WO2010137668A1 - Power transmission equipment - Google Patents

Power transmission equipment Download PDF

Info

Publication number
WO2010137668A1
WO2010137668A1 PCT/JP2010/059044 JP2010059044W WO2010137668A1 WO 2010137668 A1 WO2010137668 A1 WO 2010137668A1 JP 2010059044 W JP2010059044 W JP 2010059044W WO 2010137668 A1 WO2010137668 A1 WO 2010137668A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
output shaft
inner ring
clutch
sprag
Prior art date
Application number
PCT/JP2010/059044
Other languages
French (fr)
Japanese (ja)
Inventor
忠彦 加藤
Original Assignee
株式会社ユニバンス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ユニバンス filed Critical 株式会社ユニバンス
Priority to JP2011516063A priority Critical patent/JP4862104B2/en
Publication of WO2010137668A1 publication Critical patent/WO2010137668A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/02Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
    • F16H3/08Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts
    • F16H3/10Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts with one or more one-way clutches as an essential feature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D41/00Freewheels or freewheel clutches
    • F16D41/06Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface
    • F16D41/069Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface the intermediate members wedging by pivoting or rocking, e.g. sprags
    • F16D41/07Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface the intermediate members wedging by pivoting or rocking, e.g. sprags between two cylindrical surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D41/00Freewheels or freewheel clutches
    • F16D41/06Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface
    • F16D41/08Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface with provision for altering the freewheeling action
    • F16D41/084Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface with provision for altering the freewheeling action the intermediate coupling members wedging by pivoting or rocking

Definitions

  • the present invention relates to a power transmission device, and in particular, can quickly switch between rotation transmission and interruption in a certain direction and prevent an impact at the time of switching, and further, during inertial movement without special control. It is related with the power transmission device which can prevent that the output amount of No. decreases.
  • an input shaft, an output shaft parallel to the input shaft, and an input shaft and an output shaft that are always meshed with each other are different.
  • An apparatus includes a plurality of gear pairs that are set to have a gear ratio and a two-way clutch that is provided on one gear of each gear pair.
  • the two-way clutch includes an inner ring having a polygonal outer peripheral surface, an outer ring having a circular inner peripheral surface facing the outer peripheral surface of the inner ring, and an inner ring of the outer ring.
  • a cage for holding a plurality of rollers in the circumferential direction is provided between the peripheral surface and the outer peripheral surface of the inner ring.
  • the cage when the cage is in a neutral state, there is a gap between the inner peripheral surface of the outer ring and the roller, so that the inner ring and the outer ring can freely rotate relative to each other (idle and no power is transmitted).
  • the roller when the roller is moved by displacing the cage in the circumferential direction, the roller engages like a wedge between the inner peripheral surface of the outer ring and the outer peripheral surface of the inner ring as the inner ring or outer ring rotates.
  • the inner ring and the outer ring can be locked (power is transmitted in the locked state).
  • the cage provided in the corresponding gear pair is displaced from the neutral state in the circumferential direction, and the roller is engaged between the inner ring and the outer ring to be locked, thereby driving the power. Switch to the state of transmission and shift.
  • the roller when performing upshifting during acceleration, the roller is moved in the rotational direction by applying a braking force that stops the rotation with respect to the rotation of the inner and outer rings, and the rotational speed of the outer ring to which power is input is applied to the output shaft.
  • the rotational speed of the connected inner ring is equal to or relatively faster than the inner ring, the roller is engaged in the positive rotation direction between the inner peripheral surface of the outer ring and the outer peripheral surface of the inner ring. As a result, the inner ring and the outer ring are locked, and the output shaft is driven from the input shaft.
  • the present invention has been made in order to solve the above-described problems, and can quickly transfer and shut off rotation in a certain direction and prevent an impact at the time of switching. Even if it does not perform, it aims at providing the power transmission device which can prevent that the output amount at the time of inertia exercise decreases.
  • the urging force is applied to the sprag by the urging member, and the engagement surface is in contact with the outer peripheral surface of the first inner ring and the inner peripheral surface of the first outer ring.
  • the first sprag is tilted in the self-locking direction, the first sprag is engaged with the first inner ring and the first outer ring. Thereby, the relative rotation of the first inner ring and the first outer ring in the constant rotation direction is restricted.
  • the switching is performed. Compared to the above, there is an effect that the time required for switching can be shortened and switching can be performed quickly.
  • the rotation of the first sprag is tilted to transmit and block the rotation in a certain direction, the first inner ring and the first ring are not changed from the state where the power is not transmitted to the state where the power is transmitted as in the prior art. There is an effect that an impact at the time of switching can be prevented without causing the outer ring to idle.
  • the first sprag is released from the first inner ring and the first outer ring, and the first sprag naturally tilts in the anti-self-locking direction. Even if the load applying device is not operated, the transmission of power from the output shaft to the input shaft is interrupted. As a result, it is possible to prevent the output shaft from being braked during inertial motion and to prevent the output amount during inertial motion from decreasing without operating the load applying device.
  • the second clutch since the second clutch is provided in the second gear pair and transmits the power input from the output shaft to the input shaft, the power is transmitted from the output shaft to the input shaft.
  • the power is transmitted from the output shaft to the input shaft by the second clutch, and the input shaft is driven from the output shaft, and the power source becomes the driving resistance of the output shaft, so that the output shaft can be braked.
  • priority can be given to braking of the output shaft rather than preventing the output amount during inertial movement from decreasing.
  • the number of teeth of the gear disposed on the output shaft of the second gear pair is less than the minimum number of teeth of the gear disposed on the output shaft of the first gear pair. Since it is small, the gear ratio of the second gear pair is smaller than the gear ratio of the first gear pair. As a result, even if the second clutch is not configured to be capable of interrupting transmission of power from the output shaft to the input shaft, the shift between the first gear pair and the second gear pair can be performed when the output shaft performs inertial motion. Due to the ratio relationship, the sprags of the first clutch can be tilted in the anti-self-lock direction. For this reason, it is possible to prevent double meshing between the first gear pair and the second gear pair. Therefore, in addition to the effect of claim 2, there is an effect that the control of the power transmission device can be simplified.
  • the second clutch is configured to be able to cut off the transmission of power from the output shaft to the input shaft, the transmission of power from the output shaft to the input shaft can be cut off. It is possible to prevent the output amount from decreasing during inertial exercise. As a result, the output shaft can be braked unless the transmission of power from the output shaft to the input shaft is interrupted.
  • the second clutch tilts the second sprag in contact with the second inner ring and the second outer ring to perform transmission of rotation in a certain direction and switching between cutoffs.
  • the time required for switching can be shortened as compared with the case where switching is performed by displacing the roller in the circumferential direction. Therefore, in addition to the effect of claim 4, there is an effect that switching can be performed quickly.
  • the second inner ring and the second inner ring are connected to the second inner ring until the power is transmitted from the state where the power is not transmitted as in the prior art. There is an effect that the impact at the time of switching can be prevented without idling with the outer ring.
  • the first clutch can be switched from the self-locking state during acceleration to the second clutch being self-locking during coasting without rotation backlash, an effect of preventing an impact due to idle rotation at the time of switching can be prevented. There is.
  • FIG. 4 is a cross-sectional view of the first clutch taken along line IV-IV in FIG. 3. It is the elements on larger scale of the 1st clutch which expanded and showed the part shown by V of FIG.
  • A) is the schematic diagram which showed typically the internal structure of the power transmission device at the time of acceleration driving
  • (b) is the internal structure of the power transmission device at the time of acceleration driving
  • (c) is the schematic diagram which showed typically the internal structure of the power transmission device at the time of acceleration driving
  • (A) is the schematic diagram which showed typically the internal structure of the power transmission device in 2nd Embodiment
  • (b) is the schematic diagram which showed typically a part of internal structure of a 2nd clutch. .
  • (A) is the schematic diagram which showed typically the internal structure of the power transmission device at the time of acceleration driving
  • (b) is the time of coast driving
  • (C) is a schematic diagram schematically showing the internal structure of a power transmission device that transmits power from the output shaft to the input shaft. It is the schematic diagram which showed typically the internal structure of the power transmission device which interrupted
  • (A) is the schematic diagram which showed typically the internal structure of the power transmission device in case the vehicle has stopped climbing in the power transmission device in 2nd Embodiment
  • (b) is the state which the vehicle stopped climbing up It is the schematic diagram which showed typically the internal structure of the power transmission device in the case of moving forward from.
  • (A) is the schematic diagram which showed typically the vehicle by which the power transmission device in 3rd Embodiment is mounted
  • (b) is the schematic diagram which showed typically the power transmission device.
  • FIG. 1 is a schematic diagram schematically showing a vehicle 100 on which the power transmission device 1 according to the first embodiment of the present invention is mounted. Note that arrows FB and LR in FIG. 1 indicate the front-rear direction and the left-right direction of the vehicle 100, respectively.
  • the vehicle 100 includes a front unit 110 that drives a front wheel 101 (a left front wheel 101FL and a right front wheel 101FR).
  • the front unit 110 mainly includes an engine 111 and a motor 112 as a power source, and a power transmission device 113 that transmits the power of the engine 111 and the motor 112 to the front wheels 101.
  • the front unit 110 supplies two powers of the engine 111 and the motor 112.
  • the front wheel 101 can be driven by properly using it.
  • the front unit 110 is configured such that the motor 112 also has a function as a generator, and the electric power generated by the motor 112 can be regenerated.
  • the vehicle 100 may be configured by either the engine 111 or the motor 112.
  • FIG. 2 is a schematic diagram schematically showing the internal structure of the power transmission device 1.
  • FIG. 2 only the configuration that bears the function of transmitting power is shown for easy understanding.
  • the driving force of the motor 112 is transmitted to the input shaft 2
  • the driving force of the engine 111 can be transmitted instead of the motor 112, or the engine 111 and the motor 112 can be transmitted.
  • the power transmission device 1 includes an input shaft 2 to which the power of the motor 112 is input, an output shaft 3 disposed in parallel with the input shaft 2, and the output shaft 3 and the input shaft 2. And a plurality of first gear pairs 4, 5 and 6 which are set so as to mesh with each other and have different gear ratios.
  • the main clutch 7 is disposed on the input shaft 2 between the motor 112 and the first gear pair 4, and the power of the motor 112 is transmitted to the power transmission device 1 by connecting the main clutch 7. Is configured to communicate. Further, the power transmitted to the output shaft 2 is output to the outside of the power transmission device 1 and transmitted to the front wheels 101.
  • the first gear pairs 4, 5, 6 are disposed on the input shaft 2 and driven by power transmitted from the input shaft 2, and the drive gears 4 a, 5 a, 6 a are disposed on the output shaft 3. And driven gears 4b, 5b, 6b driven by 5a, 6a.
  • the first gear pair 4, 5, 6 has the first gear ratio, the second gear speed, and the third gear speed in descending order of distance from the motor 112 with the gear ratio (number of teeth of the driven gear ⁇ number of teeth of the driving gear).
  • the first gear pair 4 is the first speed
  • the first gear pair 5 is the second speed
  • the first gear pair 6 is the third speed. Note that illustration of the reverse gear is omitted. In the case of the reverse gear, a pinion gear may be inserted between the first gear pair 4, 5, 6.
  • the drive gears 4a, 5a, 6a constituting the first gear pair 4, 5, 6 are formed integrally with the input shaft 2, respectively.
  • driven gears 4b, 5b, and 6b that face and mesh with the driving gears 4a, 5a, and 6a are respectively fixed to the output shaft 3 via a first clutch 10 described later.
  • the first clutch 10 transmits power from the input shaft 2 to the output shaft 3, while interrupting transmission of power from the output shaft 3 to the input shaft 2, and transmits power from the input shaft 2 to the output shaft 3. The transmission can be cut off.
  • the first clutch 10 includes a first inner ring 11, a first outer ring 12 that surrounds the outer periphery of the first inner ring 11, and between the first inner ring 11 and the first outer ring 12.
  • a plurality of first sprags 13, a retainer 14 for holding the first sprags 13, and a load applying device 15 are mainly provided.
  • the first inner ring 11 is a member having a function of transmitting power, and includes an outer peripheral surface 11a having a circular cross section as shown in FIGS. 3 and 4, and is configured to be rotatable around an axis O.
  • the first inner ring 11 is formed integrally with the output shaft 3 (see FIG. 2).
  • the first outer ring 12 is a member having a function of transmitting power together with the first inner ring 11, and as shown in FIGS. 3 and 4, the inner peripheral surface having a circular cross section facing the outer peripheral surface 11a of the first inner ring 11. 12a, and is configured to be rotatable around the axis O in the same manner as the first inner ring 11.
  • the first outer ring 12 is formed integrally with the driven gears 4b, 5b, 6b (see FIG. 2) of the first gear pair 4, 5, 6.
  • the 1st sprag 13 is a member which bears the function which engages the 1st inner ring
  • a plurality of elements are arranged at equal intervals in the circumferential direction between the outer peripheral surface 11 a and the inner peripheral surface 12 a facing each other.
  • the first sprag 13 is urged in the circumferential direction of the inner peripheral surface 11a and the outer peripheral surface 12a by a ribbon spring 16 (see FIG. 5).
  • FIG. 5 is a partially enlarged cross-sectional view of the first clutch 10 showing the portion indicated by V in FIG. 4 in an enlarged manner.
  • the ribbon spring 16 applies an urging force to the first sprag 13 so that the engaging surfaces 13a and 13b are in contact with the outer peripheral surface 11a and the inner peripheral surface 12a.
  • 5 is a member that generates a rotational moment in the “locking direction”, and is formed by applying a wave-like bending process to a metal material as shown in FIG. 5, and applies an urging force to the first sprag 13 using its elasticity. It is configured to be grantable.
  • the ribbon spring 16 may be constituted by a coil spring.
  • the first sprag 13 tilts in the self-locking direction so that the engaging surfaces 13a and 13b are in contact with the outer peripheral surface 11a and the inner peripheral surface 12a.
  • frictional force is generated at the contact A between the inner peripheral surface 12a and the engagement surface 13b and the contact B between the outer peripheral surface 11a and the engagement surface 13a, and the outer peripheral surface 11a and the inner peripheral surface.
  • the first outer ring 12 rotates relative to the first sprag 13 relative to the first inner ring 11 in the direction of the arrow Ro in FIG. 5 (hereinafter referred to as “lock direction”) as viewed from the first inner ring 11 side.
  • the first sprag 13 is engaged with the first inner ring 11 and the first outer ring 12.
  • the output shaft 3 rotates with the driven gears 4b, 5b, and 6b.
  • the first outer ring 12 is rotated relative to the first inner ring 11 with respect to the first sprag 13 as viewed from the first inner ring 11 side in the direction of the opposite arrow Ro in FIG. 5 (hereinafter referred to as “free direction”).
  • the first sprag 13 When rotating, the first sprag 13 is tilted in the anti-self-locking direction against the urging force of the ribbon spring 16 by the frictional force acting on the contact A, and the first sprocket 13 is applied to the first inner ring 11 and the first outer ring 12. The sprag 13 is disengaged. As a result, the driven gears 4b, 5b, and 6b idle the output shaft 3.
  • first inner ring 11 rotates relative to the first sprag 13 in the direction of arrow Ri (hereinafter referred to as “lock direction”) in FIG. 5 when viewed from the first outer ring 12 side relative to the first outer ring 12.
  • lock direction the direction of arrow Ri
  • the first sprag 13 is engaged with the first inner ring 11 and the first outer ring 12.
  • the output shaft 3 rotates with the driven gears 4b, 5b, 6b.
  • the first inner ring 11 is rotated relative to the first outer ring 12 with respect to the first sprag 13 and viewed from the first outer ring 12 side in the direction of the opposite arrow Ri in FIG. 5 (hereinafter referred to as “free direction”).
  • the retainer 14 is a member that retains the first sprag 13 so as to be tiltable in the circumferential direction of the outer peripheral surface 11a and the inner peripheral surface 12a. As shown in FIGS. 3 and 4, the retainer 14a and the load transmission unit 14b.
  • the holding portion 14 a is a portion that holds the first sprag 13 and extends in the direction of the axis O as shown in FIGS. 3 and 4 and holds the upper end side of the first sprag 13.
  • the load transmitting portion 14b is a portion to which a load is transmitted from the load applying device 15, and extends in a direction intersecting with the direction of the axis O as shown in FIG.
  • the load transmitting portion 14b is formed in a gear shape so that a load is transmitted from the load applying device 15 through a gear mechanism configured between the load transmitting portion 14b and a pinion 15b described later. It is configured. Thereby, the energy loss produced in the load transmission path from the load applying device 15 to the cage 14 can be reduced, and the load can be efficiently transmitted to the cage 14.
  • the load applying device 15 applies a load to the first sprag 13 against the urging force of the ribbon spring 16 to tilt the first sprag 13 in the anti-self-lock direction (the counter arrow S rotation direction in FIG. 5).
  • the apparatus includes an actuator 15 a and a pinion 15 b.
  • the actuator 15a is a power source that generates a load to be applied to the first sprag 13, and is configured by an electric motor (an AC motor or a DC motor) and configured to be drivable by electric power supplied from a power source (not shown). .
  • the structure of the load provision apparatus 15 can be simplified and size reduction can be achieved. it can. Further, when the structure of the load applying device 15 is complicated, the load applying device 15 increases in size and causes the first clutch 10 to increase in size. However, the structure of the load applying device 15 can be simplified and downsized. If possible, the size of the first clutch 10 can be reduced.
  • the pinion 15b is a member for transmitting the motive power of the actuator 15a to the cage 14, and is formed in a gear shape that meshes with the load transmission portion 14b of the cage 14 as shown in FIG. 3, and is connected to the load transmission portion 14b. A gear mechanism is formed between them.
  • the power of the actuator 15 a is transmitted to the retainer 14 by the pinion 15 b, so that a load is applied to the first sprag 13 via the retainer 14.
  • the load application device 15 since the load application device 15 applies a load to the first sprags 13 via the retainer 14, it can apply a load to the plurality of first sprags 13 at a time, and the first sprags 13 can be efficiently applied. A load can be applied to the.
  • the load applying device 15 configured as described above, by applying a load to the first sprag 13 against the urging force of the ribbon spring 16, the first sprag 13 is tilted in the anti-self-lock direction.
  • the engagement of the first sprag 13 to the first inner ring 11 and the first outer ring 12 can be forcibly released.
  • the power transmitted from the motor 112 to the input shaft 2 the drive gears 4 a, 5 a, 6 a and the driven gears 4 b, 5 b, 6 b is input to the first outer ring 12 of the first clutch 10, and the first outer ring 12.
  • the load applying device 15 By forcibly releasing the engagement of the first sprag 13 from the inner ring 11 and the first outer ring 12, the driven gears 4b, 5b, 6b are idled to transmit power from the input shaft 2 to the output shaft 3. Can be blocked.
  • FIGS. 6 to 7 schematically show a front view of the internal structure of the power transmission device 1.
  • the power transmission path is indicated by an arrow P and the drive gears 4 a, 5 a, 6a, the driven gears 4b, 5b, 6b and the rotation directions of the first outer ring 12 of the first clutch 10 are indicated by arrows.
  • the load application device 15 of the first clutch 10 is operated to disengage the first sprag 13 from the first inner ring 11 and the first outer ring 12.
  • the case where the first sprag 13 can be engaged with the first inner ring 11 and the first outer ring 12 when the load applying device 15 of the first clutch 10 is not operated and the first sprag 13 can be engaged is expressed as “OFF”. ing.
  • FIG. 6A is a schematic diagram schematically showing the internal structure of the power transmission device 1 during acceleration / deceleration traveling (first speed), and FIG. 6B is a diagram during acceleration / deceleration traveling (second speed).
  • FIG. 6C is a schematic diagram schematically showing the internal structure of the power transmission device 1.
  • FIG. 6C is a schematic diagram schematically showing the internal structure of the power transmission device 1 during acceleration / deceleration running (third speed). is there.
  • the motor 112 rotates in the forward direction, so that the input shaft 2 rotates in the forward direction and power is transmitted to the drive gears 4a, 5a, 6a, and the drive gear 4a. , 5a, 6a, the driven gears 4b, 5b, 6b rotate.
  • the rotational speed of the input shaft 2 is determined by the rotational speed of the motor 112.
  • the rotational speed of the driven gear 4b is ⁇ 1
  • the rotational speed of the driven gear 5b is ⁇ 2
  • the rotational speed of the driven gear 6b is ⁇ 3
  • the rotational speed ⁇ 1 when power is transmitted from the input shaft 2 to the output shaft 3 , ⁇ 2, ⁇ 3 are uniquely determined by the rotational speed of the input shaft 2, and ⁇ 1 ⁇ 2 ⁇ 3 from the relationship of the gear ratio of the first gear pair 4, 5, 6.
  • the rotation speed of the output shaft 3 is a rotation speed corresponding to the gear position.
  • the load applying device 15 (see FIG. 4) of the first clutch 10 of the second speed driven gear 5b and the third speed driven gear 6b is operated (see FIG. 4). ON).
  • the engagement of the first sprag 13 with the first inner ring 11 (see FIG. 5) and the first outer ring 12 is forcibly released.
  • the load applying device 15 is inoperative (OFF), so the first inner ring 11
  • the first sprag 13 is engaged with the first outer ring 12, and power is transmitted from the first outer ring 12 toward the first inner ring 11.
  • the first speed driven gear 4b rotates together with the output shaft 3, and the output shaft 3 rotates at a rotational speed of ⁇ 1.
  • the rotational speeds of the second and third driven gears 5b and 6b are faster than the rotational speed ⁇ 1 of the output shaft 3 ( ⁇ 1 ⁇ 2 ⁇ 3).
  • the first outer ring 12 in the driven gears 5 b and 6 b rotates in the locking direction (in the direction of arrow Ro in FIG. 5) as viewed from the first inner ring 11 side by relative rotation with the first inner ring 11.
  • the load applying device 15 of the first clutch 10 is operated (ON) at the second speed and the third speed, the driven gears 5b and 6b idle the output shaft 3 and no power is transmitted.
  • the rotation speed ⁇ 2 of the second speed driven gear 5b is higher than the rotation speed ⁇ 1 of the first speed driven gear 4b ( ⁇ 1 ⁇ 2), the rotation speed ⁇ 2 of the second speed driven gear 5b is output.
  • the rotational speed ( ⁇ 1) of the shaft 3 will be exceeded. Therefore, in the first clutch 10 in the second-speed driven gear 5b, the first outer ring 12 rotates in the locking direction when viewed from the first inner ring 11 side by relative rotation with the first inner ring 11, and the first inner ring 11 and The first sprag 13 is engaged with the first outer ring 12.
  • the second-speed driven gear 5b rotates with the output shaft 3, and the output shaft 3 rotates at a rotational speed of ⁇ 2.
  • the rotational speed ( ⁇ 1) of the first-speed driven gear 4b is slower than the rotational speed ( ⁇ 2) of the output shaft 3 ( ⁇ 1 ⁇ 2). Therefore, in the first clutch 10 in the first speed driven gear 4b, the rotational speed of the first outer ring 12 is slower than the rotational speed of the first inner ring 11, and the first inner ring 11 relatively rotates in the free direction. It becomes equal to the state. Therefore, the first sprag 13 cannot be engaged with the first inner ring 11 and the first outer ring 12 in the first clutch 10 of the first-speed driven gear 4b. As a result, the first-speed driven gear 4b idles the output shaft 3 and no power is transmitted.
  • the first clutch 10 of the third speed driven gear 6b operates (ON) the load applying device 15, the engagement of the first sprag 13 to the first inner ring 11 and the first outer ring 12 is forced.
  • the third-speed driven gear 6b idles the output shaft 3 and no power is transmitted.
  • the shift-up shift to the second speed can be performed only by stopping the operation of the load applying device 15 of the first clutch 10 of the second speed driven gear 5b from the state of the first speed traveling.
  • the rotational speed ( ⁇ 3) of the third speed driven gear 6b is faster than the rotational speed ( ⁇ 2) of the second speed driven gear 5b ( ⁇ 2 ⁇ 3), the rotational speed of the third speed driven gear 6b. ( ⁇ 3) exceeds the rotational speed ( ⁇ 2) of the output shaft 3. Therefore, in the first clutch 10 in the third-speed driven gear 6b, the first outer ring 12 rotates in the locking direction when viewed from the first inner ring 11 side by relative rotation with the first inner ring 11, and the first inner ring 11 The first sprag 13 is engaged with the first outer ring 12. As a result, power is transmitted from the first outer ring 12 toward the first inner ring 11, the third speed driven gear 6b rotates together with the output shaft 3, and the output shaft 3 rotates at a rotational speed of ⁇ 3.
  • the rotational speed ( ⁇ 2) of the second-speed driven gear 5b is slower than the rotational speed ( ⁇ 3) of the output shaft 3 ( ⁇ 2 ⁇ 3). Therefore, in the first clutch 10 in the second-speed driven gear 5b, the rotational speed of the first outer ring 12 is slower than the rotational speed of the first inner ring 11, and the first inner ring 11 relatively rotates in the free direction. It becomes equal to the state. Therefore, the first sprag 13 cannot be engaged with the first inner ring 11 and the first outer ring 12 in the first clutch 10 of the second-speed driven gear 5b. As a result, the second-speed driven gear 5b idles the output shaft 3 and no power is transmitted.
  • the rotational speed ( ⁇ 1) of the first speed driven gear 4b is slower than the rotational speed ( ⁇ 3) of the output shaft 3 ( ⁇ 1 ⁇ 3). Therefore, in the first clutch 10 in the first speed driven gear 4b, the rotational speed of the first outer ring 12 is slower than the rotational speed of the first inner ring 11, and the first inner ring 11 relatively rotates in the free direction. It becomes equal to the state. Therefore, even in the first clutch 10 of the first-speed driven gear 4b, the first sprag 13 cannot be engaged with the first inner ring 11 and the first outer ring 12. As a result, the first-speed driven gear 4b idles the output shaft 3 and no power is transmitted. Thus, from the state of the second speed traveling, the shift-up shift to the third speed can be performed only by stopping the operation of the load applying device 15 (see FIG. 4) of the first clutch 10 of the third speed driven gear 6b. It can be carried out.
  • the time required for switching can be shortened, the first inner ring 11 and the first outer ring 12 do not idle during the period from the state where power is not transmitted to the state where power is transmitted. Can be prevented. Furthermore, since it is possible to change gears simply by switching the operation of the load applying device 15 of the first clutch 10 between non-operation, a complicated meshing mechanism, a shift fork and the like are not required, and weight reduction and miniaturization can be achieved. As a result, a large number of first gear pairs can be accommodated in a limited space, and for example, the multi-stage power transmission device 1 having six or more speeds can be made compact.
  • the load applying device 15 of the first clutch 10 of the second speed driven gear 5b ( 4) is activated (ON).
  • the first clutch 10 of the second speed driven gear 5b the engagement of the sprags 13 with the first inner ring 11 (see FIG. 5) and the first outer ring 12 is released, so the second speed driven gear. 5b idles the output shaft 3, and no power is transmitted.
  • the first clutch 10 in the first speed driven gear 4 b the first outer ring 12 rotates in the locking direction, and the first sprag 13 engages with the first inner ring 11 and the first outer ring 12.
  • the first speed driven gear 4b rotates together with the output shaft 3, and a downshift can be performed from the second speed traveling state to the first speed.
  • the first clutch 10 in the first-speed driven gear 4 b the first outer ring 12 rotates in the locking direction, and the first sprag 13 engages with the first inner ring 11 and the first outer ring 12.
  • the first speed driven gear 4b rotates together with the output shaft 3, and a downshift can be performed from the third speed traveling state to the first speed.
  • the load applying device 15 of the first clutch 10 in the driven gears 4b, 5b, and 6b of the traveling gear stage is merely operated, and nothing is performed on the low speed stage side. Shifting is possible without operation. Further, it is possible to perform a shift-down shift by jumping over a predetermined shift stage by a similar operation. Further, the first clutch 10 operates the load applying device 15 to apply a load to the first sprag 13 against the urging force of the urging member 16, and the first sprag 13 tilts in the anti-self-lock direction. As a result, the engagement of the first sprag 13 with the first inner ring 11 and the first outer ring 12 is released. Therefore, the time required for switching can be shortened and a quick shift can be achieved.
  • FIG. 7 is a schematic diagram schematically showing the internal structure of the power transmission device during coasting (third speed).
  • the third speed traveling described with reference to FIG. 6C when coasting the vehicle 100 without operating the accelerator pedal is performed, power is transmitted from the output shaft 3 to the power transmission device as shown in FIG. 1 is input. Since the accelerator pedal is not operated, the rotation speed of the motor 112 decreases and the rotation of the input shaft 2 decreases. As a result, the first inner ring 11 (see FIG.
  • FIG. 8A is a schematic diagram schematically showing the internal structure of the power transmission device 20
  • FIG. 8B is a schematic diagram schematically showing a part of the internal structure of the second clutch 22.
  • the same parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • FIG. 8 only the configuration having a function of transmitting power is illustrated for easy understanding.
  • the power transmission device 20 is mounted on the vehicle 100 instead of the power transmission device 1 mounted on the vehicle 100 (see FIG. 1). Further, as shown in FIG. 8A, the input shaft 2 to which the power of the motor 112 is input, the output shaft 3 arranged in parallel to the input shaft 2, the output shaft 3 and the input shaft 2 A plurality of first gear pairs 4, 5, 6 that are arranged and meshed with each other and set to have different gear ratios are provided. These configurations are the same as those described in the first embodiment.
  • the power transmission device 20 in the second embodiment further includes a second gear pair 21 that is disposed on the input shaft 2 and the output shaft 3 and meshes with each other.
  • the drive gear 21 a constituting the second gear pair 21 is fixed to the input shaft 2 via the second clutch 22.
  • the driven gear 21 b that meshes with the drive gear 21 a is formed integrally with the output shaft 3.
  • the number of teeth of the driven gear 21b of the second gear pair 21 is the minimum number of teeth of the driven gears 4b, 5b, 6b of the first gear pair 4, 5, 6 (in this embodiment, the number of teeth of the driven gear 6b). It is formed to be smaller than the number of teeth).
  • the rotational speeds ⁇ 1, ⁇ 2, and ⁇ 3 of the driven gears 4b, 5b, and 6b and the rotational speed ⁇ 4 of the driven gear 21b depend on the rotational speed of the input shaft 2. It is uniquely determined, and ⁇ 1 ⁇ 2 ⁇ 3 ⁇ 4 from the relationship of the gear ratio. Further, the rotation speed of the output shaft 3 is a rotation speed corresponding to the gear position. If the gear ratios of the first gear pair 4, 5, 6 and the second gear pair 21 (the number of teeth of the driven gear / the number of teeth of the driving gear) are sequentially k1, k2, k3, k4, the gear ratio is k1>. The relationship is k2> k3> k4.
  • the second clutch 22 transmits power from the output shaft 3 to the input shaft 2, while blocking transmission of power from the input shaft 2 to the output shaft 3, and transmits power from the output shaft 3 to the input shaft 2.
  • the transmission can be cut off. Since the second clutch 22 is configured in the same manner as the first clutch 10, detailed description thereof is omitted. The same parts as those of the first clutch 10 will be described below using the same reference numerals.
  • a second inner ring 221 (see FIG. 8B) is formed integrally with the input shaft 2, and a second outer ring 222 is formed integrally with the drive gear 21 a of the second gear pair 21.
  • the second clutch 22 includes a second sprag 223 that contacts the inner peripheral surface 222 a of the second outer ring 222 and the outer peripheral surface 221 a of the second inner ring 221.
  • power is input from the input shaft 2, and the second inner ring 221 rotates relative to the second sprag 223 relative to the second outer ring 222 as viewed from the second outer ring 222 side.
  • the second outer ring 222 when power is input from the output shaft 3 to the second clutch 22 via the driven gear 21b, the second outer ring 222 is in the direction of the arrow Ro (locking direction) in FIG. 8B with respect to the second sprag 223. And the second sprag 223 engages with the second inner ring 221 and the second outer ring 222.
  • the drive gear 21 a rotates with the input shaft 2, and power is transmitted from the output shaft 3 to the input shaft 2.
  • the second outer ring 222 rotates relative to the second sprag 223 in the direction opposite to the arrow Ro (free direction) in FIG. 8B when viewed from the second inner ring 221 side relative to the second inner ring 221.
  • the second clutch 22 includes a load applying device (not shown) as in the first clutch 10.
  • a load is applied to the second sprag 223 against the urging force of the ribbon spring 16, and the second sprag 223 is moved in the anti-self-locking direction.
  • the engagement of the second sprag 223 with the second inner ring 221 and the second outer ring 222 can be forcibly released.
  • the power transmitted to the second clutch 22 from the output shaft 3 via the driven gear 21b and the drive gear 21a is input to the second outer ring 222, and the second outer ring 222 is locked to the second sprag 223.
  • the drive driven gear 21a can be idled to interrupt the transmission of power from the output shaft 3 to the input shaft 2.
  • FIGS. 9 to 10 schematically show a front view of the internal structure of the power transmission device 20.
  • the power transmission path is indicated by an arrow P for easy understanding, and the drive gears 4a, 5a, 6a, 21a, the driven gears 4b, 5b, 6b, 21b and the first gears are shown.
  • the respective rotation directions of the outer ring 12 of the first clutch 10 and the second clutch 22 are indicated by arrows.
  • the load applying device 15 see FIG.
  • first clutch 10 and the second clutch 22 is operated, and the first inner ring 11 and the first gear pair 21 are operated.
  • the case where the engagement of the first sprag 13 to the outer ring 12 and the engagement of the second sprag 223 to the second inner ring 221 and the second outer ring 222 are released is denoted as “ON”.
  • the first sprags 13 and the first outer ring 12 are engaged with each other, the first sprags 13 are engaged, and the second inner ring 221 and the second outer ring 222 are secondly operated.
  • the case where the sprag 223 can be engaged is described as “OFF”.
  • FIG. 9A is a schematic diagram schematically showing the internal structure of the power transmission device 20 during acceleration travel (third speed), and FIG. 9B shows the output shaft during coast travel (third speed).
  • FIG. 9 is a schematic diagram schematically showing the internal structure of the power transmission device 20 that transmits power from 3 to the input shaft 2
  • FIG. 9C is a diagram showing the input shaft 2 from the output shaft 3 during coasting (third speed). It is the schematic diagram which showed typically the internal structure of the power transmission device 20 which interrupted
  • the first to third driven gears 4b, 5b, 6b driven gears
  • the operation of the load applying device 15 (see FIG. 4) of the first clutch 10 whose rotation direction is clockwise in FIG. 9 is stopped (OFF). Since the rotational speed ( ⁇ 3) of the third speed driven gear 6b is faster than the rotational speeds ( ⁇ 1, ⁇ 2) of the first and second driven gears 4b, 5b ( ⁇ 1 ⁇ 2 ⁇ 3), the third speed.
  • the first outer ring 12 rotates relative to the first inner ring 11 in the locking direction (the direction of the arrow Ro in FIG. 5), and the first inner ring 11 (see FIG.
  • the drive gear 21a rotates at the rotational speed ⁇ 4 from the output shaft 3 via the driven gear 21b.
  • the second sprag 223 is forcibly tilted in the anti-self-locking direction, and is engaged with the second inner ring 221 and the second outer ring 222. Make it impossible to match. As a result, the third speed traveling state (the rotational speed ⁇ 3 of the output shaft 3) is obtained without being affected by the second gear pair 21 as in the case described above.
  • the rotational speed ⁇ 1 of the driven gear 4b is k4 / k1 ⁇ ⁇ 3
  • the rotational speed ⁇ 2 of the driven gear 5b is k4 / k2 ⁇ ⁇ 3
  • the rotational speed ⁇ 3 of the driven gear 6b is k4 / k3 ⁇ ⁇ 3. Since k1> k2> k3> k4, the rotational speeds ⁇ 1, ⁇ 2, ⁇ 3 of the driven gears 4b, 5b, 6b are all smaller than ⁇ 3.
  • the power transmission device 20 (see FIG. 8A) can be operated without operating the load applying device 15 of the first clutch 10.
  • the power from the output shaft 3 can be transmitted to the input shaft 2 via the second gear pair 21 without being affected by the first gear pair 4, 5, 6.
  • the motor 112 can function as a generator by the power input from the output shaft 3, and the power generated by the motor 112 can be regenerated to the power source. Thereby, energy saving can be achieved. Further, since the internal resistance and inertia of the motor 112 become the driving resistance of the output shaft 3, the output shaft 3 can be braked (engine brake).
  • the load applying device 15 of the second clutch 22 (see FIG. 4). ) Is activated (ON).
  • the second outer ring 222 (see FIG. 8B) of the second clutch 22 is relative to the second inner ring 221.
  • Rotation rotates in the locking direction (in the direction of arrow Ro in FIG. 8B) when viewed from the second inner ring 221 side.
  • 223 is forcibly tilted in the anti-self-lock direction and cannot be engaged with the second outer ring 222 and the second inner ring 221. Therefore, the drive gear 21 a idles the input shaft 2 and no power is transmitted to the input shaft 2.
  • the first inner ring 11 (see FIG. 5) of the first clutch 10 in the first, second, and third driven gears 4b, 5b, and 6b is in a free direction due to relative rotation with the first outer ring 12. It rotates in the direction opposite to arrow Ri in FIG. Therefore, in the first clutch 10 in the first, second, and third driven gears 4b, 5b, and 6b, the first sprag 13 tilts in the anti-self-lock direction, and the first inner ring 11 and the first outer ring. 12 cannot be engaged. Therefore, the driven gears 4 b, 5 b, 6 b idle the output shaft 3 and no power is transmitted to the input shaft 2. Thereby, energy loss can be suppressed and it can prevent that the travel distance in coast driving
  • the load application device 15 of the second clutch 22 is switched between operation and non-operation, thereby suppressing energy loss and extending the travel distance, or braking of the output shaft 3 and electric power. You can choose whether to regenerate or prioritize.
  • FIG. 10A is a schematic diagram schematically showing the internal structure of the power transmission device 20 when the vehicle 100 stops climbing in the power transmission device 20 according to the second embodiment
  • FIG. FIG. 4 is a schematic diagram schematically showing the internal structure of the power transmission device 20 when the vehicle 100 moves forward from a state where the vehicle 100 has stopped climbing.
  • the gear ratios of the first gear pair 4, 5, 6 and the second gear pair 21 are k1, k2, k3, k4 (however, as described above) , K1> k2> k3> k4), so that when the rotational speeds of the driven gears 4b, 5b, 6b of the first gear pair 4, 5, 6 are ⁇ , the rotational speed of the drive gear 4a is k1 ⁇ ⁇ , The rotational speed of 5a is k2 ⁇ ⁇ , and the rotational speed of the drive gear 6a is k3 ⁇ ⁇ (the rotational directions of the drive gears 4a, 5a, 6a are clockwise in FIG.
  • the rotational speed k1 ⁇ ⁇ (or k2 ⁇ ⁇ or k3 ⁇ ⁇ ) of the second inner ring 221 of the second clutch 22 is equal to that of the second outer ring 222 of the second clutch 22.
  • the rotational speed is faster than k4 ⁇ ⁇ .
  • the rotation speed of the second outer ring 222 is slower than the rotation speed of the second inner ring 221, and the second inner ring 221 rotates relative to the second outer ring 222 from the second outer ring 222 side. As seen, it is equal to the state of rotating in the locking direction (the direction of arrow Ri in FIG. 8B). Therefore, in the second clutch 22, the second sprag 223 engages with the second inner ring 221 and the second outer ring 222, and the drive gear 21 a of the second gear pair 21 tends to rotate together with the input shaft 2.
  • the first clutch 10 in the driven gears 5b and 6b of the first gear pair 5 and 6 of the second speed and the third speed is used.
  • the load applying device 15 (see FIG. 4) is activated (ON). Even in this state, since the gear ratio of the first gear pair 4 (first speed) is larger than the gear ratio of the second gear pair 21, the first gear pair 4 and the second gear pair 21 are doubled as described above.
  • the vehicles 100 can be engaged with each other, and the vehicle 100 does not move backward without operating the side brake.
  • the load applying device 15 (see FIG. 4) is inoperative ( OFF), the first sprag 13 is engaged with the first inner ring 11 and the first outer ring 12, and power is transmitted from the first outer ring 12 toward the first inner ring 11.
  • the first speed driven gear 4b rotates with the output shaft 3, and the output shaft 3 rotates. If the rotational speed of the input shaft 2 is ⁇ , the rotational speed of the output shaft 3 is ⁇ / k1.
  • the rotation speed of the second inner ring 221 is higher than the rotation speed of the second outer ring 222 when viewed from the second outer ring 222 side by relative rotation with the second outer ring 222,
  • the second inner ring 221 is equal to the state in which the second inner ring 221 is rotating in the free direction (the counter arrow Ri direction in FIG. 8B). Therefore, in the second clutch 22, the second sprag 223 cannot be engaged with the second inner ring 221 and the second outer ring 222.
  • the power transmission device 20 is not affected by the second gear pair 21 and is in the first speed traveling state (the rotational speed ⁇ / of the output shaft 3). k1), and the vehicle 100 starts.
  • the vehicle 100 can start only by driving the motor 112 without performing a complicated operation such as operating the side brake so as not to move backward. .
  • the load applying device 15 of the first clutch 10 is operated in the driven gears 5b and 6b of the first gear pair 5 and 6 of the second speed and the third speed.
  • the present invention is not necessarily limited thereto. If the first gear pair (5 or 6) having a larger gear ratio than the second gear pair 21 is selected so as to be able to transmit power, the torque is compared with the case where the first gear pair 4 of the first speed is used. Decrease, but you can start.
  • the power transmission device is mounted on the front-wheel drive vehicle 100, the second clutch 22 is disposed on the input shaft 2, and the second outer wheel 222 of the second clutch 22 is the drive gear 21a.
  • the power transmission device 30 is mounted on a rear-wheel drive vehicle 200.
  • the case where the second clutch 34 is disposed on the output shafts 31 and 32 and the second clutch 34 is provided separately from the driven gear 33b will be described.
  • FIG. 11A is a schematic diagram schematically showing a vehicle 200 on which the power transmission device 30 according to the third embodiment of the present invention is mounted
  • FIG. 11B is a power transmission according to the third embodiment.
  • 3 is a schematic diagram schematically showing the device 30.
  • the vehicle 200 includes a rear unit 120 that drives the rear wheels 102 (the left rear wheel 102FL and the right rear wheel 102FR).
  • the rear unit 120 mainly includes an engine 111 and a motor 112 as a power source, and a power transmission device 30 that transmits the power of the engine 111 and the motor 112 to the rear wheel 102, and an output shaft of the power transmission device 30.
  • the power transmitted to 31 is transmitted to the left and right rear wheels 102 via a differential device.
  • the rear wheel 102 can be driven by properly using the two powers of the engine 111 and the motor 112, but may be configured by either the engine 111 or the motor 112.
  • Both engine 111 and motor 112 can be used as a power source.
  • the driving force of the engine 111 is transmitted to the input shaft 2
  • the driving force of the motor 112 can be transmitted instead of the engine 111, or the engine 111 and the motor 112 can be transmitted.
  • FIG. 11B is a schematic diagram schematically showing the internal structure of the power transmission device 30.
  • the same parts as those of the second embodiment are denoted by the same reference numerals, and the description thereof is omitted. Note that in FIG. 11B, only the configuration that bears the function of transmitting power is illustrated for easy understanding.
  • the power transmission device 30 includes an input shaft 2 to which power of the engine 111 is input, output shafts 31 and 32 disposed in parallel to the input shaft 2, and the output shaft 31 and the input shaft 2.
  • a plurality of first gear pairs 4, 5 and 6 set so as to mesh with each other to have different gear ratios, and a second gear pair 33 disposed on the output shaft 32 and the input shaft 2 are mainly configured.
  • the output shafts 31 and 32 are coaxially connected via the second clutch 34.
  • the first inner ring 11 of the first clutch 10 disposed in the first gear pair 4, 5, 6 is formed integrally with the output shaft 31.
  • the power transmission device 30 configured as described above is configured such that the power transmitted to the output shaft 31 is output to the outside of the power transmission device 30 and transmitted to the rear wheel 102.
  • the second gear pair 33 is disposed on the input shaft 2 and driven by power transmitted from the input shaft 2, and a driven gear 33b disposed on the output shaft 32 and driven by the drive gear 33a. It has.
  • the number of teeth of the driven gear 33b of the second gear pair 33 is the minimum number of teeth of the first gear pair 4, 5, 6 (in this embodiment, the number of teeth of the driven gear 6b of the first gear pair 6). Number). Therefore, the gear ratio of the second gear pair 33 (the number of teeth of the driven gear 33b / the number of teeth of the driving gear 33a, k5) is the gear ratio of the first gear pairs 4, 5, 6 (in order k1, k2, and so on). k3), which is smaller than the minimum speed ratio (in this embodiment, the speed ratio k3 of the first gear pair 6).
  • the second clutch 34 is configured to transmit power from the output shafts 31 and 32 to the input shaft 2 so as to be cut off, while blocking transmission of power from the input shaft 2 to the output shafts 31 and 32. Since the second clutch 34 is configured in the same manner as the first clutch 10 (see FIG. 5), detailed description thereof is omitted. The same parts as those of the first clutch 10 will be described below using the same reference numerals.
  • the second clutch 34 is provided separately from the driven gear 33 b of the second gear pair 33.
  • the second inner ring 341 of the second clutch 34 is formed integrally with the output shaft 32, but the second outer ring 342 of the second clutch 34 has a side edge connected to the outer ring connecting portion 34 a, and the outer ring connecting portion It is connected with the output shaft 31 via 34a.
  • a second sprag 343 is disposed in contact with the second inner ring 341 and the second outer ring 342.
  • the power transmission device 30 in the third embodiment configured as described above is driven from the first speed to the third speed during acceleration travel (third speed).
  • the operation of the load applying device 15 (see FIG. 4) of the first clutch 10 (see FIG. 5) of the gears 4b, 5b, 6b is stopped.
  • the output shaft 31 rotates at the rotational speed ⁇ / k3 via the third gear pair 6 of the first gear.
  • the outer ring connecting portion 34a connected to the output shaft 31 also rotates at the rotation speed ⁇ / k3, and accordingly, the second outer ring 342 of the second clutch 34 also rotates (rotation speed ⁇ / k3).
  • the driven gear 33b of the second gear pair 33 rotates at a rotational speed ⁇ / k5 in accordance with the rotation (rotational speed ⁇ ) of the drive gear 33a.
  • the output shaft 32 provided with the driven gear 33b rotates, and the second inner ring 341 of the second clutch 34 connected to the output shaft 32 also rotates (rotational speed ⁇ / k5). Since k3> k5, in the second clutch 34, the rotational speed ( ⁇ / k5) of the second inner ring 341 is faster than the rotational speed ( ⁇ / k3) of the second outer ring 342, and relative rotation with the second outer ring 342 is achieved.
  • the second inner ring 341 is equal to a state of rotating in the free direction (counter arrow Ri direction shown in FIG. 5). Therefore, in the second clutch 34, the second sprag 343 cannot be engaged with the second inner ring 341 and the second outer ring 342. Therefore, even if the load application device 15 of the second clutch 34 is not operated, the power transmission device 30 is not affected by the second gear pair 33 and is in the third speed traveling state (the rotational speed ⁇ of the output shaft 31). / K3).
  • the rotational speed ( ⁇ / k5) of the driven gear 33b is the rotational speed of the output shaft 31. It becomes smaller than ( ⁇ / k3).
  • the rotation speed ( ⁇ / k3) of the second outer ring 342 is faster than the rotation speed ( ⁇ / k5) of the second inner ring 341, and the second outer ring 342 is relatively locked ( This is equivalent to the state of rotation in the direction of the arrow Ro shown in FIG.
  • the second sprag 343 is forcibly tilted in the anti-self-locking direction and cannot be engaged with the second inner ring 341 and the second outer ring 342. To do.
  • the power transmission device 30 is not affected by the second gear pair 33 and can obtain the third speed traveling state (the rotational speed ⁇ / k3 of the output shaft 31).
  • the second inner ring 341 of the second clutch 34 since the second inner ring 341 of the second clutch 34 has no driving force from the input shaft 2 via the second gear pair 33, the rotation speed thereof is slower than the rotation speed ⁇ / k3 of the second outer ring 342. .
  • the second outer ring 342 of the second clutch 34 rotates relative to the second inner ring 341 in the locking direction (in the direction of the arrow Ro in FIG. 5) when viewed from the second inner ring 341 side.
  • the load application device 15 of the second clutch 34 is not operated (OFF)
  • the second sprag 343 engages with the second outer ring 342 and the second inner ring 341.
  • the first inner ring 11 rotates at the same speed ⁇ / k3 as the output shaft 31. To do. On the other hand, as described above, since the rotational speeds of the driven gears 4b, 5b, and 6b are all smaller than the rotational speed ⁇ / k3 of the output shaft 31, the rotational speed of the first outer ring 12 of each first clutch 10 is also the first. It becomes slower than the rotation speed of the inner ring 11.
  • the rotational speed of the first inner ring 11 is faster than the rotational speed of the first outer ring 12, and the first inner ring 11 is relatively rotated in the free direction (counter arrow Ri direction in FIG. 5). It becomes equal to the state which is doing. Therefore, in the first clutch 10, the first sprag 13 cannot be engaged with the first inner ring 11 and the first outer ring 12.
  • the power transmission device 30 does not operate the load application device 15 of the first clutch 10, and the first gear pair 4, 5 , 6, power can be transmitted from the output shaft 31 to the input shaft 2 via the second gear pair 33.
  • the engine 111 serves as a driving resistance of the output shaft 31, so that the output shaft 3 can be braked (engine braking).
  • the load applying device 15 (see FIG. 4) of the second clutch 34 is operated (see FIG. 4). ON).
  • the second sprag 343 of the second clutch 34 is forcibly tilted in the anti-self-lock direction and cannot be engaged with the second outer ring 342 and the second inner ring 341. Therefore, the second clutch 34 idles the output shaft 32 and no power is transmitted to the input shaft 2.
  • the first inner ring 11 (see FIG. 4) of the first clutch 10 in the first, second, and third driven gears 4b, 5b, and 6b is in a free direction due to relative rotation with the first outer ring 12.
  • the power transmission devices 1, 20, and 30 are incorporated in the front unit 110 of the vehicle 100 or the rear unit 120 of the vehicle 200 .
  • a power transmission device such as a traveling device, a working device, or a machine tool of a vehicle (such as a locomotive, a passenger vehicle, a freight vehicle, and a special vehicle).
  • the load applying device 15 is configured by an electric motor (AC motor or DC motor)
  • AC motor or DC motor an electric motor
  • the present invention is not necessarily limited to this, and another power source is employed.
  • other power sources include a DC motor, a hydraulic motor, a pneumatic cylinder, a hydraulic cylinder, an AC solenoid, and a DC solenoid.
  • the actuator 15a when configured by a solenoid, the actuator 15a is not limited to the case where a load is applied to the sprag 13 by a gear mechanism or the like.
  • the actuator 15a is configured to apply a load to the sprag 13 using electromagnetic force. Also good.
  • the present invention is not necessarily limited to this. It can be arranged at any position such as between the first gear pair 4, 5 and between the first gear pair 5, 6.
  • the present invention is not necessarily limited to this, and can naturally be provided on the input shaft 2.
  • an input shaft formed coaxially with the input shaft 2 is separately provided, and the drive gear 33a of the second gear pair 33 is disposed on the input shaft (hereinafter referred to as "new input shaft"), and the first The drive gear 6a of the gear pair 6 is arranged in parallel.
  • the new input shaft and the input shaft 2 are connected via the second clutch 34.
  • the inner ring 11 of the second clutch 34 is formed integrally with the input shaft 2, and the outer ring connecting portion 34a is connected to the new input shaft.
  • the load applying device 15 is switched between operation and non-operation so as to suppress energy loss and extend the travel distance or output. It is possible to select whether the shaft 31 is to be braked or which is prioritized.
  • the second clutches 22 and 34 are configured to include sprag type one-way clutches with a sprag engagement release function. It is possible to use a one-way clutch or a two-way clutch. Examples of other one-way clutches include a normal sprag type one-way clutch that does not have a sprag engagement release function. Examples of the two-way clutch include those disclosed in Japanese Patent Application Laid-Open No. 2007-298145.
  • the load applying device 15 of the first speed first clutch 10 is operated.
  • the engagement of the first sprag 13 with the first inner ring 11 and the first outer ring 12 may be forcibly released.
  • the load application device 15 of the second clutch 10 of the second speed is operated to operate the first inner ring 11 and the first outer ring.
  • the engagement of the first sprags 13 to 12 may be forcibly released.
  • the load application device 15 of the first clutch 10 is operated to forcibly disengage the first sprags 13 from the first inner rings 11 and the first outer rings 12. good.
  • the load applying device 15 of the first clutch 10 of the first speed and the second speed is operated to operate the first inner ring 11.
  • the engagement of the first sprag 13 with the first outer ring 12 may be forcibly released.
  • the load applying device 15 of the first clutch 10 may be operated to forcibly release the engagement of the first sprag 13 to the first inner ring 11 and the first outer ring 12. .

Abstract

Disclosed is power transmission equipment which can switch transmission and interruption of rotation in a fixed direction quickly while preventing impact at the time of switching, and can prevent reduction in the amount of output during inertial motion without requiring an extra control. Since transmission and interruption of rotation in a fixed direction are switched by tilting a first sprag (13), the time required for switching can be shortened and switching can be carried out quickly. Furthermore, since the first inner ring (11) and the first outer ring (12) do not idle during the interval between a state of not transmitting power and a state of transmitting power, impact can be prevented at the time of switching. Furthermore, since the first sprag (13) tilts naturally in the anti-self lock direction during inertial motion, braking can be prevented during inertial motion and reduction in the amount of output can be prevented during inertial motion.

Description

動力伝達装置Power transmission device
 本発明は、動力伝達装置に関し、特に、一定方向への回転の伝達および遮断の切り替えを素早く行うと共に切り替え時の衝撃を防止することができ、さらに特別な制御を行わなくても、惰性運動時の出力量が減少することを防止できる動力伝達装置に関するものである。 The present invention relates to a power transmission device, and in particular, can quickly switch between rotation transmission and interruption in a certain direction and prevent an impact at the time of switching, and further, during inertial movement without special control. It is related with the power transmission device which can prevent that the output amount of No. decreases.
 従来、動力源からの動力を伝達する動力伝達装置として、例えば、特許文献1には、入力軸と、入力軸に平行な出力軸と、入力軸および出力軸に配設され互いに常時噛み合って異なる変速比となるように設定された複数の歯車対と、歯車対のそれぞれ一方の歯車に設けられたツーウェイクラッチと、を備えるものが開示されている。 Conventionally, as a power transmission device that transmits power from a power source, for example, in Patent Document 1, an input shaft, an output shaft parallel to the input shaft, and an input shaft and an output shaft that are always meshed with each other are different. An apparatus is disclosed that includes a plurality of gear pairs that are set to have a gear ratio and a two-way clutch that is provided on one gear of each gear pair.
 特許文献1に開示される動力伝達装置では、ツーウェイクラッチは、外周面が断面多角形状の内輪と、その内輪の外周面に対向する断面円形状の内周面を有する外輪と、その外輪の内周面と内輪の外周面との間に複数のローラを円周方向に保持する保持器とを備えている。このツーウェイクラッチは、保持器が中立状態にあると、外輪の内周面とローラとの間に隙間が存在するため、内輪と外輪とは自由に相対回転できる(空転して動力は伝達されない)。これに対し、保持器を円周方向に変位させてローラを移動させると、内輪や外輪の回転に伴って、ローラが外輪の内周面と内輪の外周面との間に楔のように噛み込み、内輪と外輪とをロックできる(ロック状態では動力が伝達される)。このように、この動力伝達装置では、該当する歯車対に設けられた保持器を中立状態から円周方向に変位させ、内輪と外輪との間にローラを噛み込ませることによりロックさせ、動力を伝達する状態に切り替えて変速を行う。 In the power transmission device disclosed in Patent Document 1, the two-way clutch includes an inner ring having a polygonal outer peripheral surface, an outer ring having a circular inner peripheral surface facing the outer peripheral surface of the inner ring, and an inner ring of the outer ring. A cage for holding a plurality of rollers in the circumferential direction is provided between the peripheral surface and the outer peripheral surface of the inner ring. In the two-way clutch, when the cage is in a neutral state, there is a gap between the inner peripheral surface of the outer ring and the roller, so that the inner ring and the outer ring can freely rotate relative to each other (idle and no power is transmitted). . On the other hand, when the roller is moved by displacing the cage in the circumferential direction, the roller engages like a wedge between the inner peripheral surface of the outer ring and the outer peripheral surface of the inner ring as the inner ring or outer ring rotates. The inner ring and the outer ring can be locked (power is transmitted in the locked state). As described above, in this power transmission device, the cage provided in the corresponding gear pair is displaced from the neutral state in the circumferential direction, and the roller is engaged between the inner ring and the outer ring to be locked, thereby driving the power. Switch to the state of transmission and shift.
特開2007-298145号公報JP 2007-298145 A
 しかしながら、特許文献1に開示される動力伝達装置では、動力を伝達しない状態から動力を伝達する状態に切り替えるためには、該当する歯車対に設けられたローラを円周方向に移動させ、さらに内輪や外輪の回転を利用して、外輪の内周面と内輪の外周面との間にローラを楔のように噛み込ませる必要がある。このため、ローラの移動に時間がかかり、切り替えに時間を要するという問題点があった。 However, in the power transmission device disclosed in Patent Document 1, in order to switch from a state in which power is not transmitted to a state in which power is transmitted, the rollers provided in the corresponding gear pair are moved in the circumferential direction, and the inner ring In addition, it is necessary to make the roller engage like a wedge between the inner peripheral surface of the outer ring and the outer peripheral surface of the inner ring by utilizing the rotation of the outer ring. For this reason, there has been a problem that it takes a long time to move the roller, and it takes a long time to switch.
 また、切り替えに時間を要すると、動力を伝達しない状態から動力が伝達されるまでの間に、外輪または入力軸と内輪または出力軸とが空転する。この結果、ローラが楔のように噛み込むロック時に、衝撃が生じるという問題点があった。 Also, if it takes time to switch, the outer ring or input shaft and the inner ring or output shaft run idle until the power is transmitted after the power is not transmitted. As a result, there is a problem that an impact is generated when the roller is locked like a wedge.
 また、加速時にシフトアップ変速を行う場合、内外輪の回転に対して回転を止めるブレーキ力を付加してローラを回転方向に移動させると共に、動力が入力される外輪の回転速度が、出力軸に繋がる内輪の回転速度と同じか又は相対的に速くなると、ローラが外輪の内周面と内輪の外周面との間の正回転方向に噛み込まれる。その結果、内輪と外輪とがロックされ、入力軸から出力軸を駆動する状態となる。次いで、コースト走行(惰性走行)を行うと、動力が入力される外輪の回転速度は、出力軸に繋がる内輪の回転速度より相対的に遅くなるため、正回転方向に噛み込まれたローラが外れ、中立状態を経て、外輪の内周面と内輪の外周面との間の逆回転方向に噛み込まれる。その結果、再び内輪と外輪とがロックされ、出力軸から入力軸を駆動する状態となる。このように、正回転方向に噛み込まれたローラが外れ、中立状態を経て逆回転方向に噛み込まれる切り替え時においても、回転ガタがあるため、衝撃が生ずるという問題点があった。 In addition, when performing upshifting during acceleration, the roller is moved in the rotational direction by applying a braking force that stops the rotation with respect to the rotation of the inner and outer rings, and the rotational speed of the outer ring to which power is input is applied to the output shaft. When the rotational speed of the connected inner ring is equal to or relatively faster than the inner ring, the roller is engaged in the positive rotation direction between the inner peripheral surface of the outer ring and the outer peripheral surface of the inner ring. As a result, the inner ring and the outer ring are locked, and the output shaft is driven from the input shaft. Next, when coasting (inertia traveling) is performed, the rotational speed of the outer ring to which power is input becomes relatively slower than the rotational speed of the inner ring connected to the output shaft, so that the roller that is bitten in the forward rotational direction is removed. Through the neutral state, it is bitten in the reverse rotation direction between the inner peripheral surface of the outer ring and the outer peripheral surface of the inner ring. As a result, the inner ring and the outer ring are locked again, and the input shaft is driven from the output shaft. As described above, there is a problem that an impact is generated because there is a rotation backlash even at the time of switching in which the roller biting in the forward rotation direction is removed and the roller is bitten in the reverse rotation direction through the neutral state.
 また、コースト走行(惰性走行)時の抵抗を無くすには、出力軸の制動を抑制するため、ローラが噛み込まれないように中立状態に保つように制御する必要がある。このように、コースト走行時には、ローラを制御しなければ出力軸が制動されるため、惰性走行可能な距離が短くなるという問題点(惰性運動時の出力量が減少するという問題点)があった。 Also, in order to eliminate resistance during coasting (inertia), it is necessary to control the roller so that the roller is not caught in order to suppress braking of the output shaft. As described above, when coasting, the output shaft is braked unless the roller is controlled, so that there is a problem that the distance that can be coasted is shortened (the problem that the output amount during coasting is reduced). .
 本発明は、上述した問題点を解決するためになされたものであり、一定方向への回転の伝達および遮断の切り替えを素早く行うと共に切り替え時の衝撃を防止することができ、さらに特別な制御を行わなくても、惰性運動時の出力量が減少することを防止できる動力伝達装置を提供することを目的としている。 The present invention has been made in order to solve the above-described problems, and can quickly transfer and shut off rotation in a certain direction and prevent an impact at the time of switching. Even if it does not perform, it aims at providing the power transmission device which can prevent that the output amount at the time of inertia exercise decreases.
課題を解決するための手段および発明の効果Means for Solving the Problems and Effects of the Invention
 請求項1記載の動力伝達装置によれば、第1クラッチは、付勢部材によりスプラグに付勢力が付与され、第1内輪の外周面および第1外輪の内周面に係合面が接するように第1スプラグがセルフロック方向へ傾動することで、第1内輪および第1外輪に第1スプラグが係合する。これにより、第1内輪と第1外輪との一定回転方向への相対回転が規制される。これに対し、荷重付与装置により付勢部材の付勢力に抗して第1スプラグに荷重が付与され、第1スプラグが反セルフロック方向へ傾動することで、第1内輪および第1外輪への第1スプラグの係合が解除され、第1内輪と第1外輪とが相対回転する。 According to the first aspect of the present invention, in the first clutch, the urging force is applied to the sprag by the urging member, and the engagement surface is in contact with the outer peripheral surface of the first inner ring and the inner peripheral surface of the first outer ring. When the first sprag is tilted in the self-locking direction, the first sprag is engaged with the first inner ring and the first outer ring. Thereby, the relative rotation of the first inner ring and the first outer ring in the constant rotation direction is restricted. On the other hand, a load is applied to the first sprag against the urging force of the urging member by the load applying device, and the first sprag is tilted in the anti-self-locking direction, whereby the first inner ring and the first outer ring are tilted. The engagement of the first sprag is released, and the first inner ring and the first outer ring rotate relative to each other.
 このように、本発明によれば、第1スプラグを傾動させて一定方向への回転の伝達および遮断の切り替えを行うので、従来のように、ローラを円周方向に変位させて切り替えを行う場合と比較して、切り替えに要する時間を短縮でき、切り替えを素早く行うことができるという効果がある。 As described above, according to the present invention, since the first sprag is tilted to transmit the rotation in a certain direction and to switch the cutoff, when the roller is displaced in the circumferential direction as in the conventional case, the switching is performed. Compared to the above, there is an effect that the time required for switching can be shortened and switching can be performed quickly.
 また、第1スプラグを傾動させて一定方向への回転の伝達および遮断を行うので、従来のように、動力を伝達しない状態から動力を伝達する状態になるまでの間に第1内輪と第1外輪とが空転することもなく、切り替え時の衝撃を防止することができるという効果がある。 Further, since the rotation of the first sprag is tilted to transmit and block the rotation in a certain direction, the first inner ring and the first ring are not changed from the state where the power is not transmitted to the state where the power is transmitted as in the prior art. There is an effect that an impact at the time of switching can be prevented without causing the outer ring to idle.
 さらに、出力軸から入力軸へ動力が伝達される惰性運動時に、第1内輪および第1外輪への第1スプラグの係合が解除されて第1スプラグが反セルフロック方向へ自然に傾動するため、荷重付与装置を作動しなくても、出力軸から入力軸への動力の伝達が遮断される。その結果、荷重付与装置を作動しなくても、惰性運動時に出力軸が制動されることを防ぎ、惰性運動時の出力量が減少することを防止できるという効果がある。 Further, during inertial movement in which power is transmitted from the output shaft to the input shaft, the first sprag is released from the first inner ring and the first outer ring, and the first sprag naturally tilts in the anti-self-locking direction. Even if the load applying device is not operated, the transmission of power from the output shaft to the input shaft is interrupted. As a result, it is possible to prevent the output shaft from being braked during inertial motion and to prevent the output amount during inertial motion from decreasing without operating the load applying device.
 請求項2記載の動力伝達装置によれば、第2歯車対に配設され出力軸から入力される動力を入力軸へ伝達する第2クラッチを備えているので、出力軸から入力軸へ動力が伝達される惰性運動時には、第2クラッチによって出力軸から入力軸へ動力が伝達され、出力軸から入力軸を駆動する状態となり、動力源が出力軸の駆動抵抗となるため出力軸を制動できる。その結果、請求項1の効果に加え、惰性運動時の出力量が減少することを防止するよりも、出力軸の制動を優先できるという効果がある。 According to the power transmission device of the second aspect, since the second clutch is provided in the second gear pair and transmits the power input from the output shaft to the input shaft, the power is transmitted from the output shaft to the input shaft. During the inertial motion that is transmitted, power is transmitted from the output shaft to the input shaft by the second clutch, and the input shaft is driven from the output shaft, and the power source becomes the driving resistance of the output shaft, so that the output shaft can be braked. As a result, in addition to the effect of claim 1, there is an effect that priority can be given to braking of the output shaft rather than preventing the output amount during inertial movement from decreasing.
 請求項3記載の動力伝達装置によれば、第2歯車対の出力軸に配設された歯車の歯数が、第1歯車対の出力軸に配設された歯車の内の最小歯数より小さいので、第2歯車対の変速比が第1歯車対の変速比より小さくなる。これにより、第2クラッチは出力軸から入力軸への動力の伝達を遮断可能に構成しなくても、出力軸が惰性運動をする場合には、第1歯車対と第2歯車対との変速比の関係により、第1クラッチのスプラグを反セルフロック方向に傾動させることができる。このため、第1歯車対と第2歯車対との間に二重噛み合いが起きるのを防止できる。よって、請求項2の効果に加え、動力伝達装置の制御を簡素化できるという効果がある。 According to the power transmission device of claim 3, the number of teeth of the gear disposed on the output shaft of the second gear pair is less than the minimum number of teeth of the gear disposed on the output shaft of the first gear pair. Since it is small, the gear ratio of the second gear pair is smaller than the gear ratio of the first gear pair. As a result, even if the second clutch is not configured to be capable of interrupting transmission of power from the output shaft to the input shaft, the shift between the first gear pair and the second gear pair can be performed when the output shaft performs inertial motion. Due to the ratio relationship, the sprags of the first clutch can be tilted in the anti-self-lock direction. For this reason, it is possible to prevent double meshing between the first gear pair and the second gear pair. Therefore, in addition to the effect of claim 2, there is an effect that the control of the power transmission device can be simplified.
 また、出力軸に逆動力(出力軸を逆回転させようとする動力)が入力される場合に、第1歯車対および第2歯車対の変速比により回転速度差が生じ、第1歯車対と第2歯車対とを二重噛み合いにできるという効果がある。このため、車両が登坂停止している場合に、サイドブレーキを作動させたり大きな駆動力が得られるように動力源を制御したりすることなく、車両の後退を防止することができる。また、車両が登坂停止した状態から前進する場合は、動力源を駆動するのみで発進できる。 In addition, when reverse power (power to rotate the output shaft in reverse) is input to the output shaft, a rotational speed difference is generated due to the gear ratio of the first gear pair and the second gear pair, There is an effect that the second gear pair can be double-engaged. For this reason, when the vehicle is stopped uphill, it is possible to prevent the vehicle from retreating without operating the side brake or controlling the power source so as to obtain a large driving force. In addition, when the vehicle moves forward from a state where it has stopped climbing, it can start by only driving the power source.
 請求項4記載の動力伝達装置によれば、第2クラッチは、出力軸から入力軸への動力の伝達を遮断可能に構成されているので、出力軸から入力軸への動力の伝達を遮断すれば惰性運動時に出力量が減少することを防止できる。その結果、出力軸から入力軸への動力の伝達を遮断しなければ出力軸の制動を行うことができる。以上のように、請求項2又は3の効果に加え、惰性運動時に、出力量または出力軸の制動のいずれを優先するかを選択できるという効果がある。 According to the power transmission device of the fourth aspect, since the second clutch is configured to be able to cut off the transmission of power from the output shaft to the input shaft, the transmission of power from the output shaft to the input shaft can be cut off. It is possible to prevent the output amount from decreasing during inertial exercise. As a result, the output shaft can be braked unless the transmission of power from the output shaft to the input shaft is interrupted. As described above, in addition to the effect of the second or third aspect, there is an effect that it is possible to select which of the output amount and the braking of the output shaft is prioritized during inertial movement.
 請求項5記載の動力伝達装置によれば、第2クラッチは、第2内輪と第2外輪とに接する第2スプラグを傾動させて一定方向への回転の伝達および遮断の切り替えを行うので、従来のように、ローラを円周方向に変位させて切り替えを行う場合と比較して、切り替えに要する時間を短縮できる。従って、請求項4の効果に加え、切り替えを素早く行うことができるという効果がある。 According to the power transmission device of the fifth aspect, since the second clutch tilts the second sprag in contact with the second inner ring and the second outer ring to perform transmission of rotation in a certain direction and switching between cutoffs. As described above, the time required for switching can be shortened as compared with the case where switching is performed by displacing the roller in the circumferential direction. Therefore, in addition to the effect of claim 4, there is an effect that switching can be performed quickly.
 また、第2スプラグを傾動させて一定方向への回転の伝達および遮断を行うので、従来のように、動力を伝達しない状態から動力を伝達する状態になるまでの間に第2内輪と第2外輪とが空転することもなく、切り替え時の衝撃を防止できるという効果がある。 Further, since the rotation of the second sprag is tilted to transmit and block the rotation in a certain direction, the second inner ring and the second inner ring are connected to the second inner ring until the power is transmitted from the state where the power is not transmitted as in the prior art. There is an effect that the impact at the time of switching can be prevented without idling with the outer ring.
 また、加速時において第1クラッチがセルフロックされる状態から、コースト時において第2クラッチがセルフロックされる状態に回転ガタなく切り替えることができるため、切り替え時の遊転による衝撃を防止できるという効果がある。 In addition, since the first clutch can be switched from the self-locking state during acceleration to the second clutch being self-locking during coasting without rotation backlash, an effect of preventing an impact due to idle rotation at the time of switching can be prevented. There is.
第1実施の形態における動力伝達装置が搭載される車両を模式的に示した模式図である。It is the schematic diagram which showed typically the vehicle by which the power transmission device in 1st Embodiment is mounted. 動力伝達装置を模式的に示した模式図である。It is the schematic diagram which showed the power transmission device typically. 第1クラッチの断面図である。It is sectional drawing of a 1st clutch. 図3のIV-IV線における第1クラッチの断面図である。FIG. 4 is a cross-sectional view of the first clutch taken along line IV-IV in FIG. 3. 図4のVで示す部分を拡大して示した第1クラッチの部分拡大断面図である。It is the elements on larger scale of the 1st clutch which expanded and showed the part shown by V of FIG. (a)は加速走行時(第1速)の動力伝達装置の内部構造を模式的に示した模式図であり、(b)は加速走行時(第2速)の動力伝達装置の内部構造を模式的に示した模式図であり、(c)は加速走行時(第3速)の動力伝達装置の内部構造を模式的に示した模式図である。(A) is the schematic diagram which showed typically the internal structure of the power transmission device at the time of acceleration driving | running | working (1st speed), (b) is the internal structure of the power transmission device at the time of acceleration driving | running | working (2nd speed). It is the schematic diagram shown typically, (c) is the schematic diagram which showed typically the internal structure of the power transmission device at the time of acceleration driving | running | working (3rd speed). コースト走行時(第3速)の動力伝達装置の内部構造を模式的に示した模式図である。It is the schematic diagram which showed typically the internal structure of the power transmission device at the time of coast driving | running | working (3rd speed). (a)は第2実施の形態における動力伝達装置の内部構造を模式的に示した模式図であり、(b)は第2クラッチの内部構造の一部を模式的に示した模式図である。(A) is the schematic diagram which showed typically the internal structure of the power transmission device in 2nd Embodiment, (b) is the schematic diagram which showed typically a part of internal structure of a 2nd clutch. . (a)は第2実施の形態における動力伝達装置において加速走行時(第3速)の動力伝達装置の内部構造を模式的に示した模式図であり、(b)はコースト走行時(第3速)に出力軸から入力軸に動力を伝達する動力伝達装置の内部構造を模式的に示した模式図であり、(c)はコースト走行時(第3速)に出力軸から入力軸への動力の伝達を遮断した動力伝達装置の内部構造を模式的に示した模式図である。(A) is the schematic diagram which showed typically the internal structure of the power transmission device at the time of acceleration driving | running | working (3rd speed) in the power transmission device in 2nd Embodiment, (b) is the time of coast driving | running | working (3rd (C) is a schematic diagram schematically showing the internal structure of a power transmission device that transmits power from the output shaft to the input shaft. It is the schematic diagram which showed typically the internal structure of the power transmission device which interrupted | blocked transmission of power. (a)は第2実施の形態における動力伝達装置において車両が登坂停止している場合の動力伝達装置の内部構造を模式的に示した模式図であり、(b)は車両が登坂停止した状態から前進する場合の動力伝達装置の内部構造を模式的に示した模式図である。(A) is the schematic diagram which showed typically the internal structure of the power transmission device in case the vehicle has stopped climbing in the power transmission device in 2nd Embodiment, (b) is the state which the vehicle stopped climbing up It is the schematic diagram which showed typically the internal structure of the power transmission device in the case of moving forward from. (a)は第3実施の形態における動力伝達装置が搭載される車両を模式的に示した模式図であり、(b)は動力伝達装置を模式的に示した模式図である。(A) is the schematic diagram which showed typically the vehicle by which the power transmission device in 3rd Embodiment is mounted, (b) is the schematic diagram which showed typically the power transmission device.
 以下、本発明の好ましい実施の形態について、添付図面を参照して説明する。図1は、本発明の第1実施の形態における動力伝達装置1が搭載される車両100を模式的に示した模式図である。なお、図1の矢印F-B,L-Rは、車両100の前後方向、左右方向をそれぞれ示している。 Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a schematic diagram schematically showing a vehicle 100 on which the power transmission device 1 according to the first embodiment of the present invention is mounted. Note that arrows FB and LR in FIG. 1 indicate the front-rear direction and the left-right direction of the vehicle 100, respectively.
 まず、車両100の概略構成について説明する。車両100は、図1に示すように、前輪101(左の前輪101FL及び右の前輪101FR)を駆動するフロントユニット110を備えている。フロントユニット110は、動力源としてのエンジン111及びモータ112と、それらエンジン111及びモータ112の動力を前輪101に伝達する動力伝達装置113とを主に備え、エンジン111及びモータ112の2つの動力を使い分けて前輪101を駆動可能に構成されている。また、このフロントユニット110は、モータ112が発電機としての機能を兼ね備えており、モータ112により発電した電力を回生可能に構成されている。なお、車両100は、エンジン111又はモータ112のいずれか片方で構成されても良い。 First, a schematic configuration of the vehicle 100 will be described. As shown in FIG. 1, the vehicle 100 includes a front unit 110 that drives a front wheel 101 (a left front wheel 101FL and a right front wheel 101FR). The front unit 110 mainly includes an engine 111 and a motor 112 as a power source, and a power transmission device 113 that transmits the power of the engine 111 and the motor 112 to the front wheels 101. The front unit 110 supplies two powers of the engine 111 and the motor 112. The front wheel 101 can be driven by properly using it. Further, the front unit 110 is configured such that the motor 112 also has a function as a generator, and the electric power generated by the motor 112 can be regenerated. Note that the vehicle 100 may be configured by either the engine 111 or the motor 112.
 次いで、図2を参照して、動力伝達装置1の詳細構成について説明する。図2は、動力伝達装置1の内部構造を模式的に示した模式図である。なお、図2では、理解を容易とするために、動力を伝達する機能を担う構成のみを図示している。また、以下の実施の形態においては、入力軸2にモータ112の駆動力を伝達する場合について説明するが、モータ112に代えてエンジン111の駆動力を伝達することや、エンジン111及びモータ112の駆動力を伝達することも当然可能である。 Next, the detailed configuration of the power transmission device 1 will be described with reference to FIG. FIG. 2 is a schematic diagram schematically showing the internal structure of the power transmission device 1. In FIG. 2, only the configuration that bears the function of transmitting power is shown for easy understanding. In the following embodiments, the case where the driving force of the motor 112 is transmitted to the input shaft 2 will be described. However, the driving force of the engine 111 can be transmitted instead of the motor 112, or the engine 111 and the motor 112 can be transmitted. Of course, it is also possible to transmit the driving force.
 動力伝達装置1は、図2に示すように、モータ112の動力が入力される入力軸2と、その入力軸2と平行に配設された出力軸3と、その出力軸3および入力軸2に配設され互いに噛み合って異なる変速比となるように設定された複数の第1歯車対4,5,6とを主に備えて構成されている。本実施の形態では、モータ112と第1歯車対4との間の入力軸2にメインクラッチ7が配設されており、メインクラッチ7を接続することで、モータ112の動力を動力伝達装置1に伝達するように構成されている。また、出力軸2に伝達された動力が動力伝達装置1の外部に出力され、前輪101に伝達されるように構成されている。 As shown in FIG. 2, the power transmission device 1 includes an input shaft 2 to which the power of the motor 112 is input, an output shaft 3 disposed in parallel with the input shaft 2, and the output shaft 3 and the input shaft 2. And a plurality of first gear pairs 4, 5 and 6 which are set so as to mesh with each other and have different gear ratios. In the present embodiment, the main clutch 7 is disposed on the input shaft 2 between the motor 112 and the first gear pair 4, and the power of the motor 112 is transmitted to the power transmission device 1 by connecting the main clutch 7. Is configured to communicate. Further, the power transmitted to the output shaft 2 is output to the outside of the power transmission device 1 and transmitted to the front wheels 101.
 第1歯車対4,5,6は、入力軸2に配設され入力軸2から伝達される動力により駆動される駆動歯車4a,5a,6aと、出力軸3に配設され駆動歯車4a,5a,6aにより従動駆動される被動歯車4b,5b,6bとを備えている。ここで、第1歯車対4,5,6は、変速比(被動歯車の歯数÷駆動歯車の歯数)の大きなものから、モータ112に近い順に第1速、第2速、第3速とされ、本実施の形態においては、第1歯車対4が第1速、第1歯車対5が第2速、第1歯車対6が第3速である。なお、後進段については、図示を省略している。後進段の場合は、第1歯車対4,5,6の間にピニオン歯車を挿入すれば良い。 The first gear pairs 4, 5, 6 are disposed on the input shaft 2 and driven by power transmitted from the input shaft 2, and the drive gears 4 a, 5 a, 6 a are disposed on the output shaft 3. And driven gears 4b, 5b, 6b driven by 5a, 6a. Here, the first gear pair 4, 5, 6 has the first gear ratio, the second gear speed, and the third gear speed in descending order of distance from the motor 112 with the gear ratio (number of teeth of the driven gear ÷ number of teeth of the driving gear). In the present embodiment, the first gear pair 4 is the first speed, the first gear pair 5 is the second speed, and the first gear pair 6 is the third speed. Note that illustration of the reverse gear is omitted. In the case of the reverse gear, a pinion gear may be inserted between the first gear pair 4, 5, 6.
 第1歯車対4,5,6を構成する駆動歯車4a,5a,6aは、それぞれ入力軸2と一体に形成されている。一方、駆動歯車4a,5a,6aにそれぞれ対向して噛み合う被動歯車4b,5b,6bは、後述する第1クラッチ10を介して出力軸3にそれぞれ固定されている。第1クラッチ10は、入力軸2から出力軸3へ動力を伝達する一方、出力軸3から入力軸2への動力の伝達を遮断するものであり、入力軸2から出力軸3への動力の伝達を遮断可能に構成されている。 The drive gears 4a, 5a, 6a constituting the first gear pair 4, 5, 6 are formed integrally with the input shaft 2, respectively. On the other hand, driven gears 4b, 5b, and 6b that face and mesh with the driving gears 4a, 5a, and 6a are respectively fixed to the output shaft 3 via a first clutch 10 described later. The first clutch 10 transmits power from the input shaft 2 to the output shaft 3, while interrupting transmission of power from the output shaft 3 to the input shaft 2, and transmits power from the input shaft 2 to the output shaft 3. The transmission can be cut off.
 ここで、図3及び図4を参照して、第1クラッチ10の詳細構成について説明する。図3は、第1クラッチ10の断面図であり、図4は、図3のIV-IV線における第1クラッチ10の断面図である。第1クラッチ10は、図3及び図4に示すように、第1内輪11と、その第1内輪11の外周を囲む第1外輪12と、それら第1内輪11と第1外輪12との間に配設される複数の第1スプラグ13と、それら第1スプラグ13を保持する保持器14と、荷重付与装置15とを主に備えて構成されている。 Here, the detailed configuration of the first clutch 10 will be described with reference to FIGS. 3 is a cross-sectional view of the first clutch 10, and FIG. 4 is a cross-sectional view of the first clutch 10 taken along the line IV-IV in FIG. As shown in FIGS. 3 and 4, the first clutch 10 includes a first inner ring 11, a first outer ring 12 that surrounds the outer periphery of the first inner ring 11, and between the first inner ring 11 and the first outer ring 12. A plurality of first sprags 13, a retainer 14 for holding the first sprags 13, and a load applying device 15 are mainly provided.
 第1内輪11は、動力を伝達する機能を担う部材であり、図3及び図4に示すように、断面円形状の外周面11aを備え、軸心O回りに回転可能に構成されている。また、この第1内輪11は、出力軸3(図2参照)と一体に形成されている。第1外輪12は、第1内輪11と共に動力を伝達する機能を担う部材であり、図3及び図4に示すように、第1内輪11の外周面11aに対向する断面円形状の内周面12aを備え、第1内輪11と同様に軸心O回りに回転可能に構成されている。また、この第1外輪12は、第1歯車対4,5,6の被動歯車4b,5b,6b(図2参照)と一体に形成されている。 The first inner ring 11 is a member having a function of transmitting power, and includes an outer peripheral surface 11a having a circular cross section as shown in FIGS. 3 and 4, and is configured to be rotatable around an axis O. The first inner ring 11 is formed integrally with the output shaft 3 (see FIG. 2). The first outer ring 12 is a member having a function of transmitting power together with the first inner ring 11, and as shown in FIGS. 3 and 4, the inner peripheral surface having a circular cross section facing the outer peripheral surface 11a of the first inner ring 11. 12a, and is configured to be rotatable around the axis O in the same manner as the first inner ring 11. The first outer ring 12 is formed integrally with the driven gears 4b, 5b, 6b (see FIG. 2) of the first gear pair 4, 5, 6.
 第1スプラグ13は、第1内輪11と第1外輪12とを係合する機能を担う部材であり、外周面11a及び内周面12aにそれぞれ接する係合面13a,13b(図5参照)を備え、図4に示すように、外周面11a及び内周面12aの対向間において円周方向に等間隔で複数配設されている。また、この第1スプラグ13は、リボンスプリング16(図5参照)により内周面11a及び外周面12aの円周方向に付勢されている。 The 1st sprag 13 is a member which bears the function which engages the 1st inner ring | wheel 11 and the 1st outer ring | wheel 12, and has engagement surface 13a, 13b (refer FIG. 5) which each contact | connects the outer peripheral surface 11a and the inner peripheral surface 12a. In addition, as shown in FIG. 4, a plurality of elements are arranged at equal intervals in the circumferential direction between the outer peripheral surface 11 a and the inner peripheral surface 12 a facing each other. Further, the first sprag 13 is urged in the circumferential direction of the inner peripheral surface 11a and the outer peripheral surface 12a by a ribbon spring 16 (see FIG. 5).
 ここで、図5を参照して、リボンスプリング16について説明する。図5は、図4のVで示す部分を拡大して示した第1クラッチ10の部分拡大断面図である。リボンスプリング16は、第1スプラグ13に付勢力を付与して外周面11a及び内周面12aに係合面13a,13bが接するように第1スプラグ13に図5の矢印S方向(以下「セルフロック方向」と称す)の回転モーメントを発生させる部材であり、図5に示すように、金属材料に波状の曲げ加工を施して形成され、その弾性を利用して第1スプラグ13に付勢力を付与可能に構成されている。但し、このリボンスプリング16は、コイルばねにより構成しても良い。 Here, the ribbon spring 16 will be described with reference to FIG. FIG. 5 is a partially enlarged cross-sectional view of the first clutch 10 showing the portion indicated by V in FIG. 4 in an enlarged manner. The ribbon spring 16 applies an urging force to the first sprag 13 so that the engaging surfaces 13a and 13b are in contact with the outer peripheral surface 11a and the inner peripheral surface 12a. 5 is a member that generates a rotational moment in the “locking direction”, and is formed by applying a wave-like bending process to a metal material as shown in FIG. 5, and applies an urging force to the first sprag 13 using its elasticity. It is configured to be grantable. However, the ribbon spring 16 may be constituted by a coil spring.
 このリボンスプリング16により第1スプラグ13に付勢力が付与されることで、外周面11a及び内周面12aに係合面13a,13bが接するように第1スプラグ13がセルフロック方向へ傾動する。その結果、図5に示すように、内周面12aと係合面13bとの接点A及び外周面11aと係合面13aとの接点Bに摩擦力が発生すると共に外周面11a及び内周面12aの円周方向における各接点A,Bの位置ずれにより、第1内輪11及び第1外輪12が所定の方向へ回転する場合には、第1内輪11及び第1外輪12に第1スプラグ13が係合する。 By applying a biasing force to the first sprag 13 by the ribbon spring 16, the first sprag 13 tilts in the self-locking direction so that the engaging surfaces 13a and 13b are in contact with the outer peripheral surface 11a and the inner peripheral surface 12a. As a result, as shown in FIG. 5, frictional force is generated at the contact A between the inner peripheral surface 12a and the engagement surface 13b and the contact B between the outer peripheral surface 11a and the engagement surface 13a, and the outer peripheral surface 11a and the inner peripheral surface. When the first inner ring 11 and the first outer ring 12 rotate in a predetermined direction due to the displacement of the respective contacts A and B in the circumferential direction of 12a, the first sprag 13 is added to the first inner ring 11 and the first outer ring 12. Engage.
 即ち、第1外輪12が第1スプラグ13に対して、第1内輪11との相対回転で第1内輪11側から見て、図5の矢印Ro方向(以下「ロック方向」と称す)へ回転する場合には、第1内輪11及び第1外輪12に第1スプラグ13が係合する。これにより、出力軸3は被動歯車4b,5b,6bと共に回転する。一方、第1外輪12が第1スプラグ13に対して、第1内輪11との相対回転で第1内輪11側から見て、図5の反矢印Ro方向(以下「フリー方向」と称す)へ回転する場合には、接点Aに作用する摩擦力により第1スプラグ13がリボンスプリング16の付勢力に抗して反セルフロック方向へ傾動し、第1内輪11及び第1外輪12への第1スプラグ13の係合が解除される。その結果、被動歯車4b,5b,6bは出力軸3を空転する。 That is, the first outer ring 12 rotates relative to the first sprag 13 relative to the first inner ring 11 in the direction of the arrow Ro in FIG. 5 (hereinafter referred to as “lock direction”) as viewed from the first inner ring 11 side. When doing so, the first sprag 13 is engaged with the first inner ring 11 and the first outer ring 12. Thereby, the output shaft 3 rotates with the driven gears 4b, 5b, and 6b. On the other hand, the first outer ring 12 is rotated relative to the first inner ring 11 with respect to the first sprag 13 as viewed from the first inner ring 11 side in the direction of the opposite arrow Ro in FIG. 5 (hereinafter referred to as “free direction”). When rotating, the first sprag 13 is tilted in the anti-self-locking direction against the urging force of the ribbon spring 16 by the frictional force acting on the contact A, and the first sprocket 13 is applied to the first inner ring 11 and the first outer ring 12. The sprag 13 is disengaged. As a result, the driven gears 4b, 5b, and 6b idle the output shaft 3.
 また、第1内輪11が第1スプラグ13に対して、第1外輪12との相対回転で第1外輪12側から見て、図5の矢印Ri方向(以下「ロック方向」と称す)へ回転する場合には、第1内輪11及び第1外輪12に第1スプラグ13が係合する。その結果、出力軸3は被動歯車4b,5b,6bと共に回転する。一方、第1内輪11が第1スプラグ13に対して、第1外輪12との相対回転で第1外輪12側から見て、図5の反矢印Ri方向(以下「フリー方向」と称す)へ回転する場合には、接点Bに作用する摩擦力により第1スプラグ13がリボンスプリング16の付勢力に抗して反セルフロック方向へ傾動し、被動歯車4b,5b,6bは出力軸3を空転する。 Further, the first inner ring 11 rotates relative to the first sprag 13 in the direction of arrow Ri (hereinafter referred to as “lock direction”) in FIG. 5 when viewed from the first outer ring 12 side relative to the first outer ring 12. When doing so, the first sprag 13 is engaged with the first inner ring 11 and the first outer ring 12. As a result, the output shaft 3 rotates with the driven gears 4b, 5b, 6b. On the other hand, the first inner ring 11 is rotated relative to the first outer ring 12 with respect to the first sprag 13 and viewed from the first outer ring 12 side in the direction of the opposite arrow Ri in FIG. 5 (hereinafter referred to as “free direction”). When rotating, the first sprag 13 tilts in the anti-self-locking direction against the urging force of the ribbon spring 16 due to the frictional force acting on the contact B, and the driven gears 4b, 5b, 6b rotate the output shaft 3 idle. To do.
 図3及び図4に戻って説明する。保持器14は、第1スプラグ13を外周面11a及び内周面12aの円周方向へ傾動可能に保持する部材であり、図3及び図4に示すように、保持部14aと、荷重伝達部14bとを備えて構成されている。保持部14aは、第1スプラグ13を保持する部位であり、図3及び図4に示すように、軸心O方向に延設され、第1スプラグ13の上端側を保持している。荷重伝達部14bは、荷重付与装置15から荷重が伝達される部位であり、図3に示すように、軸心O方向と交差する方向に延設されている。これにより、荷重伝達部14bを軸心O方向に延設する場合と比較して、保持器14の軸心O方向の寸法を短縮でき、第1クラッチ10の小型化を図ることができる。また、この荷重伝達部14bは、図4に示すように、歯車状に形成され、後述するピニオン15bとの間に構成される歯車機構を介して荷重付与装置15から荷重が伝達されるように構成されている。これにより、荷重付与装置15から保持器14までの荷重の伝達経路中に生じるエネルギー損失を小さくでき、効率良く保持器14に荷重を伝達することができる。 Referring back to FIG. 3 and FIG. The retainer 14 is a member that retains the first sprag 13 so as to be tiltable in the circumferential direction of the outer peripheral surface 11a and the inner peripheral surface 12a. As shown in FIGS. 3 and 4, the retainer 14a and the load transmission unit 14b. The holding portion 14 a is a portion that holds the first sprag 13 and extends in the direction of the axis O as shown in FIGS. 3 and 4 and holds the upper end side of the first sprag 13. The load transmitting portion 14b is a portion to which a load is transmitted from the load applying device 15, and extends in a direction intersecting with the direction of the axis O as shown in FIG. Thereby, compared with the case where the load transmission part 14b is extended in the axial center O direction, the dimension of the axial direction O of the holder | retainer 14 can be shortened, and size reduction of the 1st clutch 10 can be achieved. Further, as shown in FIG. 4, the load transmitting portion 14b is formed in a gear shape so that a load is transmitted from the load applying device 15 through a gear mechanism configured between the load transmitting portion 14b and a pinion 15b described later. It is configured. Thereby, the energy loss produced in the load transmission path from the load applying device 15 to the cage 14 can be reduced, and the load can be efficiently transmitted to the cage 14.
 荷重付与装置15は、リボンスプリング16の付勢力に抗して第1スプラグ13に荷重を付与して第1スプラグ13を反セルフロック方向(図5の反矢印S回転方向)へ傾動させるための装置であり、図3及び図4に示すように、アクチュエータ15aと、ピニオン15bとを備えて構成されている。アクチュエータ15aは、第1スプラグ13に付与する荷重を生み出す動力源であり、電動機(交流モータ又は直流モータ)により構成され、電源(図示せず)から供給される電力により駆動可能に構成されている。このように、アクチュエータ15aが電動機により構成されているので、例えば、アクチュエータ15aをシリンダやソレノイド等により構成する場合と比較して、荷重付与装置15の構造を簡素化すると共に小型化を図ることができる。また、荷重付与装置15の構造が複雑な場合には、荷重付与装置15が大型化し第1クラッチ10の大型化を招くところ、荷重付与装置15の構造を簡素化すると共に小型化を図ることができれば、第1クラッチ10の小型化を図ることができる。 The load applying device 15 applies a load to the first sprag 13 against the urging force of the ribbon spring 16 to tilt the first sprag 13 in the anti-self-lock direction (the counter arrow S rotation direction in FIG. 5). As shown in FIGS. 3 and 4, the apparatus includes an actuator 15 a and a pinion 15 b. The actuator 15a is a power source that generates a load to be applied to the first sprag 13, and is configured by an electric motor (an AC motor or a DC motor) and configured to be drivable by electric power supplied from a power source (not shown). . Thus, since the actuator 15a is comprised with the electric motor, compared with the case where the actuator 15a is comprised with a cylinder, a solenoid, etc., for example, the structure of the load provision apparatus 15 can be simplified and size reduction can be achieved. it can. Further, when the structure of the load applying device 15 is complicated, the load applying device 15 increases in size and causes the first clutch 10 to increase in size. However, the structure of the load applying device 15 can be simplified and downsized. If possible, the size of the first clutch 10 can be reduced.
 ピニオン15bは、アクチュエータ15aの動力を保持器14に伝達するための部材であり、図3に示すように、保持器14の荷重伝達部14bと噛み合う歯車状に形成され、荷重伝達部14bとの間に歯車機構を構成している。このピニオン15bによりアクチュエータ15aの動力が保持器14に伝達されることで、保持器14を介して第1スプラグ13に荷重が付与される。このように、荷重付与装置15は、保持器14を介して第1スプラグ13に荷重を付与するので、複数の第1スプラグ13に一度に荷重を付与することができ、効率良く第1スプラグ13に荷重を付与することができる。 The pinion 15b is a member for transmitting the motive power of the actuator 15a to the cage 14, and is formed in a gear shape that meshes with the load transmission portion 14b of the cage 14 as shown in FIG. 3, and is connected to the load transmission portion 14b. A gear mechanism is formed between them. The power of the actuator 15 a is transmitted to the retainer 14 by the pinion 15 b, so that a load is applied to the first sprag 13 via the retainer 14. Thus, since the load application device 15 applies a load to the first sprags 13 via the retainer 14, it can apply a load to the plurality of first sprags 13 at a time, and the first sprags 13 can be efficiently applied. A load can be applied to the.
 上述したように構成される荷重付与装置15によれば、リボンスプリング16の付勢力に抗して第1スプラグ13に荷重を付与することで、第1スプラグ13を反セルフロック方向へ傾動させて、第1内輪11及び第1外輪12への第1スプラグ13の係合を強制的に解除することができる。これにより、モータ112から入力軸2、駆動歯車4a,5a,6a、被動歯車4b,5b,6bと伝達された動力が、第1クラッチ10の第1外輪12に入力されて、第1外輪12が第1スプラグ13に対して、第1内輪11との相対回転で第1内輪11側から見て、ロック方向(図5の矢印Ro方向)へ回転する場合でも、荷重付与装置15により第1内輪11及び第1外輪12への第1スプラグ13の係合を強制的に解除することで、被動歯車4b,5b,6bを空転させて、入力軸2から出力軸3への動力の伝達を遮断することができる。 According to the load applying device 15 configured as described above, by applying a load to the first sprag 13 against the urging force of the ribbon spring 16, the first sprag 13 is tilted in the anti-self-lock direction. The engagement of the first sprag 13 to the first inner ring 11 and the first outer ring 12 can be forcibly released. As a result, the power transmitted from the motor 112 to the input shaft 2, the drive gears 4 a, 5 a, 6 a and the driven gears 4 b, 5 b, 6 b is input to the first outer ring 12 of the first clutch 10, and the first outer ring 12. Even when the first sprag 13 rotates relative to the first inner ring 11 and rotates in the locking direction (in the direction of the arrow Ro in FIG. 5) as viewed from the first inner ring 11 side, the load applying device 15 By forcibly releasing the engagement of the first sprag 13 from the inner ring 11 and the first outer ring 12, the driven gears 4b, 5b, 6b are idled to transmit power from the input shaft 2 to the output shaft 3. Can be blocked.
 次いで、図6から図7を参照して、上述したように構成される第1実施の形態における動力伝達装置1の作動状態について説明する。図6から図7は、動力伝達装置1の内部構造の正面視を模式的に示しており、理解を容易とするために、動力の伝達経路を矢印Pで示すと共に、駆動歯車4a,5a,6a、被動歯車4b,5b,6b及び第1クラッチ10の第1外輪12の各回転方向を矢印で示している。また、第1歯車対4,5,6において、第1クラッチ10の荷重付与装置15を作動させて、第1内輪11及び第1外輪12への第1スプラグ13の係合を解除した場合を「ON」と表記し、第1クラッチ10の荷重付与装置15を非作動として、第1内輪11及び第1外輪12への第1スプラグ13の係合が可能な場合を「OFF」と表記している。 Next, the operating state of the power transmission device 1 according to the first embodiment configured as described above will be described with reference to FIGS. 6 to 7 schematically show a front view of the internal structure of the power transmission device 1. For easy understanding, the power transmission path is indicated by an arrow P and the drive gears 4 a, 5 a, 6a, the driven gears 4b, 5b, 6b and the rotation directions of the first outer ring 12 of the first clutch 10 are indicated by arrows. Further, in the first gear pair 4, 5, 6, the load application device 15 of the first clutch 10 is operated to disengage the first sprag 13 from the first inner ring 11 and the first outer ring 12. The case where the first sprag 13 can be engaged with the first inner ring 11 and the first outer ring 12 when the load applying device 15 of the first clutch 10 is not operated and the first sprag 13 can be engaged is expressed as “OFF”. ing.
 まず、図6を参照して、車両100の前進時における動力伝達装置1の作動状態について説明する。図6(a)は加減速走行時(第1速)の動力伝達装置1の内部構造を模式的に示した模式図であり、図6(b)は加減速走行時(第2速)の動力伝達装置1の内部構造を模式的に示した模式図であり、図6(c)は加減速走行時(第3速)の動力伝達装置1の内部構造を模式的に示した模式図である。 First, the operating state of the power transmission device 1 when the vehicle 100 moves forward will be described with reference to FIG. 6A is a schematic diagram schematically showing the internal structure of the power transmission device 1 during acceleration / deceleration traveling (first speed), and FIG. 6B is a diagram during acceleration / deceleration traveling (second speed). FIG. 6C is a schematic diagram schematically showing the internal structure of the power transmission device 1. FIG. 6C is a schematic diagram schematically showing the internal structure of the power transmission device 1 during acceleration / deceleration running (third speed). is there.
 図6に示すように、車両100の前進時には、モータ112(図2参照)が正回転することで入力軸2が正回転し、動力が駆動歯車4a,5a,6aに伝達され、駆動歯車4a,5a,6aと噛み合う被動歯車4b,5b,6bが回転する。入力軸2の回転速度はモータ112の回転速度によって定まる。また、被動歯車4bの回転速度をα1、被動歯車5bの回転速度をα2、被動歯車6bの回転速度をα3とすれば、入力軸2から出力軸3に動力が伝達された場合の回転速度α1,α2,α3は、入力軸2の回転速度によって一義的に定まり、第1歯車対4,5,6の変速比の関係から、α1<α2<α3となる。出力軸3の回転速度は、変速段に応じた回転速度となる。 As shown in FIG. 6, when the vehicle 100 moves forward, the motor 112 (see FIG. 2) rotates in the forward direction, so that the input shaft 2 rotates in the forward direction and power is transmitted to the drive gears 4a, 5a, 6a, and the drive gear 4a. , 5a, 6a, the driven gears 4b, 5b, 6b rotate. The rotational speed of the input shaft 2 is determined by the rotational speed of the motor 112. Further, if the rotational speed of the driven gear 4b is α1, the rotational speed of the driven gear 5b is α2, and the rotational speed of the driven gear 6b is α3, the rotational speed α1 when power is transmitted from the input shaft 2 to the output shaft 3 , Α2, α3 are uniquely determined by the rotational speed of the input shaft 2, and α1 <α2 <α3 from the relationship of the gear ratio of the first gear pair 4, 5, 6. The rotation speed of the output shaft 3 is a rotation speed corresponding to the gear position.
 図6(a)に示すように、第1速走行時は、第2速の被動歯車5b及び第3速の被動歯車6bの第1クラッチ10の荷重付与装置15(図4参照)を作動(ON)させる。その結果、第1内輪11(図5参照)及び第1外輪12への第1スプラグ13の係合が強制的に解除される。第1速の被動歯車4bにおける第1クラッチ10では、第1外輪12がロック方向(図5の矢印Ro方向)へ回転すると、荷重付与装置15が非作動(OFF)のため、第1内輪11及び第1外輪12へ第1スプラグ13が係合し、第1外輪12から第1内輪11に向かって動力が伝達される。その結果、第1速の被動歯車4bは出力軸3と共に回転し、出力軸3がα1の回転速度で回転する。この時、第2速及び第3速の被動歯車5b,6bの回転速度は、出力軸3の回転速度α1より速くなる(α1<α2<α3)。その結果、被動歯車5b,6bにおける第1外輪12は、第1内輪11との相対回転で第1内輪11側から見て、ロック方向(図5の矢印Ro方向)へ回転する。しかし、第2速及び第3速における第1クラッチ10の荷重付与装置15を作動(ON)させているため、被動歯車5b,6bは出力軸3を空転し動力は伝達されない。 As shown in FIG. 6A, during the first speed traveling, the load applying device 15 (see FIG. 4) of the first clutch 10 of the second speed driven gear 5b and the third speed driven gear 6b is operated (see FIG. 4). ON). As a result, the engagement of the first sprag 13 with the first inner ring 11 (see FIG. 5) and the first outer ring 12 is forcibly released. In the first clutch 10 in the driven gear 4b of the first speed, when the first outer ring 12 rotates in the locking direction (the direction of the arrow Ro in FIG. 5), the load applying device 15 is inoperative (OFF), so the first inner ring 11 The first sprag 13 is engaged with the first outer ring 12, and power is transmitted from the first outer ring 12 toward the first inner ring 11. As a result, the first speed driven gear 4b rotates together with the output shaft 3, and the output shaft 3 rotates at a rotational speed of α1. At this time, the rotational speeds of the second and third driven gears 5b and 6b are faster than the rotational speed α1 of the output shaft 3 (α1 <α2 <α3). As a result, the first outer ring 12 in the driven gears 5 b and 6 b rotates in the locking direction (in the direction of arrow Ro in FIG. 5) as viewed from the first inner ring 11 side by relative rotation with the first inner ring 11. However, since the load applying device 15 of the first clutch 10 is operated (ON) at the second speed and the third speed, the driven gears 5b and 6b idle the output shaft 3 and no power is transmitted.
 次に、第1速走行の状態から、第2速へシフトアップ変速を行うときは、図6(b)に示すように、第2速の被動歯車5bの第1クラッチ10の荷重付与装置15(図4参照)の作動を停止(OFF)する。その結果、第2速の被動歯車5bの第1クラッチ10においても、第1速の被動歯車4bの第1クラッチ10と同様に、第1内輪11(図5参照)及び第1外輪12へ第1スプラグ13が係合可能な状態となる。 Next, when performing a shift-up shift from the first speed traveling state to the second speed, as shown in FIG. 6B, the load applying device 15 of the first clutch 10 of the second speed driven gear 5b. The operation (see FIG. 4) is stopped (OFF). As a result, in the first clutch 10 of the second-speed driven gear 5b, the first inner ring 11 (see FIG. 5) and the first outer ring 12 are moved to the first outer ring 12 similarly to the first clutch 10 of the first-speed driven gear 4b. One sprag 13 can be engaged.
 ここで、第2速の被動歯車5bの回転速度α2は、第1速の被動歯車4bの回転速度α1より速いため(α1<α2)、第2速の被動歯車5bの回転速度α2が、出力軸3の回転速度(α1)を超えることになる。よって、第2速の被動歯車5bにおける第1クラッチ10では、第1内輪11との相対回転で第1内輪11側から見て、第1外輪12がロック方向へ回転し、第1内輪11及び第1外輪12へ第1スプラグ13が係合する。その結果、第1外輪12から第1内輪11に向かって動力が伝達され、第2速の被動歯車5bは出力軸3と共に回転し、出力軸3がα2の回転速度で回転する。 Here, since the rotation speed α2 of the second speed driven gear 5b is higher than the rotation speed α1 of the first speed driven gear 4b (α1 <α2), the rotation speed α2 of the second speed driven gear 5b is output. The rotational speed (α1) of the shaft 3 will be exceeded. Therefore, in the first clutch 10 in the second-speed driven gear 5b, the first outer ring 12 rotates in the locking direction when viewed from the first inner ring 11 side by relative rotation with the first inner ring 11, and the first inner ring 11 and The first sprag 13 is engaged with the first outer ring 12. As a result, power is transmitted from the first outer ring 12 toward the first inner ring 11, the second-speed driven gear 5b rotates with the output shaft 3, and the output shaft 3 rotates at a rotational speed of α2.
 一方、第1速の被動歯車4bの回転速度(α1)は、出力軸3の回転速度(α2)より遅くなる(α1<α2)。このため、第1速の被動歯車4bにおける第1クラッチ10では、第1外輪12の回転速度が第1内輪11の回転速度よりも遅くなり、相対的に第1内輪11がフリー方向へ回転している状態と等しくなる。よって、第1速の被動歯車4bの第1クラッチ10では、第1スプラグ13は第1内輪11及び第1外輪12へ係合できない。この結果、第1速の被動歯車4bは出力軸3を空転し動力は伝達されない。さらに、第3速の被動歯車6bの第1クラッチ10は荷重付与装置15を作動(ON)しているので、第1内輪11及び第1外輪12への第1スプラグ13の係合が強制的に解除され、第3速の被動歯車6bは出力軸3を空転し動力は伝達されない。このように、第1速走行の状態から、第2速の被動歯車5bの第1クラッチ10の荷重付与装置15の作動を停止するだけで、第2速へシフトアップ変速を行うことができる。 On the other hand, the rotational speed (α1) of the first-speed driven gear 4b is slower than the rotational speed (α2) of the output shaft 3 (α1 <α2). Therefore, in the first clutch 10 in the first speed driven gear 4b, the rotational speed of the first outer ring 12 is slower than the rotational speed of the first inner ring 11, and the first inner ring 11 relatively rotates in the free direction. It becomes equal to the state. Therefore, the first sprag 13 cannot be engaged with the first inner ring 11 and the first outer ring 12 in the first clutch 10 of the first-speed driven gear 4b. As a result, the first-speed driven gear 4b idles the output shaft 3 and no power is transmitted. Further, since the first clutch 10 of the third speed driven gear 6b operates (ON) the load applying device 15, the engagement of the first sprag 13 to the first inner ring 11 and the first outer ring 12 is forced. Thus, the third-speed driven gear 6b idles the output shaft 3 and no power is transmitted. Thus, the shift-up shift to the second speed can be performed only by stopping the operation of the load applying device 15 of the first clutch 10 of the second speed driven gear 5b from the state of the first speed traveling.
 次に、第2速走行の状態から、第3速へシフトアップ変速を行うときは、図6(c)に示すように、第3速の被動歯車6bの第1クラッチ10の荷重付与装置15(図4参照)の作動を停止(OFF)する。その結果、第3速の被動歯車6bの第1クラッチ10においても、第1速および第2速の被動歯車4b,5bの第1クラッチ10と同様に、第1内輪11(図5参照)及び第1外輪12へ第1スプラグ13が係合可能な状態となる。 Next, when performing a shift-up shift from the second speed traveling state to the third speed, as shown in FIG. 6C, the load applying device 15 of the first clutch 10 of the third speed driven gear 6b. The operation of (see FIG. 4) is stopped (OFF). As a result, in the first clutch 10 of the third speed driven gear 6b as well as the first clutch 10 of the first speed and second speed driven gears 4b and 5b, the first inner ring 11 (see FIG. 5) and The first sprag 13 can be engaged with the first outer ring 12.
 ここで、第3速の被動歯車6bの回転速度(α3)は、第2速の被動歯車5bの回転速度(α2)より速いため(α2<α3)、第3速の被動歯車6bの回転速度(α3)が、出力軸3の回転速度(α2)を超えることになる。よって、第3速の被動歯車6bにおける第1クラッチ10では、第1外輪12が、第1内輪11との相対回転で第1内輪11側から見て、ロック方向へ回転し、第1内輪11及び第1外輪12へ第1スプラグ13が係合する。その結果、第1外輪12から第1内輪11に向かって動力が伝達され、第3速の被動歯車6bは出力軸3と共に回転し、出力軸3がα3の回転速度で回転する。 Here, since the rotational speed (α3) of the third speed driven gear 6b is faster than the rotational speed (α2) of the second speed driven gear 5b (α2 <α3), the rotational speed of the third speed driven gear 6b. (Α3) exceeds the rotational speed (α2) of the output shaft 3. Therefore, in the first clutch 10 in the third-speed driven gear 6b, the first outer ring 12 rotates in the locking direction when viewed from the first inner ring 11 side by relative rotation with the first inner ring 11, and the first inner ring 11 The first sprag 13 is engaged with the first outer ring 12. As a result, power is transmitted from the first outer ring 12 toward the first inner ring 11, the third speed driven gear 6b rotates together with the output shaft 3, and the output shaft 3 rotates at a rotational speed of α3.
 一方、第2速の被動歯車5bの回転速度(α2)は、出力軸3の回転速度(α3)より遅くなる(α2<α3)。このため、第2速の被動歯車5bにおける第1クラッチ10では、第1外輪12の回転速度が第1内輪11の回転速度よりも遅くなり、相対的に第1内輪11がフリー方向へ回転している状態と等しくなる。よって、第2速の被動歯車5bの第1クラッチ10では、第1スプラグ13は第1内輪11及び第1外輪12へ係合できない。この結果、第2速の被動歯車5bは出力軸3を空転し動力は伝達されない。 On the other hand, the rotational speed (α2) of the second-speed driven gear 5b is slower than the rotational speed (α3) of the output shaft 3 (α2 <α3). Therefore, in the first clutch 10 in the second-speed driven gear 5b, the rotational speed of the first outer ring 12 is slower than the rotational speed of the first inner ring 11, and the first inner ring 11 relatively rotates in the free direction. It becomes equal to the state. Therefore, the first sprag 13 cannot be engaged with the first inner ring 11 and the first outer ring 12 in the first clutch 10 of the second-speed driven gear 5b. As a result, the second-speed driven gear 5b idles the output shaft 3 and no power is transmitted.
 同様に、第1速の被動歯車4bの回転速度(α1)は、出力軸3の回転速度(α3)より遅い(α1<α3)。このため、第1速の被動歯車4bにおける第1クラッチ10では、第1外輪12の回転速度が第1内輪11の回転速度よりも遅くなり、相対的に第1内輪11がフリー方向へ回転している状態と等しくなる。よって、第1速の被動歯車4bの第1クラッチ10においても、第1スプラグ13は第1内輪11及び第1外輪12へ係合できない。この結果、第1速の被動歯車4bは出力軸3を空転し動力は伝達されない。このように、第2速走行の状態から、第3速の被動歯車6bの第1クラッチ10の荷重付与装置15(図4参照)の作動を停止するだけで、第3速へシフトアップ変速を行うことができる。 Similarly, the rotational speed (α1) of the first speed driven gear 4b is slower than the rotational speed (α3) of the output shaft 3 (α1 <α3). Therefore, in the first clutch 10 in the first speed driven gear 4b, the rotational speed of the first outer ring 12 is slower than the rotational speed of the first inner ring 11, and the first inner ring 11 relatively rotates in the free direction. It becomes equal to the state. Therefore, even in the first clutch 10 of the first-speed driven gear 4b, the first sprag 13 cannot be engaged with the first inner ring 11 and the first outer ring 12. As a result, the first-speed driven gear 4b idles the output shaft 3 and no power is transmitted. Thus, from the state of the second speed traveling, the shift-up shift to the third speed can be performed only by stopping the operation of the load applying device 15 (see FIG. 4) of the first clutch 10 of the third speed driven gear 6b. It can be carried out.
 以上のように、車両加速中のシフトアップ変速を行う場合には、高速段側の被動歯車における第1クラッチ10の荷重付与装置15の作動を停止するだけで、低速段側については何も操作することなく変速が可能となる。また、第1クラッチ10は、荷重付与装置15の作動を停止することにより、第1スプラグ13がセルフロック方向へ傾動し、瞬時に第1内輪11と第1外輪12との一定回転方向への相対回転が規制される。よって、切り替えに要する時間を短縮でき、素早い変速が可能となる。また、切り替えに要する時間を短縮できるため、動力を伝達しない状態から動力を伝達する状態になるまでの間に第1内輪11と第1外輪12とが空転することもなく、切り替え時の衝撃を防止することができる。さらに、第1クラッチ10の荷重付与装置15の作動と非作動と切り替えるだけで変速が可能となるため、複雑な噛合機構やシフトフォークなどが不要となり、重量低減や小型化を図ることができる。これにより、限られたスペース内に多数の第1歯車対を収装でき、例えば6速以上の多数段の動力伝達装置1もコンパクト化できる。 As described above, when performing a shift-up shift during vehicle acceleration, only the operation of the load applying device 15 of the first clutch 10 in the driven gear on the high speed stage side is stopped, and no operation is performed on the low speed stage side. It is possible to change gears without doing so. Further, when the first clutch 10 stops the operation of the load applying device 15, the first sprag 13 tilts in the self-locking direction, and the first inner ring 11 and the first outer ring 12 instantaneously move in the constant rotation direction. Relative rotation is restricted. Therefore, the time required for switching can be shortened, and quick shifting can be achieved. Further, since the time required for switching can be shortened, the first inner ring 11 and the first outer ring 12 do not idle during the period from the state where power is not transmitted to the state where power is transmitted. Can be prevented. Furthermore, since it is possible to change gears simply by switching the operation of the load applying device 15 of the first clutch 10 between non-operation, a complicated meshing mechanism, a shift fork and the like are not required, and weight reduction and miniaturization can be achieved. As a result, a large number of first gear pairs can be accommodated in a limited space, and for example, the multi-stage power transmission device 1 having six or more speeds can be made compact.
 なお、車両加速中により強い駆動力を求める場合など、シフトダウン変速を行う場合も、シフトアップ変速の場合と同様に、第1クラッチ10の荷重付与装置15(図4参照)を用いることで変速が可能である。図6(c)に示す第3速走行の状態から、第2速へシフトダウン変速を行うときは、図6(b)に示すように、第3速の被動歯車6bの第1クラッチ10の荷重付与装置15を作動(ON)させる。その結果、第3速の被動歯車6bの第1クラッチ10において、第1内輪11(図5参照)及び第1外輪12への第1スプラグ13の係合が解除されるため、第3速の被動歯車6bは出力軸3を空転し動力は伝達されなくなる。一方、第2速の被動歯車5bの回転速度は、第1速の被動歯車4bの回転速度より速いため、第2速の被動歯車5bにおける第1クラッチ10では、第1外輪12がロック方向へ回転し、第1内輪11及び第1外輪12へ第1スプラグ13が係合する。その結果、第2速の被動歯車5bが出力軸3と共に回転することとなり、第3速走行の状態から第2速にシフトダウン変速できる。 Note that when a downshift is performed, such as when a stronger driving force is required during vehicle acceleration, the load is applied by using the load applying device 15 (see FIG. 4) of the first clutch 10 as in the case of the upshift. Is possible. When shifting down to the second speed from the third speed traveling state shown in FIG. 6 (c), as shown in FIG. 6 (b), the first clutch 10 of the third speed driven gear 6b. The load applying device 15 is activated (ON). As a result, in the first clutch 10 of the third speed driven gear 6b, the engagement of the first sprag 13 to the first inner ring 11 (see FIG. 5) and the first outer ring 12 is released, so that the third speed The driven gear 6b runs idle on the output shaft 3 and no power is transmitted. On the other hand, since the rotational speed of the second speed driven gear 5b is higher than the rotational speed of the first speed driven gear 4b, in the first clutch 10 in the second speed driven gear 5b, the first outer ring 12 moves in the locking direction. The first sprag 13 is engaged with the first inner ring 11 and the first outer ring 12 by rotating. As a result, the second speed driven gear 5b rotates together with the output shaft 3, and a downshift can be performed from the third speed traveling state to the second speed.
 次に、第2速走行の状態から第1速へシフトダウン変速を行うときは、図6(a)に示すように、第2速の被動歯車5bの第1クラッチ10の荷重付与装置15(図4参照)を作動(ON)させる。その結果、第2速の被動歯車5bの第1クラッチ10において、第1内輪11(図5参照)及び第1外輪12へのスプラグ13の係合が解除されるため、第2速の被動歯車5bは出力軸3を空転し動力は伝達されなくなる。その結果、第1速の被動歯車4bにおける第1クラッチ10では、第1外輪12がロック方向へ回転し、第1内輪11及び第1外輪12へ第1スプラグ13が係合する。その結果、第1速の被動歯車4bが出力軸3と共に回転することとなり、第2速走行の状態から第1速にシフトダウン変速できる。 Next, when performing a downshift from the second speed traveling state to the first speed, as shown in FIG. 6 (a), the load applying device 15 of the first clutch 10 of the second speed driven gear 5b ( 4) is activated (ON). As a result, in the first clutch 10 of the second speed driven gear 5b, the engagement of the sprags 13 with the first inner ring 11 (see FIG. 5) and the first outer ring 12 is released, so the second speed driven gear. 5b idles the output shaft 3, and no power is transmitted. As a result, in the first clutch 10 in the first speed driven gear 4 b, the first outer ring 12 rotates in the locking direction, and the first sprag 13 engages with the first inner ring 11 and the first outer ring 12. As a result, the first speed driven gear 4b rotates together with the output shaft 3, and a downshift can be performed from the second speed traveling state to the first speed.
 また、第3速走行の状態から、第2速を飛び越えて第1速へシフトダウン変速を行うことも可能である。この場合は、図6(c)に示す第3速走行の状態から、図6(a)に示すように、第3速の被動歯車6b及び第2速の被動歯車5bの第1クラッチ10の荷重付与装置15(図4参照)を作動(ON)させる。その結果、第1内輪11(図5参照)及び第1外輪12への第1スプラグ13の係合が解除されるため、第2速の被動歯車5b及び第3速の被動歯車6bは出力軸3を空転し、動力は伝達されなくなる。これに対し、第1速の被動歯車4bにおける第1クラッチ10では、第1外輪12がロック方向へ回転し、第1内輪11及び第1外輪12へ第1スプラグ13が係合する。その結果、第1速の被動歯車4bが出力軸3と共に回転することとなり、第3速走行の状態から第1速にシフトダウン変速できる。 It is also possible to shift down to the first speed by jumping over the second speed from the state of the third speed traveling. In this case, from the state of the third speed traveling shown in FIG. 6C, as shown in FIG. 6A, the first clutch 10 of the third speed driven gear 6b and the second speed driven gear 5b is changed. The load applying device 15 (see FIG. 4) is activated (ON). As a result, the first sprag 13 is disengaged from the first inner ring 11 (see FIG. 5) and the first outer ring 12, so that the second speed driven gear 5b and the third speed driven gear 6b are output shafts. 3 is idled and power is not transmitted. On the other hand, in the first clutch 10 in the first-speed driven gear 4 b, the first outer ring 12 rotates in the locking direction, and the first sprag 13 engages with the first inner ring 11 and the first outer ring 12. As a result, the first speed driven gear 4b rotates together with the output shaft 3, and a downshift can be performed from the third speed traveling state to the first speed.
 以上のように、シフトダウン変速を行う場合には、走行中の変速段の被動歯車4b,5b,6bにおける第1クラッチ10の荷重付与装置15を作動させるだけで、低速段側については何も操作することなく変速が可能となる。また、同様の操作により、所定の変速段を飛び越えてシフトダウン変速を行うことも可能である。さらに、第1クラッチ10は、荷重付与装置15を作動させることにより、付勢部材16の付勢力に抗して第1スプラグ13に荷重が付与され、第1スプラグ13が反セルフロック方向へ傾動することで第1内輪11および第1外輪12への第1スプラグ13の係合が解除される。よって、切り替えに要する時間を短縮でき素早い変速が可能となる。 As described above, when the downshift is performed, the load applying device 15 of the first clutch 10 in the driven gears 4b, 5b, and 6b of the traveling gear stage is merely operated, and nothing is performed on the low speed stage side. Shifting is possible without operation. Further, it is possible to perform a shift-down shift by jumping over a predetermined shift stage by a similar operation. Further, the first clutch 10 operates the load applying device 15 to apply a load to the first sprag 13 against the urging force of the urging member 16, and the first sprag 13 tilts in the anti-self-lock direction. As a result, the engagement of the first sprag 13 with the first inner ring 11 and the first outer ring 12 is released. Therefore, the time required for switching can be shortened and a quick shift can be achieved.
 次いで、図7を参照して、アクセルペダルを操作しない車両100のコースト走行時(惰性走行時)における動力伝達装置1の作動状態について説明する。図7はコースト走行時(第3速)の動力伝達装置の内部構造を模式的に示した模式図である。図6(c)を参照しながら説明した第3速走行の状態において、アクセルペダルを操作しない車両100のコースト走行を行う場合は、図7に示すように、動力が出力軸3から動力伝達装置1に入力される。アクセルペダルを操作していないため、モータ112の回転数は下がり、入力軸2の回転は低下する。その結果、第1速、第2速および第3速の被動歯車4b,5b,6bにおける第1クラッチ10の第1内輪11(図5参照)が、第1外輪12との相対回転で第1外輪12側から見て、フリー方向(図5の反矢印Ri方向)へ回転する。このため、第1速、第2速および第3速の被動歯車4b,5b,6bにおける第1クラッチ10では、第1スプラグ13が反セルフロック方向へ傾動し、第1内輪11及び第1外輪12へ係合できない。よって、被動歯車4b,5b,6bは出力軸3を空転し入力軸2に動力は伝達されない。 Next, the operation state of the power transmission device 1 when the vehicle 100 does not operate the accelerator pedal during coasting (during coasting) will be described with reference to FIG. FIG. 7 is a schematic diagram schematically showing the internal structure of the power transmission device during coasting (third speed). In the state of the third speed traveling described with reference to FIG. 6C, when coasting the vehicle 100 without operating the accelerator pedal is performed, power is transmitted from the output shaft 3 to the power transmission device as shown in FIG. 1 is input. Since the accelerator pedal is not operated, the rotation speed of the motor 112 decreases and the rotation of the input shaft 2 decreases. As a result, the first inner ring 11 (see FIG. 5) of the first clutch 10 in the first, second, and third driven gears 4 b, 5 b, 6 b is rotated relative to the first outer ring 12 to be the first. As viewed from the outer ring 12 side, it rotates in the free direction (counter arrow Ri direction in FIG. 5). Therefore, in the first clutch 10 in the first, second, and third driven gears 4b, 5b, and 6b, the first sprag 13 tilts in the anti-self-lock direction, and the first inner ring 11 and the first outer ring. 12 cannot be engaged. Therefore, the driven gears 4 b, 5 b, 6 b idle the output shaft 3 and no power is transmitted to the input shaft 2.
 以上のように、コースト走行時には、荷重付与装置15を作動しなくても出力軸3から入力軸2への動力の伝達が遮断される。これは、第1速走行(図6(a)参照)、第2速走行(図6(b)参照)の場合においても同様である。その結果、荷重付与装置15を作動させるという制御を行わなくても、モータ112の内部抵抗やイナーシャが出力軸3の駆動抵抗となることが防止され、出力軸3が制動されることを防止できる。よって、エネルギー損失を抑制して、コースト走行時の走行距離が短くなることを防止できる。 As described above, during coasting, transmission of power from the output shaft 3 to the input shaft 2 is interrupted without operating the load applying device 15. The same applies to the case of the first speed running (see FIG. 6A) and the second speed running (see FIG. 6B). As a result, it is possible to prevent the internal resistance and inertia of the motor 112 from becoming the driving resistance of the output shaft 3 and to prevent the output shaft 3 from being braked without performing control for operating the load applying device 15. . Therefore, energy loss can be suppressed and the traveling distance during coasting can be prevented from being shortened.
 次いで、図8を参照して、第2実施の形態における動力伝達装置20について説明する。図8(a)は動力伝達装置20の内部構造を模式的に示した模式図であり、図8(b)は第2クラッチ22の内部構造の一部を模式的に示した模式図である。以下、第1実施の形態と同一の部分については同一の符号を付して、その説明を省略する。なお、図8では、理解を容易とするために、動力を伝達する機能を担う構成のみを図示している。 Next, the power transmission device 20 according to the second embodiment will be described with reference to FIG. FIG. 8A is a schematic diagram schematically showing the internal structure of the power transmission device 20, and FIG. 8B is a schematic diagram schematically showing a part of the internal structure of the second clutch 22. . Hereinafter, the same parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted. In FIG. 8, only the configuration having a function of transmitting power is illustrated for easy understanding.
 動力伝達装置20は、車両100(図1参照)に搭載される動力伝達装置1に代えて、車両100に搭載されている。また、図8(a)に示すように、モータ112の動力が入力される入力軸2と、その入力軸2に平行に配設された出力軸3と、その出力軸3および入力軸2に配設され互いに噛み合って異なる変速比となるように設定された複数の第1歯車対4,5,6とを備えている。これらの構成は、第1実施の形態において説明したものと同様である。第2実施の形態における動力伝達装置20は、さらに、入力軸2および出力軸3に配設され互いに噛み合う第2歯車対21を備えて構成されている。 The power transmission device 20 is mounted on the vehicle 100 instead of the power transmission device 1 mounted on the vehicle 100 (see FIG. 1). Further, as shown in FIG. 8A, the input shaft 2 to which the power of the motor 112 is input, the output shaft 3 arranged in parallel to the input shaft 2, the output shaft 3 and the input shaft 2 A plurality of first gear pairs 4, 5, 6 that are arranged and meshed with each other and set to have different gear ratios are provided. These configurations are the same as those described in the first embodiment. The power transmission device 20 in the second embodiment further includes a second gear pair 21 that is disposed on the input shaft 2 and the output shaft 3 and meshes with each other.
 第2歯車対21を構成する駆動歯車21aは、第2クラッチ22を介して入力軸2に固定されている。一方、駆動歯車21aに対向して噛み合う被動歯車21bは、出力軸3と一体に形成されている。また、第2歯車対21の被動歯車21bの歯数は、第1歯車対4,5,6の被動歯車4b,5b,6bの内の最小歯数(本実施の形態においては被動歯車6bの歯数)より小さくなるように形成されている。このため、入力軸2から出力軸3に動力が伝達された場合、被動歯車4b,5b,6bの回転速度α1,α2,α3及び被動歯車21bの回転速度α4は、入力軸2の回転速度によって一義的に定まり、変速比の関係からα1<α2<α3<α4となる。また、出力軸3の回転速度は変速段に応じた回転速度となる。なお、第1歯車対4,5,6及び第2歯車対21の変速比(被動歯車の歯数÷駆動歯車の歯数)を順にk1,k2,k3,k4とすると、変速比はk1>k2>k3>k4の関係となる。 The drive gear 21 a constituting the second gear pair 21 is fixed to the input shaft 2 via the second clutch 22. On the other hand, the driven gear 21 b that meshes with the drive gear 21 a is formed integrally with the output shaft 3. The number of teeth of the driven gear 21b of the second gear pair 21 is the minimum number of teeth of the driven gears 4b, 5b, 6b of the first gear pair 4, 5, 6 (in this embodiment, the number of teeth of the driven gear 6b). It is formed to be smaller than the number of teeth). For this reason, when power is transmitted from the input shaft 2 to the output shaft 3, the rotational speeds α1, α2, and α3 of the driven gears 4b, 5b, and 6b and the rotational speed α4 of the driven gear 21b depend on the rotational speed of the input shaft 2. It is uniquely determined, and α1 <α2 <α3 <α4 from the relationship of the gear ratio. Further, the rotation speed of the output shaft 3 is a rotation speed corresponding to the gear position. If the gear ratios of the first gear pair 4, 5, 6 and the second gear pair 21 (the number of teeth of the driven gear / the number of teeth of the driving gear) are sequentially k1, k2, k3, k4, the gear ratio is k1>. The relationship is k2> k3> k4.
 第2クラッチ22は、出力軸3から入力軸2へ動力を伝達する一方、入力軸2から出力軸3への動力の伝達を遮断するものであり、出力軸3から入力軸2への動力の伝達を遮断可能に構成されている。なお、第2クラッチ22は第1クラッチ10と同様に構成されているため、詳細な説明を省略する。また、第1クラッチ10と同一の部分については同一の符号を用いて以下説明する。 The second clutch 22 transmits power from the output shaft 3 to the input shaft 2, while blocking transmission of power from the input shaft 2 to the output shaft 3, and transmits power from the output shaft 3 to the input shaft 2. The transmission can be cut off. Since the second clutch 22 is configured in the same manner as the first clutch 10, detailed description thereof is omitted. The same parts as those of the first clutch 10 will be described below using the same reference numerals.
 第2クラッチ22は、第2内輪221(図8(b)参照)が入力軸2と一体に形成されており、第2外輪222は第2歯車対21の駆動歯車21aと一体に形成されている。また、第2クラッチ22は、第2外輪222の内周面222aと第2内輪221の外周面221aとに接する第2スプラグ223を備えている。この第2クラッチ22によれば、動力が入力軸2から入力され、第2内輪221が第2スプラグ223に対して、第2外輪222との相対回転で第2外輪222側から見て、図8(b)の反矢印Ri方向(フリー方向)に回転する場合には、第2内輪221及び第2外輪222への第2スプラグ223の係合が解除される。その結果、入力軸2は駆動歯車21aを空転し、入力軸2から出力軸3への動力の伝達が遮断される。また、第2内輪221が第2スプラグ223に対して、第2外輪222との相対回転で第2外輪222側から見て、図8(b)の矢印Ri方向(ロック方向)に回転する場合には、第2内輪221及び第2外輪222へ第2スプラグ223が係合する。その結果、駆動歯車21aは入力軸2と共に回転し、入力軸2から出力軸3へ動力が伝達される。 In the second clutch 22, a second inner ring 221 (see FIG. 8B) is formed integrally with the input shaft 2, and a second outer ring 222 is formed integrally with the drive gear 21 a of the second gear pair 21. Yes. The second clutch 22 includes a second sprag 223 that contacts the inner peripheral surface 222 a of the second outer ring 222 and the outer peripheral surface 221 a of the second inner ring 221. According to the second clutch 22, power is input from the input shaft 2, and the second inner ring 221 rotates relative to the second sprag 223 relative to the second outer ring 222 as viewed from the second outer ring 222 side. When rotating in the direction of the opposite arrow Ri (free direction) of FIG. 8B, the engagement of the second sprag 223 with the second inner ring 221 and the second outer ring 222 is released. As a result, the input shaft 2 idles the drive gear 21a, and power transmission from the input shaft 2 to the output shaft 3 is interrupted. Also, when the second inner ring 221 rotates relative to the second sprag 223 in the direction of the arrow Ri (locking direction) in FIG. 8B when viewed from the second outer ring 222 side relative to the second outer ring 222. The second sprag 223 engages with the second inner ring 221 and the second outer ring 222. As a result, the drive gear 21 a rotates with the input shaft 2, and power is transmitted from the input shaft 2 to the output shaft 3.
 一方、動力が出力軸3から、被動歯車21bを介して第2クラッチ22に入力されると、第2外輪222が第2スプラグ223に対して図8(b)の矢印Ro方向(ロック方向)に回転し、第2内輪221及び第2外輪222へ第2スプラグ223が係合する。その結果、駆動歯車21aは入力軸2と共に回転し、出力軸3から入力軸2へ動力が伝達される。また、第2外輪222が第2スプラグ223に対して、第2内輪221との相対回転で第2内輪221側から見て、図8(b)の反矢印Ro方向(フリー方向)に回転する場合には、第2内輪221及び第2外輪222への第2スプラグ223の係合が解除される。その結果、入力軸2は駆動歯車21aを空転し、出力軸3から入力軸2への動力の伝達が遮断される。 On the other hand, when power is input from the output shaft 3 to the second clutch 22 via the driven gear 21b, the second outer ring 222 is in the direction of the arrow Ro (locking direction) in FIG. 8B with respect to the second sprag 223. And the second sprag 223 engages with the second inner ring 221 and the second outer ring 222. As a result, the drive gear 21 a rotates with the input shaft 2, and power is transmitted from the output shaft 3 to the input shaft 2. Further, the second outer ring 222 rotates relative to the second sprag 223 in the direction opposite to the arrow Ro (free direction) in FIG. 8B when viewed from the second inner ring 221 side relative to the second inner ring 221. In this case, the engagement of the second sprag 223 with the second inner ring 221 and the second outer ring 222 is released. As a result, the input shaft 2 idles the drive gear 21a, and power transmission from the output shaft 3 to the input shaft 2 is interrupted.
 なお、第2クラッチ22は、第1クラッチ10と同様に荷重付与装置(図示しない)を備えている。第2クラッチ22の荷重付与装置15(図4参照)を作動させることで、リボンスプリング16の付勢力に抗して第2スプラグ223に荷重を付与し、第2スプラグ223を反セルフロック方向へ傾動させて、第2内輪221及び第2外輪222への第2スプラグ223の係合を強制的に解除できる。これにより、出力軸3から被動歯車21b及び駆動歯車21aを介して、第2クラッチ22に伝達された動力が第2外輪222に入力されて、第2外輪222が第2スプラグ223に対してロック方向(図8(b)の矢印Ro方向)へ回転する場合でも、荷重付与装置15により第2内輪221及び第2外輪222への第2スプラグ223の係合を強制的に解除することで、駆動被動歯車21aを空転させて、出力軸3から入力軸2への動力の伝達を遮断することができる。 The second clutch 22 includes a load applying device (not shown) as in the first clutch 10. By actuating the load applying device 15 (see FIG. 4) of the second clutch 22, a load is applied to the second sprag 223 against the urging force of the ribbon spring 16, and the second sprag 223 is moved in the anti-self-locking direction. By tilting, the engagement of the second sprag 223 with the second inner ring 221 and the second outer ring 222 can be forcibly released. As a result, the power transmitted to the second clutch 22 from the output shaft 3 via the driven gear 21b and the drive gear 21a is input to the second outer ring 222, and the second outer ring 222 is locked to the second sprag 223. Even when rotating in the direction (arrow Ro direction in FIG. 8B), by forcibly releasing the engagement of the second sprag 223 from the second inner ring 221 and the second outer ring 222 by the load applying device 15, The drive driven gear 21a can be idled to interrupt the transmission of power from the output shaft 3 to the input shaft 2.
 次いで、図9から図10を参照して、上述したように構成される第2実施の形態における動力伝達装置20の作動状態について説明する。図9から図10は、動力伝達装置20の内部構造の正面視を模式的に示している。ここで、図9および図10では、理解を容易とするために、動力の伝達経路を矢印Pで示すと共に、駆動歯車4a,5a,6a,21a、被動歯車4b,5b,6b,21b及び第1クラッチ10及び第2クラッチ22の外輪12の各回転方向を矢印で示している。また、第1歯車対4,5,6及び第2歯車対21において、第1クラッチ10及び第2クラッチ22の荷重付与装置15(図4参照)を作動させて、第1内輪11及び第1外輪12への第1スプラグ13の係合、第2内輪221及び第2外輪222への第2スプラグ223の係合を解除した場合を「ON」と表記する。第1クラッチ10及び第2クラッチの荷重付与装置15を非作動として、第1内輪11及び第1外輪12への第1スプラグ13の係合、第2内輪221及び第2外輪222への第2スプラグ223の係合が可能な場合を「OFF」と表記している。 Next, the operating state of the power transmission device 20 in the second embodiment configured as described above will be described with reference to FIGS. 9 to 10 schematically show a front view of the internal structure of the power transmission device 20. Here, in FIG. 9 and FIG. 10, the power transmission path is indicated by an arrow P for easy understanding, and the drive gears 4a, 5a, 6a, 21a, the driven gears 4b, 5b, 6b, 21b and the first gears are shown. The respective rotation directions of the outer ring 12 of the first clutch 10 and the second clutch 22 are indicated by arrows. Further, in the first gear pair 4, 5, 6 and the second gear pair 21, the load applying device 15 (see FIG. 4) of the first clutch 10 and the second clutch 22 is operated, and the first inner ring 11 and the first gear pair 21 are operated. The case where the engagement of the first sprag 13 to the outer ring 12 and the engagement of the second sprag 223 to the second inner ring 221 and the second outer ring 222 are released is denoted as “ON”. The first sprags 13 and the first outer ring 12 are engaged with each other, the first sprags 13 are engaged, and the second inner ring 221 and the second outer ring 222 are secondly operated. The case where the sprag 223 can be engaged is described as “OFF”.
 まず、図9を参照して、車両100の前進時における動力伝達装置20の作動状態について説明する。図9(a)は加速走行時(第3速)の動力伝達装置20の内部構造を模式的に示した模式図であり、図9(b)はコースト走行時(第3速)に出力軸3から入力軸2に動力を伝達する動力伝達装置20の内部構造を模式的に示した模式図であり、図9(c)はコースト走行時(第3速)に出力軸3から入力軸2への動力の伝達を遮断した動力伝達装置20の内部構造を模式的に示した模式図である。 First, the operating state of the power transmission device 20 when the vehicle 100 moves forward will be described with reference to FIG. FIG. 9A is a schematic diagram schematically showing the internal structure of the power transmission device 20 during acceleration travel (third speed), and FIG. 9B shows the output shaft during coast travel (third speed). FIG. 9 is a schematic diagram schematically showing the internal structure of the power transmission device 20 that transmits power from 3 to the input shaft 2, and FIG. 9C is a diagram showing the input shaft 2 from the output shaft 3 during coasting (third speed). It is the schematic diagram which showed typically the internal structure of the power transmission device 20 which interrupted | blocked transmission of the motive power to.
 図9(a)に示すように、加速走行時(第3速)は、第1実施の形態で説明したように、第1速~第3速の被動歯車4b,5b,6b(被動歯車の回転方向は図9において時計回り)の第1クラッチ10の荷重付与装置15(図4参照)の作動を停止する(OFF)。第3速の被動歯車6bの回転速度(α3)は、第1速および第2速の被動歯車4b,5bの回転速度(α1,α2)より速いため(α1<α2<α3)、第3速の被動歯車6bにおける第1クラッチ10では、第1外輪12が第1内輪11との相対回転でロック方向(図5の矢印Ro方向)に回転し、第1内輪11(図5参照)及び第1外輪12へ第1スプラグ13が係合する。その結果、第1外輪12から第1内輪11に向かって動力が伝達され、第3速の被動歯車6bは出力軸3と共に回転し、出力軸3がα3の回転速度で回転する。 As shown in FIG. 9A, during acceleration travel (third speed), as described in the first embodiment, the first to third driven gears 4b, 5b, 6b (driven gears) The operation of the load applying device 15 (see FIG. 4) of the first clutch 10 whose rotation direction is clockwise in FIG. 9 is stopped (OFF). Since the rotational speed (α3) of the third speed driven gear 6b is faster than the rotational speeds (α1, α2) of the first and second driven gears 4b, 5b (α1 <α2 <α3), the third speed. In the first clutch 10 in the driven gear 6b, the first outer ring 12 rotates relative to the first inner ring 11 in the locking direction (the direction of the arrow Ro in FIG. 5), and the first inner ring 11 (see FIG. 5) and the first The first sprag 13 is engaged with the one outer ring 12. As a result, power is transmitted from the first outer ring 12 toward the first inner ring 11, the third speed driven gear 6b rotates together with the output shaft 3, and the output shaft 3 rotates at a rotational speed of α3.
 一方で、この場合には、出力軸3から被動歯車21bを介して、駆動歯車21aが回転速度α4で回転する。本実施の形態においては、第2歯車対21の変速比(被動歯車の歯数÷駆動歯車の歯数)k4が、第1歯車対6の変速比k3より小さく設定されているので、第2歯車対21の駆動歯車21aの回転速度(α4=α3・k4=k4/k3・α)は、入力軸2の回転速度(α)より小さくなる。このため、第2クラッチ22では、第2外輪222(図8(b)参照)の回転速度α4が第2内輪221の回転速度αよりも遅くなり、相対的に第2外輪222がフリー方向へ回転している状態と等しくなる。よって、第2クラッチ22では、第2スプラグ223は第2内輪221及び第2外輪222へ係合できない。従って、第2クラッチ22の荷重付与装置15を作動しなくても、動力伝達装置20は、第2歯車対21に影響されることなく、第3速の走行状態(出力軸3の回転速度α3)となる。 On the other hand, in this case, the drive gear 21a rotates at the rotational speed α4 from the output shaft 3 via the driven gear 21b. In the present embodiment, the gear ratio (number of teeth of the driven gear / number of teeth of the driving gear) k4 of the second gear pair 21 is set smaller than the gear ratio k3 of the first gear pair 6, so that the second The rotational speed (α4 = α3 · k4 = k4 / k3 · α) of the drive gear 21a of the gear pair 21 is smaller than the rotational speed (α) of the input shaft 2. Therefore, in the second clutch 22, the rotational speed α4 of the second outer ring 222 (see FIG. 8B) is slower than the rotational speed α of the second inner ring 221, and the second outer ring 222 relatively moves in the free direction. It is equal to the rotating state. Therefore, in the second clutch 22, the second sprag 223 cannot be engaged with the second inner ring 221 and the second outer ring 222. Therefore, even if the load application device 15 of the second clutch 22 is not operated, the power transmission device 20 is not affected by the second gear pair 21 and is in the third speed traveling state (the rotational speed α3 of the output shaft 3). )
 なお、第2歯車対21の変速比k4を、第1歯車対6の変速比k3より大きくなるように設定した場合は、駆動歯車21aの回転速度(α4=k4/k3・α)は、入力軸2の回転速度(α)より大きくなる。このため、第2クラッチ22では、第2外輪222の回転速度α4が第2内輪221の回転速度αよりも速くなり、相対的に第2外輪222がロック方向へ回転している状態と等しくなる。この場合には、第2クラッチ22の荷重付与装置15を作動させることにより(ON)、第2スプラグ223を強制的に反セルフロック方向へ傾動させ、第2内輪221及び第2外輪222へ係合できなくする。その結果、上述の場合と同様に、第2歯車対21に影響されることなく、第3速の走行状態(出力軸3の回転速度α3)が得られる。 When the gear ratio k4 of the second gear pair 21 is set to be larger than the gear ratio k3 of the first gear pair 6, the rotational speed (α4 = k4 / k3 · α) of the drive gear 21a is input. It becomes larger than the rotational speed (α) of the shaft 2. Therefore, in the second clutch 22, the rotational speed α4 of the second outer ring 222 is faster than the rotational speed α of the second inner ring 221, and is relatively equal to the state in which the second outer ring 222 rotates in the locking direction. . In this case, by operating the load applying device 15 of the second clutch 22 (ON), the second sprag 223 is forcibly tilted in the anti-self-locking direction, and is engaged with the second inner ring 221 and the second outer ring 222. Make it impossible to match. As a result, the third speed traveling state (the rotational speed α3 of the output shaft 3) is obtained without being affected by the second gear pair 21 as in the case described above.
 次に、第3速走行の状態でコースト走行を行う場合は、図9(b)に示すように、動力が出力軸3から入力軸2へと入力される。その結果、出力軸3から第2歯車対21の被動歯車21bを介して駆動歯車21aが駆動される。即ち、第2クラッチ22の第2外輪222(図8(b)参照)に動力が伝達される(回転速度α4)。一方、第2クラッチ22の第2内輪221は入力軸2からの駆動力が無い状態なので、その回転速度は、駆動歯車21aの回転速度α4より遅くなる。その結果、第2クラッチ22の第2外輪222が、第2内輪221との相対回転で第2内輪221側から見て、ロック方向(図8(b)の矢印Ro方向)に回転する。第2クラッチ22の荷重付与装置15を作動させない場合には(OFF)、第2外輪222及び第2内輪221へスプラグ13が係合する。その結果、第2クラッチ22の第2外輪222から第2内輪221に向かって動力が伝達され、第2歯車対21の駆動歯車21aは入力軸2と共に回転する(回転速度α4)。第2歯車対21の変速比がk4であり、第2歯車対21の被動歯車21bの回転速度がα3であるから、第2歯車対21の駆動歯車21aの回転速度α4はk4・α3である。第2歯車対21の駆動歯車21aの回転につれて入力軸2が回転し、第1歯車対4,5,6の駆動歯車4a,5a,6aも回転する(回転速度α4=k4・α3)。 Next, when coasting is performed in the third speed traveling state, power is input from the output shaft 3 to the input shaft 2 as shown in FIG. As a result, the drive gear 21 a is driven from the output shaft 3 via the driven gear 21 b of the second gear pair 21. That is, power is transmitted to the second outer ring 222 (see FIG. 8B) of the second clutch 22 (rotational speed α4). On the other hand, since the second inner ring 221 of the second clutch 22 has no driving force from the input shaft 2, the rotational speed thereof is slower than the rotational speed α4 of the drive gear 21a. As a result, the second outer ring 222 of the second clutch 22 rotates relative to the second inner ring 221 in the locking direction (the direction of the arrow Ro in FIG. 8B) when viewed from the second inner ring 221 side. When the load applying device 15 of the second clutch 22 is not operated (OFF), the sprag 13 is engaged with the second outer ring 222 and the second inner ring 221. As a result, power is transmitted from the second outer ring 222 of the second clutch 22 toward the second inner ring 221, and the drive gear 21a of the second gear pair 21 rotates together with the input shaft 2 (rotational speed α4). Since the gear ratio of the second gear pair 21 is k4 and the rotational speed of the driven gear 21b of the second gear pair 21 is α3, the rotational speed α4 of the drive gear 21a of the second gear pair 21 is k4 · α3. . As the drive gear 21a of the second gear pair 21 rotates, the input shaft 2 rotates, and the drive gears 4a, 5a, 6a of the first gear pairs 4, 5, 6 also rotate (rotational speed α4 = k4 · α3).
 この結果、第1歯車対4,5,6の駆動歯車4a,5a,6aと噛み合う被動歯車4b,5b,6bに動力が伝達され、被動歯車4b,5b,6bは各々の変速比に応じた速度で回転する。被動歯車4bの回転速度β1はk4/k1・α3であり、被動歯車5bの回転速度β2はk4/k2・α3であり、被動歯車6bの回転速度β3はk4/k3・α3である。k1>k2>k3>k4であるから、被動歯車4b,5b,6bの回転速度β1,β2,β3は、いずれもα3より小さくなる。 As a result, power is transmitted to the driven gears 4b, 5b, and 6b that mesh with the driving gears 4a, 5a, and 6a of the first gear pairs 4, 5, and 6, and the driven gears 4b, 5b, and 6b correspond to the respective gear ratios. Rotates at speed. The rotational speed β1 of the driven gear 4b is k4 / k1 · α3, the rotational speed β2 of the driven gear 5b is k4 / k2 · α3, and the rotational speed β3 of the driven gear 6b is k4 / k3 · α3. Since k1> k2> k3> k4, the rotational speeds β1, β2, β3 of the driven gears 4b, 5b, 6b are all smaller than α3.
 一方、出力軸3の回転速度はα3であるため、第1歯車対4,5,6の被動歯車4b,5b,6bの第1クラッチ10(図5参照)では、第1内輪11がα3の速度で回転する。このため、第1クラッチ10では、第1内輪11の回転速度が第1外輪12の回転速度(β1=k4/k1・α3)よりも速くなり、相対的に第1内輪11がフリー方向(図5の反矢印Ri方向)へ回転している状態と等しくなる。よって、第1クラッチ10では、第1スプラグ13は第1内輪11及び第1外輪12へ係合できない。従って、第2クラッチ22の荷重付与装置15を作動させない場合(OFF)、動力伝達装置20(図8(a)参照)は、第1クラッチ10の荷重付与装置15を作動させなくても、第1歯車対4,5,6に影響されることなく、出力軸3からの動力を入力軸2へ第2歯車対21を介して伝達できる。これにより、車両100のコースト走行時には、出力軸3から入力される動力によりモータ112を発電機として機能させて、モータ112により発電した電力を電源に回生することができる。これにより、省エネルギー化を図ることができる。また、モータ112の内部抵抗やイナーシャが出力軸3の駆動抵抗となるため、出力軸3を制動できる(エンジンブレーキ)。 On the other hand, since the rotation speed of the output shaft 3 is α3, in the first clutch 10 (see FIG. 5) of the driven gears 4b, 5b, 6b of the first gear pairs 4, 5, 6, the first inner ring 11 is α3. Rotates at speed. Therefore, in the first clutch 10, the rotational speed of the first inner ring 11 is faster than the rotational speed of the first outer ring 12 (β1 = k4 / k1 · α3), and the first inner ring 11 is relatively free (see FIG. 5 in the direction of the counter arrow Ri). Therefore, in the first clutch 10, the first sprag 13 cannot be engaged with the first inner ring 11 and the first outer ring 12. Therefore, when the load applying device 15 of the second clutch 22 is not operated (OFF), the power transmission device 20 (see FIG. 8A) can be operated without operating the load applying device 15 of the first clutch 10. The power from the output shaft 3 can be transmitted to the input shaft 2 via the second gear pair 21 without being affected by the first gear pair 4, 5, 6. As a result, during coasting of the vehicle 100, the motor 112 can function as a generator by the power input from the output shaft 3, and the power generated by the motor 112 can be regenerated to the power source. Thereby, energy saving can be achieved. Further, since the internal resistance and inertia of the motor 112 become the driving resistance of the output shaft 3, the output shaft 3 can be braked (engine brake).
 これに対し、モータ112の内部抵抗やイナーシャが出力軸3の駆動抵抗となるのを防ぐ場合には、図9(c)に示すように、第2クラッチ22の荷重付与装置15(図4参照)を作動(ON)させる。出力軸3から動力が動力伝達装置20(図8(a)参照)に入力されると、第2クラッチ22の第2外輪222(図8(b)参照)が、第2内輪221との相対回転で第2内輪221側から見て、ロック方向(図8(b)の矢印Ro方向)に回転するが、第2クラッチ22の荷重付与装置15を作動(ON)させることにより、第2スプラグ223が強制的に反セルフロック方向へ傾動され、第2外輪222及び第2内輪221へ係合できない。よって、駆動歯車21aは入力軸2を空転し入力軸2に動力は伝達されない。 On the other hand, when preventing the internal resistance or inertia of the motor 112 from becoming the driving resistance of the output shaft 3, as shown in FIG. 9C, the load applying device 15 of the second clutch 22 (see FIG. 4). ) Is activated (ON). When power is input from the output shaft 3 to the power transmission device 20 (see FIG. 8A), the second outer ring 222 (see FIG. 8B) of the second clutch 22 is relative to the second inner ring 221. Rotation rotates in the locking direction (in the direction of arrow Ro in FIG. 8B) when viewed from the second inner ring 221 side. 223 is forcibly tilted in the anti-self-lock direction and cannot be engaged with the second outer ring 222 and the second inner ring 221. Therefore, the drive gear 21 a idles the input shaft 2 and no power is transmitted to the input shaft 2.
 また、第1速、第2速および第3速の被動歯車4b,5b,6bにおける第1クラッチ10の第1内輪11(図5参照)は、第1外輪12との相対回転でフリー方向(図5の反矢印Ri方向)へ回転する。このため、第1速、第2速および第3速の被動歯車4b,5b,6bにおける第1クラッチ10では、第1スプラグ13が反セルフロック方向へ傾動し、第1内輪11及び第1外輪12へ係合できない。よって、被動歯車4b,5b,6bは出力軸3を空転し、入力軸2に動力は伝達されない。これにより、エネルギー損失を抑制して、コースト走行における走行距離が短くなることを防止できる。 The first inner ring 11 (see FIG. 5) of the first clutch 10 in the first, second, and third driven gears 4b, 5b, and 6b is in a free direction due to relative rotation with the first outer ring 12. It rotates in the direction opposite to arrow Ri in FIG. Therefore, in the first clutch 10 in the first, second, and third driven gears 4b, 5b, and 6b, the first sprag 13 tilts in the anti-self-lock direction, and the first inner ring 11 and the first outer ring. 12 cannot be engaged. Therefore, the driven gears 4 b, 5 b, 6 b idle the output shaft 3 and no power is transmitted to the input shaft 2. Thereby, energy loss can be suppressed and it can prevent that the travel distance in coast driving | running | working becomes short.
 以上のように、コースト走行時に、第2クラッチ22の荷重付与装置15の作動と非作動とを切り替えることにより、エネルギー損失を抑制して走行距離を伸ばすか、或いは出力軸3の制動および電力の回生を図るか、いずれを優先するかを選択できる。 As described above, during coasting, the load application device 15 of the second clutch 22 is switched between operation and non-operation, thereby suppressing energy loss and extending the travel distance, or braking of the output shaft 3 and electric power. You can choose whether to regenerate or prioritize.
 次いで、図10を参照して、車両100の登坂停止時における動力伝達装置20の作動状態について説明する。図10(a)は第2実施の形態における動力伝達装置20において車両100が登坂停止している場合の動力伝達装置20の内部構造を模式的に示した模式図であり、図10(b)は車両100が登坂停止した状態から前進する場合の動力伝達装置20の内部構造を模式的に示した模式図である。 Next, the operation state of the power transmission device 20 when the vehicle 100 stops climbing will be described with reference to FIG. FIG. 10A is a schematic diagram schematically showing the internal structure of the power transmission device 20 when the vehicle 100 stops climbing in the power transmission device 20 according to the second embodiment, and FIG. FIG. 4 is a schematic diagram schematically showing the internal structure of the power transmission device 20 when the vehicle 100 moves forward from a state where the vehicle 100 has stopped climbing.
 車両100が登坂停止している場合は、車両100は重力により坂を後進しようとするため、前輪101は前進の回転に対して逆回転しようとする。この結果、図10(a)に示すように、前輪101から動力伝達装置20の出力軸3を逆回転させようとする逆動力が入力される。この逆動力により、出力軸3から被動歯車21bを介して、駆動歯車21aは逆回転(図10(a)時計回りに回転)しようとする。これにより、第2歯車対21の第2クラッチ22の第2外輪222(図8(b)参照)は逆回転しようとする。また、第1歯車対4,5,6の第1クラッチ10の第1内輪11(図5参照)も、それぞれ逆回転(図10(a)反時計回りに回転)しようとする。この逆動力による出力軸3の回転速度(回転した場合の仮想値)をγとする。 When the vehicle 100 has stopped climbing up, the vehicle 100 tries to move backward on the slope due to gravity, so the front wheel 101 tries to rotate backward with respect to the forward rotation. As a result, as shown in FIG. 10A, reverse power is input from the front wheel 101 to reversely rotate the output shaft 3 of the power transmission device 20. Due to this reverse power, the drive gear 21a attempts to reversely rotate (rotate clockwise in FIG. 10 (a)) from the output shaft 3 via the driven gear 21b. As a result, the second outer ring 222 (see FIG. 8B) of the second clutch 22 of the second gear pair 21 tends to rotate in the reverse direction. Further, the first inner ring 11 (see FIG. 5) of the first clutch 10 of the first gear pair 4, 5, 6 also tries to rotate in the reverse direction (FIG. 10 (a) rotates counterclockwise). The rotational speed of the output shaft 3 by this reverse power (a virtual value when rotated) is assumed to be γ.
 この逆動力により、第1歯車対4,5,6においては、第1クラッチ10の第1内輪11が、第1外輪12との相対回転でロック方向(図5の矢印Ri方向)に回転しようとするので、第1内輪11及び第1外輪12へ第1スプラグ13が係合する。その結果、第1クラッチ10の第1内輪11から第1外輪12に向かって動力が伝達され、第1歯車対4,5,6の被動歯車4b,5b,6bは出力軸3と共に回転しようとする(回転速度γ)。この結果、第1歯車対4,5,6の被動歯車4b,5b,6bと噛み合う駆動歯車4a,5a,6aに動力が伝達される。 With this reverse power, in the first gear pair 4, 5, 6, the first inner ring 11 of the first clutch 10 will rotate in the locking direction (the direction of arrow Ri in FIG. 5) relative to the first outer ring 12. Therefore, the first sprag 13 is engaged with the first inner ring 11 and the first outer ring 12. As a result, power is transmitted from the first inner ring 11 of the first clutch 10 toward the first outer ring 12, and the driven gears 4b, 5b, 6b of the first gear pairs 4, 5, 6 try to rotate together with the output shaft 3. (Rotational speed γ). As a result, power is transmitted to the drive gears 4a, 5a, 6a meshing with the driven gears 4b, 5b, 6b of the first gear pairs 4, 5, 6.
 ここで、第1歯車対4,5,6及び第2歯車対21の変速比(被動歯車の歯数÷駆動歯車の歯数)は、上述のとおり、順にk1,k2,k3,k4(但し、k1>k2>k3>k4)なので、第1歯車対4,5,6の被動歯車4b,5b,6bの回転速度がγのときは、駆動歯車4aの回転速度はk1・γ、駆動歯車5aの回転速度はk2・γ、駆動歯車6aの回転速度はk3・γとなる(駆動歯車4a,5a,6aの回転方向は図10(a)時計回り)。駆動歯車4a,5a,6aの回転により、入力軸2は回転速度k1・γ(或いはk2・γ又はk3・γ)で回転しようとする。この結果、入力軸2に連結する第2歯車対21の第2クラッチ22の第2内輪221(図8(b)参照)は、回転速度k1・γ(或いはk2・γ又はk3・γ)でロック方向(図8(b)の矢印Ri方向)に回転する。一方、駆動歯車21aには、噛み合う被動歯車21bから回転速度k4・γとなる動力が入力されるため、第2クラッチ22の第2外輪222は回転速度k4・γでフリー方向(図8(b)の反矢印Ro方向)に回転する。 Here, the gear ratios of the first gear pair 4, 5, 6 and the second gear pair 21 (the number of teeth of the driven gear / the number of teeth of the driving gear) are k1, k2, k3, k4 (however, as described above) , K1> k2> k3> k4), so that when the rotational speeds of the driven gears 4b, 5b, 6b of the first gear pair 4, 5, 6 are γ, the rotational speed of the drive gear 4a is k1 · γ, The rotational speed of 5a is k2 · γ, and the rotational speed of the drive gear 6a is k3 · γ (the rotational directions of the drive gears 4a, 5a, 6a are clockwise in FIG. 10 (a)). Due to the rotation of the drive gears 4a, 5a and 6a, the input shaft 2 tries to rotate at a rotational speed k1 · γ (or k2 · γ or k3 · γ). As a result, the second inner ring 221 (see FIG. 8B) of the second clutch 22 of the second gear pair 21 connected to the input shaft 2 is rotated at the rotational speed k1 · γ (or k2 · γ or k3 · γ). It rotates in the locking direction (arrow Ri direction in FIG. 8B). On the other hand, since the driving gear 21a is input with power at the rotational speed k4 · γ from the meshed driven gear 21b, the second outer ring 222 of the second clutch 22 is rotated at the rotational speed k4 · γ in the free direction (FIG. 8 (b ) In the direction opposite to arrow Ro).
 ここで、k1>k2>k3>k4のため、第2クラッチ22の第2内輪221の回転速度k1・γ(或いはk2・γ又はk3・γ)は、第2クラッチ22の第2外輪222の回転速度k4・γより速くなる。このため、第2クラッチ22では、第2外輪222の回転速度が第2内輪221の回転速度よりも遅くなり、第2内輪221が、第2外輪222との相対回転で第2外輪222側から見て、ロック方向(図8(b)の矢印Ri方向)へ回転している状態と等しくなる。よって、第2クラッチ22では、第2スプラグ223が第2内輪221及び第2外輪222へ係合し、第2歯車対21の駆動歯車21aは入力軸2と共に回転しようとする。 Here, since k1> k2> k3> k4, the rotational speed k1 · γ (or k2 · γ or k3 · γ) of the second inner ring 221 of the second clutch 22 is equal to that of the second outer ring 222 of the second clutch 22. The rotational speed is faster than k4 · γ. For this reason, in the second clutch 22, the rotation speed of the second outer ring 222 is slower than the rotation speed of the second inner ring 221, and the second inner ring 221 rotates relative to the second outer ring 222 from the second outer ring 222 side. As seen, it is equal to the state of rotating in the locking direction (the direction of arrow Ri in FIG. 8B). Therefore, in the second clutch 22, the second sprag 223 engages with the second inner ring 221 and the second outer ring 222, and the drive gear 21 a of the second gear pair 21 tends to rotate together with the input shaft 2.
 しかし、上述のように、互いに噛み合う駆動歯車21aと被動歯車21bとの間に回転速度差があるため、第1歯車対4,5,6と第2歯車対21とは二重噛み合いとなる。よって、車両100が登坂停止している場合に、サイドブレーキを作動させたり必要な駆動力が得られたりするようにモータ112を制御しなくとも、車両100の後進を防止できる。 However, as described above, since there is a rotational speed difference between the driving gear 21a and the driven gear 21b that are meshed with each other, the first gear pair 4, 5, 6 and the second gear pair 21 are double meshed. Therefore, when the vehicle 100 is stopped uphill, it is possible to prevent the vehicle 100 from moving backward without operating the side brake or controlling the motor 112 so that the necessary driving force can be obtained.
 登坂停止した車両100を前進させる場合は、図10(b)に示すように、まず、第2速および第3速の第1歯車対5,6の被動歯車5b,6bにおける第1クラッチ10の荷重付与装置15(図4参照)を作動(ON)させる。この状態においても、第1歯車対4(第1速)の変速比は第2歯車対21の変速比より大きいため、上述のとおり、第1歯車対4と第2歯車対21とを二重噛み合いさせることができ、サイドブレーキを作動させなくても車両100は後進しない。 When the vehicle 100 that has stopped climbing is moved forward, first, as shown in FIG. 10B, the first clutch 10 in the driven gears 5b and 6b of the first gear pair 5 and 6 of the second speed and the third speed is used. The load applying device 15 (see FIG. 4) is activated (ON). Even in this state, since the gear ratio of the first gear pair 4 (first speed) is larger than the gear ratio of the second gear pair 21, the first gear pair 4 and the second gear pair 21 are doubled as described above. The vehicles 100 can be engaged with each other, and the vehicle 100 does not move backward without operating the side brake.
 次いで、モータ112(図8(a)参照)の正回転(前進側)の動力を入力軸2に伝達すると、第2速の被動歯車5b及び第3速の被動歯車6bの第1クラッチ10の荷重付与装置15(図4参照)を作動(ON)しているため、被動歯車5b,6bの第1クラッチ10では、第1内輪11(図5参照)及び第1外輪12への第1スプラグ13の係合が解除される。この結果、第2速及び第3速の被動歯車5b,6bは出力軸3を空転し動力は伝達されない。これに対し、第1速の被動歯車4bにおける第1クラッチ10では、第1外輪12がロック方向(図5の矢印Ro方向)へ回転すると、荷重付与装置15(図4参照)が非作動(OFF)のため、第1内輪11及び第1外輪12へ第1スプラグ13が係合し、第1外輪12から第1内輪11に向かって動力が伝達される。その結果、第1速の被動歯車4bは出力軸3と共に回転し、出力軸3が回転する。入力軸2の回転速度をαとすると、出力軸3の回転速度はα/k1となる。 Next, when the power of the forward rotation of the motor 112 (see FIG. 8A) is transmitted to the input shaft 2, the first clutch 10 of the second speed driven gear 5b and the third speed driven gear 6b. Since the load applying device 15 (see FIG. 4) is operated (ON), the first clutch 10 of the driven gears 5b and 6b causes the first sprags to the first inner ring 11 (see FIG. 5) and the first outer ring 12. 13 is disengaged. As a result, the second and third speed driven gears 5b and 6b idle the output shaft 3 and no power is transmitted. In contrast, in the first clutch 10 in the first-speed driven gear 4b, when the first outer ring 12 rotates in the locking direction (the direction of the arrow Ro in FIG. 5), the load applying device 15 (see FIG. 4) is inoperative ( OFF), the first sprag 13 is engaged with the first inner ring 11 and the first outer ring 12, and power is transmitted from the first outer ring 12 toward the first inner ring 11. As a result, the first speed driven gear 4b rotates with the output shaft 3, and the output shaft 3 rotates. If the rotational speed of the input shaft 2 is α, the rotational speed of the output shaft 3 is α / k1.
 一方で、この場合には、出力軸3から第2歯車対21の被動歯車21bを介して、第2歯車対21の駆動歯車21aに動力が伝達される。その結果、第2歯車対21の駆動歯車21aの回転速度は、k4/k1・αとなる(回転方向は図10(b)反時計回り)。これにより、第2クラッチ22(図8(b)参照)の第2内輪221の回転速度はαとなり、第2クラッチ22の第2外輪222の回転速度はk4/k1・αとなる。k1>k4より、第2クラッチ22では、第2外輪222との相対回転で第2外輪222側から見て、第2内輪221の回転速度が第2外輪222の回転速度より速くなり、相対的に第2内輪221がフリー方向(図8(b)の反矢印Ri方向)へ回転している状態と等しくなる。よって、第2クラッチ22では、第2スプラグ223は第2内輪221及び第2外輪222へ係合できない。従って、第2クラッチ22の荷重付与装置15を作動しなくても、動力伝達装置20は、第2歯車対21に影響されることなく第1速の走行状態(出力軸3の回転速度α/k1)となり、車両100は発進する。以上のように、車両100が登坂停止した状態から前進する場合には、後進しないようにサイドブレーキを作動する等の煩雑な操作を行うことなく、モータ112を駆動するのみで発進することができる。 On the other hand, in this case, power is transmitted from the output shaft 3 to the drive gear 21a of the second gear pair 21 via the driven gear 21b of the second gear pair 21. As a result, the rotation speed of the drive gear 21a of the second gear pair 21 is k4 / k1 · α (the rotation direction is counterclockwise in FIG. 10B). Thereby, the rotational speed of the second inner ring 221 of the second clutch 22 (see FIG. 8B) is α, and the rotational speed of the second outer ring 222 of the second clutch 22 is k4 / k1 · α. From k1> k4, in the second clutch 22, the rotation speed of the second inner ring 221 is higher than the rotation speed of the second outer ring 222 when viewed from the second outer ring 222 side by relative rotation with the second outer ring 222, The second inner ring 221 is equal to the state in which the second inner ring 221 is rotating in the free direction (the counter arrow Ri direction in FIG. 8B). Therefore, in the second clutch 22, the second sprag 223 cannot be engaged with the second inner ring 221 and the second outer ring 222. Therefore, even if the load applying device 15 of the second clutch 22 is not operated, the power transmission device 20 is not affected by the second gear pair 21 and is in the first speed traveling state (the rotational speed α / of the output shaft 3). k1), and the vehicle 100 starts. As described above, when the vehicle 100 moves forward from a state where the climbing is stopped, the vehicle 100 can start only by driving the motor 112 without performing a complicated operation such as operating the side brake so as not to move backward. .
 なお、車両100の発進の際、本実施の形態においては、第2速および第3速の第1歯車対5,6の被動歯車5b,6bにおける第1クラッチ10の荷重付与装置15を作動させ、第1速の第1歯車対4を用いて動力を伝達する場合について説明したが、必ずしもこれに限定されるものではない。第2歯車対21より大きな変速比の第1歯車対(5又は6)を選択して動力伝達可能な状態にすれば、第1速の第1歯車対4を用いる場合と比較してトルクは低下するが、発進は可能である。 When the vehicle 100 starts, in the present embodiment, the load applying device 15 of the first clutch 10 is operated in the driven gears 5b and 6b of the first gear pair 5 and 6 of the second speed and the third speed. Although the case where power is transmitted using the first gear pair 4 of the first speed has been described, the present invention is not necessarily limited thereto. If the first gear pair (5 or 6) having a larger gear ratio than the second gear pair 21 is selected so as to be able to transmit power, the torque is compared with the case where the first gear pair 4 of the first speed is used. Decrease, but you can start.
 次いで、図11を参照して、本発明の第3実施の形態における動力伝達装置について説明する。上記第2実施の形態においては、動力伝達装置が前輪駆動の車両100に搭載され、第2クラッチ22が入力軸2に配設されており、第2クラッチ22の第2外輪222が駆動歯車21aと一体に形成された場合について説明した。これに対し第3実施の形態では、動力伝達装置30は後輪駆動の車両200に搭載されている。さらに、第2クラッチ34が出力軸31,32に配設されており、第2クラッチ34が被動歯車33bと別設されている場合について説明する。 Next, a power transmission device according to a third embodiment of the present invention will be described with reference to FIG. In the second embodiment, the power transmission device is mounted on the front-wheel drive vehicle 100, the second clutch 22 is disposed on the input shaft 2, and the second outer wheel 222 of the second clutch 22 is the drive gear 21a. The case where it is formed integrally with has been described. In contrast, in the third embodiment, the power transmission device 30 is mounted on a rear-wheel drive vehicle 200. Further, the case where the second clutch 34 is disposed on the output shafts 31 and 32 and the second clutch 34 is provided separately from the driven gear 33b will be described.
 図11(a)は本発明の第3実施の形態における動力伝達装置30が搭載される車両200を模式的に示した模式図であり、図11(b)は第3実施の形態における動力伝達装置30を模式的に示した模式図である。なお、図11(a)の矢印F-B,L-Rは、車両200の前後方向、左右方向をそれぞれ示している。 FIG. 11A is a schematic diagram schematically showing a vehicle 200 on which the power transmission device 30 according to the third embodiment of the present invention is mounted, and FIG. 11B is a power transmission according to the third embodiment. 3 is a schematic diagram schematically showing the device 30. FIG. Note that arrows FB and LR in FIG. 11A indicate the front-rear direction and the left-right direction of the vehicle 200, respectively.
 まず、車両200の概略構成について説明する。車両200は、図11(a)に示すように、後輪102(左の後輪102FL及び右の後輪102FR)を駆動するリアユニット120を備えている。リアユニット120は、動力源としてのエンジン111及びモータ112と、それらエンジン111及びモータ112の動力を後輪102に伝達する動力伝達装置30とを主に備えており、動力伝達装置30の出力軸31に伝達された動力がデファレンシャル装置を介して左右の後輪102に伝達されるよう構成されている。なお、エンジン111及びモータ112の2つの動力を使い分けて後輪102を駆動可能に構成されているが、エンジン111又はモータ112のいずれか片方で構成されている場合もある。エンジン111、モータ112のいずれも動力源とすることが可能である。なお、以下の実施の形態においては、入力軸2にエンジン111の駆動力を伝達する場合について説明するが、エンジン111に代えてモータ112の駆動力を伝達することや、エンジン111及びモータ112の駆動力を伝達することも当然可能である。 First, a schematic configuration of the vehicle 200 will be described. As shown in FIG. 11A, the vehicle 200 includes a rear unit 120 that drives the rear wheels 102 (the left rear wheel 102FL and the right rear wheel 102FR). The rear unit 120 mainly includes an engine 111 and a motor 112 as a power source, and a power transmission device 30 that transmits the power of the engine 111 and the motor 112 to the rear wheel 102, and an output shaft of the power transmission device 30. The power transmitted to 31 is transmitted to the left and right rear wheels 102 via a differential device. Note that the rear wheel 102 can be driven by properly using the two powers of the engine 111 and the motor 112, but may be configured by either the engine 111 or the motor 112. Both engine 111 and motor 112 can be used as a power source. In the following embodiment, the case where the driving force of the engine 111 is transmitted to the input shaft 2 will be described. However, the driving force of the motor 112 can be transmitted instead of the engine 111, or the engine 111 and the motor 112 can be transmitted. Of course, it is also possible to transmit the driving force.
 次いで、図11(b)を参照して、動力伝達装置30の詳細構成について説明する。図11(b)は、動力伝達装置30の内部構造を模式的に示した模式図である。以下、第2実施の形態と同一の部分については同一の符号を付して、その説明を省略する。なお、図11(b)では、理解を容易とするために、動力を伝達する機能を担う構成のみを図示している。 Next, a detailed configuration of the power transmission device 30 will be described with reference to FIG. FIG. 11B is a schematic diagram schematically showing the internal structure of the power transmission device 30. Hereinafter, the same parts as those of the second embodiment are denoted by the same reference numerals, and the description thereof is omitted. Note that in FIG. 11B, only the configuration that bears the function of transmitting power is illustrated for easy understanding.
 動力伝達装置30は、エンジン111の動力が入力される入力軸2と、その入力軸2と平行に配設された出力軸31,32と、その出力軸31及び入力軸2に配設され互いに噛み合って異なる変速比となるように設定された複数の第1歯車対4,5,6と、出力軸32及び入力軸2に配設された第2歯車対33とを主に備えて構成されている。出力軸31,32は、第2クラッチ34を介して同軸に連結されている。また、第1歯車対4,5,6に配設された第1クラッチ10の第1内輪11は、出力軸31と一体に形成されている。以上のように構成された動力伝達装置30は、出力軸31に伝達された動力が動力伝達装置30の外部に出力され、後輪102に伝達されるように構成されている。 The power transmission device 30 includes an input shaft 2 to which power of the engine 111 is input, output shafts 31 and 32 disposed in parallel to the input shaft 2, and the output shaft 31 and the input shaft 2. A plurality of first gear pairs 4, 5 and 6 set so as to mesh with each other to have different gear ratios, and a second gear pair 33 disposed on the output shaft 32 and the input shaft 2 are mainly configured. ing. The output shafts 31 and 32 are coaxially connected via the second clutch 34. Further, the first inner ring 11 of the first clutch 10 disposed in the first gear pair 4, 5, 6 is formed integrally with the output shaft 31. The power transmission device 30 configured as described above is configured such that the power transmitted to the output shaft 31 is output to the outside of the power transmission device 30 and transmitted to the rear wheel 102.
 第2歯車対33は、入力軸2に配設され入力軸2から伝達される動力により駆動される駆動歯車33aと、出力軸32に配設され駆動歯車33aにより従動駆動される被動歯車33bとを備えている。第2歯車対33の被動歯車33bは、その歯数が、第1歯車対4,5,6の内の最小歯数(本実施の形態においては、第1歯車対6の被動歯車6bの歯数)より小さくなるように構成されている。従って、第2歯車対33の変速比(被動歯車33bの歯数÷駆動歯車33aの歯数。k5とする。)は、第1歯車対4,5,6の変速比(順にk1,k2,k3)の内の最小の変速比(本実施の形態においては、第1歯車対6の変速比k3)より小さい。 The second gear pair 33 is disposed on the input shaft 2 and driven by power transmitted from the input shaft 2, and a driven gear 33b disposed on the output shaft 32 and driven by the drive gear 33a. It has. The number of teeth of the driven gear 33b of the second gear pair 33 is the minimum number of teeth of the first gear pair 4, 5, 6 (in this embodiment, the number of teeth of the driven gear 6b of the first gear pair 6). Number). Therefore, the gear ratio of the second gear pair 33 (the number of teeth of the driven gear 33b / the number of teeth of the driving gear 33a, k5) is the gear ratio of the first gear pairs 4, 5, 6 (in order k1, k2, and so on). k3), which is smaller than the minimum speed ratio (in this embodiment, the speed ratio k3 of the first gear pair 6).
 第2クラッチ34は、出力軸31,32から入力軸2へ動力を遮断可能に伝達する一方、入力軸2から出力軸31,32への動力の伝達を遮断するように構成されている。なお、第2クラッチ34は第1クラッチ10(図5参照)と同様に構成されているため、詳細な説明を省略する。また、第1クラッチ10と同一の部分については同一の符号を用いて以下説明する。 The second clutch 34 is configured to transmit power from the output shafts 31 and 32 to the input shaft 2 so as to be cut off, while blocking transmission of power from the input shaft 2 to the output shafts 31 and 32. Since the second clutch 34 is configured in the same manner as the first clutch 10 (see FIG. 5), detailed description thereof is omitted. The same parts as those of the first clutch 10 will be described below using the same reference numerals.
 第2クラッチ34は第2歯車対33の被動歯車33bと別設されている。第2クラッチ34の第2内輪341は出力軸32と一体に形成されているが、第2クラッチ34の第2外輪342は、側端縁が外輪連結部34aと連結されており、外輪連結部34aを介して出力軸31と連結されている。第2内輪341と第2外輪342とに接して第2スプラグ343が配設されている。 The second clutch 34 is provided separately from the driven gear 33 b of the second gear pair 33. The second inner ring 341 of the second clutch 34 is formed integrally with the output shaft 32, but the second outer ring 342 of the second clutch 34 has a side edge connected to the outer ring connecting portion 34 a, and the outer ring connecting portion It is connected with the output shaft 31 via 34a. A second sprag 343 is disposed in contact with the second inner ring 341 and the second outer ring 342.
 以上のように構成された第3実施の形態における動力伝達装置30は、第2実施の形態で説明したように、加速走行時(第3速)においては、第1速~第3速の被動歯車4b,5b,6bの第1クラッチ10(図5参照)の荷重付与装置15(図4参照)の作動を停止する。これにより、入力軸2の回転速度をαとすれば、第3速の第1歯車対6を介して、出力軸31が回転速度α/k3で回転する。一方で、この場合には、出力軸31と連結する外輪連結部34aも回転速度α/k3で回転し、それに伴い第2クラッチ34の第2外輪342も回転する(回転速度α/k3)。 As described in the second embodiment, the power transmission device 30 in the third embodiment configured as described above is driven from the first speed to the third speed during acceleration travel (third speed). The operation of the load applying device 15 (see FIG. 4) of the first clutch 10 (see FIG. 5) of the gears 4b, 5b, 6b is stopped. Thus, if the rotational speed of the input shaft 2 is α, the output shaft 31 rotates at the rotational speed α / k3 via the third gear pair 6 of the first gear. On the other hand, in this case, the outer ring connecting portion 34a connected to the output shaft 31 also rotates at the rotation speed α / k3, and accordingly, the second outer ring 342 of the second clutch 34 also rotates (rotation speed α / k3).
 また、第2歯車対33の被動歯車33bは、駆動歯車33aの回転(回転速度α)に伴い回転速度α/k5で回転する。その結果、被動歯車33bが配設された出力軸32が回転し、出力軸32に連結する第2クラッチ34の第2内輪341も回転する(回転速度α/k5)。k3>k5のため、第2クラッチ34では、第2内輪341の回転速度(α/k5)が第2外輪342の回転速度(α/k3)よりも速くなり、第2外輪342との相対回転で第2外輪342側から見て、第2内輪341がフリー方向(図5に示す反矢印Ri方向)へ回転している状態と等しくなる。よって、第2クラッチ34では、第2スプラグ343は第2内輪341及び第2外輪342へ係合できない。従って、第2クラッチ34の荷重付与装置15を作動しなくても、動力伝達装置30は、第2歯車対33に影響されることなく、第3速の走行状態(出力軸31の回転速度α/k3)となる。 Further, the driven gear 33b of the second gear pair 33 rotates at a rotational speed α / k5 in accordance with the rotation (rotational speed α) of the drive gear 33a. As a result, the output shaft 32 provided with the driven gear 33b rotates, and the second inner ring 341 of the second clutch 34 connected to the output shaft 32 also rotates (rotational speed α / k5). Since k3> k5, in the second clutch 34, the rotational speed (α / k5) of the second inner ring 341 is faster than the rotational speed (α / k3) of the second outer ring 342, and relative rotation with the second outer ring 342 is achieved. Thus, when viewed from the second outer ring 342 side, the second inner ring 341 is equal to a state of rotating in the free direction (counter arrow Ri direction shown in FIG. 5). Therefore, in the second clutch 34, the second sprag 343 cannot be engaged with the second inner ring 341 and the second outer ring 342. Therefore, even if the load application device 15 of the second clutch 34 is not operated, the power transmission device 30 is not affected by the second gear pair 33 and is in the third speed traveling state (the rotational speed α of the output shaft 31). / K3).
 なお、第2歯車対33の変速比k5を、第1歯車対6の変速比k3より大きくなるように設定した場合は、被動歯車33bの回転速度(α/k5)は出力軸31の回転速度(α/k3)より小さくなる。この場合、第2クラッチ34では、第2外輪342の回転速度(α/k3)が第2内輪341の回転速度(α/k5)よりも速くなり、相対的に第2外輪342がロック方向(図5に示す矢印Ro方向)へ回転している状態と等しくなる。この場合には、第2クラッチ34の荷重付与装置15を作動させることにより、第2スプラグ343を強制的に反セルフロック方向へ傾動させ、第2内輪341及び第2外輪342へ係合できなくする。その結果、上述の場合と同様に、動力伝達装置30は第2歯車対33に影響されることなく、第3速の走行状態(出力軸31の回転速度α/k3)が得られる。 When the gear ratio k5 of the second gear pair 33 is set to be larger than the gear ratio k3 of the first gear pair 6, the rotational speed (α / k5) of the driven gear 33b is the rotational speed of the output shaft 31. It becomes smaller than (α / k3). In this case, in the second clutch 34, the rotation speed (α / k3) of the second outer ring 342 is faster than the rotation speed (α / k5) of the second inner ring 341, and the second outer ring 342 is relatively locked ( This is equivalent to the state of rotation in the direction of the arrow Ro shown in FIG. In this case, by operating the load applying device 15 of the second clutch 34, the second sprag 343 is forcibly tilted in the anti-self-locking direction and cannot be engaged with the second inner ring 341 and the second outer ring 342. To do. As a result, as in the case described above, the power transmission device 30 is not affected by the second gear pair 33 and can obtain the third speed traveling state (the rotational speed α / k3 of the output shaft 31).
 次に、第3速走行の状態(出力軸31の回転速度α/k3)でコースト走行を行う場合は、第2実施の形態の場合と同様に、動力が出力軸31から入力される。出力軸31の回転速度はα/k3であるから、外輪連結部34aを介して、動力が第2クラッチ34の第2外輪342に伝達され、その第2外輪342の回転速度はα/k3となる。 Next, when coasting is performed in the third speed traveling state (rotational speed α / k3 of the output shaft 31), power is input from the output shaft 31 as in the case of the second embodiment. Since the rotational speed of the output shaft 31 is α / k3, power is transmitted to the second outer ring 342 of the second clutch 34 via the outer ring connecting portion 34a, and the rotational speed of the second outer ring 342 is α / k3. Become.
 一方、第2クラッチ34の第2内輪341は、第2歯車対33を介して入力軸2からの駆動力が無い状態なので、その回転速度は第2外輪342の回転速度α/k3より遅くなる。その結果、第2クラッチ34の第2外輪342が、第2内輪341との相対回転で第2内輪341側から見て、ロック方向(図5の矢印Ro方向)に回転する。第2クラッチ34の荷重付与装置15を非作動(OFF)とする場合には、第2外輪342及び第2内輪341へ第2スプラグ343が係合する。その結果、第2クラッチ34の第2外輪342から第2内輪341に向かって動力が伝達され、第2歯車対33の被動歯車33bは出力軸32と共に回転する(回転速度α/k3)。第2歯車対33の変速比がk5であるから、第2歯車対33の駆動歯車33aの回転速度はα/k3・k5である。第2歯車対33の駆動歯車33aの回転につれて入力軸2が回転し(回転速度α/k3・k5)、第1歯車対4,5,6の駆動歯車4a,5a,6aも回転する(回転速度α/k3・k5)。 On the other hand, since the second inner ring 341 of the second clutch 34 has no driving force from the input shaft 2 via the second gear pair 33, the rotation speed thereof is slower than the rotation speed α / k3 of the second outer ring 342. . As a result, the second outer ring 342 of the second clutch 34 rotates relative to the second inner ring 341 in the locking direction (in the direction of the arrow Ro in FIG. 5) when viewed from the second inner ring 341 side. When the load application device 15 of the second clutch 34 is not operated (OFF), the second sprag 343 engages with the second outer ring 342 and the second inner ring 341. As a result, power is transmitted from the second outer ring 342 of the second clutch 34 toward the second inner ring 341, and the driven gear 33b of the second gear pair 33 rotates together with the output shaft 32 (rotational speed α / k3). Since the gear ratio of the second gear pair 33 is k5, the rotational speed of the drive gear 33a of the second gear pair 33 is α / k3 · k5. As the drive gear 33a of the second gear pair 33 rotates, the input shaft 2 rotates (rotational speed α / k3 · k5), and the drive gears 4a, 5a, 6a of the first gear pairs 4, 5, 6 also rotate (rotation). Speed α / k3 · k5).
 この結果、第1歯車対4,5,6の駆動歯車4a,5a,6aと噛み合う被動歯車4b,5b,6bに動力が伝達され、被動歯車4b,5b,6bは各々の変速比に応じた速度で回転する。被動歯車4bの回転速度はα/k3・k5/k1であり、被動歯車5bの回転速度はα/k3・k5/k2であり、被動歯車6bの回転速度はα/k3・k5/k3である。k1>k2>k3>k5であるから、被動歯車4b,5b,6bの回転速度は、いずれも出力軸31の回転速度α/k3より小さくなる。 As a result, power is transmitted to the driven gears 4b, 5b, and 6b that mesh with the driving gears 4a, 5a, and 6a of the first gear pairs 4, 5, and 6, and the driven gears 4b, 5b, and 6b correspond to the respective gear ratios. Rotates at speed. The rotational speed of the driven gear 4b is α / k3 · k5 / k1, the rotational speed of the driven gear 5b is α / k3 · k5 / k2, and the rotational speed of the driven gear 6b is α / k3 · k5 / k3. . Since k1> k2> k3> k5, the rotational speeds of the driven gears 4b, 5b, 6b are all smaller than the rotational speed α / k3 of the output shaft 31.
 ここで、第1歯車対4,5,6の被動歯車4b,5b,6bの第1クラッチ10(図5参照)では、第1内輪11が、出力軸31と同じα/k3の速度で回転する。一方、上述のとおり、被動歯車4b,5b,6bの回転速度は、いずれも出力軸31の回転速度α/k3より小さいため、各第1クラッチ10の第1外輪12の回転速度も、第1内輪11の回転速度より遅くなる。このため、第1クラッチ10では、第1内輪11の回転速度が第1外輪12の回転速度よりも速くなり、相対的に第1内輪11がフリー方向(図5の反矢印Ri方向)へ回転している状態と等しくなる。よって、第1クラッチ10では、第1スプラグ13は第1内輪11及び第1外輪12へ係合できない。 Here, in the first clutch 10 (see FIG. 5) of the driven gears 4 b, 5 b, 6 b of the first gear pairs 4, 5, 6, the first inner ring 11 rotates at the same speed α / k3 as the output shaft 31. To do. On the other hand, as described above, since the rotational speeds of the driven gears 4b, 5b, and 6b are all smaller than the rotational speed α / k3 of the output shaft 31, the rotational speed of the first outer ring 12 of each first clutch 10 is also the first. It becomes slower than the rotation speed of the inner ring 11. Therefore, in the first clutch 10, the rotational speed of the first inner ring 11 is faster than the rotational speed of the first outer ring 12, and the first inner ring 11 is relatively rotated in the free direction (counter arrow Ri direction in FIG. 5). It becomes equal to the state which is doing. Therefore, in the first clutch 10, the first sprag 13 cannot be engaged with the first inner ring 11 and the first outer ring 12.
 従って、第2クラッチ34の荷重付与装置15を非作動(OFF)とする場合、動力伝達装置30は、第1クラッチ10の荷重付与装置15を作動させなくても、第1歯車対4,5,6に影響されることなく、動力を出力軸31から第2歯車対33を介して入力軸2へ伝達できる。これにより、車両200のコースト走行時には、出力軸31から入力軸2に動力が入力され、エンジン111が出力軸31の駆動抵抗となるため、出力軸3を制動できる(エンジンブレーキ)。 Therefore, when the load application device 15 of the second clutch 34 is deactivated (OFF), the power transmission device 30 does not operate the load application device 15 of the first clutch 10, and the first gear pair 4, 5 , 6, power can be transmitted from the output shaft 31 to the input shaft 2 via the second gear pair 33. Thus, when the vehicle 200 is coasting, power is input from the output shaft 31 to the input shaft 2 and the engine 111 serves as a driving resistance of the output shaft 31, so that the output shaft 3 can be braked (engine braking).
 これに対し、エンジン111が出力軸31の駆動抵抗となるのを防ぐ場合には、第2実施の形態において説明したように、第2クラッチ34の荷重付与装置15(図4参照)を作動(ON)させる。これにより、第2クラッチ34の第2スプラグ343が強制的に反セルフロック方向へ傾動され、第2外輪342及び第2内輪341へ係合できなくなる。よって、第2クラッチ34は出力軸32を空転し、入力軸2に動力は伝達されない。また、第1速、第2速および第3速の被動歯車4b,5b,6bにおける第1クラッチ10の第1内輪11(図4参照)は、第1外輪12との相対回転でフリー方向(図5の反矢印Ri方向)へ回転する。このため、第1速、第2速および第3速の被動歯車4b,5b,6bにおける第1クラッチ10では、第1スプラグ13が反セルフロック方向へ傾動し、第1内輪11及び第1外輪12へ係合できない。よって、被動歯車4b,5b,6bは出力軸31を空転し入力軸2に動力は伝達されない。これにより、エネルギー損失を抑制して、コースト走行における走行距離が短くなることを防止できる。 On the other hand, in order to prevent the engine 111 from becoming the driving resistance of the output shaft 31, as described in the second embodiment, the load applying device 15 (see FIG. 4) of the second clutch 34 is operated (see FIG. 4). ON). As a result, the second sprag 343 of the second clutch 34 is forcibly tilted in the anti-self-lock direction and cannot be engaged with the second outer ring 342 and the second inner ring 341. Therefore, the second clutch 34 idles the output shaft 32 and no power is transmitted to the input shaft 2. The first inner ring 11 (see FIG. 4) of the first clutch 10 in the first, second, and third driven gears 4b, 5b, and 6b is in a free direction due to relative rotation with the first outer ring 12. It rotates in the direction opposite to arrow Ri in FIG. Therefore, in the first clutch 10 in the first, second, and third driven gears 4b, 5b, and 6b, the first sprag 13 tilts in the anti-self-lock direction, and the first inner ring 11 and the first outer ring. 12 cannot be engaged. Therefore, the driven gears 4 b, 5 b, 6 b idle the output shaft 31 and no power is transmitted to the input shaft 2. Thereby, energy loss can be suppressed and it can prevent that the travel distance in coast driving | running | working becomes short.
 以上のように、コースト走行時に、荷重付与装置15の作動と非作動とを切り替えることにより、エネルギー損失を抑制して走行距離を伸ばすか、或いは出力軸31の制動を図るか、いずれを優先するかを選択できる。 As described above, during coasting, switching between the operation and non-operation of the load applying device 15 suppresses energy loss and extends the travel distance, or the braking of the output shaft 31 is prioritized. Can be selected.
 以上、実施の形態に基づき本発明を説明したが、本発明は上記実施の形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改良変形が可能であることは容易に推察できるものである。 The present invention has been described above based on the embodiments. However, the present invention is not limited to the above embodiments, and various improvements and modifications can be made without departing from the spirit of the present invention. It can be easily guessed.
 上記各実施の形態では、動力伝達装置1,20,30が車両100のフロントユニット110や車両200のリアユニット120に組み込まれる場合を説明したが、必ずしもこれに限られるものではなく、例えば、他の車両(機関車、旅客車、貨物車および特殊車など)の走行装置、作業装置および工作機械などの動力伝達装置に組み込むことは当然可能である。 In each of the above embodiments, the case where the power transmission devices 1, 20, and 30 are incorporated in the front unit 110 of the vehicle 100 or the rear unit 120 of the vehicle 200 has been described. Naturally, it can be incorporated into a power transmission device such as a traveling device, a working device, or a machine tool of a vehicle (such as a locomotive, a passenger vehicle, a freight vehicle, and a special vehicle).
 上記各実施の形態では、荷重付与装置15(アクチュエータ15a)が電動機(交流電動機または直流電動機)により構成される場合を説明したが、必ずしもこれに限られるものではなく、他の動力源を採用することは当然可能である。他の動力源としては、例えば、直流電動機、油圧モータ、空気圧シリンダ、油圧シリンダ、交流ソレノイド及び直流ソレノイド等が例示される。 In each of the above-described embodiments, the case where the load applying device 15 (actuator 15a) is configured by an electric motor (AC motor or DC motor) has been described. However, the present invention is not necessarily limited to this, and another power source is employed. Of course it is possible. Examples of other power sources include a DC motor, a hydraulic motor, a pneumatic cylinder, a hydraulic cylinder, an AC solenoid, and a DC solenoid.
 ここで、アクチュエータ15aをソレノイドにより構成する場合には、歯車機構などによりスプラグ13に荷重を付与する場合に限られず、例えば、電磁力を利用してスプラグ13に荷重を付与するように構成しても良い。 Here, when the actuator 15a is configured by a solenoid, the actuator 15a is not limited to the case where a load is applied to the sprag 13 by a gear mechanism or the like. For example, the actuator 15a is configured to apply a load to the sprag 13 using electromagnetic force. Also good.
 上記第2実施の形態では、第2歯車対21が、第1歯車対6の隣に配設された場合について説明したが、必ずしもこれに限られるものではなく、第1歯車対4の隣、第1歯車対4,5の間、第1歯車対5,6の間など、任意の位置に配設することが可能である。 In the second embodiment, the case where the second gear pair 21 is disposed next to the first gear pair 6 has been described. However, the present invention is not necessarily limited to this. It can be arranged at any position such as between the first gear pair 4, 5 and between the first gear pair 5, 6.
 上記各実施の形態では、第1クラッチ10を出力軸3に設けた場合について説明したが、必ずしもこれに限られるものではなく、入力軸2に設けることも当然可能である。また、上記第2実施の形態においては、第2クラッチ22を入力軸2に設けた場合について説明したが、必ずしもこれに限定されるものではなく、出力軸3に設けることは当然可能である。 In each of the above embodiments, the case where the first clutch 10 is provided on the output shaft 3 has been described. However, the present invention is not necessarily limited to this, and it is naturally possible to provide the first clutch 10 on the input shaft 2. In the second embodiment, the case where the second clutch 22 is provided on the input shaft 2 has been described. However, the present invention is not necessarily limited to this, and can naturally be provided on the output shaft 3.
 また、上記第3実施の形態においては、第2クラッチ34を出力軸32に設けた場合について説明したが、必ずしもこれに限定されるものではなく、入力軸2に設けることは当然可能である。この場合には、入力軸2と同軸に形成された入力軸を別途設け、その入力軸(以下「新入力軸」と称す)に第2歯車対33の駆動歯車33aを配設し、第1歯車対6の駆動歯車6aと並設する。新入力軸と入力軸2とを第2クラッチ34を介して連結する。第2クラッチ34の内輪11を入力軸2と一体に形成し、新入力軸に外輪連結部34aを連結させる。この場合も第3実施の形態における動力伝達装置30と同様に、コースト走行時に、荷重付与装置15の作動と非作動とを切り替えることにより、エネルギー損失を抑制して走行距離を伸ばすか、或いは出力軸31の制動を図るか、いずれを優先するかを選択できる。 In the third embodiment, the case where the second clutch 34 is provided on the output shaft 32 has been described. However, the present invention is not necessarily limited to this, and can naturally be provided on the input shaft 2. In this case, an input shaft formed coaxially with the input shaft 2 is separately provided, and the drive gear 33a of the second gear pair 33 is disposed on the input shaft (hereinafter referred to as "new input shaft"), and the first The drive gear 6a of the gear pair 6 is arranged in parallel. The new input shaft and the input shaft 2 are connected via the second clutch 34. The inner ring 11 of the second clutch 34 is formed integrally with the input shaft 2, and the outer ring connecting portion 34a is connected to the new input shaft. Also in this case, similarly to the power transmission device 30 in the third embodiment, during coasting, the load applying device 15 is switched between operation and non-operation so as to suppress energy loss and extend the travel distance or output. It is possible to select whether the shaft 31 is to be braked or which is prioritized.
 上記各実施の形態では、第2クラッチ22,34が、スプラグの係合解除機能付きのスプラグ型ワンウェイクラッチを備えて構成される場合について説明したが、必ずしもこれに限られるものではなく、他のワンウェイクラッチやツーウェイクラッチを用いることは可能である。他のワンウェイクラッチとしては、例えば、スプラグの係合解除機能を有していない通常のスプラグ型ワンウェイクラッチ等が例示される。ツーウェイクラッチとしては、例えば、特開2007-298145号公報に開示されるもの等が例示される。 In each of the above-described embodiments, the case where the second clutches 22 and 34 are configured to include sprag type one-way clutches with a sprag engagement release function has been described. It is possible to use a one-way clutch or a two-way clutch. Examples of other one-way clutches include a normal sprag type one-way clutch that does not have a sprag engagement release function. Examples of the two-way clutch include those disclosed in Japanese Patent Application Laid-Open No. 2007-298145.
 上記第1実施の形態では説明を省略したが、第1速走行の状態から第2速走行の状態へシフトアップ変速を行った後に、第1速の第1クラッチ10の荷重付与装置15を作動させて第1内輪11及び第1外輪12への第1スプラグ13の係合を強制的に解除しても良い。同様に、第2速走行の状態から第3速走行の状態へシフトアップ変速を行った後に、第2速の第1クラッチ10の荷重付与装置15を作動させて第1内輪11及び第1外輪12への第1スプラグ13の係合を強制的に解除しても良い。同様に、車両100のコースト走行時に、第1クラッチ10の荷重付与装置15を作動させて各第1内輪11及び第1外輪12への第1スプラグ13の係合を強制的に解除しても良い。 Although the description is omitted in the first embodiment, after the upshift is performed from the first speed running state to the second speed running state, the load applying device 15 of the first speed first clutch 10 is operated. Thus, the engagement of the first sprag 13 with the first inner ring 11 and the first outer ring 12 may be forcibly released. Similarly, after performing a shift-up shift from the second speed traveling state to the third speed traveling state, the load application device 15 of the second clutch 10 of the second speed is operated to operate the first inner ring 11 and the first outer ring. The engagement of the first sprags 13 to 12 may be forcibly released. Similarly, even when the vehicle 100 is coasting, the load application device 15 of the first clutch 10 is operated to forcibly disengage the first sprags 13 from the first inner rings 11 and the first outer rings 12. good.
 上記第2実施の形態では説明を省略したが、車両100の加速走行時(第3速)、第1速および第2速の第1クラッチ10の荷重付与装置15を作動させて第1内輪11及び第1外輪12への第1スプラグ13の係合を強制的に解除しても良い。同様に、車両100のコースト走行時に、第1クラッチ10の荷重付与装置15を作動させて第1内輪11及び第1外輪12への第1スプラグ13の係合を強制的に解除しても良い。これは、第3実施の形態の場合も同様である。 Although the description is omitted in the second embodiment, when the vehicle 100 is accelerated (third speed), the load applying device 15 of the first clutch 10 of the first speed and the second speed is operated to operate the first inner ring 11. In addition, the engagement of the first sprag 13 with the first outer ring 12 may be forcibly released. Similarly, when the vehicle 100 is coasting, the load applying device 15 of the first clutch 10 may be operated to forcibly release the engagement of the first sprag 13 to the first inner ring 11 and the first outer ring 12. . The same applies to the case of the third embodiment.
 1,20,30 動力伝達装置
 2       入力軸
 3,31,32 出力軸
 4,5,6   第1歯車対
 10      第1クラッチ
 11      第1内輪
 11a     外周面
 12      第1外輪
 12a     内周面
 13      第1スプラグ
 13a,13b 係合面
 14      保持器
 15      荷重付与装置
 16      リボンスプリング(付勢部材)
 21,33   第2歯車対
 22,34   第2クラッチ
 221,341 第2内輪
 222,342 第2外輪
 223,343 第2スプラグ
 111     エンジン(動力源)
 112     モータ(動力源)
 A,B     接点
 O       軸心
1, 20, 30 Power transmission device 2 Input shaft 3, 31, 32 Output shaft 4, 5, 6 First gear pair 10 First clutch 11 First inner ring 11a Outer peripheral surface 12 First outer ring 12a Inner peripheral surface 13 First sprag 13a, 13b Engagement surface 14 Cage 15 Load applying device 16 Ribbon spring (biasing member)
21, 33 Second gear pair 22, 34 Second clutch 221, 341 Second inner ring 222, 342 Second outer ring 223, 343 Second sprag 111 Engine (power source)
112 Motor (Power source)
A, B contact O axis

Claims (5)

  1.  動力源からの動力が入力される入力軸と、その入力軸に平行に配設された出力軸と、その出力軸および前記入力軸に配設され互いに噛み合って異なる変速比となるように設定された複数の第1歯車対と、その第1歯車対のそれぞれ一方の歯車に配設され前記入力軸から入力される動力を前記出力軸に遮断可能に伝達する一方、前記出力軸から前記入力軸への動力の伝達を遮断する第1クラッチと、を備え、
     前記第1クラッチは、
     断面円形状の外周面を有し軸心回りに回転可能に構成され前記入力軸若しくは前記出力軸または前記歯車に連結される第1内輪と、
     その第1内輪の外周面に対向する断面円形状の内周面を有し前記軸心回りに回転可能に構成され前記第1歯車対の前記歯車または前記入力軸若しくは前記出力軸に連結される第1外輪と、
     その第1外輪の内周面および前記第1内輪の外周面にそれぞれ接する係合面を有し前記第1内輪の外周面および前記第1外輪の内周面の対向間において円周方向に複数配設される第1スプラグと、
     その第1スプラグを前記第1内輪の外周面および前記第1外輪の内周面の円周方向へ傾動可能に保持する保持器と、
     前記第1スプラグに付勢力を付与して前記第1内輪の外周面および前記第1外輪の内周面に前記第1スプラグの係合面が接するようにその第1スプラグを前記円周方向のセルフロック方向へ傾動させる付勢部材と、
     その付勢部材の付勢力に抗して前記保持器を介して前記第1スプラグに荷重を付与して前記セルフロック方向とは逆方向であって前記円周方向の反セルフロック方向へ前記第1スプラグを傾動させる荷重付与装置とを備えていることを特徴とする動力伝達装置。
    An input shaft to which power from a power source is input, an output shaft disposed in parallel to the input shaft, and the output shaft and the input shaft that are engaged with each other and set to have different gear ratios. A plurality of first gear pairs, and power input from the input shaft disposed on one gear of each of the first gear pairs is transmitted to the output shaft so as to be cut off, and from the output shaft to the input shaft. A first clutch for interrupting transmission of power to
    The first clutch is
    A first inner ring having an outer peripheral surface having a circular cross-section and configured to be rotatable about an axis and connected to the input shaft or the output shaft or the gear;
    The first inner ring has an inner peripheral surface having a circular cross section facing the outer peripheral surface of the first inner ring, is configured to be rotatable about the axis, and is connected to the gear, the input shaft, or the output shaft of the first gear pair. A first outer ring;
    A plurality of engagement surfaces that are in contact with the inner peripheral surface of the first outer ring and the outer peripheral surface of the first inner ring, respectively, between the outer peripheral surface of the first inner ring and the inner peripheral surface of the first outer ring. A first sprag disposed;
    A cage for holding the first sprag so as to be tiltable in a circumferential direction of an outer peripheral surface of the first inner ring and an inner peripheral surface of the first outer ring;
    A biasing force is applied to the first sprag so that the engagement surface of the first sprag is in contact with the outer peripheral surface of the first inner ring and the inner peripheral surface of the first outer ring in the circumferential direction. A biasing member that tilts in a self-locking direction;
    A load is applied to the first sprag through the retainer against the urging force of the urging member to reverse the self-locking direction and to the circumferential anti-self-locking direction. A power transmission device comprising a load applying device that tilts one sprag.
  2.  前記出力軸および前記入力軸に配設され互いに噛み合う第2歯車対と、
     その第2歯車対の一方の歯車に配設され前記入力軸から前記出力軸への動力の伝達を遮断する一方、前記出力軸から入力される動力を前記入力軸へ伝達する第2クラッチとを備えていることを特徴とする請求項1記載の動力伝達装置。
    A second gear pair disposed on the output shaft and the input shaft and meshing with each other;
    A second clutch that is disposed on one gear of the second gear pair and blocks transmission of power from the input shaft to the output shaft, while transmitting power input from the output shaft to the input shaft; The power transmission device according to claim 1, wherein the power transmission device is provided.
  3.  前記第2歯車対は、前記出力軸に配設された歯車の歯数が、前記複数の第1歯車対の前記出力軸に配設された歯車の内の最小歯数より小さいことを特徴とする請求項2記載の動力伝達装置。 In the second gear pair, the number of teeth of the gear disposed on the output shaft is smaller than the minimum number of teeth of the gear disposed on the output shaft of the plurality of first gear pairs. The power transmission device according to claim 2.
  4.  前記第2クラッチは、前記出力軸から前記入力軸への動力の伝達を遮断可能に構成されていることを特徴とする請求項2又は3に記載の動力伝達装置。 The power transmission device according to claim 2 or 3, wherein the second clutch is configured to be capable of interrupting transmission of power from the output shaft to the input shaft.
  5.  前記第2クラッチは、
     断面円形状の外周面を有し軸心回りに回転可能に構成され前記入力軸若しくは前記出力軸または前記歯車に連結される第2内輪と、
     その内輪の外周面に対向する断面円形状の内周面を有し前記軸心回りに回転可能に構成され前記第2歯車対の前記歯車または前記入力軸若しくは前記出力軸に連結される第2外輪と、
     その第2外輪の内周面および前記第2内輪の外周面にそれぞれ接する係合面を有し前記第2内輪の外周面および前記第2外輪の内周面の対向間において円周方向に複数配設される第2スプラグと、
     その第2スプラグを前記第2内輪の外周面および前記第2外輪の内周面の円周方向へ傾動可能に保持する保持器と、
     前記第2スプラグに付勢力を付与して前記第2内輪の外周面および前記第2外輪の内周面に前記第2スプラグの係合面が接するようにその第2スプラグを前記円周方向のセルフロック方向へ傾動させる付勢部材と、
     その付勢部材の付勢力に抗して前記保持器を介して前記第2スプラグに荷重を付与して前記セルフロック方向とは逆方向であって前記円周方向の反セルフロック方向へ前記第2スプラグを傾動させる荷重付与装置とを備えていることを特徴とする請求項4記載の動力伝達装置。
    The second clutch is
    A second inner ring having an outer peripheral surface having a circular cross section and configured to be rotatable around an axis and connected to the input shaft or the output shaft or the gear;
    The inner ring has an inner peripheral surface having a circular cross section facing the outer peripheral surface of the inner ring, and is configured to be rotatable about the axis, and is connected to the gear, the input shaft, or the output shaft of the second gear pair. Outer ring,
    A plurality of circumferentially facing portions are provided between the outer peripheral surface of the second inner ring and the inner peripheral surface of the second outer ring, each of which has an engaging surface that contacts the inner peripheral surface of the second outer ring and the outer peripheral surface of the second inner ring. A second sprag disposed;
    A cage that holds the second sprag so as to be tiltable in a circumferential direction of an outer peripheral surface of the second inner ring and an inner peripheral surface of the second outer ring;
    A biasing force is applied to the second sprag so that the engagement surface of the second sprag is in contact with the outer peripheral surface of the second inner ring and the inner peripheral surface of the second outer ring in the circumferential direction. A biasing member that tilts in a self-locking direction;
    A load is applied to the second sprag through the retainer against the urging force of the urging member to reverse the self-lock direction and the anti-self-lock direction in the circumferential direction. The power transmission device according to claim 4, further comprising a load applying device that tilts the two sprags.
PCT/JP2010/059044 2009-05-27 2010-05-27 Power transmission equipment WO2010137668A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011516063A JP4862104B2 (en) 2009-05-27 2010-05-27 Power transmission device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-128229 2009-05-27
JP2009128229 2009-05-27

Publications (1)

Publication Number Publication Date
WO2010137668A1 true WO2010137668A1 (en) 2010-12-02

Family

ID=43222773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/059044 WO2010137668A1 (en) 2009-05-27 2010-05-27 Power transmission equipment

Country Status (2)

Country Link
JP (1) JP4862104B2 (en)
WO (1) WO2010137668A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012172796A (en) * 2011-02-23 2012-09-10 Toyota Motor Corp Driving device
CN110291303A (en) * 2017-03-08 2019-09-27 博格华纳公司 With the rachet clutch for inhibiting ratcheting feature
JP2020521087A (en) * 2017-05-19 2020-07-16 キム,ボク ソン Motor multi-speed transmission

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS495129B1 (en) * 1970-05-04 1974-02-05
JP2004245316A (en) * 2003-02-13 2004-09-02 Ntn Corp Rotation transmission mechanism
JP2007298145A (en) * 2006-05-02 2007-11-15 Nissan Motor Co Ltd Transmission for vehicle
JP2008309323A (en) * 2007-06-14 2008-12-25 Yutaka Tanaka Transmission using special roller ratchet

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008089118A (en) * 2006-10-03 2008-04-17 Ntn Corp Rotation transmission device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS495129B1 (en) * 1970-05-04 1974-02-05
JP2004245316A (en) * 2003-02-13 2004-09-02 Ntn Corp Rotation transmission mechanism
JP2007298145A (en) * 2006-05-02 2007-11-15 Nissan Motor Co Ltd Transmission for vehicle
JP2008309323A (en) * 2007-06-14 2008-12-25 Yutaka Tanaka Transmission using special roller ratchet

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012172796A (en) * 2011-02-23 2012-09-10 Toyota Motor Corp Driving device
CN110291303A (en) * 2017-03-08 2019-09-27 博格华纳公司 With the rachet clutch for inhibiting ratcheting feature
CN110291303B (en) * 2017-03-08 2021-12-07 博格华纳公司 Pawl clutch with pawl restraining feature
JP2020521087A (en) * 2017-05-19 2020-07-16 キム,ボク ソン Motor multi-speed transmission
JP7317316B2 (en) 2017-05-19 2023-07-31 キム,ボク ソン Motor multi-speed transmission

Also Published As

Publication number Publication date
JP4862104B2 (en) 2012-01-25
JPWO2010137668A1 (en) 2012-11-15

Similar Documents

Publication Publication Date Title
JP5876410B2 (en) Power transmission device
JP4981993B2 (en) Power transmission device
JP5735754B2 (en) Power transmission device
JP4732335B2 (en) Transmission device
EP2662256B1 (en) Vehicle motor drive device and automobile
WO2011093425A1 (en) Power transmission device
JP5465614B2 (en) VEHICLE MOTOR DRIVE DEVICE AND AUTOMOBILE
JP2007298145A (en) Transmission for vehicle
JP4862104B2 (en) Power transmission device
JP2007270923A (en) Power transmission system
JP2007296869A (en) Driving apparatus for hybrid vehicle
JP5490115B2 (en) Vehicle control device
JP4834797B2 (en) Power transmission device
JP4781305B2 (en) Dog clutch structure of continuously meshing gear transmission
JP2023016209A (en) drive
JP6125668B2 (en) Power transmission device for vehicle
JP5624540B2 (en) Vehicle control device
JP2005140145A (en) Power transmitting device for hybrid vehicle
JP5087572B2 (en) Power transmission device
JP7413604B2 (en) parking mechanism
JP5890216B2 (en) Hoisting machine with built-in load-sensitive automatic transmission
JP6251102B2 (en) Power transmission device
JP2015081618A (en) Dog clutch type transmission device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10780622

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011516063

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10780622

Country of ref document: EP

Kind code of ref document: A1