor de la bomba (2105) y la Fig. 9 ( C ) I-I es un corte mostrando la manija central.
Fig. 10 Muestra la vista lateral del generador eléctrico (2), con todas las partes asociadas con el eje (0207). La Fig. 10 (a) muestra la Jarra (1), la Fig. 10 (b) muestra detalles del adaptador de cadena (0203) y la Fig.10 ( c) I-I el corte del cilindro de la jarra(l).
FIG.11 Vista isométrica de la placa de soporte superior (25), con sus partes asociadas.
FIG. 12 es un esquemático mostrando en un mismo plano, una vista simplificada de ambas vigas y sus partes relacionadas. Los componentes están en posición de calibración.
FIG. 12 (a) es un esquema mostrando la posición de calibración para inicio del ciclo. FIG. 12 (b) es un esquema mostrando la posición de arranque del ciclo. FIG. 12 ( c) es un esquema que muestra las vigas a mitad de ciclo.
FIGS: 13, (a), (b) y ( c) muestra en forma esquemática, el movimiento del actuador.(reactor y balanza de transferencia).
FIG. 13 (d) es una imagen amplificada y detallada de los componentes pequeños asociados.
FIGS: 14 y 14 (a) muestran como el actuador hidráulico trabaja.
FIG. 15 es un esquema del sistema de bombeo.
FIG. 16 es una perspectiva del eje (4) para extraer energía rotacional.
FIG.17 es una sugerencia de una estructura portátil de la base, para el Apernare.
FIGS. 18, (A)3(B) muestran partes del trinquete electromagnético.
FIG. 19 y Fig. 19 (A) I-I, muestran el tanque de autosifδn y su vista en corte. DETALLADA DESCRIPCIÓN DE LA INVENCIÓN
El Reactor Atmosférico de energía potencial, es una máquina energizadora , de tres radios desbalanceados, ( Atmospheric Potential Energy Reactor, a Three Unbalanced Radii Energizer engine), ό APERTURE para abreviar, (ver figura (I)), es una maquina que utiliza el vacio proveniente principalmente de una cámara osciladora de olas, ( OWC. por sus siglas en Inglés), de preferencia localizada en el mar, para desplazar el peso de un liquido, gracias a la presión atmosférica en el sitio, a lo largo de un sistema reciprocante de vigas, para acumular energía potencial, impulsando jarras como contrapesos, en una secuencia alternada para producir básicamente, movimiento rotacional con trinquetes, en un generador eléctrico de doble eje.(2). La utilización del vacio, permite la localización remota del O.W.C., con ventajosas bajas pérdidas en la linea de tubería (no mostrada), permitiendo la instalación del ingenio en tierra firme. Siendo el mismo un mecanismo de baja presión, es posible construirlo incluyendo partes de plástico o madera.
La máquina consiste de :
UNA VIGA ESCLAVA (3), la cual constituye el primer radio (ver fig.2), tiene un amortiguador formado por una barra doble angulada(0301) con rodo interno (0302), remachada en el agujero (0303), (el remache no se muestra) con gancho de parada (0304), cable (0305), varilla corta (0306), guia (0307), y resorte (0308) conectado a una bomba de vacio (0309). Esta viga (3) está articulada en un extremo, en el tubo eje (4) (mostrado en la Fig. 1) con la abrazadera (0311), tiene un gancho para cadena (0312) con una placa sensora (0313) e incluye una cubierta (0314) para un conjunto de la masa deslizante (5). La Fig. 3 muestra el conjunto de la masa (5), con un tornillo largo (0501), O-ring (0502), un pequeño motor de paso (0503) con caja interna reductora (no mostrada), placa del banco (0505) con soportes para sensor (0504).
La Fig. 3(a) muestra vista lateral de la placa del banco (0505), agujero (0506) para el empaque de hule del tornillo largo (el empaque y los tornillos del motor no se muestran) y los agujeros (0508) para fijar el motor. La Fig. 3(b) muestra la vista lateral del la masa (5) y el agujero(0507) de rosca interna.
UNA VIGA MAESTRA (6), se muestra en la Fig. 4, dividida a lo largo en un extremo, semejando a una letra Y. En estos los extremos partidos esta sujeta a apoyos articulados, formando un radio corto y un radio largo. Abrazaderas (0611) mantienen fijos los apoyos articulados sobre el tubo de eje (4) (de ésta forma, el radio largo y el primer radio están casi paralelos, como se ve en la fig. 1), teniendo un amortiguador formado con una barra doble angulada (0301) con rodo interno (0302), remachada en agujero (0606) (remache no se muestra), con gancho de parada (0304), un cable con resorte (0605) conectado a una palanca levitadora, hecha con un barra angulada(0606), (podría estar soldada con un conjunto ajustador para la masa auxiliar (0607) mostrada solo aqui), oscilando sobre un eje formado con un perno (0608), tubos centradores (0609), tuerca (0610), localizada en agujeros (0612) y dos resortes (0613) fijados a ganchos triangulares (0614).
También tiene otra cubierta (0314) la cual cubre un conjunto de la masa (5), y placa para sensor (0313) con gancho de cadena (0312), el cual tiene una cadena de acoplamiento (7) (ver Fig.l) sostenida con dos poleas(8) yendo hacia el otro gancho de cadena (0312) en la viga esclava (3).
UN ACTUADOR HIDRONEUMÁTICO, el cual es básicamente un productor de oscilaciones de las cargas, formado con dos principales elementos : un Reactor (10), mostrado en la Fig. 5 Y una Balanza de Transferencia, detallada in las Figs. 1, 7,8,9 y 13 (incluyendo sus variantes).
El Reactor (10) es una cámara rectangular inclinada, de forma elongada, con un área de entrada invertida (1007,(in Fig.6). En la Fig.l se muestra bajo la viga maestra (6) desde los agujeros (0615), colgando dos cadenas (9) hacia agujeros (1001) en el reactor (10), ver Fig.5. La cadena (11) acopla el gancho (1005) con la palanca levitadora (0606) y la cadena (44) acopla el gancho (1004) al gancho (0401) del eje tubo (04), (mostrada en Fig.6) o puede ser amarrada flojamente alrededor del eje tubo (4).
El reactor (10) semi armado se muestra en la Fig.5(a), se observa el único elemento adentro que es un tubo perforado (1003), que sobresale, con sellos rotativos (1002) en ambos extremos. También muestra el gancho (1006) para el cable con resorte (12) para tiro auxiliar desde el tanque Seguidor (13) en la ranura (1302), (explicado mas tarde, en la fig. 13(d)). En la fig. 6 el tubo (1003), vista inferior del reactor(10), está acoplado al cincho de vacio(14), por medio de los codos (1401), los tubos cortos (1402) y el distribuidor (1403).
El conjunto del cincho (14) de vacio, tiene varias mangueras de poco diámetro (1404), sobre una capa de material flexible (no mostrada) unida los distribuidores (1403, 1412) en los extremos. El distribuidor (1412) en su salida izquierda (en la fig.6), tiene una copla (1410), un reducidor con válvula de retención interna (1411), con un codo (1407), un tubo corto de pequeño diámetro.(1409), un codo (1407), un sello rotativo (1414) con manguera (1418) que va hacia la entrada (1417) de la bomba de vacio (0309), (en la fig.2). (no mostrada). La salida derecha del distribuidor (1412) tiene una copla (1410), un reducidor (1413), con una t (1408), sensor de vacio (1406), un tubo corto (1415) y un codo con sello rotativo interno (1416), el cual es la entrada de la tubería (no mostrada) que viene del OWC. (no mostrado). Ambos sellos rotativos (1414, 1416) deben estar tan concéntricos como sea posible con el eje del tubo (4), en especial (1416).
El distribuidor (1412) debe ser suficientemente mas largo que el tubo eje (4), para evitar interferencia, y anexado con abrazaderas (1405) sobre la viga master (6). El tendido del cincho de vacio (14) se muestra en la Fig 13(d) donde pasa entre los extremos partidos de la viga master (6).
La Balanza de Transferencia se muestra en la Fig.l, cuelga de ambos agujeros (0612) en la viga maestra (6) (extremos partidos del radio corto), barras verticales (15), sostienen dos barras anguladas (16) con ganchos extremos para sostener el tanque seguidor (13) y también sostener con los resortes (28) y cadenas (17) el tanque arenero (18). Asi mismo, hay una cadena (20), acoplando el fondo de la placa (19) con el tanque ancla (21), situado abajo, en el agujero (2101), (en la fig.9.). También hay, desde las barras verticales (15) cerca del extremo superior, cables auxiliares con resortes (27) anexados al extremo de la barra angulada (16) cerca del tanque seguidor (13), donde asimismo hay pequeñas barras de tope (22). Ver la Fig. 13(d). El tanque seguidor (13) está detallado en la fig 7, tiene dos eje cortos (1301) para soportarlo; dos ranuras (1302) para rebose y para el cable con resorte (12)., La fig.7(a) muestra dos ranuras (1303) para sostener una manguera de pequeño diámetro (no mostrada) y un sensor de nivel, (no mostrado). Y el corte de la fig.7(b) I-I, muestra la simplicidad interna del tanque. La forma del tanque arenero (18) se muestra en la Fig. 8. En laFig 8(a) se muestran los agujeros (1802) para las cadenas (17); ranura de rebose (1801) y bloques acojinados (1803,1804) hechos de material flexible.
Y la fig.8(b) I-I muestra otros dos agujeros (1802) para las cadenas (17) y también muestra que el tanque arenero tiene dos compartimientos para balasto solido (arena) y un compartimento central para líquidos, con otra ranura(1801) para sujetador de manguera/sensor, (manguera y sensor no mostrados). Todos estos compartimentos están intercomunicados con agujeros, (estos agujeros no se muestran).
El tanque Ancla (21) se muestra en la Fig.9. Tiene un agujero para cadena (2101) y una pequeña bomba bi-direcctional (2102). La Fig.9(a) I-I muestra el agujero (2104) de rebose, las ranuras (2105) para sensor/manguera (no mostrados) y un ducto de agua (2106) para la bomba bi-direcccional (2102). La Fig.9 (b) muestra la localización de dicha bomba (2102), su motor eléctrico (2105) y el ducto de bombeo de salida/entrada (2108). Y la Fig.9( c) II-II muestra la ranura grande (2107) para el paso de agua entre ambos depósitos.
Un GENERADOR ELÉCTRICO (2), con eje dual (Fig.10), el cual tiene en cada lado cuatro agujeros (0201) para sujetarlo a las abrazaderas (2501) (mostrados en la Fig.l 1), cuatro agujeros (0209) para sujetar el sensor de nivel (no mostrado) y una manguera de reducido diámetro (no mostrada). Parte de esta manguera está mostrada en vista fantasma (0210) para remarcar como el extremo de la manguera alcanza cercanamente el fondo del tanque jarra (1), cuando éste está cerca del engranaje/trinquete (0204). De esta manera, bombeo de corta duración puede existir cuando la jarra(l) está en posición elevada estacionaria, durante el ciclo.
El gancho (0212) de la cadena debe ser fijado al agujero (0106) de la jarra cilindrica, en la
Fig.l 0(a), donde se muestra el resorte amortiguador (0104), cubierta externa (0103), y copa inferior (0105) de la jarra (1). La Fig.10 ( c) I-I también muestra las partes internas de la jarra (1) como son el perno(0101), recipiente interno(0102) con su ducto central, masa (0107) y un agujero de drenaje (0108).
Las partes (1003),(0101) y (0107) deberán estar unidas juntas, de lo contrario será necesario colocar una resorte (no mostrado) con dos arandelas planas (no mostradas) sobre el extremo superior del perno (0101) con el gancho (0212) de cadena, presionándolo.
El GENERADOR ELÉCTRICO (2) soporta (en ambos ejes) un arreglo temporal de acumulación de energía potencial. El cual esta formado con dos jarras (1) como contrapesos y dos cadenas (23), (Fig.l) fijadas a agujeros (0315, 0603) en los extremos de ambas vigas (ver
Figs. 2 y 4). En la Fig.10 se muestra como las cadenas (23) están soportadas con engranes (0204) con trinquetes internos, los cuales impulsan los dobles ejes (0207) del generador (2), cuando ambas jarras (1) de forma cilindrica, están bajando, alternadamente, cuando los disparadores a solenoide (0202) son operados. (Los dientes del engranaje del trinquete están opacados, para resaltar los adaptadores de cadena (0203)).
La acción de trinquete ocurre cuando las bobinas solenoides del disparador (0202) no están energizadas, con los adaptadores (0203) en posición, detallado en la Fig.l 0(b). También en esa figura podemos ver isometricamente el adaptador, la vista en planta (0211); la vista lateral (0205) sobre un eslabón de cadena (0208) con remache (0206) de la cadena (23). Solamente pocos adaptadores (0203) son necesarios, cerca de cada zona de disparo de la cadena, cuya jarra (1) esté en posición de punto muerto superior.
Una PLACA DE SOPORTE SUPERIOR (25), requiriendo seis puntos de fijación (2502) se muestra en la Fig.l 1. Cuatro están localizados en las esquinas de la pieza y dos mas cerca de las abrazaderas (2501) del generador (2). Estas abrazadeFás'están localizadas bajo cuatro puntos (2503); una caja electrónica (2504) tiene una compuerta (2505) de servicio con asidero y bisagras, dispuesto para alojar partes eléctricas (no mostradas) y electrónicas (no mostradas), (computadora, controlador, acumulador eléctrico de respaldo, etc) y debe posicionarse bajo los dos puntos (2506), una pieza sujetadora (2508) está ñjada bajo los puntos (2507) donde las poleas (8) (Fig.l) cuelgan en los puntos (2509) y los sensores (no mostrados) para las placas (013,0313) pueden fijarse en (2510), (ver también Fig.l). Y hay seis puntos (2511) para fijar debajo, un distribuidor (no mostrado), cuatro válvulas solenoides (no mostradas)y un filtro Y (no mostrado). Las partes de plomería se muestran al detalle en el esquema (Fig.l 5), mas tarde. La Fig.l3(d) muestra muchos detalles pequeños, en boceto, en forma esquemática. La ruta del cincho de vacio (14), con abrazadera (1405) sobre la viga maestra (6), el codo (1401) pegado al reactor, el codo (1407) en posición concéntrica con el tubo eje (4). Se resalta asimismo una pequeña barra para tope (22), la cual evita la penetración del reactor (10) durante la descarga , dentro del tanque seguidor (13).
También se resalta un cable con resorte auxiliar (12) el cual proporciona tiro adicional para iniciar la descarga del reactor (10) del liquido (1050), cuando el reactor (10) y el tanque de seguidor (13) están a máxima separación, Y, (ver Fig. 13( c)) antes de la acción de tiro de la palanca levitadora (0606), que ocurre cuando el extremo de la viga maestra (6) toca el piso, (la linea fantasma denota la fuerza (1201) en el centro de gravedad de tal liquido (1050)). Toda la máquina puede ser armada usando tornillo, soldadura, clavo, pegamento, amarras, ganchos, etc (estos materiales no se muestran), porque algunas partes de la misma pueden ser de material plástico o madera.
UNA ESTRUCTURA PARA PROTECCIÓN CONTRA LA INTEMPERIE (no mostrada) (especialmente para protección contra el viento para las jarras (I)), la cual también debe proporcionar todos los soportes necesarios para la adecuada operación de la máquina. En algunos casos, el uso del eje (4) podría omitirse, modificando los soportes para eje (0350), (no mostrado). .
Todo el enrutamiento del cableado eléctrico y plomería no son mostrados aqui, porque depende la forma de la estructura que sirva de contenedor para la adecuada operación de la máquina. Los soportes (0350) del eje (4) se muestran en posición aérea, sólo para mejor comprensión de los dibujos.
EL PROCEDIMIENTO DE CALIBRACIÓN, antes de iniciar el acondicionamiento para el arranque se muestra bocetado en forma esquemática, en la fig 12. ( de igual forma serán presentados muchos de los siguientes dibujos y además, en un mismo plano.)- En primer lugar el tanque seguidor (13) se debe llenar con agua, (entonces los tanques ancla y arenero, deben balastarse convenientemente también), ambos extremos encadenados de las vigas esclava (3) y viga maestra (6) deberán estar al mismo nivel, manipulando la posición de las masas (5), como se sugiere en el esquemático de la Fig 12. Eso significa que el sistema de poleas (8) está en equilibrio también. (Solo en ésta Fig. 12, (todos los elementos de la balanza de transferencia están representados por la caja fantasma (1202), por simplicidad).
ACONDICIONAMIENTO, para el arranque del ciclo de operación, se muestra en la Fig.l2(a), deslizando ambas masas (5) como se sugiere. El vacio proveniente del OWC. (no mostrado) a través de la linea de tubería (no mostrada), debe ser conectada al sello rotativo del codo (1416). Ambos engranajes (0204) están listos para impulsar cada extremo de los ejes del generador (2).
ARRANQUE DEL CICLO se muestra en la Fig.12 (b), cuando el reactor (10) hace succión a través de su entrada (1007) (el nivel del OWC. está bajando (no mostrado)) dentro del tanque seguidor (13), y el peso de esta agua causa una fuerza hacia abajo como se sugiere por medio de la flecha (1201). Es importante recalcar que la posición inclinada del reactor (10) optimiza el punto donde la fuerza (el liquido (1050) en la fig.l3(d)) es aplicada. Tal figura 13(d) muestra el liquido (1050) en el extremo mas alejado del reactor inclinado (10), produciendo la posible mejor torsión alrededor del eje de rotación (4) de la viga master (6). Debido a que el peso del agua estaba colgando en la balanza de transferencia (1202, caja), en esta Fig. 12(b), ahora esto incrementa también el momento alrededor del eje (4) de la viga maestra (6), (soporte articulado (0350)), causando un movimiento de elevación sobre la jarra (1) encadenada a esa viga, la cual podría estar bajando en ese instante. Es importante asimismo, fijarse que alguna energía potencial es almacenada, cuando del tanque arenero (18) sube.
También tira hacia abajo la cadena de acoplo (7). Eso resulta en la elevación de la viga esclava (3), permitiendo bajar su jarra encadenada (1) impulsando entonces un eje del generador (2). (Recordar : ambos engranajes con trinquete (0204) están dispuestos para rotar los ejes del generador (2) solamente cuando cada jarra (1) está cayendo).
FINALIZACIÓN del Ciclo ocurre cuando la viga master (6) regresa a su posición inicial, (mostrada en la fig. 12(B)). Esto se realiza cuando la viga maestra (6) toca el piso como se retrata en la figura 12( c), cuando la palanca levitadora (0606), recibe el tirón proveniente de la acción de amortiguamiento. Esto causa que el reactor (10) descargue el liquido dentro del tanque seguidor (13), entonces regresando el sistema a la posición Inicio del Ciclo. Cuando está regresando, la jarra(l) de la viga maestra(6) estara bajando, impulsando el eje del generador(2). En esta forma, cuando la máquina está funcionando, siempre el generador (2) estará rotando. (Durante el tiempo de excursión, el nivel del liquido en el OWC. (no mostrado) está subiendo.) Es importante, asimismo, notar que alguna energía potencial se pierde cuando el tanque arenero (18) aterriza. Esta energía es usada para elevar el tanque seguidor (13). Algunos retardos de tiempo los proveen las curvas o colochos de la cadena, formados gracias a la capacidad de disparo del ciclo.
La aceleración es un tema muy importante aqui, cuando las vigas empiezan a moverse, esto es cuando los extremos de las vigas empiezan a bajar o a subir. La forma como está estructurada la balanza de transferencia realiza esta función. ( Las figuras se muestran en la misma página, solo para permitir una mejor comparación en los ángulos déla viga maestra (6)).
La Fig.13
(un primitivo boceto) muestra los elementos en posición inicial; justo cuando la viga master (6) empieza a caer, después que el reactor (10) cargó, el tanque seguidor (13) se muestra casi vacio. El agujero (0612) estará yendo hacia arriba, la barra angulada (16) también tendrá la tendencia a desplazarse hacia arriba (pero no gira), y logrando tensar la cadena (20). No hay peso adicional en agujero (0612), lo que permite decir que la viga maestra (6) está en "caída libre".
En la Fig.l3(a) vemos la barra angulada (16) rotada en el sentido contrario a las agujas del reloj, porque el tanque seguidor (13) ha perdido peso, reduciendo la tensión en la cadena (17), asimismo podemos ver que la cadena (20) ahora esa totalmente tensa, (el reactor (10) se muestra aquí una exagerada elevación). En este punto, podemos decir que poco peso se agrega a los extremos partidos, en los agujeros(0612). Asi, la viga maestra(6) continúa casi en "calda libre"
La Fig.l3(b) muestra la viga maestra (6) cayendo alrededor de la mitad del recorrido. Ahora nos preocupa empezar a frenar la acción de aceleración de la gravedad. La rotación de la barra angulada (16) se efectúa ahora en el extremo superior, tenso, de la cadena (20), causando que el tanque seguidor (13) se vaya hacia abajo y se empieza a tensar el resorte (28). La barra sujetadora (15) transmite momento en sentido contrario a las agujas del reloj, en el soporte articulado (0350).
La fig.l3( c) muestra a la viga master (6) en el extremo del recorrido. La acción de levitaciόn, (sugerida por la flecha de la curva fantasma) causa que el liquido regrese hacia el tanque seguidor (13), sumando su peso al agujero (0612).
De todas maneras, el peso del arenero (18) siempre es mas pesado que el peso del liquido, entonces este diferencial causa un momento amplificado con sentido contrario a las agujas del reloj en el soporte articulado (0650), (debido a que tenemos dos puntos de rotación en este instante: en el extremo de la cadena (20) unida a la barra angulada (16), y en el soporte articulado (0350). Esta situación es muy positiva para que el extremo de la viga master (6) se empiece a elevar mas rápido.
En algunos casos podría ser necesario instalar amortiguadores (no mostrados) dentro de los resortes (28) para evitar vibraciones indeseables. Otra pequeña ayuda para la aceleración, la proporcionan los cables con resortes (27), ya que esa posición estarán totalmente tensos. Ver también Fig.l y la Fig.l3(d).
El comportamiento de este mecanismo durante el retorno a la posición inicial es muy similar, en modo revertido, con el peso del tanque seguidor (13), ahora lleno, teniendo alguna influencia, debido a que el tanque arenero (18) es mucho mas pesado, causando la elevación del tanque seguidor (13). (Cuando el tanque seguidor está subiendo, las barras anguladas (16) están rotando en sentido opuesto a las agujas del reloj también, alrededor del extremo inferior de las barras verticales (15), por la acción de balanceo causada por el mayor peso del tanque arenero (18). La bomba de vacio deberá tener un resorte interno (no mostrado) para mantener el pistón normalmente cerca de la entrada (1417). El amortiguador en la viga esclava (3) proporciona la energía para impulsar la bomba de vacio (0309), cuando la viga esclava (3) toca el piso. Debido al pequeño diámetro de la manguera (1418) (mostrada parcialmente en la fig.6, pero no en la fig.l) y la acción del resorte (0308), ocasiona un ligero retardo en la aplicación del vacio al distribuidor (14), dando tiempo al tanque seguidor (13) alcanzar la posición inicial, donde la entrada (1007) del reactor (10) debe estar inmersa, entonces este vacio limpia cualquier formación residual de presión positiva. El amortiguador en la viga master (6) proporciona acción de tiro en la palanca levitadora (0606) cuando la viga maestra toca el suelo, causando la rotación del reactor (10) para su descarga , asistido por la acción de tiro desde el cable con resorte (12), como se explicó antes. En general, aqui no se incluyen valores de los pesos, pero tales valores deben elegirse apropiadamente.
CONSIDERACIONES DE SINCRONIZACIÓN son necesarias porque Aperture es una máquina sintonizada. El buen rendimiento se logra solamente jugando con algunas variables, principalmente por deslizamiento del peso (masa(5)), bombeo de agua entre tanques (seguidor, arenero y las jarras) y el tanque ancla.
Aperture es una máquina diseñada para trabajar periodos sobre el rango de 8-12 segundos. Por ejemplo (periodo de 10 seg.) cuando el OWC esta en descenso, los primeros 5 segundos son usados para carga del reactor, (mientras tanto, la jarra (1) de la viga master (6) esta bajando, se esta desvaneciendo la curva de la cadena, la cual se formo cuando el extremo de la viga master subió), después ocurre el disparo del solenoide, (OWC inicia subida) bajando el extremo de la viga master (6) empleando dos segundos en caer. Cuando toca el piso, el reactor se descarga durante dos segundos dentro del tanque seguidor (13) Entonces la viga master (6) emplea un segundo en subir. Durante el desarrollo del ciclo, la viga esclava (3) tiene un comportamiento revertido y cada jarra (1) podría tener diferente duración de caida. (Todos los tiempos son estimaciones aproximadas). Por supuesto pueden existir muchas variantes, y requerir muchos cálculos computacionales, para cada caso. Debido a la asimetría del sistema y factores inerciales, el comportamiento de la viga esclava (3) no es necesariamente una exacta función espejo,
Cerca de las costas, frecuentemente las olas son menores de 10 segundos y losvdisparadores pueden ajustarse para dos periodos del OWC. (y probablemente mezclado con otros ajustes de las variables ).
La variabilidad del OWC ( en otras palabras: la variabilidad del mar, principalmente), sufre alteraciones en el periodo y en la amplitud (cresta a cresta) de la ola, variación en la linea base de referencia (marea), además de un surtido de olas de muchas frecuencias y tamaños arribando al mismo tiempo al OWC, las disrupciones causadas por el tráfico marino, etcétera más la necesidad de ajustar la potencia disponible en el OWC y las cargas de servicio ( las cuales también fluctúan, a lo largo de las horas)! Esto hace imperativo el uso de la automatización, y esta invención está diseñada para contener (caja (2504),en fig.l 1) un sistema controlado por computadora. Esto proporciona capacidad de sintonización variable y con el agregado beneficio de controlar remotamente la operación de la máquina, con telemetría, Internet, etc. Programas de computación desarrollados específicamente para las características de una playa o aguas costeras podría ser necesario en cada caso.
Desatendiendo las consideraciones mencionadas arriba, algunos importantes requerimientos son obligatorios: capacidad de controlar el disparo del ciclo, capacidad de recobro de condiciones de inicio de ciclo ( principalmente con las masas (5)), ajuste dinámico del peso de las jarras (1), el tanque seguidor (13), el tanque arenero(18)) y la velocidad de caida de las jarras (1). (La cual debe ser siempre menor que la velocidad de caida de los extremos encadenados de las vigas (agujeros (0603), (0315)), de esta manera, dando origen a las curvas o colochos de las cadenas.). Todas esta operaciones básicas, pueden realizarse jugando (con motores eléctricos (0503) variando las posición de las masas (5)), con el nivel el nivel del liquido de los contenedores, con el bombeo bidireccional, con las válvulas solenoides (no mostradas) y ajustes menores de tiempo en los disparadores del ciclo.
Computados de acuerdo con la señalización del sensor de vacio (1407), las placas (0313) que trabajan con los sensores (no mostrados) localizados en los agujeros (2510); y los sensores (no mostrados) de los niveles de los tanques, a través del controlador electrónico (no mostrado). Todos lo sensores de nivel podrían requerir pequeños tubos (no mostrados) actuando como pozos tranquilizantes.
El sistema controlado por computadora permite también desarrollar tareas sobre la parte eléctrica propiamente, como filtrar vacilaciones, limitar las cargas eléctricas, asi como programarlas, permitiendo la optimizaciόn de la disponibilidad de entrada/ salida de energía, (también podría operar tomacorrientes remotos, para el encendido/apagado). También permite jugar con el frenado dinámico del generador eléctrico (2).
En caso de disponer de oleaje de gran tamaño, el aire presurizado puede utilizarse para otro aparato distinto, instalando un conjunto de dos grandes válvulas de retención (no mostradas), entre la salida de la linea de la tubería (no mostrada) del OWC (no mostrado) y la entrada del Aperture. Esto es posible puesto que esta máquina usa solo el vacio para la operación del reactor (10).
Y también puede usarse una caja de engranajes (no mostrada) para impulsar el generador (2), si generadores multipolares no fueran adecuados para casos particulares. En algunos casos, las mismas partes de la estructura pueden usarse como conductos de vacio (no mostrados), incluyendo el reemplazo del distribuidor (1412) por el tubo del eje (4) para el arreglo del cincho (14) y la manguera (1417) (no se muestra). También un resorte auxiliar (no mostrado) podría colocarse abajo del reactor (10), cerca de su extremo mas bajo, para ayudar en la levitaciόn (como ayuda rotacional), de la barra angulada (0606). Entendido primariamente para operación en el mar, la máquina Aperture puede operar en ríos (solamente en modalidad hidráulica reemplazando el actuador (reactor y balanza de transferencia) con un actuador hidráulico, tal como se muestra en forma esquemática en la Fig.14 donde un tubo (1401) alimentado de corriente arriba, alimenta una bandeja oscilante (1403), la cual descarga entre los extremos partidos de la viga master (6), (sostenida sobre (0350) hacia el contenedor fijo (1406). El equilibrio precario dado por el soporte con tope (1402) contribuye a la inestabilidad proporcionada por la pequeña püa(1404) pegada a tal viga. La Fig. 14(a) muestra el actuador hidráulico, cuando descarga agua al piso, yendo hacia la corriente de rio abajo. Mientras tanto, la bandeja osciladora (Í403) acumula agua. Las flechas en ambas figs. 14 y 14(a) sugieren el flujo del agua. La acción de levitaciόn no es necesaria en este caso y deberá ser deshabilitada, (descartando o fijando la barra angulada (0606)).
La fig.15 es solo un esquema en forma de diagrama mostrando el tanque ancla (21) con la bomba bidireccional (2102), aumentando a través del filtro Y (2107) y el distribuidor (2108) (construido de dos codos con tres t), a cuatro válvulas solenoides (213) para enrutar hacia ambas jarras(l), en el generador (2) con las salidas ( 2109,2110), hacia el tanque seguidor (13) con la salida (2111) y hacia el tanque arenero (18) con la salida (2112), todos los líquidos son conducidos con mangueras flexibles (no mostradas). Cada válvula solenoide debe tener al menos un filtro circular interno y todas ellas deben ser controladas eléctricamente por la computadora, de acuerdo a información proporcionada por los sensores (no mostrados). Modificando el arreglo del peso de las jarras(l) y el generador (2), y (ver Fig.16) usando trinquetes en las vigas (0402,0403), actuando sobre un eje de propulsión (eliminando la condición de eje fijo (4) y usando cojinetes (0401) en los soportes (0350)) es posible utilizar la maquina apertura como un generador de energía rotacional, para impulsar otros aparatos, como un elevador de cangilones, por ejemplo (no mostrado).
La Fig.17 muestra una estructura minima para la Aperture, para uso portátil. Un trípode (77) podría sostener el soporte superior (25), bajo el extremo angosto del trapezoide situado hasta arriba, (7701), con el soporte (7702) y cables (7703) de la placa rigidizadora (7707), sujetos ambos a las patas del trípode (77) y barras anguladas (7706) con estabilizador (7706), a través de ganchos (7704) y cables (7703) proveen ayuda para estabilizar el trapezoide (7701). Un eje (4) puede localizarse entre los ganchos (7704). (cojinetes tipo almohadilla (no mostrados) pueden utilizarse en este caso). Desatendiendo del tipo de forma de la estructura que se use, ésta debe proveer piso adecuado para el golpe de las barras anguladas (0301).
Un trinquete electromagnético (externo), en lugar del trinquete interno del engranaje (0204), puede ser usado para reducción del ruido y desgaste, especialmente cuando el aparato opere continuamente. La Fig. 18 muestra una placa (88) para bobinas (8801), cables interconectores (8802), una caja electromagnética (8803), (la cual internamente contiene la bobina solenoide (no mostrada) y podría tener partes electrónicas (no mostradas) tales como un puente rectificador ac/dc, condensadores, etc.). También tiene una barra de retén (8804) con su resorte (8805) y un contrapeso (8806). La parte central de la placa (88), contiene el engranaje del trinquete (8810), pegada al eje (0207) del generador, con un cojinete sellado de bolas (8809). La Fig.l8(a) muestra los imanes (8901), los cuales están atornillados (tornillos no mostrados) usando los agujeros (8811), al engrane del trinquete (8810). Estos tornillos también podrían servir para sostener un simple trinquete (0204) localizado hacia el lado opuesto de la placa de magnetos (89). La Fig.l8(B) muestra el agujero central de la placa de bobinas, lista con su ranura para cufia (no mostrada), para ser acoplada al eje del generador (0207).
Apertura puede ser utilizada en algunos lagos, con oleaje suficiente. Y asimismo en rios, usando el OWC (no mostrado) dentro de un emulador de olas, ver Fig.19, formado por un tanque cilindrico enterrado (85) con un sifón autocebante (8502), como se muestra en la Fig. 19(a) I-I , donde el caudal de salida debe ser el doble que el de entrada (8501). Podrían requerirse algunas válvulas de regulación (no mostradas).
Los bajos requerimientos del la máquina Aperture, su mas alta capacidad y flexibilidad, hacen posible que trabaje mezclada con redes eléctricas públicas y otros sistemas de fuentes renovables de energía (viento, solar, etc). La concepción de unir en el sitio, la presión atmosférica con el vacio del OWC y el uso de la energía potencial (como desplazamiento liquido del peso) incorporado en el desarrollo del actuador de baja presión, como en un oscilador de carga, además del uso del vacio en la linea de tubería, con bajas pérdidas en la transmisión de la energía, abre nuevas y amplias formas a la Humanidad para capturar la inmensa fuente de energía de los océanos, razón por la cual la interpretación de los reclamos no deberá limitarse sólo a la presente descripción, sino al espíritu de los mismos.

Claims

Reivindicaciones
Reclamo 1 Yo reclamo:
Una máquina hidroneumática, que comprende :
Un eje apoyado en dos puntos, soportando una viga esclava simplemente articulada y una viga maestra simplemente articulada, dicha viga esclava, actuando como un primer radio, ademas tiene conectado en su extremo libre una cadena tirante acoplada a un tanque cilindrico viajero con resorte para amortiguación, en donde dicha cadena tirante tiene eslabones con bloques triangulares por efectuar acciones de disparo, un gancho articulado con una placa cerca de su longitud media, una barra angulada doble conectada con un cable y un resorte fijado a un pistón de una bomba para vacio para amortiguación, y una cubierta debajo de la cual un motor eléctrico con dos sensores eléctricos, usando un tornillo largo, puede desplazar una masa deslizante roscada internamente, dicha viga maestra, bifurcada en un extremo, está divida por sus soportes articulados en dos partes desiguales, definiendo asi un radio largo y un radio corto, en la cual dicho radio corto tiene dos extremos partidos, el extremo de dicho radio largo además tiene una cadena tirante conectada a un tanque cilindrico viajero con resorte de amortiguación , en donde dicha cadena tirante tiene fijadas en sus eslabones una pluralidad e bloques triangulares para acción de disparo, una barra doble conectada con cable y resorte a una barra angulada levitadora, dicha barra levitadora mantenida en posición con dos resortes cortos fijados a dicha viga, cerca de la mitad de su longitud un gancho articulado con placa conecta una cadena de acoplamiento con el gancho articulado de la dicha viga esclava, y una cubierta debajo de la cual un motor eléctrico con dos sensores, usando un tornillo largo puede desplazar una masa deslizante roscada internamente, un actuador hidro neumático que consta de un reactor y una balanza de transferencia, el reactor mencionado cuelga con tres cadenas debajo del mencionado radio largo y con una cadena atada al extremo bajo de la mencionada barra angulada levitadora, es una caja alargada, elongada con una boca de entrada inferior, con un tubo absorbente interno con dos sellos rotativos, además dicho tubo absorbente tiene una conexión externa a través de un distribuidor a un cincho para mangueras, dicho cincho para mangueras conecta con un distribuidor que descansa sobre la zona bifurcada del mencionado radio largo de la viga maestra en donde dicho distribuidor, en un extremo tiene un sensor eléctrico de vacio, y un sello rotativo para un conector para linea de tubería, dicho conector localizado concéntricamente con el eje soportante, y en el otro extremo tiene un reducidor con una válvula de retención interna y un sello rotativo conectado con manguera flexible hacia la mencionada bomba de vacio de la viga esclava, y en donde ambos mencionados distribuidores incluyen una pluralidad de piezas de plomería, la balanza de transferencia mencionada, cuelga de ambos extremos partidos de dicho radio corto, en donde cada extremo partido dicho, además sujeta una barra vertical, cuyo cada extremo inferior sostienen una barra angulada, dicha barras anguladas sostienen en cada extremo a un tanque seguidor en el cual un resorte auxiliar con cadena lo conecta con dicho reactor y en los otros extremos de dichas barras anguladas un resorte con dos cadenas sujeta cada extremo de un tanque arenero acojinado, donde una placa acopladora localizada entre ambas barras anguladas está encadenada a un tanque ancla, en donde dicho tanque ancla además tiene un sensor eléctrico de nivel y una bomba bidireccional con manguera de salida, en donde cada uno de los mencionados tanque seguidor y tanque arenero están destinados a sostener un extremo de manguera y un sensor eléctrico para controlar el nivel de los líquidos, y en donde cables con resortes conectan los extremos superiores de dichas barras verticales con los extremos mencionados de barras anguladas, los cuales están cercanos a dicho tanque seguidor, en el cual dichos extremos de las barras anguladas dichas, incluyen además pequeñas barras anguladas de tope, una placa superior con agujeros de fijación, con caja para contener un controlador industrial, un computador, partes eléctricas, acumulador de respaldo y cableado para los componentes externos eléctricos mencionados, un distribuidor unido a cuatro válvulas eléctricas para abastecer los mencionados tanques viajeros, arenero y seguidor, con un filtro unido a la bomba bidirecccional dicha, un soporte con dos sensores eléctricos y dos poleas para controlar y sostener dicha cadena de acoplamiento, un generador eléctrico de doble eje, en el cual dos mecanismos de disparo controlan el ciclo de la máquina, dos engranajes con trinquete interno sostienen dichas cadenas tirantes, y dos extremos de manguera con dos sensores eléctricos controlan el nivel de dichos tanques viajeros, una estructura para sostener y alojar la máquina completa, que proporcione protección para la intemperie, especialmente contra vientos y además, adecuados soportes a la máquina.
Reclamo 2 . La máquina hidroneumática según el reclamo uno, en donde el eje soportante basado sobre dos puntos, posteriormente el eje además incluye cojinetes y trinquetes en los soportes articulados de las vigas.
Reclamo 3. La máquina hidroneumática acordada en el reclamo uno, donde los engranajes con trinquete interno además comprenden trinquetes auto imantados.
Reclamo 4 La máquina hidroneumática acordada en el reclamo 1, en la cual el actuador hidroneumático además comprende un actuador hidráulico siendo una bandeja oscilante que descarga liquido sobre un tanque fijado bajo el radio largo de la viga maestra.
PCT/GT2010/000001 2009-05-30 2010-05-12 Máquina hidroneumática de tres brazos desbalanceados WO2010140010A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/475,495 US20100301610A1 (en) 2009-05-30 2009-05-30 Aperture engine
US12/475,485 2009-05-30

Publications (1)

Publication Number Publication Date
WO2010140010A1 true WO2010140010A1 (es) 2010-12-09

Family

ID=43219361

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GT2010/000001 WO2010140010A1 (es) 2009-05-30 2010-05-12 Máquina hidroneumática de tres brazos desbalanceados

Country Status (3)

Country Link
US (1) US20100301610A1 (es)
GT (1) GT201100312A (es)
WO (1) WO2010140010A1 (es)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT104908B (pt) * 2009-12-28 2013-07-30 Hidroforce En Sa Hidrogerador e sua utilização
US20170321657A1 (en) * 2016-05-05 2017-11-09 Dustin Clemo Power generation system utilizing turbine arrays
CN110766741A (zh) * 2019-10-30 2020-02-07 广东三维家信息科技有限公司 室内设计的效果图评级方法、装置和电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4074526A (en) * 1974-01-17 1978-02-21 West William S Pressure source and systems incorporating it
FR2534320A1 (fr) * 1982-10-07 1984-04-13 Becart Serge Centrale hydro-electrique utilisant la force portante de l'eau
WO2003098033A1 (en) * 2002-05-16 2003-11-27 Pruthivi Raj Avadhuta An apparatus for power generation from ocean tides / wave motion (sagar lehar vidyut shakti)
WO2006109491A1 (ja) * 2005-03-31 2006-10-19 Yamaguchi University 波力エネルギー変換装置
WO2007125538A1 (en) * 2006-04-27 2007-11-08 Thothathri Sampath Kumar A device for converting wave and/or tidal energy into electrical energy

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4288985A (en) * 1979-12-10 1981-09-15 Dyck Richard G Apparatus for generating energy from the rise and fall of tides
GB2084259B (en) * 1980-07-22 1984-06-13 Kawasaki Heavy Ind Ltd Wave activated power generation system
US4754157A (en) * 1985-10-01 1988-06-28 Windle Tom J Float type wave energy extraction apparatus and method
US4660379A (en) * 1985-12-17 1987-04-28 Lane James K Airtrap power generator
US6546723B1 (en) * 2001-10-09 2003-04-15 The United States Of America As Represented By The Secretary Of The Navy Hydropower conversion system
US6781253B2 (en) * 2002-03-26 2004-08-24 Edwin Newman Converting ocean energy into electrical energy using bourdon tubes and cartesian divers
US20040222635A1 (en) * 2002-11-12 2004-11-11 Bose Phillip R. Condensing a vapor produces electrical energy
US7468563B2 (en) * 2007-02-21 2008-12-23 Joseph J Torch Ocean wave air piston
US7911073B2 (en) * 2008-10-08 2011-03-22 Todd Smith System and method for a hydro-hydraulic gravitational generator
US20100170236A1 (en) * 2009-01-06 2010-07-08 Shoetim Lezi Atmospheric pressure hydropower plant

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4074526A (en) * 1974-01-17 1978-02-21 West William S Pressure source and systems incorporating it
FR2534320A1 (fr) * 1982-10-07 1984-04-13 Becart Serge Centrale hydro-electrique utilisant la force portante de l'eau
WO2003098033A1 (en) * 2002-05-16 2003-11-27 Pruthivi Raj Avadhuta An apparatus for power generation from ocean tides / wave motion (sagar lehar vidyut shakti)
WO2006109491A1 (ja) * 2005-03-31 2006-10-19 Yamaguchi University 波力エネルギー変換装置
WO2007125538A1 (en) * 2006-04-27 2007-11-08 Thothathri Sampath Kumar A device for converting wave and/or tidal energy into electrical energy

Also Published As

Publication number Publication date
GT201100312A (es) 2014-08-22
US20100301610A1 (en) 2010-12-02

Similar Documents

Publication Publication Date Title
KR101082076B1 (ko) 파력 발전 모듈, 그 파력 발전 모듈을 포함하는 파력 발전 유닛 및 그 파력 발전 유닛을 포함하는 파력 발전 장치
US9309860B2 (en) Wave energy conversion device
ES2540585T3 (es) Sistema de generación eléctrica undimotriz
US7872365B2 (en) Wave powered electrical generator
ES2660554T3 (es) Acumulador de energía hidráulica
US8080894B2 (en) Wave powered electrical generator
KR101410872B1 (ko) 파력 발전 장치
ES2439365T3 (es) Central de energía undimotriz
US20060202483A1 (en) Capturing energy from the rise and fall of the tides and waves of the ocean
KR101372542B1 (ko) 파력 발전장치
US8596059B2 (en) Method for rotation of a shaft using the force of gravity
ES2856190T3 (es) Aparato generador hidroeléctrico sumergible y método de evacuación de agua de dicho aparato
WO2010140010A1 (es) Máquina hidroneumática de tres brazos desbalanceados
WO2008048050A1 (en) Wave energy converter
US8360205B1 (en) System for rotation of a shaft using the force of gravity
AU2019203242A1 (en) Harnessing wave power
KR102183633B1 (ko) 진자운동부를 포함하는 파력발전기
WO2009078698A1 (es) Sistema generador de energía mecánica por gravedad
ES2594305B1 (es) Hidrogenerador de corriente electrica por gravedad
RU2316670C1 (ru) Волновая энергетическая установка
WO2018026256A1 (es) Equipo hidrostático para la generación de energía eléctrica renovable por medio de las olas de mar
KR20200031769A (ko) 관로 터빈 다단 설치를 통한 양수 발전 타워
ES2830763B2 (es) Instalación para generar electricidad aprovechando la energía gravitacional
RU57840U1 (ru) Волновая энергетическая установка
ES2578927B1 (es) Generador eléctrico neumático oscilante

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10783037

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10783037

Country of ref document: EP

Kind code of ref document: A1