WO2010137609A1 - Impeller applied to supercharger and method of manufacturing same - Google Patents

Impeller applied to supercharger and method of manufacturing same Download PDF

Info

Publication number
WO2010137609A1
WO2010137609A1 PCT/JP2010/058878 JP2010058878W WO2010137609A1 WO 2010137609 A1 WO2010137609 A1 WO 2010137609A1 JP 2010058878 W JP2010058878 W JP 2010058878W WO 2010137609 A1 WO2010137609 A1 WO 2010137609A1
Authority
WO
WIPO (PCT)
Prior art keywords
impeller
recess
rotor shaft
rotor assembly
sintering
Prior art date
Application number
PCT/JP2010/058878
Other languages
French (fr)
Japanese (ja)
Inventor
智裕 井上
高橋 幸雄
松山 良満
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Publication of WO2010137609A1 publication Critical patent/WO2010137609A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas- turbine plants for special use
    • F02C6/04Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output
    • F02C6/10Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output supplying working fluid to a user, e.g. a chemical process, which returns working fluid to a turbine of the plant
    • F02C6/12Turbochargers, i.e. plants for augmenting mechanical power output of internal-combustion piston engines by increase of charge pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/025Fixing blade carrying members on shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/24Control of the pumps by using pumps or turbines with adjustable guide vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/22Manufacture essentially without removing material by sintering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/30Retaining components in desired mutual position
    • F05D2260/37Retaining components in desired mutual position by a press fit connection

Definitions

  • the present invention relates to an impeller applied to a supercharger and a manufacturing method thereof.
  • Superchargers are often used for the purpose of sending more air into an internal combustion engine.
  • the supercharger includes a compressor impeller, and the compressor impeller is driven to pressurize and supply air to the engine.
  • a turbocharger of a type called a turbocharger includes a turbine impeller that receives engine exhaust, and energy taken out from the exhaust by the turbine impeller drives a compressor impeller.
  • an engine crankshaft is connected to a compressor impeller and drives it.
  • a turbine impeller Since the turbine impeller is exposed to high-temperature exhaust, it must withstand high heat of, for example, about 800 ° C. Therefore, the design and manufacture of a turbine impeller is more difficult than the compressor impeller in terms of material, structure, and manufacturing method, and requires advanced technology.
  • the coupling between the compressor impeller and the rotor shaft can be fastened by bolts, but such a simple coupling cannot withstand high temperatures, and therefore other means are required for coupling the turbine impeller.
  • a turbine impeller includes a so-called inlay (a seat into which a mating part fits) at the bottom, and is coupled to a rotor shaft by electron beam welding in the inlay to form a rotor assembly. Since the rotor assembly rotates at a high speed of several hundred thousand rpm, a slight tilt caused by welding is not allowed. How to ensure the accuracy of the rotor assembly is an important technical challenge.
  • An object of the present invention is to provide a rotor assembly that does not depend on coupling means that causes a problem in accuracy such as welding and screw fastening, and a method for manufacturing the same.
  • a rotor assembly for use in a supercharger and rotating about an axis extends along the axis and is configured to transmit torque and by sintering.
  • An impeller formed into a single body, and an impeller provided with a recess that is crimped and fitted to the rotor shaft by shrinkage due to the sintering.
  • a rotor shaft configured to extend along an axis and transmit torque, and an impeller formed into a single body by sintering, wherein the impeller is contracted by the sintering.
  • a method of manufacturing a rotor assembly having a recess that is crimped onto a rotor shaft and adapted to mold the recess and the outer diameter of the impeller.
  • a green body having a cavity corresponding to the structure by assembling a mold that can be divided into a plurality of cavities, injecting a kneaded material containing a metal or ceramic powder and a binder into the mold
  • the rotor shaft is inserted into the recess, the green body is contracted, and the recess is crimped to the rotor assembly, so that the impeller and the low To couple the shaft, sintering the green body, it consists of.
  • FIG. 1 is a partial cross-sectional view of a supercharger according to an embodiment of the present invention, corresponding to a portion indicated by an arrow I in FIG.
  • FIG. 2 is a cross-sectional view showing the entire supercharger.
  • FIG. 3 is a cross-sectional view of the rotor assembly of the supercharger including an impeller.
  • 4A and 4B are cross-sectional views illustrating the coupling between the impeller and the rotor shaft, wherein FIG. 4A is an enlarged view of IVA in FIG. 3, and FIG. 4B is taken from line IVB-IVB in FIG.
  • FIG. 5 is a cross-sectional view of an impeller according to a modification of the embodiment.
  • FIG. 5 is a cross-sectional view of an impeller according to a modification of the embodiment.
  • FIG. 6 is a diagram illustrating a process of injection molding the impeller, and is a cross-sectional view of the mold and the green body.
  • FIG. 7 is a schematic cross-sectional view showing the stage of degreasing the green body.
  • FIG. 8 is a schematic cross-sectional view showing the stage of sintering the degreased green body in combination with the rotor shaft.
  • FIG. 9 is a diagram illustrating a process of injection molding the impeller according to the modification, and is a cross-sectional view of the mold and the green body.
  • a rotor assembly according to an embodiment of the present invention can be used for the purpose of driving a compressor in a turbocharger for a vehicle, for example, but can also be used for other purposes.
  • a rotor assembly that drives a compressor of a turbocharger will be described.
  • the turbocharger 1 generally includes a turbine portion drawn on the left in the drawing, a shaft portion drawn in the center in the drawing, and a compressor portion drawn on the right in the drawing. Energy is extracted from the exhaust of the engine by the turbine unit, and the energy is transmitted to the compressor unit through the shaft unit, and the compressor unit compresses the air and sends it to the engine.
  • the shaft portion includes a bearing housing 3, a radial bearing 5 and a thrust bearing 7 supported by the bearing housing 3, and a rotor shaft 9 rotatably supported by both bearings 5 and 7.
  • the radial bearing 5 supports the rotor shaft 9 in the radial direction
  • the thrust bearing 7 supports the rotor shaft 9 in the axial direction, so that the rotor shaft 9 can rotate around the axis C.
  • the rotor shaft 9 includes a flange 61 for coupling to the turbine impeller 27 at the left end in the axial direction.
  • the rotor shaft 9 is combined with a turbine impeller 27 to constitute a rotor assembly 29.
  • Compressor impeller 13 is coupled to the right end of rotor shaft 9 in the axial direction so as to rotate together about axis C. Such coupling is performed by fastening with bolts, but if possible, other means such as welding or fitting may be used.
  • a compressor housing 11 is coupled to the right end of the bearing housing 3 so as to cover the compressor impeller 13. The connection can be by fastening bolts, but may be by other means. The compressor housing 11 secures an appropriate gap with respect to the impeller 13 so as not to interfere with the rotation.
  • the compressor impeller 13 includes a wheel 15 around the axis C and a plurality of blades 17 extending in the radial direction from the wheel 15.
  • the blades 17 are arranged at equal intervals around the wheel 15, but the arrangement is not necessarily limited to equal intervals.
  • Each blade 17 is inclined with respect to the axial direction, more preferably has an airfoil shape, and air is supplied in a centrifugal direction in a centrifugal direction as the wheel 15 rotates.
  • Each outer edge of each blade 17 is close to the inner wall of the compressor housing 11 so as to minimize airflow diversion.
  • the compressor housing 11 includes an air intake port 19 and a diffuser passage 21 communicating with the air intake port 19.
  • the air intake 19 is for taking in outside air, and is configured to be coupled to an intake pipe having an air cleaner (not shown).
  • the diffuser passage 21 is a slit-like passage formed so as to surround the outer edge of the base end of the compressor impeller 13, and the air pressurized in the centrifugal direction by the compressor impeller 13 passes through the diffuser passage 21.
  • the compressor housing 11 further includes a compressor scroll passage 23 that communicates with the diffuser passage 21.
  • the compressor scroll channel 23 is a spiral channel that goes around the compressor impeller 13 at least once, and the outer periphery of the diffuser channel 21 opens to the compressor channel 23 over the entire circumference.
  • the opening at the end of the compressor scroll passage 23 is configured to be coupled to an intake manifold (not shown) of the engine.
  • a turbine impeller 27 is coupled to the left end in the axial direction of the rotor shaft 9 so as to rotate together around the axis C to form a rotor assembly 29.
  • coupling is realized by engagement and pressure bonding using a sintering process, regardless of means such as welding, brazing, or screw fastening. Further welding or brazing may be applied additionally.
  • a turbine housing 25 is coupled to the left end of the bearing housing 3 so as to cover the turbine impeller 27. Such coupling is by fastening bolts or other suitable means. The turbine housing 25 secures an appropriate gap with respect to the turbine impeller 27 so as not to interfere with the rotation.
  • the turbine housing 25 includes a turbine scroll passage 51 having one end opened to the outside.
  • the turbine scroll flow path 51 is a spiral flow path that makes at least one round around the turbine impeller 27, and the inner periphery thereof opens toward the turbine impeller 27.
  • the externally open end is configured to couple with an exhaust manifold (not shown) to take in exhaust from the engine.
  • the turbine housing 25 includes a variable nozzle unit 31 disposed so as to be interposed between the turbine scroll passage 51 and the turbine impeller 27.
  • the variable nozzle unit 31 includes a ring 33, a shroud ring 37, and a plurality of nozzles 41.
  • the ring 33 is fixed to the turbine housing 25 via the attachment ring 33.
  • the shroud ring 37 is fixed to the mounting ring 33 via a plurality of connecting pins 39, and a throat through which exhaust gas can pass is secured between the ring 33 and the shroud ring 37.
  • the plurality of nozzles 41 are arranged around the turbine impeller 27 at equal intervals, and are fitted to the rings 33 and 37 so as to be swingable.
  • Each nozzle 41 includes a vane positioned at the throat between the rings 33 and 37.
  • the vane can adjust the opening degree of the throat by swinging the nozzle 41.
  • Each nozzle 41 includes a shaft 43 extending rightward in the drawing, and is connected to a synchronization mechanism 45 at the right end of the shaft 43.
  • the synchronization mechanism 45 includes a ring member that can rotate around the axis C, and a plurality of links that are respectively connected to the shaft 43 from the ring member. That is, the synchronization mechanism 45 is configured so that the links are driven by the rotation of the ring members, and the shafts 43 are respectively rotated to swing the plurality of nozzles 41 in synchronization.
  • the synchronization mechanism 45 is connected to the lever 49 via the transmission shaft 47 and can be driven by an external actuator.
  • variable nozzle unit 31 and the synchronization mechanism 45 described above are necessary only when the turbocharger 1 is a variable displacement type, and may be omitted in other cases.
  • the turbine scroll flow path 51 communicates with the turbine impeller 27 through an appropriate throat.
  • the turbine housing 25 includes a discharge port 53 so as to communicate with the left end in the axial direction of the turbine impeller 27.
  • the discharge port 53 is for discharging exhaust gas that has passed through the turbine impeller 27, and is configured to be coupled to an exhaust pipe that includes a purification device (not shown).
  • the turbine impeller 27 is made of metal or ceramic formed into a single body by powder injection molding described later, and includes a wheel portion 55 and a plurality of blades 57 extending in the radial direction from the wheel portion 55. Prepare.
  • the turbine impeller 27 is coupled to the rotor shaft 9 at the right end of the wheel portion 55, thereby configuring the rotor assembly 29.
  • the plurality of blades 57 are formed integrally with the wheel portion 55 and arranged around the axis C at equal intervals. If possible, it may not be equally spaced.
  • Each blade 57 has an inclination with respect to the direction of the axis C, and more preferably has an airfoil shape, in order to generate torque by receiving an exhaust airflow. Accordingly, the turbine impeller 27 can extract energy from the exhaust and drive the compressor impeller 13 via the rotor shaft 9.
  • Each outer edge of each blade 57 is proximate to the shroud ring 35 to minimize airflow diversion. When there is no variable nozzle unit 31, each outer edge is close to the inner wall of the turbine housing 25.
  • the wheel portion 55 has a concave portion 59 for coupling with the rotor shaft 9 at the right end thereof.
  • the recess 59 may be a recess that is slightly retracted from the right end of the wheel portion 55, a hole that penetrates considerably into the wheel portion 55, or a hole that penetrates to the left end.
  • an inward flange 63 projecting inward from the edge of the recess 59 is provided.
  • the inward flange 63 may be on the same plane as the bottom surface (the rightmost surface in the drawing) of the wheel portion 55, or may protrude from the bottom surface as shown in FIG.
  • the inward flange 63 is configured to engage with the flange 61 of the rotor shaft 9.
  • one or more grooves 65 extending in the axial direction may be provided on the outer periphery of the rotor shaft 9, and the protrusions 67 may be provided in the recesses 59 correspondingly.
  • a protrusion extending in the axial direction may be provided on the outer periphery of the rotor shaft 9 and a groove may be provided in the recess 59 so as to correspond thereto.
  • the wheel portion 55 of the rotor assembly 29 ⁇ / b> A may include a hole 69 that extends around the axis C from the apex (right end in the drawing) toward the bottom surface.
  • FIG. 5 illustrates a non-through hole 69 having a bottom, which may pass through into the recess 59 if possible.
  • the wheel portion 55 is made thinner due to the hole 69, which is advantageous in preventing the occurrence of internal defects due to sintering.
  • Exhaust gas discharged from the engine passes through the turbine scroll passage 51 from the intake port, and then flows in a spiral shape into the throat of the variable nozzle unit 31 (the throat of the turbine housing when there is no variable nozzle unit), and further, the turbine impeller 27.
  • the exhaust gives torque to the turbine impeller 27 when passing between the plurality of blades 57 and is discharged to the discharge port 53.
  • Such torque is transmitted to the compressor impeller 13 by the rotor shaft 9 and is used for air compression by rotating the compressor impeller 13.
  • the throat opening degree may be adjusted by swinging the plurality of nozzles 41.
  • the rotor assembly 29 is manufactured by powder injection molding as follows.
  • the injection molding machine includes a fixed frame 73 and a movable frame 79 for supporting the mold 71.
  • the injection molding machine includes an injection machine (not shown), an injection nozzle 95, an actuator for driving the movable frame 79, and the like.
  • the mold 71 is made of an appropriate metal such as SKD11 (JIS G 4404) and can be appropriately divided.
  • the mold 71 is divided into a base 75 and an outer mold 85, and each of the base 75 and the outer mold 85 is further divided into a plurality in the circumferential direction.
  • the combination of the forming surface 77 of the pedestal 75 and the forming surface 87 of the outer mold 85 defines a cavity 89 that is adapted to form the outer shape of the turbine impeller 27.
  • the base 75 has a structure suitable for forming the recess 59. Since the volume shrinkage of about 20% occurs due to the sintering, the mold 71 and the base 75 are designed in consideration of the volume shrinkage.
  • a block 81 is interposed between the mold 71 and the movable frame 79.
  • the block 81 has a conical concave surface 83, and the mold 71 has a corresponding tapered surface.
  • the portions of the outer mold 85 are in close contact with each other in the circumferential direction.
  • an actuator is provided to move each of the outer molds 85 in the radial direction. Such an actuator may be configured to drive the outer mold 85 in synchronization with the movable frame 79.
  • the fixed frame 73 further includes a spool 97 that communicates with the injection nozzle 95, and the base 75 includes a runner 93 and a gate 91 that communicate with the spool 97 and allow the ejected material to pass therethrough.
  • the runner 93 is provided so as to penetrate the table 75.
  • the gate 91 opens at the right end of the cavity 89.
  • the gate 91 and the spool 97 may be provided in the outer mold 85 or other elements in place of or in addition to the table 75.
  • the core 103 may be provided as in the modification shown in FIG.
  • the core 103 is adapted to mold the hole 69 of the turbine impeller 27.
  • the core 103 may be slightly tapered to facilitate extraction after injection molding.
  • the core 103 may be made of a disappearing material instead of being made of metal.
  • the evanescent material include thermoplastic resins such as styrene, acrylic, cellulose, polyethylene, vinyl, nylon, and fluorocarbon resins. Appropriate additives may be added. Since the vanishing core is decomposed and evaporated in the degreasing step described later, the extraction after the injection molding can be omitted.
  • the injection M is kneaded.
  • a mixture of metal powder or ceramic powder and a binder is suitable.
  • metal powder or ceramic powder powders of various materials can be used according to required characteristics.
  • Ni-base heat-resistant alloy Inconel 713C, IN100, MAR-M246, etc.
  • ceramic powder such as silicon nitride and sialon
  • a known powder injection molding binder can be used as the binder.
  • a powder injection molding binder for example, a material obtained by adding an additive such as paraffin wax to a thermoplastic resin such as polystyrene or polymethyl methacrylate can be suitably used.
  • Such a binder after solidifying after injection, retains the form of the injection product until the degreasing step described later, decomposes and evaporates in the degreasing step, and leaves no trace on the sintered product.
  • the mixture of the metal powder or ceramic powder and the binder is heated to, for example, 100 to 150 ° C. and kneaded.
  • the kneading temperature can be appropriately selected depending on the composition of the kneaded product. After kneading, the injection M is obtained by cooling appropriately.
  • the elements of the base 75 and the outer mold 85 are placed on the fixed frame 73. If the core 103 is a separate body, it is placed on the base 75. A known release agent may be applied to these in advance.
  • the outer mold 85 is moved inward in the radial direction by the actuator, and the components of the outer mold 85 are brought into contact with each other.
  • the block 81 is brought into contact with these and pressed by the movable frame 79.
  • the movement of the outer mold 85 by the actuator may be synchronized with the movement of the movable frame 79. Therefore, the outer mold 85 and the base 75 are in close contact with each other, and the mold 71 is assembled.
  • the injection M is heated to, for example, 160 to 200 ° C. to give sufficient fluidity, and is injected into the mold 71 through the injection nozzle 95 with pressurization of about 100 MPa.
  • the heating temperature and the injection pressure can be appropriately selected depending on the composition of the kneaded product.
  • the injection is solidified and the green body 27F is formed.
  • the movable frame 79 is pulled away from the mold 71, and the outer mold 85 is further pulled away from the green body 27F. Moreover, the stand 75 is removed from the inward flange 63F by being displaced from each other. Accordingly, the green body 27F is taken out from the mold 71.
  • the green body 27F can be handled by having the core 103.
  • the core 103 is extracted from the extracted green body 27F using an appropriate jig.
  • the core 103 may be subjected to a degreasing step described later while being fitted in the green body 27F. In the degreasing process, the vanishing core 103 is decomposed and evaporated to disappear.
  • the molded green body 27F is about 20% larger in volume ratio than the final shape in consideration of shrinkage due to sintering.
  • the green body 27F includes a recess 59F that becomes the recess 59 after sintering, and more preferably includes an inward flange 63F, which are also about 20% larger in volume ratio than the final shape.
  • These structures may be formed by machining after injection.
  • the green body 27F is introduced into an appropriate atmosphere control furnace 99. While introducing nitrogen gas into the furnace and maintaining the nitrogen atmosphere, the inside of the furnace is heated to an appropriate high temperature not exceeding 800 ° C. by appropriate heating means such as a carbon heater, and is maintained for 30 minutes or more. The Through such a degreasing process, the binder contained in the green body 27F (and the core 103 when the vanishing core 103 is used) is melted, decomposed, and evaporated to be removed.
  • the degreasing step may be replaced with other known methods such as elution with an appropriate solvent instead of the above-described method.
  • the flange 61 of the rotor shaft 9 is inserted into the recessed portion 59F of the degreased green body 27F, and the whole is supported by an appropriate jig, and is placed in an appropriate atmosphere control furnace 101. be introduced. At this time, since it is before shrinkage due to sintering, a slight gap is maintained between the flange 61 and the hole 59F.
  • the inside of the furnace 101 is placed under an appropriate reduced pressure, and the inside of the furnace is heated to an appropriate sintering temperature, for example, 1000 to 1500 ° C. by an appropriate heating means such as a carbon heater, for an appropriate time, for example, 1 hour or more. Retained.
  • an appropriate heating means such as a carbon heater
  • the sintering progresses and the green body 27F contracts.
  • the recess 59F is reduced in diameter and comes into contact with the flange 61, and the flange 61 is pressure-bonded to the recess 59 after sintering. Since the flange 61 resists the force that the concave portion 59 tends to contract, the compressive stress can be left, so that the coupling can be stabilized.
  • This residual stress can be appropriately adjusted by the difference in diameter between the recess 59F and the flange 61 and the shrinkage rate of the green body 27F via the composition of the injection.
  • the degreasing step and the sintering step are independent, but these may be carried out continuously.
  • interference fit is a fit in which one part is forcibly pressed into a space provided by a counterpart part. Usually, an interference fit is achieved by press-fitting the one part into the space. On the contrary, in the pressure bonding between the recess 59 and the flange 61, the space provided by the impeller 27, that is, the recess 59 is forcibly pressed against the flange 61 by shrinkage due to sintering. In other words, this is the opposite of normal interference fit.
  • the rotor assembly can be manufactured with high accuracy. Since the impeller is molded and the rotor shaft is not coupled again, but the impeller can be molded and the rotor shaft can be coupled at the same time, the productivity is remarkably improved.
  • the present embodiment can be preferably applied to a rotor assembly of a turbocharger, but can be applied to various machine parts including a coupling requiring accuracy.
  • a rotor assembly independent of coupling means that causes problems in accuracy such as welding and screw fastening, and a method for manufacturing the same are provided.

Abstract

A rotor assembly used for a supercharger and rotating about the axis, comprising: a rotary shaft extending along the axis and configured to transmit torque; and an impeller molded as a single body by sintering and having a recess which is engaged with the rotary shaft by means of pressure-fitting by contraction in the sintering operation.

Description

過給機に適用されるインペラおよびその製造方法Impeller applied to supercharger and method for manufacturing the same
 本発明は、過給機に適用されるインペラおよびその製造方法に関する。 The present invention relates to an impeller applied to a supercharger and a manufacturing method thereof.
 内燃機関エンジンに、より多くの空気を送り込む目的で、しばしば過給機が利用されている。過給機はコンプレッサインペラを備え、コンプレッサインペラが駆動されることにより空気を加圧してエンジンに供給する。ターボチャージャと呼ばれる形式の過給機においては、エンジンの排気を受けるタービンインペラを備え、かかるタービンインペラが排気から取り出したエネルギが、コンプレッサインペラを駆動する。一方、狭義の過給機(スーパーチャージャ)においては、エンジンのクランクシャフトがコンプレッサインペラに連結しており、これを駆動する。 ∙ Superchargers are often used for the purpose of sending more air into an internal combustion engine. The supercharger includes a compressor impeller, and the compressor impeller is driven to pressurize and supply air to the engine. A turbocharger of a type called a turbocharger includes a turbine impeller that receives engine exhaust, and energy taken out from the exhaust by the turbine impeller drives a compressor impeller. On the other hand, in a supercharger in a narrow sense, an engine crankshaft is connected to a compressor impeller and drives it.
 タービンインペラは高温の排気に曝されるため、例えば800℃程度の高熱に耐えねばならない。それ故、タービンインペラの設計および製造には、コンプレッサインペラと比較して、材質、構造、製造方法の点からより困難な制約があり、高度な技術を要する。例えばコンプレッサインペラとロータシャフトとの結合はボルトによる締結によることができるが、そのような簡易な結合は高温に耐えられないので、タービンインペラの結合には他の手段を必要とする。一例としてタービンインペラは、その底部に所謂インロー(相手方部品が嵌まり込む座)を備え、かかるインローにおいて電子ビーム溶接によりロータシャフトと結合されてロータアセンブリを構成する。ロータアセンブリは数十万rpmにも及ぶ高速回転をするので、溶接に起因する僅かな傾きも許されない。ロータアセンブリの精度をいかにして確保するかは、重要な技術的挑戦である。 Since the turbine impeller is exposed to high-temperature exhaust, it must withstand high heat of, for example, about 800 ° C. Therefore, the design and manufacture of a turbine impeller is more difficult than the compressor impeller in terms of material, structure, and manufacturing method, and requires advanced technology. For example, the coupling between the compressor impeller and the rotor shaft can be fastened by bolts, but such a simple coupling cannot withstand high temperatures, and therefore other means are required for coupling the turbine impeller. As an example, a turbine impeller includes a so-called inlay (a seat into which a mating part fits) at the bottom, and is coupled to a rotor shaft by electron beam welding in the inlay to form a rotor assembly. Since the rotor assembly rotates at a high speed of several hundred thousand rpm, a slight tilt caused by welding is not allowed. How to ensure the accuracy of the rotor assembly is an important technical challenge.
 関連する技術が、日本国特許公開公報2001-254627号に開示されている。 Related technology is disclosed in Japanese Patent Publication No. 2001-254627.
 本発明は、溶接やネジ締結のごとき精度に問題を生ずる結合手段によらないロータアセンブリおよびその製造方法を提供することを目的とする。 An object of the present invention is to provide a rotor assembly that does not depend on coupling means that causes a problem in accuracy such as welding and screw fastening, and a method for manufacturing the same.
 本発明の第1の局面によれば、過給機に用いられ、軸の周りに回転するロータアセンブリは、前記軸に沿って伸びてトルクを伝達するべく構成されたロータシャフトと、焼結によって単一体に成形されたインペラであって、前記焼結による収縮により前記ロータシャフトに圧着して嵌合する凹部を備えたインペラと、を備える。 According to a first aspect of the present invention, a rotor assembly for use in a supercharger and rotating about an axis extends along the axis and is configured to transmit torque and by sintering. An impeller formed into a single body, and an impeller provided with a recess that is crimped and fitted to the rotor shaft by shrinkage due to the sintering.
 本発明の第2の局面によれば、軸に沿って伸びてトルクを伝達するべく構成されたロータシャフトと、焼結によって単一体に成形されたインペラであって、前記焼結による収縮により前記ロータシャフトに圧着して嵌合する凹部を備えたインペラと、を備えたロータアセンブリを製造する方法は、前記凹部を成形するのに適合した構造と、前記インペラの外径を成形するのに適合したキャビティとを有し、複数に分割可能なモールドを組み上げ、前記モールド内に、金属またはセラミックよりなる粉末とバインダとを含む混練物を射出して、前記構造に対応する凹所を有するグリーン体を成形し、前記凹所に前記ロータシャフトを挿入し、前記グリーン体を収縮させて前記凹所を前記ロータアセンブリに圧着させて前記インペラと前記ロータシャフトとを結合するべく、前記グリーン体を焼結する、ことよりなる。 According to a second aspect of the present invention, there is a rotor shaft configured to extend along an axis and transmit torque, and an impeller formed into a single body by sintering, wherein the impeller is contracted by the sintering. A method of manufacturing a rotor assembly having a recess that is crimped onto a rotor shaft and adapted to mold the recess and the outer diameter of the impeller. A green body having a cavity corresponding to the structure, by assembling a mold that can be divided into a plurality of cavities, injecting a kneaded material containing a metal or ceramic powder and a binder into the mold The rotor shaft is inserted into the recess, the green body is contracted, and the recess is crimped to the rotor assembly, so that the impeller and the low To couple the shaft, sintering the green body, it consists of.
図1は、本発明の一実施形態による過給機の部分断面図であって、図2の矢印Iの部分に相当する図である。FIG. 1 is a partial cross-sectional view of a supercharger according to an embodiment of the present invention, corresponding to a portion indicated by an arrow I in FIG. 図2は、前記過給機の全体を表す断面図である。FIG. 2 is a cross-sectional view showing the entire supercharger. 図3は、インペラを含む前記過給機のロータアセンブリの断面図である。FIG. 3 is a cross-sectional view of the rotor assembly of the supercharger including an impeller. 図4は、前記インペラとロータシャフトとの結合を説明する断面図であって、(a)は図3のIVAを拡大した図であり、(b)は(a)の線IVB-IVBから取られた図である。4A and 4B are cross-sectional views illustrating the coupling between the impeller and the rotor shaft, wherein FIG. 4A is an enlarged view of IVA in FIG. 3, and FIG. 4B is taken from line IVB-IVB in FIG. FIG. 図5は、前記実施形態の変形例によるインペラの断面図である。FIG. 5 is a cross-sectional view of an impeller according to a modification of the embodiment. 図6は、前記インペラを射出成形する工程を説明する図であって、モールドおよびグリーン体の断面図である。FIG. 6 is a diagram illustrating a process of injection molding the impeller, and is a cross-sectional view of the mold and the green body. 図7は、前記グリーン体を脱脂する段階を表す模式的断面図である。FIG. 7 is a schematic cross-sectional view showing the stage of degreasing the green body. 図8は、脱脂した前記グリーン体を前記ロータシャフトと組み合わせて焼結する段階を現す模式的断面図である。FIG. 8 is a schematic cross-sectional view showing the stage of sintering the degreased green body in combination with the rotor shaft. 図9は、前記変形例による前記インペラを射出成形する工程を説明する図であって、モールドおよびグリーン体の断面図である。FIG. 9 is a diagram illustrating a process of injection molding the impeller according to the modification, and is a cross-sectional view of the mold and the green body.
 本発明の実施形態を添付の図面を参照して以下に説明する。説明の便宜のために、図面中でLと表示された方向を左方向と表現し、Rと表示された方向を右方向と表現するが、これらの表現は本発明に対して限定的でない。 Embodiments of the present invention will be described below with reference to the accompanying drawings. For convenience of explanation, a direction indicated as L in the drawing is expressed as a left direction, and a direction indicated as R is expressed as a right direction, but these expressions are not limited to the present invention.
 本発明の一実施形態によるロータアセンブリは、例えば車両用のターボチャージャにおいてコンプレッサを駆動する目的に利用しうるが、他の用途にも勿論利用しうる。以下では説明の便宜の為に、ターボチャージャのコンプレッサを駆動するロータアセンブリの場合につき説明する。 A rotor assembly according to an embodiment of the present invention can be used for the purpose of driving a compressor in a turbocharger for a vehicle, for example, but can also be used for other purposes. Hereinafter, for convenience of explanation, a case of a rotor assembly that drives a compressor of a turbocharger will be described.
 図2を参照するに、ターボチャージャ1は、概して、図中左に描かれたタービン部と、図中中央に描かれたシャフト部と、図中右に描かれたコンプレッサ部と、よりなる。タービン部によりエンジンの排気からエネルギが取り出され、かかるエネルギがシャフト部を介してコンプレッサ部に伝達され、コンプレッサ部により空気が圧縮されてエンジンに送り出される。 Referring to FIG. 2, the turbocharger 1 generally includes a turbine portion drawn on the left in the drawing, a shaft portion drawn in the center in the drawing, and a compressor portion drawn on the right in the drawing. Energy is extracted from the exhaust of the engine by the turbine unit, and the energy is transmitted to the compressor unit through the shaft unit, and the compressor unit compresses the air and sends it to the engine.
 シャフト部は、軸受ハウジング3と、軸受ハウジング3により支持されたラジアルベアリング5およびスラストベアリング7と、両ベアリング5,7により回転可能に支持されたロータシャフト9とを備える。ラジアルベアリング5はロータシャフト9を径方向に支持し、スラストベアリング7はロータシャフト9を軸方向に支持し、以ってロータシャフト9は軸Cの周りに回転可能である。ロータシャフト9は、図3に示すように、その軸方向左端に、タービンインペラ27と結合するためのフランジ61を備える。詳しくは後述するが、ロータシャフト9はタービンインペラ27と結合してロータアセンブリ29を構成する。 The shaft portion includes a bearing housing 3, a radial bearing 5 and a thrust bearing 7 supported by the bearing housing 3, and a rotor shaft 9 rotatably supported by both bearings 5 and 7. The radial bearing 5 supports the rotor shaft 9 in the radial direction, and the thrust bearing 7 supports the rotor shaft 9 in the axial direction, so that the rotor shaft 9 can rotate around the axis C. As shown in FIG. 3, the rotor shaft 9 includes a flange 61 for coupling to the turbine impeller 27 at the left end in the axial direction. As will be described in detail later, the rotor shaft 9 is combined with a turbine impeller 27 to constitute a rotor assembly 29.
 ロータシャフト9の軸方向右端には、コンプレッサインペラ13が、軸Cの周りに共に回転するべく結合している。かかる結合は、ボルトによる締結によるが、可能ならば溶接や嵌合等の別の手段によってもよい。コンプレッサインペラ13を覆うように、コンプレッサハウジング11が軸受ハウジング3の右端に結合している。結合はボルトの締結によることができるが、他の手段によってもよい。コンプレッサハウジング11は、回転に干渉しないよう、インペラ13に対して適宜の隙間を確保している。 Compressor impeller 13 is coupled to the right end of rotor shaft 9 in the axial direction so as to rotate together about axis C. Such coupling is performed by fastening with bolts, but if possible, other means such as welding or fitting may be used. A compressor housing 11 is coupled to the right end of the bearing housing 3 so as to cover the compressor impeller 13. The connection can be by fastening bolts, but may be by other means. The compressor housing 11 secures an appropriate gap with respect to the impeller 13 so as not to interfere with the rotation.
 コンプレッサインペラ13は、軸Cの周りのホイール15と、ホイール15から径方向に伸びる複数のブレード17とを備える。ブレード17は、ホイール15の周囲に等間隔に配列するが、配列は必ずしも等間隔に限られない。各ブレード17は軸方向に対して傾斜を有し、さらに好ましくはエアフォイル形状を有しており、ホイール15の回転に伴って空気を遠心方向に加圧的に送気する。気流の迂回を最小にするよう、各ブレード17の各外縁は、コンプレッサハウジング11の内壁に近接している。 The compressor impeller 13 includes a wheel 15 around the axis C and a plurality of blades 17 extending in the radial direction from the wheel 15. The blades 17 are arranged at equal intervals around the wheel 15, but the arrangement is not necessarily limited to equal intervals. Each blade 17 is inclined with respect to the axial direction, more preferably has an airfoil shape, and air is supplied in a centrifugal direction in a centrifugal direction as the wheel 15 rotates. Each outer edge of each blade 17 is close to the inner wall of the compressor housing 11 so as to minimize airflow diversion.
 コンプレッサハウジング11は、空気取入口19と、これに連通したディフューザ流路21とを備える。空気取入口19は、外気を取り入れるためのものであり、図示されていないエアクリーナを備えた吸気管と結合するべく構成されている。ディフューザ流路21は、コンプレッサインペラ13の基端の外縁を取り囲むように形成されたスリット状の流路であって、コンプレッサインペラ13により遠心方向に加圧された空気が通過する。コンプレッサハウジング11は、更に、ディフューザ流路21に連通したコンプレッサスクロール流路23を備える。コンプレッサスクロール流路23は、コンプレッサインペラ13の周囲を少なくとも一周する螺旋状の流路であって、ディフューザ流路21の外周が、その全周に亘り、コンプレッサ流路23へ開口している。またコンプレッサスクロール流路23の終端の開口は、エンジンの吸気マニホールド(図示されていない)と結合するべく構成されている。 The compressor housing 11 includes an air intake port 19 and a diffuser passage 21 communicating with the air intake port 19. The air intake 19 is for taking in outside air, and is configured to be coupled to an intake pipe having an air cleaner (not shown). The diffuser passage 21 is a slit-like passage formed so as to surround the outer edge of the base end of the compressor impeller 13, and the air pressurized in the centrifugal direction by the compressor impeller 13 passes through the diffuser passage 21. The compressor housing 11 further includes a compressor scroll passage 23 that communicates with the diffuser passage 21. The compressor scroll channel 23 is a spiral channel that goes around the compressor impeller 13 at least once, and the outer periphery of the diffuser channel 21 opens to the compressor channel 23 over the entire circumference. The opening at the end of the compressor scroll passage 23 is configured to be coupled to an intake manifold (not shown) of the engine.
 図1を参照するに、ロータシャフト9の軸方向左端には、タービンインペラ27が、軸Cの周りに共に回転するべく結合し、ロータアセンブリ29を構成している。詳しくは後述するが、かかる結合は、溶接やろう付け、あるいはネジ締結のごとき手段によらず、焼結の過程を利用した係合および圧着によって実現される。さらに溶接またはろう付けを追加的に適用してもよい。タービンインペラ27を覆うように、タービンハウジング25が軸受ハウジング3の左端に結合している。かかる結合はボルトの締結または他の適宜の手段による。タービンハウジング25は、回転に干渉しないよう、タービンインペラ27に対して適宜の隙間を確保している。 Referring to FIG. 1, a turbine impeller 27 is coupled to the left end in the axial direction of the rotor shaft 9 so as to rotate together around the axis C to form a rotor assembly 29. As will be described in detail later, such coupling is realized by engagement and pressure bonding using a sintering process, regardless of means such as welding, brazing, or screw fastening. Further welding or brazing may be applied additionally. A turbine housing 25 is coupled to the left end of the bearing housing 3 so as to cover the turbine impeller 27. Such coupling is by fastening bolts or other suitable means. The turbine housing 25 secures an appropriate gap with respect to the turbine impeller 27 so as not to interfere with the rotation.
 タービンハウジング25は、その一端が外部に開口しているタービンスクロール流路51を備える。タービンスクロール流路51は、タービンインペラ27の周囲を少なくとも一周する螺旋状の流路であって、その内周はタービンインペラ27に向けて開口している。外部に開口した前記端は、エンジンからの排気を取り入れるよう、排気マニホールド(図示されていない)と結合するべく構成されている。 The turbine housing 25 includes a turbine scroll passage 51 having one end opened to the outside. The turbine scroll flow path 51 is a spiral flow path that makes at least one round around the turbine impeller 27, and the inner periphery thereof opens toward the turbine impeller 27. The externally open end is configured to couple with an exhaust manifold (not shown) to take in exhaust from the engine.
 タービンハウジング25は、タービンスクロール流路51とタービンインペラ27との間に介在するように配置された可変ノズルユニット31を備える。可変ノズルユニット31は、リング33と、シュラウドリング37と、複数のノズル41とを備える。リング33は、取付リング33を介してタービンハウジング25に固定されている。シュラウドリング37は、複数の連結ピン39を介して取付リング33に固定されており、リング33とシュラウドリング37との間に排気が通過しうるスロートが確保されている。複数のノズル41は、タービンインペラ27の周囲に等間隔に配列されており、両リング33,37に揺動可能に嵌合している。各ノズル41は、両リング33,37間のスロートに位置したベーンを備えている。ノズル41の揺動によってベーンはスロートの開口度を調節することができる。また各ノズル41は、図中右方に伸びたシャフト43を備え、シャフト43の右端において同期機構45と連結している。 The turbine housing 25 includes a variable nozzle unit 31 disposed so as to be interposed between the turbine scroll passage 51 and the turbine impeller 27. The variable nozzle unit 31 includes a ring 33, a shroud ring 37, and a plurality of nozzles 41. The ring 33 is fixed to the turbine housing 25 via the attachment ring 33. The shroud ring 37 is fixed to the mounting ring 33 via a plurality of connecting pins 39, and a throat through which exhaust gas can pass is secured between the ring 33 and the shroud ring 37. The plurality of nozzles 41 are arranged around the turbine impeller 27 at equal intervals, and are fitted to the rings 33 and 37 so as to be swingable. Each nozzle 41 includes a vane positioned at the throat between the rings 33 and 37. The vane can adjust the opening degree of the throat by swinging the nozzle 41. Each nozzle 41 includes a shaft 43 extending rightward in the drawing, and is connected to a synchronization mechanism 45 at the right end of the shaft 43.
 同期機構45は、一例として、軸Cの周りに回転可能なリング部材と、リング部材からそれぞれシャフト43へ連結された複数のリンクとを備えている。すなわちリング部材の回転によってリンクがそれぞれ駆動され、以ってシャフト43がそれぞれ回動させられて複数のノズル41が同期して揺動するよう、同期機構45は構成されている。同期機構45は、伝導シャフト47を介してレバー49と連結されており、外部のアクチュエータによって駆動されうる。 As an example, the synchronization mechanism 45 includes a ring member that can rotate around the axis C, and a plurality of links that are respectively connected to the shaft 43 from the ring member. That is, the synchronization mechanism 45 is configured so that the links are driven by the rotation of the ring members, and the shafts 43 are respectively rotated to swing the plurality of nozzles 41 in synchronization. The synchronization mechanism 45 is connected to the lever 49 via the transmission shaft 47 and can be driven by an external actuator.
 なお上述の可変ノズルユニット31および同期機構45は、ターボチャージャ1が可変容量型の場合にのみ必要であって、その他の場合には省略しうる。その場合、タービンスクロール流路51は適宜のスロートを介してタービンインペラ27へと連通する。 Note that the variable nozzle unit 31 and the synchronization mechanism 45 described above are necessary only when the turbocharger 1 is a variable displacement type, and may be omitted in other cases. In that case, the turbine scroll flow path 51 communicates with the turbine impeller 27 through an appropriate throat.
 タービンハウジング25は、タービンインペラ27の軸方向の左端に連通するように、排出口53を備える。排出口53は、タービンインペラ27を通過した排気を排出するためのものであり、図示されていない浄化装置を備えた排気管と結合するべく構成されている。 The turbine housing 25 includes a discharge port 53 so as to communicate with the left end in the axial direction of the turbine impeller 27. The discharge port 53 is for discharging exhaust gas that has passed through the turbine impeller 27, and is configured to be coupled to an exhaust pipe that includes a purification device (not shown).
 タービンインペラ27は、図3に示すように、後述する粉末射出成形により単一体に成形された金属またはセラミックよりなり、ホイール部55と、ホイール部55から径方向に伸びる複数のブレード57と、を備える。タービンインペラ27は、ホイール部55の右端においてロータシャフト9と結合し、以ってロータアセンブリ29を構成する。 As shown in FIG. 3, the turbine impeller 27 is made of metal or ceramic formed into a single body by powder injection molding described later, and includes a wheel portion 55 and a plurality of blades 57 extending in the radial direction from the wheel portion 55. Prepare. The turbine impeller 27 is coupled to the rotor shaft 9 at the right end of the wheel portion 55, thereby configuring the rotor assembly 29.
 複数のブレード57は、ホイール部55と一体に成形され、軸Cの周りに等間隔に配列されている。可能ならば等間隔でなくてもよい。各ブレード57は、排気の気流を受けてトルクを発生させるべく、軸Cの方向に対して傾斜を有しており、さらに好ましくはエアフォイル形状を有する。以ってタービンインペラ27は排気からエネルギを取り出し、ロータシャフト9を介してコンプレッサインペラ13を駆動しうる。気流の迂回を最小にするよう、各ブレード57の各外縁は、シュラウドリング35に近接している。可変ノズルユニット31が無い場合には、各外縁はタービンハウジング25の内壁に近接する。 The plurality of blades 57 are formed integrally with the wheel portion 55 and arranged around the axis C at equal intervals. If possible, it may not be equally spaced. Each blade 57 has an inclination with respect to the direction of the axis C, and more preferably has an airfoil shape, in order to generate torque by receiving an exhaust airflow. Accordingly, the turbine impeller 27 can extract energy from the exhaust and drive the compressor impeller 13 via the rotor shaft 9. Each outer edge of each blade 57 is proximate to the shroud ring 35 to minimize airflow diversion. When there is no variable nozzle unit 31, each outer edge is close to the inner wall of the turbine housing 25.
 図3および図4を参照するに、ホイール部55は、その右端に、ロータシャフト9との結合のための凹部59を有する。凹部59は、ホイール部55の右端より若干後退した窪みでもよいし、ホイール部55の内部に相当程度入り込む穴でもよく、また左端まで貫通した穴でもよい。好ましくは、凹部59の縁から内方へ突出した内向フランジ63が設けられる。内向フランジ63は、ホイール部55の底面(図中の右端の面)と同一面上でもよいし、図3のごとく底面から張り出していてもよい。内向フランジ63は、ロータシャフト9のフランジ61と係合するべく構成されている。また好ましくは、係合を強めるべく、ロータシャフト9の外周に、軸方向に伸びた一以上の溝65を設け、対応するように凹部59に突起67を設けてもよい。あるいは逆に、ロータシャフト9の外周に軸方向に伸びた突起を設け、対応するように凹部59に溝を設けてもよい。 3 and 4, the wheel portion 55 has a concave portion 59 for coupling with the rotor shaft 9 at the right end thereof. The recess 59 may be a recess that is slightly retracted from the right end of the wheel portion 55, a hole that penetrates considerably into the wheel portion 55, or a hole that penetrates to the left end. Preferably, an inward flange 63 projecting inward from the edge of the recess 59 is provided. The inward flange 63 may be on the same plane as the bottom surface (the rightmost surface in the drawing) of the wheel portion 55, or may protrude from the bottom surface as shown in FIG. The inward flange 63 is configured to engage with the flange 61 of the rotor shaft 9. Preferably, in order to strengthen the engagement, one or more grooves 65 extending in the axial direction may be provided on the outer periphery of the rotor shaft 9, and the protrusions 67 may be provided in the recesses 59 correspondingly. Or conversely, a protrusion extending in the axial direction may be provided on the outer periphery of the rotor shaft 9 and a groove may be provided in the recess 59 so as to correspond thereto.
 あるいは、図5に示すように、ロータアセンブリ29Aのホイール部55は、軸Cの周りに、頂点(図中の右端)より底面に向けて伸びる穴69を備えてもよい。図5は、底を有する非貫通孔の穴69を例示するが、これは可能ならば凹部59へ向けて貫通していてもよい。穴69のためにホイール部55はより薄肉化されており、焼結に起因する内部欠陥の発生を防止する点で有利である。 Alternatively, as shown in FIG. 5, the wheel portion 55 of the rotor assembly 29 </ b> A may include a hole 69 that extends around the axis C from the apex (right end in the drawing) toward the bottom surface. FIG. 5 illustrates a non-through hole 69 having a bottom, which may pass through into the recess 59 if possible. The wheel portion 55 is made thinner due to the hole 69, which is advantageous in preventing the occurrence of internal defects due to sintering.
 エンジンより吐出された排気は、取入口からタービンスクロール流路51を通過することにより、渦巻き状に可変ノズルユニット31のスロート(可変ノズルユニットが無いときにはタービンハウジングのスロート)へ流入し、さらにタービンインペラ27へ供給される。そして排気は、複数のブレード57の間を通過する際にタービンインペラ27へトルクを与え、排出口53へと排出される。かかるトルクはロータシャフト9によりコンプレッサインペラ13へ伝達され、コンプレッサインペラ13を回転させることにより、空気の圧縮に利用される。排気の流量に応じて、複数のノズル41を揺動せしめてスロートの開口度を調節してもよい。 Exhaust gas discharged from the engine passes through the turbine scroll passage 51 from the intake port, and then flows in a spiral shape into the throat of the variable nozzle unit 31 (the throat of the turbine housing when there is no variable nozzle unit), and further, the turbine impeller 27. The exhaust gives torque to the turbine impeller 27 when passing between the plurality of blades 57 and is discharged to the discharge port 53. Such torque is transmitted to the compressor impeller 13 by the rotor shaft 9 and is used for air compression by rotating the compressor impeller 13. Depending on the flow rate of the exhaust gas, the throat opening degree may be adjusted by swinging the plurality of nozzles 41.
 ロータアセンブリ29は、粉末射出成形により、次のようにして製造される。 The rotor assembly 29 is manufactured by powder injection molding as follows.
 図6を参照するに、粉末射出成形にはモールド71と、射出成形機とを使用する。射出成形機は、モールド71を支持するための固定フレーム73および可動フレーム79を備える。その他、射出成形機は、図示されていない射出機、射出ノズル95、可動フレーム79を駆動するためのアクチュエータ等を備える。 Referring to FIG. 6, a mold 71 and an injection molding machine are used for powder injection molding. The injection molding machine includes a fixed frame 73 and a movable frame 79 for supporting the mold 71. In addition, the injection molding machine includes an injection machine (not shown), an injection nozzle 95, an actuator for driving the movable frame 79, and the like.
 モールド71は、SKD11(JIS G 4404)等の適宜の金属よりなり、適宜に分割しうる。図6の例では、モールド71は、台75と外モールド85とに分割されており、台75と外モールド85はそれぞれさらに周方向に複数に分割される。台75の成形面77と、外モールド85の成形面87との組み合わせは、タービンインペラ27の外形を成形するのに適合したキャビティ89を区画している。台75は、凹部59を成形するのに適した構造を備える。焼結により20%程度の体積収縮が起こるので、モールド71および台75は、かかる体積収縮を考慮して設計される。 The mold 71 is made of an appropriate metal such as SKD11 (JIS G 4404) and can be appropriately divided. In the example of FIG. 6, the mold 71 is divided into a base 75 and an outer mold 85, and each of the base 75 and the outer mold 85 is further divided into a plurality in the circumferential direction. The combination of the forming surface 77 of the pedestal 75 and the forming surface 87 of the outer mold 85 defines a cavity 89 that is adapted to form the outer shape of the turbine impeller 27. The base 75 has a structure suitable for forming the recess 59. Since the volume shrinkage of about 20% occurs due to the sintering, the mold 71 and the base 75 are designed in consideration of the volume shrinkage.
 好ましくは、モールド71と可動フレーム79との間に、ブロック81を介在せしめる。ブロック81は円錐状の凹面83を有し、モールド71はこれに対応するテーパ面を有する。凹面83とテーパ面とが当接することにより、可動フレーム79がモールド71を加圧すると、外モールド85の各部分は周方向に互いに密に接する。また好ましくは、外モールド85をそれぞれ径方向に移動させるべくアクチュエータが備えられる。かかるアクチュエータは、可動フレーム79と同期して外モールド85を駆動するように構成してもよい。 Preferably, a block 81 is interposed between the mold 71 and the movable frame 79. The block 81 has a conical concave surface 83, and the mold 71 has a corresponding tapered surface. When the movable frame 79 presses the mold 71 by the contact between the concave surface 83 and the tapered surface, the portions of the outer mold 85 are in close contact with each other in the circumferential direction. Preferably, an actuator is provided to move each of the outer molds 85 in the radial direction. Such an actuator may be configured to drive the outer mold 85 in synchronization with the movable frame 79.
 固定フレーム73は、さらに、射出ノズル95と連通したスプール97を備え、台75はスプール97と連通して射出物を通過せしめるべくランナ93及びゲート91とを備える。ランナ93は台75を貫通するように設けられる。ゲート91は、キャビティ89の右端に開口する。ゲート91、スプール97は、台75に代わり、あるいは台75に加えて、外モールド85や他の要素に設けてもよい。 The fixed frame 73 further includes a spool 97 that communicates with the injection nozzle 95, and the base 75 includes a runner 93 and a gate 91 that communicate with the spool 97 and allow the ejected material to pass therethrough. The runner 93 is provided so as to penetrate the table 75. The gate 91 opens at the right end of the cavity 89. The gate 91 and the spool 97 may be provided in the outer mold 85 or other elements in place of or in addition to the table 75.
 あるいは変形例によるロータアセンブリ29Aを製造するべく、図9に示す変形例のごとく、中子103を設けてもよい。中子103は、タービンインペラ27の穴69を成形するのに適合している。中子103は、射出成形後の抜き取りを容易にするため、僅かにテーパをもたせてもよい。中子103は、金属製に代えて、消失性の素材を利用してもよい。消失性の素材としては、例えばスチレン系,アクリル系,セルロース系,ポリエチレン系,ビニル系,ナイロン系,フッ化炭素系樹脂のごとき熱可塑性樹脂が例示できる。適宜の添加物が添加されていてもよい。消失性の中子は後述の脱脂工程において分解および蒸発して消失するので、射出成形後の抜き取りを省略しうる。 Alternatively, in order to manufacture the rotor assembly 29A according to the modification, the core 103 may be provided as in the modification shown in FIG. The core 103 is adapted to mold the hole 69 of the turbine impeller 27. The core 103 may be slightly tapered to facilitate extraction after injection molding. The core 103 may be made of a disappearing material instead of being made of metal. Examples of the evanescent material include thermoplastic resins such as styrene, acrylic, cellulose, polyethylene, vinyl, nylon, and fluorocarbon resins. Appropriate additives may be added. Since the vanishing core is decomposed and evaporated in the degreasing step described later, the extraction after the injection molding can be omitted.
 まず射出物Mの混練を行う。かかる射出物Mには、金属粉末またはセラミック粉末とバインダとの混合物が好適である。 First, the injection M is kneaded. For the injection M, a mixture of metal powder or ceramic powder and a binder is suitable.
 金属粉末またはセラミック粉末としては、要求される特性に応じて種々の素材の粉末を利用しうる。タービンインペラに必要な耐熱性を考慮して、例えばNi 基耐熱合金(インコネル713C、IN100、MAR-M246等)の粉末や窒化珪素、サイアロン等のセラミック粉末が例示できる。 As the metal powder or ceramic powder, powders of various materials can be used according to required characteristics. In consideration of heat resistance necessary for the turbine impeller, for example, Ni-base heat-resistant alloy (Inconel 713C, IN100, MAR-M246, etc.) powder and ceramic powder, such as silicon nitride and sialon, can be exemplified.
 バインダとしては、公知の粉末射出成形用バインダが利用できる。そのような粉末射出成形用バインダとしては、例えばポリスチレン、ポリメチルメタクリレート等の熱可塑性樹脂に、パラフィンワックス等の添加物を添加したものが好適に利用できる。かかるバインダは、射出後に固化した後、後述の脱脂工程まで、射出物の形態を保持し、脱脂工程においては分解して蒸発し、焼結物にその痕跡を残さない。 As the binder, a known powder injection molding binder can be used. As such a powder injection molding binder, for example, a material obtained by adding an additive such as paraffin wax to a thermoplastic resin such as polystyrene or polymethyl methacrylate can be suitably used. Such a binder, after solidifying after injection, retains the form of the injection product until the degreasing step described later, decomposes and evaporates in the degreasing step, and leaves no trace on the sintered product.
 金属粉末またはセラミック粉末とバインダとの混合物は、例えば100乃至150℃に加熱され、混練される。混練の温度は、混練物の組成により適宜選択しうる。混練後、適宜に冷却して射出物Mが得られる。 The mixture of the metal powder or ceramic powder and the binder is heated to, for example, 100 to 150 ° C. and kneaded. The kneading temperature can be appropriately selected depending on the composition of the kneaded product. After kneading, the injection M is obtained by cooling appropriately.
 射出物Mを準備した後、固定フレーム73上に台75および外モールド85の各要素を据える。中子103が別体の場合は、これを台75上に据える。これらにはあらかじめ公知の離型剤を塗布しておいてもよい。アクチュエータによって外モールド85を径方向内方へ移動して、外モールド85の各構成要素を互いに当接せしめる。次いでこれらにブロック81を当接して、可動フレーム79により加圧する。アクチュエータによる外モールド85の移動を、可動フレーム79の移動と同期せしめてもよい。以って外モールド85と、台75とは、互いに密に接し、以ってモールド71が組み上げられる。 After preparing the injection M, the elements of the base 75 and the outer mold 85 are placed on the fixed frame 73. If the core 103 is a separate body, it is placed on the base 75. A known release agent may be applied to these in advance. The outer mold 85 is moved inward in the radial direction by the actuator, and the components of the outer mold 85 are brought into contact with each other. Next, the block 81 is brought into contact with these and pressed by the movable frame 79. The movement of the outer mold 85 by the actuator may be synchronized with the movement of the movable frame 79. Therefore, the outer mold 85 and the base 75 are in close contact with each other, and the mold 71 is assembled.
 射出物Mは、十分な流動性を与えるべく例えば160乃至200℃に加熱され、100MPa程度の加圧とともに射出ノズル95を介してモールド71内に射出される。加熱温度および射出圧は、混練物の組成により適宜選択しうる。適宜に冷却することにより射出物が固化し、グリーン体27Fが成形される。 The injection M is heated to, for example, 160 to 200 ° C. to give sufficient fluidity, and is injected into the mold 71 through the injection nozzle 95 with pressurization of about 100 MPa. The heating temperature and the injection pressure can be appropriately selected depending on the composition of the kneaded product. By appropriately cooling, the injection is solidified and the green body 27F is formed.
 次いでアクチュエータを駆動することにより、可動フレーム79がモールド71から引き離され、さらに外モールド85がグリーン体27Fから引き離される。また台75は相互にずれることにより、内向フランジ63Fから外される。以ってモールド71よりグリーン体27Fが取り出される。 Next, by driving the actuator, the movable frame 79 is pulled away from the mold 71, and the outer mold 85 is further pulled away from the green body 27F. Moreover, the stand 75 is removed from the inward flange 63F by being displaced from each other. Accordingly, the green body 27F is taken out from the mold 71.
 あるいは、モールド71が中子103を含む場合は、中子103を持つことによりグリーン体27Fをハンドリングすることができる。取り出されたグリーン体27Fから、適宜の治具を利用して中子103を抜き取る。なお消失性の中子を利用した場合には、中子103はグリーン体27Fに嵌入したまま後述の脱脂工程に供してもよい。脱脂工程において消失性の中子103は分解および蒸発して消失する。 Alternatively, when the mold 71 includes the core 103, the green body 27F can be handled by having the core 103. The core 103 is extracted from the extracted green body 27F using an appropriate jig. When a vanishing core is used, the core 103 may be subjected to a degreasing step described later while being fitted in the green body 27F. In the degreasing process, the vanishing core 103 is decomposed and evaporated to disappear.
 成形されたグリーン体27Fは、前述した通り、焼結による収縮を考慮して最終形状より体積比で20%程度大きい。グリーン体27Fは、焼結後に凹部59となる凹部59Fを備え、さらに好ましくは内向フランジ63Fを備えており、これらも最終形状より体積比で20%程度大きい。これらの構造は、射出の後に機械加工により形成してもよい。 As described above, the molded green body 27F is about 20% larger in volume ratio than the final shape in consideration of shrinkage due to sintering. The green body 27F includes a recess 59F that becomes the recess 59 after sintering, and more preferably includes an inward flange 63F, which are also about 20% larger in volume ratio than the final shape. These structures may be formed by machining after injection.
 図7を参照するに、かかるグリーン体27Fは適宜の雰囲気制御炉99に導入される。炉内に窒素ガスを導入し、窒素雰囲気を保持しながら、カーボンヒータ等の適宜の加熱手段により炉の内部は適宜の高温であって800℃を越えない温度に加熱され、30分以上保持される。かかる脱脂工程により、グリーン体27Fに含まれるバインダ(消失性の中子103を利用した場合は、中子103も)は、溶融し、分解し、蒸発して除去される。 Referring to FIG. 7, the green body 27F is introduced into an appropriate atmosphere control furnace 99. While introducing nitrogen gas into the furnace and maintaining the nitrogen atmosphere, the inside of the furnace is heated to an appropriate high temperature not exceeding 800 ° C. by appropriate heating means such as a carbon heater, and is maintained for 30 minutes or more. The Through such a degreasing process, the binder contained in the green body 27F (and the core 103 when the vanishing core 103 is used) is melted, decomposed, and evaporated to be removed.
 なお脱脂工程は、上述の方法に代えて、適宜の溶剤によって溶出する等、他の公知の方法に代えてもよい。 The degreasing step may be replaced with other known methods such as elution with an appropriate solvent instead of the above-described method.
 脱脂されたグリーン体27Fの凹部59Fに、図8の(a)に示すように、ロータシャフト9のフランジ61が挿入され、適宜の治具によって全体が支持されて適宜の雰囲気制御炉101中に導入される。このとき焼結による収縮前であるので、フランジ61と穴59Fとの間には僅かな隙間が保持されている。 As shown in FIG. 8A, the flange 61 of the rotor shaft 9 is inserted into the recessed portion 59F of the degreased green body 27F, and the whole is supported by an appropriate jig, and is placed in an appropriate atmosphere control furnace 101. be introduced. At this time, since it is before shrinkage due to sintering, a slight gap is maintained between the flange 61 and the hole 59F.
 炉101の内部を適宜の減圧下に置き、カーボンヒータ等の適宜の加熱手段により炉の内部は適宜の焼結温度、例えば1000乃至1500℃に加熱され、適宜の時間、例えば1時間ないしそれ以上保持される。かかる焼結工程により、焼結が進行するとともにグリーン体27Fは収縮を起こす。その結果、凹部59Fは縮径してフランジ61と接し、フランジ61は焼結後の凹部59に圧着する。凹部59が収縮しようとする力にフランジ61が抗するので、圧縮応力を残留させることができ、以って結合を安定にすることができる。この残留応力は、凹部59Fとフランジ61との径の差、また射出物の組成を介したグリーン体27Fの収縮率によって、適宜に調整できる。 The inside of the furnace 101 is placed under an appropriate reduced pressure, and the inside of the furnace is heated to an appropriate sintering temperature, for example, 1000 to 1500 ° C. by an appropriate heating means such as a carbon heater, for an appropriate time, for example, 1 hour or more. Retained. By this sintering process, the sintering progresses and the green body 27F contracts. As a result, the recess 59F is reduced in diameter and comes into contact with the flange 61, and the flange 61 is pressure-bonded to the recess 59 after sintering. Since the flange 61 resists the force that the concave portion 59 tends to contract, the compressive stress can be left, so that the coupling can be stabilized. This residual stress can be appropriately adjusted by the difference in diameter between the recess 59F and the flange 61 and the shrinkage rate of the green body 27F via the composition of the injection.
 上述の説明において脱脂工程と焼結工程は独立しているが、これらを連続的に実施してもよい。 In the above description, the degreasing step and the sintering step are independent, but these may be carried out continuously.
 適宜に冷却した後、窒素等を導入して炉101内を大気圧として、焼結されたロータアセンブリ29を取り出す。焼結ままで利用してもよいし、その表面を覆う皮膜を除去するべく、適宜の表面処理を施してもよい。 After cooling appropriately, nitrogen or the like is introduced to bring the inside of the furnace 101 to atmospheric pressure, and the sintered rotor assembly 29 is taken out. It may be used as it is, or an appropriate surface treatment may be applied to remove the film covering the surface.
 なお、凹部59とフランジ61との相互の圧着は、所謂締り嵌めと類似しているが、これに該当しないものである点に注意を要する。締り嵌めとは、一の部品が相手の部品によって与えられる空間に強制的に押し付けられる嵌め合いのことである。通常、前記一の部品を前記空間に圧入することにより、締り嵌めが成される。これとは逆に、凹部59とフランジ61との相互の圧着においては、インペラ27によって与えられる空間すなわち凹部59が、焼結による収縮によってフランジ61に強制的に押し付けられている。すなわち通常の締り嵌めとは逆の関係である。 Note that the mutual crimping of the recess 59 and the flange 61 is similar to a so-called interference fit, but it should be noted that this is not the case. An interference fit is a fit in which one part is forcibly pressed into a space provided by a counterpart part. Usually, an interference fit is achieved by press-fitting the one part into the space. On the contrary, in the pressure bonding between the recess 59 and the flange 61, the space provided by the impeller 27, that is, the recess 59 is forcibly pressed against the flange 61 by shrinkage due to sintering. In other words, this is the opposite of normal interference fit.
 本実施形態によれば、部品相互の結合が、溶接やろう付けのごとき局所的な入熱を伴うプロセスによらないので、精度よくロータアセンブリを製造することができる。インペラを成形した後に改めてロータシャフトと結合するのでなく、インペラの成形とロータシャフトとの結合が同時に実行できるので、生産性も著しく改善される。 According to the present embodiment, since the mutual connection of components does not depend on a process involving local heat input such as welding or brazing, the rotor assembly can be manufactured with high accuracy. Since the impeller is molded and the rotor shaft is not coupled again, but the impeller can be molded and the rotor shaft can be coupled at the same time, the productivity is remarkably improved.
 本実施形態は、ターボチャージャのロータアセンブリに好適に適用しうるが、精度を必要とする結合を含む種々の機械部品に適用することができる。 The present embodiment can be preferably applied to a rotor assembly of a turbocharger, but can be applied to various machine parts including a coupling requiring accuracy.
 好適な実施形態により本発明を説明したが、本発明は上記実施形態に限定されるものではない。上記開示内容に基づき、当該技術分野の通常の技術を有する者が、実施形態の修正ないし変形により本発明を実施することが可能である。 Although the present invention has been described with reference to preferred embodiments, the present invention is not limited to the above embodiments. Based on the above disclosure, a person having ordinary skill in the art can implement the present invention by modifying or modifying the embodiment.
 溶接やネジ締結のごとき精度に問題を生ずる結合手段によらないロータアセンブリおよびその製造方法が提供される。 A rotor assembly independent of coupling means that causes problems in accuracy such as welding and screw fastening, and a method for manufacturing the same are provided.

Claims (6)

  1.  過給機に用いられ、軸の周りに回転するロータアセンブリであって、
     前記軸に沿って伸びてトルクを伝達するべく構成されたロータシャフトと、
     焼結によって単一体に成形されたインペラであって、前記焼結による収縮により前記ロータシャフトに圧着して嵌合する凹部を備えたインペラと、
     を備えたロータアセンブリ。
    A rotor assembly for use in a supercharger and rotating about an axis,
    A rotor shaft configured to extend along the axis and transmit torque;
    An impeller formed into a single body by sintering, and an impeller provided with a recess that is crimped and fitted to the rotor shaft by shrinkage due to the sintering;
    Rotor assembly with
  2.  前記ロータシャフトは軸方向に伸びた溝を備え、前記凹部は前記溝に対応する突起を備えた、請求項1のロータアセンブリ。 The rotor assembly according to claim 1, wherein the rotor shaft includes a groove extending in an axial direction, and the recess includes a protrusion corresponding to the groove.
  3.  前記ロータシャフトはフランジを備え、前記凹部は前記フランジと係合するべく構成された内向フランジを備えた、請求項1のロータアセンブリ。 The rotor assembly of claim 1, wherein the rotor shaft comprises a flange and the recess comprises an inward flange configured to engage the flange.
  4.  前記インペラは頂点より底面に向けて伸びる穴を備えた、請求項1のロータアセンブリ。 The rotor assembly according to claim 1, wherein the impeller has a hole extending from the apex toward the bottom surface.
  5.  請求項1のロータアセンブリを備えた過給機。 A supercharger comprising the rotor assembly according to claim 1.
  6.  軸に沿って伸びてトルクを伝達するべく構成されたロータシャフトと、焼結によって単一体に成形されたインペラであって、前記焼結による収縮により前記ロータシャフトに圧着して嵌合する凹部を備えたインペラと、を備えたロータアセンブリを製造する方法であって、
     前記凹部を成形するのに適合した構造と、前記インペラの外径を成形するのに適合したキャビティとを有し、複数に分割可能なモールドを組み上げ、
     前記モールド内に、金属またはセラミックよりなる粉末とバインダとを含む混練物を射出して、前記構造に対応する凹所を有するグリーン体を成形し、
     前記凹所に前記ロータシャフトを挿入し、
     前記グリーン体を収縮させて前記凹所を前記ロータアセンブリに圧着させて前記インペラと前記ロータシャフトとを結合するべく、前記グリーン体を焼結する、
     ことよりなる方法。
    A rotor shaft configured to transmit torque by extending along an axis, and an impeller formed into a single body by sintering, and having a recess to be crimped and fitted to the rotor shaft by shrinkage due to the sintering An impeller with a method of manufacturing a rotor assembly with
    Having a structure suitable for molding the recess and a cavity suitable for molding the outer diameter of the impeller, and assembling a mold that can be divided into a plurality of parts;
    Injecting a kneaded product containing a metal or ceramic powder and a binder into the mold to form a green body having a recess corresponding to the structure,
    Inserting the rotor shaft into the recess;
    Sintering the green body to shrink the green body and crimp the recess to the rotor assembly to join the impeller and the rotor shaft;
    A method consisting of things.
PCT/JP2010/058878 2009-05-26 2010-05-26 Impeller applied to supercharger and method of manufacturing same WO2010137609A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009126816A JP2010275880A (en) 2009-05-26 2009-05-26 Rotor assembly, supercharger, and method for manufacturing the rotor assembly
JP2009-126816 2009-05-26

Publications (1)

Publication Number Publication Date
WO2010137609A1 true WO2010137609A1 (en) 2010-12-02

Family

ID=43222716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/058878 WO2010137609A1 (en) 2009-05-26 2010-05-26 Impeller applied to supercharger and method of manufacturing same

Country Status (2)

Country Link
JP (1) JP2010275880A (en)
WO (1) WO2010137609A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014102381A1 (en) * 2012-12-28 2014-07-03 Lux Powertrain Sa Turbine blades and method of construction
EP3489483A4 (en) * 2017-03-16 2019-07-31 Mitsubishi Heavy Industries, Ltd. Variable nozzle device and variable capacity-type exhaust turbo supercharger

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6754658B2 (en) * 2016-09-30 2020-09-16 ダイハツ工業株式会社 How to manufacture a turbine for an exhaust turbocharger

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5996410U (en) * 1982-12-20 1984-06-30 富永 利夫 Rod end support metal fittings
JPS62228602A (en) * 1986-03-28 1987-10-07 Toyota Central Res & Dev Lab Inc Rotation body for heat engine
JPH0557449U (en) * 1991-12-27 1993-07-30 光洋精工株式会社 Spline fitting
JPH0763001A (en) * 1993-08-30 1995-03-07 Kyocera Corp Ceramic turbine rotor
JP4240512B1 (en) * 2008-10-29 2009-03-18 株式会社テクネス Turbine wheel manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5996410U (en) * 1982-12-20 1984-06-30 富永 利夫 Rod end support metal fittings
JPS62228602A (en) * 1986-03-28 1987-10-07 Toyota Central Res & Dev Lab Inc Rotation body for heat engine
JPH0557449U (en) * 1991-12-27 1993-07-30 光洋精工株式会社 Spline fitting
JPH0763001A (en) * 1993-08-30 1995-03-07 Kyocera Corp Ceramic turbine rotor
JP4240512B1 (en) * 2008-10-29 2009-03-18 株式会社テクネス Turbine wheel manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014102381A1 (en) * 2012-12-28 2014-07-03 Lux Powertrain Sa Turbine blades and method of construction
EP3489483A4 (en) * 2017-03-16 2019-07-31 Mitsubishi Heavy Industries, Ltd. Variable nozzle device and variable capacity-type exhaust turbo supercharger
US11015518B2 (en) 2017-03-16 2021-05-25 Mitsubishi Heavy Industries, Ltd. Variable nozzle device and variable-geometry type exhaust turbocharger

Also Published As

Publication number Publication date
JP2010275880A (en) 2010-12-09

Similar Documents

Publication Publication Date Title
WO2010137610A1 (en) Impeller applied to supercharger and method of manufacturing same
WO2010134570A1 (en) Method for producing impeller applied to supercharger
US9079245B2 (en) Turbine shroud segment with inter-segment overlap
US9028744B2 (en) Manufacturing of turbine shroud segment with internal cooling passages
US8784041B2 (en) Turbine shroud segment with integrated seal
CN101918692B (en) Housing fastening method
US7490470B2 (en) Method for manufacturing variable-throat exhaust turbocharger and constituent members of nozzle throat area varying mechanism
JP2008215083A (en) Mounting structure for variable nozzle mechanism in variable geometry exhaust turbocharger
CN108778560A (en) Method of the manufacture for the improvement features in the core of casting
CA2552652A1 (en) Lightweight cast inner diameter vane shroud for variable stator vanes
US11933188B2 (en) Method of manufacturing gas turbine engine element having at least one elongated opening
WO2010137609A1 (en) Impeller applied to supercharger and method of manufacturing same
US20230100487A1 (en) Constant cross section mandrel for cmc components
US20170022831A9 (en) Manufacturing of turbine shroud segment with internal cooling passages
WO2010137576A1 (en) Impeller wheel and turbocharger
US9759086B2 (en) Variable nozzle unit, variable geometry system turbocharger, and power transmission member manufacturing method
WO2010134569A1 (en) Impeller wheel, turbocharger, and method for producing impeller wheel
JP2012163083A (en) Variable nozzle unit and variable capacity supercharger
US8128348B2 (en) Segmented cooling air cavity for turbine component
US20170184121A1 (en) Method of manufacturing a compressor housing
FR2637948A1 (en) CENTRIFUGAL COMPRESSOR WITH HORIZONTAL ASSEMBLY PLAN
US20200030882A1 (en) Method for manufacturing a structural component for a turbomachine
US11400515B2 (en) Method of manufacturing a component using a sinter joining process
JP2004324569A (en) Supercharger and its manufacturing method
EP3980207B1 (en) Method for manufacturing a turbomachine part by mim molding

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10780564

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10780564

Country of ref document: EP

Kind code of ref document: A1