WO2010137264A1 - Method for producing polyurethane laminate, and polyurethane laminate obtained by the production method - Google Patents

Method for producing polyurethane laminate, and polyurethane laminate obtained by the production method Download PDF

Info

Publication number
WO2010137264A1
WO2010137264A1 PCT/JP2010/003393 JP2010003393W WO2010137264A1 WO 2010137264 A1 WO2010137264 A1 WO 2010137264A1 JP 2010003393 W JP2010003393 W JP 2010003393W WO 2010137264 A1 WO2010137264 A1 WO 2010137264A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyurethane
temperature
layer
melt
urethane resin
Prior art date
Application number
PCT/JP2010/003393
Other languages
French (fr)
Japanese (ja)
Inventor
米田久夫
井上和正
芦田哲哉
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to CN201080023839.7A priority Critical patent/CN102448695B/en
Priority to JP2011515869A priority patent/JP5622724B2/en
Publication of WO2010137264A1 publication Critical patent/WO2010137264A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/22Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of indefinite length
    • B29C43/28Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of indefinite length incorporating preformed parts or layers, e.g. compression moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/10Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of paper or cardboard
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B29/00Layered products comprising a layer of paper or cardboard
    • B32B29/02Layered products comprising a layer of paper or cardboard next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/266Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by an apertured layer, the apertures going through the whole thickness of the layer, e.g. expanded metal, perforated layer, slit layer regular cells B32B3/12
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/06Interconnection of layers permitting easy separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/24Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 characterised by the choice of material
    • B29C67/246Moulding high reactive monomers or prepolymers, e.g. by reaction injection moulding [RIM], liquid injection moulding [LIM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2075/00Use of PU, i.e. polyureas or polyurethanes or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/748Releasability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2437/00Clothing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2437/00Clothing
    • B32B2437/02Gloves, shoes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/02Open containers
    • B32B2439/06Bags, sacks, sachets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/40Closed containers
    • B32B2439/46Bags
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2479/00Furniture

Definitions

  • the present invention relates to a method for producing a polyurethane laminate and a polyurethane laminate obtained by the production method.
  • polyurethane laminates have been widely used as surface materials for footwear, clothing, bags, furniture, and the like.
  • a typical structure of such a polyurethane laminate is a structure in which a polyurethane layer is laminated on the surface of a composite fiber base material in which a fibrous base material such as nonwoven fabric, woven fabric, or knitted fabric is impregnated with polyurethane.
  • the polyurethane layer may be formed by applying a solvent-type polyurethane or water-based polyurethane to the surface of the composite fiber substrate and then drying, or by applying a polyurethane film previously formed on the surface of the release paper on the surface of the composite fiber substrate with an adhesive. It is formed using a method of bonding.
  • Patent Document 1 an isocyanate group-containing urethane prepolymer that is semi-solid or solid at room temperature as an A component, and a compound capable of reacting with an isocyanate group and / or a urethane curing catalyst as a B component are heated and melted. Thereafter, a method for producing a polyurethane porous body by stirring and mixing and mechanical foaming is disclosed. And it is described that according to such a method, a high intensity
  • a typical configuration of such a polyurethane laminate includes a configuration in which a polyurethane resin layer is laminated on the surface of a composite fiber sheet obtained by impregnating a porous base material with a fibrous base material such as a nonwoven fabric.
  • a polyurethane resin layer is obtained by pressure-bonding a thermoplastic polyurethane film immediately after being extruded using a T die to the surface of a composite fiber sheet.
  • a method of forming is known.
  • a polyurethane resin layer is formed by applying and drying a solvent-type urethane resin on the surface of a release paper, and the resulting polyurethane resin layer is used as a solvent.
  • a method for producing a leather-like sheet by laminating and drying using a mold urethane adhesive is also known.
  • a polyurethane resin layer is formed by applying a water-based urethane resin to the surface of a release paper and then drying it, and the resulting polyurethane resin layer
  • a method for producing a leather-like sheet by laminating and drying a composite fiber sheet using a water-based urethane adhesive is also known.
  • a method of forming a polyurethane resin layer by applying a melted hot-melt urethane resin to the surface of a composite fiber sheet as disclosed in Patent Document 5 below and then crosslinking it is also known. Yes.
  • JP 2002-249534 A Japanese Patent Laid-Open No. 9-24590 JP 2005-113318 A JP 2005-264371 A International Publication WO2005 / 083173 Pamphlet
  • a urethane prepolymer that is semi-solid or solid at room temperature as described in Patent Document 1 has a low viscosity when heated to a relatively high temperature, and is adjusted to a viscosity that allows mechanical foaming.
  • a urethane resin composition containing a urethane prepolymer and a urethane curing catalyst is heated to such an extent that mechanical foaming is possible, the urethane curing catalyst is activated to cause a crosslinking reaction.
  • the urethane resin composition is heated to a temperature at which mechanical foaming is possible as described above, the crosslinking reaction of the urethane prepolymer proceeds and the melt viscosity gradually rises. There was a problem that it became short and continuous production for a long time was difficult.
  • the present invention continuously maintains the pot life of the applied urethane resin composition for a long time.
  • the method for producing a polyurethane laminate which is one aspect of the present invention, is a sensitivity that shows a predetermined exothermic peak temperature by differential scanning calorimetry with a urethane prepolymer (A) that is semi-solid or solid at room temperature and a chain extender (B).
  • a melt-mixing step of forming a urethane resin composition by heating and melt-mixing the warm urethanization catalyst (C) at a temperature in the range of 10 to 30 ° C.
  • the urethane resin composition A resin layer forming step for forming a urethane resin layer on a sheet surface such as a release paper or a fiber base material, and a heat treatment step for heat-treating the urethane resin layer at a temperature equal to or higher than the exothermic peak temperature.
  • the polyurethane resin layer is formed by pressure-bonding a thermoplastic polyurethane film immediately after being extruded by a T die, as disclosed in Patent Document 2, to the surface of the composite fiber sheet.
  • a thermoplastic polyurethane film is rapidly cooled when it comes into contact with the surface of the composite fiber sheet, it is pressure-bonded in a state where solidification has progressed to some extent. Therefore, the interface between the composite fiber sheet and the thermoplastic polyurethane film is a two-dimensional planar interface.
  • the polyurethane resin layer hardly permeates and fills the voids in the surface layer portion of the composite fiber sheet, a sense of unity between the polyurethane resin layer and the composite fiber sheet cannot be obtained. Therefore, it tended to be inferior in leather-like texture and crease. Furthermore, as another problem, there was a problem that pore structure of porous polyurethane impregnated in the composite fiber sheet was dissolved by the solvent in the adhesive to destroy the pore structure, and the texture and surface smoothness were lowered. .
  • Patent Document 4 after applying a water-based urethane resin to the surface of the release paper, the method of forming a polyurethane resin layer by drying, If the coating and drying steps are not repeated many times, there is a problem that a sufficiently thick polyurethane resin layer having smoothness on the surface cannot be obtained. Moreover, such a polyurethane resin layer is laminated
  • the polyurethane resin layer is formed by applying a molten hot melt urethane resin to the surface of the composite fiber sheet as disclosed in Patent Document 5 and then crosslinking the resin. Since the polyurethane resin layer is simply laminated by simply applying a melted hot melt urethane resin on the surface of the composite fiber sheet, the composite fiber sheet and the polyurethane resin layer The problem of slippage and peeling at the interface has not been solved.
  • the present invention has been made in view of the above-described problems, and is a polyurethane laminate that is similar to leather and has a solid texture and a good feeling of folding when folded, and it is difficult for creases to remain after folding.
  • the purpose is to provide a body.
  • a method for producing a polyurethane laminate which is another aspect of the present invention, is a coating film forming step of forming a release paper-coating laminate by applying a molten crosslinkable hot melt urethane resin to the surface of the release paper. And a heat treatment step for partially cross-linking the crosslinkable hot-melt urethane resin, and a release paper in the void of the composite fiber sheet having a large number of voids in the surface layer, in which the fiber sheet and the polymer elastic body are impregnated and integrated.
  • a laminating process for laminating a coating film on the surface of the composite fiber sheet with a pressure at which a part of the coating film of the coating film laminate enters, and a cooling process for cooling and solidifying the crosslinkable hot-melt urethane resin are provided. Is preferred.
  • the coating film forming step has a sensitivity that exhibits a predetermined exothermic peak temperature by differential scanning calorimetry with a hot melt urethane prepolymer (A) having a melt viscosity at 100 ° C. of 10,000 mPa ⁇ sec or less and a chain extender (B).
  • a polyurethane laminate according to yet another aspect of the present invention is a composite fiber sheet having a large number of voids in the surface layer, in which a fiber sheet and a polymer elastic body are impregnated and integrated, and laminated on the composite fiber sheet. 10 ⁇ m in which a part of the polyurethane resin layer and a surface layer of the composite fiber sheet are mixed in an incompatible state when a part of the polyurethane resin layer enters the gap. As described above, it is preferable to have a mixed layer having a thickness of 30 ⁇ m or more.
  • FIG. 1 is a schematic process diagram illustrating a method for producing a polyurethane laminate according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic cross-sectional view of a polyurethane laminate obtained by the production method of Embodiment 1 according to the present invention.
  • FIG. 3 is a schematic cross-sectional view of a polyurethane laminate obtained by the method for producing a polyurethane laminate of Embodiment 2 according to the present invention.
  • FIG. 4 is an explanatory view for explaining an example of the production process of the polyurethane laminate of Embodiment 2 according to the present invention.
  • FIG. 5 is an SEM photograph of a cross section of the leather-like sheet obtained in Example 2-1.
  • FIG. 6 is an SEM photograph of a cross section of the leather-like sheet obtained in Comparative Example 2-1.
  • FIG. 7 is a schematic diagram for explaining a state of a crease and wrinkle generated when leather is folded.
  • FIG. 8 is a schematic diagram for explaining the appearance of a crease and wrinkle generated when a conventional leather-like sheet is folded.
  • the method for producing the polyurethane laminate of Embodiment 1 includes a urethane prepolymer (A) that is semi-solid or solid at room temperature, a chain extender (B), and a temperature-sensitive urethane that exhibits a predetermined exothermic peak temperature by differential scanning calorimetry.
  • a melting and mixing step in which a urethane resin composition is formed by heating and melting and mixing the catalyst (C) at a temperature in the range of 10 to 30 ° C.
  • the urethane prepolymer (A), the chain extender (B), and the temperature-sensitive urethanization catalyst (C) that are semi-solid or solid at room temperature used in this embodiment will be described.
  • the urethane prepolymer (A) used in the present embodiment is a urethane prepolymer having an isocyanate group obtained by reacting a polyol and a polyisocyanate, and is a substantially solvent-free type that is semisolid or solid at room temperature. This is a polyurethane-forming component.
  • a urethane prepolymer is a solid or a semi-solid property having a viscosity that is difficult to apply at room temperature, but the viscosity is reduced to a level that allows application by heating.
  • polystyrene resin examples include high molecular weight polyols such as polyester polyols, polyether polyols, and polycarbonate polyols; ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,3-butylene.
  • Glycol 1,4-butylene glycol, 2,2-dimethyl-1,3-propanediol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, 1,8-octanediol, 1,4 -Bis (hydroxyethoxy) benzene, 1,3-bis (hydroxyisopropyl) benzene, diethylene glycol, triethylene glycol, dipropylene glycol, tripropylene glycol, cyclohexane-1,4-diol, cyclohexane-1,4-di Ethanol, glycerol, trimethylol propane, trimethylol ethane, hexane triol, pentaerythritol, sorbitol, low-molecular-weight polyol such as methyl glycoside. These may be used alone or in combination of two or more.
  • polyisocyanate examples include aromatic diisocyanates such as phenylene diisocyanate, tolylene diisocyanate, 4,4′-diphenylmethane diisocyanate, 2,4′-diphenylmethane diisocyanate, naphthalene diisocyanate, and xylylene diisocyanate; hexamethylene diisocyanate.
  • the production of the urethane prepolymer can usually be carried out in the absence of a solvent, but it may be carried out in an organic solvent.
  • an organic solvent such as ethyl acetate, n-butyl acetate, methyl ethyl ketone, and toluene that does not inhibit the reaction between the chain extender and polyisocyanate can be used. After completion of the reaction, it is necessary to remove the organic solvent by a method such as heating under reduced pressure.
  • the reaction ratio between the polyol and the polyisocyanate is preferably such that the equivalent ratio [NCO / OH] of the isocyanate group in the polyisocyanate to the hydroxyl group in the polyol is in the range of 1.1 to 5.0. More preferably, it is within the range of 2 to 3.0.
  • the number average molecular weight of the urethane prepolymer is in the range of 500 to 30,000, more preferably in the range of 1000 to 10,000.
  • the melt viscosity can be easily adjusted, and excellent flexibility, mechanical strength, and wear resistance are obtained. It is preferable from the point that the polyurethane layer which has the property and hydrolysis resistance can be formed.
  • the melt viscosity of the urethane prepolymer is such that the melt viscosity at 120 ° C. measured with a cone plate viscometer is in the range of 500 to 100,000 mPa ⁇ s, more preferably 1000 to 10,000 mPa ⁇ s. Is preferable because it is easy.
  • urethane prepolymers include DIC Corporation's trade names Task Force KMM-100, Tyforce NH-122A, NH-200, NH-300, H-1041, and Takeda Pharmaceutical Co., Ltd. Takedamelt SC-13, SL-01, SL-02, SL-03, SL-04 and the like.
  • the reaction between the isocyanate group in the urethane prepolymer (A) and the hydroxyl group or amino group in the chain extender (B) described later is promoted by the urethanization catalyst to increase the molecular weight.
  • the polymer having a high molecular weight further undergoes a crosslinking reaction by reacting with an isocyanate group present in the system.
  • the chain extender (B) used in the present embodiment is a compound having two or more functional groups having active hydrogen such as a hydroxyl group and an amino group that can react with the isocyanate group of the urethane prepolymer (A).
  • chain extender examples include, in addition to the above-mentioned various polyols, ethylenediamine, 1,3-propylenediamine, 1,2-propylenediamine, hexamethylenediamine, norbornenediamine, hydrazine, piperazine, N, N′— Diaminopiperazine, 2-methylpiperazine, 4,4'-diaminodicyclohexylmethane, isophoronediamine, diaminobenzene, diphenylmethanediamine, methylenebisdichloroaniline, triethylenediamine, tetramethylhexamethylenediamine, triethylamine, tripropylamine, trimethylaminoethylpiperazine
  • polyamines such as N-methylmorpholine, N-ethylmorpholine, and di (2,6-dimethylmorpholinoethyl) ether. These may be used alone or in combination of two or more.
  • the temperature-sensitive urethanization catalyst (C) exhibiting a predetermined exothermic peak temperature by differential scanning calorimetry used in this embodiment is from 0 ° C. to 200 ° C. at a temperature rising rate of 10 ° C./1 minute under a nitrogen seal. It is a urethanization catalyst which shows a predetermined exothermic peak temperature when differential scanning calorimetry is measured in the range up to.
  • the exothermic peak temperature is preferably in the range of 50 to 160 ° C., and more preferably in the range of 80 to 140 ° C., from the viewpoint of excellent treatment efficiency and stabilization of urethanization.
  • urethanization catalyst examples include an organic acid salt of 1,8-diazabicyclo (5,4,0) -undecene-7 (DBU), specifically a phenol salt of DBU (exothermic peak temperature of 88 ° C. ), DBU octylate (99 ° C.), DBU phthalate (138 ° C.), DBU oleate (110 ° C.), and the like.
  • DBU 1,8-diazabicyclo
  • DBU octylate 99 ° C.
  • DBU phthalate 138 ° C.
  • DBU oleate 110 ° C.
  • Such a urethanization catalyst is appropriately selected in consideration of the softening temperature of the urethane prepolymer (A) to be used.
  • a foaming agent in the applied urethane resin composition in order to make the resulting polyurethane layer porous, it is preferable to blend a foaming agent in the applied urethane resin composition as necessary.
  • the type of foaming agent is not particularly limited, but it is preferable to use thermally expandable microcapsules from the viewpoint of easy control of pore uniformity.
  • thermally expandable microcapsule for example, the encapsulated hydrocarbon expands by heating, and at the same time, the thermoplastic resin forming the outer shell softens to start expansion, and the internal pressure and the external pressure of the microcapsule are increased.
  • examples thereof include a temperature-sensitive foaming agent for forming uniform closed cells by expanding to a balanced predetermined expansion ratio, preferably twice or more.
  • Specific examples of such thermally expandable microcapsules include Matsumoto Microsphere F series manufactured by Matsumoto Yushi Seiyaku Co., Ltd.
  • additives such as colorants such as pigments, thickeners, and antioxidants may be blended as necessary.
  • FIG. 1 is a schematic process diagram for explaining a method for producing a polyurethane laminate according to this embodiment.
  • 1 is a release paper
  • 2 is a urethane prepolymer that is semi-solid or solid at room temperature
  • 3 is a chain extender
  • 4 is a temperature-sensitive urethanization catalyst having a predetermined exothermic peak temperature
  • 5 is a thermal expansion property. It is a microcapsule.
  • the mixing head 6 is composed of a first nozzle 6a for supplying a urethane prepolymer, a second nozzle 6b for supplying a chain extender, and a mixing chamber 6c. Note that 6a, 6b, and 6c are each provided with a heater (not shown).
  • 7 is a base sheet
  • 8 is a delivery reel of the base sheet 7
  • 9a is a touch roll
  • 9b is a reverse roll
  • 10 is a urethane resin composition (urethane resin layer)
  • 11 is a delivery roll
  • 12 is a heating device
  • 13 is a polyurethane laminate
  • 14 is a take-up reel of the polyurethane laminate 13
  • 16 is a cooling roll
  • PR is a press roll.
  • a reverse roll coater is constituted by a combination of a touch roll 9a and a reverse roll 9b.
  • the urethane prepolymer 2 the chain extender 3, the temperature-sensitive urethanization catalyst 4, and the thermally expandable microcapsule 5 are added to the exothermic peak temperature by 10 to 10 times.
  • Heat melting and mixing at a temperature in the range of 30 ° C. lower (melt mixing step).
  • heating and melting and mixing method for example, the following method may be mentioned.
  • the urethane prepolymer 2 is heated to a predetermined viscosity, while the chain extender 3, the temperature-sensitive urethanization catalyst 4, and the heat-expandable microcapsule 5 are kept warm,
  • a method of stirring after mixing or mixing using a known mixing head as shown in FIG. 1 that mixes by jetting high pressure and colliding is used, or a method of simply stirring and mixing in a molten state is adopted. .
  • the mixing method using the mixing head is performed by atomizing the urethane prepolymer 2 from the first nozzle 6a in a heated and melted state by pressure injection and supplying it to the mixing chamber 6c.
  • the urethanizing catalyst 4 and the thermally expandable microcapsule 5 are mixed with the chain extender 3, and are sprayed from the second nozzle 6b to be atomized and supplied to the mixing chamber 6c. And each component atomized in the mixing chamber 6c is collided and mixed.
  • the heat-expandable microcapsule 5 is blended as necessary when the purpose is to form a porous urethane layer.
  • the first nozzle 6a and the second nozzle of the mixing head are mixed so that the temperature of the urethane resin composition formed by mixing is heated and melted and mixed at a temperature in the range of 10 to 30 ° C. lower than the exothermic peak temperature.
  • the temperature of 6b and the mixing chamber 6c is controlled. According to the mixing method using such a mixing head, more uniform mixing is possible.
  • the urethane prepolymer 2 is heated to a predetermined viscosity and stored in a predetermined container.
  • the chain extender 3, the temperature-sensitive urethanization catalyst 4, and the heat-expandable microcapsule 5 are not activated by the temperature-sensitive urethanization catalyst 4 in another container, and the heat-expandable microcapsule 5 Keep at a temperature that does not swell.
  • the mixture containing the urethane prepolymer 2, the temperature-sensitive urethanization catalyst 4, the thermally expansible microcapsule 5, and the chain extender 3 is supplied to the container provided with the heater and the stirring apparatus.
  • the urethane prepolymer 2, the chain extender 3, the temperature-sensitive urethanization catalyst 4, and the thermally expandable microcapsule 5 are 10 to 10 times the exothermic peak temperature of the temperature-sensitive urethanization catalyst 4. It is heated, melted and mixed at a temperature in the range of 30 ° C. lower.
  • the urethane prepolymer 2 and the chain extender are heated at a temperature in the range of 10 to 30 ° C., preferably in the range of 10 to 25 ° C. lower than the exothermic peak temperature at which the temperature-sensitive urethanization catalyst 4 is activated. 3, the temperature-sensitive urethanization catalyst 4 and the thermally expandable microcapsule 5 are heated, melted and mixed. The progress of the cross-linking reaction is suppressed by heat-melt mixing at such a temperature. Therefore, the pot life of the urethane resin composition prepared in the mixing chamber 6c can be extended.
  • the thermally expandable microcapsule 5 is blended, it is preferable to select a thermally expandable microcapsule that does not substantially expand to the target expansion ratio in the melt mixing step.
  • the release paper 1 is continuously fed from a sheet delivery reel (not shown), and the release paper 1 that is continuously fed is fed by a feed roll 11 that rotates in the direction of the arrow. After that, a continuous line of the release paper 1 is formed in advance by the take-up reel 14.
  • the urethane resin composition 10 prepared in the mixing chamber 6c is formed between the touch roll 9a and the reverse roll 9b toward the release paper 1 continuously conveyed. It flows down toward the clearance, and is applied to the surface of the release paper 1 with a uniform thickness by the reverse roll 9b to form the urethane resin layer 10 (resin layer forming step).
  • the coating thickness is controlled by a clearance interval formed between the reverse roll 9b and the touch roll 9a.
  • the release paper 1 may be a release paper having an embossed pattern for the purpose of imparting surface design, in addition to a release paper having a smooth surface. Furthermore, a layer of a known polymer elastic body represented by polyurethane resin or acrylic resin may be formed in advance on the surface of the release paper. When a layer of a polymer elastic body is previously formed on the surface of the release paper, it can be obtained by heat-melt mixing the urethane prepolymer (A), the chain extender (B), and the temperature-sensitive urethanization catalyst (C). Since the surface of the layer made of the urethane resin composition is coated with the polymer elastic body layer, it is preferable in that the surface properties can be modified. In particular, when coated with the polymer elastic body layer, it is possible to prevent a decrease in adhesiveness with other resin layers due to the surface of the urethane resin composition having a crosslinked structure.
  • a layer of a known polymer elastic body represented by polyurethane resin or acrylic resin may be formed in advance on the surface
  • the layer made of the urethane resin composition When the surface of the layer made of the urethane resin composition is coated with the polymer elastic body layer, the layer made of the urethane resin composition is coated with the polymer elastic body layer in a state where the layer is not sufficiently crosslinked, Adhesiveness between the layer made of the urethane resin composition and the polymer elastic body layer is improved, and the surface embossing (providing the uneven pattern) is further improved.
  • a polyurethane laminate consisting of a solvent-free process by previously forming a layer comprising a known water-dispersed polymer elastic body or a solvent-free cured polymer elastic body as a surface layer. And more preferable.
  • an application mechanism for applying the heated and melted urethane resin composition 10 to the surface of the release paper for example, a knife coater, a roll coater, a reverse coater may be used instead of the reverse roll coater as shown in FIG.
  • coating mechanism provided with the heating means is preferable from the point which can control the melt viscosity of a urethane resin composition.
  • the thickness of the urethane resin layer 10 to be formed is preferably in the range of 5 to 800 ⁇ m, more preferably 10 to 500 ⁇ m, from the viewpoint of obtaining a polyurethane laminate excellent in flexibility and mechanical strength.
  • the polyurethane laminated body 13 in which the urethane resin layer 10 was formed in the surface of the base material sheet 7 is formed by bonding the base material sheet 7 to the surface of the urethane resin layer 10 formed in the surface of the release paper 1 .
  • the bonding of the urethane resin layer 10 and the base sheet 7 is performed, for example, as shown in FIG. 1, when the base sheet 7 is sent out from the feed reel 8, and the urethane resin layer 10 is melted or softened. In this state, they are bonded together by a press roll PR.
  • the substrate sheet 7 used in the present embodiment include, for example, fiber substrates generally used for leather-like sheets such as nonwoven fabrics, woven fabrics, and knitted fabrics; And composite fiber base materials impregnated with water-based, emulsion-based or solvent-free polyurethane resin, acrylic resin, butadiene-based resin (SBR, NBR, MBR) and the like.
  • the composite fiber base material which impregnated the nonwoven fabric formed from the ultrafine fiber with the polyurethane is especially preferably used from the point from which the polyurethane laminated body which has a soft texture and more excellent mechanical strength is obtained.
  • nonwoven fabric a conventionally known short fiber web, a web obtained by a known method such as a spunbond method or a melt blow method can be used without any particular limitation. Moreover, after forming a web as needed, you may obtain by laminating
  • the fibers forming the nonwoven fabric include, for example, polyurethane fibers, polyethylene terephthalate (PET) fibers, various polyamide fibers, polyacrylic fibers, various polyolefin fibers, and polyvinyl alcohol fibers.
  • the fibers forming the nonwoven fabric are preferably ultrafine fibers having a fiber diameter of 0.1 to 50 ⁇ m, more preferably 1 to 15 ⁇ m. Such ultrafine fibers have low rigidity and are soft, which is preferable from the viewpoint of obtaining a polyurethane laminate having a soft texture.
  • the basis weight of the nonwoven fabric is preferably in the range of 50 to 2000 g / m 2 , more preferably in the range of 100 to 1000 g / m 2 , from the viewpoint of obtaining a polyurethane laminate having a soft texture.
  • the polyurethane laminate 13 having the urethane resin layer 10 formed on the surface of the base sheet 7 is heat-treated at a temperature equal to or higher than the exothermic peak temperature of the temperature-sensitive urethanization catalyst (C) (heat treatment step).
  • the urethane resin layer 10 formed on the surface of the release paper 1 is heat-treated at a temperature higher than the exothermic peak temperature of the temperature-sensitive urethanization catalyst (C), whereby the urethane resin layer 10 formed by coating is formed. Cross-linking is promoted.
  • the heat treatment temperature is not particularly limited as long as the temperature of the urethane resin layer 10 is higher than the exothermic peak temperature of the temperature-sensitive urethanization catalyst (C) and does not deteriorate the polyurethane layer formed by curing. Specifically, heat treatment is performed in a temperature range 0 to 30 ° C higher than the exothermic peak temperature of the temperature-sensitive urethanization catalyst (C), and further in a temperature range 0 to 15 ° C higher than the exothermic peak temperature. It is preferable to do.
  • the crosslinking reaction can be sufficiently promoted without lowering the productivity.
  • the heat treatment time for example, about 15 seconds to 10 minutes, further about 30 seconds to 5 minutes.
  • the heat treatment is performed by a heating device 12 such as a hot air heating dryer.
  • the bonded body of the urethane resin layer 10 and the base sheet 7 in the state covered with the release paper 1 thus obtained is forcibly cooled using the cooling roll 16 and then wound by the take-up reel 14. take. Then, by aging the wound polyurethane laminate 13 for a predetermined time, the crosslinking reaction of the urethane resin layer 10 proceeds to increase the molecular weight.
  • aging is preferably performed for about 20 to 50 hours under the conditions of a temperature of 20 to 40 ° C. and a relative humidity of 50 to 80%. Thereby, the polyurethane laminated body excellent in mechanical strength and water resistance is obtained.
  • FIG. 2 shows a schematic cross-sectional view of the polyurethane laminate 13 obtained by such a process.
  • the polyurethane laminate 13 is completed by peeling the release paper 1 coated on the surface.
  • Uniform closed cells 21 are formed in the crosslinked polyurethane layer 20 in the polyurethane laminate 13.
  • a continuous line of the release paper 1 is formed in advance, the urethane resin layer 10 is formed on the surface of the release paper 1 that is continuously fed out, and the surface of the formed urethane resin layer 10 is formed.
  • the process of laminating the base sheet 7 has been described as a representative. However, the order of laminating the release paper 1 and the base sheet 7 is changed to form a continuous line of the base sheet 7 in advance.
  • the urethane resin layer 10 may be formed on the surface of the base sheet 7 to be fed out, and the release paper 1 may be bonded to the surface of the formed urethane resin layer 10.
  • the process which forms the urethane resin layer 10 in the surface of the release paper 1, and bonds the base material sheet 7 on the surface of the formed urethane resin layer 10, and heat-processes it is typical.
  • heat treatment may be performed before the base sheet 7 is bonded to the urethane resin layer 10.
  • the surface layer portion is solvent-based, water-based, emulsion It is also possible to coat a system or solventless polyurethane resin or acrylic resin, or to perform post-processing such as buffing or embossing as appropriate.
  • the polyurethane laminate thus obtained can be preferably used as a leather-like sheet that becomes a surface material for footwear, clothing, bags, furniture, and the like.
  • the method for producing a polyurethane laminate of Embodiment 2 preferably includes a coating film forming step of forming a release paper-coating laminate by applying a meltable crosslinkable hot-melt urethane resin to the surface of the release paper.
  • a release paper-coating is applied to the voids of the composite fiber sheet having a large number of voids in the surface layer, in which a heat treatment step for partially crosslinking the crosslinkable hot-melt urethane resin and the fiber sheet and the polymer elastic body are impregnated and integrated.
  • a laminating step of laminating the coating film on the surface of the composite fiber sheet with a pressure that allows a part of the coating film of the film laminate to enter, and a cooling step of cooling and solidifying the crosslinkable hot-melt urethane resin are provided.
  • the coating film forming step corresponds to the resin layer forming step in the manufacturing method of Embodiment 1 described above, and the heat treatment step in Embodiment 2 is the same as that of Embodiment 1. It preferably corresponds to a heat treatment step.
  • the manufacturing method of Embodiment 2 it is preferable to newly include the specific laminating step and the cooling step.
  • the melt mixing step in the first embodiment described above is preferably a hot melt type urethane prepolymer (A) having a melt viscosity of 10000 mPa ⁇ sec or less at 100 ° C. and a chain extender (B).
  • the crosslinkable hot melt is heated and melt mixed with a temperature-sensitive urethanization catalyst (C) exhibiting a predetermined exothermic peak temperature by differential scanning calorimetry at a temperature in the range of 10 to 30 ° C. lower than the exothermic peak temperature.
  • C temperature-sensitive urethanization catalyst
  • the resin layer forming process in the first embodiment is preferably the second embodiment, in which the release paper-coating laminate is formed by applying the molten cross-linkable hot-melt urethane resin to the release paper surface.
  • This is a coating film forming step.
  • the heat treatment step in the first embodiment is preferably a heat treatment step in which the release paper-coating laminate is heat-treated at a temperature equal to or higher than the exothermic peak temperature to partially crosslink the coating film. is there.
  • the crosslinkable hot-melt urethane resin used in the present embodiment is a urethane prepolymer having an isocyanate group obtained by reacting a polyol and a polyisocyanate, and, if necessary, for curing and crosslinking the urethane prepolymer. It is a composition containing a chain extender and a catalyst, and is a solvent-free polyurethane-forming component that is semi-solid or solid at room temperature.
  • Such a crosslinkable hot-melt urethane resin is solid or semi-solid having a viscosity that is difficult to apply at room temperature. After the work, it is re-solidified or thickened by cooling.
  • polyol examples include the polyol described in Embodiment 1 above. These may be used alone or in combination of two or more.
  • polyisocyanate examples include, for example, the polyisocyanate described in the first embodiment. These may be used alone or in combination of two or more.
  • the urethane prepolymer can be usually produced in the absence of a solvent, but may be produced in an organic solvent.
  • an organic solvent such as ethyl acetate, n-butyl acetate, methyl ethyl ketone, and toluene can be used, but the organic solvent is removed by a method such as heating under reduced pressure during or after the reaction. It is necessary to.
  • the reaction ratio between the polyol and the polyisocyanate is preferably such that the equivalent ratio [NCO / OH] of the isocyanate group in the polyisocyanate to the hydroxyl group in the polyol is in the range of 1.1 to 5, More preferably, it is within the range of ⁇ 3.
  • the number average molecular weight of the urethane prepolymer is in the range of 500 to 30,000, more preferably in the range of 1000 to 10,000.
  • the melt viscosity can be easily adjusted, and excellent flexibility, mechanical strength, and wear resistance are obtained. It is preferable from the viewpoint that a polyurethane resin layer having heat resistance and hydrolysis resistance can be formed.
  • Examples of such commercially available urethane prepolymers include DIC Corporation's trade names Task Force KMM-100, KMM-100LV, Tyforce NH-122A, NH-200, NH-300, H-1041, and Takeda. Takeda Melt SC-13, SL-01, SL-02, SL-03, SL-04, etc. manufactured by Kogyo Co., Ltd. may be mentioned.
  • the chain extender is a compound having two or more functional groups having an active hydrogen such as a hydroxyl group or an amino group that can react with an isocyanate group of the urethane prepolymer.
  • an active hydrogen such as a hydroxyl group or an amino group that can react with an isocyanate group of the urethane prepolymer.
  • the reaction between the isocyanate group in the urethane prepolymer and the hydroxyl group or amino group in the chain extender, which will be described later, is accelerated by the urethanization catalyst to increase the molecular weight.
  • the polymer having a high molecular weight further undergoes a crosslinking reaction by reacting with an isocyanate group present in the system.
  • chain extender examples include the polyamines described in Embodiment 1 in addition to the various polyols described above. These may be used alone or in combination of two or more.
  • a moisture curable hot melt type urethane resin having heat melting property and moisture curable property is particularly preferable.
  • the moisture (moisture) curability of the moisture curable hot-melt urethane resin is cured by reacting the isocyanate group terminal in the urethane prepolymer with moisture (water) to form a urethane bond or urea bond. . Further, the formed urethane bond or urea bond further undergoes a crosslinking reaction by reacting with an isocyanate group present in the system. Through such a curing reaction and a crosslinking reaction, the urethane prepolymer has a high molecular weight, whereby a polyurethane resin having excellent mechanical properties and water resistance is formed.
  • the crosslinkable hot-melt urethane resin of the present embodiment preferably contains a urethanization catalyst, particularly a temperature-sensitive urethanization catalyst.
  • the temperature-sensitive urethanization catalyst is a urethanization catalyst that exhibits a predetermined exothermic peak temperature when differential scanning calorimetry is performed in a temperature range of 0 ° C. to 200 ° C. at a rate of temperature increase of 10 ° C./1 minute under a nitrogen seal. It is.
  • the exothermic peak temperature is preferably in the range of 50 to 160 ° C., and more preferably in the range of 80 to 140 ° C., from the viewpoint of excellent treatment efficiency and stabilization of urethanization.
  • Such a temperature-sensitive urethanization catalyst include an organic acid salt of 1,8-diazabicyclo (5,4,0) -undecene-7 (DBU), specifically a phenol salt of DBU (exothermic peak). Temperature 88 ° C), DBU octylate (99 ° C), DBU phthalate (138 ° C), DBU oleate (110 ° C), and the like.
  • DBU 1,8-diazabicyclo
  • DBU phenol salt of DBU
  • Temperature 88 ° C DBU octylate
  • DBU phthalate 138 ° C
  • DBU oleate 110 ° C
  • Such a temperature-sensitive urethanization catalyst is appropriately selected in consideration of the softening temperature of the urethane prepolymer used.
  • the crosslinkable hot-melt urethane resin preferably contains a foaming agent as necessary in order to make the resulting polyurethane resin layer porous.
  • the type of foaming agent is not particularly limited, but it is preferable to use thermally expandable microcapsules from the viewpoint of easy control of pore uniformity.
  • thermally expandable microcapsule for example, the encapsulated hydrocarbon expands by heating, and at the same time, the thermoplastic resin forming the outer shell softens to start expansion, and the internal pressure and the external pressure of the microcapsule are increased.
  • Examples thereof include a temperature-sensitive foaming agent for forming uniform closed cells by expanding to a balanced predetermined expansion ratio, preferably twice or more.
  • Specific examples of such thermally expandable microcapsules include Matsumoto Microsphere F series manufactured by Matsumoto Yushi Seiyaku Co., Ltd.
  • the crosslinkable hot-melt urethane resin of this embodiment may contain additives such as colorants such as pigments, thickeners, and antioxidants as necessary, in addition to the various components described above.
  • the melt viscosity of such a crosslinkable hot-melt urethane resin is in the range of 500 to 12000 mPa ⁇ s, more preferably 1000 to 10,000 mPa ⁇ s. This is preferable from the viewpoint of excellent coating properties and easy adjustment of the film thickness.
  • FIG. 4 is a schematic explanatory diagram for explaining the method for producing the polyurethane laminate of the present embodiment.
  • 120 is a crosslinkable hot-melt urethane resin
  • 121 is a release paper
  • 122 is a urethane prepolymer
  • 123 is a chain extender
  • 124 is a temperature-sensitive urethanization catalyst having a predetermined exothermic peak temperature
  • 125 is heat.
  • the chain extender of 123 may contain a polyol for imparting a desired color tone or a polyol as long as necessary so as not to impair the effects of the present invention. .
  • a mixing head 136 includes a first nozzle 136a for supplying the urethane prepolymer 122, a second nozzle 136b for supplying the chain extender 123 and the like, and a mixing chamber 136c. Note that 136a, 136b, and 136c are each provided with a heater (not shown).
  • 103 is a composite fiber sheet
  • 138 is a feed reel of the composite fiber sheet 103
  • 139a is a touch roll
  • 139b is a reverse roll
  • 140 is a release paper-coating laminate
  • 141 is a feed roll
  • 142 is a heating device
  • 143 is A polyurethane laminate precursor
  • 144 is a take-up reel of the polyurethane laminate precursor 143
  • 146 is a cooling roll
  • PR is a press roll.
  • a reverse roll coater is configured by a combination of a touch roll 139a and a reverse roll 139b.
  • a release paper-coating laminate 140 is formed by applying a meltable crosslinkable hot-melt urethane resin 120 to the surface of the release paper 121 (coating). Film formation step).
  • a urethane prepolymer 122 for example, a urethane prepolymer 122, a chain extender 123, a temperature-sensitive urethanization catalyst 124, and a thermally expandable microcapsule 125 are temperature-sensitive. And heat melting and mixing at a temperature at which the urethanizing catalyst 124 is not activated.
  • the urethane prepolymer 122 is heated at a temperature that has a predetermined viscosity, while the chain extender 123, the temperature-sensitive urethanization catalyst 124, and the thermally expandable microcapsule 125 are added.
  • a method of stirring after mixing or mixing using a mixing head as shown in FIG. 4 that mixes by injecting and colliding them with high pressure after they are kept warm, or simply in a molten state in a container equipped with a heating device A method such as stirring and mixing is employed.
  • the mixing method using the mixing head is performed by atomizing the urethane prepolymer 122 from the first nozzle 136a in a heated and melted state by pressure injection and supplying it to the mixing chamber 136c.
  • the urethanizing catalyst 124 and the heat-expandable microcapsule 125 are mixed with the chain extender 123, sprayed from the second nozzle 136b, atomized, and supplied to the mixing chamber 136c. And each component atomized in the mixing chamber 136c collides and mixes.
  • the thermally expandable microcapsule 125 is a component that is blended as necessary when forming a porous polyurethane resin layer.
  • the first nozzle 136a and the first nozzle of the mixing head are set so that the temperature of the crosslinkable hot-melt urethane resin 120 prepared by mixing is lower than the temperature at which the temperature-sensitive urethanization catalyst 124 is activated.
  • the temperatures of the two nozzles 136b and the mixing chamber 136c are controlled. According to the mixing method using such a mixing head, more uniform mixing is possible.
  • the urethane prepolymer 122 is heated and stored in a predetermined container at a melting temperature.
  • the chain extender 123, the temperature-sensitive urethanization catalyst 124, and the heat-expandable microcapsule 125 are not activated in the other container, and the heat-expandable microcapsule 125 is not activated. Keep at a temperature that does not swell.
  • the mixture containing the urethane prepolymer 122, the temperature-sensitive urethanization catalyst 124, the thermally expansible microcapsule 125, and the chain extender 123 is supplied to the container provided with the heater and the stirring apparatus.
  • the urethane prepolymer 122, the chain extender 123, the temperature-sensitive urethanization catalyst 124, and the thermally expandable microcapsule 125 are heated at a temperature that does not activate the temperature-sensitive urethanization catalyst 124. Melt mixed.
  • the urethane prepolymer 122 is at a temperature in the range of 10 to 30 ° C. lower than the exothermic peak temperature, preferably in the range of 10 to 25 ° C., which is the temperature at which the temperature-sensitive urethanization catalyst 124 is activated. It is preferable that the chain extender 123, the temperature-sensitive urethanization catalyst 124, and the thermally expandable microcapsule 125 are heated and melt mixed. The progress of the cross-linking reaction is suppressed by heat-melt mixing at such a temperature. Thereby, the coating stability of the crosslinkable hot-melt urethane resin 120 prepared in the mixing chamber 136c can be improved. In addition, when mix
  • the release paper 121 is continuously sent out from a sheet delivery reel (not shown), and the release paper 121 that is continuously sent out is sent by a delivery roll 141 that rotates in the direction of the arrow. After that, a continuous line of the release paper 121 is formed in advance by the take-up reel 144.
  • the crosslinkable hot-melt urethane resin 120 prepared in the mixing chamber 136c is placed between the touch roll 139a and the reverse roll 139b toward the release paper 121 that is continuously conveyed. It flows down toward the clearance to be formed, and is applied to the surface of the release paper 121 with a uniform thickness by the reverse roll 139b to form the release paper-coating laminate 140.
  • the coating thickness is controlled by the clearance interval formed between the reverse roll 139b and the touch roll 139a.
  • a release paper having an embossed pattern may be used in addition to a smooth release paper for the purpose of imparting surface design.
  • an application mechanism for applying the crosslinkable hot melt urethane resin 120 in a heated and melted state to the surface of the release paper 121 for example, a knife coater, a roll may be used instead of the reverse roll coater as shown in FIG. A coater, reverse coater, kiss roll coater, spray coater, T-die coater, or comma coater may be used.
  • the application mechanism provided with the heating means from the point which can control the molten state of the crosslinkable hot-melt-type urethane resin 120 is preferable.
  • the thickness of the coating film 132 of the release paper-coating laminate 140 is preferably in the range of 10 to 1000 ⁇ m, more preferably 50 to 500 ⁇ m from the viewpoint of obtaining a polyurethane laminate excellent in flexibility and mechanical strength. .
  • the crosslinkable hot melt urethane resin 120 is partially crosslinked (heat treatment step). Specifically, the release paper-coating laminate 140 is heat-treated at a temperature at which the temperature-sensitive urethanization catalyst 124 contained in the crosslinkable hot-melt urethane resin 120 is activated, thereby forming the coating film 132. Crosslinking of the crosslinkable hot-melt urethane resin 120 is promoted. Thereby, the viscosity of the coating film 132 rises to some extent. When a foaming agent such as the thermally expandable microcapsule 125 is contained in the crosslinkable hot-melt urethane resin 120, it is preferable to foam in the heat treatment step.
  • a foaming agent such as the thermally expandable microcapsule 125 is contained in the crosslinkable hot-melt urethane resin 120, it is preferable to foam in the heat treatment step.
  • the heat treatment temperature is not particularly limited as long as the temperature of the coating film 132 is higher than the exothermic peak temperature of the temperature-sensitive urethanization catalyst 124 and does not deteriorate the polyurethane resin layer that is cured and formed, Specifically, heat treatment is preferably performed in a temperature range of 0 to 30 ° C. higher than the exothermic peak temperature of the temperature-sensitive urethanization catalyst 124, and further in a temperature range of 0 to 15 ° C. higher than the exothermic peak temperature. .
  • the heat treatment step is provided after the release paper-coating laminate is formed, but the heat treatment step is provided immediately before the application of the crosslinkable hot-melt urethane resin, and partial crosslinking is started before the application. You may provide in any step.
  • the heat treatment is performed by a heating device 142 such as a hot air heating dryer.
  • the release paper-coating laminate 140 and the composite fiber sheet 103 are bonded together, for example, as shown in FIG.
  • the coating film 132 on the surface of the laminate 140 is partially crosslinked, it is bonded by the press roll PR while being softened to some extent.
  • the pressure applied at the time of bonding between the release paper-coating laminate 140 and the composite fiber sheet 103 is appropriately set according to the viscosity of the coating film 132 during press roll.
  • This pressure can be adjusted, for example, by adjusting the clearance clearance between the rolls of a press roll formed by combining two rolls.
  • the clearance interval between the two rolls is adjusted according to the total thickness of the release paper-coating laminate 140 and the composite fiber sheet 103, and for example, the following clearance interval is preferably employed.
  • the clearance between the two rolls is about 70 to 99%, more preferably about 80 to 97% of the total thickness of the release paper-coating laminate 140 and the composite fiber sheet 103 before the press roll. It is preferable to set to.
  • a manufacturing method of performing a laminating step of bonding the release paper-coating laminate 140 and the composite fiber sheet 103 after performing a heat treatment step of partially cross-linking the crosslinkable hot-melt urethane resin 120 is performed.
  • the laminating step may be performed before the heat treatment step.
  • the polyurethane laminate precursor 143 which is a laminate of the release paper-coating laminate 140 and the composite fiber sheet 103, obtained as described above is forcibly cooled using a cooling roll 146 (cooling step). In the cooling step, the crosslinkable hot melt urethane resin 120 is solidified or thickened.
  • the film is taken up by the take-up reel 144.
  • the wound polyurethane laminate precursor 143 is aged for a predetermined time as necessary, so that the crosslinking reaction of the polyurethane resin layer further proceeds to increase the molecular weight and cure. Further, when a moisture curable hot melt urethane resin is used as the crosslinkable hot melt urethane resin, moisture curing proceeds.
  • aging is preferably performed for about 20 to 50 hours under the conditions of a temperature of 20 to 40 ° C. and a relative humidity of 50 to 80%. Thereby, the polyurethane laminated body excellent in mechanical strength and water resistance is obtained.
  • the release paper 121 is peeled off from the polyurethane laminate precursor 143 to obtain a polyurethane laminate.
  • the surface layer portion is made of a solvent-based, water-based, emulsion-based or solvent-free urethane resin or acrylic resin.
  • a skin layer may be provided by coating, or post-processing such as buffing or embossing may be appropriately performed.
  • the polyurethane laminate thus obtained can be used as a leather-like sheet used for bags, footwear, clothing, furniture and the like.
  • Embodiment 3 the polyurethane laminate obtained by the method for producing a polyurethane laminate of Embodiment 2 will be described.
  • the polyurethane laminate according to Embodiment 3 is preferably a composite fiber sheet having a large number of voids in the surface layer, in which a fiber sheet and a polymer elastic body are impregnated and integrated, and a polyurethane resin laminated on the composite fiber sheet And a mixed layer having a thickness of 10 ⁇ m or more formed by intruding into a void in the surface layer of the composite fiber sheet.
  • FIG. 3 is a schematic cross-sectional view of the polyurethane laminate 110, 101 is a fiber sheet, 102 is a porous polyurethane (polymer elastic body), and the fiber sheet 101 is impregnated with the porous polyurethane 102 and integrated. Thereby, the composite fiber sheet 103 is formed.
  • Reference numeral 104 denotes a polyurethane resin layer, and the lower layer of the polyurethane resin layer 104 enters and mixes with the gap 106 in the upper layer of the composite fiber sheet 103, whereby the mixed layer 105 is formed.
  • the fiber sheet 101 include, for example, fiber base materials generally used for leather-like sheets such as nonwoven fabrics, woven fabrics, and knitted fabrics.
  • the nonwoven fabric formed from the ultrafine fiber or the ultrafine fiber bundle is used preferably from the point from which the composite fiber sheet which has a soft texture and the outstanding mechanical strength is obtained.
  • a nonwoven fabric a conventionally known short fiber web, a web obtained by a known method such as a spunbond method or a melt blow method can be used without particular limitation.
  • After forming a web as needed it may be obtained by accumulating a plurality of webs and intertwining them by a needle punching process or the like.
  • the fibers forming the nonwoven fabric include, for example, polyester fibers such as polyurethane fibers and PET fibers, polyamide fibers, polyacrylic fibers, polyolefin fibers, and polyvinyl alcohol fibers.
  • the fibers forming the nonwoven fabric are preferably fine fibers or ultrafine fibers having a fiber diameter of 0.1 to 50 ⁇ m, more preferably 1 to 15 ⁇ m. Such a fine fiber or ultrafine fiber has a low rigidity and is soft, so that a composite fiber sheet having a soft texture can be obtained.
  • the cross-sectional shape of the fiber in addition to a normal circular or elliptical cross-section, a star-shaped one may be used, and from the point of obtaining a composite fiber sheet having both lightness and mechanical strength, it is hollow or A lotus-type multi-cavity hollow shape may be used.
  • the basis weight of the nonwoven fabric is preferably in the range of 50 to 2000 g / m 2 , and more preferably in the range of 100 to 1000 g / m 2 from the viewpoint of obtaining a composite fiber sheet having a soft texture.
  • the fiber sheet 101 of this embodiment is impregnated with porous polyurethane 102 as a polymer elastic body.
  • the polymer elastic body is not limited to a porous material.
  • polyurethane acrylonitrile-butadiene copolymer, styrene-butadiene copolymer, acrylic ester or methacrylic ester copolymer, silicon rubber, or the like may be used.
  • Polyurethane is particularly preferable in that a good texture can be obtained.
  • porous polyurethane 102 examples include a porous polyurethane resin obtained by solidifying or solidifying a solvent-based, water-based, emulsion-based or solvent-free urethane resin.
  • the composite fiber sheet 103 formed by impregnating the fiber sheet 101 with the porous polyurethane 102 and being integrated is impregnated with the porous polyurethane 102 in the gaps formed between the fibers or fiber bundles constituting the fiber sheet 101. And a large number of voids that are not impregnated with the porous polyurethane 102.
  • the lower layer of the polyurethane resin layer 104 penetrates into a large number of voids 106 existing on the surface layer to form a mixed layer 105.
  • the thickness of the composite fiber sheet 103 is not particularly limited, but is preferably in the range of 100 to 2000 ⁇ m, and more preferably in the range of 200 to 1500 ⁇ m, because the texture becomes soft and the rubber-like texture does not easily occur.
  • the porosity of the composite fiber sheet 103 before the mixed layer 105 is formed is preferably 20 to 85% by volume, more preferably 35 to 80% by volume, and particularly preferably 40 to 80% by volume. In the case of such a porosity, it is preferable from the point that the crease / protrusion of the obtained polyurethane laminate is particularly fine, the balance of texture is excellent, and the peel strength is excellent. In addition, the porosity is calculated
  • Porosity (%) [1 ⁇ density of composite fiber sheet ⁇ ⁇ specific gravity of fibers constituting composite fiber sheet ⁇ (mass ratio of fibers in composite fiber sheet) + polymer elastic body constituting composite fiber sheet] Specific gravity x (mass ratio of polymer elastic body in composite fiber sheet) ⁇ ] ⁇ 100
  • the polyurethane resin layer 104 include a layer made of a polyurethane resin obtained by coagulating or solidifying a hot-melt urethane resin, a thermoplastic polyurethane resin, a solvent-based urethane resin, a water-based urethane resin, or an emulsion-based urethane resin. Is mentioned. Among these, a polyurethane resin layer derived from a hot-melt urethane resin is particularly preferably used from the viewpoint of excellent industrial productivity.
  • the polyurethane resin layer 104 including the thickness of the mixed layer 105 has a thickness of 30 to 1000 ⁇ m, more preferably 100 to 800 ⁇ m, particularly 150 to 700 ⁇ m, and a polyurethane laminate excellent in flexibility and mechanical strength. Is preferable from the point that can be obtained.
  • the polyurethane resin layer 104 is preferably a porous resin layer.
  • the average diameter of the porous voids formed in the polyurethane resin layer 104 is preferably 10 to 500 ⁇ m, more preferably 20 to 200 ⁇ m, from the viewpoint of excellent processing stability, resin layer smoothness and surface touch.
  • the porosity of the polyurethane resin layer 104 is 10 to 90% by volume, more preferably 20 to 80% by volume, and particularly 30 to 70% by volume. This is preferable from the viewpoint of fineness and physical properties.
  • the polyurethane laminate 110 includes a composite fiber sheet 103 and a polyurethane resin layer 104 laminated on the surface of the composite fiber sheet 103, and a part of the polyurethane resin layer 104 is a surface of the composite fiber sheet 103.
  • the mixed layer 105 is formed by entering and filling the void 106.
  • Such a mixed layer 105 is a layer having a thickness of 10 ⁇ m or more formed when a part of the polyurethane resin layer 104 enters a large number of voids 106 of the composite fiber sheet 103, and is combined with a part of the polyurethane resin layer 104.
  • the bottom surface 107 of the mixed layer 105 exists in a deep portion from the surface layer of the polyurethane laminate 110.
  • the voids of the composite fiber sheet 103 are intruded and filled with polyurethane constituting the polyurethane resin layer 104, and the polymer elastic body and the fiber sheet constituting the composite fiber sheet 103 are mixed.
  • the interface between the polyurethane resin layer and the composite fiber sheet does not exist in the vicinity of the surface layer, so that the influence of the interface is less likely to appear on the surface layer of the polyurethane laminate 110.
  • the thickness of the mixed layer 105 is preferably 10 to 800 ⁇ m, more preferably 30 to 500 ⁇ m from the viewpoint of exhibiting a high anchor effect.
  • the thickness of the mixed layer 105 is too thin, the anchor effect is weakened, the adhesion between the polyurethane resin layer 104 and the composite fiber sheet 103 is not sufficiently improved, the crease feeling is inferior, and the crease tends to remain. Yes, if the mixed layer 5 is too thick, the texture tends to be hard.
  • the ratio of the thickness of the mixed layer 105 to the total thickness of the entire polyurethane resin layer 104 is preferably 10 to 80%, more preferably 30 to 70%, from the viewpoint of exhibiting a high anchor effect.
  • the ratio of the thickness of the mixed layer 105 is too low, the adhesive force between the polyurethane resin layer 104 and the composite fiber sheet 103 tends not to be sufficiently improved, and the interface 107 of the mixed layer becomes close to the surface layer. Tend.
  • the ratio of the thickness of the mixed layer 105 is too high, the texture tends to be hard rubber-like.
  • the porous polyurethane 102 and the polyurethane resin layer 104 exist in a substantially incompatible state. By forming such a mixed layer 105, a higher anchor effect is exhibited. Further, since the partition walls forming the porous structure formed in the porous polyurethane 102 are maintained as they are, the mechanical characteristics of the mixed layer 105 are excellent.
  • the surface layer thereof is coated with a solvent-based, water-based, emulsion-based or solvent-free polyurethane resin or acrylic resin in order to impart surface designability by a known and conventional method.
  • the outer skin layer may be laminated or post-processing such as buffing or embossing may be appropriately performed.
  • the total thickness of the polyurethane laminate 110 is preferably 100 to 3000 ⁇ m, more preferably 200 to 2000 ⁇ m, and particularly preferably 500 to 1500 ⁇ m from the viewpoint of obtaining a texture similar to leather.
  • Such a polyurethane laminate can be preferably used as a leather-like sheet similar to natural leather that becomes a surface material of footwear, clothing, bags, furniture, and the like.
  • Example 1-1 A polyurethane laminate was produced using a production process as shown in FIG.
  • the urethane prepolymer 2 was atomized by pressure injection from the first nozzle 6a in a heated and melted state kept at 100 ° C. and supplied to the mixing chamber 6c, while keeping the temperature at 50 ° C. 16.
  • a mixture obtained by mixing 0.9 parts by mass of the temperature-sensitive urethanization catalyst 4 and 0.8 parts by mass of the thermally expandable microcapsule 5 with respect to 2 parts by mass of the chain extender 3 is pressurized from the second nozzle 6b.
  • the mixture was sprayed, atomized, and supplied to the mixing chamber 6c kept at 100 ° C. And each component atomized in the mixing chamber 6c was collided and mixed.
  • the mixing ratio was 15 parts by mass of a mixture of the chain extender 3, the temperature-sensitive urethanization catalyst 4, the thermally expandable microcapsule 5 and 2100 parts by mass of the urethane polymer.
  • the urethane resin composition 10 prepared by collision mixing was further stirred in the mixing chamber 6c. Stirring was performed at 4000 rpm for 15 seconds using a stirrer (TK homodisper prime) provided in the mixing chamber 6c. It was 100 degreeC when the surface temperature of the urethane resin composition 10 was measured with the non-contact-type thermometer after stirring.
  • the release paper 1 that is continuously fed from a release paper feed reel (not shown) is fed by a feed roll 11 that rotates in the direction of the arrow, and is then wound by a take-up reel 14.
  • a continuous line of the release paper 1 was formed.
  • the reverse roll 9b and the touch roll 9a which heated the urethane resin composition 10 melt-mixed in the mixing chamber 6c at 100 degreeC toward the release paper 1 sent out continuously The urethane resin layer 10 was formed by applying the reverse flow 9b onto the surface of the release paper 1 so that the application amount was 500 g / m 2 . At this time, the coating thickness of the urethane resin layer 10 on the substrate was about 300 ⁇ m.
  • the base material sheet 7 was sent out from the feed reel 8 toward the surface of the urethane resin layer 10 formed on the surface of the release paper 1 and bonded by the press roll PR.
  • the urethane resin composition 10 in the mixing chamber 6c maintains a viscosity in a range where it can be continuously applied for at least about 3 hours, and the pot life is reduced. It was excellent. Further, when the cross section of the obtained polyurethane laminate 13 was observed with a scanning electron microscope, uniform independent pores having an average diameter of about 80 ⁇ m were formed.
  • Example 1-2 A polyurethane laminate 13 was continuously produced in the same manner as in Example 1-1 except that the polyurethane resin composition in the mixing chamber 6c was kept at 80 ° C. instead of keeping at 100 ° C.
  • the viscosity of the resin was somewhat high, and the applicability was somewhat lower than in Example 1, but there was no problem in continuous productivity. Further, the urethane resin composition in the mixing container maintained a viscosity range that could be applied continuously for at least about 4 hours, and was excellent in pot life.
  • Example 1-3 Instead of performing a heat treatment process in which the substrate sheet 7 is bonded to the urethane resin layer 10 formed on the surface of the release paper 1 and then heated at 115 ° C. for 60 seconds, the same process is performed before the substrate sheet 7 is bonded.
  • a polyurethane laminate 13 was continuously produced in the same manner as in Example 1-1, except that the heat treatment step was performed under the conditions, and then the base sheet 7 was bonded. When a cross section of the obtained polyurethane laminate 13 was observed, uniform independent pores were formed.
  • Example 1-4 Example 1 except that instead of forming a continuous line of the release paper 1, a line of the base sheet 7 is first formed and the urethane resin layer 10 is formed on the surface of the base sheet 7 that is continuously fed out. In the same manner as in No. 3, a urethane resin layer 10 was formed.
  • the release paper 1 was fed out from the feed reel 8 toward the surface of the urethane resin layer 10 formed on the surface of the base sheet 7 and bonded by the press roll PR.
  • a release liquid with a skin layer is prepared by coating the liquid mixture for drying so that the thickness after drying is 10 ⁇ m and drying at 120 ° C. for 2 minutes to form a skin layer made of a polymer elastic body on the surface of the release paper.
  • a multilayer polyurethane laminate was continuously produced in the same manner as in Example 1-1 except that the urethane resin layer 10 was formed on the release paper with the skin layer.
  • the urethane resin layer 10 was formed on the release paper with the skin layer.
  • the urethane prepolymer 2 is atomized by pressure injection from the first nozzle 6a in a heated and melted state kept at 120 ° C. and supplied to the mixing chamber 6c, while keeping the temperature at 50 ° C. 16.
  • a mixture obtained by mixing 0.9 parts by mass of the temperature-sensitive urethanization catalyst 4 and 0.8 parts by mass of the thermally expandable microcapsule 5 with respect to 2 parts by mass of the chain extender 3 from the second nozzle 6b.
  • the mixture was supplied to the mixing chamber 6c which was atomized by pressure injection and kept at 110 ° C. And each component atomized in the mixing chamber 6c was collided and mixed.
  • the mixing ratio is a ratio of 15 parts by mass of a mixture of the chain extender 3, the temperature-sensitive urethanization catalyst 4 and the thermally expandable microcapsule 5 supplied from the second nozzle 6b with respect to 2100 parts by mass of the urethane polymer.
  • the urethane resin composition 10 prepared by collision mixing was further stirred in the mixing chamber 6c. After stirring, the surface temperature of the urethane resin composition 10 was 110 ° C. when measured with a non-contact type thermometer. At this time, the thermally expandable microcapsule was expanded more than twice.
  • Example 1-1 a polyurethane laminate was formed in the same manner as in Example 1-1 except that no heat treatment was performed.
  • a polyurethane resin composition to be applied at a temperature lower by 10 to 30 ° C. than the exothermic peak temperature of the temperature-sensitive urethanization catalyst as in Examples 1-1 to 1-4 according to the present invention was prepared.
  • the pot life of the prepared polyurethane resin composition is very long and the continuous productivity is excellent.
  • Comparative Example 1-1 in which the polyurethane resin composition was prepared at the exothermic peak temperature of the temperature-sensitive urethanization catalyst, the pot life of the prepared polyurethane resin composition was very short, and the continuous production It was scarce.
  • the resin layer formation speed can be optimized and productivity can be improved.
  • a composite fiber sheet having a thickness of about 800 ⁇ m, a basis weight of 250 g / m 2 , a density of 0.315 g / cm 3 , and a porosity of about 73% by volume.
  • Example 2-1 A polyurethane laminate was produced using a production process as shown in FIG.
  • a crosslinkable hot-melt urethane resin 120 was prepared using a mixing head (manufactured by Maruka Chemical Co., Ltd., MEG-HK-55S type). Specifically, 100 parts of urethane prepolymer maintained at 115 ° C. (mass part, the same applies hereinafter) is atomized by pressure injection from the first nozzle 136a and supplied to the mixing chamber 136c, while 15.7 parts of pigment. A mixture of 0.8 parts of thermally expandable microcapsules, 0.25 parts of a temperature-sensitive urethanization catalyst, and 0.25 parts of a chain extender at 50 ° C. is sprayed from the second nozzle 136b under pressure and atomized. Each atomized component was allowed to collide and be mixed. In addition, the mixing ratio was mixed at a ratio of 17 parts by mass with respect to 100 parts by mass of the urethane prepolymer.
  • the release paper 121 delivered from the unillustrated release paper delivery reel at a line speed of 5 m / min is delivered by a delivery roll 141 that rotates in the direction of the arrow, and is then taken up by a take-up reel 144 and released. 121 continuous lines were formed.
  • the release paper-coating laminate 140 is heated to 125 ° C. It processed for 90 second with the heating apparatus 142.
  • the composite fiber sheet 103 was fed from the feed reel 138 toward the surface of the coating film 132 formed on the release paper-coating laminate 140, and bonded by a press roll PR composed of two rolls. At this time, the clearance interval between the two rolls was 1410 ⁇ m.
  • the polyurethane laminate precursor 143 which is a laminate of the release paper-coating laminate 140 and the composite fiber sheet 103 in a state covered with the release paper 121 thus obtained, is forced to use a cooling roll 146. After cooling, the film was taken up by a take-up reel 144. And in the wound state, after making it age
  • a cord-burn leather-like sheet 117 was obtained by bonding with ME8116 manufactured by Kogyo Co., Ltd. And the cross section of the leather-like sheet
  • the leather-like sheet 117 is composed of a skin layer 109 having a thickness of about 20 ⁇ m, a polyurethane resin layer 114 having a thickness of about 650 ⁇ m, and a composite fiber sheet 113 having a thickness of about 800 ⁇ m, which are laminated in order from the surface layer.
  • the lower layer of the polyurethane resin layer 114 entered and filled the upper space 116 of the composite fiber sheet 113 to form a mixed layer 115 having a thickness of about 300 ⁇ m. Further, uniform independent pores having an average diameter of about 180 ⁇ m were formed in the polyurethane resin layer 114.
  • each said thickness is an average value measured from the SEM photograph in 10 cross sections arbitrarily chosen of the obtained leather-like sheet
  • FIG. A typical photomicrograph at this time is shown in FIG.
  • the texture when the leather-like sheet obtained in this way was folded was evaluated. Specifically, creases and creases generated when a leather-like sheet cut into a square shape with a side of 200 mm was folded in half were observed. At this time, fine wrinkles similar to the case of leather as shown in FIG. 7 occurred. In addition, even after opening the crease by bending and holding it with a finger strongly, no crease remains and a smooth surface is maintained.
  • Example 2-2 A leather-like sheet was produced and evaluated in the same manner as in Example 2-1, except that the clearance interval between the two rolls of the press roll PR was changed from 1410 ⁇ m to 1310 ⁇ m. And the cross section of the obtained leather-like sheet
  • the obtained leather-like sheet is composed of a skin layer having a thickness of about 20 ⁇ m, a polyurethane resin layer having a thickness of about 650 ⁇ m, and a composite fiber sheet having a thickness of about 800 ⁇ m, which are laminated in order from the surface layer. However, a mixed layer having a thickness of about 400 ⁇ m was formed by invading and filling the voids in the upper layer of the composite fiber sheet. Further, when the texture of the leather-like sheet obtained as described above was evaluated, fine wrinkles as shown in FIG. 7 were generated. In addition, even after opening the crease by bending and holding it with a finger strongly, no crease remains and a smooth surface is maintained.
  • Example 2-3 A leather-like sheet was produced and evaluated in the same manner as in Example 2-1, except that the clearance interval between the two rolls of the press roll PR was changed from 1410 ⁇ m to 1450 ⁇ m. And the cross section of the obtained leather-like sheet
  • the obtained leather-like sheet is composed of a skin layer having a thickness of about 20 ⁇ m, a polyurethane resin layer having a thickness of about 650 ⁇ m, and a composite fiber sheet having a thickness of about 800 ⁇ m, which are laminated in order from the surface layer. However, a mixed layer having a thickness of about 40 ⁇ m was formed by entering and filling the voids in the upper layer of the composite fiber sheet.
  • Example 2-4 A leather-like sheet was produced and evaluated in the same manner as in Example 2-1, except that the clearance interval between the two rolls of the press roll PR was changed from 1410 ⁇ m to 1200 ⁇ m. And the cross section of the obtained leather-like sheet
  • the obtained leather-like sheet is composed of a skin layer having a thickness of about 20 ⁇ m, a polyurethane resin layer having a thickness of about 650 ⁇ m, and a composite fiber sheet having a thickness of about 800 ⁇ m, which are laminated in order from the surface layer. However, a mixed layer having a thickness of about 600 ⁇ m was formed by invading and filling the voids in the upper layer of the composite fiber sheet.
  • the liquid mixture for coating was applied so that the thickness after drying was 10 ⁇ m, and dried at 120 ° C. for 2 minutes to prepare a release paper with a skin layer in which a skin layer made of a polymer elastic body was formed on the surface of the release paper. .
  • a multilayer polyurethane laminate was continuously produced in the same manner as in Example 2-1, except that a layer made of the crosslinkable hot-melt urethane resin 120 was formed on the release paper with the skin layer.
  • the obtained multilayer polyurethane laminate was able to produce a leather-like sheet continuously without a solvent without forming a skin layer later as in Example 2-1.
  • the cross section of the obtained leather-like sheet was observed, it was composed of a skin layer, a polyurethane resin layer, and a composite fiber sheet laminated in order from the surface layer, and the lower layer of the polyurethane resin layer was a void in the upper layer of the composite fiber sheet As a result, a mixed layer having a thickness of about 300 ⁇ m was formed.
  • thermoplastic polyurethane resin Karl Fischer Co., Ltd. Kuramylon U3119-000
  • a thermoplastic polyurethane film was removed from an extruder equipped with a T-die set at a cylinder temperature of 230 ° C.
  • the polyurethane resin layer was manufactured by extruding and crimping
  • the press bonding was performed using a press roll PR having the same clearance interval as that used in Example 2-1.
  • a leather-like sheet was produced by forming a skin layer on the surface of the obtained polyurethane resin layer in the same manner as in Example 2-1.
  • the SEM photograph of the cross section of the obtained leather-like sheet 118 is shown in FIG.
  • the leather-like sheet 118 was composed of a skin layer 109 having a thickness of about 20 ⁇ m, a polyurethane resin layer 111 having a thickness of about 350 ⁇ m, and a composite fiber sheet 113 having a thickness of about 800 ⁇ m, which were laminated in order from the surface layer.
  • the mixed layer as formed in the polyurethane laminate of -1 to 2-5 was not formed.
  • large wrinkles as shown in FIG. 8 were generated.
  • the crease was attached by bending and holding it with a finger, many fine creases remained when opened.
  • the porous structure of the porous polyurethane contained in the composite fiber sheet in the entry portion is dissolved and destroyed by the solvent in the solvent-type polyurethane liquid, and the polyurethane and the porous polyurethane constituting the polyurethane resin layer form an interface with each other. It was not compatible.
  • Comparative Example 2-3 By repeating the coating and drying of the aqueous polyurethane dispersion (solid content concentration 45%) instead of the solvent-based polyurethane solution of Comparative Example 2-2 on the release paper so as to have almost the same thickness as Comparative Example 2-2, A polyurethane resin layer having a thickness of 350 ⁇ m was formed. And the obtained polyurethane resin layer was bonded together to the composite fiber sheet 3 through the water-based polyurethane adhesive. And the polyurethane laminated body was obtained by ageing
  • the polyurethane resin layer of the obtained polyurethane laminate had a portion extending so as to slightly penetrate from the surface of the composite fiber sheet at a depth of about 10 ⁇ m, as in Comparative Example 2-2.
  • the gaps in the fiber sheet were not filled, and the entry portion was not a continuous layer having a thickness.
  • one aspect of the present invention is a temperature sensitivity that shows a predetermined exothermic peak temperature by differential scanning calorimetry with a urethane prepolymer (A) that is semi-solid or solid at room temperature and a chain extender (B).
  • a polyurethane layered product comprising: a resin layer forming step of forming a urethane resin layer on a sheet surface such as a release paper and a fiber substrate; and a heat treatment step of heat-treating the urethane resin layer at a temperature equal to or higher than the exothermic peak temperature. It is a manufacturing method.
  • the urethane prepolymer (A), the chain extender (B), and the chain extender (B) are at a temperature in the range of 10 to 30 ° C. lower than the exothermic peak temperature at which the temperature-sensitive urethanization catalyst (C) is activated.
  • the urethane resin composition by heat-melting and mixing with the temperature-sensitive urethanization catalyst (C), the progress of the crosslinking reaction of the urethane resin composition to be applied is suppressed. Therefore, the pot life of the urethane resin composition used for application is extended.
  • the urethane resin layer formed on the surface of the base material is later heat-treated at a temperature higher than the exothermic peak temperature at which the temperature-sensitive urethanization catalyst (C) is activated, thereby quickly crosslinking and producing Improves.
  • the temperature-sensitive urethanization catalyst is an organic acid salt of 1,8-diazabicyclo (5,4,0) -undecene-7
  • the predetermined exothermic peak temperature by differential scanning calorimetry becomes sharp. This is preferable from the viewpoint of easy control of the crosslinking reaction.
  • the heat-expandable microcapsules are further mixed in the urethane resin composition, and the heat-expandable microcapsules are expanded at an expansion ratio of 2 times or more in the heat treatment step. preferable.
  • the melt mixing step is performed by pressure-injecting the urethane prepolymer (A) in a heat-melted state atomized by pressure-injecting from the first nozzle of the mixing head and the second nozzle.
  • the melt mixing step is performed by pressure-injecting the urethane prepolymer (A) in a heat-melted state atomized by pressure-injecting from the first nozzle of the mixing head and the second nozzle.
  • polyurethane laminate of the present invention is preferably a polyurethane laminate obtained by any one of the above production methods.
  • Another aspect of the present invention is a coating film forming step of forming a release paper-coating laminate by applying a molten crosslinkable hot melt urethane resin to the surface of the release paper, and a crosslinkable hot melt.
  • the release paper-coating laminate is applied to the voids of the composite fiber sheet having a large number of voids in the surface layer, in which the fiber sheet and the polymer elastic body are impregnated and integrated, and the heat treatment step for partially crosslinking the mold urethane resin.
  • a method for producing a polyurethane laminate comprising a laminating step of laminating a coating film on the surface of a composite fiber sheet at a pressure at which a part of the membrane enters, and a cooling step of cooling and solidifying a crosslinkable hot-melt urethane resin. is there.
  • the polyurethane laminate having the mixed layer as described above can be easily produced.
  • the coating film forming step is a temperature sensitivity which shows a predetermined exothermic peak temperature by differential scanning calorimetry with a hot melt urethane prepolymer (A) having a melt viscosity at 100 ° C. of 10,000 mPa ⁇ sec or less and a chain extender (B). Melting and mixing step of forming a crosslinkable hot-melt urethane resin by heat melting and mixing with the heat-resistant urethanization catalyst (C) at a temperature in the range of 10-30 ° C.
  • the urethane prepolymer (A), the chain extender (B), and the chain extender (B) are at a temperature in the range of 10 to 30 ° C. lower than the exothermic peak temperature at which the temperature-sensitive urethanization catalyst (C) is activated.
  • the temperature-sensitive urethanization catalyst (C) is activated.
  • the coating film formed on the release paper surface is heat-treated at a temperature higher than the exothermic peak temperature at which the temperature-sensitive urethanization catalyst (C) is activated, so that the coating film is partially crosslinked to adjust the viscosity. Is done. And the quantity of the coating film which penetrate
  • thermosensitive urethanization catalyst for example, an organic acid salt of 1,8-diazabicyclo (5,4,0) -undecene-7 is preferably used.
  • the heat-expandable microcapsules are further mixed in the crosslinkable hot-melt urethane resin so that the heat-expandable microcapsules have an expansion ratio of 2 times or more in the melt-mixing step and / or heat treatment step. It is preferable that it expand
  • a polyurethane resin layer having uniform closed cells can be formed by mixing such thermally expandable microcapsules in a crosslinkable hot melt urethane resin.
  • the melt mixing step is performed by pressure injection from the first nozzle of the mixing head and the hot melt urethane prepolymer (A) in a heated and melted state atomized by pressure injection from the first nozzle of the mixing head.
  • the mixture containing the chain extender (B) and the temperature-sensitive urethanization catalyst (C) atomized by the above is collided with heat to melt and mix at a temperature in the range of 10-30 ° C. lower than the exothermic peak temperature. It is preferable that it is a process. According to such a method, more uniform mixing is possible.
  • Still another aspect of the present invention is a composite fiber sheet having a large number of voids in a surface layer, in which a fiber sheet and a polymer elastic body are impregnated and integrated, and a polyurethane resin layer laminated on the composite fiber sheet 10 ⁇ m or more, preferably a part of the polyurethane resin layer and a surface layer of the composite fiber sheet are mixed in an incompatible state when a part of the polyurethane resin layer enters the gap.
  • a polyurethane laminate having a mixed layer having a thickness of 30 ⁇ m or more.
  • the interface between the composite fiber sheet and the polyurethane resin layer is not two-dimensional like the polyurethane laminate obtained by the conventional method, but as shown in FIG.
  • the polyurethane constituting the polyurethane resin layer can permeate deeply and randomly in the thickness direction of the composite fiber sheet, and can exist as a mixed layer 105 formed three-dimensionally having a sufficient thickness.
  • the polyurethane resin layer is supported by the composite fiber sheet with a high anchor effect. Is done.
  • the bottom surface of the mixed layer is located in a deep portion from the surface layer of the polyurethane laminate (for example, the bottom surface 107 in FIG. 3). This makes it difficult for the influence of mismatch at the interface between the polyurethane resin layer and the composite fiber sheet, which has been a problem in the past, to appear on the surface layer of the polyurethane laminate.
  • a mixed layer on the polyurethane laminate to improve the adhesion between the composite fiber sheet and the polyurethane resin layer, it has a solid texture similar to leather and a good feeling of folding when folded. Thus, after folding, a polyurethane laminate in which no creases remain is obtained.
  • the polymer elastic body and the polyurethane resin layer exist in a substantially incompatible state.
  • the incompatible state means a state in which the polymer elastic body constituting the composite fiber sheet and the polyurethane resin constituting the polyurethane resin layer are mutually melted and are not substantially mixed.
  • the polymer elastic body and the polyurethane resin layer may be in close contact or cross-linked, may be simply filled in the voids of the polymer elastic body, or may exist so as to cover the polymer elastic body. Good.
  • the thickness ratio of the mixed layer in the total thickness of the polyurethane resin layer is preferably 10 to 80%.
  • the total thickness of the polyurethane resin layer can be determined by referring to FIG. 3 from the surface of the polyurethane resin layer 104 when the cross section parallel to the thickness direction of the polyurethane laminate is observed with a scanning electron microscope.
  • the thickness of the composite fiber sheet 103 up to the deepest part of the composite fiber sheet 103 Is the thickness of the composite fiber sheet 103 up to the deepest part of the composite fiber sheet 103, and the thickness of the mixed layer is the part of the composite fiber sheet 103 where the polyurethane resin layer 104 enters the composite fiber sheet 103 deepest.
  • the thickness is up to.
  • the polyurethane resin layer is a layer formed of a crosslinkable hot-melt urethane resin, so that the mixed layer has excellent penetration and filling properties and is incompatible with the polymer elastic body constituting the composite fiber sheet. It is preferable from the viewpoint of easily obtaining the state.
  • At least one of the polyurethane resin layer and the polymer elastic body is porous in terms of being able to suppress a soft texture, a natural leather-like crease feeling, and generation of arabi during fishing.
  • the porosity of the composite fiber sheet is in the range of 30 to 85% by volume, it is preferable from the viewpoint that the resulting polyurethane laminate has finer wrinkles, excellent texture balance, and excellent peel strength.
  • the polyurethane layer is continuously stabilized by maintaining the pot life of the urethane resin composition to be applied for a long time.
  • productivity of the polyurethane laminate is improved by rapidly crosslinking the applied uncrosslinked polyurethane layer by heat treatment.
  • a polyurethane laminate that exhibits a texture similar to leather when folded can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Synthetic Leather, Interior Materials Or Flexible Sheet Materials (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Disclosed is a method for producing a polyurethane laminate, which comprises: a melt-mixing step in which a urethane resin composition is formed by heating and melt-mixing a urethane prepolymer that is in a semi-solid state or in a solid state at room temperature, a chain extender and a temperature-sensitive urethanization catalyst exhibiting a specific exothermic peak temperature, within a temperature range lower than the exothermic peak temperature by 10-30˚C; a resin layer-forming step in which a urethane resin layer is formed on a sheet surface using the urethane resin composition; and a heating step in which the urethane resin layer is heated at a temperature not less than the exothermic peak temperature. Also disclosed is a polyurethane laminate that is a laminate of a composite fiber sheet, which is obtained by integrating a fiber sheet and a polymer elastic material by impregnation and has a plurality of pores in the surface layer, and a polyurethane resin layer that is arranged on the composite fiber sheet. The polyurethane laminate has a mixed layer having a thickness of not less than 10 μm. In the mixed layer, some parts of the polyurethane resin layer and the surface layer of the composite fiber sheet are present in an incompatible state since the parts of the polyurethane resin layer have entered into the pores.

Description

ポリウレタン積層体の製造方法及び該製造方法により得られたポリウレタン積層体Method for producing polyurethane laminate and polyurethane laminate obtained by the production method
 本発明は、ポリウレタン積層体の製造方法及び該製造方法により得られたポリウレタン積層体に関する。 The present invention relates to a method for producing a polyurethane laminate and a polyurethane laminate obtained by the production method.
 従来から、履物、衣類、鞄、家具等の表面素材としてポリウレタン積層体が広く用いられている。 Conventionally, polyurethane laminates have been widely used as surface materials for footwear, clothing, bags, furniture, and the like.
 このようなポリウレタン積層体の代表的な構成としては、不織布,織布,編布等の繊維質基材にポリウレタン等を含浸させた複合繊維基材の表面に、ポリウレタン層を積層したような構成が挙げられる。該ポリウレタン層は、複合繊維基材表面に、溶剤型ポリウレタンや水系ポリウレタンを塗布した後、乾燥する方法や、複合繊維基材表面に、予め離型紙表面に成膜されたポリウレタン膜を接着剤により接着する方法を用いて形成されている。 A typical structure of such a polyurethane laminate is a structure in which a polyurethane layer is laminated on the surface of a composite fiber base material in which a fibrous base material such as nonwoven fabric, woven fabric, or knitted fabric is impregnated with polyurethane. Is mentioned. The polyurethane layer may be formed by applying a solvent-type polyurethane or water-based polyurethane to the surface of the composite fiber substrate and then drying, or by applying a polyurethane film previously formed on the surface of the release paper on the surface of the composite fiber substrate with an adhesive. It is formed using a method of bonding.
 ところで、近年、環境負荷を低減させるために、ポリウレタン積層体の製造において、有機溶剤を使用しない無溶剤型ウレタンプレポリマーを用いたプロセスが求められている。 Incidentally, in recent years, in order to reduce the environmental burden, a process using a solventless urethane prepolymer that does not use an organic solvent is required in the production of a polyurethane laminate.
 例えば、下記特許文献1には、A成分として常温では半固体状又は固体状であるイソシアネート基含有ウレタンプレポリマーと、B成分としてイソシアネート基と反応しうる化合物及び/又はウレタン硬化触媒とを加熱溶融後、攪拌混合し機械発泡してポリウレタン多孔質体を製造する方法が開示されている。そして、このような方法によれば、溶剤や乾燥機を使わず、高強度のポリウレタン多孔質体を効率良く製造することができることが記載されている。 For example, in Patent Document 1 below, an isocyanate group-containing urethane prepolymer that is semi-solid or solid at room temperature as an A component, and a compound capable of reacting with an isocyanate group and / or a urethane curing catalyst as a B component are heated and melted. Thereafter, a method for producing a polyurethane porous body by stirring and mixing and mechanical foaming is disclosed. And it is described that according to such a method, a high intensity | strength polyurethane porous body can be manufactured efficiently, without using a solvent and a dryer.
 また、従来から、鞄、履物、衣類、家具等に用いられる皮革に似せた表面素材としてポリウレタン積層体を用いた皮革様シートが広く用いられている。 Also, conventionally, leather-like sheets using polyurethane laminates have been widely used as surface materials resembling leather used in bags, footwear, clothing, furniture, and the like.
 このようなポリウレタン積層体の代表的な構成としては、不織布等の繊維基材に多孔質のポリウレタンを含浸させてなる複合繊維シートの表面に、ポリウレタン樹脂層を積層した構成が挙げられる。その製造方法の具体例としては、例えば、下記特許文献2に開示されたような、Tダイを用いて押し出された直後の熱可塑性ポリウレタン膜を複合繊維シートの表面に圧着することによりポリウレタン樹脂層を形成する方法が知られている。また、別の方法としては、下記特許文献3に開示されたような、離型紙の表面に溶剤型ウレタン樹脂を塗布乾燥することによりポリウレタン樹脂層を形成し、得られたポリウレタン樹脂層を、溶剤型ウレタン接着剤を用いて貼り合せて乾燥することにより皮革様シートを製造する方法も知られている。さらに別の方法としては、例えば、下記特許文献4に開示されたような、離型紙の表面に水系ウレタン樹脂を塗布した後、乾燥することによりポリウレタン樹脂層を形成し、得られたポリウレタン樹脂層を水系ウレタン接着剤を用いて複合繊維シートと貼り合せて乾燥することにより皮革様シートを製造する方法も知られている。また、例えば、下記特許文献5に開示されたような、複合繊維シートの表面に、溶融させたホットメルト型ウレタン樹脂を塗布した後、架橋させることによりポリウレタン樹脂層を形成する方法も知られている。 A typical configuration of such a polyurethane laminate includes a configuration in which a polyurethane resin layer is laminated on the surface of a composite fiber sheet obtained by impregnating a porous base material with a fibrous base material such as a nonwoven fabric. As a specific example of the manufacturing method, for example, as disclosed in Patent Document 2 below, a polyurethane resin layer is obtained by pressure-bonding a thermoplastic polyurethane film immediately after being extruded using a T die to the surface of a composite fiber sheet. A method of forming is known. As another method, as disclosed in Patent Document 3 below, a polyurethane resin layer is formed by applying and drying a solvent-type urethane resin on the surface of a release paper, and the resulting polyurethane resin layer is used as a solvent. There is also known a method for producing a leather-like sheet by laminating and drying using a mold urethane adhesive. As another method, for example, as disclosed in Patent Document 4 below, a polyurethane resin layer is formed by applying a water-based urethane resin to the surface of a release paper and then drying it, and the resulting polyurethane resin layer There is also known a method for producing a leather-like sheet by laminating and drying a composite fiber sheet using a water-based urethane adhesive. Further, for example, a method of forming a polyurethane resin layer by applying a melted hot-melt urethane resin to the surface of a composite fiber sheet as disclosed in Patent Document 5 below and then crosslinking it is also known. Yes.
特開2002-249534号公報JP 2002-249534 A 特開平9-24590号公報Japanese Patent Laid-Open No. 9-24590 特開2005-113318号公報JP 2005-113318 A 特開2005-264371号公報JP 2005-264371 A 国際公開WO2005/083173号パンフレットInternational Publication WO2005 / 083173 Pamphlet
 上記特許文献1に記載されたようなポリウレタン多孔質体を製造する方法においては、確かに、無溶剤化を実現しうる。しかしながら、本発明者等の検討によれば、上記のような方法を用いて、工業的にポリウレタン積層体を連続生産する場合、次のような問題があった。 In the method for producing a polyurethane porous body as described in Patent Document 1 above, it is possible to achieve solvent-free. However, according to the study by the present inventors, there were the following problems when industrially producing a polyurethane laminate continuously using the above method.
 特許文献1に記載されたような常温では半固体状又は固体状であるウレタンプレポリマーは比較的高い温度に加熱することにより低粘度になり、機械発泡が可能な粘度に調整される。ウレタンプレポリマーとウレタン硬化触媒とを含むウレタン樹脂組成物を機械発泡が可能な程度にまで加熱した場合、ウレタン硬化触媒が活性化することにより架橋反応が進行する。このようにウレタン樹脂組成物を機械発泡が可能な温度にまで加熱した場合には、ウレタンプレポリマーの架橋反応が進行して溶融粘度が徐々に上昇するために、ウレタン樹脂組成物のポットライフが短くなり、長時間の連続生産が困難であるという問題があった。 A urethane prepolymer that is semi-solid or solid at room temperature as described in Patent Document 1 has a low viscosity when heated to a relatively high temperature, and is adjusted to a viscosity that allows mechanical foaming. When a urethane resin composition containing a urethane prepolymer and a urethane curing catalyst is heated to such an extent that mechanical foaming is possible, the urethane curing catalyst is activated to cause a crosslinking reaction. When the urethane resin composition is heated to a temperature at which mechanical foaming is possible as described above, the crosslinking reaction of the urethane prepolymer proceeds and the melt viscosity gradually rises. There was a problem that it became short and continuous production for a long time was difficult.
 さらに、特許文献1に記載されたような方法によりポリウレタン多孔質体を製造する場合においては、機械発泡を用いているために得られる気孔が連通孔になり、均一な独立孔を有する多孔質体が得られないという問題もあった。 Furthermore, in the case of producing a polyurethane porous body by a method as described in Patent Document 1, the porous body obtained by using mechanical foaming becomes communication holes, and has uniform independent pores. There was also a problem that could not be obtained.
 本発明は、シート上に常温で半固体または固体であるウレタンプレポリマーを用いて形成されるポリウレタン層を形成する場合において、塗布されるウレタン樹脂組成物のポットライフを長時間維持することにより連続して安定的に未架橋のポリウレタン層を形成することができ、また、塗布された未架橋のポリウレタン層を熱処理により速やかに架橋させることにより生産性を向上させることを目的とする。 In the case of forming a polyurethane layer formed by using a urethane prepolymer that is semi-solid or solid at room temperature on a sheet, the present invention continuously maintains the pot life of the applied urethane resin composition for a long time. Thus, it is possible to stably form an uncrosslinked polyurethane layer, and to improve productivity by rapidly crosslinking the applied uncrosslinked polyurethane layer by heat treatment.
 本発明の一局面であるポリウレタン積層体の製造方法は、常温で半固体または固体であるウレタンプレポリマー(A)と鎖伸長剤(B)と示差走査熱量測定により所定の発熱ピーク温度を示す感温性ウレタン化触媒(C)とを前記発熱ピーク温度に対して10~30℃低い範囲の温度で加熱溶融混合することによりウレタン樹脂組成物を形成する溶融混合工程と、前記ウレタン樹脂組成物を用いて離型紙や繊維基材のようなシート表面にウレタン樹脂層を形成する樹脂層形成工程と、前記ウレタン樹脂層を前記発熱ピーク温度以上の温度で熱処理する熱処理工程と、を備えることを特徴とする。 The method for producing a polyurethane laminate, which is one aspect of the present invention, is a sensitivity that shows a predetermined exothermic peak temperature by differential scanning calorimetry with a urethane prepolymer (A) that is semi-solid or solid at room temperature and a chain extender (B). A melt-mixing step of forming a urethane resin composition by heating and melt-mixing the warm urethanization catalyst (C) at a temperature in the range of 10 to 30 ° C. lower than the exothermic peak temperature; and the urethane resin composition A resin layer forming step for forming a urethane resin layer on a sheet surface such as a release paper or a fiber base material, and a heat treatment step for heat-treating the urethane resin layer at a temperature equal to or higher than the exothermic peak temperature. And
 また、本発明者等の検討によれば、上記特許文献2に開示されたような、Tダイで押し出された直後の熱可塑性ポリウレタン膜を複合繊維シートの表面に圧着することによりポリウレタン樹脂層を形成する方法によれば、熱可塑性ポリウレタン膜が複合繊維シートの表面に接したときに急冷されるために、ある程度固化が進んだ状態で圧着される。そのために、複合繊維シートと熱可塑性ポリウレタン膜との界面は、2次元的な平面状の界面になる。そのためにポリウレタン積層体を折り曲げたときに複合繊維シートとポリウレタン膜との弾性率や伸び性の違いにより、複合繊維シートと熱可塑性ポリウレタン膜との界面において、ずれや剥離が生じる。このような界面における層間のずれや剥離は、次のような問題を生じる。具体的には、例えば、皮革を折り曲げたときに生じる折れシボは図7に示すような細かな皺が発生するのに比べて、上述したような方法により得られるポリウレタン積層体の場合には、図8に示すような、ダンボール紙を折り曲げたような大きな皺が発生する。また、折り曲げ後においては、折れ皺が多く残るという問題もあった。 Further, according to the study by the present inventors, the polyurethane resin layer is formed by pressure-bonding a thermoplastic polyurethane film immediately after being extruded by a T die, as disclosed in Patent Document 2, to the surface of the composite fiber sheet. According to the forming method, since the thermoplastic polyurethane film is rapidly cooled when it comes into contact with the surface of the composite fiber sheet, it is pressure-bonded in a state where solidification has progressed to some extent. Therefore, the interface between the composite fiber sheet and the thermoplastic polyurethane film is a two-dimensional planar interface. For this reason, when the polyurethane laminate is bent, the difference between the elastic modulus and the stretchability of the composite fiber sheet and the polyurethane film causes deviation or peeling at the interface between the composite fiber sheet and the thermoplastic polyurethane film. Such a shift or delamination between layers at the interface causes the following problems. Specifically, for example, in the case of a polyurethane laminate obtained by the above-described method, a crease generated when a leather is bent is compared with the generation of fine wrinkles as shown in FIG. As shown in FIG. 8, a large wrinkle is generated as if the corrugated cardboard is folded. In addition, after folding, there is also a problem that many creases remain.
 また、本発明者等の検討によれば、上記特許文献3に開示されたような、離型紙の表面に溶剤型ウレタン樹脂を塗布乾燥することによりポリウレタン樹脂層を形成する方法によれば、塗布及び乾燥の工程を多数回繰り返さなければ、表面に平滑性を有する充分な厚みのポリウレタン樹脂層が得られないという問題があった。また、このように離型紙上に形成されたポリウレタン樹脂層は、複合繊維シート表面に溶剤型ウレタン接着剤を用いて貼り合わされる。このような接着により積層する方法によれば、ポリウレタン樹脂層と複合繊維シートとの間に接着層が存在する。そのために、複合繊維シートの表層部分の空隙にはポリウレタン樹脂層がほとんど浸透・充填されないために、ポリウレタン樹脂層と複合繊維シートとの一体感が得られなかった。従って、皮革様の風合いや折れ皺感に劣る傾向にあった。さらに、別の問題として、複合繊維シートに含浸された多孔質のポリウレタンの気孔隔壁が接着剤中の溶剤により溶解されて気孔構造が破壊され、風合いや表面平滑性が低下するという問題もあった。 Further, according to the study by the present inventors, according to the method of forming a polyurethane resin layer by applying and drying a solvent-type urethane resin on the surface of the release paper, as disclosed in Patent Document 3, the application is performed. If the drying process is not repeated many times, there is a problem that a sufficiently thick polyurethane resin layer having smoothness on the surface cannot be obtained. Moreover, the polyurethane resin layer thus formed on the release paper is bonded to the surface of the composite fiber sheet using a solvent-type urethane adhesive. According to such a method of laminating by adhesion, an adhesive layer exists between the polyurethane resin layer and the composite fiber sheet. For this reason, since the polyurethane resin layer hardly permeates and fills the voids in the surface layer portion of the composite fiber sheet, a sense of unity between the polyurethane resin layer and the composite fiber sheet cannot be obtained. Therefore, it tended to be inferior in leather-like texture and crease. Furthermore, as another problem, there was a problem that pore structure of porous polyurethane impregnated in the composite fiber sheet was dissolved by the solvent in the adhesive to destroy the pore structure, and the texture and surface smoothness were lowered. .
 さらに、本発明者等の検討によれば、上記特許文献4に開示されたような、離型紙の表面に水系ウレタン樹脂を塗布した後、乾燥することによりポリウレタン樹脂層を形成する方法においても、塗布及び乾燥の工程を多数回繰り返さなければ表面に平滑性を有する充分な厚みのポリウレタン樹脂層が得られないという問題があった。また、このようなポリウレタン樹脂層は、複合繊維シート表面に水系ウレタン接着剤を用いて接着層を介して積層される。そのために、ポリウレタン樹脂層と複合繊維シートとの一体感が得られなかった。 Furthermore, according to the study by the present inventors, as disclosed in the above-mentioned Patent Document 4, after applying a water-based urethane resin to the surface of the release paper, the method of forming a polyurethane resin layer by drying, If the coating and drying steps are not repeated many times, there is a problem that a sufficiently thick polyurethane resin layer having smoothness on the surface cannot be obtained. Moreover, such a polyurethane resin layer is laminated | stacked through the contact bonding layer using the water-system urethane adhesive on the composite fiber sheet surface. Therefore, a sense of unity between the polyurethane resin layer and the composite fiber sheet could not be obtained.
 また、本発明者等の検討によれば、上記特許文献5に開示されたような、複合繊維シートの表面に、溶融させたホットメルト型ウレタン樹脂を塗布した後、架橋させることによりポリウレタン樹脂層を形成する方法によれば、単に複合繊維シートの表面に溶融させたホットメルト型ウレタン樹脂を塗布することによりポリウレタン樹脂層が積層されているだけであるために、複合繊維シートとポリウレタン樹脂層との界面において、ずれや剥離が生じるという問題は解決されていなかった。 Further, according to the study by the present inventors, the polyurethane resin layer is formed by applying a molten hot melt urethane resin to the surface of the composite fiber sheet as disclosed in Patent Document 5 and then crosslinking the resin. Since the polyurethane resin layer is simply laminated by simply applying a melted hot melt urethane resin on the surface of the composite fiber sheet, the composite fiber sheet and the polyurethane resin layer The problem of slippage and peeling at the interface has not been solved.
 本発明は、上述した問題を鑑みてなされたものであり、皮革に似た、充実感のある風合いと折り曲げたときの折れ皺感の良好で、折り曲げ後においては、折れ皺が残り難いポリウレタン積層体を提供することを目的とする。 The present invention has been made in view of the above-described problems, and is a polyurethane laminate that is similar to leather and has a solid texture and a good feeling of folding when folded, and it is difficult for creases to remain after folding. The purpose is to provide a body.
 本発明の他の一局面であるポリウレタン積層体の製造方法は、離型紙表面に溶融状態の架橋性ホットメルト型ウレタン樹脂を塗布することにより離型紙-塗膜積層体を形成する塗膜形成工程と、架橋性ホットメルト型ウレタン樹脂を部分架橋させる熱処理工程と、繊維シートと高分子弾性体とが含浸一体化された、表層に多数の空隙を有する複合繊維シートの該空隙に、離型紙-塗膜積層体の塗膜の一部分が侵入するような圧力で、複合繊維シートの表面に塗膜を積層するラミネート工程と、架橋性ホットメルト型ウレタン樹脂を冷却固化する冷却工程と、を備えることが好ましい。 A method for producing a polyurethane laminate, which is another aspect of the present invention, is a coating film forming step of forming a release paper-coating laminate by applying a molten crosslinkable hot melt urethane resin to the surface of the release paper. And a heat treatment step for partially cross-linking the crosslinkable hot-melt urethane resin, and a release paper in the void of the composite fiber sheet having a large number of voids in the surface layer, in which the fiber sheet and the polymer elastic body are impregnated and integrated. A laminating process for laminating a coating film on the surface of the composite fiber sheet with a pressure at which a part of the coating film of the coating film laminate enters, and a cooling process for cooling and solidifying the crosslinkable hot-melt urethane resin are provided. Is preferred.
 また、前記塗膜形成工程は、100℃における溶融粘度が10000mPa・sec以下のホットメルト型ウレタンプレポリマー(A)と鎖伸長剤(B)と示差走査熱量測定により所定の発熱ピーク温度を示す感温性ウレタン化触媒(C)とを発熱ピーク温度に対して10~30℃低い範囲の温度で加熱溶融混合することにより架橋性ホットメルト型ウレタン樹脂を形成する溶融混合工程と、離型紙表面に溶融状態の架橋性ホットメルト型ウレタン樹脂を塗布することにより離型紙-塗膜積層体を形成する塗膜形成工程とを備え、熱処理工程が、離型紙-塗膜積層体を前記発熱ピーク温度以上の温度で熱処理することにより塗膜を部分架橋させる工程であることが好ましい。 In addition, the coating film forming step has a sensitivity that exhibits a predetermined exothermic peak temperature by differential scanning calorimetry with a hot melt urethane prepolymer (A) having a melt viscosity at 100 ° C. of 10,000 mPa · sec or less and a chain extender (B). A melt-mixing step of forming a crosslinkable hot-melt urethane resin by heat-melting and mixing with the temperature urethanization catalyst (C) at a temperature in the range of 10-30 ° C. lower than the exothermic peak temperature; A coating film forming step of forming a release paper-coating laminate by applying a crosslinkable hot-melt urethane resin in a molten state, and the heat treatment step makes the release paper-coating laminate above the exothermic peak temperature. It is preferable to be a step of partially cross-linking the coating film by heat treatment at the temperature.
 本発明の更に他の一局面であるポリウレタン積層体は、繊維シートと高分子弾性体とが含浸一体化された、表層に多数の空隙を有する複合繊維シートと、前記複合繊維シートに積層されたポリウレタン樹脂層との積層体であり、前記空隙に前記ポリウレタン樹脂層の一部分が侵入することにより、前記ポリウレタン樹脂層の一部分と前記複合繊維シートの表層とが非相溶の状態で混在する、10μm以上、好ましくは30μm以上の厚みを有する混在層を有することが好ましい。 A polyurethane laminate according to yet another aspect of the present invention is a composite fiber sheet having a large number of voids in the surface layer, in which a fiber sheet and a polymer elastic body are impregnated and integrated, and laminated on the composite fiber sheet. 10 μm in which a part of the polyurethane resin layer and a surface layer of the composite fiber sheet are mixed in an incompatible state when a part of the polyurethane resin layer enters the gap. As described above, it is preferable to have a mixed layer having a thickness of 30 μm or more.
 本発明の目的、特徴、局面、及び利点は、以下の詳細な説明と添付図面とによって、より明白となる。 The objects, features, aspects, and advantages of the present invention will become more apparent from the following detailed description and the accompanying drawings.
図1は、本発明に係る実施形態1のポリウレタン積層体の製造方法を説明する模式工程図である。FIG. 1 is a schematic process diagram illustrating a method for producing a polyurethane laminate according to Embodiment 1 of the present invention. 図2は、本発明に係る実施形態1の製造方法により得られたポリウレタン積層体の断面模式図である。FIG. 2 is a schematic cross-sectional view of a polyurethane laminate obtained by the production method of Embodiment 1 according to the present invention. 図3は、本発明に係る実施形態2のポリウレタン積層体の製造方法により得られたポリウレタン積層体の模式断面図である。FIG. 3 is a schematic cross-sectional view of a polyurethane laminate obtained by the method for producing a polyurethane laminate of Embodiment 2 according to the present invention. 図4は、本発明に係る実施形態2のポリウレタン積層体の製造工程の一例を説明する説明図である。FIG. 4 is an explanatory view for explaining an example of the production process of the polyurethane laminate of Embodiment 2 according to the present invention. 図5は、実施例2-1で得られた皮革様シートの断面のSEM写真である。FIG. 5 is an SEM photograph of a cross section of the leather-like sheet obtained in Example 2-1. 図6は、比較例2-1で得られた皮革様シートの断面のSEM写真である。FIG. 6 is an SEM photograph of a cross section of the leather-like sheet obtained in Comparative Example 2-1. 図7は、皮革を折り曲げたときに生じる折れシボの様子を説明するための模式図である。FIG. 7 is a schematic diagram for explaining a state of a crease and wrinkle generated when leather is folded. 図8は、従来の皮革様シートを折り曲げたときに生じる折れシボの様子を説明するための模式図である。FIG. 8 is a schematic diagram for explaining the appearance of a crease and wrinkle generated when a conventional leather-like sheet is folded.
[実施形態1]
 実施形態1のポリウレタン積層体の製造方法は、常温で半固体または固体であるウレタンプレポリマー(A)と鎖伸長剤(B)と示差走査熱量測定により所定の発熱ピーク温度を示す感温性ウレタン化触媒(C)とを前記発熱ピーク温度に対して10~30℃低い範囲の温度で加熱溶融混合することによりウレタン樹脂組成物を形成する溶融混合工程と、前記ウレタン樹脂組成物を用いて離型紙や繊維基材のようなシート表面にウレタン樹脂層を形成する樹脂層形成工程と、前記ウレタン樹脂層を前記発熱ピーク温度以上の温度で熱処理する熱処理工程と、を備える。
[Embodiment 1]
The method for producing the polyurethane laminate of Embodiment 1 includes a urethane prepolymer (A) that is semi-solid or solid at room temperature, a chain extender (B), and a temperature-sensitive urethane that exhibits a predetermined exothermic peak temperature by differential scanning calorimetry. A melting and mixing step in which a urethane resin composition is formed by heating and melting and mixing the catalyst (C) at a temperature in the range of 10 to 30 ° C. lower than the exothermic peak temperature; and using the urethane resin composition A resin layer forming step of forming a urethane resin layer on the surface of the sheet such as a pattern paper or a fiber base; and a heat treatment step of heat-treating the urethane resin layer at a temperature equal to or higher than the exothermic peak temperature.
 はじめに、本実施形態で使用される常温で半固体または固体であるウレタンプレポリマー(A)、鎖伸長剤(B)、感温性ウレタン化触媒(C)について説明する。 First, the urethane prepolymer (A), the chain extender (B), and the temperature-sensitive urethanization catalyst (C) that are semi-solid or solid at room temperature used in this embodiment will be described.
 本実施形態で使用されるウレタンプレポリマー(A)は、ポリオールとポリイソシアネートとを反応させて得られるイソシアネート基を有するウレタンプレポリマーであり、常温で半固体または固体である実質的に無溶剤型のポリウレタン形成成分である。このようなウレタンプレポリマーは、常温では固体ないしは塗布が困難な程度の粘稠性を有する半固体の性状であるが、加熱することにより塗布が可能な程度に低粘度化する。 The urethane prepolymer (A) used in the present embodiment is a urethane prepolymer having an isocyanate group obtained by reacting a polyol and a polyisocyanate, and is a substantially solvent-free type that is semisolid or solid at room temperature. This is a polyurethane-forming component. Such a urethane prepolymer is a solid or a semi-solid property having a viscosity that is difficult to apply at room temperature, but the viscosity is reduced to a level that allows application by heating.
 前記ポリオールの具体例としては、例えば、ポリエステル系ポリオール、ポリエーテル系ポリオール、ポリカーボネート系ポリオールなどの高分子量ポリオール;エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,3-ブチレングリコール、1,4-ブチレングリコール、2,2-ジメチル-1,3-プロパンジオール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、1,8-オクタンジオール、1,4-ビス(ヒドロキシエトキシ)ベンゼン、1,3-ビス(ヒドロキシイソプロピル)ベンゼン、ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール、トリプロピレングリコール、シクロヘキサン-1,4-ジオール、シクロヘキサン-1,4-ジメタノール、グリセリン、トリメチロールプロパン、トリメチロールエタン、ヘキサントリオール、ペンタエリスリトール、ソルビトール、メチルグリコシドなどの低分子量ポリオール等が挙げられる。これらは単独で用いても2種以上を組み合わせて用いてもよい。 Specific examples of the polyol include high molecular weight polyols such as polyester polyols, polyether polyols, and polycarbonate polyols; ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,3-butylene. Glycol, 1,4-butylene glycol, 2,2-dimethyl-1,3-propanediol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, 1,8-octanediol, 1,4 -Bis (hydroxyethoxy) benzene, 1,3-bis (hydroxyisopropyl) benzene, diethylene glycol, triethylene glycol, dipropylene glycol, tripropylene glycol, cyclohexane-1,4-diol, cyclohexane-1,4-di Ethanol, glycerol, trimethylol propane, trimethylol ethane, hexane triol, pentaerythritol, sorbitol, low-molecular-weight polyol such as methyl glycoside. These may be used alone or in combination of two or more.
 また、ポリイソシアネートの具体例としては、例えば、フェニレンジイソシアネート、トリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、2,4’-ジフェニルメタンジイソシアネート、ナフタレンジイソシアネート、キシリレンジイソシアネート等の芳香族ジイソシアネート;ヘキサメチレンジイソシアネート、リジンジイソシアネート、シクロヘキサンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、テトラメチルキシリレンジイソシアネート等の脂肪族ジイソシアネートまたは脂環族ジイソシアネート;4,4’-ジフェニルメタンジイソシアネートの2量体および3量体等のポリメリックジフェニルメタンジイソシアネート等が挙げられる。これらは単独で用いても2種以上を組み合わせて用いてもよい。 Specific examples of the polyisocyanate include aromatic diisocyanates such as phenylene diisocyanate, tolylene diisocyanate, 4,4′-diphenylmethane diisocyanate, 2,4′-diphenylmethane diisocyanate, naphthalene diisocyanate, and xylylene diisocyanate; hexamethylene diisocyanate. , Lysine diisocyanate, cyclohexane diisocyanate, isophorone diisocyanate, dicyclohexylmethane diisocyanate, aliphatic diisocyanate such as tetramethylxylylene diisocyanate, or cycloaliphatic diisocyanate; Etc. These may be used alone or in combination of two or more.
 前記ウレタンプレポリマーの製造は、通常、無溶剤下で行うことができるが、有機溶剤中で製造してもよい。有機溶剤中で製造する場合には、前記鎖伸長剤とポリイソシアネートとの反応を阻害しない酢酸エチル、酢酸n-ブチル、メチルエチルケトン、トルエン等の有機溶剤を使用することができるが、反応の途中又は反応終了後に減圧加熱等の方法により有機溶剤を除去することが必要である。 The production of the urethane prepolymer can usually be carried out in the absence of a solvent, but it may be carried out in an organic solvent. In the case of producing in an organic solvent, an organic solvent such as ethyl acetate, n-butyl acetate, methyl ethyl ketone, and toluene that does not inhibit the reaction between the chain extender and polyisocyanate can be used. After completion of the reaction, it is necessary to remove the organic solvent by a method such as heating under reduced pressure.
 ポリオールとポリイソシアネートとの反応割合は、ポリイソシアネート中のイソシアネート基と、ポリオール中の水酸基との当量比[NCO/OH]が、1.1~5.0の範囲内であることが好ましく、1.2~3.0の範囲内であることがより好ましい。 The reaction ratio between the polyol and the polyisocyanate is preferably such that the equivalent ratio [NCO / OH] of the isocyanate group in the polyisocyanate to the hydroxyl group in the polyol is in the range of 1.1 to 5.0. More preferably, it is within the range of 2 to 3.0.
 ウレタンプレポリマーの数平均分子量としては、500~30,000、さらには1000~10,000の範囲であることが溶融粘度を容易に調整でき、また、優れた柔軟性、機械的強度、耐摩耗性、耐加水分解性を有するポリウレタン層を形成することができる点から好ましい。 The number average molecular weight of the urethane prepolymer is in the range of 500 to 30,000, more preferably in the range of 1000 to 10,000. The melt viscosity can be easily adjusted, and excellent flexibility, mechanical strength, and wear resistance are obtained. It is preferable from the point that the polyurethane layer which has the property and hydrolysis resistance can be formed.
 ウレタンプレポリマーの溶融粘度としては、コーンプレート粘度計で測定した120℃における溶融粘度が、500~100,000mPa・s、さらには1000~10,000mPa・sの範囲であることが膜厚の調整が容易である点から好ましい。 The melt viscosity of the urethane prepolymer is such that the melt viscosity at 120 ° C. measured with a cone plate viscometer is in the range of 500 to 100,000 mPa · s, more preferably 1000 to 10,000 mPa · s. Is preferable because it is easy.
 このようなウレタンプレポリマーの市販品としては、DIC(株)製の商品名タスクフォースKMM-100,タイフォースNH-122A、NH-200、NH-300、H-1041や武田薬品工業株式会社製のタケダメルトSC-13、SL-01、SL-02、SL-03、SL-04等が挙げられる。 Commercially available products of such urethane prepolymers include DIC Corporation's trade names Task Force KMM-100, Tyforce NH-122A, NH-200, NH-300, H-1041, and Takeda Pharmaceutical Co., Ltd. Takedamelt SC-13, SL-01, SL-02, SL-03, SL-04 and the like.
 ウレタンプレポリマー(A)は、ウレタンプレポリマー(A)中のイソシアネート基と後述する鎖伸長剤(B)中の水酸基やアミノ基等とがウレタン化触媒により反応が促進されて高分子量化する。また、高分子量化したポリマーは、さらに系内に存在するイソシアネート基と反応することによる架橋反応を行う。 In the urethane prepolymer (A), the reaction between the isocyanate group in the urethane prepolymer (A) and the hydroxyl group or amino group in the chain extender (B) described later is promoted by the urethanization catalyst to increase the molecular weight. The polymer having a high molecular weight further undergoes a crosslinking reaction by reacting with an isocyanate group present in the system.
 本実施形態で使用される鎖伸長剤(B)は、ウレタンプレポリマー(A)のイソシアネート基と反応しうる水酸基やアミノ基のような活性水素を有する官能基を2個以上有する化合物である。 The chain extender (B) used in the present embodiment is a compound having two or more functional groups having active hydrogen such as a hydroxyl group and an amino group that can react with the isocyanate group of the urethane prepolymer (A).
 鎖伸長剤の具体例としては、上述した各種ポリオールの他、エチレンジアミン、1,3-プロピレンジアミン、1,2-プロピレンジアミン、ヘキサメチレンジアミン、ノルボネンジアミン、ヒドラジン、ピペラジン、N,N’-ジアミノピペラジン、2-メチルピペラジン、4,4’-ジアミノジシクロヘキシルメタン、イソホロンジアミン、ジアミノベンゼン、ジフェニルメタンジアミン、メチレンビスジクロロアニリン、トリエチレンジアミン、テトラメチルヘキサメチレンジアミン、トリエチルアミン、トリプロピルアミン、トリメチルアミノエチルピペラジン、N-メチルモルフォリン、N-エチルモルフォリン、ジ(2,6-ジメチルモルホリノエチル)エーテルなどのポリアミン類等が挙げられる。これらは単独で用いても2種以上を組み合わせて用いてもよい。 Specific examples of the chain extender include, in addition to the above-mentioned various polyols, ethylenediamine, 1,3-propylenediamine, 1,2-propylenediamine, hexamethylenediamine, norbornenediamine, hydrazine, piperazine, N, N′— Diaminopiperazine, 2-methylpiperazine, 4,4'-diaminodicyclohexylmethane, isophoronediamine, diaminobenzene, diphenylmethanediamine, methylenebisdichloroaniline, triethylenediamine, tetramethylhexamethylenediamine, triethylamine, tripropylamine, trimethylaminoethylpiperazine And polyamines such as N-methylmorpholine, N-ethylmorpholine, and di (2,6-dimethylmorpholinoethyl) ether. These may be used alone or in combination of two or more.
 本実施形態で使用される示差走査熱量測定により所定の発熱ピーク温度を示す感温性ウレタン化触媒(C)は、窒素シール下で、昇温速度10℃/1分で、0℃から200℃までの範囲で示差走査熱量測定したときに、所定の発熱ピーク温度を示すウレタン化触媒である。発熱ピーク温度としては、50~160℃、さらには80~140℃の範囲であることがウレタン化の処理効率と安定化に優れる点から好ましい。 The temperature-sensitive urethanization catalyst (C) exhibiting a predetermined exothermic peak temperature by differential scanning calorimetry used in this embodiment is from 0 ° C. to 200 ° C. at a temperature rising rate of 10 ° C./1 minute under a nitrogen seal. It is a urethanization catalyst which shows a predetermined exothermic peak temperature when differential scanning calorimetry is measured in the range up to. The exothermic peak temperature is preferably in the range of 50 to 160 ° C., and more preferably in the range of 80 to 140 ° C., from the viewpoint of excellent treatment efficiency and stabilization of urethanization.
 このようなウレタン化触媒の具体例としては、1,8-ジアザビシクロ(5,4,0)-ウンデセン-7(DBU)の有機酸塩、具体的にはDBUのフェノール塩(発熱ピーク温度88℃)、DBUのオクチル酸塩(同99℃)、DBUのフタル酸塩(同138℃)、DBUのオレイン酸塩(同110℃)等が挙げられる。このようなウレタン化触媒は、使用するウレタンプレポリマー(A)の軟化温度を考慮して、適宜選択される。 Specific examples of such a urethanization catalyst include an organic acid salt of 1,8-diazabicyclo (5,4,0) -undecene-7 (DBU), specifically a phenol salt of DBU (exothermic peak temperature of 88 ° C. ), DBU octylate (99 ° C.), DBU phthalate (138 ° C.), DBU oleate (110 ° C.), and the like. Such a urethanization catalyst is appropriately selected in consideration of the softening temperature of the urethane prepolymer (A) to be used.
 本実施形態においては、得られるポリウレタン層を多孔質にするために、塗布されるウレタン樹脂組成物中に、必要に応じて、発泡剤を配合することが好ましい。発泡剤の種類は特に限定されないが、気孔の均一性のコントロールが容易である点から、熱膨張性マイクロカプセルを用いることが好ましい。このような熱膨張性マイクロカプセルとしては、例えば、内包された炭化水素が加熱により膨張すると同時に、外殻を形成する熱可塑性樹脂が軟化することにより膨張を開始し、マイクロカプセルの内圧と外圧が釣合った所定の膨張倍率、好ましくは2倍以上に膨張することにより、均一な独立気泡を形成させるための感温性の発泡剤が挙げられる。このような熱膨張性マイクロカプセルの具体例としては、例えば、松本油脂製薬(株)製のマツモトマイクロスフェアーFシリーズ等が挙げられる。 In this embodiment, in order to make the resulting polyurethane layer porous, it is preferable to blend a foaming agent in the applied urethane resin composition as necessary. The type of foaming agent is not particularly limited, but it is preferable to use thermally expandable microcapsules from the viewpoint of easy control of pore uniformity. As such a heat-expandable microcapsule, for example, the encapsulated hydrocarbon expands by heating, and at the same time, the thermoplastic resin forming the outer shell softens to start expansion, and the internal pressure and the external pressure of the microcapsule are increased. Examples thereof include a temperature-sensitive foaming agent for forming uniform closed cells by expanding to a balanced predetermined expansion ratio, preferably twice or more. Specific examples of such thermally expandable microcapsules include Matsumoto Microsphere F series manufactured by Matsumoto Yushi Seiyaku Co., Ltd.
 本実施形態においては、上述した各種成分のほか、必要に応じて、顔料等の着色剤、増粘剤、酸化防止剤等の添加剤を配合してもよい。 In the present embodiment, in addition to the various components described above, additives such as colorants such as pigments, thickeners, and antioxidants may be blended as necessary.
 上述した各種成分を用いて実施される本実施形態のポリウレタン積層体の製造方法の一例について、図1を参照して説明する。 An example of a method for producing a polyurethane laminate according to this embodiment, which is performed using the various components described above, will be described with reference to FIG.
 図1は、本実施形態のポリウレタン積層体の製造方法を説明するための模式工程図である。図1中、1は離型紙、2は常温で半固体または固体であるウレタンプレポリマー、3は鎖伸長剤、4は所定の発熱ピーク温度を有する感温性ウレタン化触媒、5は熱膨張性マイクロカプセルである。また、ウレタンプレポリマーを供給するための第1ノズル6aと、鎖伸長剤を供給するための第2ノズル6bと、混合室6cとからミキシングヘッド6が構成されている。なお、6a、6b、6cはそれぞれ図略のヒーターを備えている。また、7は基材シート、8は基材シート7の送り出しリール、9aはタッチロール、9bはリバースロール、10はウレタン樹脂組成物(ウレタン樹脂層)、11は送り出しロール、12は加熱装置、13はポリウレタン積層体、14はポリウレタン積層体13の巻き取りリール、16はクーリングロール、PRはプレスロールである。なお、図1においては、タッチロール9aとリバースロール9bとの組み合わせによりリバースロールコーターが構成されている。 FIG. 1 is a schematic process diagram for explaining a method for producing a polyurethane laminate according to this embodiment. In FIG. 1, 1 is a release paper, 2 is a urethane prepolymer that is semi-solid or solid at room temperature, 3 is a chain extender, 4 is a temperature-sensitive urethanization catalyst having a predetermined exothermic peak temperature, and 5 is a thermal expansion property. It is a microcapsule. The mixing head 6 is composed of a first nozzle 6a for supplying a urethane prepolymer, a second nozzle 6b for supplying a chain extender, and a mixing chamber 6c. Note that 6a, 6b, and 6c are each provided with a heater (not shown). Further, 7 is a base sheet, 8 is a delivery reel of the base sheet 7, 9a is a touch roll, 9b is a reverse roll, 10 is a urethane resin composition (urethane resin layer), 11 is a delivery roll, 12 is a heating device, 13 is a polyurethane laminate, 14 is a take-up reel of the polyurethane laminate 13, 16 is a cooling roll, and PR is a press roll. In FIG. 1, a reverse roll coater is constituted by a combination of a touch roll 9a and a reverse roll 9b.
 本実施形態のポリウレタン積層体の製造方法においては、はじめに、ウレタンプレポリマー2と鎖伸長剤3と感温性ウレタン化触媒4と熱膨張性マイクロカプセル5とを前記発熱ピーク温度に対して10~30℃低い範囲の温度で加熱溶融混合する(溶融混合工程)。 In the method for producing a polyurethane laminate of the present embodiment, first, the urethane prepolymer 2, the chain extender 3, the temperature-sensitive urethanization catalyst 4, and the thermally expandable microcapsule 5 are added to the exothermic peak temperature by 10 to 10 times. Heat melting and mixing at a temperature in the range of 30 ° C. lower (melt mixing step).
 加熱溶融混合の方法の具体例としては、例えば以下のような方法が挙げられる。 As a specific example of the heating and melting and mixing method, for example, the following method may be mentioned.
 混合方法にはウレタンプレポリマー2を所定の粘度になるような温度で加温し、一方、鎖伸長剤3、感温性ウレタン化触媒4、及び熱膨張性マイクロカプセル5を保温した後、それらを高圧噴射させて衝突させることにより混合する図1に示したような公知のミキシングヘッドを用いて混合または混合した後撹拌する方法や、単純に溶融状態で撹拌混合するような方法が採用される。 In the mixing method, the urethane prepolymer 2 is heated to a predetermined viscosity, while the chain extender 3, the temperature-sensitive urethanization catalyst 4, and the heat-expandable microcapsule 5 are kept warm, A method of stirring after mixing or mixing using a known mixing head as shown in FIG. 1 that mixes by jetting high pressure and colliding is used, or a method of simply stirring and mixing in a molten state is adopted. .
 ミキシングヘッドを用いて混合する方法は、図1に示すように、ウレタンプレポリマー2を加熱溶融状態で第1ノズル6aから加圧噴射により霧化させて混合室6cに供給し、一方、感温性ウレタン化触媒4及び熱膨張性マイクロカプセル5を鎖伸長剤3と混合して第2ノズル6bから加圧噴射して霧化させて混合室6cに供給する。そして、混合室6c内で霧化された各成分を衝突させて混合する。なお、熱膨張性マイクロカプセル5は多孔性のウレタン層を形成することを目的とする場合に必要に応じて配合される。この場合において、混合により形成されるウレタン樹脂組成物の温度が前記発熱ピーク温度に対して10~30℃低い範囲の温度で加熱溶融混合するように、ミキシングヘッドの第1ノズル6a、第2ノズル6b、及び混合室6cの温度を制御する。このようなミキシングヘッドを用いた混合方法によれば、より均一な混合が可能になる。 As shown in FIG. 1, the mixing method using the mixing head is performed by atomizing the urethane prepolymer 2 from the first nozzle 6a in a heated and melted state by pressure injection and supplying it to the mixing chamber 6c. The urethanizing catalyst 4 and the thermally expandable microcapsule 5 are mixed with the chain extender 3, and are sprayed from the second nozzle 6b to be atomized and supplied to the mixing chamber 6c. And each component atomized in the mixing chamber 6c is collided and mixed. The heat-expandable microcapsule 5 is blended as necessary when the purpose is to form a porous urethane layer. In this case, the first nozzle 6a and the second nozzle of the mixing head are mixed so that the temperature of the urethane resin composition formed by mixing is heated and melted and mixed at a temperature in the range of 10 to 30 ° C. lower than the exothermic peak temperature. The temperature of 6b and the mixing chamber 6c is controlled. According to the mixing method using such a mixing head, more uniform mixing is possible.
 また、単純に溶融状態で撹拌する方法としては、以下のような方法が挙げられる。 Also, as a simple stirring method in the molten state, the following methods can be mentioned.
 まず、所定の容器内にウレタンプレポリマー2を所定の粘度になるような温度で加温し、貯蔵する。他方で、他の容器内に、鎖伸長剤3、感温性ウレタン化触媒4、及び熱膨張性マイクロカプセル5を感温性ウレタン化触媒4が活性化せず、且つ熱膨張性マイクロカプセル5が膨張しない温度で保温しておく。そして、ウレタンプレポリマー2と感温性ウレタン化触媒4、熱膨張性マイクロカプセル5及び鎖伸長剤3を含有する混合物が、ヒーター及び撹拌装置を備えた容器に供給される。そして、該容器内において、ウレタンプレポリマー2と鎖伸長剤3と感温性ウレタン化触媒4と熱膨張性マイクロカプセル5とが、感温性ウレタン化触媒4の発熱ピーク温度に対して10~30℃低い範囲の温度で加熱溶融混合される。 First, the urethane prepolymer 2 is heated to a predetermined viscosity and stored in a predetermined container. On the other hand, the chain extender 3, the temperature-sensitive urethanization catalyst 4, and the heat-expandable microcapsule 5 are not activated by the temperature-sensitive urethanization catalyst 4 in another container, and the heat-expandable microcapsule 5 Keep at a temperature that does not swell. And the mixture containing the urethane prepolymer 2, the temperature-sensitive urethanization catalyst 4, the thermally expansible microcapsule 5, and the chain extender 3 is supplied to the container provided with the heater and the stirring apparatus. In the container, the urethane prepolymer 2, the chain extender 3, the temperature-sensitive urethanization catalyst 4, and the thermally expandable microcapsule 5 are 10 to 10 times the exothermic peak temperature of the temperature-sensitive urethanization catalyst 4. It is heated, melted and mixed at a temperature in the range of 30 ° C. lower.
 溶融混合工程においては、感温性ウレタン化触媒4が活性化する発熱ピーク温度よりも10~30℃低い範囲の温度、好ましくは10~25℃低い範囲の温度でウレタンプレポリマー2と鎖伸長剤3と感温性ウレタン化触媒4と熱膨張性マイクロカプセル5とを加熱溶融混合する。このような温度で加熱溶融混合することにより架橋反応の進行が抑制される。そのために、混合室6c内において調製されたウレタン樹脂組成物のポットライフを長くすることができる。なお、熱膨張性マイクロカプセル5を配合する場合においては、溶融混合工程においては実質的に目標の膨張倍率まで膨張しないような熱膨張性マイクロカプセルを選択することが好ましい。 In the melt mixing step, the urethane prepolymer 2 and the chain extender are heated at a temperature in the range of 10 to 30 ° C., preferably in the range of 10 to 25 ° C. lower than the exothermic peak temperature at which the temperature-sensitive urethanization catalyst 4 is activated. 3, the temperature-sensitive urethanization catalyst 4 and the thermally expandable microcapsule 5 are heated, melted and mixed. The progress of the cross-linking reaction is suppressed by heat-melt mixing at such a temperature. Therefore, the pot life of the urethane resin composition prepared in the mixing chamber 6c can be extended. When the thermally expandable microcapsule 5 is blended, it is preferable to select a thermally expandable microcapsule that does not substantially expand to the target expansion ratio in the melt mixing step.
 また、一方で、図1に示すように、図略のシート送り出しリールから離型紙1を連続的に送り出し、連続的に送り出される離型紙1が、矢印方向に回転する送り出しロール11により送られた後、巻き取りリール14により巻き取られて、離型紙1の連続的なラインを予め、形成しておく。 On the other hand, as shown in FIG. 1, the release paper 1 is continuously fed from a sheet delivery reel (not shown), and the release paper 1 that is continuously fed is fed by a feed roll 11 that rotates in the direction of the arrow. After that, a continuous line of the release paper 1 is formed in advance by the take-up reel 14.
 そして、図1に示すように、連続的に搬送される離型紙1に向けて、混合室6c中において調製されたウレタン樹脂組成物10がタッチロール9aとリバースロール9bとの間に形成されるクリアランスに向けて流下され、リバースロール9bにより離型紙1表面に均一な厚みで塗布され、ウレタン樹脂層10が形成される(樹脂層形成工程)。塗布厚みはリバースロール9bとタッチロール9aとの間に形成されるクリアランスの間隔により制御される。 And as shown in FIG. 1, the urethane resin composition 10 prepared in the mixing chamber 6c is formed between the touch roll 9a and the reverse roll 9b toward the release paper 1 continuously conveyed. It flows down toward the clearance, and is applied to the surface of the release paper 1 with a uniform thickness by the reverse roll 9b to form the urethane resin layer 10 (resin layer forming step). The coating thickness is controlled by a clearance interval formed between the reverse roll 9b and the touch roll 9a.
 離型紙1としては、表面平滑な離型紙の他、表面意匠性を付与する目的で、エンボス模様を有するような離型紙を用いてもよい。さらには、予め離型紙表面にポリウレタン系樹脂やアクリル系樹脂等で代表される公知の高分子弾性体の層を形成しておいてもよい。予め、離型紙表面に高分子弾性体の層を形成する場合、ウレタンプレポリマー(A)と鎖伸長剤(B)と感温性ウレタン化触媒(C)とを加熱溶融混合することにより得られるウレタン樹脂組成物からなる層の表面が該高分子弾性体層で被覆されるため、表面物性の改質が可能となる点で好ましい。特に該高分子弾性体層で被覆される場合は、該ウレタン樹脂組成物からなる表面が架橋構造を有することに起因する他の樹脂層との接着性の低下を防止することができる。 The release paper 1 may be a release paper having an embossed pattern for the purpose of imparting surface design, in addition to a release paper having a smooth surface. Furthermore, a layer of a known polymer elastic body represented by polyurethane resin or acrylic resin may be formed in advance on the surface of the release paper. When a layer of a polymer elastic body is previously formed on the surface of the release paper, it can be obtained by heat-melt mixing the urethane prepolymer (A), the chain extender (B), and the temperature-sensitive urethanization catalyst (C). Since the surface of the layer made of the urethane resin composition is coated with the polymer elastic body layer, it is preferable in that the surface properties can be modified. In particular, when coated with the polymer elastic body layer, it is possible to prevent a decrease in adhesiveness with other resin layers due to the surface of the urethane resin composition having a crosslinked structure.
 ウレタン樹脂組成物からなる層の表面が高分子弾性体層で被覆される場合、該ウレタン樹脂組成物からなる層が十分に架橋しない状態で、該高分子弾性体層で被覆されるため、該ウレタン樹脂組成物からなる層と該高分子弾性体層の接着性が向上し、さらに表面の型押し(凹凸模様付与)性が向上する。 When the surface of the layer made of the urethane resin composition is coated with the polymer elastic body layer, the layer made of the urethane resin composition is coated with the polymer elastic body layer in a state where the layer is not sufficiently crosslinked, Adhesiveness between the layer made of the urethane resin composition and the polymer elastic body layer is improved, and the surface embossing (providing the uneven pattern) is further improved.
 また、該高分子弾性体層で被覆されることによって、表面のタックを抑制することが可能となる点で好ましい。 Further, it is preferable in that it is possible to suppress surface tack by being covered with the polymer elastic body layer.
 さらに公知の水分散系高分子弾性体や無溶剤硬化高分子弾性体からなる層を表面層として予め形成することで、全て無溶剤の工程からなるポリウレタン積層体を製造することが可能となる点でより好ましい。 Furthermore, it is possible to produce a polyurethane laminate consisting of a solvent-free process by previously forming a layer comprising a known water-dispersed polymer elastic body or a solvent-free cured polymer elastic body as a surface layer. And more preferable.
 なお、加熱溶融状態のウレタン樹脂組成物10を離型紙1表面に塗布する塗布機構の具体例としては、図1に示したようなリバースロールコーターに代えて、例えば、ナイフコーター、ロールコーター、リバースコーター、キスロールコーター、スプレーコーター、T-ダイコーター、又はコンマコーター等が用いられうる。なお、これらの塗布機構においては、ウレタン樹脂組成物の溶融粘度を制御しうる点から、加熱手段を備えた塗布機構が好ましい。 In addition, as a specific example of an application mechanism for applying the heated and melted urethane resin composition 10 to the surface of the release paper 1, for example, a knife coater, a roll coater, a reverse coater may be used instead of the reverse roll coater as shown in FIG. A coater, kiss roll coater, spray coater, T-die coater, comma coater, or the like may be used. In addition, in these application | coating mechanisms, the application | coating mechanism provided with the heating means is preferable from the point which can control the melt viscosity of a urethane resin composition.
 形成されるウレタン樹脂層10の厚みとしては、5~800μm、さらには10~500μmの範囲であることが柔軟性と機械的強度に優れたポリウレタン積層体が得られる点から好ましい。 The thickness of the urethane resin layer 10 to be formed is preferably in the range of 5 to 800 μm, more preferably 10 to 500 μm, from the viewpoint of obtaining a polyurethane laminate excellent in flexibility and mechanical strength.
 そして、離型紙1の表面に形成されたウレタン樹脂層10の表面に基材シート7を貼り合せることにより、基材シート7表面にウレタン樹脂層10が形成されたポリウレタン積層体13が形成される。 And the polyurethane laminated body 13 in which the urethane resin layer 10 was formed in the surface of the base material sheet 7 is formed by bonding the base material sheet 7 to the surface of the urethane resin layer 10 formed in the surface of the release paper 1 .
 ウレタン樹脂層10と基材シート7との貼り合わせは、具体的には、例えば、図1に示すように、送り出しリール8から基材シート7が送り出され、ウレタン樹脂層10が溶融又は軟化している状態でプレスロールPRにより貼り合わされる。 Specifically, the bonding of the urethane resin layer 10 and the base sheet 7 is performed, for example, as shown in FIG. 1, when the base sheet 7 is sent out from the feed reel 8, and the urethane resin layer 10 is melted or softened. In this state, they are bonded together by a press roll PR.
 本実施形態で使用される基材シート7の具体例としては、例えば、不織布や織布、編布等の一般的に皮革様シートに用いられている繊維基材;上記繊維基材に溶剤系、水系、エマルジョン系又は無溶剤系のポリウレタン樹脂、アクリル樹脂、及びブタジエン系樹脂(SBR、NBR、MBR)等を含浸させた複合繊維基材等が挙げられる。これらの中では、柔軟な風合いとより優れた機械的強度を有するポリウレタン積層体が得られる点から、極細繊維から形成された不織布にポリウレタンを含浸させた複合繊維基材が特に好ましく用いられる。不織布としては、従来から知られた短繊維ウェブ、スパンボンド法やメルトブロー法等の公知の方法により得られたウェブが特に限定なく用いられうる。また、必要に応じて、ウェブを形成した後、複数枚のウェブを重ねてニードルパンチ処理等により絡合させて得られるものであってもよい。不織布を形成する繊維の具体例としては、例えば、ポリウレタン繊維、ポリエチレンテレフタレート(PET)繊維、各種ポリアミド系繊維、ポリアクリル系繊維、各種ポリオレフィン系繊維、ポリビニルアルコール系繊維等が挙げられる。不織布を形成する繊維は、繊維径が0.1~50μm、さらには1~15μmであるような極細繊維であることが好ましい。このような極細繊維は剛性が低く、柔らかいために、柔軟な風合いを有するポリウレタン積層体が得られる点から好ましい。不織布の目付けとしては50~2000g/mの範囲、さらには100~1000g/mの範囲であることが、柔軟な風合いのポリウレタン積層体が得られる点から好ましい。 Specific examples of the substrate sheet 7 used in the present embodiment include, for example, fiber substrates generally used for leather-like sheets such as nonwoven fabrics, woven fabrics, and knitted fabrics; And composite fiber base materials impregnated with water-based, emulsion-based or solvent-free polyurethane resin, acrylic resin, butadiene-based resin (SBR, NBR, MBR) and the like. In these, the composite fiber base material which impregnated the nonwoven fabric formed from the ultrafine fiber with the polyurethane is especially preferably used from the point from which the polyurethane laminated body which has a soft texture and more excellent mechanical strength is obtained. As the nonwoven fabric, a conventionally known short fiber web, a web obtained by a known method such as a spunbond method or a melt blow method can be used without any particular limitation. Moreover, after forming a web as needed, you may obtain by laminating | stacking several webs and making it intertwined by a needle punch process etc. Specific examples of the fibers forming the nonwoven fabric include, for example, polyurethane fibers, polyethylene terephthalate (PET) fibers, various polyamide fibers, polyacrylic fibers, various polyolefin fibers, and polyvinyl alcohol fibers. The fibers forming the nonwoven fabric are preferably ultrafine fibers having a fiber diameter of 0.1 to 50 μm, more preferably 1 to 15 μm. Such ultrafine fibers have low rigidity and are soft, which is preferable from the viewpoint of obtaining a polyurethane laminate having a soft texture. The basis weight of the nonwoven fabric is preferably in the range of 50 to 2000 g / m 2 , more preferably in the range of 100 to 1000 g / m 2 , from the viewpoint of obtaining a polyurethane laminate having a soft texture.
 次に、基材シート7表面にウレタン樹脂層10が形成されたポリウレタン積層体13を感温性ウレタン化触媒(C)の発熱ピーク温度以上の温度で熱処理する(熱処理工程)。このように離型紙1の表面に形成されたウレタン樹脂層10が感温性ウレタン化触媒(C)の発熱ピーク温度よりも高い温度で熱処理されることにより、塗布形成されたウレタン樹脂層10の架橋が促進される。 Next, the polyurethane laminate 13 having the urethane resin layer 10 formed on the surface of the base sheet 7 is heat-treated at a temperature equal to or higher than the exothermic peak temperature of the temperature-sensitive urethanization catalyst (C) (heat treatment step). Thus, the urethane resin layer 10 formed on the surface of the release paper 1 is heat-treated at a temperature higher than the exothermic peak temperature of the temperature-sensitive urethanization catalyst (C), whereby the urethane resin layer 10 formed by coating is formed. Cross-linking is promoted.
 熱処理温度としては、ウレタン樹脂層10の温度が感温性ウレタン化触媒(C)の発熱ピーク温度よりも高い温度になり、且つ、硬化形成されるポリウレタン層を劣化させない温度であれば特に限定されないが、具体的には、感温性ウレタン化触媒(C)の発熱ピーク温度に対して0~30℃高い温度の範囲、さらには発熱ピーク温度に対して0~15℃高い温度の範囲で熱処理することが好ましい。 The heat treatment temperature is not particularly limited as long as the temperature of the urethane resin layer 10 is higher than the exothermic peak temperature of the temperature-sensitive urethanization catalyst (C) and does not deteriorate the polyurethane layer formed by curing. Specifically, heat treatment is performed in a temperature range 0 to 30 ° C higher than the exothermic peak temperature of the temperature-sensitive urethanization catalyst (C), and further in a temperature range 0 to 15 ° C higher than the exothermic peak temperature. It is preferable to do.
 また、熱処理時間の具体例としては、例えば、15秒間~10分間程度、さらには30秒間~5分間程度であることが、生産性を低下させることなく充分に架橋反応を促進させることができる点から好ましい。 Further, as a specific example of the heat treatment time, for example, about 15 seconds to 10 minutes, further about 30 seconds to 5 minutes, the crosslinking reaction can be sufficiently promoted without lowering the productivity. To preferred.
 熱処理は、例えば、熱風加熱乾燥機のような加熱装置12により行われる。 The heat treatment is performed by a heating device 12 such as a hot air heating dryer.
 そして、このようにして得られた離型紙1で被覆された状態のウレタン樹脂層10と基材シート7との貼り合わせ体をクーリングロール16を用いて強制冷却した後、巻き取りリール14により巻き取る。そして、巻き取られたポリウレタン積層体13を所定の時間熟成することにより、ウレタン樹脂層10の架橋反応が進行して高分子量化される。 Then, the bonded body of the urethane resin layer 10 and the base sheet 7 in the state covered with the release paper 1 thus obtained is forcibly cooled using the cooling roll 16 and then wound by the take-up reel 14. take. Then, by aging the wound polyurethane laminate 13 for a predetermined time, the crosslinking reaction of the urethane resin layer 10 proceeds to increase the molecular weight.
 ポリウレタン積層体13の熟成条件としては、温度20~40℃、相対湿度50~80%の条件で、20~50時間程度熟成することが好ましい。これにより、機械的強度や耐水性に優れたポリウレタン積層体が得られる。 As the aging conditions for the polyurethane laminate 13, aging is preferably performed for about 20 to 50 hours under the conditions of a temperature of 20 to 40 ° C. and a relative humidity of 50 to 80%. Thereby, the polyurethane laminated body excellent in mechanical strength and water resistance is obtained.
 このような工程により得られたポリウレタン積層体13の断面模式図を図2に示す。 FIG. 2 shows a schematic cross-sectional view of the polyurethane laminate 13 obtained by such a process.
 図2に示すようにポリウレタン積層体13は、表面に被覆された離型紙1を剥離することにより完成する。このようなポリウレタン積層体13における、架橋されたポリウレタン層20には均一な独立気泡21が形成されている。 As shown in FIG. 2, the polyurethane laminate 13 is completed by peeling the release paper 1 coated on the surface. Uniform closed cells 21 are formed in the crosslinked polyurethane layer 20 in the polyurethane laminate 13.
 なお、本実施形態においては、予め離型紙1の連続的なラインを形成し、連続的に送り出される離型紙1の表面にウレタン樹脂層10を形成し、形成されたウレタン樹脂層10の表面に基材シート7を貼り合わせるような工程を代表的に説明したが、離型紙1と基材シート7とを貼り合わせる順序を入れ替えて、予め基材シート7の連続的なラインを形成し、連続的に送り出される基材シート7の表面にウレタン樹脂層10を形成し、形成されたウレタン樹脂層10の表面に離型紙1を貼り合わせるような工程であってもよい。また、本実施形態においては、離型紙1の表面にウレタン樹脂層10を形成し、形成されたウレタン樹脂層10の表面に基材シート7を貼り合わせた後に熱処理を施すような工程を代表的に説明したが、ウレタン樹脂層10に基材シート7を貼り合わせる前に熱処理を施してもよい。 In this embodiment, a continuous line of the release paper 1 is formed in advance, the urethane resin layer 10 is formed on the surface of the release paper 1 that is continuously fed out, and the surface of the formed urethane resin layer 10 is formed. The process of laminating the base sheet 7 has been described as a representative. However, the order of laminating the release paper 1 and the base sheet 7 is changed to form a continuous line of the base sheet 7 in advance. Alternatively, the urethane resin layer 10 may be formed on the surface of the base sheet 7 to be fed out, and the release paper 1 may be bonded to the surface of the formed urethane resin layer 10. Moreover, in this embodiment, the process which forms the urethane resin layer 10 in the surface of the release paper 1, and bonds the base material sheet 7 on the surface of the formed urethane resin layer 10, and heat-processes it is typical. As described above, heat treatment may be performed before the base sheet 7 is bonded to the urethane resin layer 10.
 なお、得られたポリウレタン積層体に対しては、さらに公知慣用の方法により、表面意匠性を付与したり、触感を調整したり、色修正を加えるために、表層部を溶剤系、水系、エマルジョン系若しくは無溶剤系のポリウレタン樹脂やアクリル樹脂をコーティングしたり、あるいはバフィング加工やエンボス加工等の後加工を適宜行ってもよい。 In addition, for the obtained polyurethane laminate, in order to impart surface designability, tactile sensation, or color correction by a publicly known and commonly used method, the surface layer portion is solvent-based, water-based, emulsion It is also possible to coat a system or solventless polyurethane resin or acrylic resin, or to perform post-processing such as buffing or embossing as appropriate.
 このようにして得られたポリウレタン積層体は、履物、衣類、鞄、家具等の表面素材になる皮革様シートとして好ましく用いられうる。 The polyurethane laminate thus obtained can be preferably used as a leather-like sheet that becomes a surface material for footwear, clothing, bags, furniture, and the like.
[実施形態2]
 本実施形態2のポリウレタン積層体の製造方法は、好ましくは、離型紙表面に溶融状態の架橋性ホットメルト型ウレタン樹脂を塗布することにより離型紙-塗膜積層体を形成する塗膜形成工程と、架橋性ホットメルト型ウレタン樹脂を部分架橋させる熱処理工程と、繊維シートと高分子弾性体とが含浸一体化された、表層に多数の空隙を有する複合繊維シートのその空隙に、離型紙-塗膜積層体の塗膜の一部分が侵入するような圧力で、複合繊維シートの表面に塗膜を積層するラミネート工程と、架橋性ホットメルト型ウレタン樹脂を冷却固化する冷却工程と、を備える。
[Embodiment 2]
The method for producing a polyurethane laminate of Embodiment 2 preferably includes a coating film forming step of forming a release paper-coating laminate by applying a meltable crosslinkable hot-melt urethane resin to the surface of the release paper. A release paper-coating is applied to the voids of the composite fiber sheet having a large number of voids in the surface layer, in which a heat treatment step for partially crosslinking the crosslinkable hot-melt urethane resin and the fiber sheet and the polymer elastic body are impregnated and integrated. A laminating step of laminating the coating film on the surface of the composite fiber sheet with a pressure that allows a part of the coating film of the film laminate to enter, and a cooling step of cooling and solidifying the crosslinkable hot-melt urethane resin are provided.
 すなわち、実施形態2のポリウレタン積層体の製造方法においては、前記塗膜形成工程は、上述した実施形態1の製造方法における樹脂層形成行程に相当し、実施形態2における熱処理工程は実施形態1の熱処理工程に相当することが好ましい。それとともに、実施形態2の製造方法では、新たに上記特定のラミネート工程と冷却工程とを備えることが好ましい。 That is, in the method for manufacturing a polyurethane laminate of Embodiment 2, the coating film forming step corresponds to the resin layer forming step in the manufacturing method of Embodiment 1 described above, and the heat treatment step in Embodiment 2 is the same as that of Embodiment 1. It preferably corresponds to a heat treatment step. At the same time, in the manufacturing method of Embodiment 2, it is preferable to newly include the specific laminating step and the cooling step.
 また、上述した実施形態1における溶融混合工程は、本実施形態2では、好ましくは、100℃における溶融粘度が10000mPa・sec以下のホットメルト型ウレタンプレポリマー(A)と鎖伸長剤(B)と示差走査熱量測定により所定の発熱ピーク温度を示す感温性ウレタン化触媒(C)とを前記発熱ピーク温度に対して10~30℃低い範囲の温度で加熱溶融混合することにより前記架橋性ホットメルト型ウレタン樹脂を形成する溶融混合工程である。さらに、実施形態1における樹脂層形成行程は、本実施形態2では、好ましくは、離型紙表面に溶融状態の前記架橋性ホットメルト型ウレタン樹脂を塗布することにより離型紙-塗膜積層体を形成する塗膜形成工程である。また、実施形態1における熱処理工程は、本実施形態2では、好ましくは、前記離型紙-塗膜積層体を前記発熱ピーク温度以上の温度で熱処理することにより前記塗膜を部分架橋させる熱処理工程である。 In the second embodiment, the melt mixing step in the first embodiment described above is preferably a hot melt type urethane prepolymer (A) having a melt viscosity of 10000 mPa · sec or less at 100 ° C. and a chain extender (B). The crosslinkable hot melt is heated and melt mixed with a temperature-sensitive urethanization catalyst (C) exhibiting a predetermined exothermic peak temperature by differential scanning calorimetry at a temperature in the range of 10 to 30 ° C. lower than the exothermic peak temperature. This is a melt mixing process for forming a mold urethane resin. Further, the resin layer forming process in the first embodiment is preferably the second embodiment, in which the release paper-coating laminate is formed by applying the molten cross-linkable hot-melt urethane resin to the release paper surface. This is a coating film forming step. In the second embodiment, the heat treatment step in the first embodiment is preferably a heat treatment step in which the release paper-coating laminate is heat-treated at a temperature equal to or higher than the exothermic peak temperature to partially crosslink the coating film. is there.
 図面を参照して、実施形態2のポリウレタン積層体の好ましい製造方法の一例について詳しく説明する。 Referring to the drawings, an example of a preferred method for producing the polyurethane laminate of Embodiment 2 will be described in detail.
 はじめに、本実施形態で使用される架橋性ホットメルト型ウレタン樹脂について説明する。 First, the crosslinkable hot-melt urethane resin used in this embodiment will be described.
 本実施形態で使用される架橋性ホットメルト型ウレタン樹脂は、ポリオールとポリイソシアネートとを反応させて得られるイソシアネート基を有するウレタンプレポリマー及び必要に応じ、該ウレタンプレポリマーを硬化及び架橋させるための鎖伸長剤や触媒を含有する組成物であり、常温で半固体状または固体状の無溶剤型のポリウレタン形成成分である。このような架橋性ホットメルト型ウレタン樹脂は、常温では固体状ないしは塗布が困難な程度の粘稠性を有する半固体状の性状であるが、加熱することにより塗工可能な粘度になり、塗工の後は、冷却されることにより再固化または増粘する。 The crosslinkable hot-melt urethane resin used in the present embodiment is a urethane prepolymer having an isocyanate group obtained by reacting a polyol and a polyisocyanate, and, if necessary, for curing and crosslinking the urethane prepolymer. It is a composition containing a chain extender and a catalyst, and is a solvent-free polyurethane-forming component that is semi-solid or solid at room temperature. Such a crosslinkable hot-melt urethane resin is solid or semi-solid having a viscosity that is difficult to apply at room temperature. After the work, it is re-solidified or thickened by cooling.
 ポリオールの具体例としては、例えば、上記実施形態1において説明したポリオールを挙げることができる。これらは単独で用いても2種以上を組み合わせて用いてもよい。 Specific examples of the polyol include the polyol described in Embodiment 1 above. These may be used alone or in combination of two or more.
 また、ポリイソシアネートの具体例としては、例えば、上記実施形態1において説明したポリイソシアネートが挙げられる。これらは単独で用いても2種以上を組み合わせて用いてもよい。 Further, specific examples of the polyisocyanate include, for example, the polyisocyanate described in the first embodiment. These may be used alone or in combination of two or more.
 ウレタンプレポリマーの製造は、通常、無溶剤下で行うことができるが、有機溶剤中で製造してもよい。有機溶剤中で製造する場合には、酢酸エチル、酢酸n-ブチル、メチルエチルケトン、トルエン等の有機溶剤を使用することができるが、反応の途中又は反応終了後に減圧加熱等の方法により有機溶剤を除去することが必要である。 The urethane prepolymer can be usually produced in the absence of a solvent, but may be produced in an organic solvent. When manufacturing in an organic solvent, an organic solvent such as ethyl acetate, n-butyl acetate, methyl ethyl ketone, and toluene can be used, but the organic solvent is removed by a method such as heating under reduced pressure during or after the reaction. It is necessary to.
 ポリオールとポリイソシアネートとの反応割合は、ポリイソシアネート中のイソシアネート基と、ポリオール中の水酸基との当量比[NCO/OH]が、1.1~5の範囲内であることが好ましく、1.2~3の範囲内であることがより好ましい。 The reaction ratio between the polyol and the polyisocyanate is preferably such that the equivalent ratio [NCO / OH] of the isocyanate group in the polyisocyanate to the hydroxyl group in the polyol is in the range of 1.1 to 5, More preferably, it is within the range of ˜3.
 ウレタンプレポリマーの数平均分子量としては、500~30,000、さらには1000~10,000の範囲であることが溶融粘度を容易に調整でき、また、優れた柔軟性、機械的強度、耐摩耗性、耐加水分解性を有するポリウレタン樹脂層を形成することができる点から好ましい。 The number average molecular weight of the urethane prepolymer is in the range of 500 to 30,000, more preferably in the range of 1000 to 10,000. The melt viscosity can be easily adjusted, and excellent flexibility, mechanical strength, and wear resistance are obtained. It is preferable from the viewpoint that a polyurethane resin layer having heat resistance and hydrolysis resistance can be formed.
 このようなウレタンプレポリマーの市販品としては、DIC(株)製の商品名タスクフォースKMM-100,KMM-100LV,タイフォースNH-122A、NH-200、NH-300、H-1041や武田薬品工業株式会社製のタケダメルトSC-13、SL-01、SL-02、SL-03、SL-04等が挙げられる。 Examples of such commercially available urethane prepolymers include DIC Corporation's trade names Task Force KMM-100, KMM-100LV, Tyforce NH-122A, NH-200, NH-300, H-1041, and Takeda. Takeda Melt SC-13, SL-01, SL-02, SL-03, SL-04, etc. manufactured by Kogyo Co., Ltd. may be mentioned.
 鎖伸長剤は、ウレタンプレポリマーのイソシアネート基と反応しうる水酸基やアミノ基のような活性水素を有する官能基を2個以上有する化合物である。ウレタンプレポリマーは、ウレタンプレポリマー中のイソシアネート基と後述する鎖伸長剤中の水酸基やアミノ基等とがウレタン化触媒により反応が促進されて高分子量化する。また、高分子量化したポリマーは、さらに系内に存在するイソシアネート基と反応することによる架橋反応を行う。 The chain extender is a compound having two or more functional groups having an active hydrogen such as a hydroxyl group or an amino group that can react with an isocyanate group of the urethane prepolymer. In the urethane prepolymer, the reaction between the isocyanate group in the urethane prepolymer and the hydroxyl group or amino group in the chain extender, which will be described later, is accelerated by the urethanization catalyst to increase the molecular weight. The polymer having a high molecular weight further undergoes a crosslinking reaction by reacting with an isocyanate group present in the system.
 鎖伸長剤の具体例としては、上述した各種ポリオールの他、上記実施形態1において説明したポリアミン類等が挙げられる。これらは単独で用いても2種以上を組み合わせて用いてもよい。 Specific examples of the chain extender include the polyamines described in Embodiment 1 in addition to the various polyols described above. These may be used alone or in combination of two or more.
 架橋性ホットメルト型ウレタン樹脂の中では、とくには、熱溶融性と湿分硬化性とを備えた湿分硬化性ホットメルト型ウレタン樹脂が好ましい。 Among the crosslinkable hot melt type urethane resins, a moisture curable hot melt type urethane resin having heat melting property and moisture curable property is particularly preferable.
 なお、湿分硬化性ホットメルト型ウレタン樹脂が有する湿分(湿気)硬化性は、ウレタンプレポリマー中のイソシアネート基末端と湿気(水)が反応してウレタン結合や尿素結合を形成して硬化する。また、形成されたウレタン結合や尿素結合は、さらに系内に存在するイソシアネート基と反応することによる架橋反応する。このような硬化反応及び架橋反応を経て、ウレタンプレポリマーが高分子量化することにより機械的特性及び耐水性等に優れたポリウレタン樹脂が形成される。 The moisture (moisture) curability of the moisture curable hot-melt urethane resin is cured by reacting the isocyanate group terminal in the urethane prepolymer with moisture (water) to form a urethane bond or urea bond. . Further, the formed urethane bond or urea bond further undergoes a crosslinking reaction by reacting with an isocyanate group present in the system. Through such a curing reaction and a crosslinking reaction, the urethane prepolymer has a high molecular weight, whereby a polyurethane resin having excellent mechanical properties and water resistance is formed.
 本実施形態の架橋性ホットメルト型ウレタン樹脂は、ウレタン化触媒、とくには、感温性ウレタン化触媒を含有することが好ましい。感温性ウレタン化触媒は、窒素シール下で、昇温速度10℃/1分で、0℃から200℃までの範囲で示差走査熱量測定したときに、所定の発熱ピーク温度を示すウレタン化触媒である。発熱ピーク温度としては、50~160℃、さらには80~140℃の範囲であることがウレタン化の処理効率と安定化に優れる点から好ましい。 The crosslinkable hot-melt urethane resin of the present embodiment preferably contains a urethanization catalyst, particularly a temperature-sensitive urethanization catalyst. The temperature-sensitive urethanization catalyst is a urethanization catalyst that exhibits a predetermined exothermic peak temperature when differential scanning calorimetry is performed in a temperature range of 0 ° C. to 200 ° C. at a rate of temperature increase of 10 ° C./1 minute under a nitrogen seal. It is. The exothermic peak temperature is preferably in the range of 50 to 160 ° C., and more preferably in the range of 80 to 140 ° C., from the viewpoint of excellent treatment efficiency and stabilization of urethanization.
 このような感温性ウレタン化触媒の具体例としては、1,8-ジアザビシクロ(5,4,0)-ウンデセン-7(DBU)の有機酸塩、具体的にはDBUのフェノール塩(発熱ピーク温度88℃)、DBUのオクチル酸塩(同99℃)、DBUのフタル酸塩(同138℃)、DBUのオレイン酸塩(同110℃)等が挙げられる。このような感温性ウレタン化触媒は、使用するウレタンプレポリマーの軟化温度を考慮して、適宜選択される。 Specific examples of such a temperature-sensitive urethanization catalyst include an organic acid salt of 1,8-diazabicyclo (5,4,0) -undecene-7 (DBU), specifically a phenol salt of DBU (exothermic peak). Temperature 88 ° C), DBU octylate (99 ° C), DBU phthalate (138 ° C), DBU oleate (110 ° C), and the like. Such a temperature-sensitive urethanization catalyst is appropriately selected in consideration of the softening temperature of the urethane prepolymer used.
 また、架橋性ホットメルト型ウレタン樹脂は、得られるポリウレタン樹脂層を多孔質にするために、必要に応じて、発泡剤を含有することが好ましい。発泡剤の種類は特に限定されないが、気孔の均一性のコントロールが容易である点から、熱膨張性マイクロカプセルを用いることが好ましい。このような熱膨張性マイクロカプセルとしては、例えば、内包された炭化水素が加熱により膨張すると同時に、外殻を形成する熱可塑性樹脂が軟化することにより膨張を開始し、マイクロカプセルの内圧と外圧が釣合った所定の膨張倍率、好ましくは2倍以上に膨張することにより、均一な独立気泡を形成させるための感温性の発泡剤が挙げられる。このような熱膨張性マイクロカプセルの具体例としては、例えば、松本油脂製薬(株)製のマツモトマイクロスフェアーFシリーズ等が挙げられる。 The crosslinkable hot-melt urethane resin preferably contains a foaming agent as necessary in order to make the resulting polyurethane resin layer porous. The type of foaming agent is not particularly limited, but it is preferable to use thermally expandable microcapsules from the viewpoint of easy control of pore uniformity. As such a heat-expandable microcapsule, for example, the encapsulated hydrocarbon expands by heating, and at the same time, the thermoplastic resin forming the outer shell softens to start expansion, and the internal pressure and the external pressure of the microcapsule are increased. Examples thereof include a temperature-sensitive foaming agent for forming uniform closed cells by expanding to a balanced predetermined expansion ratio, preferably twice or more. Specific examples of such thermally expandable microcapsules include Matsumoto Microsphere F series manufactured by Matsumoto Yushi Seiyaku Co., Ltd.
 本実施形態の架橋性ホットメルト型ウレタン樹脂は、上述した各種成分のほか、必要に応じて、顔料等の着色剤、増粘剤、酸化防止剤等の添加剤を配合してもよい。 The crosslinkable hot-melt urethane resin of this embodiment may contain additives such as colorants such as pigments, thickeners, and antioxidants as necessary, in addition to the various components described above.
 このような架橋性ホットメルト型ウレタン樹脂の溶融粘度としては、コーンプレート粘度計で測定した100℃における溶融粘度が、500~12000mPa・s、さらには1000~10000mPa・sの範囲であることが、塗工性に優れている点及び膜厚の調整が容易である点から好ましい。 As the melt viscosity of such a crosslinkable hot-melt urethane resin, the melt viscosity at 100 ° C. measured with a cone plate viscometer is in the range of 500 to 12000 mPa · s, more preferably 1000 to 10,000 mPa · s. This is preferable from the viewpoint of excellent coating properties and easy adjustment of the film thickness.
 上述した架橋性ホットメルト型ウレタン樹脂を用いて実施される本実施形態のポリウレタン積層体の製造方法を、図4を参照して説明する。 A method for producing a polyurethane laminate according to this embodiment, which is performed using the above-described crosslinkable hot-melt urethane resin, will be described with reference to FIG.
 図4は、本実施形態のポリウレタン積層体の製造方法を説明するための模式説明図である。図4中、120は架橋性ホットメルト型ウレタン樹脂、121は離型紙、122はウレタンプレポリマー、123は鎖伸長剤、124は所定の発熱ピーク温度を有する感温性ウレタン化触媒、125は熱膨張性マイクロカプセル、である。なお、123の鎖伸長剤には、必要に応じて、所望の色調を付与するための顔料や、所望の物性とするために、ポリオールを本発明の効果を損なわない程度に含有させてもよい。また、ウレタンプレポリマー122を供給するための第1ノズル136aと、鎖伸長剤123等を供給するための第2ノズル136bと、混合室136cとからミキシングヘッド136が構成されている。なお、136a、136b、136cはそれぞれ図略のヒーターを備えている。また、103は複合繊維シート、138は複合繊維シート103の送り出しリール、139aはタッチロール、139bはリバースロール、140は離型紙-塗膜積層体、141は送り出しロール、142は加熱装置、143はポリウレタン積層体前駆体、144はポリウレタン積層体前駆体143の巻き取りリール、146はクーリングロール、PRはプレスロールである。なお、図4においては、タッチロール139aとリバースロール139bとの組み合わせによりリバースロールコーターが構成されている。 FIG. 4 is a schematic explanatory diagram for explaining the method for producing the polyurethane laminate of the present embodiment. In FIG. 4, 120 is a crosslinkable hot-melt urethane resin, 121 is a release paper, 122 is a urethane prepolymer, 123 is a chain extender, 124 is a temperature-sensitive urethanization catalyst having a predetermined exothermic peak temperature, and 125 is heat. Expandable microcapsules. In addition, the chain extender of 123 may contain a polyol for imparting a desired color tone or a polyol as long as necessary so as not to impair the effects of the present invention. . Further, a mixing head 136 includes a first nozzle 136a for supplying the urethane prepolymer 122, a second nozzle 136b for supplying the chain extender 123 and the like, and a mixing chamber 136c. Note that 136a, 136b, and 136c are each provided with a heater (not shown). Also, 103 is a composite fiber sheet, 138 is a feed reel of the composite fiber sheet 103, 139a is a touch roll, 139b is a reverse roll, 140 is a release paper-coating laminate, 141 is a feed roll, 142 is a heating device, and 143 is A polyurethane laminate precursor, 144 is a take-up reel of the polyurethane laminate precursor 143, 146 is a cooling roll, and PR is a press roll. In FIG. 4, a reverse roll coater is configured by a combination of a touch roll 139a and a reverse roll 139b.
 本実施形態のポリウレタン積層体の製造方法においては、はじめに、離型紙121の表面に溶融状態の架橋性ホットメルト型ウレタン樹脂120を塗布することにより離型紙-塗膜積層体140を形成する(塗膜形成工程)。 In the method for producing a polyurethane laminate of this embodiment, first, a release paper-coating laminate 140 is formed by applying a meltable crosslinkable hot-melt urethane resin 120 to the surface of the release paper 121 (coating). Film formation step).
 架橋性ホットメルト型ウレタン樹脂120の調製(溶融混合行程)の方法としては、例えば、ウレタンプレポリマー122と鎖伸長剤123と感温性ウレタン化触媒124と熱膨張性マイクロカプセル125とを感温性ウレタン化触媒124が活性化しない温度で加熱溶融混合する方法が挙げられる。 As a method for preparing the crosslinkable hot-melt urethane resin 120 (melt mixing process), for example, a urethane prepolymer 122, a chain extender 123, a temperature-sensitive urethanization catalyst 124, and a thermally expandable microcapsule 125 are temperature-sensitive. And heat melting and mixing at a temperature at which the urethanizing catalyst 124 is not activated.
 加熱溶融混合方法としては、例えば、ウレタンプレポリマー122を所定の粘度になるような温度で加温し、一方、鎖伸長剤123、感温性ウレタン化触媒124、及び熱膨張性マイクロカプセル125を保温した後、それらを高圧噴射させて衝突させることにより混合する図4に示したようなミキシングヘッドを用いて混合または混合した後撹拌する方法や、単純に加熱装置を備えた容器内で溶融状態で撹拌混合するような方法が採用される。 As the heat-melt mixing method, for example, the urethane prepolymer 122 is heated at a temperature that has a predetermined viscosity, while the chain extender 123, the temperature-sensitive urethanization catalyst 124, and the thermally expandable microcapsule 125 are added. A method of stirring after mixing or mixing using a mixing head as shown in FIG. 4 that mixes by injecting and colliding them with high pressure after they are kept warm, or simply in a molten state in a container equipped with a heating device A method such as stirring and mixing is employed.
 ミキシングヘッドを用いて混合する方法は、図4に示すように、ウレタンプレポリマー122を加熱溶融状態で第1ノズル136aから加圧噴射により霧化させて混合室136cに供給し、一方、感温性ウレタン化触媒124及び熱膨張性マイクロカプセル125を鎖伸長剤123と混合して第2ノズル136bから加圧噴射して霧化させて混合室136cに供給する。そして、混合室136c内で霧化された各成分を衝突させて混合する。なお、熱膨張性マイクロカプセル125は多孔性のポリウレタン樹脂層を形成する場合に必要に応じて配合される成分である。この場合において、混合により調製される架橋性ホットメルト型ウレタン樹脂120の温度が感温性ウレタン化触媒124の活性化する温度よりも低い温度になるように、ミキシングヘッドの第1ノズル136a、第2ノズル136b、及び混合室136cの温度を制御する。このようなミキシングヘッドを用いた混合方法によれば、より均一な混合が可能になる。 As shown in FIG. 4, the mixing method using the mixing head is performed by atomizing the urethane prepolymer 122 from the first nozzle 136a in a heated and melted state by pressure injection and supplying it to the mixing chamber 136c. The urethanizing catalyst 124 and the heat-expandable microcapsule 125 are mixed with the chain extender 123, sprayed from the second nozzle 136b, atomized, and supplied to the mixing chamber 136c. And each component atomized in the mixing chamber 136c collides and mixes. The thermally expandable microcapsule 125 is a component that is blended as necessary when forming a porous polyurethane resin layer. In this case, the first nozzle 136a and the first nozzle of the mixing head are set so that the temperature of the crosslinkable hot-melt urethane resin 120 prepared by mixing is lower than the temperature at which the temperature-sensitive urethanization catalyst 124 is activated. The temperatures of the two nozzles 136b and the mixing chamber 136c are controlled. According to the mixing method using such a mixing head, more uniform mixing is possible.
 また、単純に溶融状態で撹拌する方法としては、以下のような方法が挙げられる。 Also, as a simple stirring method in the molten state, the following methods can be mentioned.
 まず、所定の容器内にウレタンプレポリマー122を溶融する温度で加温し、貯蔵する。他方で、他の容器内に、鎖伸長剤123、感温性ウレタン化触媒124、及び熱膨張性マイクロカプセル125を感温性ウレタン化触媒124が活性化せず、且つ熱膨張性マイクロカプセル125が膨張しない温度で保温しておく。そして、ウレタンプレポリマー122と感温性ウレタン化触媒124、熱膨張性マイクロカプセル125及び鎖伸長剤123を含有する混合物が、ヒーター及び撹拌装置を備えた容器に供給される。そして、該容器内において、ウレタンプレポリマー122と鎖伸長剤123と感温性ウレタン化触媒124と熱膨張性マイクロカプセル125とが、感温性ウレタン化触媒124の活性化しない程度の温度で加熱溶融混合される。 First, the urethane prepolymer 122 is heated and stored in a predetermined container at a melting temperature. On the other hand, the chain extender 123, the temperature-sensitive urethanization catalyst 124, and the heat-expandable microcapsule 125 are not activated in the other container, and the heat-expandable microcapsule 125 is not activated. Keep at a temperature that does not swell. And the mixture containing the urethane prepolymer 122, the temperature-sensitive urethanization catalyst 124, the thermally expansible microcapsule 125, and the chain extender 123 is supplied to the container provided with the heater and the stirring apparatus. In the container, the urethane prepolymer 122, the chain extender 123, the temperature-sensitive urethanization catalyst 124, and the thermally expandable microcapsule 125 are heated at a temperature that does not activate the temperature-sensitive urethanization catalyst 124. Melt mixed.
 溶融混合工程においては、感温性ウレタン化触媒124が活性化する温度である、発熱ピーク温度よりも10~30℃低い範囲の温度、好ましくは10~25℃低い範囲の温度でウレタンプレポリマー122と鎖伸長剤123と感温性ウレタン化触媒124と熱膨張性マイクロカプセル125とを加熱溶融混合することが好ましい。このような温度で加熱溶融混合することにより架橋反応の進行が抑制される。これにより、混合室136c内において調製された架橋性ホットメルト型ウレタン樹脂120の塗工安定性を向上させることができる。なお、熱膨張性マイクロカプセル125を配合する場合においては、溶融混合工程において、膨張を開始するような熱膨張性マイクロカプセルを選択することが好ましい。 In the melt mixing step, the urethane prepolymer 122 is at a temperature in the range of 10 to 30 ° C. lower than the exothermic peak temperature, preferably in the range of 10 to 25 ° C., which is the temperature at which the temperature-sensitive urethanization catalyst 124 is activated. It is preferable that the chain extender 123, the temperature-sensitive urethanization catalyst 124, and the thermally expandable microcapsule 125 are heated and melt mixed. The progress of the cross-linking reaction is suppressed by heat-melt mixing at such a temperature. Thereby, the coating stability of the crosslinkable hot-melt urethane resin 120 prepared in the mixing chamber 136c can be improved. In addition, when mix | blending the thermally expansible microcapsule 125, it is preferable to select the thermally expansible microcapsule which starts expansion | swelling in a melt mixing process.
 また、一方で、図4に示すように、図略のシート送り出しリールから離型紙121を連続的に送り出し、連続的に送り出される離型紙121が、矢印方向に回転する送り出しロール141により送られた後、巻き取りリール144により巻き取られて、離型紙121の連続的なラインを予め、形成しておく。 On the other hand, as shown in FIG. 4, the release paper 121 is continuously sent out from a sheet delivery reel (not shown), and the release paper 121 that is continuously sent out is sent by a delivery roll 141 that rotates in the direction of the arrow. After that, a continuous line of the release paper 121 is formed in advance by the take-up reel 144.
 そして、図4に示すように、連続的に搬送される離型紙121に向けて、混合室136c中において調製された架橋性ホットメルト型ウレタン樹脂120がタッチロール139aとリバースロール139bとの間に形成されるクリアランスに向けて流下され、リバースロール139bにより離型紙121表面に均一な厚みで塗布され、離型紙-塗膜積層体140が形成される。塗膜厚みはリバースロール139bとタッチロール139aとの間に形成されるクリアランスの間隔により制御される。 As shown in FIG. 4, the crosslinkable hot-melt urethane resin 120 prepared in the mixing chamber 136c is placed between the touch roll 139a and the reverse roll 139b toward the release paper 121 that is continuously conveyed. It flows down toward the clearance to be formed, and is applied to the surface of the release paper 121 with a uniform thickness by the reverse roll 139b to form the release paper-coating laminate 140. The coating thickness is controlled by the clearance interval formed between the reverse roll 139b and the touch roll 139a.
 離型紙121としては、表面平滑な離型紙の他、表面意匠性を付与する目的で、エンボス模様を有するような離型紙を用いてもよい。 As the release paper 121, a release paper having an embossed pattern may be used in addition to a smooth release paper for the purpose of imparting surface design.
 なお、加熱溶融状態の架橋性ホットメルト型ウレタン樹脂120を離型紙121表面に塗布する塗布機構の具体例としては、図4に示したようなリバースロールコーターに代えて、例えば、ナイフコーター、ロールコーター、リバースコーター、キスロールコーター、スプレーコーター、T-ダイコーター、又はコンマコーター等を用いてもよい。なお、これらの塗布機構においては、架橋性ホットメルト型ウレタン樹脂120の溶融状態を制御できる点から、加熱手段を備えた塗布機構が好ましい。 In addition, as a specific example of an application mechanism for applying the crosslinkable hot melt urethane resin 120 in a heated and melted state to the surface of the release paper 121, for example, a knife coater, a roll may be used instead of the reverse roll coater as shown in FIG. A coater, reverse coater, kiss roll coater, spray coater, T-die coater, or comma coater may be used. In addition, in these application mechanisms, the application mechanism provided with the heating means from the point which can control the molten state of the crosslinkable hot-melt-type urethane resin 120 is preferable.
 離型紙-塗膜積層体140の塗膜132の厚みとしては、10~1000μm、さらには50~500μmの範囲であることが柔軟性と機械的強度に優れたポリウレタン積層体が得られる点から好ましい。 The thickness of the coating film 132 of the release paper-coating laminate 140 is preferably in the range of 10 to 1000 μm, more preferably 50 to 500 μm from the viewpoint of obtaining a polyurethane laminate excellent in flexibility and mechanical strength. .
 次に、架橋性ホットメルト型ウレタン樹脂120を部分架橋させる(熱処理工程)。具体的には、離型紙-塗膜積層体140を、架橋性ホットメルト型ウレタン樹脂120中に含まれる感温性ウレタン化触媒124が活性化する温度で熱処理することにより、塗膜132を形成している架橋性ホットメルト型ウレタン樹脂120の架橋が促進される。これにより、塗膜132の粘度がある程度上昇する。架橋性ホットメルト型ウレタン樹脂120中に熱膨張性マイクロカプセル125等の発泡剤が含有される場合には、この熱処理工程において発泡させることが好ましい。 Next, the crosslinkable hot melt urethane resin 120 is partially crosslinked (heat treatment step). Specifically, the release paper-coating laminate 140 is heat-treated at a temperature at which the temperature-sensitive urethanization catalyst 124 contained in the crosslinkable hot-melt urethane resin 120 is activated, thereby forming the coating film 132. Crosslinking of the crosslinkable hot-melt urethane resin 120 is promoted. Thereby, the viscosity of the coating film 132 rises to some extent. When a foaming agent such as the thermally expandable microcapsule 125 is contained in the crosslinkable hot-melt urethane resin 120, it is preferable to foam in the heat treatment step.
 熱処理温度としては、塗膜132の温度が感温性ウレタン化触媒124の発熱ピーク温度よりも高い温度になり、且つ、硬化形成されるポリウレタン樹脂層を劣化させない温度であれば特に限定されないが、具体的には、感温性ウレタン化触媒124の発熱ピーク温度に対して0~30℃高い温度の範囲、さらには発熱ピーク温度に対して0~15℃高い温度の範囲で熱処理することが好ましい。 The heat treatment temperature is not particularly limited as long as the temperature of the coating film 132 is higher than the exothermic peak temperature of the temperature-sensitive urethanization catalyst 124 and does not deteriorate the polyurethane resin layer that is cured and formed, Specifically, heat treatment is preferably performed in a temperature range of 0 to 30 ° C. higher than the exothermic peak temperature of the temperature-sensitive urethanization catalyst 124, and further in a temperature range of 0 to 15 ° C. higher than the exothermic peak temperature. .
 また、熱処理時間の具体例としては、例えば、15秒間~10分間程度、さらには30秒間~5分間程度であることが、生産性を低下させることなく充分に架橋反応を促進させることができる点から好ましい。なお、本実施形態においては、熱処理工程を離型紙-塗膜積層体の形成後に設けたが、架橋性ホットメルト型ウレタン樹脂を塗布する直前に熱処理工程を設けて、塗布前から部分架橋を開始させるなど、いずれのステップにおいて設けてもよい。 Further, as a specific example of the heat treatment time, for example, about 15 seconds to 10 minutes, further about 30 seconds to 5 minutes, the crosslinking reaction can be sufficiently promoted without lowering the productivity. To preferred. In this embodiment, the heat treatment step is provided after the release paper-coating laminate is formed, but the heat treatment step is provided immediately before the application of the crosslinkable hot-melt urethane resin, and partial crosslinking is started before the application. You may provide in any step.
 熱処理は、例えば、熱風加熱乾燥機のような加熱装置142により行われる。 The heat treatment is performed by a heating device 142 such as a hot air heating dryer.
 次に、上述した複合繊維シート103の表層の多数の空隙に、離型紙-塗膜積層体140の部分架橋された塗膜132の一部分が侵入するような圧力で、複合繊維シート103の表面に塗膜132を積層する(ラミネート工程)。 Next, pressure is applied to the surface of the composite fiber sheet 103 under such a pressure that a part of the partially cross-linked coating film 132 of the release paper-coating laminate 140 enters the numerous voids on the surface layer of the composite fiber sheet 103 described above. The coating film 132 is laminated (lamination process).
 離型紙-塗膜積層体140と複合繊維シート103との貼り合わせは、具体的には、例えば、図4に示すように、送り出しリール138から複合繊維シート103が送り出され、離型紙-塗膜積層体140表面の塗膜132が部分架橋はしているが、ある程度軟化している状態でプレスロールPRにより貼り合わされる。 Specifically, the release paper-coating laminate 140 and the composite fiber sheet 103 are bonded together, for example, as shown in FIG. Although the coating film 132 on the surface of the laminate 140 is partially crosslinked, it is bonded by the press roll PR while being softened to some extent.
 また、貼り合わせに際して、離型紙-塗膜積層体140と複合繊維シート103との貼り合わせ時に付与される圧力は、プレスロールされる際の塗膜132の粘度等に応じて適宜設定される。この圧力は、例えば2つのロールを組み合わせてなるプレスロールのロール間のクリアアランス間隔を調整することにより調整することができる。2つのロール間のクリアランス間隔は、離型紙-塗膜積層体140と複合繊維シート103との総厚み等に応じて調整されるが、例えば、以下のようなクリアランス間隔を採用することが好ましい。2つのロール間のクリアランス間隔が、プレスロールされる前の離型紙-塗膜積層体140と複合繊維シート103との総厚みに対して70~99%、さらには、80~97%程度の厚みに設定することが好ましい。 In addition, the pressure applied at the time of bonding between the release paper-coating laminate 140 and the composite fiber sheet 103 is appropriately set according to the viscosity of the coating film 132 during press roll. This pressure can be adjusted, for example, by adjusting the clearance clearance between the rolls of a press roll formed by combining two rolls. The clearance interval between the two rolls is adjusted according to the total thickness of the release paper-coating laminate 140 and the composite fiber sheet 103, and for example, the following clearance interval is preferably employed. The clearance between the two rolls is about 70 to 99%, more preferably about 80 to 97% of the total thickness of the release paper-coating laminate 140 and the composite fiber sheet 103 before the press roll. It is preferable to set to.
 なお、本実施形態においては、架橋性ホットメルト型ウレタン樹脂120を部分架橋させる熱処理工程を行った後に、離型紙-塗膜積層体140と複合繊維シート103とを貼り合わせるラミネート行程を行う製造方法を代表的に説明したが、上記ラミネート行程は、熱処理工程の前に行ってもよい。 In the present embodiment, a manufacturing method of performing a laminating step of bonding the release paper-coating laminate 140 and the composite fiber sheet 103 after performing a heat treatment step of partially cross-linking the crosslinkable hot-melt urethane resin 120 is performed. However, the laminating step may be performed before the heat treatment step.
 このようにして得られた、離型紙-塗膜積層体140と複合繊維シート103との貼合体であるポリウレタン積層体前駆体143は、クーリングロール146を用いて強制冷却される(冷却工程)。冷却工程においては、架橋性ホットメルト型ウレタン樹脂120が固化または増粘する。 The polyurethane laminate precursor 143, which is a laminate of the release paper-coating laminate 140 and the composite fiber sheet 103, obtained as described above is forcibly cooled using a cooling roll 146 (cooling step). In the cooling step, the crosslinkable hot melt urethane resin 120 is solidified or thickened.
 そして、冷却工程の後、巻き取りリール144により巻き取られる。そして、巻き取られたポリウレタン積層体前駆体143は、必要に応じて所定の時間熟成されることにより、ポリウレタン樹脂層の架橋反応がさらに進行して高分子量化され、硬化する。また、架橋性ホットメルト型ウレタン樹脂として湿分硬化性ホットメルト型ウレタン樹脂を用いた場合には、湿分硬化が進行する。 Then, after the cooling process, the film is taken up by the take-up reel 144. Then, the wound polyurethane laminate precursor 143 is aged for a predetermined time as necessary, so that the crosslinking reaction of the polyurethane resin layer further proceeds to increase the molecular weight and cure. Further, when a moisture curable hot melt urethane resin is used as the crosslinkable hot melt urethane resin, moisture curing proceeds.
 ポリウレタン積層体前駆体143の熟成条件としては、温度20~40℃、相対湿度50~80%の条件で、20~50時間程度熟成することが好ましい。これにより、機械的強度や耐水性に優れたポリウレタン積層体が得られる。 As the aging conditions for the polyurethane laminate precursor 143, aging is preferably performed for about 20 to 50 hours under the conditions of a temperature of 20 to 40 ° C. and a relative humidity of 50 to 80%. Thereby, the polyurethane laminated body excellent in mechanical strength and water resistance is obtained.
 熟成後、ポリウレタン積層体前駆体143から離型紙121を剥離することにより、ポリウレタン積層体が得られる。 After aging, the release paper 121 is peeled off from the polyurethane laminate precursor 143 to obtain a polyurethane laminate.
 なお、得られたポリウレタン積層体に対しては、さらに公知慣用の方法により、表面意匠性を付与するために、表層部を溶剤系、水系、エマルジョン系若しくは無溶剤系のウレタン樹脂やアクリル樹脂をコーティングすることにより表皮層を設けたり、あるいはバフィング加工やエンボス加工等の後加工を適宜行ってもよい。 In addition, in order to impart surface designability to the obtained polyurethane laminate by a known and conventional method, the surface layer portion is made of a solvent-based, water-based, emulsion-based or solvent-free urethane resin or acrylic resin. A skin layer may be provided by coating, or post-processing such as buffing or embossing may be appropriately performed.
 このようにして得られたポリウレタン積層体は、鞄、履物、衣類、家具等に用いられる皮革様シートとして用いることができる。 The polyurethane laminate thus obtained can be used as a leather-like sheet used for bags, footwear, clothing, furniture and the like.
[実施形態3]
 実施形態3においては、上記の実施形態2のポリウレタン積層体の製造方法により得られたポリウレタン積層体について説明する。本実施形態3に係るポリウレタン積層体は、好ましくは、繊維シートと高分子弾性体とが含浸一体化された、表層に多数の空隙を有する複合繊維シートと、複合繊維シートに積層されたポリウレタン樹脂層との積層体であり、ポリウレタン樹脂層の一部分が複合繊維シートの表層の空隙に侵入して形成された10μm以上の厚みを有する混在層を有する。
[Embodiment 3]
In Embodiment 3, the polyurethane laminate obtained by the method for producing a polyurethane laminate of Embodiment 2 will be described. The polyurethane laminate according to Embodiment 3 is preferably a composite fiber sheet having a large number of voids in the surface layer, in which a fiber sheet and a polymer elastic body are impregnated and integrated, and a polyurethane resin laminated on the composite fiber sheet And a mixed layer having a thickness of 10 μm or more formed by intruding into a void in the surface layer of the composite fiber sheet.
 図面を参照して、本実施形態に係るポリウレタン積層体について詳しく説明する。図3は、ポリウレタン積層体110の模式断面図であり、101は繊維シート、102は多孔質ポリウレタン(高分子弾性体)であり、繊維シート101に多孔質ポリウレタン102が含浸されて一体化されることにより複合繊維シート103が形成されている。また、104はポリウレタン樹脂層であり、ポリウレタン樹脂層104の下層が複合繊維シート103の上層の空隙106に侵入して混在化することにより、混在層105が形成されている。 The polyurethane laminate according to the present embodiment will be described in detail with reference to the drawings. FIG. 3 is a schematic cross-sectional view of the polyurethane laminate 110, 101 is a fiber sheet, 102 is a porous polyurethane (polymer elastic body), and the fiber sheet 101 is impregnated with the porous polyurethane 102 and integrated. Thereby, the composite fiber sheet 103 is formed. Reference numeral 104 denotes a polyurethane resin layer, and the lower layer of the polyurethane resin layer 104 enters and mixes with the gap 106 in the upper layer of the composite fiber sheet 103, whereby the mixed layer 105 is formed.
 繊維シート101の具体例としては、例えば、不織布や織布、編布等の一般的に皮革様シートに用いられている繊維基材等が挙げられる。これらの中では、柔軟な風合いと優れた機械的強度を有する複合繊維シートが得られる点から、極細繊維または極細繊維束から形成された不織布が好ましく用いられる。このような不織布としては、従来から知られた短繊維ウェブ、スパンボンド法やメルトブロー法等の公知の方法により得られたウェブが特に限定なく用いられうる。また、必要に応じて、ウェブを形成した後、複数枚のウェブを重ねてニードルパンチ処理等により絡合させて得られるものであってもよい。不織布を形成する繊維の具体例としては、例えば、ポリウレタン系繊維、PET繊維等のポリエステル系繊維、ポリアミド系繊維、ポリアクリル系繊維、ポリオレフィン系繊維、ポリビニルアルコール系繊維等が挙げられる。不織布を形成する繊維は、繊維径が0.1~50μm、さらには1~15μmであるような細繊維または極細繊維であることが好ましい。このような細繊維または極細繊維は剛性が低く、柔らかいために、柔軟な風合いを有する複合繊維シートが得られる点から好ましい。また、繊維の断面形状としては、通常の円形や楕円形の断面の他、星型のものを用いてもよく、また、軽量性と機械強度を兼ね備える複合繊維シートが得られる点から、中空又はレンコン型の多空中空形状のものを用いてもよい。 Specific examples of the fiber sheet 101 include, for example, fiber base materials generally used for leather-like sheets such as nonwoven fabrics, woven fabrics, and knitted fabrics. In these, the nonwoven fabric formed from the ultrafine fiber or the ultrafine fiber bundle is used preferably from the point from which the composite fiber sheet which has a soft texture and the outstanding mechanical strength is obtained. As such a nonwoven fabric, a conventionally known short fiber web, a web obtained by a known method such as a spunbond method or a melt blow method can be used without particular limitation. Moreover, after forming a web as needed, it may be obtained by accumulating a plurality of webs and intertwining them by a needle punching process or the like. Specific examples of the fibers forming the nonwoven fabric include, for example, polyester fibers such as polyurethane fibers and PET fibers, polyamide fibers, polyacrylic fibers, polyolefin fibers, and polyvinyl alcohol fibers. The fibers forming the nonwoven fabric are preferably fine fibers or ultrafine fibers having a fiber diameter of 0.1 to 50 μm, more preferably 1 to 15 μm. Such a fine fiber or ultrafine fiber has a low rigidity and is soft, so that a composite fiber sheet having a soft texture can be obtained. Further, as the cross-sectional shape of the fiber, in addition to a normal circular or elliptical cross-section, a star-shaped one may be used, and from the point of obtaining a composite fiber sheet having both lightness and mechanical strength, it is hollow or A lotus-type multi-cavity hollow shape may be used.
 不織布の目付けとしては50~2000g/m2の範囲、さらには100~1000g/m2の範囲であることが、柔軟な風合いの複合繊維シートが得られる点から好ましい。 The basis weight of the nonwoven fabric is preferably in the range of 50 to 2000 g / m 2 , and more preferably in the range of 100 to 1000 g / m 2 from the viewpoint of obtaining a composite fiber sheet having a soft texture.
 また、本実施形態の繊維シート101には高分子弾性体として多孔質ポリウレタン102が含浸されている。なお、高分子弾性体としては、多孔質のものに限定されるものではない。また、ポリウレタンの代わりに、アクリロニトリル-ブタジエン共重合体、スチレン-ブタジエン共重合体、アクリル酸エステルあるいはメタクリル酸エステルの共重合体、シリコンゴム等を用いてもよい。良好な風合が得られる点でポリウレタンが特に好ましい。 Also, the fiber sheet 101 of this embodiment is impregnated with porous polyurethane 102 as a polymer elastic body. The polymer elastic body is not limited to a porous material. Instead of polyurethane, acrylonitrile-butadiene copolymer, styrene-butadiene copolymer, acrylic ester or methacrylic ester copolymer, silicon rubber, or the like may be used. Polyurethane is particularly preferable in that a good texture can be obtained.
 多孔質ポリウレタン102の具体例としては、溶剤系、水系、エマルジョン系又は無溶剤系のウレタン樹脂を凝固または固化させて得られる多孔質のポリウレタン樹脂が挙げられる。繊維シート101に多孔質ポリウレタン102が含浸されて一体化されることにより形成される複合繊維シート103は、繊維シート101を構成する繊維または繊維束間に形成される空隙に多孔質ポリウレタン102が含浸されてなり、且つ、多孔質ポリウレタン102が含浸されていない多数の空隙を備える。そして、後述するように、表層に存在する多数の空隙106にポリウレタン樹脂層104の下層が侵入して、混在層105が形成されている。 Specific examples of the porous polyurethane 102 include a porous polyurethane resin obtained by solidifying or solidifying a solvent-based, water-based, emulsion-based or solvent-free urethane resin. The composite fiber sheet 103 formed by impregnating the fiber sheet 101 with the porous polyurethane 102 and being integrated is impregnated with the porous polyurethane 102 in the gaps formed between the fibers or fiber bundles constituting the fiber sheet 101. And a large number of voids that are not impregnated with the porous polyurethane 102. As will be described later, the lower layer of the polyurethane resin layer 104 penetrates into a large number of voids 106 existing on the surface layer to form a mixed layer 105.
 複合繊維シート103の厚みは特に限定されないが、100~2000μm、さらには、200~1500μmの範囲であることが、風合いがソフトになり、ゴムライクな風合いになり難い点から好ましい。 The thickness of the composite fiber sheet 103 is not particularly limited, but is preferably in the range of 100 to 2000 μm, and more preferably in the range of 200 to 1500 μm, because the texture becomes soft and the rubber-like texture does not easily occur.
 また、混在層105が形成される前の、複合繊維シート103の空隙率は20~85体積%、さらには、35~80体積%、とくには40~80体積%であることが好ましい。このような空隙率の場合には、得られるポリウレタン積層体の折れシボが特に細かくなる点、風合いバランスに優れる点、剥離強力に優れる点から好ましい。なお、空隙率は、次の式から求められる。
 空隙率(%)=[1-複合繊維シートの密度÷{複合繊維シートを構成する繊維の比重×(複合繊維シート中に占める繊維の質量比率)+複合繊維シートを構成する高分子弾性体の比重×(複合繊維シート中に占める高分子弾性体の質量比率)}]×100
Further, the porosity of the composite fiber sheet 103 before the mixed layer 105 is formed is preferably 20 to 85% by volume, more preferably 35 to 80% by volume, and particularly preferably 40 to 80% by volume. In the case of such a porosity, it is preferable from the point that the crease / protrusion of the obtained polyurethane laminate is particularly fine, the balance of texture is excellent, and the peel strength is excellent. In addition, the porosity is calculated | required from the following formula.
Porosity (%) = [1−density of composite fiber sheet ÷ {specific gravity of fibers constituting composite fiber sheet × (mass ratio of fibers in composite fiber sheet) + polymer elastic body constituting composite fiber sheet] Specific gravity x (mass ratio of polymer elastic body in composite fiber sheet)}] × 100
 一方、ポリウレタン樹脂層104の具体例としては、ホットメルト型ウレタン樹脂、熱可塑性ポリウレタン樹脂、溶剤系ウレタン樹脂、水系ウレタン樹脂、またはエマルジョン系ウレタン樹脂を凝固または固化させて得られるポリウレタン樹脂からなる層が挙げられる。これらの中では、工業的な生産性に優れている点からホットメルト型ウレタン樹脂に由来するポリウレタン樹脂層が特に好ましく用いられる。 On the other hand, specific examples of the polyurethane resin layer 104 include a layer made of a polyurethane resin obtained by coagulating or solidifying a hot-melt urethane resin, a thermoplastic polyurethane resin, a solvent-based urethane resin, a water-based urethane resin, or an emulsion-based urethane resin. Is mentioned. Among these, a polyurethane resin layer derived from a hot-melt urethane resin is particularly preferably used from the viewpoint of excellent industrial productivity.
 混在層105の厚み分を含んだポリウレタン樹脂層104の厚みは、30~1000μm、さらには100~800μm、とくには150~700μmの範囲であることが柔軟性と機械的強度に優れたポリウレタン積層体が得られる点から好ましい。 The polyurethane resin layer 104 including the thickness of the mixed layer 105 has a thickness of 30 to 1000 μm, more preferably 100 to 800 μm, particularly 150 to 700 μm, and a polyurethane laminate excellent in flexibility and mechanical strength. Is preferable from the point that can be obtained.
 ポリウレタン樹脂層104は、好ましくは多孔質の樹脂層である。ポリウレタン樹脂層104に形成される多孔質による空隙の平均直径としては10~500μm、さらには20~200μmであることが加工安定性、樹脂層の平滑性および表面タッチに優れる点から好ましい。また、ポリウレタン樹脂層104の空隙率としては10~90体積%、さらには、20~80体積%、とくには30~70体積%であることが表面の屈曲性、風合いや表面タッチ、折れ皺の細かさ、物性に優れる点から好ましい。 The polyurethane resin layer 104 is preferably a porous resin layer. The average diameter of the porous voids formed in the polyurethane resin layer 104 is preferably 10 to 500 μm, more preferably 20 to 200 μm, from the viewpoint of excellent processing stability, resin layer smoothness and surface touch. Further, the porosity of the polyurethane resin layer 104 is 10 to 90% by volume, more preferably 20 to 80% by volume, and particularly 30 to 70% by volume. This is preferable from the viewpoint of fineness and physical properties.
 図3に示すように、ポリウレタン積層体110は、複合繊維シート103と、複合繊維シート103表面に積層されたポリウレタン樹脂層104とを含有し、ポリウレタン樹脂層104の一部分が複合繊維シート103の表面から空隙106に侵入して充填することにより形成された混在層105を有する。このような混在層105は、ポリウレタン樹脂層104の一部分が複合繊維シート103の多数の空隙106に侵入することにより形成される10μm以上の厚みを有する層であり、ポリウレタン樹脂層104の一部分と複合繊維シート103の一部分とが非相溶の状態で混在して形成される3次元的な厚みを有する層である。また、ポリウレタン樹脂層104が複合繊維シート103の空隙106に侵入することにより、ポリウレタン積層体110の表層から深い部分に、混在層105の底面107が存在するようになる。そして、ポリウレタン樹脂層104を構成するポリウレタンによって複合繊維シート103の空隙が侵入充填され、複合繊維シート103を構成する高分子弾性体と繊維シートが混在した状態となる。これらによりポリウレタン樹脂層と複合繊維シートとの界面が表層付近に存在しなくなるために、ポリウレタン積層体110の表層に界面の影響が表出しにくくなる。 As shown in FIG. 3, the polyurethane laminate 110 includes a composite fiber sheet 103 and a polyurethane resin layer 104 laminated on the surface of the composite fiber sheet 103, and a part of the polyurethane resin layer 104 is a surface of the composite fiber sheet 103. The mixed layer 105 is formed by entering and filling the void 106. Such a mixed layer 105 is a layer having a thickness of 10 μm or more formed when a part of the polyurethane resin layer 104 enters a large number of voids 106 of the composite fiber sheet 103, and is combined with a part of the polyurethane resin layer 104. It is a layer having a three-dimensional thickness formed by mixing a part of the fiber sheet 103 in an incompatible state. In addition, when the polyurethane resin layer 104 enters the gap 106 of the composite fiber sheet 103, the bottom surface 107 of the mixed layer 105 exists in a deep portion from the surface layer of the polyurethane laminate 110. Then, the voids of the composite fiber sheet 103 are intruded and filled with polyurethane constituting the polyurethane resin layer 104, and the polymer elastic body and the fiber sheet constituting the composite fiber sheet 103 are mixed. As a result, the interface between the polyurethane resin layer and the composite fiber sheet does not exist in the vicinity of the surface layer, so that the influence of the interface is less likely to appear on the surface layer of the polyurethane laminate 110.
 混在層105の厚みとしては、10~800μm、さらには30~500μmであることが高いアンカー効果を発揮する点から好ましい。混在層105の厚みが薄すぎる場合には、アンカー効果が弱くなり、ポリウレタン樹脂層104と複合繊維シート103との密着力が充分に向上せず、折れ皺感が劣り、折れ皺が残る傾向があり、混在層5の厚みが厚すぎる場合には、風合いが硬くなる傾向がある。 The thickness of the mixed layer 105 is preferably 10 to 800 μm, more preferably 30 to 500 μm from the viewpoint of exhibiting a high anchor effect. When the thickness of the mixed layer 105 is too thin, the anchor effect is weakened, the adhesion between the polyurethane resin layer 104 and the composite fiber sheet 103 is not sufficiently improved, the crease feeling is inferior, and the crease tends to remain. Yes, if the mixed layer 5 is too thick, the texture tends to be hard.
 また、ポリウレタン樹脂層104全体の総厚みに対する、混在層105の厚みの割合は10~80%、さらには30~70%であることが高いアンカー効果を発揮する点から好ましい。混在層105の厚みの割合が低すぎる場合には、ポリウレタン樹脂層104と複合繊維シート103との密着力が充分に向上しない傾向があり、また、混在層の界面107が表層近くになってしまう傾向がある。混在層105の厚みの割合が高すぎる場合には、風合いが硬いゴムライクになる傾向がある。 Further, the ratio of the thickness of the mixed layer 105 to the total thickness of the entire polyurethane resin layer 104 is preferably 10 to 80%, more preferably 30 to 70%, from the viewpoint of exhibiting a high anchor effect. When the ratio of the thickness of the mixed layer 105 is too low, the adhesive force between the polyurethane resin layer 104 and the composite fiber sheet 103 tends not to be sufficiently improved, and the interface 107 of the mixed layer becomes close to the surface layer. Tend. When the ratio of the thickness of the mixed layer 105 is too high, the texture tends to be hard rubber-like.
 なお、混在層105においては、多孔質ポリウレタン102とポリウレタン樹脂層104とが実質的に非相溶の状態で存在する。このような混在層105を形成することにより、より高いアンカー効果を発揮する。また、多孔質ポリウレタン102に形成された多孔構造を形成する隔壁がそのまま維持されるために、混在層105の機械的特性が優れたものとなる。 In the mixed layer 105, the porous polyurethane 102 and the polyurethane resin layer 104 exist in a substantially incompatible state. By forming such a mixed layer 105, a higher anchor effect is exhibited. Further, since the partition walls forming the porous structure formed in the porous polyurethane 102 are maintained as they are, the mechanical characteristics of the mixed layer 105 are excellent.
 ポリウレタン積層体110に対しては、さらに公知慣用の方法により、表面意匠性を付与するために、その表層に、溶剤系、水系、エマルジョン系若しくは無溶剤系のポリウレタン樹脂やアクリル樹脂をコーティングすることにより表皮層を積層したり、あるいはバフィング加工やエンボス加工等の後加工を適宜行ってもよい。 For the polyurethane laminate 110, the surface layer thereof is coated with a solvent-based, water-based, emulsion-based or solvent-free polyurethane resin or acrylic resin in order to impart surface designability by a known and conventional method. The outer skin layer may be laminated or post-processing such as buffing or embossing may be appropriately performed.
 ポリウレタン積層体110全体の厚みとしては、100~3000μm、さらには、200~2000μm、とくには、500~1500μmの範囲であることが皮革に似た風合いが得られる点から好ましい。 The total thickness of the polyurethane laminate 110 is preferably 100 to 3000 μm, more preferably 200 to 2000 μm, and particularly preferably 500 to 1500 μm from the viewpoint of obtaining a texture similar to leather.
 このようなポリウレタン積層体は、履物、衣類、鞄、家具等の表面素材になる天然皮革に似た皮革様シートとして好ましく用いられうる。 Such a polyurethane laminate can be preferably used as a leather-like sheet similar to natural leather that becomes a surface material of footwear, clothing, bags, furniture, and the like.
 以下に、本発明を実施例により具体的に説明するが、本発明は実施例に何ら限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to the examples.
 はじめに、実施形態1に相当する実施例1-1~1-5について説明する。 First, Examples 1-1 to 1-5 corresponding to Embodiment 1 will be described.
 [実施例1-1~1-5で用いた原材料]
 〈ウレタンプレポリマー〉
タスクフォース KMM-100(DIC(株)製のホットメルト型ウレタンプレポリマー、120℃における溶融粘度が3200mPa・s)
 〈鎖伸長剤〉
ポリオール(DIC(株)製の顔料分散ポリオール、Black Exp.7457、ポリオール70質量%、顔料30質量%)
 〈感温性ウレタン化触媒〉
DBUのオレイン酸塩(サンアプロ(株)製、発熱ピーク温度110℃)
 〈熱膨張性マイクロカプセル〉
マツモトマイクロスフェアー F-36(松本油脂製薬(株)製、外殻軟化温度80~90℃)
 〈基材シート〉
平均繊度0.07デシテックスの極細繊維からなる絡合不織布に水溶性ポリウレタン(DIC(株)社製 ハイドランWLI612)を含浸した、厚さ1mm、目付け、550g/m、比重0.55g/cmの基布。
 〈離型紙〉
 リンテック(株)製のシボ入り離型紙 R-8
[Raw materials used in Examples 1-1 to 1-5]
<Urethane prepolymer>
Task Force KMM-100 (Hot melt type urethane prepolymer manufactured by DIC Corporation, melt viscosity at 120 ° C. is 3200 mPa · s)
<Chain extender>
Polyol (pigment-dispersed polyol manufactured by DIC Corporation, Black Exp. 7457, polyol 70% by mass, pigment 30% by mass)
<Temperature sensitive urethane catalyst>
DBU oleate (San Apro Co., Ltd., exothermic peak temperature 110 ° C)
<Thermal expandable microcapsule>
Matsumoto Microsphere F-36 (manufactured by Matsumoto Yushi Seiyaku Co., Ltd., outer shell softening temperature 80-90 ° C)
<Base material sheet>
Thickness 1 mm, basis weight 550 g / m 2 , specific gravity 0.55 g / cm 3 impregnated with a water-soluble polyurethane (Hydran WLI612 manufactured by DIC Corporation) in an entangled nonwoven fabric made of ultrafine fibers having an average fineness of 0.07 dtex Base fabric.
<Release paper>
Release paper R-8 with wrinkles made by Lintec Corporation
 [実施例1-1]
 図1に示したような製造プロセスを用いてポリウレタン積層体を製造した。
[Example 1-1]
A polyurethane laminate was produced using a production process as shown in FIG.
 具体的には、はじめに、100℃に保温した加熱溶融状態でウレタンプレポリマー2を第1ノズル6aから加圧噴射により霧化させて混合室6cに供給し、一方、50℃に保温した16.2質量部の鎖伸長剤3に対し、0.9質量部の感温性ウレタン化触媒4、及び0.8質量部の熱膨張性マイクロカプセル5を混合した混合物を第2ノズル6bから加圧噴射して霧化させて100℃に保温された混合室6cに供給した。そして、混合室6c内で霧化された各成分を衝突させて混合した。なお、混合比率は、ウレタンポリマー2100質量部に対して、鎖伸長剤3と感温性ウレタン化触媒4と熱膨張性マイクロカプセルと5の混合物15質量部の割合で混合した。衝突混合されて調製されたウレタン樹脂組成物10は、さらに混合室6c内で撹拌された。なお、撹拌は、混合室6c内に備えられた攪拌機(T.K.ホモディスパー プライミクス)を用いて4000rpmで15秒間行った。撹拌後、ウレタン樹脂組成物10の表面温度を非接触タイプの温度計で測定すると100℃であった。 Specifically, first, the urethane prepolymer 2 was atomized by pressure injection from the first nozzle 6a in a heated and melted state kept at 100 ° C. and supplied to the mixing chamber 6c, while keeping the temperature at 50 ° C. 16. A mixture obtained by mixing 0.9 parts by mass of the temperature-sensitive urethanization catalyst 4 and 0.8 parts by mass of the thermally expandable microcapsule 5 with respect to 2 parts by mass of the chain extender 3 is pressurized from the second nozzle 6b. The mixture was sprayed, atomized, and supplied to the mixing chamber 6c kept at 100 ° C. And each component atomized in the mixing chamber 6c was collided and mixed. The mixing ratio was 15 parts by mass of a mixture of the chain extender 3, the temperature-sensitive urethanization catalyst 4, the thermally expandable microcapsule 5 and 2100 parts by mass of the urethane polymer. The urethane resin composition 10 prepared by collision mixing was further stirred in the mixing chamber 6c. Stirring was performed at 4000 rpm for 15 seconds using a stirrer (TK homodisper prime) provided in the mixing chamber 6c. It was 100 degreeC when the surface temperature of the urethane resin composition 10 was measured with the non-contact-type thermometer after stirring.
 次に、図1に示すように、図略の離型紙送り出しリールから連続的に送り出される離型紙1が、矢印方向に回転する送り出しロール11により送り出された後、巻き取りリール14により巻き取られて、離型紙1の連続的なラインが形成された。 Next, as shown in FIG. 1, the release paper 1 that is continuously fed from a release paper feed reel (not shown) is fed by a feed roll 11 that rotates in the direction of the arrow, and is then wound by a take-up reel 14. Thus, a continuous line of the release paper 1 was formed.
 そして、図1に示すように、連続的に送り出される離型紙1に向けて、混合室6c内で溶融混合されたウレタン樹脂組成物10を100℃に加熱されたリバースロール9bとタッチロール9aとの間に形成されるクリアランスに向けて流下し、リバースロール9bにより離型紙1表面に500g/mの塗布量になるように塗布することによりウレタン樹脂層10を形成した。このとき基材上のウレタン樹脂層10の塗布厚みは約300μmであった。 And as shown in FIG. 1, the reverse roll 9b and the touch roll 9a which heated the urethane resin composition 10 melt-mixed in the mixing chamber 6c at 100 degreeC toward the release paper 1 sent out continuously, The urethane resin layer 10 was formed by applying the reverse flow 9b onto the surface of the release paper 1 so that the application amount was 500 g / m 2 . At this time, the coating thickness of the urethane resin layer 10 on the substrate was about 300 μm.
 次に、離型紙1表面に形成されたウレタン樹脂層10の表面に向けて、送り出しリール8から基材シート7を送り出し、プレスロールPRにより貼り合わせた。 Next, the base material sheet 7 was sent out from the feed reel 8 toward the surface of the urethane resin layer 10 formed on the surface of the release paper 1 and bonded by the press roll PR.
 次に、感温性ウレタン化触媒4を活性化するとともに熱膨張性マイクロカプセル5を膨張させるために、115℃の加熱装置12で60秒間処理した。 Next, in order to activate the temperature-sensitive urethanization catalyst 4 and expand the thermally expandable microcapsules 5, treatment was performed with a heating device 12 at 115 ° C. for 60 seconds.
 そして、このようにして得られた離型紙1で被覆された状態のウレタン樹脂層10と基材シート7との貼り合わせ体を巻き取りリール14により巻き取った。そして、巻き取った状態で、40℃の熟成室で48時間熟成させた後、離型紙1を剥がすことにより黒色のポリウレタン積層体13が得られた。 Then, the bonded body of the urethane resin layer 10 and the base sheet 7 covered with the release paper 1 thus obtained was wound up by the take-up reel 14. And in the wound state, after making it age | cure | ripen in a 40 degreeC aging room | chamber 48 hours, the black polyurethane laminated body 13 was obtained by peeling the release paper 1. FIG.
 上記のような方法によりポリウレタン積層体13を連続生産したときにおいては、混合室6c内のウレタン樹脂組成物10は少なくとも約3時間は連続して塗布しうる範囲の粘度を維持し、ポットライフに優れたものであった。また、得られたポリウレタン積層体13の断面を走査型電子顕微鏡により観察したところ、平均直径が約80μmの均一な独立気孔が形成されていた。 When the polyurethane laminate 13 is continuously produced by the method as described above, the urethane resin composition 10 in the mixing chamber 6c maintains a viscosity in a range where it can be continuously applied for at least about 3 hours, and the pot life is reduced. It was excellent. Further, when the cross section of the obtained polyurethane laminate 13 was observed with a scanning electron microscope, uniform independent pores having an average diameter of about 80 μm were formed.
 [実施例1-2]
 混合室6c内中のポリウレタン樹脂組成物を100℃に保温する代わりに、80℃で保温した以外は、実施例1-1と同様にしてポリウレタン積層体13を連続生産した。
[Example 1-2]
A polyurethane laminate 13 was continuously produced in the same manner as in Example 1-1 except that the polyurethane resin composition in the mixing chamber 6c was kept at 80 ° C. instead of keeping at 100 ° C.
 上記のような方法によりポリウレタン積層体13を連続生産したときにおいては、樹脂の粘度がやや高く塗布性は実施例1の場合よりも幾分低下したが、連続生産性に問題はなかった。また、混合容器中のウレタン樹脂組成物は少なくとも約4時間は連続して塗布しうる粘度の範囲を維持し、ポットライフに優れたものであった。 When the polyurethane laminate 13 was continuously produced by the method as described above, the viscosity of the resin was somewhat high, and the applicability was somewhat lower than in Example 1, but there was no problem in continuous productivity. Further, the urethane resin composition in the mixing container maintained a viscosity range that could be applied continuously for at least about 4 hours, and was excellent in pot life.
 [実施例1-3]
 離型紙1表面に形成されたウレタン樹脂層10に基材シート7を貼り合わせた後に115℃の加熱装置12で60秒間処理する熱処理工程を行う代わりに、基材シート7を貼り合わせる前に同条件で熱処理工程を行った後、基材シート7を貼り合せた以外は、実施例1-1と同様にしてポリウレタン積層体13を連続生産した。得られたポリウレタン積層体13の断面を観察したところ均一な独立気孔が形成されていた。
[Example 1-3]
Instead of performing a heat treatment process in which the substrate sheet 7 is bonded to the urethane resin layer 10 formed on the surface of the release paper 1 and then heated at 115 ° C. for 60 seconds, the same process is performed before the substrate sheet 7 is bonded. A polyurethane laminate 13 was continuously produced in the same manner as in Example 1-1, except that the heat treatment step was performed under the conditions, and then the base sheet 7 was bonded. When a cross section of the obtained polyurethane laminate 13 was observed, uniform independent pores were formed.
 [実施例1-4]
 離型紙1の連続的なラインを形成する代わりに、はじめに基材シート7のラインを形成し、連続的に送り出される基材シート7の表面にウレタン樹脂層10を形成した以外は実施例1-3と同様にしてウレタン樹脂層10を形成した。
[Example 1-4]
Example 1 except that instead of forming a continuous line of the release paper 1, a line of the base sheet 7 is first formed and the urethane resin layer 10 is formed on the surface of the base sheet 7 that is continuously fed out. In the same manner as in No. 3, a urethane resin layer 10 was formed.
 次に、基材シート7表面に形成されたウレタン樹脂層10の表面に向けて、離型紙1を送り出しリール8から送り出し、プレスロールPRにより貼り合わせた。 Next, the release paper 1 was fed out from the feed reel 8 toward the surface of the urethane resin layer 10 formed on the surface of the base sheet 7 and bonded by the press roll PR.
 そして、感温性ウレタン化触媒4を活性化するとともに熱膨張性マイクロカプセル5を膨張させるために、115℃の加熱装置12で60秒間処理した。 Then, in order to activate the temperature-sensitive urethanization catalyst 4 and expand the heat-expandable microcapsule 5, it was treated with a heating device 12 at 115 ° C. for 60 seconds.
 そして、クーリングロール16を用いて常温付近にまで強制的に冷却した後、巻き取った。そして、巻き取った状態で、40℃の熟成室で48時間熟成させた後、離型紙1を剥がすことにより黒色のポリウレタン積層体13が得られた。得られたポリウレタン積層体13の断面を観察したところ均一な独立気孔が形成されていた。 And after forcibly cooling to near room temperature using the cooling roll 16, it wound up. And in the wound state, after making it age | cure | ripen in a 40 degreeC aging room | chamber 48 hours, the black polyurethane laminated body 13 was obtained by peeling the release paper 1. FIG. When a cross section of the obtained polyurethane laminate 13 was observed, uniform independent pores were formed.
 [実施例1-5]
離型紙1表面に、予め水分散型ポリウレタン樹脂 D-6065(大日精化製工業株式会社製)/増粘剤 D-890(大日精化製工業株式会社製)=100/2で配合した表皮用配合液を乾燥後の厚みが10μmになるように塗布し、120℃で2分乾燥を行って、離型紙表面に高分子弾性体からなる表皮層を形成した表皮層付き離型紙を準備し、該表皮層付き離型紙上にウレタン樹脂層10を形成する以外は、実施例1-1と同様にして多層ポリウレタン積層体を連続生産した。得られた多層ポリウレタン積層体の断面を観察したところウレタン樹脂層10内では均一な独立気孔が形成されていた。そして、表皮部分は滑らかなタッチを有するものであった。
[Example 1-5]
Epidermis blended in advance with water-dispersible polyurethane resin D-6065 (manufactured by Dainichi Seika Kogyo Co., Ltd.) / Thickener D-890 (manufactured by Dainichi Seika Kogyo Co., Ltd.) = 100/2 on the surface of release paper 1 A release liquid with a skin layer is prepared by coating the liquid mixture for drying so that the thickness after drying is 10 μm and drying at 120 ° C. for 2 minutes to form a skin layer made of a polymer elastic body on the surface of the release paper. A multilayer polyurethane laminate was continuously produced in the same manner as in Example 1-1 except that the urethane resin layer 10 was formed on the release paper with the skin layer. When a cross section of the obtained multilayer polyurethane laminate was observed, uniform independent pores were formed in the urethane resin layer 10. And the skin part had a smooth touch.
 [比較例1-1]
 図1に示したような製造プロセスを用いてポリウレタン積層体を製造した。
[Comparative Example 1-1]
A polyurethane laminate was produced using a production process as shown in FIG.
 具体的には、はじめに、120℃に保温した加熱溶融状態でウレタンプレポリマー2を第1ノズル6aから加圧噴射により霧化させて混合室6cに供給し、一方、50℃に保温した16.2質量部の鎖伸長剤3に対し、0.9質量部の感温性ウレタン化触媒4及び0.8質量部の熱膨張性マイクロカプセル5を混合して得られる混合物を第2ノズル6bから加圧噴射して霧化させて110℃に保温された混合室6cに供給した。そして、混合室6c内で霧化された各成分を衝突させて混合した。なお、混合比率は、ウレタンポリマー2100質量部に対して、第2ノズル6bから供給される鎖伸長剤
3と感温性ウレタン化触媒 4と熱膨張性マイクロカプセル5との混合物15質量部の割合で混合した。衝突混合されて調製されたウレタン樹脂組成物10は、さらに混合室6c内で撹拌された。撹拌後、ウレタン樹脂組成物10の表面温度を非接触タイプの温度計で測定すると110℃であった。また、このとき、熱膨張性マイクロカプセルは2倍以上に膨張していた。
Specifically, first, the urethane prepolymer 2 is atomized by pressure injection from the first nozzle 6a in a heated and melted state kept at 120 ° C. and supplied to the mixing chamber 6c, while keeping the temperature at 50 ° C. 16. A mixture obtained by mixing 0.9 parts by mass of the temperature-sensitive urethanization catalyst 4 and 0.8 parts by mass of the thermally expandable microcapsule 5 with respect to 2 parts by mass of the chain extender 3 from the second nozzle 6b. The mixture was supplied to the mixing chamber 6c which was atomized by pressure injection and kept at 110 ° C. And each component atomized in the mixing chamber 6c was collided and mixed. The mixing ratio is a ratio of 15 parts by mass of a mixture of the chain extender 3, the temperature-sensitive urethanization catalyst 4 and the thermally expandable microcapsule 5 supplied from the second nozzle 6b with respect to 2100 parts by mass of the urethane polymer. Mixed. The urethane resin composition 10 prepared by collision mixing was further stirred in the mixing chamber 6c. After stirring, the surface temperature of the urethane resin composition 10 was 110 ° C. when measured with a non-contact type thermometer. At this time, the thermally expandable microcapsule was expanded more than twice.
 以降の工程は、熱処理を行わなかった以外は実施例1-1と同様にしてポリウレタン積層体を形成した。 In the subsequent steps, a polyurethane laminate was formed in the same manner as in Example 1-1 except that no heat treatment was performed.
 上記のような方法によりポリウレタン積層体を連続生産したときにおいて、混合容器中のウレタン樹脂組成物は約5分以内で塗布が困難になるような粘度にまで粘度が上昇した。 When the polyurethane laminate was continuously produced by the above-described method, the viscosity of the urethane resin composition in the mixing container rose to a viscosity that would make it difficult to apply within about 5 minutes.
 以上の実施例1-1~1-5及び比較例1-1の結果から、以下のことが分かる。 From the results of Examples 1-1 to 1-5 and Comparative Example 1-1, the following can be understood.
 本発明に係る、実施例1-1~1-4におけるような、感温性ウレタン化触媒の発熱ピーク温度に比べて10~30℃低いような温度で塗布されるポリウレタン樹脂組成物を調製した場合には、調製されたポリウレタン樹脂組成物のポットライフが非常に長くなり、連続生産性に優れていることが分かる。一方、感温性ウレタン化触媒の発熱ピーク温度でポリウレタン樹脂組成物を調製した比較例1-1の場合には、調製されたポリウレタン樹脂組成物のポットライフが非常に短いものになり、連続生産性に乏しかった。そしてウレタン樹脂層を前記発熱ピーク温度以上の温度で熱処理する熱処理工程を入れることで、樹脂層形成速度を最適化し、生産性を向上させることができる。 A polyurethane resin composition to be applied at a temperature lower by 10 to 30 ° C. than the exothermic peak temperature of the temperature-sensitive urethanization catalyst as in Examples 1-1 to 1-4 according to the present invention was prepared. In this case, it can be seen that the pot life of the prepared polyurethane resin composition is very long and the continuous productivity is excellent. On the other hand, in the case of Comparative Example 1-1 in which the polyurethane resin composition was prepared at the exothermic peak temperature of the temperature-sensitive urethanization catalyst, the pot life of the prepared polyurethane resin composition was very short, and the continuous production It was scarce. Then, by adding a heat treatment step of heat-treating the urethane resin layer at a temperature equal to or higher than the exothermic peak temperature, the resin layer formation speed can be optimized and productivity can be improved.
 次に、実施形態2及び3に相当する実施例2-1~2-5について説明する。 Next, Examples 2-1 to 2-5 corresponding to Embodiments 2 and 3 will be described.
 [実施例2-1~2-5で用いた原材料]
 〈ウレタンプレポリマー〉
タスクフォース KMM-100LV(DIC(株)製の湿分硬化性ホットメルト型ウレタンプレポリマー、100℃における溶融粘度が2500mPa・s)
 〈鎖伸長剤〉
ブタンジオール(三菱化学(株)製)
 〈感温性ウレタン化触媒〉
DBUのオレイン酸塩(サンアプロ(株)製、U-CAT SA-106、発熱ピーク温度110℃)
 〈熱膨張性マイクロカプセル〉
マツモトマイクロスフェアー F-36(松本油脂製薬(株)製、外殻軟化温度80~90℃)
 〈顔料〉
ダイラック ブラック RHM-7944(DIC(株)製)
 〈複合繊維シート〉
平均繊度2デシテックスのレンコン型ナイロン極細繊維(比重:1.14)からなる絡合不織布とポリエーテル系の多孔質ポリウレタン(比重:1.2)12とを1:1の重量比率で複合化してなる、厚み約800μm、目付け250g/m2、密度0.315g/cm3、空隙率約73体積%の複合繊維シート。
 〈離型紙〉
 リンテック(株)製の離型紙 R-70N(厚み200μm)
[Raw materials used in Examples 2-1 to 2-5]
<Urethane prepolymer>
Task Force KMM-100LV (Moisture curable hot-melt urethane prepolymer manufactured by DIC Corporation, melt viscosity at 100 ° C. is 2500 mPa · s)
<Chain extender>
Butanediol (Mitsubishi Chemical Corporation)
<Temperature sensitive urethane catalyst>
DBU oleate (San Apro Co., Ltd., U-CAT SA-106, exothermic peak temperature 110 ° C)
<Thermal expandable microcapsule>
Matsumoto Microsphere F-36 (manufactured by Matsumoto Yushi Seiyaku Co., Ltd., outer shell softening temperature 80-90 ° C)
<Pigment>
Dirac black RHM-7944 (made by DIC Corporation)
<Composite fiber sheet>
An entangled nonwoven fabric composed of lotus root type nylon ultrafine fibers (specific gravity: 1.14) having an average fineness of 2 dtex and a polyether-based porous polyurethane (specific gravity: 1.2) 12 are compounded at a weight ratio of 1: 1. A composite fiber sheet having a thickness of about 800 μm, a basis weight of 250 g / m 2 , a density of 0.315 g / cm 3 , and a porosity of about 73% by volume.
<Release paper>
Release paper R-70N (thickness 200μm) manufactured by Lintec Corporation
 [実施例2-1]
 図4に示したような製造プロセスを用いてポリウレタン積層体を製造した。
[Example 2-1]
A polyurethane laminate was produced using a production process as shown in FIG.
 具体的には、はじめに、ミキシングヘッド(丸加化工機(株)製、MEG-HK-55S型)を用いて、架橋性ホットメルト型ウレタン樹脂120を調製した。具体的には、115℃に保温したウレタンプレポリマー100部(質量部、以下同様)を第1ノズル136aから加圧噴射により霧化させて混合室136cに供給し、一方、顔料15.7部、熱膨張性マイクロカプセル0.8部、感温性ウレタン化触媒0.25部、及び鎖伸長剤0.25部を50℃で混合した混合物を第2ノズル136bから加圧噴射して霧化させて、霧化された各成分を衝突させて混合した。なお、混合比率は、ウレタンプレポリマー100質量部に対して、前記混合物17質量部の割合で混合した。 Specifically, first, a crosslinkable hot-melt urethane resin 120 was prepared using a mixing head (manufactured by Maruka Chemical Co., Ltd., MEG-HK-55S type). Specifically, 100 parts of urethane prepolymer maintained at 115 ° C. (mass part, the same applies hereinafter) is atomized by pressure injection from the first nozzle 136a and supplied to the mixing chamber 136c, while 15.7 parts of pigment. A mixture of 0.8 parts of thermally expandable microcapsules, 0.25 parts of a temperature-sensitive urethanization catalyst, and 0.25 parts of a chain extender at 50 ° C. is sprayed from the second nozzle 136b under pressure and atomized. Each atomized component was allowed to collide and be mixed. In addition, the mixing ratio was mixed at a ratio of 17 parts by mass with respect to 100 parts by mass of the urethane prepolymer.
 次に、図略の離型紙送り出しリールからライン速度5m/分で送り出される離型紙121が、矢印方向に回転する送り出しロール141により送り出された後、巻き取りリール144により巻き取られて、離型紙121の連続的なラインが形成された。 Next, the release paper 121 delivered from the unillustrated release paper delivery reel at a line speed of 5 m / min is delivered by a delivery roll 141 that rotates in the direction of the arrow, and is then taken up by a take-up reel 144 and released. 121 continuous lines were formed.
 そして、連続的に送り出される離型紙121に向けて、混合室36c内で溶融混合された架橋性ホットメルト型ウレタン樹脂120を100℃に加熱された12m/分で回転するリバースロール139bとタッチロール139aとの間に形成されるクリアランスに向けて流下し、リバースロール139bにより離型紙121表面に280g/m2の塗布量になるように塗布することにより塗膜132を形成し、離型紙表面に塗膜132を形成してなる離型紙-塗膜積層体140を形成した。このとき塗膜132の厚みは約450μmであった。 Then, a reverse roll 139b and a touch roll rotating at 12 m / min heated to 100 ° C. for the crosslinkable hot-melt urethane resin 120 melted and mixed in the mixing chamber 36c toward the release paper 121 that is continuously fed out. flows down toward a clearance formed between the 139a, the coating film 132 was formed by coating so that the coating amount of 280 g / m 2 release paper 121 surface by reverse roll 139b, the release paper surface A release paper-coating laminate 140 formed with the coating 132 was formed. At this time, the thickness of the coating film 132 was about 450 μm.
 次に、感温性ウレタン化触媒124を活性化させてウレタンプレポリマーを部分架橋させるとともに、熱膨張性マイクロカプセル125の膨張を完了させるために、離型紙-塗膜積層体140を125℃の加熱装置142で90秒間処理した。 Next, in order to activate the temperature-sensitive urethanization catalyst 124 to partially crosslink the urethane prepolymer and complete the expansion of the thermally expandable microcapsule 125, the release paper-coating laminate 140 is heated to 125 ° C. It processed for 90 second with the heating apparatus 142. FIG.
 次に、離型紙-塗膜積層体140に形成された塗膜132の表面に向けて、送り出しリール138から複合繊維シート103を送り出し、2個のロールからなるプレスロールPRにより貼り合わせた。このとき、2個のロール間のクリアランス間隔は1410μmであった。 Next, the composite fiber sheet 103 was fed from the feed reel 138 toward the surface of the coating film 132 formed on the release paper-coating laminate 140, and bonded by a press roll PR composed of two rolls. At this time, the clearance interval between the two rolls was 1410 μm.
 このようにして得られた離型紙121で被覆された状態の離型紙-塗膜積層体140と複合繊維シート103との貼合体であるポリウレタン積層体前駆体143は、クーリングロール146を用いて強制冷却しされた後、巻き取りリール144により巻き取られた。そして、巻き取った状態で、温度40℃の熟成室で48時間熟成させた後、離型紙121を剥がすことにより黒色のポリウレタン積層体が得られた。 The polyurethane laminate precursor 143, which is a laminate of the release paper-coating laminate 140 and the composite fiber sheet 103 in a state covered with the release paper 121 thus obtained, is forced to use a cooling roll 146. After cooling, the film was taken up by a take-up reel 144. And in the wound state, after making it age | cure | ripen in the aging room | chamber temperature of 40 degreeC for 48 hours, the black polyurethane laminated body was obtained by peeling the release paper 121. FIG.
 このようにして得られたポリウレタン積層体の表面にカーボネート系無黄変系ウレタン(大日精化工業(株)製NES9950)を主成分とする厚み20μmの表皮層をウレタン系接着剤(大日精化工業(株)製ME8116)で接着することにより、コードバーン調の皮革様シート117が得られた。そして、皮革様シート117の断面を走査型電子顕微鏡(SEM)により観察した(図5参照)。 On the surface of the polyurethane laminate thus obtained, a skin layer having a thickness of 20 μm mainly composed of carbonate-based non-yellowing urethane (NES9950 manufactured by Dainichi Seika Kogyo Co., Ltd.) is applied as a urethane-based adhesive (Daiichi Seika). A cord-burn leather-like sheet 117 was obtained by bonding with ME8116 manufactured by Kogyo Co., Ltd. And the cross section of the leather-like sheet | seat 117 was observed with the scanning electron microscope (SEM) (refer FIG. 5).
 得られたSEM写真から、皮革様シート117には、表層から順に積層された、厚み約20μmの表皮層109、厚み約650μmのポリウレタン樹脂層114、及び厚み約800μmの複合繊維シート113から構成されており、ポリウレタン樹脂層114の下層が複合繊維シート113の上層の空隙116に侵入充填して厚み約300μmの混在層115が形成されていた。また、ポリウレタン樹脂層114には、平均直径が約180μmの均一な独立気孔が形成されていた。さらに、混在層115においては、多孔質ポリウレタンとポリウレタン樹脂層114とが非相溶の状態で存在していた。なお、上記各厚みは、得られた皮革様シート117の任意に選んだ10個の断面におけるSEM写真から測定された平均値である。このときの代表的な顕微鏡写真を図5に示す。 From the obtained SEM photograph, the leather-like sheet 117 is composed of a skin layer 109 having a thickness of about 20 μm, a polyurethane resin layer 114 having a thickness of about 650 μm, and a composite fiber sheet 113 having a thickness of about 800 μm, which are laminated in order from the surface layer. The lower layer of the polyurethane resin layer 114 entered and filled the upper space 116 of the composite fiber sheet 113 to form a mixed layer 115 having a thickness of about 300 μm. Further, uniform independent pores having an average diameter of about 180 μm were formed in the polyurethane resin layer 114. Furthermore, in the mixed layer 115, the porous polyurethane and the polyurethane resin layer 114 exist in an incompatible state. In addition, each said thickness is an average value measured from the SEM photograph in 10 cross sections arbitrarily chosen of the obtained leather-like sheet | seat 117. FIG. A typical photomicrograph at this time is shown in FIG.
 また、このようにして得られた皮革様シートを折り曲げたときの風合いを評価した。具体的には一辺200mmの正方形状に裁断した皮革様シートを半分に折り曲げたときに発生する折れシボを観察した。このとき、図7に示したような皮革の場合と同様の細かな皺が発生した。また、折り曲げて指で強く抑えることにより折り皺を付けた後、開いたときにも、折れ皺が全く残らず、平滑な面を維持するものであった。 Also, the texture when the leather-like sheet obtained in this way was folded was evaluated. Specifically, creases and creases generated when a leather-like sheet cut into a square shape with a side of 200 mm was folded in half were observed. At this time, fine wrinkles similar to the case of leather as shown in FIG. 7 occurred. In addition, even after opening the crease by bending and holding it with a finger strongly, no crease remains and a smooth surface is maintained.
 [実施例2-2]
 プレスロールPRの2個のロール間のクリアランス間隔を1410μmから1310μmに変えた以外は実施例2-1と同様にして皮革様シートを製造し評価した。そして、得られた皮革様シートの断面を走査型電子顕微鏡(SEM)により観察した。得られた皮革様シートには、表層から順に積層された、厚み約20μmの表皮層、厚み約650μmのポリウレタン樹脂層、及び厚み約800μmの複合繊維シートから構成されており、ポリウレタン樹脂層の下層が複合繊維シートの上層の空隙に侵入充填して厚み約400μmの混在層が形成されていた。また、このようにして得られた皮革様シートを折り曲げたときの風合いを評価したところ、図7に示したような細かな皺が発生した。また、折り曲げて指で強く抑えることにより折り皺を付けた後、開いたときにも、折れ皺が全く残らず、平滑な面を維持するものであった。
[Example 2-2]
A leather-like sheet was produced and evaluated in the same manner as in Example 2-1, except that the clearance interval between the two rolls of the press roll PR was changed from 1410 μm to 1310 μm. And the cross section of the obtained leather-like sheet | seat was observed with the scanning electron microscope (SEM). The obtained leather-like sheet is composed of a skin layer having a thickness of about 20 μm, a polyurethane resin layer having a thickness of about 650 μm, and a composite fiber sheet having a thickness of about 800 μm, which are laminated in order from the surface layer. However, a mixed layer having a thickness of about 400 μm was formed by invading and filling the voids in the upper layer of the composite fiber sheet. Further, when the texture of the leather-like sheet obtained as described above was evaluated, fine wrinkles as shown in FIG. 7 were generated. In addition, even after opening the crease by bending and holding it with a finger strongly, no crease remains and a smooth surface is maintained.
 [実施例2-3]
 プレスロールPRの2個のロール間のクリアランス間隔を1410μmから1450μmに変えた以外は実施例2-1と同様にして皮革様シートを製造し評価した。そして、得られた皮革様シートの断面を走査型電子顕微鏡(SEM)により観察した。得られた皮革様シートには、表層から順に積層された、厚み約20μmの表皮層、厚み約650μmのポリウレタン樹脂層、及び厚み約800μmの複合繊維シートから構成されており、ポリウレタン樹脂層の下層が複合繊維シートの上層の空隙に侵入充填して厚み約40μmの混在層が形成されていた。また、このようにして得られた皮革様シートを折り曲げたときの風合いを評価したところ、図7に示したような細かな皺が発生した。また、折り曲げて指で強く抑えることにより折り皺を付けた後、開いたときにも、折れ皺が残らず、平滑な面を維持するものであったが、風合いのバランスが実施例2-1の皮革様シート117に比べると若干劣るものであった。
[Example 2-3]
A leather-like sheet was produced and evaluated in the same manner as in Example 2-1, except that the clearance interval between the two rolls of the press roll PR was changed from 1410 μm to 1450 μm. And the cross section of the obtained leather-like sheet | seat was observed with the scanning electron microscope (SEM). The obtained leather-like sheet is composed of a skin layer having a thickness of about 20 μm, a polyurethane resin layer having a thickness of about 650 μm, and a composite fiber sheet having a thickness of about 800 μm, which are laminated in order from the surface layer. However, a mixed layer having a thickness of about 40 μm was formed by entering and filling the voids in the upper layer of the composite fiber sheet. Further, when the texture of the leather-like sheet obtained as described above was evaluated, fine wrinkles as shown in FIG. 7 were generated. Further, even when the crease was made by bending and holding it tightly with a finger, when it was opened, no crease remained and a smooth surface was maintained. The leather-like sheet 117 was slightly inferior.
 [実施例2-4]
 プレスロールPRの2個のロール間のクリアランス間隔を1410μmから1200μmに変えた以外は実施例2-1と同様にして皮革様シートを製造し評価した。そして、得られた皮革様シートの断面を走査型電子顕微鏡(SEM)により観察した。得られた皮革様シートには、表層から順に積層された、厚み約20μmの表皮層、厚み約650μmのポリウレタン樹脂層、及び厚み約800μmの複合繊維シートから構成されており、ポリウレタン樹脂層の下層が複合繊維シートの上層の空隙に侵入充填して厚み約600μmの混在層が形成されていた。また、このようにして得られた皮革様シートを折り曲げたときの風合いを評価したところ、図7に示したような細かな皺が発生した。また、折り曲げて指で強く抑えることにより折り皺を付けた後、開いたときにも、折れ皺が残らず、平滑な面を維持するものであったが、実施例2-1に比べると風合いの硬いものであった。
[Example 2-4]
A leather-like sheet was produced and evaluated in the same manner as in Example 2-1, except that the clearance interval between the two rolls of the press roll PR was changed from 1410 μm to 1200 μm. And the cross section of the obtained leather-like sheet | seat was observed with the scanning electron microscope (SEM). The obtained leather-like sheet is composed of a skin layer having a thickness of about 20 μm, a polyurethane resin layer having a thickness of about 650 μm, and a composite fiber sheet having a thickness of about 800 μm, which are laminated in order from the surface layer. However, a mixed layer having a thickness of about 600 μm was formed by invading and filling the voids in the upper layer of the composite fiber sheet. Further, when the texture of the leather-like sheet obtained as described above was evaluated, fine wrinkles as shown in FIG. 7 were generated. In addition, even after opening the crease by folding and restraining it with a finger, the crease was not left and the smooth surface was maintained. However, the texture was better than that of Example 2-1. It was hard.
 [実施例2-5]
離型紙121表面に、予め水分散型ポリウレタン樹脂 D-6065(大日精化製工業株式会社製)/増粘剤 D-890(大日精化製工業株式会社製)=100/2で配合した表皮用配合液を乾燥後の厚みが10μmになるように塗布し、120℃で2分乾燥を行って、離型紙表面に高分子弾性体からなる表皮層を形成した表皮層付き離型紙を準備した。そして、該表皮層付き離型紙上に架橋性ホットメルト型ウレタン樹脂120からなる層を形成する以外は、実施例2-1と同様にして多層ポリウレタン積層体を連続生産した。得られた多層ポリウレタン積層体は、実施例2-1の様に後で表皮層を形成することなく、無溶剤で連続して皮革様シートを生産することが可能であった。得られた皮革様シートの断面を観察したところ、表層から順に積層された、表皮層、ポリウレタン樹脂層、及び複合繊維シートから構成されており、ポリウレタン樹脂層の下層が複合繊維シートの上層の空隙に侵入充填して厚み約300μmの混在層が形成されていた。また、ポリウレタン樹脂層には、平均直径が約180μmの均一な独立気孔が形成されていた。さらに、混在層においては、多孔質ポリウレタンとポリウレタン樹脂層とが非相溶の状態で存在していた。また、折り曲げたときの風合い、折れシボ、折れ皺感および平滑性も実施例2-1と同様の評価であった。
[Example 2-5]
Epidermis previously blended on the surface of release paper 121 with water-dispersible polyurethane resin D-6065 (manufactured by Dainichi Seika Kogyo Co., Ltd.) / Thickener D-890 (manufactured by Dainichi Seika Kogyo Co., Ltd.) = 100/2 The liquid mixture for coating was applied so that the thickness after drying was 10 μm, and dried at 120 ° C. for 2 minutes to prepare a release paper with a skin layer in which a skin layer made of a polymer elastic body was formed on the surface of the release paper. . A multilayer polyurethane laminate was continuously produced in the same manner as in Example 2-1, except that a layer made of the crosslinkable hot-melt urethane resin 120 was formed on the release paper with the skin layer. The obtained multilayer polyurethane laminate was able to produce a leather-like sheet continuously without a solvent without forming a skin layer later as in Example 2-1. When the cross section of the obtained leather-like sheet was observed, it was composed of a skin layer, a polyurethane resin layer, and a composite fiber sheet laminated in order from the surface layer, and the lower layer of the polyurethane resin layer was a void in the upper layer of the composite fiber sheet As a result, a mixed layer having a thickness of about 300 μm was formed. In addition, uniform independent pores having an average diameter of about 180 μm were formed in the polyurethane resin layer. Furthermore, in the mixed layer, the porous polyurethane and the polyurethane resin layer exist in an incompatible state. Further, the texture, crease, crease feeling and smoothness when bent were the same evaluations as in Example 2-1.
 [比較例2-1]
 熱可塑性ポリウレタン樹脂(クラレ(株)製のクラミロンU3119-000)100部と黒色顔料3部とをドライブレンドした後、シリンダ温度230℃に設定したTダイを備えた押出機から熱可塑性ポリウレタン膜を押出し、その直後に、複合繊維シートの表面に圧着することによりポリウレタン樹脂層を製造した。なお、圧着は実施例2-1で用いたのと同様のクリアランス間隔を有するプレスロールPRを用いて行った。そして得られたポリウレタン樹脂層の表面に実施例2-1と同様にして表皮層を形成することにより皮革様シートを製造した。そして、実施例2-1と同様にして評価した。得られた皮革様シート118の断面のSEM写真を図6に示す。皮革様シート118には、表層から順に積層された、厚み約20μmの表皮層109、厚み約350μmのポリウレタン樹脂層111、及び厚み約800μmの複合繊維シート113から構成されていたが、実施例2-1~2-5のポリウレタン積層体に形成されていたような混在層は形成されていなかった。また、このようにして得られた皮革様シートを折り曲げたときの風合いを評価したところ、図8に示したような大きな皺が発生した。また、折り曲げて指で強く抑えることにより折り皺を付けたときには、開いたときに多数の細かい折れ皺が残った。
[Comparative Example 2-1]
After dry blending 100 parts of thermoplastic polyurethane resin (Kuraray Co., Ltd. Kuramylon U3119-000) and 3 parts of black pigment, a thermoplastic polyurethane film was removed from an extruder equipped with a T-die set at a cylinder temperature of 230 ° C. The polyurethane resin layer was manufactured by extruding and crimping | bonding to the surface of a composite fiber sheet immediately after that. The press bonding was performed using a press roll PR having the same clearance interval as that used in Example 2-1. A leather-like sheet was produced by forming a skin layer on the surface of the obtained polyurethane resin layer in the same manner as in Example 2-1. Evaluation was performed in the same manner as in Example 2-1. The SEM photograph of the cross section of the obtained leather-like sheet 118 is shown in FIG. The leather-like sheet 118 was composed of a skin layer 109 having a thickness of about 20 μm, a polyurethane resin layer 111 having a thickness of about 350 μm, and a composite fiber sheet 113 having a thickness of about 800 μm, which were laminated in order from the surface layer. The mixed layer as formed in the polyurethane laminate of -1 to 2-5 was not formed. Further, when the texture of the leather-like sheet obtained as described above was evaluated, large wrinkles as shown in FIG. 8 were generated. In addition, when the crease was attached by bending and holding it with a finger, many fine creases remained when opened.
 [比較例2-2]
 黒色顔料を含む溶剤型ポリウレタン液(固形分15質量%)を前記離型紙上に塗布した後、乾燥することを3回繰り返すことにより厚み300μmのポリウレタン樹脂層を形成した。そして、複合繊維シートの表面に溶剤系2液型ポリウレタン接着剤を用いて、得られたポリウレタン樹脂層を貼り合わせた。そして、熟成することによりポリウレタン積層体を得た。得られたポリウレタン積層体のポリウレタン樹脂層は複合繊維シートに10μm程度の長さでわずかに侵入しているように伸びている部分が見られるものの、進入部分は厚みを持ったような連続した層ではなかった。また、複合繊維シートの空隙に充填されたものではなかった。さらに、進入部分における複合繊維シートに含有される多孔質ポリウレタンの多孔構造は溶剤型ポリウレタン液中の溶剤により溶解されて破壊され、ポリウレタン樹脂層を構成するポリウレタンと多孔質ポリウレタンは互いに界面を形成していない相溶状態であった。
[Comparative Example 2-2]
After applying a solvent-type polyurethane liquid containing a black pigment (solid content: 15% by mass) onto the release paper, drying was repeated three times to form a polyurethane resin layer having a thickness of 300 μm. Then, the obtained polyurethane resin layer was bonded to the surface of the composite fiber sheet using a solvent-based two-component polyurethane adhesive. And the polyurethane laminated body was obtained by ageing | curing | ripening. The polyurethane resin layer of the obtained polyurethane laminate is a continuous layer having a thickness of about 10 μm and extending so as to slightly penetrate into the composite fiber sheet, but the entry portion has a thickness. It wasn't. Moreover, it was not what was filled in the space | gap of the composite fiber sheet. Furthermore, the porous structure of the porous polyurethane contained in the composite fiber sheet in the entry portion is dissolved and destroyed by the solvent in the solvent-type polyurethane liquid, and the polyurethane and the porous polyurethane constituting the polyurethane resin layer form an interface with each other. It was not compatible.
 [比較例2-3]
 比較例2-2の溶剤系ポリウレタン溶液の代わりに水系ポリウレタン分散液(固形分濃度45%)を離型紙上に比較例2-2とほぼ同様の厚みになるように塗布乾燥を繰り返すことにより、厚み350μmのポリウレタン樹脂層を形成した。そして、得られたポリウレタン樹脂層を水系ポリウレタン接着剤を介して複合繊維シート3に貼り合せた。そして、熟成することによりポリウレタン積層体を得た。得られたポリウレタン積層体のポリウレタン樹脂層は比較例2-2と同様に複合繊維シートの表面から10μm程度の深さでわずかに侵入しているように伸びている部分が見られたが、複合繊維シートの空隙に充填されているものではなく、進入部分は厚みを有するような連続した層ではなかった。
[Comparative Example 2-3]
By repeating the coating and drying of the aqueous polyurethane dispersion (solid content concentration 45%) instead of the solvent-based polyurethane solution of Comparative Example 2-2 on the release paper so as to have almost the same thickness as Comparative Example 2-2, A polyurethane resin layer having a thickness of 350 μm was formed. And the obtained polyurethane resin layer was bonded together to the composite fiber sheet 3 through the water-based polyurethane adhesive. And the polyurethane laminated body was obtained by ageing | curing | ripening. The polyurethane resin layer of the obtained polyurethane laminate had a portion extending so as to slightly penetrate from the surface of the composite fiber sheet at a depth of about 10 μm, as in Comparative Example 2-2. The gaps in the fiber sheet were not filled, and the entry portion was not a continuous layer having a thickness.
 以上の実施例2-1~2-5及び比較例2-1~2-3の結果から、以下のことが分かる。 From the results of Examples 2-1 to 2-5 and Comparative Examples 2-1 to 2-3 described above, the following can be understood.
 本実施形態に係る、実施例2-1~2-5で得られたポリウレタン積層体を主体とする皮革様シートを折り曲げたときには、いずれも皮革に似た細かい折れシボが発生したとともに、折れ曲げて型をつけた後に開いたときに折れ皺が残らなかった。これは、複合繊維シートの上層とポリウレタン樹脂層の下層とが一体化したある程度の厚みをもった混在層が形成されているために、複合繊維シートとポリウレタン樹脂層とが高い密着性を持って充実感のある積層構造を形成しているためであると思われる。 When the leather-like sheets mainly composed of the polyurethane laminates obtained in Examples 2-1 to 2-5 according to the present embodiment were folded, fine creases and wrinkles similar to leather were generated, and the folds were bent. There was no crease when it was opened after shaping. This is because the composite fiber sheet and the polyurethane resin layer have high adhesion because a mixed layer having a certain thickness is formed by integrating the upper layer of the composite fiber sheet and the lower layer of the polyurethane resin layer. This is probably due to the formation of a solid laminated structure.
 一方、Tダイを備えた押出機から熱可塑性ポリウレタン膜を押出し、その熱可塑性ポリウレタン膜を複合繊維シートに圧着させて得られた比較例2-1で得られたポリウレタン積層体を主体とする皮革様シートは、熱可塑性ポリウレタン膜が複合繊維シートの表面に接触したときにその表面が急激に増粘する、または固化するために、ある程度の高い圧力で圧着させたとしても複合繊維シートの空隙に熱可塑性ポリウレタン膜は侵入せず、実施例のポリウレタン積層体で形成されたような混在層は形成されなかった。また、比較例2-2及び2-3で得られたポリウレタン積層体においても、実施例のポリウレタン積層体で形成されたような混在層は形成されなかった。そのために、比較例2-1~2-3においては、複合繊維シートとポリウレタン樹脂層との高い密着性や一体感が得られず、折り曲げたときに皮革に似た、充実感のある風合いが得られなかった。 On the other hand, leather mainly composed of the polyurethane laminate obtained in Comparative Example 2-1 obtained by extruding a thermoplastic polyurethane film from an extruder equipped with a T-die and pressing the thermoplastic polyurethane film on a composite fiber sheet When the thermoplastic polyurethane membrane comes into contact with the surface of the composite fiber sheet, the surface suddenly thickens or solidifies. The thermoplastic polyurethane film did not penetrate, and a mixed layer formed by the polyurethane laminate of the example was not formed. Further, in the polyurethane laminates obtained in Comparative Examples 2-2 and 2-3, the mixed layer as formed by the polyurethane laminate of the example was not formed. For this reason, in Comparative Examples 2-1 to 2-3, high adhesion and a sense of unity between the composite fiber sheet and the polyurethane resin layer are not obtained, and a solid texture similar to leather when folded is obtained. It was not obtained.
 以上説明されたように、本発明の一局面は、常温で半固体または固体であるウレタンプレポリマー(A)と鎖伸長剤(B)と示差走査熱量測定により所定の発熱ピーク温度を示す感温性ウレタン化触媒(C)とを前記発熱ピーク温度に対して10~30℃低い範囲の温度で加熱溶融混合することによりウレタン樹脂組成物を形成する溶融混合工程と、前記ウレタン樹脂組成物を用いて離型紙や繊維基材のようなシート表面にウレタン樹脂層を形成する樹脂層形成工程と、前記ウレタン樹脂層を前記発熱ピーク温度以上の温度で熱処理する熱処理工程と、を備えるポリウレタン積層体の製造方法である。 As described above, one aspect of the present invention is a temperature sensitivity that shows a predetermined exothermic peak temperature by differential scanning calorimetry with a urethane prepolymer (A) that is semi-solid or solid at room temperature and a chain extender (B). A melt-mixing step of forming a urethane resin composition by heat-melting and mixing the urethanizing catalyst (C) at a temperature in the range of 10 to 30 ° C. lower than the exothermic peak temperature, and using the urethane resin composition A polyurethane layered product comprising: a resin layer forming step of forming a urethane resin layer on a sheet surface such as a release paper and a fiber substrate; and a heat treatment step of heat-treating the urethane resin layer at a temperature equal to or higher than the exothermic peak temperature. It is a manufacturing method.
 このような製造方法によれば、感温性ウレタン化触媒(C)が活性化する発熱ピーク温度よりも10~30℃低い範囲の温度でウレタンプレポリマー(A)と鎖伸長剤(B)と感温性ウレタン化触媒(C)とを加熱溶融混合してウレタン樹脂組成物を調製するために、塗布に供されるウレタン樹脂組成物の架橋反応の進行が抑制される。そのために塗布に供されるウレタン樹脂組成物のポットライフが長くなる。そして、基材表面に形成されたウレタン樹脂層は後に、感温性ウレタン化触媒(C)が活性化する発熱ピーク温度よりも高い温度で熱処理されることにより、速やかに架橋され、それにより生産性が向上する。 According to such a production method, the urethane prepolymer (A), the chain extender (B), and the chain extender (B) are at a temperature in the range of 10 to 30 ° C. lower than the exothermic peak temperature at which the temperature-sensitive urethanization catalyst (C) is activated. In order to prepare a urethane resin composition by heat-melting and mixing with the temperature-sensitive urethanization catalyst (C), the progress of the crosslinking reaction of the urethane resin composition to be applied is suppressed. Therefore, the pot life of the urethane resin composition used for application is extended. The urethane resin layer formed on the surface of the base material is later heat-treated at a temperature higher than the exothermic peak temperature at which the temperature-sensitive urethanization catalyst (C) is activated, thereby quickly crosslinking and producing Improves.
 また、前記感温性ウレタン化触媒が1,8-ジアザビシクロ(5,4,0)-ウンデセン-7の有機酸塩である場合には、示差走査熱量測定による所定の発熱ピーク温度がシャープになることにより架橋反応の制御が容易になる点から好ましい。 When the temperature-sensitive urethanization catalyst is an organic acid salt of 1,8-diazabicyclo (5,4,0) -undecene-7, the predetermined exothermic peak temperature by differential scanning calorimetry becomes sharp. This is preferable from the viewpoint of easy control of the crosslinking reaction.
 また、前記溶融混合工程において、熱膨張性マイクロカプセルをウレタン樹脂組成物中にさらに混合し、前記熱膨張性マイクロカプセルが、前記熱処理工程において2倍以上の膨張倍率で膨張するものであることが好ましい。このような熱膨張性マイクロカプセルをウレタン樹脂組成物中に混合することにより、均一な独立気泡を有するポリウレタン層を形成することができる。 Further, in the melt mixing step, the heat-expandable microcapsules are further mixed in the urethane resin composition, and the heat-expandable microcapsules are expanded at an expansion ratio of 2 times or more in the heat treatment step. preferable. By mixing such thermally expandable microcapsules in the urethane resin composition, a polyurethane layer having uniform closed cells can be formed.
 また、前記溶融混合工程が、ミキシングヘッドの第1ノズルから加圧噴射されることにより霧化された加熱溶融状態の前記ウレタンプレポリマー(A)と、第2ノズルから加圧噴射されることにより霧化された前記鎖伸長剤(B)と感温性ウレタン化触媒(C)とを含む混合物とを衝突させることにより、前記発熱ピーク温度に対して10~30℃低い範囲の温度で加熱溶融混合する工程であることが好ましい。このような方法によれば、より均一な混合が可能になる。 In addition, the melt mixing step is performed by pressure-injecting the urethane prepolymer (A) in a heat-melted state atomized by pressure-injecting from the first nozzle of the mixing head and the second nozzle. By melting the atomized mixture containing the chain extender (B) and the temperature-sensitive urethanization catalyst (C), the mixture is heated and melted at a temperature in the range of 10 to 30 ° C. lower than the exothermic peak temperature. A mixing step is preferred. According to such a method, more uniform mixing is possible.
 また、本発明のポリウレタン積層体は、上記何れかの製造方法により得られたポリウレタン積層体であることが好ましい。 Further, the polyurethane laminate of the present invention is preferably a polyurethane laminate obtained by any one of the above production methods.
 また、本発明の他の一局面は、離型紙表面に溶融状態の架橋性ホットメルト型ウレタン樹脂を塗布することにより離型紙-塗膜積層体を形成する塗膜形成工程と、架橋性ホットメルト型ウレタン樹脂を部分架橋させる熱処理工程と、繊維シートと高分子弾性体とが含浸一体化された、表層に多数の空隙を有する複合繊維シートの該空隙に、離型紙-塗膜積層体の塗膜の一部分が侵入するような圧力で、複合繊維シートの表面に塗膜を積層するラミネート工程と、架橋性ホットメルト型ウレタン樹脂を冷却固化する冷却工程と、を備えるポリウレタン積層体の製造方法である。 Another aspect of the present invention is a coating film forming step of forming a release paper-coating laminate by applying a molten crosslinkable hot melt urethane resin to the surface of the release paper, and a crosslinkable hot melt. The release paper-coating laminate is applied to the voids of the composite fiber sheet having a large number of voids in the surface layer, in which the fiber sheet and the polymer elastic body are impregnated and integrated, and the heat treatment step for partially crosslinking the mold urethane resin. A method for producing a polyurethane laminate comprising a laminating step of laminating a coating film on the surface of a composite fiber sheet at a pressure at which a part of the membrane enters, and a cooling step of cooling and solidifying a crosslinkable hot-melt urethane resin. is there.
 このような製造方法によれば、上述したような混在層を有するポリウレタン積層体を容易に製造することができる。 According to such a production method, the polyurethane laminate having the mixed layer as described above can be easily produced.
 また、塗膜形成工程は、100℃における溶融粘度が10000mPa・sec以下のホットメルト型ウレタンプレポリマー(A)と鎖伸長剤(B)と示差走査熱量測定により所定の発熱ピーク温度を示す感温性ウレタン化触媒(C)とを発熱ピーク温度に対して10~30℃低い範囲の温度で加熱溶融混合することにより架橋性ホットメルト型ウレタン樹脂を形成する溶融混合工程と、離型紙表面に溶融状態の架橋性ホットメルト型ウレタン樹脂を塗布することにより離型紙-塗膜積層体を形成する塗膜形成工程とを備え、熱処理工程が、離型紙-塗膜積層体を前記発熱ピーク温度以上の温度で熱処理することにより塗膜を部分架橋させる工程であることが好ましい。 In addition, the coating film forming step is a temperature sensitivity which shows a predetermined exothermic peak temperature by differential scanning calorimetry with a hot melt urethane prepolymer (A) having a melt viscosity at 100 ° C. of 10,000 mPa · sec or less and a chain extender (B). Melting and mixing step of forming a crosslinkable hot-melt urethane resin by heat melting and mixing with the heat-resistant urethanization catalyst (C) at a temperature in the range of 10-30 ° C. lower than the exothermic peak temperature, and melting on the release paper surface And a coating film forming step of forming a release paper-coating laminate by applying a crosslinkable hot-melt urethane resin in a state, wherein the heat treatment step makes the release paper-coating laminate above the exothermic peak temperature. It is preferably a step of partially crosslinking the coating film by heat treatment at a temperature.
 このような製造方法によれば、感温性ウレタン化触媒(C)が活性化する発熱ピーク温度よりも10~30℃低い範囲の温度でウレタンプレポリマー(A)と鎖伸長剤(B)と感温性ウレタン化触媒(C)とを加熱溶融混合して架橋性ホットメルト型ウレタン樹脂を調製するために、塗布に供される架橋性ホットメルト型ウレタン樹脂の架橋反応の進行が抑制される。そのために塗布に要求される粘度が維持される。そして、離型紙表面に形成された塗膜は、感温性ウレタン化触媒(C)が活性化する発熱ピーク温度よりも高い温度で熱処理されることにより、塗膜を部分架橋させて粘度が調整される。そして、適度な粘度に調整された塗膜をプレスすることにより、複合繊維シートの表層部の空隙に侵入する塗膜の量を容易に調整することができる。 According to such a production method, the urethane prepolymer (A), the chain extender (B), and the chain extender (B) are at a temperature in the range of 10 to 30 ° C. lower than the exothermic peak temperature at which the temperature-sensitive urethanization catalyst (C) is activated. In order to prepare a crosslinkable hot-melt urethane resin by heat-melting and mixing with the temperature-sensitive urethanization catalyst (C), the progress of the crosslinking reaction of the crosslinkable hot-melt urethane resin used for coating is suppressed. . Therefore, the viscosity required for application is maintained. The coating film formed on the release paper surface is heat-treated at a temperature higher than the exothermic peak temperature at which the temperature-sensitive urethanization catalyst (C) is activated, so that the coating film is partially crosslinked to adjust the viscosity. Is done. And the quantity of the coating film which penetrate | invades into the space | gap of the surface layer part of a composite fiber sheet can be easily adjusted by pressing the coating film adjusted to moderate viscosity.
 感温性ウレタン化触媒としては、例えば、1,8-ジアザビシクロ(5,4,0)-ウンデセン-7の有機酸塩等が好ましく用いられる。 As the temperature-sensitive urethanization catalyst, for example, an organic acid salt of 1,8-diazabicyclo (5,4,0) -undecene-7 is preferably used.
 また、溶融混合工程においては、熱膨張性マイクロカプセルを架橋性ホットメルト型ウレタン樹脂中にさらに混合し、熱膨張性マイクロカプセルが、溶融混合工程及び/または熱処理工程において2倍以上の膨張倍率で膨張するものであることが好ましい。このような熱膨張性マイクロカプセルを架橋性ホットメルト型ウレタン樹脂中に混合することにより、均一な独立気泡を有するポリウレタン樹脂層を形成することができる。 In the melt mixing step, the heat-expandable microcapsules are further mixed in the crosslinkable hot-melt urethane resin so that the heat-expandable microcapsules have an expansion ratio of 2 times or more in the melt-mixing step and / or heat treatment step. It is preferable that it expand | swells. A polyurethane resin layer having uniform closed cells can be formed by mixing such thermally expandable microcapsules in a crosslinkable hot melt urethane resin.
 また、溶融混合工程が、ミキシングヘッドの第1ノズルから加圧噴射されることにより霧化された加熱溶融状態のホットメルト型ウレタンプレポリマー(A)と、第2ノズルから加圧噴射されることにより霧化された鎖伸長剤(B)及び感温性ウレタン化触媒(C)を含む混合物とを衝突させることにより、発熱ピーク温度に対して10~30℃低い範囲の温度で加熱溶融混合する工程であることが好ましい。このような方法によれば、より均一な混合が可能になる。 Also, the melt mixing step is performed by pressure injection from the first nozzle of the mixing head and the hot melt urethane prepolymer (A) in a heated and melted state atomized by pressure injection from the first nozzle of the mixing head. The mixture containing the chain extender (B) and the temperature-sensitive urethanization catalyst (C) atomized by the above is collided with heat to melt and mix at a temperature in the range of 10-30 ° C. lower than the exothermic peak temperature. It is preferable that it is a process. According to such a method, more uniform mixing is possible.
 また、本発明の更に他の一局面は、繊維シートと高分子弾性体とが含浸一体化された、表層に多数の空隙を有する複合繊維シートと、前記複合繊維シートに積層されたポリウレタン樹脂層との積層体であり、前記空隙に前記ポリウレタン樹脂層の一部分が侵入することにより、前記ポリウレタン樹脂層の一部分と前記複合繊維シートの表層とが非相溶の状態で混在する、10μm以上、好ましくは30μm以上の厚みを有する混在層を有するポリウレタン積層体である。 Still another aspect of the present invention is a composite fiber sheet having a large number of voids in a surface layer, in which a fiber sheet and a polymer elastic body are impregnated and integrated, and a polyurethane resin layer laminated on the composite fiber sheet 10 μm or more, preferably a part of the polyurethane resin layer and a surface layer of the composite fiber sheet are mixed in an incompatible state when a part of the polyurethane resin layer enters the gap. Is a polyurethane laminate having a mixed layer having a thickness of 30 μm or more.
 このようなポリウレタン積層体によれば、複合繊維シートとポリウレタン樹脂層との界面を、従来の方法により得られたポリウレタン積層体のような2次元的なものではなく、図3に示すように、ポリウレタン樹脂層を構成するポリウレタンを複合繊維シートの厚み方向にランダムに深く浸透させて充分な厚みを有する3次元的に形成された混在層105として存在させることができる。また、このような混在層はポリウレタン樹脂層の一部分が複合繊維シートの空隙に侵入し、その空隙を充填するように形成されているために、ポリウレタン樹脂層は複合繊維シートにより高いアンカー効果で支持される。さらに、ポリウレタン樹脂層が複合繊維シートに侵入することにより、ポリウレタン積層体の表層から深い部分に、混在層の底面が位置する(例えば、図3の底面107)。これにより従来から問題となっていたポリウレタン樹脂層と複合繊維シートとの界面における不整合の影響がポリウレタン積層体の表層に表出しにくくなる。ポリウレタン積層体に、このような混在層を設けて複合繊維シートとポリウレタン樹脂層との密着性を向上させることにより、皮革に似た充実感のある風合いと、折り曲げたときの折れ皺感の良好で、折り曲げ後においては、折れ皺が残り難いポリウレタン積層体が得られる。また、混在層においては、高分子弾性体とポリウレタン樹脂層とが実質的に非相溶の状態で存在している。ここで、非相溶の状態とは複合繊維シートを構成する高分子弾性体とポリウレタン樹脂層を構成するポリウレタン樹脂とが互いに溶け合って実質的に混ざり合わない状態であることを意味する。なお、高分子弾性体とポリウレタン樹脂層は密着又は架橋していても良く、高分子弾性体の空隙に単に充填されていてもよく、あるいは高分子弾性体を被覆するように存在していてもよい。これに対して、複合繊維シートの表面に溶剤型ウレタン接着剤を塗布した場合には、溶剤により複合繊維シート中の高分子弾性体が溶解して、塗布されたポリウレタンと複合繊維シート中の高分子弾性体が混和して相溶状態になりやすい。そして、相溶状態となった場合には、複合繊維シート中の高分子弾性体が特に多孔質状態の場合に、多孔質状態が崩れ、風合いや折れ皺感に劣る傾向がある。 According to such a polyurethane laminate, the interface between the composite fiber sheet and the polyurethane resin layer is not two-dimensional like the polyurethane laminate obtained by the conventional method, but as shown in FIG. The polyurethane constituting the polyurethane resin layer can permeate deeply and randomly in the thickness direction of the composite fiber sheet, and can exist as a mixed layer 105 formed three-dimensionally having a sufficient thickness. In addition, since such a mixed layer is formed so that a part of the polyurethane resin layer penetrates into and fills the voids of the composite fiber sheet, the polyurethane resin layer is supported by the composite fiber sheet with a high anchor effect. Is done. Furthermore, when the polyurethane resin layer enters the composite fiber sheet, the bottom surface of the mixed layer is located in a deep portion from the surface layer of the polyurethane laminate (for example, the bottom surface 107 in FIG. 3). This makes it difficult for the influence of mismatch at the interface between the polyurethane resin layer and the composite fiber sheet, which has been a problem in the past, to appear on the surface layer of the polyurethane laminate. By providing such a mixed layer on the polyurethane laminate to improve the adhesion between the composite fiber sheet and the polyurethane resin layer, it has a solid texture similar to leather and a good feeling of folding when folded. Thus, after folding, a polyurethane laminate in which no creases remain is obtained. In the mixed layer, the polymer elastic body and the polyurethane resin layer exist in a substantially incompatible state. Here, the incompatible state means a state in which the polymer elastic body constituting the composite fiber sheet and the polyurethane resin constituting the polyurethane resin layer are mutually melted and are not substantially mixed. The polymer elastic body and the polyurethane resin layer may be in close contact or cross-linked, may be simply filled in the voids of the polymer elastic body, or may exist so as to cover the polymer elastic body. Good. On the other hand, when a solvent-type urethane adhesive is applied to the surface of the composite fiber sheet, the polymer elastic body in the composite fiber sheet is dissolved by the solvent, so that the applied polyurethane and the high level in the composite fiber sheet are dissolved. Molecular elastic bodies are easily mixed and become compatible. And when it will be in a compatible state, when the polymeric elastic body in a composite fiber sheet is a porous state especially, a porous state collapse | crumbles and there exists a tendency for it to be inferior to a feeling and a crease feeling.
 また、ポリウレタン樹脂層の総厚み中に占める、混在層の厚み割合は10~80%であることが好ましい。このようにポリウレタン樹脂層の総厚みに対する厚み割合が比較的高い混在層が形成されている場合には、ポリウレタン樹脂層と複合繊維シートとの一体感がより高くなる。なお、ポリウレタン樹脂層の総厚みは、図3を参照すれば、ポリウレタン積層体の厚み方向に平行な断面を走査型電子顕微鏡で観察した場合において、ポリウレタン樹脂層104の表面から、ポリウレタン樹脂層104が複合繊維シート103内部に一番深く進入した箇所までの厚みであり、混在層の厚みは、複合繊維シート103の表面から、ポリウレタン樹脂層104が複合繊維シート103内部に一番深く進入した箇所までの厚みである。 Further, the thickness ratio of the mixed layer in the total thickness of the polyurethane resin layer is preferably 10 to 80%. Thus, when the mixed layer whose thickness ratio with respect to the total thickness of a polyurethane resin layer is comparatively high is formed, the unity feeling of a polyurethane resin layer and a composite fiber sheet becomes higher. Note that the total thickness of the polyurethane resin layer can be determined by referring to FIG. 3 from the surface of the polyurethane resin layer 104 when the cross section parallel to the thickness direction of the polyurethane laminate is observed with a scanning electron microscope. Is the thickness of the composite fiber sheet 103 up to the deepest part of the composite fiber sheet 103, and the thickness of the mixed layer is the part of the composite fiber sheet 103 where the polyurethane resin layer 104 enters the composite fiber sheet 103 deepest. The thickness is up to.
 また、ポリウレタン樹脂層は架橋性ホットメルト型ウレタン樹脂により形成された層であることが、混在層の進入及び充填性に優れ、また、複合繊維シートを構成する高分子弾性体との非相溶状態を得やすい点から好ましい。 In addition, the polyurethane resin layer is a layer formed of a crosslinkable hot-melt urethane resin, so that the mixed layer has excellent penetration and filling properties and is incompatible with the polymer elastic body constituting the composite fiber sheet. It is preferable from the viewpoint of easily obtaining the state.
 また、ポリウレタン樹脂層及び高分子弾性体の少なくとも一方が多孔質であることが、柔軟な風合いや天然皮革様の折れ皺感と釣り込み時のアラビの発生を抑制できる点から好ましい。 In addition, it is preferable that at least one of the polyurethane resin layer and the polymer elastic body is porous in terms of being able to suppress a soft texture, a natural leather-like crease feeling, and generation of arabi during fishing.
 また、複合繊維シートの空隙率が30~85体積%の範囲である場合には、得られるポリウレタン積層体の折れシボがより細かくなる点、風合いバランスに優れる点、剥離強力に優れる点から好ましい。 Further, when the porosity of the composite fiber sheet is in the range of 30 to 85% by volume, it is preferable from the viewpoint that the resulting polyurethane laminate has finer wrinkles, excellent texture balance, and excellent peel strength.
 本発明のポリウレタン積層体の製造方法によれば、基材表面にポリウレタン層を無溶剤で形成するに際し、塗布に供されるウレタン樹脂組成物のポットライフを長時間維持することにより連続して安定的に処理することができ、また、塗布された未架橋のポリウレタン層を熱処理により速やかに架橋させることによりポリウレタン積層体の生産性が向上する。 According to the method for producing a polyurethane laminate of the present invention, when a polyurethane layer is formed on a substrate surface without a solvent, the polyurethane layer is continuously stabilized by maintaining the pot life of the urethane resin composition to be applied for a long time. In addition, the productivity of the polyurethane laminate is improved by rapidly crosslinking the applied uncrosslinked polyurethane layer by heat treatment.
 また、本発明のポリウレタン積層体の製造方法によれば、折り曲げたときに皮革に似た風合いを示すポリウレタン積層体が得られる。特に、皮革に似た細かい折れシボが発生するとともに、折れ曲げた後の折れ皺が残りにくいポリウレタン積層体が得られる。 Moreover, according to the method for producing a polyurethane laminate of the present invention, a polyurethane laminate that exhibits a texture similar to leather when folded can be obtained. In particular, it is possible to obtain a polyurethane laminate in which fine creases similar to leather are generated, and creases after folding are less likely to remain.

Claims (22)

  1.  常温で半固体または固体であるウレタンプレポリマー(A)と鎖伸長剤(B)と示差走査熱量測定により所定の発熱ピーク温度を示す感温性ウレタン化触媒(C)とを前記発熱ピーク温度に対して10~30℃低い範囲の温度で加熱溶融混合することによりウレタン樹脂組成物を形成する溶融混合工程と、前記ウレタン樹脂組成物を用いてシート表面にウレタン樹脂層を形成する樹脂層形成工程と、前記ウレタン樹脂層を前記発熱ピーク温度以上の温度で熱処理する熱処理工程と、を備えることを特徴とするポリウレタン積層体の製造方法。 A urethane prepolymer (A) that is semi-solid or solid at room temperature, a chain extender (B), and a temperature-sensitive urethanization catalyst (C) that exhibits a predetermined exothermic peak temperature by differential scanning calorimetry are used as the exothermic peak temperature. On the other hand, a melt mixing step of forming a urethane resin composition by heating and mixing at a temperature in the range of 10-30 ° C. and a resin layer forming step of forming a urethane resin layer on the sheet surface using the urethane resin composition And a heat treatment step of heat-treating the urethane resin layer at a temperature equal to or higher than the exothermic peak temperature.
  2.  前記シートが離型紙である請求項1に記載のポリウレタン積層体の製造方法。 The method for producing a polyurethane laminate according to claim 1, wherein the sheet is a release paper.
  3. 前記シートが、離型紙と該離型紙の表面に予め形成された高分子弾性体層とからなるシートであって、前記高分子弾性体層の表面にウレタン樹脂層を形成する請求項1に記載のポリウレタン積層体の製造方法。 The said sheet | seat is a sheet | seat which consists of a release paper and the polymeric elastic body layer previously formed in the surface of this release paper, Comprising: The urethane resin layer is formed in the surface of the said polymeric elastic body layer. Process for producing a polyurethane laminate.
  4.  前記シートが繊維基材である請求項1に記載のポリウレタン積層体の製造方法。 The method for producing a polyurethane laminate according to claim 1, wherein the sheet is a fiber base material.
  5.  前記感温性ウレタン化触媒が1,8-ジアザビシクロ(5,4,0)-ウンデセン-7の有機酸塩である請求項1~4の何れか1項に記載のポリウレタン積層体の製造方法。 The method for producing a polyurethane laminate according to any one of claims 1 to 4, wherein the temperature-sensitive urethanization catalyst is an organic acid salt of 1,8-diazabicyclo (5,4,0) -undecene-7.
  6.  前記溶融混合工程において、熱膨張性マイクロカプセルをウレタン樹脂組成物中にさらに混合し、
     前記熱膨張性マイクロカプセルが、前記熱処理工程において2倍以上の膨張倍率で膨張するものである請求項1~5の何れか1項に記載のポリウレタン積層体の製造方法。
    In the melt mixing step, thermally expandable microcapsules are further mixed into the urethane resin composition,
    The method for producing a polyurethane laminate according to any one of claims 1 to 5, wherein the thermally expandable microcapsule expands at an expansion ratio of 2 or more in the heat treatment step.
  7.  前記溶融混合工程が、ミキシングヘッドの第1ノズルから加圧噴射されることにより霧化された加熱溶融状態の前記ウレタンプレポリマー(A)と、第2ノズルから加圧噴射されることにより霧化された前記鎖伸長剤(B)と感温性ウレタン化触媒(C)とを含む混合物とを衝突させることにより、前記発熱ピーク温度に対して10~30℃低い範囲の温度で加熱溶融混合する工程である請求項1~6の何れか1項に記載のポリウレタン積層体の製造方法。 In the melt mixing step, the urethane prepolymer (A) in a heated and melted state atomized by pressure injection from the first nozzle of the mixing head and the atomization by pressure injection from the second nozzle. The mixture containing the chain extender (B) and the temperature-sensitive urethanization catalyst (C) is made to collide with heat to melt and mix at a temperature in the range of 10 to 30 ° C. lower than the exothermic peak temperature. The method for producing a polyurethane laminate according to any one of claims 1 to 6, which is a step.
  8.  請求項1~7の何れか1項に記載された製造方法により得られたポリウレタン積層体。 A polyurethane laminate obtained by the production method according to any one of claims 1 to 7.
  9.  前記請求項1に記載のシートが離型紙であり、得られた前記ウレタン樹脂層の表面にさらに繊維基材に貼り合せる工程を含むポリウレタン積層体の製造方法。 The manufacturing method of the polyurethane laminated body including the process which the sheet | seat of the said Claim 1 is a release paper, and it is further bonded to the fiber base material on the surface of the obtained said urethane resin layer.
  10.  請求項1に記載のポリウレタン積層体の製造方法において、
     離型紙表面に溶融状態の架橋性ホットメルト型ウレタン樹脂を塗布することにより離型紙-塗膜積層体を形成する塗膜形成工程と、
     前記架橋性ホットメルト型ウレタン樹脂を部分架橋させる熱処理工程と、
     繊維シートと高分子弾性体とが含浸一体化された、表層に多数の空隙を有する複合繊維シートの該空隙に、前記離型紙-塗膜積層体の塗膜の一部分が侵入するような圧力で、前記複合繊維シートの表面に前記塗膜を積層するラミネート工程と、
     前記架橋性ホットメルト型ウレタン樹脂を冷却固化する冷却工程と、を備えるポリウレタン積層体の製造方法。
    In the manufacturing method of the polyurethane laminated body of Claim 1,
    A coating film forming step of forming a release paper-coating laminate by applying a crosslinkable hot-melt urethane resin in a molten state to the surface of the release paper;
    A heat treatment step of partially crosslinking the crosslinkable hot-melt urethane resin;
    The pressure is such that a part of the coating film of the release paper-coating laminate enters the void of the composite fiber sheet having a large number of voids on the surface layer, in which the fiber sheet and the polymer elastic body are impregnated and integrated. A laminating step of laminating the coating film on the surface of the composite fiber sheet;
    And a cooling step of cooling and solidifying the crosslinkable hot-melt urethane resin.
  11. 前記離型紙が、その表面に予め高分子弾性体層を形成したものであり、前記高分子弾性体層の表面に溶融状態の架橋性ホットメルト型ウレタン樹脂を塗布する請求項10に記載のポリウレタン積層体の製造方法。 11. The polyurethane according to claim 10, wherein the release paper has a polymer elastic layer formed in advance on the surface thereof, and a molten crosslinkable hot-melt urethane resin is applied to the surface of the polymer elastic layer. A manufacturing method of a layered product.
  12.  請求項1に記載のポリウレタン積層体の製造方法において、
     前記溶融混合工程が、100℃における溶融粘度が10000mPa・sec以下のホットメルト型ウレタンプレポリマー(A)と鎖伸長剤(B)と示差走査熱量測定により所定の発熱ピーク温度を示す感温性ウレタン化触媒(C)とを前記発熱ピーク温度に対して10~30℃低い範囲の温度で加熱溶融混合することにより前記架橋性ホットメルト型ウレタン樹脂を形成する溶融混合工程であり、
     前記樹脂層形成行程が、離型紙表面に溶融状態の前記架橋性ホットメルト型ウレタン樹脂を塗布することにより離型紙-塗膜積層体を形成する塗膜形成工程であり、
     前記熱処理工程が、前記離型紙-塗膜積層体を前記発熱ピーク温度以上の温度で熱処理することにより前記塗膜を部分架橋させる熱処理工程である
    ポリウレタン積層体の製造方法。
    In the manufacturing method of the polyurethane laminated body of Claim 1,
    In the melt mixing step, a hot-melt urethane prepolymer (A) having a melt viscosity at 100 ° C. of 10,000 mPa · sec or less, a chain extender (B), and a temperature-sensitive urethane exhibiting a predetermined exothermic peak temperature by differential scanning calorimetry. A melt-mixing step of forming the crosslinkable hot-melt urethane resin by heating and melt-mixing the catalyst (C) at a temperature in the range of 10-30 ° C. lower than the exothermic peak temperature,
    The resin layer forming step is a coating film forming step of forming a release paper-coating laminate by applying the crosslinkable hot-melt urethane resin in a molten state to the surface of the release paper;
    The method for producing a polyurethane laminate, wherein the heat treatment step is a heat treatment step of partially crosslinking the coating film by heat-treating the release paper-coating laminate at a temperature equal to or higher than the exothermic peak temperature.
  13.  請求項12に記載のポリウレタン積層体の製造方法において、
     前記熱処理工程の後に、
     繊維シートと高分子弾性体とが含浸一体化された、表層に多数の空隙を有する複合繊維シートの該空隙に、前記離型紙-塗膜積層体の塗膜の一部分が侵入するような圧力で、前記複合繊維シートの表面に前記塗膜を積層するラミネート工程と、
     前記架橋性ホットメルト型ウレタン樹脂を冷却固化する冷却工程と、を備えるポリウレタン積層体の製造方法。
    In the manufacturing method of the polyurethane layered product according to claim 12,
    After the heat treatment step,
    The pressure is such that a part of the coating film of the release paper-coating laminate enters the void of the composite fiber sheet having a large number of voids on the surface layer, in which the fiber sheet and the polymer elastic body are impregnated and integrated. A laminating step of laminating the coating film on the surface of the composite fiber sheet;
    And a cooling step of cooling and solidifying the crosslinkable hot-melt urethane resin.
  14.  前記感温性ウレタン化触媒が1,8-ジアザビシクロ(5,4,0)-ウンデセン-7の有機酸塩である請求項10~13の何れか1項に記載のポリウレタン積層体の製造方法。 The method for producing a polyurethane laminate according to any one of claims 10 to 13, wherein the temperature-sensitive urethanization catalyst is an organic acid salt of 1,8-diazabicyclo (5,4,0) -undecene-7.
  15.  前記溶融混合工程において、熱膨張性マイクロカプセルを前記架橋性ホットメルト型ウレタン樹脂中にさらに混合し、
     前記熱膨張性マイクロカプセルが、前記溶融混合工程及び/または熱処理工程において2倍以上の膨張倍率で膨張するものである請求項10~14の何れか1項に記載のポリウレタン積層体の製造方法。
    In the melt mixing step, thermally expandable microcapsules are further mixed into the crosslinkable hot melt urethane resin,
    The method for producing a polyurethane laminate according to any one of claims 10 to 14, wherein the thermally expandable microcapsule expands at an expansion ratio of 2 times or more in the melt mixing step and / or the heat treatment step.
  16.  前記溶融混合工程が、ミキシングヘッドの第1ノズルから加圧噴射されることにより霧化された加熱溶融状態の前記ホットメルト型ウレタンプレポリマー(A)と、第2ノズルから加圧噴射されることにより霧化された前記鎖伸長剤(B)及び前記感温性ウレタン化触媒(C)を含む混合物とを衝突させることにより、前記発熱ピーク温度に対して10~30℃低い範囲の温度で加熱溶融混合する工程である請求項10~15の何れか1項に記載のポリウレタン積層体の製造方法。 In the melt mixing step, the hot melt urethane prepolymer (A) in a heated and melted state atomized by pressure injection from the first nozzle of the mixing head, and pressure injection from the second nozzle. The mixture is heated at a temperature in the range of 10-30 ° C. lower than the exothermic peak temperature by colliding with the mixture containing the chain extender (B) and the temperature-sensitive urethanization catalyst (C) atomized by The method for producing a polyurethane laminate according to any one of claims 10 to 15, which is a step of melt-mixing.
  17.  請求項10~16の何れか1項に記載された製造方法により得られたポリウレタン積層体であって、
     繊維シートと高分子弾性体とが含浸一体化された、表層に多数の空隙を有する複合繊維シートと、前記複合繊維シートに積層されたポリウレタン樹脂層との積層体であり、
     前記空隙に前記ポリウレタン樹脂層の一部分が侵入することにより、前記ポリウレタン樹脂層の一部分と前記複合繊維シートの表層とが非相溶の状態で混在する、10μm以上の厚みを有する混在層を有するポリウレタン積層体。
    A polyurethane laminate obtained by the production method according to any one of claims 10 to 16,
    A laminate of a fiber sheet and a polymer elastic body impregnated and integrated, a composite fiber sheet having a large number of voids in the surface layer, and a polyurethane resin layer laminated on the composite fiber sheet,
    A polyurethane having a mixed layer having a thickness of 10 μm or more in which a part of the polyurethane resin layer and the surface layer of the composite fiber sheet are mixed in an incompatible state when a part of the polyurethane resin layer enters the gap. Laminated body.
  18.  前記混在層の厚みが30μm以上である請求項17に記載のポリウレタン積層体。 The polyurethane laminate according to claim 17, wherein the mixed layer has a thickness of 30 μm or more.
  19.  前記ポリウレタン樹脂層の総厚み中に占める、前記混在層の厚み割合が10~80%である請求項17または18に記載のポリウレタン積層体。 The polyurethane laminate according to claim 17 or 18, wherein a thickness ratio of the mixed layer in the total thickness of the polyurethane resin layer is 10 to 80%.
  20.  前記ポリウレタン樹脂層が架橋性ホットメルト型ウレタン樹脂により形成された層である請求項17~19のいずれか1項に記載のポリウレタン積層体。 The polyurethane laminate according to any one of claims 17 to 19, wherein the polyurethane resin layer is a layer formed of a crosslinkable hot-melt urethane resin.
  21.  前記ポリウレタン樹脂層及び前記高分子弾性体の少なくとも一方が多孔質である請求項17~20のいずれか1項に記載のポリウレタン積層体。 The polyurethane laminate according to any one of claims 17 to 20, wherein at least one of the polyurethane resin layer and the polymer elastic body is porous.
  22.  前記複合繊維シートの空隙率が30~85体積%の範囲である請求項17~21のいずれか1項に記載のポリウレタン積層体。 The polyurethane laminate according to any one of claims 17 to 21, wherein the composite fiber sheet has a porosity of 30 to 85% by volume.
PCT/JP2010/003393 2009-05-29 2010-05-20 Method for producing polyurethane laminate, and polyurethane laminate obtained by the production method WO2010137264A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201080023839.7A CN102448695B (en) 2009-05-29 2010-05-20 Method for producing polyurethane laminate, and polyurethane laminate obtained by the production method
JP2011515869A JP5622724B2 (en) 2009-05-29 2010-05-20 Method for producing polyurethane laminate and polyurethane laminate obtained by the production method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009130704 2009-05-29
JP2009-130704 2009-05-29
JP2009292852 2009-12-24
JP2009-292852 2009-12-24

Publications (1)

Publication Number Publication Date
WO2010137264A1 true WO2010137264A1 (en) 2010-12-02

Family

ID=43222392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/003393 WO2010137264A1 (en) 2009-05-29 2010-05-20 Method for producing polyurethane laminate, and polyurethane laminate obtained by the production method

Country Status (4)

Country Link
JP (1) JP5622724B2 (en)
CN (1) CN102448695B (en)
TW (1) TWI466778B (en)
WO (1) WO2010137264A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020039232A1 (en) * 2018-08-23 2020-02-27 Morgan Russel Bryan Polymeric composition, method for producing a polymeric composition, substrates coated with a polymeric composition and apparatus for coating substrates with a polymeric composition
WO2020261785A1 (en) * 2019-06-24 2020-12-30 セーレン株式会社 Synthetic leather
US11505895B2 (en) * 2018-08-08 2022-11-22 San Fang Chemical Industry Co., Ltd. Artificial leather

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110382580B (en) * 2017-03-09 2022-04-19 巴斯夫欧洲公司 Polyurethane formulation for producing composite elements
WO2021056229A1 (en) * 2019-09-25 2021-04-01 Dow Global Technologies Llc Non-solvent 2k polyurethane artificial leather composition, artificial leather prepared with same and preparation method thereof
EP4053329A4 (en) * 2019-10-28 2023-11-08 DIC Corporation Fiber base material and artificial leather
CN115416325A (en) * 2022-09-01 2022-12-02 马栋才 Continuous production line for automobile foot pads

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6243430A (en) * 1985-08-21 1987-02-25 Achilles Corp Production of sheetlike material
JP2000303368A (en) * 1999-04-26 2000-10-31 Kuraray Co Ltd Suede finish leather-like sheet
JP2003220670A (en) * 2002-01-29 2003-08-05 Kuraray Co Ltd Laminate
JP2003246830A (en) * 2002-02-25 2003-09-05 Dainippon Ink & Chem Inc Highly durable solvent-free moisture-curing hot-melt urethane resin composition, foam and sheet structure using this
JP2006307359A (en) * 2005-04-26 2006-11-09 Kuraray Co Ltd Laminate for synthetic leather
JP2007092195A (en) * 2005-09-27 2007-04-12 Dai Ichi Kogyo Seiyaku Co Ltd Aqueous resin composition for fiber laminate skin, method for producing fiber laminate, and synthetic leather

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2333917T3 (en) * 2006-04-07 2010-03-02 Dow Global Technologies Inc. HOT TREATMENT OF POLYURETHANE CARPET BACKUP SYSTEMS USING A DUAL CATALYST OF DELAYED ACTION.
CN101092061A (en) * 2006-06-20 2007-12-26 三芳化学工业股份有限公司 Artificial leather with even emboss, and fabricating method
CN101209613A (en) * 2006-12-29 2008-07-02 厚生股份有限公司 Method of preparing slip surface waterproof membrane and its applying cloth

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6243430A (en) * 1985-08-21 1987-02-25 Achilles Corp Production of sheetlike material
JP2000303368A (en) * 1999-04-26 2000-10-31 Kuraray Co Ltd Suede finish leather-like sheet
JP2003220670A (en) * 2002-01-29 2003-08-05 Kuraray Co Ltd Laminate
JP2003246830A (en) * 2002-02-25 2003-09-05 Dainippon Ink & Chem Inc Highly durable solvent-free moisture-curing hot-melt urethane resin composition, foam and sheet structure using this
JP2006307359A (en) * 2005-04-26 2006-11-09 Kuraray Co Ltd Laminate for synthetic leather
JP2007092195A (en) * 2005-09-27 2007-04-12 Dai Ichi Kogyo Seiyaku Co Ltd Aqueous resin composition for fiber laminate skin, method for producing fiber laminate, and synthetic leather

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11505895B2 (en) * 2018-08-08 2022-11-22 San Fang Chemical Industry Co., Ltd. Artificial leather
WO2020039232A1 (en) * 2018-08-23 2020-02-27 Morgan Russel Bryan Polymeric composition, method for producing a polymeric composition, substrates coated with a polymeric composition and apparatus for coating substrates with a polymeric composition
WO2020261785A1 (en) * 2019-06-24 2020-12-30 セーレン株式会社 Synthetic leather
JP2021001419A (en) * 2019-06-24 2021-01-07 セーレン株式会社 Synthetic leather
CN114008262A (en) * 2019-06-24 2022-02-01 世联株式会社 Synthetic leather
JP7303042B2 (en) 2019-06-24 2023-07-04 セーレン株式会社 Synthetic leather
US12031267B2 (en) 2019-06-24 2024-07-09 Seiren Co., Ltd. Synthetic leather

Also Published As

Publication number Publication date
CN102448695B (en) 2015-03-25
JP5622724B2 (en) 2014-11-12
CN102448695A (en) 2012-05-09
TWI466778B (en) 2015-01-01
TW201105509A (en) 2011-02-16
JPWO2010137264A1 (en) 2012-11-12

Similar Documents

Publication Publication Date Title
JP5622724B2 (en) Method for producing polyurethane laminate and polyurethane laminate obtained by the production method
CN108350646B (en) Artificial leather using polyester and method for preparing the same
CN102099184B (en) Method for continuously producing multi-layered composite bodies
JP4515841B2 (en) Urethane polyol prepolymer, porous polyurethane body and method for producing the same
EP2268483B1 (en) Multi-layer composite materials comprising a foam layer, corresponding method of production and use thereof
TW201542635A (en) Sheet-like material and method for producing same
JP5635414B2 (en) Leather-like sheet manufacturing method
JP2004216880A (en) Manufacturing process of polyurethane foam sheet and layered sheet using the same
KR101204905B1 (en) Manufacturing process of flocking artificial leather using binder of slovent free urethane and product manufactured thereby
CN102056737A (en) Multilayer composite materials which comprise a plastics foil permeable to water vapour, method for production of the same and use of the same
CN101959676A (en) The multilayer materials that comprises fabric sheet, corresponding production method and uses thereof
TWI545010B (en) Multilayer composite structures and process for producing the same
CN101959681A (en) The multilayer materials that comprises plastics or metal forming, corresponding production method and uses thereof
WO2010024249A1 (en) Leather-like sheet and manufacturing method thereof
TW202306775A (en) Multilayered composite material comprising foamed granules
JP2013208814A (en) Polyurethane laminated body, and method for producing the same
CN102186688A (en) Objects having at least one opening covered by a membrane, and method for production thereof
JP2014129622A (en) Synthetic leather
JP5374299B2 (en) Manufacturing method of silvered leather-like sheet
JP3683526B2 (en) Polyurethane porous body and method for producing the same
JP7565200B2 (en) Grain-finish artificial leather and its manufacturing method
TW202243869A (en) Porous layer structure, and method for producing porous layer structure
JP6181536B2 (en) Manufacturing method of artificial leather with silver
JP2006233392A (en) Grained leather type artificial leather and method for producing the same
TW202346075A (en) Local compaction of e-tpu particle foam material

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080023839.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10780225

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011515869

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10780225

Country of ref document: EP

Kind code of ref document: A1