WO2010138045A1 - Production of ammonium phosphates - Google Patents
Production of ammonium phosphates Download PDFInfo
- Publication number
- WO2010138045A1 WO2010138045A1 PCT/SE2009/051041 SE2009051041W WO2010138045A1 WO 2010138045 A1 WO2010138045 A1 WO 2010138045A1 SE 2009051041 W SE2009051041 W SE 2009051041W WO 2010138045 A1 WO2010138045 A1 WO 2010138045A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- liquid phase
- water immiscible
- immiscible liquid
- scavenger
- ammonium phosphate
- Prior art date
Links
- 239000004254 Ammonium phosphate Substances 0.000 title claims abstract description 87
- 235000019289 ammonium phosphates Nutrition 0.000 title claims abstract description 87
- ZRIUUUJAJJNDSS-UHFFFAOYSA-N ammonium phosphates Chemical class [NH4+].[NH4+].[NH4+].[O-]P([O-])([O-])=O ZRIUUUJAJJNDSS-UHFFFAOYSA-N 0.000 title claims abstract description 61
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 53
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims abstract description 179
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 101
- 229910001868 water Inorganic materials 0.000 claims abstract description 101
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 claims abstract description 83
- 238000000034 method Methods 0.000 claims abstract description 81
- 239000007791 liquid phase Substances 0.000 claims abstract description 76
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 68
- 239000011574 phosphorus Substances 0.000 claims abstract description 64
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims abstract description 61
- LFVGISIMTYGQHF-UHFFFAOYSA-N ammonium dihydrogen phosphate Chemical compound [NH4+].OP(O)([O-])=O LFVGISIMTYGQHF-UHFFFAOYSA-N 0.000 claims abstract description 53
- 235000019837 monoammonium phosphate Nutrition 0.000 claims abstract description 46
- 229910000387 ammonium dihydrogen phosphate Inorganic materials 0.000 claims abstract description 45
- 239000006012 monoammonium phosphate Substances 0.000 claims abstract description 45
- 230000001376 precipitating effect Effects 0.000 claims abstract description 13
- 239000002516 radical scavenger Substances 0.000 claims description 85
- 239000013078 crystal Substances 0.000 claims description 61
- 239000002904 solvent Substances 0.000 claims description 61
- 229910021529 ammonia Inorganic materials 0.000 claims description 58
- 238000000605 extraction Methods 0.000 claims description 53
- 238000005406 washing Methods 0.000 claims description 46
- 238000002156 mixing Methods 0.000 claims description 41
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 claims description 40
- 229910000148 ammonium phosphate Inorganic materials 0.000 claims description 38
- 239000007788 liquid Substances 0.000 claims description 37
- 239000007864 aqueous solution Substances 0.000 claims description 35
- 229920006395 saturated elastomer Polymers 0.000 claims description 19
- 239000012071 phase Substances 0.000 claims description 18
- 238000001035 drying Methods 0.000 claims description 12
- 238000012544 monitoring process Methods 0.000 claims description 10
- 238000009835 boiling Methods 0.000 claims description 9
- 239000002244 precipitate Substances 0.000 claims description 9
- 230000004044 response Effects 0.000 claims description 8
- 238000000926 separation method Methods 0.000 claims description 6
- 238000001556 precipitation Methods 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 claims description 2
- 238000005191 phase separation Methods 0.000 claims description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 226
- 235000011007 phosphoric acid Nutrition 0.000 description 115
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 111
- 230000008569 process Effects 0.000 description 39
- 239000002253 acid Substances 0.000 description 32
- 229910019142 PO4 Inorganic materials 0.000 description 30
- 235000021317 phosphate Nutrition 0.000 description 26
- 239000003960 organic solvent Substances 0.000 description 25
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 23
- STCOOQWBFONSKY-UHFFFAOYSA-N tributyl phosphate Chemical compound CCCCOP(=O)(OCCCC)OCCCC STCOOQWBFONSKY-UHFFFAOYSA-N 0.000 description 23
- 229940093635 tributyl phosphate Drugs 0.000 description 22
- 239000010452 phosphate Substances 0.000 description 21
- 239000000243 solution Substances 0.000 description 19
- 238000000638 solvent extraction Methods 0.000 description 19
- 150000001412 amines Chemical class 0.000 description 18
- 239000000203 mixture Substances 0.000 description 16
- 238000001704 evaporation Methods 0.000 description 15
- 230000008020 evaporation Effects 0.000 description 15
- 239000007787 solid Substances 0.000 description 15
- 238000000622 liquid--liquid extraction Methods 0.000 description 14
- 239000012074 organic phase Substances 0.000 description 14
- 238000006243 chemical reaction Methods 0.000 description 12
- 239000003337 fertilizer Substances 0.000 description 12
- 239000012535 impurity Substances 0.000 description 12
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 11
- 239000008346 aqueous phase Substances 0.000 description 11
- 238000009826 distribution Methods 0.000 description 10
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- BBMCTIGTTCKYKF-UHFFFAOYSA-N 1-heptanol Chemical compound CCCCCCCO BBMCTIGTTCKYKF-UHFFFAOYSA-N 0.000 description 8
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 8
- 150000001298 alcohols Chemical class 0.000 description 8
- 229910052586 apatite Inorganic materials 0.000 description 8
- 238000013459 approach Methods 0.000 description 8
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 8
- 239000012527 feed solution Substances 0.000 description 8
- VSIIXMUUUJUKCM-UHFFFAOYSA-D pentacalcium;fluoride;triphosphate Chemical compound [F-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O VSIIXMUUUJUKCM-UHFFFAOYSA-D 0.000 description 8
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 8
- 238000001816 cooling Methods 0.000 description 7
- 238000006386 neutralization reaction Methods 0.000 description 7
- 239000002002 slurry Substances 0.000 description 7
- 150000007513 acids Chemical class 0.000 description 6
- 239000002585 base Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- XTAZYLNFDRKIHJ-UHFFFAOYSA-N n,n-dioctyloctan-1-amine Chemical compound CCCCCCCCN(CCCCCCCC)CCCCCCCC XTAZYLNFDRKIHJ-UHFFFAOYSA-N 0.000 description 6
- 239000007790 solid phase Substances 0.000 description 6
- -1 tributyl phosphate Chemical class 0.000 description 6
- MHZGKXUYDGKKIU-UHFFFAOYSA-N Decylamine Chemical compound CCCCCCCCCCN MHZGKXUYDGKKIU-UHFFFAOYSA-N 0.000 description 5
- 229910052793 cadmium Inorganic materials 0.000 description 5
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical group [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 5
- 239000003085 diluting agent Substances 0.000 description 5
- 238000004821 distillation Methods 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 150000002500 ions Chemical class 0.000 description 5
- 238000011068 loading method Methods 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 239000002367 phosphate rock Substances 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 238000011084 recovery Methods 0.000 description 5
- 150000003839 salts Chemical class 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 229910000388 diammonium phosphate Inorganic materials 0.000 description 4
- 230000029087 digestion Effects 0.000 description 4
- 238000004090 dissolution Methods 0.000 description 4
- 239000010440 gypsum Substances 0.000 description 4
- 229910052602 gypsum Inorganic materials 0.000 description 4
- 229910001385 heavy metal Inorganic materials 0.000 description 4
- 229910017053 inorganic salt Inorganic materials 0.000 description 4
- 150000002576 ketones Chemical class 0.000 description 4
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- 230000008929 regeneration Effects 0.000 description 4
- 238000011069 regeneration method Methods 0.000 description 4
- 238000005201 scrubbing Methods 0.000 description 4
- 238000007614 solvation Methods 0.000 description 4
- 239000011877 solvent mixture Substances 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 230000008016 vaporization Effects 0.000 description 4
- 238000005119 centrifugation Methods 0.000 description 3
- 239000007795 chemical reaction product Substances 0.000 description 3
- 238000010908 decantation Methods 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 150000002170 ethers Chemical class 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 230000020169 heat generation Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical group [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- JIUIIWVYHWSFAZ-UHFFFAOYSA-N ac1o0v2m Chemical compound O.O.O.O.O JIUIIWVYHWSFAZ-UHFFFAOYSA-N 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 239000000498 cooling water Substances 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000004720 fertilization Effects 0.000 description 2
- XLYOFNOQVPJJNP-ZSJDYOACSA-N heavy water Substances [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 239000003350 kerosene Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000012266 salt solution Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000000209 wet digestion Methods 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- 239000002879 Lewis base Substances 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-L Phosphate ion(2-) Chemical compound OP([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-L 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 238000012271 agricultural production Methods 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 238000010936 aqueous wash Methods 0.000 description 1
- 229910001423 beryllium ion Inorganic materials 0.000 description 1
- GINJFDRNADDBIN-FXQIFTODSA-N bilanafos Chemical compound OC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](N)CCP(C)(O)=O GINJFDRNADDBIN-FXQIFTODSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 238000000658 coextraction Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 1
- 239000003295 industrial effluent Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000003621 irrigation water Substances 0.000 description 1
- 150000007527 lewis bases Chemical class 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 239000010801 sewage sludge Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000012453 solvate Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 235000011149 sulphuric acid Nutrition 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D11/00—Solvent extraction
- B01D11/04—Solvent extraction of solutions which are liquid
-
- C—CHEMISTRY; METALLURGY
- C05—FERTILISERS; MANUFACTURE THEREOF
- C05B—PHOSPHATIC FERTILISERS
- C05B7/00—Fertilisers based essentially on alkali or ammonium orthophosphates
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B25/00—Phosphorus; Compounds thereof
- C01B25/16—Oxyacids of phosphorus; Salts thereof
- C01B25/26—Phosphates
- C01B25/28—Ammonium phosphates
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B25/00—Phosphorus; Compounds thereof
- C01B25/16—Oxyacids of phosphorus; Salts thereof
- C01B25/46—Preparation involving solvent-solvent extraction
Definitions
- the present invention relates in general to production of ammonium phosphates from phosphorus-containing solutions.
- Phosphate rock (apatite) is the primary commercial source of phosphorus.
- the majority of the world's phosphate production is used to manufacture fertilizers to sustain agricultural production.
- the quality of phosphorus reserves is declining and the cost of extraction and processing is increasing.
- Associated heavy metals like cadmium substituting calcium can be present in phosphate rock at high levels requiring separation.
- Some European fertilizer producers have switched suppliers importing only raw material that have set cadmium limits.
- All water-soluble phosphate salts such as soluble fertilizers are derived from phosphoric acid.
- Phosphoric acid is produced commercially by either a 'wet' or a thermal process. Wet digestion of phosphate rock is the most common process. Thermal processing is energy intensive and therefore expensive. For that reason, quantities of acid produced thermally are much smaller and mainly used for production of industrial phosphates.
- Phosphoric acid for fertilizer production is almost solely based on wet digestion of rock phosphate.
- the process is mainly based on dissolution of apatite with sulfuric acid. After dissolution of the rock, calcium sulfate (gypsum) and phosphoric acid are separated by filtration. To produce merchant-grade phosphoric acid, high acid concentrations are required and water is evaporated.
- Calcium sulfate exists in a number of different crystal forms depending on the prevailing conditions such as temperature, phosphorus concentration in the slurry, and level of free sulfate. Calcium sulfate is either precipitated as di-hydrate (CaSO ⁇ HkO) or as hemi-hydrate (CaS(V/-H2 ⁇ ). Phosphoric acid produced through this process is characterized by a low purity.
- All ammonium phosphate salts are derived from phosphoric acid.
- Merchant-grade phosphoric acid having a concentration of about 54% P ⁇ Os, is neutralized with ammonia to form either mono-ammonium phosphate (MAP) or di-ammonium phosphate (DAP) by controlling the ammonia to phosphoric acid mole ratio during the neutralization process.
- Ammonia is used in liquid or gaseous form. Liquid anhydrous ammonia is usually preferred since surplus heat from other systems is necessary for vaporizing liquid ammonia into a gaseous form.
- the neutralization of merchant-grade phosphoric acid with ammonia is usually performed in several stages using several reaction vessels.
- the mole ratio of ammonia to phosphoric acid in the pre-reactor/s is normally held at a level which gives the maximum solubility for the slurry (between 1.4 and 1.45 for production of DAP and usually less than 1 for production of MAP).
- the ammonia to phosphoric acid mole ratio is determined by monitoring the pH of the slurry. Excess heat of reaction is removed from the pre-neutralizer/s by adding water to the reactor/s. Evaporation of the water cools the slurry. As the mole ratio of ammonia to phosphoric acid is increased over 1, un-reacted ammonia escapes from the reactor and the gaseous vapors released must be scrubbed with an acid.
- the slurry from the pre-neutralization reactor/s which usually contain between 16 to 23% water is usually fed into an ammoniator-granulator to complete the addition of ammonia for the desired product. Completion of the neutralization and additional evaporation of water results in solid particles being formed. It is necessary to recover the un-reacted ammonia from the gaseous vapors by scrubbing with an acid. Thereafter, the solid ammonium phosphates are usually dried in a separate reactor to reduce moisture content. Loss of ammonia from the dryer is usually recovered by scrubbing with acid. The solid ammonium phosphates are normally cooled by passing air through a cooling reactor.
- the current technology for phosphoric acid purification is based on extraction of impure wet-process phosphoric acid into an organic solvent (ketones, tri-alkyl phosphates, alcohols, etc.) followed by back extraction with water forming a dilute and pure phosphoric acid which is thereafter concentrated by water evaporation. Purified phosphoric acid is thereafter neutralized with ammonia forming fully-soluble ammonium phosphate products according to the procedure described above.
- Partial extraction of phosphoric acid from concentrated phosphoric acid produced by digestion of apatite with sulfuric acid is the most common process. In this process, only part of the phosphoric acid is extracted into an organic phase. The remaining non-extracted phosphoric acid together with metal impurities is used for production of low-grade phosphate salts such as different fertilizers.
- Any solvent capable of solvating phosphoric acid can be used in this process, both solvents that have a reasonably constant distribution coefficient down to fairly low concentrations such as alcohols, and solvents which show very little extraction capacity for phosphoric acid below a specific threshold concentration, i.e., the distribution coefficient is very sharply concentration dependent such as for ethers, esters and selected ketones.
- CaCb (British patent 3304157) can improve the distribution coefficient (the distribution ratio of solute between the organic and aqueous phases) of phosphoric acid even at fairly low phosphoric acid concentrations.
- the added acid is also extracted by the solvent its proportion in the organic solvent is normally less than that in the feed solution.
- Suitable solvents are alcohols, trialkyl phosphates such as tributyl phosphate, etc. which show reasonably constant distribution coefficients down to fairly low phosphoric acid concentrations.
- the method is recommended for extracting phosphoric acid from remaining impure phosphoric acid resulting from the partial extraction process.
- a main disadvantage of this approach is that the final aqueous phase is rich in the added acid (i.e. sulfuric acid) or salts together with impurities, which might not have a final use.
- the disadvantages of the state-of-the art technologies for production of ammonium phosphates are numerous.
- the phosphoric acid as produced from the gypsum filter is not suitable for direct manufacture of ammonium phosphate salts.
- the acid must be further concentrated by water evaporation to a suitable phosphoric acid concentration (usually about 54% P2O5). Normally, concentration of phosphoric acid is done in three stages.
- the weak acid from the filter (28% P2O5) is evaporated to 40% P2O5 in a single stage vacuum evaporator.
- the acid is then clarified to remove precipitated solids and the clarified acid is then concentrated to 54% P2O5 in two stages.
- the inter-stage concentration is about 48% P 2 O 5 .
- the 54% P2O5 acid is used for ammonium phosphate production according to the procedure described above.
- To concentrate acids through evaporation is a very energy-intensive process.
- the amount of steam required for concentrating phosphoric acid usually varies between 2.5 - 5 tons of steam per ton of phosphorus, depending on production conditions.
- the energy demand for concentration of phosphoric acid is a major production cost.
- Expensive equipment such as steam distribution systems, evaporators, effluent gas scrubbers, condensation systems, cooling water systems, liquid effluent treatment systems and acid storage facilities are necessary for production of merchant-grade phosphoric acid.
- ammonium phosphate product is set by the quality of the apatite raw-material.
- Produced ammonium phosphates of fertilizer grade are generally contaminated with heavy metals such as cadmium and are not fully-soluble and therefore not suitable for use in applications such as fertigation.
- US patent 3,298,782 describes a process for the purification of wet-process phosphoric acid which consists of a) extracting phosphoric acid from an aqueous phase to an alcohol-amine organic phase, b) separating the alcohol-amine phase from the aqueous phase, and c) recovering purified phosphoric acid from the alcohol- amine phase.
- the main objective was to recover purified phosphoric acid by back-extraction with water.
- phosphate salts can be recovered from the alcohol-amine phase by reaction with a base.
- an aqueous ammonia solution was used to strip the phosphate from the organic phase into an aqueous phase.
- US patent 3,458,282 describes a method for purifying phosphoric acid by utilizing an amine dissolved in an organic diluent (e.g. kerosene) as an extractant phase to remove either certain impurities from phosphoric acid or to extract phosphoric acid from the aqueous phase.
- an organic diluent e.g. kerosene
- the main objective was to obtain purified aqueous phosphoric acid by back-extraction with water, or to obtain an aqueous phosphate salt solution by reaction with an aqueous base.
- US patent 3,894,143 describes a process for obtaining crystallized ammonium phosphate of good quality from wet-process phosphoric acid and ammonia.
- the process consists of a) forming a mixture of aqueous phosphoric acid and acetone in which all components are miscible with water, b) precipitating impurities by addition of ammonia and separating the precipitated impurities to form a purified mixture, c) contacting the purified mixture with ammonia to produce ammonium phosphate crystals and a supernatant liquid, and d) Separating the ammonium phosphate crystals from the supernatant liquid and distilling the supernatant to separate the acetone for recycling.
- the disadvantages of this method include distillation of large quantities of acetone, limited yield of ammonium phosphates, and production of large quantities of dilute aqueous ammonium phosphate effluents. The process was therefore not applied in the industry.
- Phosphorus ions are extracted from solutions by adsorbing phosphorus ions in a scavenger and by releasing the phosphorus ions into an eluate during regeneration of the scavenger.
- the regeneration is performed by ammonia.
- Phosphate anions are precipitated in form of tri-ammonium phosphate upon introduction of excess amounts of ammonia.
- the ammonia remaining in solution after the precipitation of tri-ammonium phosphate is reused for regenerating the scavenger.
- tri-ammonium phosphate is unstable at ambient temperature and atmospheric pressure resulting in the decomposition of the crystal accompanied with release of ammonia. Such unstable crystalline solid is not suitable for direct use in agriculture.
- a general object of the present invention is to improve methods and devices for production of ammonium phosphate from phosphorus-containing solutions.
- a further object of the present invention is to provide a method for production of fully-soluble ammonium phosphates without the need for concentrating phosphoric acid by evaporation of water.
- Another object of the present invention is to provide a cost effective method for production of ammonium phosphates without the need for drying and scrubbing ammonia from effluent vapors.
- a further object of the present invention is to provide recovered ammonium phosphates in a form that easily can be utilized for fertilizing purposes.
- a method for production of ammonium phosphates comprises providing of a phosphorus-loaded water immiscible liquid phase, adding of anhydrous ammonia to the water immiscible liquid phase, precipitating of mono-ammonium phosphate and/or di-ammonium phosphate from the water immiscible liquid phase and extracting of the precipitated mono-ammonium phosphate and/or di-ammonium phosphate from the water immiscible liquid phase.
- the method further comprises controlling of a temperature of the water immiscible liquid phase during the adding and precipitating to a predetermined temperature interval.
- an arrangement for production of ammonium phosphates comprises a mixing volume.
- the mixing volume has an inlet adapted for a phosphorus-loaded water immiscible liquid phase and an inlet adapted for adding of anhydrous ammonia into the water immiscible liquid phase.
- the arrangement further comprises a heat exchanger arranged in thermal contact with the water immiscible liquid phase.
- a controller is arranged for operating the heat exchanger to keep the water immiscible liquid phase in the mixing volume within a predetermined temperature interval.
- the arrangement also comprises a precipitate remover arranged for removing crystals of precipitated mono-ammonium phosphate and/or di-ammonium phosphate from the mixing volume.
- the phosphorus is extracted into the phosphorus-loaded water immiscible liquid phase from solutions by adsorbing phosphorus into a liquid scavenger having affinity for phosphorus, thereby creating the phosphorus-loaded water immiscible liquid phase.
- the phosphorus is removed by the addition of anhydrous ammonia from the liquid scavenger during regeneration of the scavenger.
- the temperature of the liquid scavenger is preferably maintained below its boiling point.
- the regenerated scavenger is preferably continuously recycled in order to extract phosphorus from further feed solutions.
- the separated crystalline ammonium phosphates are in one particular embodiment washed with an aqueous solution in which the pH is controlled to a predetermined level.
- the scavenger initially adhering to the crystals is separated from the dense aqueous phase in a phase separator.
- the so separated scavenger is continuously recycled in order to extract phosphorus from a feed solution.
- the aqueous wash solution is also recycled for further washing.
- the separated crystalline ammonium phosphates are washed with an organic washing solvent in which ammonium phosphates are insoluble and which organic washing solvent has a lower boiling temperature than the scavenger.
- the washed ammonium phosphate crystals are thereafter preferably dried. The drying can preferably at least to a part be performed by heat obtained from the heat exchange process cooling the mixing of anhydrous ammonia with phosphoric acid.
- the invention provides for extraction of phosphorus from process streams in form of high quality products such as ammonium phosphate fertilizers in an environmentally friendly and cost effective way.
- the invention enables production of MAP or DAP independent of the initial composition of the precipitated crystals.
- phosphorus can be recovered as a concentrated, water-soluble, inorganic product of a high quality, i.e. high phosphorus availability to plants and minor heavy metal contamination.
- Another advantage of the present invention is that it enables to reuse the scavenger without the need for distillating large quantities of liquid scavenger.
- FIG. 1 is a block scheme of an embodiment of an arrangement for recovery phosphorus
- FIG. 2 is a block scheme of an embodiment of an arrangement for production of ammonium phosphates according to the present invention
- FIG. 3 is a flow diagram of an embodiment of a method according to the present invention.
- FIGS. 4-6 are block schemes of other embodiments of an arrangement for production of ammonium phosphates according to the present invention. DETAILED DESCRIPTION
- Scavenger- material having affinity for solute species, e.g. material adsorbing ions or acids, by ion association or solvation mechanisms.
- the term comprises different kinds of extractants contained in solvents.
- Extractant - An active component, typically organic, of a solvent enabling extraction.
- Solvent extraction liquid liquid extraction
- Regeneration The displacement from the scavenger of the ions or acids removed from the process solution to make the scavenger ready for reuse.
- Diluent -A liquid typically organic, in which an extractant is dissolved to form a solvent.
- the main objective of the invention is to provide a simple and cost effective method for production of ammonium phosphates.
- the method enables production of ammonium phosphates without the need for concentrating phosphoric acid by water evaporation. Furthermore, the method enables production of fully-soluble and pure mono-ammonium phosphate or di-ammonium phosphate salts.
- Solvents used for purification of phosphoric acid such as ketones, tri-alkyl phosphates and alcohols require high concentrations of phosphoric acid in the feed solution in order to obtain a sufficient high phosphoric acid loading in the organic phase for a liquid-liquid extraction process to be practical.
- the use of such solvents requires concentration of phosphoric acid by water evaporation prior to phosphoric acid extraction.
- a process for producing ammonium phosphates from a phosphorus-containing mineral according to the present invention is described in details in connection with Fig. 1.
- the present invention is not limited to recovery of phosphorus from minerals, but is applicable to many different systems providing phosphate ions / phosphoric acid.
- a similar process with minor modifications can be used e.g. for extracting phosphorus from ash of incinerated sewage sludge, ash of incinerated animal by-products, P rich streams within sewage treatment works, industrial effluents, etc.
- An embodiment of an arrangement 100 for recovery phosphorus is shown in Fig. 1.
- Apatite concentrate 2 obtained by the beneficiation of mined phosphate rock is subjected to digestion with sulfuric acid 1 in a digester 4 according to known methods giving digested apatite 3.
- Known process schemes include di-hydrate, hemi- hydrate, hemihydrate-dihydrate, and dihydrate -hemihydrate processes.
- Calcium sulfate (gypsum) 5 and a phosphorous-containing aqueous solution 7, in this embodiment phosphoric acid, are thereafter separated by filtration in a digester separator 6.
- the filter-grade phosphoric acid 7 is optionally pretreated to remove impurities by known methods.
- the entire arrangement for digestion of apatite 4 and separation of impurities 6 can be seen as a pretreatment for providing a feed solution to a liquid-liquid extraction process, i.e. a phosphorus-containing aqueous solution 7.
- the feed solution is provided to an arrangement 10 for production of ammonium phosphates, in this embodiment provided by liquid-liquid extraction.
- Liquid-liquid extraction involves selective transfer of solute between two immiscible phases, an aqueous phase and an organic phase. The two immiscible phases are first thoroughly mixed in order to facilitate the transfer of solute and then separated.
- a liquid-liquid extraction process is utilized, where a feed aqueous solution containing phosphate ions / phosphoric acid is exposed to an organic phase (herby named scavenger).
- scavenger organic phase
- the phosphate ions / phosphoric acid are thereby extracted into the scavenger.
- the arrangement 10 for production of ammonium phosphates derives ammonium phosphate 9 from the phosphorus-containing aqueous solution 7, giving a remaining process liquid 8, which preferably can be reused together with the sulfuric acid 1 for further digestion.
- FIG. 2 An embodiment of an arrangement 10 for production of ammonium phosphates is illustrated more in detail in Fig. 2.
- An extraction section 12 is arranged for allowing adsorbing of phosphorous from a phosphorous- g containing aqueous solution 7 into a liquid scavenger 15 having affinity for phosphorous.
- An aqueous solution depleted in phosphorous leaves the extraction section 12.
- the phosphorus depleted aqueous solution becomes the remaining process liquid 8.
- An outlet from the extraction section 12 for scavenger 15 loaded with phosphorous is connected to an inlet 22 for a phosphorus-loaded water immiscible liquid phase of a mixing volume 20, whereby the scavenger 15 loaded with phosphorous forms a phosphorus-loaded water immiscible liquid phase 14.
- an inlet for scavenger 15 depleted from phosphorous 16 to the extraction section 12 is connected, at least indirectly, to the mixing volume 20. This inlet for scavenger 15 depleted from phosphorous 16 is thus arranged for reusing regenerated scavenger 15 formed in the mixing volume 20 for further adsorbing of phosphorous in the extraction section 12.
- Any organic solvent (scavenger) capable of removing phosphorus from aqueous solutions can be used in the liquid-liquid extraction of the extraction section.
- the mechanism of phosphorus extraction can be ion association, solvation of phosphoric acid or both.
- the composition of the scavenger should be selected according to the concentration of the phosphoric acid feed, presence of additional acids or salts, etc. in order to obtain a high loading capacity and an effective operational extraction process.
- Liquid scavengers suitable for extracting phosphoric acid from dilute solutions are liquid amines.
- primary, secondary and tertiary liquid amines can be used.
- Amine extractants have a low water- solubility, good miscibility with organic solvents, good chemical stability, high selectivity and a strong binding power enabling acid extraction from very dilute solutions.
- amines should be selected having a nitrogen atom attached to a large organic molecule containing more than seven aliphatic or aromatic carbon atoms. Such organic amines are highly soluble in organic solvents and almost insoluble in water.
- the amine base In contact with an acid containing solution, the amine base reacts with the acid to form a protonated positive charge, which associates with the anion of the acid.
- Organic amines can extract more acid than the stoichiometric ratio of 1 acid molecule per 1 molecule of amine through solvation of additional neutral acid molecules.
- concentrated phosphoric acid up to four phosphate molecules are extracted per molecule of liquid amine.
- High concentration of amines can polymerize to form a third, non-wanted, separate phase.
- the formation of the non- wanted third phase can be avoided by dissolving the amines in another organic solvent which is a strong Lewis base such as tributy! phosphate or alcohols.
- Mixtures of solvating extractants such as tri butyl phosphate and liquid amines are preferably used together to efficiently extract phosphate at both high and low concentrations.
- Solvating extractants are liquid organic molecules containing oxygen atoms (alcohols, esters, ethers, ketons, trialkyl phosphates, amides, etc.) which interact with phosphoric acid to form H-associations. During this mechanism, the extractant replaces part of the water molecules and solvates the phosphoric acid molecule in the organic phase. The binding of phosphoric acid is weak through H-association.
- Solvating extractants can be divided into two groups: a) solvents that have a reasonably constant distribution coefficient down to fairly low concentrations such as alcohols, tributyl phosphate, etc., and b) solvents which show very little extraction capacity for phosphoric acid below a specific threshold concentration, i.e., the distribution coefficient is very sharply concentration dependent such as for ethers, esters and selected ketones e.g. methyl isobutyl ketone.
- solvents that have a reasonably constant distribution coefficient down to fairly low concentrations such as tributyl phosphate and liquid amines which have a strong extraction power for phosphate even at very low concentrations due to an ion association mechanism.
- the obtained phosphate concentration in the scavenger is preferably above 1M.
- mixture of solvating extractants and liquid amines are selective towards anions and do not bind positively charged metals, which means that metal contaminants are separated from the extracted phosphoric acid by remaining in the aqueous solution.
- the filter-grade phosphoric acid is fed to a liquid-liquid extraction process characterized by the above described scavenger.
- the liquid-liquid extraction process is preferably a continuous liquid-liquid extraction process using preferably liquid-liquid extraction equipment such as pulsed-columns.
- liquid-liquid extraction equipment such as pulsed-columns.
- any other liquid-liquid extraction equipment can be used such as, agitated columns, non-agitated columns, mixer settlers, inline mixers, centrifugal contactors, etc.
- the raffinate which is depleted in phosphate, is further treated to remove metal precipitates. It can then be used for apatite dissolution or gypsum washing, (see e.g. Fig. 1).
- the scavenger which is loaded with phosphorus is optionally scrubbed to remove co-extracted impurities forming a phosphorus-loaded water immiscible liquid phase.
- the arrangement 10 for production of ammonium phosphates comprises a mixing volume 20 having an inlet 22 for the phosphorus- loaded water immiscible liquid phase 14.
- the mixing volume has furthermore an inlet 24 for adding anhydrous ammonia 18 into the phosphorus-loaded water immiscible liquid phase 14.
- Anhydrous liquid ammonia or gaseous anhydrous ammonia can be utilized.
- ammonia molecules react with several phosphoric acid or hydrogen phosphate molecules to form a crystal structure by H-bonding of ammonium molecules to phosphate molecules.
- the weak bonds easily dissociate in contact with water, which makes ammonium phosphate crystals highly water-soluble. It is known that several crystalline ammonium phosphate solid phases can be obtained by contacting ammonia, phosphoric acid and water at different concentrations and temperatures.
- the following crystalline solid phases are known: (NH 4 ) 7 H 2 (PO 4 ) 3 , (NH 4 )SPO 4 SH 2 O, (NH 4 )HPO 4 H 2 O 2 , (NH 4 ) 2 HPO 4 , (NH 4 ) 2 HPO 4 -2H 2 O, NH 4 H 2 PO 4 , (NH 4 ) 3 H 2 (PO 4 ) 4 , NH 4 Hs(PO 4 J 2 H 2 O, and NH 4 Hs(PO 4 J 2 .
- Several of these crystalline ammonium phosphates are unstable at ambient temperature and atmospheric pressure resulting in the decomposition of the crystal into another structure accompanied with release of ammonia. Such unstable crystalline solid phases are not suitable for use in agriculture.
- anhydrous ammonia is soluble in different organic solvents such as ethanol (10% by weight at 25 0 C), methanol (16% by weight at 25 0 C), etc.
- solubility of ammonia in tributyl phosphate is only 0.6% by weight at 20 0 C and the solubility decreases with increasing temperatures. Above 35 0 C the solubility of ammonia in tributyl phosphate is insignificant. Thus, the amount of residual ammonia in the scavenger after precipitation of phosphorus is very low. It was also found that there is a correlation between phosphorus loading in the organic solvent to pH and conductivity. Conductivity decreases and pH level increases with decreasing concentration of phosphoric acid in the solvent.
- the arrangement 10 for production of ammonium phosphates comprises a sensor 26, in this embodiment a sensor for monitoring of a conductivity of the water immiscible liquid phase, in the mixing volume 20.
- the arrangement 10 for production of ammonium phosphates further comprises an adder control unit 28 connected to the sensor 26 and arranged for controlling an amount of added anhydrous ammonia 18 in response to the monitored conductivity.
- the senor 26 is a sensor for monitoring of a pH of the water immiscible liquid phase in the mixing volume 20, and the adder control unit 28 is consequently arranged for controlling an amount of added anhydrous ammonia 18 in response to the monitored pH.
- the arrangement 10 for production of ammonium phosphates comprises a heat exchanger 30 arranged in thermal contact with the water immiscible liquid phase 15.
- the heat exchanger 30 is arranged in the mixing volume 20 for extracting heat from the water immiscible liquid phase 15 within the mixing volume 20.
- the temperature in the mixing volume 20 where the scavenger 15 and ammonia 18 is mixed is preferably measured by a thermometer 32 and this measure is used by a controller 34 for operating the heat exchange in such a way that the temperature of the water immiscible liquid phase 15 in the mixing volume 20 is held within a predetermined temperature interval.
- the scavenger to be used in the extraction section 12 is cooled to a temperature which is below 6O 0 C since lower temperatures favor phosphoric acid extraction by the scavenger 15.
- the cooling of the heat exchanger 30 can be achieved by vaporizing liquid anhydrous ammonia into a gaseous form. In such a manner cooling can be obtained by using ammonia which is an ingredient in the final product.
- the arrangement 10 for production of ammonium phosphates comprises a source of liquid ammonia 19.
- a heater unit 23 is connected to the source of liquid ammonia 19 and is connected to or integrated with the heat exchanger 30.
- the heater unit 23 is arranged for utilizing at least a part of heat extracted in the heat exchanger 30 to produce gaseous ammonia, used as the anhydrous ammonia 18.
- the inlet 24 for adding anhydrous ammonia 18 of the mixing volume 20 is connected for extracting the gaseous ammonia from the source of liquid ammonia 19.
- cooling can be achieved by any other means such as heat exchange with cooling water. This alternative is preferable when it is desired to recover the generated heat for use in other processes or used for drying the recovered ammonium phosphate crystals, which will be discussed further below.
- the crystalline solid ammonium phosphates are thereafter separated from the scavenger by known solid-liquid separation techniques such as filtration, decantation, centrifugation, etc.
- a precipitate remover 40 is arranged for removing crystals of precipitated mono-ammonium phosphate and/or di-ammonium phosphate from the mixing volume 20.
- the phosphorus-depleted scavenger 16 is then preferably continuously recycled in order to again extract phosphate from a feed solution in the extraction section 12.
- the arrangement 10 for production of ammonium phosphates comprises washing arrangement 50, in turn comprising a washer 52 connected to the precipitate remover 40.
- the washer 52 is arranged for washing the separated ammonium phosphate crystals.
- a drier 54 is connected to the washer 52 and is arranged for drying the washed crystals.
- a separator 60 is connected to the washer 52 and is arranged for separating residual scavenger 17 washed from the crystals.
- the separator 60 is thereby connected to the inlet to the extraction section 12 for scavenger depleted from phosphorous 16 for reusing the separated residual scavenger 17 for further adsorbing of phosphorous in the extraction section 12.
- the separator is also arranged for providing washing liquid depleted from residual scavenger 59 for reuse for washing crystals in the washer 52.
- the scavenger adhering to the separated ammonium phosphate crystals is removed by washing the ammonium phosphate crystals with a saturated aqueous ammonium phosphate solution.
- the scavenger initially adhering to the crystals forms a separate phase which typically is lighter than the dense aqueous phase and is as mentioned further above water immiscible.
- the two phases are thereby spontaneously separated from each other.
- the separator 60 of the present embodiment therefore is a phase separator arranged for separation of the scavenger and said saturated aqueous solution of ammonium phosphate. It was surprisingly found that the above mentioned wash procedure is highly efficient.
- the carbon content of the washed ammonium phosphate crystals was found to be lower than carbon contents of commercial high-purity ammonium phosphate salts. It is believed that the washing with saturated ammonium phosphate solution is a dynamic process in which ammonium phosphate crystals constantly dissolve and re- crystallize enabling efficient removal of adhering solvent. The operation of the wash procedure is simple and is not energy intensive. The saturated ammonium phosphate solution which is separated from the crystals is continuously recycled for further washing. Make up of saturated ammonium phosphate solution is made by dissolving produced ammonium phosphate salts in aqueous solutions such as water, phosphoric acid, or other acid/salt solutions.
- aqueous solutions such as water, phosphoric acid, or other acid/salt solutions.
- the separated water-immiscible scavenger is continuously recycled in order to extract phosphate from a feed solution.
- the washed ammonium phosphate crystals are thereafter dried in the drier 54.
- the drying can preferably at least to a part be performed by heat obtained from the heat exchange process cooling the mixing of anhydrous ammonia with phosphoric acid.
- the drier 54 is connected to the heat exchanger 30 as indicated by the broken arrows 37 and 39.
- the drier 54 is thereby arranged for utilizing at least a part of the heat extracted in the heat exchanger 30 for drying the washed crystals.
- the produced ammonium phosphates are fully water-soluble, metal depleted and can be used for agricultural purposes such as fertilization or fertigation.
- wash process enables to control the production of ammonium phosphates to produce either MAP or DAP independent 5 of the initial composition of the precipitated crystals.
- the wash solution used is preferably composed of saturated aqueous solution of mono-ammonium phosphate.
- the pH of the slurry is controlled and adjusted to a value between 2 and 6, preferably between 3 and 5 and most preferably of about 4.1 by addition of e.g. phosphoric acid or ammonia. This procedure results in production of MAP independent of the initial composition of the precipitated crystals.
- DAP is the desired end product then the wash solution used is preferably composed of saturated aqueous solution of mono-ammonium phosphate.
- the pH of the slurry is controlled and adjusted to a value between 2 and 6, preferably between 3 and 5 and most preferably of about 4.1 by addition of e.g. phosphoric acid or ammonia.
- wash solution used is composed of saturated aqueous solution of di-ammonium phosphate.
- the pH of the slurry is controlled and adjusted to a value between 6 and 10, preferably between 7 and 9 and most preferably of about 8.3 by addition of e.g. ammonia.
- This procedure results in production of DAP independent of the initial composition of the precipitated crystals. In such a manner, production of both MAP and DAP is possible according to the invention.
- the washer 52 is further arranged for controlling a pH of the saturated
- Fig. 3 illustrates a flow diagram of steps of a method according to an embodiment of the present invention.
- a method for production of ammonium phosphates begins in step 200.
- step 210 a phosphorus-loaded water immiscible liquid phase is provided.
- Anhydrous ammonia is added to the water immiscible liquid phase in step 212.
- the step 212 of adding comprises monitoring of a conductivity of the water
- the step 212 of adding comprises monitoring of a pH of the water immiscible liquid phase and controlling an amount of added anhydrous ammonia in response to the monitored pH.
- Mono-ammonium phosphate and/or di-ammonium phosphate is in step 214 precipitated from the water immiscible liquid phase.
- adding and precipitating is controlled to be situated within a predetermined temperature interval.
- the actual step of controlling can be performed before, during and/or after the steps of adding and precipitating. The important feature is that it is ensured that the temperature during the adding and precipitating is kept within predetermined limits. It is of less importance when the actual instant of heat removal occurs. Step 216 may therefore be situated in time before, concurrent with and/or after the steps
- the temperature controlling typically comprises extraction of heat from the water immiscible liquid phase. This heat may, at least to a part, be used for producing gaseous ammonia from liquid ammonia by means of heating. This gaseous ammonia can be used as the anhydrous ammonia added in step 212.
- the precipitated mono-ammonium phosphate and/or di-ammonium phosphate is extracted from the water immiscible liquid phase.
- the method further comprises a step 220, in which crystals of extracted precipitated mono-ammonium phosphate and/or di-ammonium phosphate is washed.
- step 222 residual water immiscible liquid phase, i.e. typically scavenger (as discussed here below), washed from the crystals is separated.
- the separated residual scavenger is preferably reused for further adsorbing of phosphorous to obtain the phosphorus-loaded water immiscible liquid phase as indicated by the broken arrow 224.
- washing liquid depleted from residual scavenger is reused for further washing of the crystals as indicated by the broken arrow 226.
- the washing is performed with saturated aqueous solution of ammonium phosphate and the separating of residual scavenger is performed by phase separation of the scavenger and the saturated aqueous solution of ammonium phosphate.
- the washed crystals are dried in step 228.
- the drying utilizes at least a part of the heat extracted from the step of controlling the temperature.
- the pH of the saturated aqueous solution of mono-ammonium phosphate and/or di- ammonium phosphate is controlled to drive the chemical reactions to production of particular compositions of MAP and/or DAP.
- pure MAP can be obtained by acid pH
- pure DAP can be obtained by slightly basic pH, as discussed above.
- the step 210 providing a phosphorus-loaded water immiscible liquid phase in turn comprises adsorption of phosphorous from a phosphorous-containing aqueous solution into a liquid scavenger having affinity for phosphorous.
- the method according to the embodiment of Fig. 3 then also comprises the further step 230 of reusing regenerated scavenger formed by the step of extracting 218 for further adsorbing of phosphorous in step 210.
- the procedure ends in step 299.
- the adhering scavenger can be removed from the crystals by washing with an organic solvent having a boiling point which is considerably lower than the boiling point of the scavenger and in which crystalline ammonium phosphates are insoluble.
- the organic solvent used for washing can be fully-miscible with water. Examples of possible solvents for washing ammonium phosphate crystals include acetone (boiling point of 56.5°C), methanol (boiling point of 64.7 0 C), etc.
- the recovered crystalline ammonium phosphates can be treated to remove remains of wash solvent by distillation, The obtained wash solution can be collected and the organic solvent, used for washing, can be separated from the scavenger by distillation. Such an embodiment is illustrated in Fig. 4.
- the washer 52' is here arranged for washing the crystals with an organic washing solvent in which ammonium phosphates are insoluble.
- the separator 60 comprises a distiller 64 separating the washing solvent 61 in gas phase from the residual scavenger 17 still appearing as a liquid.
- the heat extracted from the mixing volume 20 may preferably also be used as at least a part of the required heat source for the distilling operation, as indicated by the arrows 37 and 38,
- the gaseous washing solvent 61 is condensed in a condenser 62. From the drier 54, gaseous washing solvent is also produced, which preferably also is connected back to the condenser for further reutilisation.
- the actual extraction of heat from said phosphorous-loaded water immiscible liquid phase can be performed in different ways.
- the heat exchanger 30 is integrated in the mixing volume 20. This is presently believed to be the preferred way, since it gives a well controlled temperature. However, alternatives are also possible.
- Fig. 5 an embodiment is illustrated, where the heat exchanger 30 is arranged in contact with the water immiscible liquid phase leaving the precipitate remover 40.
- the controller 34 may still be controlled based on the temperature in the mixing volume 20 as measured by a thermometer 32.
- a controller 34' can be operated based on the temperature of the scavenger entering the extraction section 12 by means of a thermometer 32'.
- the temperature of the scavenger entering the extraction section 12 is primarily controlled, which in turn will keep the temperature of the phosphorous-loaded water immiscible liquid phase within the mixing volume in the next cycle within the requested temperature interval, in particular if there is information about the assumed phosphorus content leaving the extraction section 12 with the phosphorous-loaded water immiscible liquid phase.
- an indirect control of the temperature in the mixing volume will also be achieved.
- scavenger entering the extraction section 12 may then be optimized in temperature regarding phosphorous affinity.
- Fig. 6 yet another embodiment is illustrated, where the heat exchanger 30 is arranged in contact with the water immiscible liquid phase leaving the extraction section 12 before entering the mixing volume 20.
- the control can be based on either or both of a temperature in the mixing volume or a temperature of the loaded scavenger before entering the mixing volume 20.
- the temperature in the scavenger before entering the mixing volume is then measured by a thermometer 32" and using a controller 34".
- the detailed embodiments above are only a few examples of how a method and an arrangement for production of ammonium phosphates may be arranged.
- the phosphorus-containing water immiscible liquid phase is preferably provided as described further above, but there are also other possibilities.
- the phosphorus-containing water immiscible liquid phase could be provided by any type of ion exchange process.
- the phosphorus- containing liquid phase could also be provided by other chemical processes, such as dissolution from solid phases.
- the post-treatment of the precipitated MAP and/or DAP is also just one example, presently preferred, of how the MAP and/or DAP can be managed.
- Other more conventional techniques such as direct distilling of the precipitate in order to evaporate the scavenger or other solvent directly without any washing step.
- the scavenger or other solvent is not very expensive and is harmless as impurity in the produced MAP/DAP, one may completely remove the washing procedure.
- the two immiscible phases were first thoroughly mixed in order to facilitate the transfer of phosphoric acid and then separated.
- the loaded organic solvent having a pH value of -0.4 was contacted with an excess of liquid anhydrous ammonia (> 50 g NH3 liter 1 solvent). Crystalline solids formed in the organic phase. The solids were separated from the organic solvent by centrifugation and decantation. The separated solids were washed several times with methanol and dried for 2 hours at 9O 0 C.
- the recovered inorganic salt was composed of 12.3% N and 26.8% P corresponding to 98% NH4H2PO4 and 2% (Nm) 2 HPCM by weight.
- the removal efficiency of phosphorus from the organic solvent was found to be as high as 99.4%.
- the same experiment as described in example 1 was repeated, the only difference being the use of a limited amount of liquid anhydrous ammonia ( ⁇ 2Og NH3 liter 1 solvent).
- the recovered inorganic salt was composed of 12.2% N and 26.9% P corresponding to 99% NH 4 H 2 PO 4 and 1% (NH 4 ) 2 HPO 4 by weight.
- EXAMPLE 4 The same experiment as described in example 3 was repeated, the only difference being the use of an organic solvent composed of 80% tributyl phosphate and 20% tri-octyl/decyl amine by volume.
- the recovered inorganic salt was composed of 12.4% N and 26.8% P corresponding to 97% NH4H2PO4 and 3% (NH 4 ) 2 HPO 4 by weight.
- Crystals of mono-ammonium phosphate were separated from a solvent composed of 80% tributyl phosphate and 20% heptanol by decantation. The separated crystals were fed into an aqueous solution saturated with mono-ammonium phosphate. The crystals were separated from the saturated aqueous solution by centrifugation and dried at 90 0 C. The organic solvent initially adhering to the crystals formed a separate phase above the5 aqueous phase. The carbon content of the washed mono-ammonium phosphate crystals was found to be lower than carbon contents of commercial high-purity mono ammonium phosphate salts. Similar results were obtained when using a solvent composed of 80% tributyl phosphate and 20% tri-octyl/decyl amine.
- Crystals of mono-ammonium phosphate were fed into an aqueous solution saturated with di-ammonium0 phosphate.
- the pH of the aqueous solution was thereafter adjusted to a value of 8.3 by addition of gaseous anhydrous ammonia.
- the crystalline solids were thereafter separated from the saturated aqueous solution and dried. The solids were found to be composed of essentially di-ammonium phosphate. Thus, crystals of mono- ammonium phosphate could be converted into crystals of di-ammonium phosphate.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Fertilizers (AREA)
- Extraction Or Liquid Replacement (AREA)
- Physical Water Treatments (AREA)
Abstract
Description
Claims
Priority Applications (18)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES09845317.8T ES2542524T3 (en) | 2009-05-27 | 2009-09-18 | Ammonium Phosphate Production |
US13/322,619 US8658117B2 (en) | 2009-05-27 | 2009-09-18 | Production of ammonium phosphates |
SE1151263A SE535871C2 (en) | 2009-05-27 | 2009-09-18 | Production of ammonium phosphates |
PL09845317T PL2435364T3 (en) | 2009-05-27 | 2009-09-18 | Production of ammonium phosphates |
AU2009347055A AU2009347055B2 (en) | 2009-05-27 | 2009-09-18 | Production of ammonium phosphates |
EP20090845317 EP2435364B1 (en) | 2009-05-27 | 2009-09-18 | Production of ammonium phosphates |
DK09845317.8T DK2435364T3 (en) | 2009-05-27 | 2009-09-18 | PRODUCTION OF ammonium phosphates |
JP2012513004A JP5567664B2 (en) | 2009-05-27 | 2009-09-18 | Production of ammonium phosphate |
SI200931232T SI2435364T1 (en) | 2009-05-27 | 2009-09-18 | Production of ammonium phosphates |
CA2763079A CA2763079C (en) | 2009-05-27 | 2009-09-18 | Production of ammonium phosphates |
BRPI0924956 BRPI0924956B1 (en) | 2009-05-27 | 2009-09-18 | ammonium phosphate production |
CN200980159552.4A CN102448877B (en) | 2009-05-27 | 2009-09-18 | Production of ammonium phosphates |
MA34477A MA33379B1 (en) | 2009-05-27 | 2009-09-18 | Production of ammonium phosphate |
RU2011149388/05A RU2516411C2 (en) | 2009-05-27 | 2009-09-18 | Obtaining ammonium phosphates |
JOP/2010/0161A JO3028B1 (en) | 2009-05-27 | 2010-05-13 | Production of Ammonium Phosphates |
IL216109A IL216109A (en) | 2009-05-27 | 2011-11-03 | Method and arrangement for production of ammonium phosphates |
TNP2011000559A TN2011000559A1 (en) | 2009-05-27 | 2011-11-04 | Production of ammonium phosphates |
HRP20150779TT HRP20150779T1 (en) | 2009-05-27 | 2015-07-15 | Production of ammonium phosphates |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE0950376-4 | 2009-05-27 | ||
SE0950376 | 2009-05-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010138045A1 true WO2010138045A1 (en) | 2010-12-02 |
Family
ID=43222928
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/SE2009/051041 WO2010138045A1 (en) | 2009-05-27 | 2009-09-18 | Production of ammonium phosphates |
Country Status (22)
Country | Link |
---|---|
US (1) | US8658117B2 (en) |
EP (1) | EP2435364B1 (en) |
JP (1) | JP5567664B2 (en) |
CN (1) | CN102448877B (en) |
AU (1) | AU2009347055B2 (en) |
BR (1) | BRPI0924956B1 (en) |
CA (1) | CA2763079C (en) |
DK (1) | DK2435364T3 (en) |
ES (1) | ES2542524T3 (en) |
HR (1) | HRP20150779T1 (en) |
HU (1) | HUE027021T2 (en) |
IL (1) | IL216109A (en) |
JO (1) | JO3028B1 (en) |
MA (1) | MA33379B1 (en) |
PL (1) | PL2435364T3 (en) |
PT (1) | PT2435364E (en) |
RU (1) | RU2516411C2 (en) |
SA (1) | SA110310438B1 (en) |
SE (1) | SE535871C2 (en) |
SI (1) | SI2435364T1 (en) |
TN (1) | TN2011000559A1 (en) |
WO (1) | WO2010138045A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102431983A (en) * | 2011-09-30 | 2012-05-02 | 华东理工大学 | Phosphate preparation method |
WO2013191639A1 (en) * | 2012-06-21 | 2013-12-27 | Easymining Sweden Ab | Production of ammonium phosphates |
EP3623348A1 (en) | 2013-05-02 | 2020-03-18 | Easymining Sweden AB | Production of phosphate compounds from materials containing phosphorus and at least one of iron and aluminium |
SE2350075A1 (en) * | 2023-01-27 | 2024-07-28 | Easymining Sweden Ab | Processing of phosphate solutions |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013183620A1 (en) * | 2012-06-08 | 2013-12-12 | 電気化学工業株式会社 | Method for treating surface of phosphor, phosphor, light-emitting device, and illumination device |
AU2015227032A1 (en) * | 2014-03-07 | 2016-09-22 | The Mosaic Company | Fertilizer compositions containing micronutrients and methods for preparing the same |
RU2616061C1 (en) * | 2016-04-04 | 2017-04-12 | Акционерное общество "Минерально-химическая компания "ЕвроХим" | Installation for combined obtaining of phosphate salts and potassium sulphate |
CN108358182B (en) * | 2017-04-19 | 2021-05-25 | 江西黄岩香料有限公司 | Method for preparing ammonium dihydrogen phosphate from wastewater generated in production of methyl cedryl ketone and methyl cedryl ether |
KR102025867B1 (en) | 2017-07-13 | 2019-09-27 | 씨제이제일제당 주식회사 | A method for recovering and recycling phosphoric acid from a fermentation liquor or a fermentation waste liquor |
KR101935820B1 (en) * | 2017-08-28 | 2019-01-07 | 세종화학 (주) | Method for manufacturing high purity ammonium dihydrogenphosphate using ammonium phosphate waste solutions |
RU2767200C1 (en) * | 2021-04-13 | 2022-03-16 | федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский национальный исследовательский технологический университет" (ФГБОУ ВО "КНИТУ") | Method for obtaining a complex phosphorus-containing fertilizer |
KR20230138803A (en) | 2022-03-24 | 2023-10-05 | 씨제이제일제당 (주) | A method for recovering and recycling phosphoric acid from a fermentation liquor or a fermentation waste liquor |
CN118206087B (en) * | 2024-04-03 | 2024-09-20 | 新洋丰农业科技股份有限公司 | Method for preparing fertilizer grade and battery grade monoammonium phosphate by using wet-process phosphoric acid |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB636035A (en) * | 1946-04-26 | 1950-04-19 | Monsanto Chemicals | Improvements in or relating to process of producing diammonium phosphate and the product resulting therefrom |
US3019099A (en) * | 1959-06-10 | 1962-01-30 | Tennessee Valley Authority | Manufacture of fluid fertilizer from wet-process phosphoric acid |
US3342579A (en) * | 1964-10-12 | 1967-09-19 | Tennessee Valley Authority | Slowly soluble ammonium polyphosphate and method for its manufacture |
US3415619A (en) * | 1966-06-30 | 1968-12-10 | Dow Chemical Co | Process for making ammonium phosphate |
US3458282A (en) * | 1963-02-20 | 1969-07-29 | Monsanto Co | Process for purifying phosphoric acid |
GB1379796A (en) * | 1971-07-30 | 1975-01-08 | Allied Chem | Production of ammonium polyphosphate solution |
US3894143A (en) * | 1972-02-02 | 1975-07-08 | Uhde Gmbh Friedrich | Process for the manufacture of crystallized ammonia phosphates |
US4592771A (en) * | 1984-08-29 | 1986-06-03 | Brunswick Mining And Smelting Corporation Ltd. | Method of producing di-ammonium phosphate fertilizer |
RU2296729C1 (en) * | 2005-07-15 | 2007-04-10 | Открытое акционерное общество "Минерально-химическая компания "ЕвроХим" (ОАО "МХК "ЕвроХим") | Method for production of diammonium phosphate |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1841040A (en) * | 1928-07-23 | 1932-01-12 | Victor Chemical Works | Manufacture of monoammonium phosphate |
GB953156A (en) | 1961-08-20 | 1964-03-25 | Makhtsavei Israel | Improvements in or relating to the recovery of phosphoric acid by solvent extraction |
US3323863A (en) * | 1962-05-16 | 1967-06-06 | Armour & Co | Ammonium phosphate fertilizer process |
GB974610A (en) | 1962-05-24 | 1964-11-04 | Canadian Ind | Purification of phosphoric acid |
US3443889A (en) * | 1964-08-17 | 1969-05-13 | Kaiser Aluminium Chem Corp | Method of synthesis of alkali metal salts |
FR1540488A (en) * | 1967-08-17 | 1968-09-27 | Azote Office Nat Ind | Manufacture of phosphates and ammonium nitrate from natural phosphates |
GB1142719A (en) | 1968-10-24 | 1969-02-12 | Israel Mining Ind Inst For Res | Phosphoric acid recovery |
US3661513A (en) * | 1970-08-14 | 1972-05-09 | Cities Service Co | Manufacture of alkali metal phosphates |
US3920796A (en) * | 1973-04-30 | 1975-11-18 | Tennessee Valley Authority | Method of preparing purified phosphates from impure phosphoric acid |
GB1560984A (en) | 1975-08-05 | 1980-02-13 | Albright & Wilson | Process for preparing phosphate salts |
FR2447348A1 (en) * | 1979-01-24 | 1980-08-22 | Rhone Poulenc Ind | PROCESS FOR THE PURIFICATION OF AN IMPURE PHOSPHORIC ACID |
NL7900579A (en) * | 1979-01-25 | 1980-07-29 | Stamicarbon | METHOD FOR EXTRACTING A URANIUM-CONTAINING CONTAINER AND PURIFIED PHOSPHORIC ACID |
DE2926943A1 (en) * | 1979-07-04 | 1981-01-29 | Hoechst Ag | METHOD FOR PURIFYING WET METHOD PHOSPHORIC ACID |
US4325927A (en) * | 1979-12-14 | 1982-04-20 | Agrico Chemical Company | Purified monoammonium phosphate process |
SU1171445A1 (en) * | 1983-04-01 | 1985-08-07 | Предприятие П/Я В-8830 | Method of producing ammonium phosphate |
JPS60231407A (en) * | 1984-03-28 | 1985-11-18 | Chisso Corp | Manufacture of purified monoammonium phosphate from wet process phosphoric acid |
SU1201276A1 (en) * | 1984-07-02 | 1985-12-30 | Предприятие П/Я В-8830 | Method of producing ammonium phosphates |
US4781905A (en) * | 1986-05-30 | 1988-11-01 | Yu Ming Jiang | Process for producing phosphoric acid and/or phosphates from wet-process phosphoric acid and an extractant therein |
IL79020A0 (en) * | 1986-06-04 | 1986-09-30 | Haifa Chemicals Ltd | Process for the manufacture of monopotassium phosphate |
RU2230026C1 (en) * | 2003-04-21 | 2004-06-10 | Открытое акционерное общество "Научно-исследовательский институт по удобрениям и инсектофунгицидам им. проф. Я.В.Самойлова" | Method for preparing ammonium phosphate |
CA2681306C (en) | 2007-03-19 | 2015-02-10 | Easymining Sweden Ab | Phosphorus recovery |
-
2009
- 2009-09-18 AU AU2009347055A patent/AU2009347055B2/en not_active Ceased
- 2009-09-18 SI SI200931232T patent/SI2435364T1/en unknown
- 2009-09-18 MA MA34477A patent/MA33379B1/en unknown
- 2009-09-18 US US13/322,619 patent/US8658117B2/en not_active Expired - Fee Related
- 2009-09-18 ES ES09845317.8T patent/ES2542524T3/en active Active
- 2009-09-18 EP EP20090845317 patent/EP2435364B1/en active Active
- 2009-09-18 HU HUE09845317A patent/HUE027021T2/en unknown
- 2009-09-18 WO PCT/SE2009/051041 patent/WO2010138045A1/en active Application Filing
- 2009-09-18 PL PL09845317T patent/PL2435364T3/en unknown
- 2009-09-18 RU RU2011149388/05A patent/RU2516411C2/en active
- 2009-09-18 PT PT98453178T patent/PT2435364E/en unknown
- 2009-09-18 DK DK09845317.8T patent/DK2435364T3/en active
- 2009-09-18 JP JP2012513004A patent/JP5567664B2/en not_active Expired - Fee Related
- 2009-09-18 BR BRPI0924956 patent/BRPI0924956B1/en not_active IP Right Cessation
- 2009-09-18 CN CN200980159552.4A patent/CN102448877B/en not_active Expired - Fee Related
- 2009-09-18 SE SE1151263A patent/SE535871C2/en unknown
- 2009-09-18 CA CA2763079A patent/CA2763079C/en not_active Expired - Fee Related
-
2010
- 2010-05-13 JO JOP/2010/0161A patent/JO3028B1/en active
- 2010-05-24 SA SA110310438A patent/SA110310438B1/en unknown
-
2011
- 2011-11-03 IL IL216109A patent/IL216109A/en active IP Right Grant
- 2011-11-04 TN TNP2011000559A patent/TN2011000559A1/en unknown
-
2015
- 2015-07-15 HR HRP20150779TT patent/HRP20150779T1/en unknown
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB636035A (en) * | 1946-04-26 | 1950-04-19 | Monsanto Chemicals | Improvements in or relating to process of producing diammonium phosphate and the product resulting therefrom |
US3019099A (en) * | 1959-06-10 | 1962-01-30 | Tennessee Valley Authority | Manufacture of fluid fertilizer from wet-process phosphoric acid |
US3458282A (en) * | 1963-02-20 | 1969-07-29 | Monsanto Co | Process for purifying phosphoric acid |
US3342579A (en) * | 1964-10-12 | 1967-09-19 | Tennessee Valley Authority | Slowly soluble ammonium polyphosphate and method for its manufacture |
US3415619A (en) * | 1966-06-30 | 1968-12-10 | Dow Chemical Co | Process for making ammonium phosphate |
GB1379796A (en) * | 1971-07-30 | 1975-01-08 | Allied Chem | Production of ammonium polyphosphate solution |
US3894143A (en) * | 1972-02-02 | 1975-07-08 | Uhde Gmbh Friedrich | Process for the manufacture of crystallized ammonia phosphates |
US4592771A (en) * | 1984-08-29 | 1986-06-03 | Brunswick Mining And Smelting Corporation Ltd. | Method of producing di-ammonium phosphate fertilizer |
RU2296729C1 (en) * | 2005-07-15 | 2007-04-10 | Открытое акционерное общество "Минерально-химическая компания "ЕвроХим" (ОАО "МХК "ЕвроХим") | Method for production of diammonium phosphate |
Non-Patent Citations (2)
Title |
---|
DATABASE WPI Week 200735, Derwent World Patents Index; AN 2007-370144, XP003026937 * |
See also references of EP2435364A4 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102431983A (en) * | 2011-09-30 | 2012-05-02 | 华东理工大学 | Phosphate preparation method |
WO2013191639A1 (en) * | 2012-06-21 | 2013-12-27 | Easymining Sweden Ab | Production of ammonium phosphates |
JP2015527960A (en) * | 2012-06-21 | 2015-09-24 | イージーマイニング スウェーデン エービーEasymining Sweden Ab | Production of ammonium phosphate |
US9738522B2 (en) | 2012-06-21 | 2017-08-22 | Easymining Sweden Ab | Production of ammonium phosphates |
RU2632009C2 (en) * | 2012-06-21 | 2017-10-02 | ИзиМайнинг Свиден АБ | Ammonium phosphates production |
EP3623348A1 (en) | 2013-05-02 | 2020-03-18 | Easymining Sweden AB | Production of phosphate compounds from materials containing phosphorus and at least one of iron and aluminium |
SE2350075A1 (en) * | 2023-01-27 | 2024-07-28 | Easymining Sweden Ab | Processing of phosphate solutions |
WO2024158333A1 (en) * | 2023-01-27 | 2024-08-02 | Easymining Sweden Ab | Processing of phosphate solutions |
SE546282C2 (en) * | 2023-01-27 | 2024-09-24 | Easymining Sweden Ab | Processing of phosphate solutions |
Also Published As
Publication number | Publication date |
---|---|
HRP20150779T1 (en) | 2015-08-28 |
US20120070359A1 (en) | 2012-03-22 |
DK2435364T3 (en) | 2015-08-10 |
EP2435364A1 (en) | 2012-04-04 |
AU2009347055A1 (en) | 2011-11-24 |
EP2435364B1 (en) | 2015-05-06 |
SI2435364T1 (en) | 2015-08-31 |
JP5567664B2 (en) | 2014-08-06 |
JO3028B1 (en) | 2016-09-05 |
AU2009347055B2 (en) | 2014-12-11 |
BRPI0924956B1 (en) | 2019-12-10 |
CA2763079C (en) | 2016-11-01 |
SA110310438B1 (en) | 2014-03-12 |
IL216109A (en) | 2015-08-31 |
RU2011149388A (en) | 2013-07-10 |
HUE027021T2 (en) | 2016-08-29 |
EP2435364A4 (en) | 2013-06-19 |
CA2763079A1 (en) | 2010-12-02 |
PL2435364T3 (en) | 2015-10-30 |
MA33379B1 (en) | 2012-06-01 |
PT2435364E (en) | 2015-09-01 |
IL216109A0 (en) | 2012-01-31 |
ES2542524T3 (en) | 2015-08-06 |
US8658117B2 (en) | 2014-02-25 |
SE535871C2 (en) | 2013-01-22 |
RU2516411C2 (en) | 2014-05-20 |
JP2012528065A (en) | 2012-11-12 |
CN102448877B (en) | 2015-05-27 |
CN102448877A (en) | 2012-05-09 |
SE1151263A1 (en) | 2012-02-23 |
TN2011000559A1 (en) | 2013-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8658117B2 (en) | Production of ammonium phosphates | |
US9738522B2 (en) | Production of ammonium phosphates | |
US20230234849A1 (en) | Production of Potassium Phosphates | |
AU2021385231A1 (en) | Recovery of commercial substances from apatite mineral | |
CN217350773U (en) | System for coproduction iron phosphate through nitrophosphate fertilizer device | |
KR20230174165A (en) | Method, product and system for cogenerating ferric phosphate through nitrophosphate fertilizer device | |
CN116514082A (en) | Method for purifying ammonium phosphate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980159552.4 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09845317 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009845317 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012513004 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2763079 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 2009347055 Country of ref document: AU Date of ref document: 20090918 Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13322619 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 5080/KOLNP/2011 Country of ref document: IN |
|
ENP | Entry into the national phase |
Ref document number: 2011149388 Country of ref document: RU Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: PI0924956 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: PI0924956 Country of ref document: BR Kind code of ref document: A2 Effective date: 20111128 |