WO2010136544A1 - Process for catalytic ring-opening polymerization of cyclic monomers - Google Patents

Process for catalytic ring-opening polymerization of cyclic monomers Download PDF

Info

Publication number
WO2010136544A1
WO2010136544A1 PCT/EP2010/057360 EP2010057360W WO2010136544A1 WO 2010136544 A1 WO2010136544 A1 WO 2010136544A1 EP 2010057360 W EP2010057360 W EP 2010057360W WO 2010136544 A1 WO2010136544 A1 WO 2010136544A1
Authority
WO
WIPO (PCT)
Prior art keywords
diamine
polymerization
zinc
opening polymerization
zinc complexes
Prior art date
Application number
PCT/EP2010/057360
Other languages
German (de)
French (fr)
Inventor
Carsten Strohmann
Sonja Herres-Pawlis
Viktoria Gessner
Janna Börner
Prisca Eckert
Klaus Jurkschat
Gerrit BRADTMÖLLER
Markus SCHÜRMANN
Michael Gock
Original Assignee
Technische Universität Dortmund
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE200910023656 external-priority patent/DE102009023656A1/en
Priority claimed from DE200910031594 external-priority patent/DE102009031594A1/en
Application filed by Technische Universität Dortmund filed Critical Technische Universität Dortmund
Publication of WO2010136544A1 publication Critical patent/WO2010136544A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/823Preparation processes characterised by the catalyst used for the preparation of polylactones or polylactides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/08Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from amino-carboxylic acids
    • C08G69/14Lactams
    • C08G69/16Preparatory processes
    • C08G69/18Anionic polymerisation
    • C08G69/20Anionic polymerisation characterised by the catalysts used

Definitions

  • the present invention relates to a process for the catalytic ring-opening polymerization of cyclic monomers with diam in-zinc complexes and / or polynuclear aminoethanolate-zinc complexes and to processes for preparing suitable diamine-zinc complexes and polynuclear aminoethanolate-zinc complexes.
  • the ring-opening polymerization is capable of producing a variety of different polymers starting from cyclic monomers.
  • polylactides can be prepared starting from lactide.
  • Polylactides (PLA) are thermoplastics that find industrial application in a variety of ways. The properties of PLA depend, as with all polymers, primarily on the degree of polymerization and the associated molecular weight and degree of crystallinity.
  • the polydispersity which is a measure of the width of the molecular weight distribution, has an influence on the physical, mechanical and rheological properties of the corresponding polymer.
  • any copolymers can have a lasting effect on the properties of the polymer.
  • the glass transition temperatures and the melting temperatures of the polymer material, as well as its tensile strength and modulus of elasticity increase.
  • the elongation at break as a value on the flexibility of the polymer decreases with increasing molecular weight.
  • lactams such as caprolactam
  • PA polyamides
  • lactols or thiolactones can be converted to corresponding polymers by means of ring-opening polymerization reactions.
  • One of the objectives in the polymerization of monomers is to achieve as narrow as possible a molecular weight distribution, ie a polydispersity close to 1, in order to ensure the most homogeneous molecular weight distribution of the polymer and the associated properties.
  • the object of the present invention is to provide a process for the polymerization of cyclic monomers, with which polymers having an optimized polydispersity are obtained.
  • a process for the catalytic ring-opening polymerization of cyclic monomers, which is characterized in that the polymerization catalyst used is at least one compound of the group consisting of diamine-zinc complexes and polynuclear aminoethanolate-zinc complexes.
  • Cyclic monomers such as lactones, lactams, lactimes, lactols, lactides, thiolactones or thiolactides can be converted into corresponding polymers by means of catalytic ring-opening polymerization with the abovementioned polynuclear aminoethanolate-zinc complexes or diamine-zinc complexes.
  • Polynuclear in the present case is to be understood that the corresponding aminoethanolate-zinc complexes have at least three central atoms (Zin katome), preferably more than four central atoms.
  • the polymerization catalysts according to the invention can be used in the process in a molar ratio to m cyclic monomer between 1: 5000 to 1: 50, preferably between 1: 2000 to 1: 100, more preferably between 1: 1000 and 1: 250.
  • the process can be carried out in a temperature range between 80 ° C. and 250 ° C., preferably 100 ° C. and 200 ° C.
  • the method is suitable both for bulk polymerization, ie for the catalytic conversion of the monomers in the absence of a solvent, as well as for solution polymerization in appropriate solvents.
  • the invention proposes a process which is characterized in that a divalent zinc compound is selected from the group consisting of (1R, 2R) - ⁇ /, ⁇ / , ⁇ / ' , ⁇ / ' - tetramethylcyclohexane-1,2-diamine, (1R.2R) - ⁇ /, ⁇ /, ⁇ / ' , ⁇ / ' - tetraethylcyclohexane-1,2-diamine, (1R, 2R) -N, N, N ' , N ' - diethyldimethylcyclohexane-1,2-diamine, (1R, 2R) - ⁇ /, ⁇ /, ⁇ / ' , ⁇ / ' -Thethylmethylcyclohexan-1, 2-diamine, (1R, 2R) - ⁇ /, ⁇ /, ⁇ / ' , ⁇
  • X Br or Cl
  • R 2 Zn with R Me or Et
  • Zn (OR) 2 with R AlIIyI
  • Zn (NR 2 ) 2 with R Alkyl, thorganosilyl or aryl.
  • Fig. 2 shows the synthetic route of ZnBr 2 (RR) -TMCDA
  • Fig. 3 shows the molecular structure of ZnBr 2 (RR) -TMCDA
  • Fig. 4 shows the thermal deflection ellipsoids (50% probability of residence) of the molecular structure of ZnBr 2 - (RR) -TMCDA in the crystal;
  • Fig. 5 shows the synthetic route of ZnBr 2 (R 1 R) -TECDA
  • Fig. 6 shows the molecular structure of ZnBr 2 (RR) TECDA
  • Figure 7 shows the thermal deflection ellipsoids (50% probability of residence) of the molecular structure of ZnBr 2 - (RR) TECDA in the crystal.
  • Fig. 9 shows the molecular structure of ZnCl 2 - (R 1 R) -TMCDA
  • Figure 11 shows the thermal deflection ellipsoids (50% probability of residence) of the molecular structure of (R C R C R N , R N ) - [ZnCl 2 -DEDMCDA] in the crystal;
  • Figure 13 shows thermal deflection ellipsoids (50% probability of residence) of the molecular structure of (R C R C R N , R N ) - [ZnBr 2 DEDMCDA] in the crystal;
  • Fig. 14 shows the molecular structure of (RcRcRw) - [ZnBr 2 -ETMCDA];
  • Figure 15 shows the thermal deflection ellipsoids (50% probability of residence) of the molecular structure of ⁇ Rc, R C R N ) - [ZnBr 2 -ETMCDA] in the crystal;
  • Fig. 16 shows the molecular structure of (RcRcR N ) - [ZnCl 2 -PTMCDA];
  • FIG. 17 shows the thermal deflection ellipsoids (50% probability of residence) of the molecular structure of (R C R C R N ) - [ZnCl 2 -PTMCDA] in the crystal;
  • FIG. 18 shows structural motifs of aminoethanolate-zinc according to the invention
  • Fig. 19 shows the synthetic route of
  • Fig. 20 shows molecular structure of [(Zn) 6 (OCH 2 CH 2) 2 NMe) 4 ((HOCH 2 CH 2) 2 NMe) 2] Cl 2 • H 2 O;
  • Figure 21 shows the thermal deflection ellipsoids (50% probability of residence) of the molecular structure of [(Zn) 6 (OCH 2 CH 2 ) 2 NMe) 4 ((HIGH 2 CH 2 ) 2 NMe) 2 ] CI 2 • H 2 O in the crystal ;
  • Fig. 22 shows molecular structure of [MeN (CH 2 C (CH 2 ) 2 O) 2 Zn] 6 * H 2 O;
  • Figure 23 shows the thermal deflection ellipsoids (50% probability of residence) of the molecular structure of [MeN (CH 2 C (CH 2 ) 2 O) 2 Zn] 6 'H 2 O in the crystal.
  • the preparation of the diamine-zinc complexes according to the invention was carried out by dissolving the chiral / achiral amine and one equivalent of the corresponding zinc (II) salt (bromide, chloride, or acetate). in acetone, diethyl ether or dichloromethane or a mixture of the solvents.
  • II zinc
  • acetone, diethyl ether or dichloromethane or a mixture of the solvents Preferably, neutral tetrasubstituted diamines will be used for the complexes.
  • amine compounds used as starting materials are commercially available or were prepared on the basis of literature procedures (F. Larrox, EN Jacobsen, J. Org. Chem., 1994, 59, 1939, J.-C. Kizirian, N. Cabello, L. Pinchard, Cork, A. Alexakis, Tetrahedron 2005, 61, 8939, AP CoIe, V. Mahadevan, LM Mirica, X. Ottenwaelder, TDP Stack, Inorg Chem, 2005, 44, 7345, C. Strohmann, VH Gessner, Angew Chem 2007, 119, 8429-8432, Angew Chem Chem Int Ed 2007, 46, 8281-8283; G. Fraenkel, J. Gallucci, HS Rosenzweig, J. Org. Chem. 1989, 54, 681-683). Racemic and chiral compounds were synthesized analogously.
  • Table 1 List of crystallographic data of compound ZnBr 2 - (R 1 R) - TMCDA
  • Example 2 ZnC ⁇ - (RR) -TMCDA was shown, wherein as a divalent zinc compound, a corresponding amount of zinc (II) chlohd was used.
  • the measurement of the A crystal was carried out on the devices Bru ker APEX-CCD (D8 three-circuit goniometer) from Bruker Analytical X-Ray Systems and CrysAlis CCD from Oxford Diffraction Ltd.
  • the implemented programs were used to collect and process the data.
  • the solution of the single-crystal X-ray structure analyzes was done with the program SHELXS90 [7] with direct methods, the structure refinement with the program SHELXL97 [8]. All non- Hydrogen atoms were refined anisotropically.
  • U eq is defined as one third of the trace of the orthogonalized tensor U 1J .
  • Table 5 Anisotropic excursion parameters (A x 10) for ZnBr 2 (RR) TECDA.
  • the exponent of the anisotropic excursion factor has the form: -2 ⁇ 2 [h 2 a * 2 U 11 + ... + 2 hka * b * U 12 ]
  • the lactide (25 mmol) and the catalyst (0.05 mmol) are added to a 50 ml
  • the polymer is in the
  • the lactide (25 mmol) is weighed into a 50 ml round bottom flask.
  • the flask is closed with a septum, purged with argon and mixed in an argon countercurrent with the absolute solvent.
  • the reaction mixture is heated with stirring to the desired reaction temperature.
  • a solution of the catalyst (0.05 mmol) in the solvent used for the polymerization is added by means of a syringe.
  • the polymer is in the
  • the representation of the aminoethanolate-zinc complexes according to the invention, as shown as structural motifs in FIG. 18, was performed by reaction of the Sodium salts of ethanolamines with zinc (II) salts ZnX 2 (X eg halogen, acetate, phenolate, triflate) and by reacting ethanolamines with diorganozinc compounds ZnR 2 (R alkyl, aryl).
  • aliphatic ethanolamines having different substitution patterns are preferably used for the complexes according to the invention.
  • the amine compounds are z.T. commercially available. Racemic and chiral compounds were synthesized analogously.
  • polynuclear aminotehanolate-zinc complexes according to the invention can generally be obtained by means of different synthetic routes.
  • reaction provided this compound as a colorless powder that is well soluble in organic polar solvents such as CH 2 Cb.
  • Crystals suitable for single-crystal X-ray diffraction analysis could be obtained from CH 2 Cb and n-hexane by slow evaporation of the solvent. Elemental analysis of these crystals indicates that these with [(Zn) 6 (OCH2CH2) 2NMe) 4 ((HOCH 2 CH 2) 2NMe) 2] Cl2 • H 2 O correspond (C: 30.4%, H 5.1%, N 7.1%) ,
  • the compound crystallizes triklin in space group P1 with four molecules per unit cell. Also included are two molecules of water per unit cell.
  • This compound is a hexanuclear zinc cluster that is formally a hexamer of zinc cocaine. This consists of a
  • the zinc atoms Zn (2) and Zn (2A) are distorted octahedrally in the above-mentioned four-membered ring.
  • the remaining four zinc atoms of the cluster are distorted trigonal bipyramidally coordinated.
  • Each of the six zinc atoms contained carries an N-methyldiethanolamine as a ligand.
  • two chloride ions Cl (1) and CI (IA) are contained in the compound. These form the counterions to the doubly positively charged cluster.
  • Table 12 List of the crystallographic data of the compound [(Zn) 6 (OCH2CH2) 2NMe) 4 ((HOCH 2 CH 2) 2NMe) 2] Cl2 • H 2 O
  • Example 11 ring-opening polymerization with [(Zn) 6 (OCH2CH2) 2NMe) 4 ((HOCH 2 CH 2) 2NMe) 2] Cl2 • H 2 O

Abstract

The present invention relates to a process for catalytic ring-opening polymerization of cyclic monomers by means of diamine-zinc complexes and/or polynuclear aminoethoxide-zinc complexes, and to processes for preparing suitable diamine-zinc complexes and polynuclear aminoethoxide-zinc complexes. The polymerization process according to the invention is suitable for providing polymers with an optimized polydispersity.

Description

Verfahren zur katalytischen Ringöffnungspolymerisation von cyclischen Process for the catalytic ring-opening polymerization of cyclic
Monomerenmonomers
Die vorliegende Erfindung betrifft ein Verfahren zur katalytischen Ringöffnungspolymerisation von cyclischen Monomeren m ittels Diam in-Zink- Komplexen und/oder polynuklearen Aminoethanolat-Zink-Komplexen sowie Verfahren zur Herstellung geeigneter Diamin-Zink-Komplexe und polynuklearer Aminoethanolat-Zink-Komplexe.The present invention relates to a process for the catalytic ring-opening polymerization of cyclic monomers with diam in-zinc complexes and / or polynuclear aminoethanolate-zinc complexes and to processes for preparing suitable diamine-zinc complexes and polynuclear aminoethanolate-zinc complexes.
Die Ringöffnungspolymerisation ist geeignet, eine Vielzahl unterschiedlicher Polymere ausgehend von cyclischen Monomeren darzustellen. So lassen sich beispielsweise Polylactide ausgehend von Lactid herstellen. Polylactide (PLA) sind thermoplastische Kunststoffe, welche in vielfältiger Weise industrielle Anwendung finden. Die Eigenschaften von PLA hängen wie bei allen Polymeren in erster Linie von dem Polymerisationsgrad und der damit einhergehenden Molmasse und dem Kristallinitätsgrad ab. Darüber hinaus hat die Polydispersität, welche ein Maß für die Breite der Molmassenverteilung ist, einen Einfluss auf die physikal ischen, mechanischen und rheologischen Eigenschaften des entsprechenden Polymers. Des Weiteren können etwaige Copolymere die Eigenschaften des Polymers nachhaltig beeinflussen. Bei höherer Molmasse steigen die Glasübergangstemperaturen sowie die Schmelztemperaturen des Polymerwerkstoffs, sowie auch dessen Zugfestigkeit und E-Modul. Die Bruchdehnung als Wert über die Flexibilität des Polymers sinkt hingegen mit steigender Molmasse.The ring-opening polymerization is capable of producing a variety of different polymers starting from cyclic monomers. Thus, for example, polylactides can be prepared starting from lactide. Polylactides (PLA) are thermoplastics that find industrial application in a variety of ways. The properties of PLA depend, as with all polymers, primarily on the degree of polymerization and the associated molecular weight and degree of crystallinity. In addition, the polydispersity, which is a measure of the width of the molecular weight distribution, has an influence on the physical, mechanical and rheological properties of the corresponding polymer. Furthermore, any copolymers can have a lasting effect on the properties of the polymer. At higher molecular weight, the glass transition temperatures and the melting temperatures of the polymer material, as well as its tensile strength and modulus of elasticity increase. The elongation at break as a value on the flexibility of the polymer, however, decreases with increasing molecular weight.
Andere cyclische Monomere, wie beispielsweise Lactame, wie Caprolactam, lassen sich mittels Ringöffnungspolymerisation zu Polyamiden (PA) polymerisieren. In ähnlicher Weise lassen sich Lactole oder auch Thiolactone zu entsprechenden Polymeren mittels Ringöffnungspolymerationsreaktionen umsetzen.Other cyclic monomers, such as lactams, such as caprolactam, can be polymerized by ring-opening polymerization to form polyamides (PA). Similarly, lactols or thiolactones can be converted to corresponding polymers by means of ring-opening polymerization reactions.
Eines der Ziele bei der Polymerisation von Monomeren ist es, eine möglichst schmale Molmassenverteilung, also eine Polydispersität nahe 1 , zu erreichen, um eine möglichst homogene Molmassenverteilung des Polymers und die damit einhergehenden Eigenschaften sicher zu stellen. Aufgabe der vorliegenden Erfindung ist es, ein Verfahren zur Polymerisation von cyclischen Monomeren anzugeben, mit welchem Polymere mit einer optimierten Polydispersität erhalten werden.One of the objectives in the polymerization of monomers is to achieve as narrow as possible a molecular weight distribution, ie a polydispersity close to 1, in order to ensure the most homogeneous molecular weight distribution of the polymer and the associated properties. The object of the present invention is to provide a process for the polymerization of cyclic monomers, with which polymers having an optimized polydispersity are obtained.
Darüber hinaus ist es die Aufgabe der vorliegenden Erfindung, ein Verfahren zur Herstellung geeigneter Katalysatoren zur katalytischen Ringöffnungspolymerisation von cyclischen Monomeren anzugeben.Moreover, it is the object of the present invention to provide a process for the preparation of suitable catalysts for the catalytic ring-opening polymerization of cyclic monomers.
Gelöst wird diese Aufgabe mit Bezug auf das Polymerisationsverfahren durch ein Verfahren gemäß Anspruch 1. Hinsichtlich des Verfahrens zur Herstellung geeigneter Katalysatoren wird die Aufgabe durch ein Verfahren gemäß Anspruch 7 gelöst.This problem is solved with reference to the polymerization process by a process according to claim 1. With regard to the process for the preparation of suitable catalysts, the object is achieved by a process according to claim 7.
Es wird somit erfindungsgemäß ein Verfahren zur katalytischen Ringöffnungspolymerisation von cyclischen Monomeren angegeben, welches dadurch gekennzeichnet ist, dass als Polymerisationskatalysator wenigstens eine Verbindung der Gruppe bestehend aus Diamin-Zink-Komplexen und polynuklearen Aminoethanolat-Zink-Komplexen eingesetzt wird.Thus, according to the invention, a process is disclosed for the catalytic ring-opening polymerization of cyclic monomers, which is characterized in that the polymerization catalyst used is at least one compound of the group consisting of diamine-zinc complexes and polynuclear aminoethanolate-zinc complexes.
Mit den genannten polynuklearen Aminoethanolat-Zink-Komplexen oder Diamin- Zink-Komplexen lassen sich cyclische Monomere, wie Lactone, Lactame, Lactime, Lactole, Lactide, Thiolactone oder Thiolactide zu entsprechenden Polymeren mittels katalytischer Ringöffnungspolymerisation umsetzen.Cyclic monomers such as lactones, lactams, lactimes, lactols, lactides, thiolactones or thiolactides can be converted into corresponding polymers by means of catalytic ring-opening polymerization with the abovementioned polynuclear aminoethanolate-zinc complexes or diamine-zinc complexes.
Polynuklear ist im vorliegenden Fall so zu verstehen, dass die entsprechenden Aminoethanolat-Zink-Kom plexe m indestens drei Zentralatome (Zin katome), vorzugsweise mehr als vier Zentralatome aufweisen.Polynuclear in the present case is to be understood that the corresponding aminoethanolate-zinc complexes have at least three central atoms (Zin katome), preferably more than four central atoms.
Geeignete Polymerisationskatalysatoren zur Anwendung im erfindungsgemäßen Verfa h ren s i n d be is p ie lsweise ZnX2*(R,R)-TMCDA, ZnX2*(R,R)-TECDA, (RcRcRN1RN )-[ZnX2- D E D M C DA] , (Rc,Rc,RΛ/)-[ZnX2 ETMCDA], (RC,RC ,RN)- [ZnX2 PTMCDA]1 [Zn(TEMCDA)X2], [(Zn)6(OCH2CH2)2NMe)4((HOCH2CH2)2NMe)2]X2 • H2O, [MeN(CH2C(CHs)2O)2Zn]6 - H2O mit X = Cl oder Br. Die Polymerisationskatalysatoren können erfindungsgemäß im Verfahren in einem molaren Verhältn is zu m cyclischen Monomer zwischen 1 :5000 bis 1 :50, vorzugsweise zwischen 1 :2000 bis 1 :100, noch bevorzugter zwischen 1 :1000 und 1 :250 eingesetzt werden.Suitable polymerization catalysts for use in the process according to the invention are, for example, ZnX 2 * (R, R) -TMCDA, ZnX 2 * (R, R) -TECDA, (RcRcRN 1 RN) - [ZnX 2 -DEDMC DA] (R c, Rc, RΛ /) - [ZnX 2 ETMCDA], (R C, RC, R N) - [ZnX 2 PTMCDA] 1 [Zn (TEMCDA) X 2], [(Zn) 6 (OCH 2 CH 2 ) 2 NMe) 4 ((HIGH 2 CH 2 ) 2 NMe) 2 ] X 2 • H 2 O, [MeN (CH 2 C (CH 2 ) 2 O) 2 Zn] 6 - H 2 O with X = Cl or Br. The polymerization catalysts according to the invention can be used in the process in a molar ratio to m cyclic monomer between 1: 5000 to 1: 50, preferably between 1: 2000 to 1: 100, more preferably between 1: 1000 and 1: 250.
Das Verfahren kann dabei in einem Temperaturbereich zwischen 80 0C und 250 0C, vorzugsweise 100 0C und 200 0C durchgeführt werden.The process can be carried out in a temperature range between 80 ° C. and 250 ° C., preferably 100 ° C. and 200 ° C.
Darüber hinaus ist das Verfahren sowohl zur Massenpolymerisation, also zur katalytischen Umsetzung der Monomere in Abwesenheit eines Lösungsmittels, als auch zur Lösungspolymerisation in entsprechenden Lösungsmitteln geeignet.In addition, the method is suitable both for bulk polymerization, ie for the catalytic conversion of the monomers in the absence of a solvent, as well as for solution polymerization in appropriate solvents.
Überraschender Weise hat sich gezeigt, dass mit dem erfindungsgemäßen Verfahren eine optimierte Polydispersität der erhaltenen Polymere erzielt werden kann. Diese liegt in einem Bereich zwischen ungefähr 2,2 und ungefähr 1 ,45 und zeigt somit eine hohe Homogenität der erhaltenen Molmassen.Surprisingly, it has been found that with the process according to the invention an optimized polydispersity of the polymers obtained can be achieved. This is in a range between about 2.2 and about 1.45 and thus shows a high homogeneity of the molecular weights obtained.
Hinsichtlich des Verfahrens zur Herstellung eines Katalysators zur Ringöffnungspolymerisation von cyclischen Monomeren wird mit der Erfindung ein Verfahren vorgeschlagen, welches dadurch gekennzeichnet ist, dass eine zweiwertige Zinkverbindung mit einer Verbindung ausgewählt aus der Gruppe bestehend aus (1 R,2R)-Λ/,Λ/,Λ/',Λ/'-Tetramethylcyclohexan-1 ,2-diamin, (1 R.2R)- Λ/,Λ/,Λ/',Λ/'-Tetraethylcyclohexan-1 ,2-diamin,(1 R,2R)-N,N,N',N'- Diethyldimethylcyclohexan-1 ,2-diamin, (1 R,2R)-Λ/,Λ/,Λ/',Λ/'-Thethylmethylcyclohexan- 1 ,2-diamin, (1 R,2R)-Λ/,Λ/,Λ/',Λ/'-Ethylthmethylcyclohexan-1 ,2-diamin, (1 R.2R)- Λ/,Λ/,Λ/',Λ/'-Pentylthmethylcyclohexan-1 ,2-diamin, (NaOC2H4J2N-CH3, und /V-Methyl- 2,2*-Bis(dimethyl)-diethanolamin umgesetzt wird.With regard to the process for preparing a catalyst for the ring-opening polymerization of cyclic monomers, the invention proposes a process which is characterized in that a divalent zinc compound is selected from the group consisting of (1R, 2R) -Λ /, Λ / , Λ / ' , Λ / ' - tetramethylcyclohexane-1,2-diamine, (1R.2R) - Λ /, Λ /, Λ / ' , Λ / ' - tetraethylcyclohexane-1,2-diamine, (1R, 2R) -N, N, N ' , N ' - diethyldimethylcyclohexane-1,2-diamine, (1R, 2R) -Λ /, Λ /, Λ / ' , Λ / ' -Thethylmethylcyclohexan-1, 2-diamine, (1R, 2R) -Λ /, Λ /, Λ / ' , Λ / ' -Ethylthmethylcyclohexan-1, 2-diamine, (1 R.2R) - Λ /, Λ /, Λ / ' , Λ / ' - Pentylthmethylcyclohexan-1, 2-diamine, (NaOC 2 H 4 J 2 N-CH 3 , and / V-methyl-2,2 * -Bis (dimethyl) -diethanolamin is reacted.
Die zweiwertige Zinkverbindung kann dabei ausgewählt sein aus der Gruppe bestehend aus ZnX2 mit X = Br oder Cl, R2Zn mit R = Me oder Et, Zn(OR)2 mit R = AIIyI und Zn(NR2)2 mit R = Alkyl, Thorganosilyl oder Aryl. - A -The divalent zinc compound may be selected from the group consisting of ZnX 2 with X = Br or Cl, R 2 Zn with R = Me or Et, Zn (OR) 2 with R = AlIIyI and Zn (NR 2 ) 2 with R = Alkyl, thorganosilyl or aryl. - A -
Ausgestaltungen der Erfindung ergeben sich aus den Unteransprüchen und den nachfolgenden Beispielen.Embodiments of the invention will become apparent from the dependent claims and the following examples.
Fig. 1 zeigt eine allgemeine Darstellung der erfindungsgemäßen Diamin-Zink-1 shows a general representation of the diamine-zinc invention
Komplexe;complex;
Fig. 2 zeigt den Syntheseweg von ZnBr2 (RR)-TMCDA;Fig. 2 shows the synthetic route of ZnBr 2 (RR) -TMCDA;
Fig. 3 zeigt die Molekülstruktur von ZnBr2 (RR)-TMCDA;Fig. 3 shows the molecular structure of ZnBr 2 (RR) -TMCDA;
Fig. 4 zeigt die thermischen Auslenkungsellipsoide (50% Aufenthaltswahrscheinlichkeit) der Molekülstruktur von ZnBr2-(RR)-TMCDA im Kristall;Fig. 4 shows the thermal deflection ellipsoids (50% probability of residence) of the molecular structure of ZnBr 2 - (RR) -TMCDA in the crystal;
Fig. 5 zeigt den Syntheseweg von ZnBr2 (R1R)-TECDA;Fig. 5 shows the synthetic route of ZnBr 2 (R 1 R) -TECDA;
Fig. 6 zeigt die Molekülstruktur von ZnBr2 (RR)-TECDA;Fig. 6 shows the molecular structure of ZnBr 2 (RR) TECDA;
Fig. 7 zeigt die thermischen Auslenkungsellipsoide (50% Aufenthaltswahrscheinlichkeit) der Molekülstruktur von ZnBr2-(RR)-TECDA im Kristall.Figure 7 shows the thermal deflection ellipsoids (50% probability of residence) of the molecular structure of ZnBr 2 - (RR) TECDA in the crystal.
Fig. 8 zeigt die Ringöffnungspolymerisation von Lactid mit Diamin-Zink-8 shows the ring-opening polymerization of lactide with diamine-zinc
Komplexen;complex;
Fig. 9 zeigt die Molekülstruktur von ZnCI2-(R1R)-TMCDA;Fig. 9 shows the molecular structure of ZnCl 2 - (R 1 R) -TMCDA;
Fig. 10 zeigt die Molekülstruktur von (Rc,Rc,RN,RN')-[ZnCI2-DEDMCDA];. [2 ZnCl -DEDMCDA] - Figure 10 shows the molecular structure of (Rc, Rc, R N, R N ')
Fig. 11 zeigt die thermischen Auslenkungsellipsoide (50% Aufenthaltswahrscheinlichkeit) der Molekülstruktur von (RCRCRN, RN )- [ZnCI2-DEDMCDA] im Kristall;Figure 11 shows the thermal deflection ellipsoids (50% probability of residence) of the molecular structure of (R C R C R N , R N ) - [ZnCl 2 -DEDMCDA] in the crystal;
Fig. 12 zeigt die Molekülstruktur von (RcRcRN1RN )-[ZnBr2-DEDMCDA];. [2 ZnBr -DEDMCDA] - Figure 12 shows the molecular structure of (R RcRcR N1 N)
Fig. 13 zeigt die thermischen Auslenkungsellipsoide (50% Aufenthaltswahrscheinlichkeit) der Molekülstruktur von (RCRCRN, RN )- [ZnBr2 DEDMCDA] im Kristall;Figure 13 shows thermal deflection ellipsoids (50% probability of residence) of the molecular structure of (R C R C R N , R N ) - [ZnBr 2 DEDMCDA] in the crystal;
Fig. 14 zeigt die Molekülstruktur von (RcRcRw)-[ZnBr2-ETMCDA];Fig. 14 shows the molecular structure of (RcRcRw) - [ZnBr 2 -ETMCDA];
Fig. 15 zeigt die thermischen Auslenkungsellipsoide (50% Aufenthaltswahrscheinlichkeit) der Molekülstruktur von {Rc, RCRN)- [ZnBr2-ETMCDA] im Kristall;Figure 15 shows the thermal deflection ellipsoids (50% probability of residence) of the molecular structure of {Rc, R C R N ) - [ZnBr 2 -ETMCDA] in the crystal;
Fig. 16 zeigt die Molekülstruktur von (RcRcRN)-[ZnCI2-PTMCDA];Fig. 16 shows the molecular structure of (RcRcR N ) - [ZnCl 2 -PTMCDA];
Fig. 17 zeigt die thermischen Auslenkungsellipsoide (50% Aufenthaltswahrscheinlichkeit) der Molekülstruktur von (RCRCRN)- [ZnCI2-PTMCDA] im Kristall; Fig. 18 zeigt Strukturmotive erfindungsgemäßer Aminoethanolat-Zink-Figure 17 shows the thermal deflection ellipsoids (50% probability of residence) of the molecular structure of (R C R C R N ) - [ZnCl 2 -PTMCDA] in the crystal; FIG. 18 shows structural motifs of aminoethanolate-zinc according to the invention
Komplexe;complex;
Fig. 19 zeigt den Syntheseweg vonFig. 19 shows the synthetic route of
[(Zn)6(OCH2CH2)2NMe)4((HOCH2CH2)2NMe)2]Cl2 H2O;[(Zn) 6 (OCH 2 CH 2) 2 NMe) 4 ((HIGH 2 CH 2) 2 NMe) 2] Cl 2 H 2 O;
Fig. 20 zeigt Molekülstruktur von [(Zn)6(OCH2CH2)2NMe)4((HOCH2CH2)2NMe)2]Cl2 H2O;Fig. 20 shows molecular structure of [(Zn) 6 (OCH 2 CH 2) 2 NMe) 4 ((HOCH 2 CH 2) 2 NMe) 2] Cl 2 H 2 O;
Fig. 21 zeigt die thermischen Auslenkungsellipsoide (50% Aufenthaltswahrscheinlichkeit) der Molekülstruktur von [(Zn)6(OCH2CH2)2NMe)4((HOCH2CH2)2NMe)2]CI2 • H2O im Kristall;Figure 21 shows the thermal deflection ellipsoids (50% probability of residence) of the molecular structure of [(Zn) 6 (OCH 2 CH 2 ) 2 NMe) 4 ((HIGH 2 CH 2 ) 2 NMe) 2 ] CI 2 • H 2 O in the crystal ;
Fig. 22 zeigt Molekülstruktur von [MeN(CH2C(CHs)2O)2Zn]6 * H2O;Fig. 22 shows molecular structure of [MeN (CH 2 C (CH 2 ) 2 O) 2 Zn] 6 * H 2 O;
Fig. 23 zeigt die thermischen Auslenkungsellipsoide (50% Aufenthaltswahrscheinlichkeit) der Molekülstruktur von [MeN(CH2C(CHs)2O)2Zn]6 ' H2O im Kristall.Figure 23 shows the thermal deflection ellipsoids (50% probability of residence) of the molecular structure of [MeN (CH 2 C (CH 2 ) 2 O) 2 Zn] 6 'H 2 O in the crystal.
Synthese der Diamin-Zink-KomplexeSynthesis of the diamine-zinc complexes
Die Darstellung der erfindungsgemäßen Diamin-Zink-Komplexe, wie sie in Fig. 1 allgemein dargestellt sind, erfolgte durch Lösen des chiralen/ achiralen Amins und eines Äquivalentes des entsprechenden Zink(ll)salzes (-bromid, -Chlorid, bzw. - acetat) in Aceton, Diethylether oder Dichlormethan oder einem Gemisch der Lösungsmittel. Vorzugsweise werden hierbei für die Komplexe neutrale tetrasubstituierte Diamine verwendet werden.The preparation of the diamine-zinc complexes according to the invention, as shown generally in FIG. 1, was carried out by dissolving the chiral / achiral amine and one equivalent of the corresponding zinc (II) salt (bromide, chloride, or acetate). in acetone, diethyl ether or dichloromethane or a mixture of the solvents. Preferably, neutral tetrasubstituted diamines will be used for the complexes.
Nach langsamer Reduktion des Lösungsmittels bei Raumtemperatur bildeten sich jeweils farblose Kristalle des jeweiligen Zinksalzaddu ktes. Die nachfolgend beschriebenen erfindungsgemäßen Diamin-Zink-Komplexe wurden als einkristalline Feststoffe isoliert und ihre Struktur mittels Einkristall-Röntgenstrukturanalyse bestimmt.After slow reduction of the solvent at room temperature, colorless crystals of each Zinksalzaddu formed ktes. The diamine-zinc complexes according to the invention described below were isolated as monocrystalline solids and their structure determined by means of single-crystal X-ray structure analysis.
Die als Ausgangsprodukte eingesetzten Aminverbindungen sind kommerziell erhältlich oder wurden in Anlehnung an Literaturvorschriften dargestellt (F. Larrox, E. N. Jacobsen, J. Org. Chem. 1994, 59, 1939; J.-C. Kizirian, N. Cabello, L. Pinchard, J.-C. Caille, A. Alexakis, Tetrahedron 2005, 61, 8939; A. P. CoIe, V. Mahadevan, L. M. Mirica, X. Ottenwaelder, T. D. P. Stack, Inorg. Chem. 2005, 44, 7345; C. Strohmann, V. H. Gessner, Angew. Chem. 2007, 119, 8429-8432; Angew. Chem. Int. Ed. 2007, 46, 8281 -8283; G. Fraenkel, J. Gallucci, H. S. Rosenzweig, J. Org. Chem. 1989, 54, 681 -683). Racemische und chirale Verbindungen wurden analog synthetisiert.The amine compounds used as starting materials are commercially available or were prepared on the basis of literature procedures (F. Larrox, EN Jacobsen, J. Org. Chem., 1994, 59, 1939, J.-C. Kizirian, N. Cabello, L. Pinchard, Cork, A. Alexakis, Tetrahedron 2005, 61, 8939, AP CoIe, V. Mahadevan, LM Mirica, X. Ottenwaelder, TDP Stack, Inorg Chem, 2005, 44, 7345, C. Strohmann, VH Gessner, Angew Chem 2007, 119, 8429-8432, Angew Chem Chem Int Ed 2007, 46, 8281-8283; G. Fraenkel, J. Gallucci, HS Rosenzweig, J. Org. Chem. 1989, 54, 681-683). Racemic and chiral compounds were synthesized analogously.
Beispiel 1 : Darstellung von ZnBr2 (R5R)-TMCDAExample 1: Preparation of ZnBr 2 (R 5 R) -TMCDA
Die Darstellung von (R1R)-TMCDA erfolgte nach Literaturangaben ausgehend von einem Isomerengemisch von Cyclohexandiamin. Racematspaltung mit L-Weinsäure und Eschweiler-Clark-Methylierung ergab das enantiomerenreine (1 R,2R)-Λ/,Λ/,Λ/',Λ/'- Tetramethylcyclohexan-1 ,2-diamin. Die Enantiomerenreinheitsbestimmung der chiralen Verbindungen erfolgte nach Literaturangaben (C. Strohmann, V. H. Gessner, J. Am. Chem. Soc. 2008, 130, 11719; S. C. Benson, P. Cai, M. Colon, M. A. Haiza, M. Tokles, J. K. Snyder, J. Org. Chem. 1988, 53, 5335).The preparation of (R 1 R) -TMCDA was based on literature starting from a mixture of isomers of cyclohexanediamine. Resolution with L-tartaric acid and Eschweiler-Clark methylation gave the enantiopure (1R, 2R) -Λ /, Λ /, Λ / ', Λ /' - tetramethylcyclohexane-1,2-diamine. The enantiomeric purity determination of the chiral compounds was carried out according to the literature (C. Strohmann, VH Gessner, J. Am. Chem. Soc., 2008, 130, 11719; SC Benson, P. Cai, M. Colon, MA Haiza, M. Tokles, JK Snyder , J. Org. Chem. 1988, 53, 5335).
Wie in Fig. 2 gezeigt wurden zur Darstellung des Zinksalzkomplexes 132 mg (0.59 mmol) Zink(ll)bromid und 100 mg (0.59 mmol) (R1R)-TMCDA in 5 ml Aceton gelöst. Nach langsamem Abdampfen des Lösungsmittels bei Raumtemperatur bildeten sich farblose Einkristalle des Adduktes (Ausbeute: 183 mg; 46 mmol, 78 %).As shown in FIG. 2, 132 mg (0.59 mmol) of zinc (II) bromide and 100 mg (0.59 mmol) of (R 1 R) -TMCDA were dissolved in 5 ml of acetone to prepare the zinc salt complex. After slow evaporation of the solvent at room temperature, colorless single crystals of the adduct were formed (yield: 183 mg, 46 mmol, 78%).
Das erhaltene Prod u kt zeigte d ie folgenden N M R-spektroskopischen und elementaranalytischen Eigenschaften:The product obtained showed the following N M R spectroscopic and elemental analytical properties:
1H-NMR: (500.1 MHz, CDCI3, CDCI3): δ = 1.16-1.34 (m, 4H, CH2-Cyclohexyl), 1 H-NMR: (500.1 MHz, CDCl 3 , CDCl 3 ): δ = 1.16-1.34 (m, 4H, CH 2 -cyclohexyl),
1.84-1.89 (m, 2H; CH2-Cyclohexyl), 2.01 -2.05 (m, 2H; CH2- Cyclohexyl), 2.42 [s, 6H; N(CH3)2, D1], 2.57-2.60 (m, 2H; CHN), 2.63 [s, 6H; N(CH3)2, D2].1.84-1.89 (m, 2H, CH 2 cyclohexyl), 2:01 to 2:05 (m, 2H; CH 2 - cyclohexyl), 2:42 [s, 6H; N (CH 3) 2, D1], 2.57-2.60 (m, 2H, CHN), 2.63 [s, 6H; N (CH 3 ) 2 , D 2 ].
{1 H)13C-NMR (125.8 MHz, CDCI3, CDCI3): δ = 22.3 + 24.2 (CH2-Cyclohexyl) 41.1 + 47.1 [N(CHs)2, D1 und D2], 64.5 (CHN).{1 H) 13 C-NMR (125.8 MHz, CDCl 3, CDCl 3): δ = 22.3 + 24.2 (CH 2 cyclohexyl) 41.1 + 47.1 [N (CHs) 2, D1 and D2], (64.5 CHN).
Elementaranalyse: gemessen: C 30.50 H 5.55 N 7.10 berechnet: C 30.37 H 5.61 N 7.08Elemental analysis: measured: C 30.50 H 5.55 N 7.10 calculated: C 30.37 H 5.61 N 7.08
Für den erhaltenen Komplex ergaben sich die in den nachfolgenden Tabellen 1 und 2 angegebenen Strukturdaten. Tabelle 1 : Verzeichnis der kristallographischen Daten der Verbindung ZnBr2-(R1R)- TMCDA
Figure imgf000008_0001
For the resulting complex, the structural data given in Tables 1 and 2 below were obtained. Table 1: List of crystallographic data of compound ZnBr 2 - (R 1 R) - TMCDA
Figure imgf000008_0001
Tabelle 2: Atomkoordinaten (x 104) und äquivalente isotrope Auslenkungsparameter (A2 x 103) für ZnBr2-(RR)-TMCDA . U(eq) wird berechnet als ein Drittel der Spur desTable 2: Atomic coordinates (x 10 4 ) and equivalent isotropic displacement parameters (A 2 x 10 3 ) for ZnBr 2 - (RR) -TMCDA. U (eq) is calculated as one third of the trace of the
Figure imgf000008_0002
Figure imgf000008_0002
Figure imgf000009_0001
Figure imgf000009_0001
Beispiel 2: Darstellung von ZnCI2 (R5R)-TMCDAExample 2: Preparation of ZnCl 2 (R 5 R) -TMCDA
In Übereinstimmung mit dem in Beispiel 1 beschriebenen Syntheseweg wurde auch ZnC^-(RR)-TMCDA dargestellt, wobei als zweiwertige Zinkverbindung eine entsprechende Menge Zink(ll)chlohd eingesetzt wurde.In accordance with the synthetic route described in Example 1 also ZnC ^ - (RR) -TMCDA was shown, wherein as a divalent zinc compound, a corresponding amount of zinc (II) chlohd was used.
Für den erhaltenen Komplex ergaben sich die in der nachfolgenden Tabelle 3 angegebenen Strukturdaten. ZeI I konstanten ZnCI2 (RR)-TMCDA:For the resulting complex, the structural data given in Table 3 below. ZeI I constant ZnCl 2 (RR) -TMCDA:
Raumgruppe Fλ\
Figure imgf000010_0001
Space group Fλ \
Figure imgf000010_0001
Zellvolumen: 1402.08(9) Ä3 Cell volume: 1402.08 (9) Ä 3
Tabelle 3: Atomkoordinaten (x 104) und äquivalente isotrope Auslenkungsparameter (A2 χ 103) für ZnCI2-(RR)-TMCDA . U(eq) wird berechnet als ein Drittel der Spur desTable 3: Atomic coordinates (x 10 4 ) and equivalent isotropic displacement parameters (A 2 χ 10 3 ) for ZnCl 2 - (RR) -TMCDA. U (eq) is calculated as one third of the trace of the
Figure imgf000010_0002
Figure imgf000010_0002
Figure imgf000011_0001
Figure imgf000011_0001
Beispiel 3: Darstellung von ZnBr2 (R5R)-TECDAExample 3: Preparation of ZnBr 2 (R 5 R) -TECDA
Die Darstellung von (R1R)-TECDA erfolgte nach Literaturangaben ebenfalls ausgehend von einem Isomerengemisch von Cyclohexandiamin. Racematspaltung mit L-Weinsäure und anschließende Freisetzung des Amins mit wässriger KOH- Lösung ergab das enantiomerenreine (1 R,2R)-Cyclohexandiamin, das mit Diethylsulfat zu TECDA umgesetzt wurde.The preparation of (R 1 R) -TECDA was carried out according to literature also starting from a mixture of isomers of cyclohexanediamine. Resolution with L-tartaric acid and subsequent release of the amine with aqueous KOH solution gave the enantiomerically pure (1 R, 2R) -cyclohexanediamine, which was reacted with diethyl sulfate to TECDA.
Wie in Fig. 3 gezeigt wurden zur Darstellung des Zinksalzkomplexes 99 mg (0.44 mmol) Zink(ll)bromid und 100 mg (0.44 mmol) (R1R)-TECDA in 5 ml Aceton gelöst. Nach Abdampfen des Lösungsmittels bei Raumtemperatur bildeten sich farblose Nadeln der monomeren Verbindung (185 mg, 0.41 mmol; 93 %). Das erhaltene Prod u kt zeigte d ie folgenden N M R-spektroskopischen und elementaranalytischen Eigenschaften:As shown in FIG. 3, 99 mg (0.44 mmol) of zinc (II) bromide and 100 mg (0.44 mmol) of (R 1 R) -TECDA were dissolved in 5 ml of acetone to prepare the zinc salt complex. After evaporation of the solvent at room temperature, colorless needles of the monomeric compound were formed (185 mg, 0.41 mmol, 93%). The product obtained showed the following NM R spectroscopic and elemental analytical properties:
1H-NMR: (400.1 MHz, CDCI3, CDCI3): δ = 1.19-1.31 (m, 2H; CH2), 1.27 (t, 6H, 1 H-NMR: (400.1 MHz, CDCl 3 , CDCl 3 ): δ = 1.19-1.31 (m, 2H, CH 2 ), 1.27 (t, 6H,
3JHH = 7.0 Hz; CH3 D1 ), 1.27 (t, 6H, 3JHH = 7.0 Hz; CH3 D2), 1.38-1.51 (m, 2H; CH2), 1.81 -1.87 (m, 2H; CH2), 2.11 -2.20 (m, 2H; CH2), 2.82- 2.93 (m, 4H; CH2N, D1 ), 2.93-2.98 (m, 2H; CHN), 3.20-3.30 (m, 4H; CH2N D2). 3 JHH = 7.0 Hz; CH3 D1), 1.27 (t, 6H, 3 J HH = 7.0 Hz; CH3 D2), 1:38 to 1:51 (m, 2H, CH 2), 1.81 -1.87 (m, 2H, CH 2), 2.11, -2.20 (m, 2H, CH 2 ), 2.82-2.93 (m, 4H, CH 2 N, D1), 2.93-2.98 (m, 2H, CHN), 3.20-3.30 (m, 4H, CH 2 N D2).
(1H)13C-NMR (100.6 MHz, CDCI3, CDCI3): δ = 10.7 + 12.5 (CH3, D1 + D2), 25.3 + 28.7 (CH2 Cyclohexyl), 41.2 + 48.5 (CH2N, D1 + D2), 66.6(CHN).( 1 H) 13 C-NMR (100.6 MHz, CDCl 3 , CDCl 3 ): δ = 10.7 + 12.5 (CH 3 , D 1 + D 2 ), 25.3 + 28.7 (CH 2 cyclohexyl), 41.2 + 48.5 (CH 2 N, D1 + D2), 66.6 (CHN).
Elementaranalyse: gemessen: C 37.35 H 6.55 N 6.25Elemental analysis: measured: C 37.35 H 6.55 N 6.25
Berechnet: C 37.24 H 6.70 N 6.20Calculated: C 37.24 H 6.70 N 6.20
Die Molekülstruktur des erhaltenen Komplexes ist in Fig. 4 wiedergegebenen. Ausgewählte Bindungslängen (A) und -winkel [°] ergaben sich wie folgt: Br(1 )-Zn(1 ) 2.3691 (7), Br(2)-Zn(1 ) 2.3451 (10), Br(3)-Zn(2) 2.3682(7), Br(4)-Zn(2) 2.3416(10), N(1 )-Zn(1 ) 2.087(5), N(2)-Zn(1 ) 2.112(4), N(3)-Zn(2) 2.105(4), N(4)- Zn(2) 2.076(4); N(1 )-Zn(1 )-N(2) 86.74(18), N(1 )-Zn(1 )-Br(2)117.35(13), N(2)- Zn(1 )-Br(2) 113.61 (14), N(1 )-Zn(1 )-Br(1 ) 107.17(11 ), N(2)-Zn(1 )-Br(1 ) 111.81 (11 ), Br(2)-Zn(1 )-Br(1 ) 116.45(3), N(4)-Zn(2)-N(3) 86.72(16), N(4)-Zn(2)-Br(4) 120.32(13), N(3)-Zn(2)-Br(4) 112.01 (13), N(4)-Zn(2)-Br(3) 105.78(11 ), N(3)-Zn(2)- Br(3) 113.10(11 ), Br(4)-Zn(2)-Br(3) 115.58(3).The molecular structure of the resulting complex is shown in FIG. 4. Selected bond lengths (A) and angles [°] were as follows: Br (1) -Zn (1) 2.3691 (7), Br (2) -Zn (1) 2.3451 (10), Br (3) -Zn (2) 2.3682 (7), Br (4) -Zn (2) 2.3416 (10), N (1) -Zn (1) 2.087 (5), N (2) -Zn (1) 2,112 (4), N (3) -Zn (2) 2.105 (4), N (4) -Zn (2) 2.076 (4); N (1) -Zn (1) -N (2) 86.74 (18), N (1) -Zn (1) -Br (2) 117.35 (13), N (2) - Zn (1) -Br ( 2) 113.61 (14), N (1) -Zn (1) -Br (1) 107.17 (11), N (2) -Zn (1) -Br (1) 111.81 (11), Br (2) - Zn (1) -Br (1) 116.45 (3), N (4) -Zn (2) -N (3) 86.72 (16), N (4) -Zn (2) -Br (4) 120.32 (13 ), N (3) -Zn (2) -Br (4) 112.01 (13), N (4) -Zn (2) -Br (3) 105.78 (11), N (3) -Zn (2) - Br (3) 113.10 (11), Br (4) -Zn (2) -Br (3) 115.58 (3).
Die Messung der Ein kristal le erfolgte auf den Geräten Bru ker APEX-CCD (D8 Dreikreis-Goniometer) der Firma Bruker Analytical X-Ray Systems und CrysAlis CCD der Firma Oxford Diffraction Ltd. Zur Sammlung und Verarbeitung der Daten wurden die implementierten Programme verwendet. Die Lösung der Einkristall- Röntgenstrukturanalysen erfolgte mit dem Programm SHELXS90 [7] mit direkten Methoden, die Strukturverfeinerung mit dem Programm SHELXL97 [8]. Alle Nicht- Wasserstoffatome wurden anisotrop verfeinert. Ueq ist definiert als ein Drittel der Spur des orthogonal isierten Tensors U1J. Für die Wasserstoffatome wurden die Standardwerte des SHELXL-Programms verwendet mit L/IS0(H) = -1.2 Ueq(C) für CH2, CH und CHarom und mit L/IS0(H) = -1.5 Ueq(C) für CH3. Der Exponent des anisotropen Auslenkungsfaktors hat die Form: -2π2[h2-a*-2U11 + ... + 2 h ka*b*U12].The measurement of the A crystal was carried out on the devices Bru ker APEX-CCD (D8 three-circuit goniometer) from Bruker Analytical X-Ray Systems and CrysAlis CCD from Oxford Diffraction Ltd. The implemented programs were used to collect and process the data. The solution of the single-crystal X-ray structure analyzes was done with the program SHELXS90 [7] with direct methods, the structure refinement with the program SHELXL97 [8]. All non- Hydrogen atoms were refined anisotropically. U eq is defined as one third of the trace of the orthogonalized tensor U 1J . For the hydrogen atoms the standard values of the SHELXL program were used with L / IS0 (H) = -1.2 U eq (C) for CH 2 , CH and CHarom and with L / IS0 (H) = -1.5 U eq (C) for CH 3 . The exponent of the anisotropic excursion factor has the form: -2π 2 [h 2 -a * -2U 11 + ... + 2 h ka * b * U 12 ].
Für den erhaltenen Komplex ergaben sich die in den nachfolgenden Tabellen 4 bis 6 angegebenen Strukturdaten.For the resulting complex, the structural data given in Tables 4 to 6 below were obtained.
Zellkonstanten ZnBr2(RR)-TECDA:Cell constants ZnBr 2 (RR) -TECDA:
Raumgruppe:
Figure imgf000013_0001
a = 7.7904(3) Ä b = 14.2265(5) Ä c=16.4885(7)Ä ß = 102.060(4) Ä
Space group:
Figure imgf000013_0001
a = 7.7904 (3) Ä b = 14.2265 (5) Ä c = 16.4885 (7) Ä ß = 102.060 (4) Ä
Zellvolumen: 1787.09(12) Ä3 Cell volume: 1787.09 (12) Ä 3
Tabelle 4: Atomkoordinaten (x 104) und äquivalente isotrope Auslenkungsparameter ((AA22Xx 110033)) ffüürr ZZnnBBrr22-((RR11RR))--TECDA . U(eq) wird berechnet als ein Drittel der Spur des orthogonalen UÜ TensorsTable 4: Atomic coordinates (x 10 4 ) and equivalent isotropic displacement parameters ((AA 22 Xx 1100 33 )) for ZZnnBBrr 22 - ((RR 11 RR)) - TECDA. U (eq) is calculated as one-third of the trace of the orthogonal UÜ tensor
X y Z U(eq)X y Z U (eq)
Br(1) 12030(1) 1105(1) 5336(1) 33(1)Br (1) 12030 (1) 1105 (1) 5336 (1) 33 (1)
Br(2) 8411(1) 2978(1) 4271(1) 25(1)Br (2) 8411 (1) 2978 (1) 4271 (1) 25 (1)
Br(3) 12167(1) 3588(1) 376(1) 30(1)Br (3) 12167 (1) 3588 (1) 376 (1) 30 (1)
Br(4) 8846(1) 1622(1) -734(1) 25(1)Br (4) 8846 (1) 1622 (1) -734 (1) 25 (1)
C(1) 8791(7) 320(4) 3366(4) 27(2)C (1) 8791 (7) 320 (4) 3366 (4) 27 (2)
C(2) 8412(6) -186(5) 4105(4) 22(2)C (2) 8412 (6) -186 (5) 4105 (4) 22 (2)
C(3) 4514(6) 72(4) 3660(3) 23(2)C (3) 4514 (6) 72 (4) 3660 (3) 23 (2)
C(4) 5790(5) 767(4) 4184(3) 15(1)C (4) 5790 (5) 767 (4) 4184 (3) 15 (1)
C(5) 7551(5) -75(3) 5452(3) 12(1)C (5) 7551 (5) -75 (3) 5452 (3) 12 (1)
C(6) 6439(6) -971(4) 5396(4) 19(2)C (6) 6439 (6) -971 (4) 5396 (4) 19 (2)
C(7) 6694(6) -1464(3) 6226(3) 21(1)C (7) 6694 (6) -1464 (3) 6226 (3) 21 (1)
C(8) 6226(6) -804(4) 6872(3) 19(1)C (8) 6226 (6) -804 (4) 6872 (3) 19 (1)
C(9) 7286(6) 105(4) 6940(4) 19(2)C (9) 7286 (6) 105 (4) 6940 (4) 19 (2)
C(10) 7052(6) 602(3) 6087(3) 12(1)C (10) 7052 (6) 602 (3) 6087 (3) 12 (1)
C(11) 9489(5) 1642(5) 6849(3) 19(1)C (11) 9489 (5) 1642 (5) 6849 (3) 19 (1)
C(12) 10457(6) 2577(4) 6858(4) 24(2) C(13) 6679(6) 2321(4) 6086(4) 16(1)C (12) 10457 (6) 2577 (4) 6858 (4) 24 (2) C (13) 6679 (6) 2321 (4) 6086 (4) 16 (1)
C(14) 5799(6) 2394(4) 6828(4) 25(2)C (14) 5799 (6) 2394 (4) 6828 (4) 25 (2)
C(15) 4451(6) 4264(4) -1471(4) 26(2)C (15) 4451 (6) 4264 (4) -1471 (4) 26 (2)
C(16) 5897(5) 3607(4) -1040(3) 17(1)C (16) 5897 (5) 3607 (4) -1040 (3) 17 (1)
C(17) 9081(6) 4326(4) -1556(4) 26(2)C (17) 9081 (6) 4326 (4) -1556 (4) 26 (2)
C(18) 8373(6) 4749(5) -839(4) 19(2)C (18) 8373 (6) 4749 (5) -839 (4) 19 (2)
C(19) 6750(5) 4437(3) 308(3) 10(1)C (19) 6750 (5) 4437 (3) 308 (3) 10 (1)
C(20) 6477(6) 5504(4) 285(4) 20(2)C (20) 6477 (6) 5504 (4) 285 (4) 20 (2)
C(21) 5747(6) 5834(3) 1016(3) 29(2)C (21) 5747 (6) 5834 (3) 1016 (3) 29 (2)
C(22) 6949(6) 5546(4) 1822(4) 27(2)C (22) 6949 (6) 5546 (4) 1822 (4) 27 (2)
C(23) 7149(6) 4487(4) 1850(4) 19(2)C (23) 7149 (6) 4487 (4) 1850 (4) 19 (2)
C(24) 7932(5) 4142(3) 1129(3) 14(1)C (24) 7932 (5) 4142 (3) 1129 (3) 14 (1)
C(25) 6781(5) 2454(4) 1078(4) 20(2)C (25) 6781 (5) 2454 (4) 1078 (4) 20 (2)
C(26) 6115(6) 2247(4) 1870(4) 30(2)C (26) 6115 (6) 2247 (4) 1870 (4) 30 (2)
C(27) 9741(5) 2879(5) 1867(3) 22(2)C (27) 9741 (5) 2879 (5) 1867 (3) 22 (2)
C(28) 10489(6) 1899(4) 1829(4) 32(2)C (28) 10489 (6) 1899 (4) 1829 (4) 32 (2)
N(1) 7531(5) 412(3) 4645(3) 12(1)N (1) 7531 (5) 412 (3) 4645 (3) 12 (1)
N(2) 7969(4) 1556(4) 6118(3) 12(1)N (2) 7969 (4) 1556 (4) 6118 (3) 12 (1)
N(3) 7394(5) 4043(3) -435(3) 10(1)N (3) 7394 (5) 4043 (3) -435 (3) 10 (1)
N(4) 8323(4) 3108(3) 1140(3) 10(1)N (4) 8323 (4) 3108 (3) 1140 (3) 10 (1)
Zn(1) 9058(1) 1595(1) 5048(1) 14(1)Zn (1) 9058 (1) 1595 (1) 5048 (1) 14 (1)
Zn(2) 9255(1) 3007(1) 52(1) 15(1)Zn (2) 9255 (1) 3007 (1) 52 (1) 15 (1)
Tabelle 5: Anisotrope Auslenkungsparameter (A x 10 ) für ZnBr2(RR)-TECDA. Der Exponent des anisotropen Auslenkungsfaktors hat die Form: -2ττ2 [h2a*2U11 + ... + 2 h k a* b* U12]Table 5: Anisotropic excursion parameters (A x 10) for ZnBr 2 (RR) TECDA. The exponent of the anisotropic excursion factor has the form: -2ττ 2 [h 2 a * 2 U 11 + ... + 2 hka * b * U 12 ]
I Ji 1 l|22 ,,33 ,,23 ,,13 l|12I Ji 1 l | 22 ,, 33 ,, 23 ,, 13 l | 12
Br(1) 12(1) 50(1) 38(1) -4(1) 5(1) 4(1)Br (1) 12 (1) 50 (1) 38 (1) -4 (1) 5 (1) 4 (1)
Br(2) 31(1) 20(1) 25(1) 8(1) 5(1) -3(1)Br (2) 31 (1) 20 (1) 25 (1) 8 (1) 5 (1) -3 (1)
Br(3) 12(1) 42(1) 36(1) 1(1) 5(1) -6(1)Br (3) 12 (1) 42 (1) 36 (1) 1 (1) 5 (1) -6 (1)
Br(4) 23(1) 21(1) 28(1) -10(1) 3(1) 5(1)Br (4) 23 (1) 21 (1) 28 (1) -10 (1) 3 (1) 5 (1)
C(1) 39(3) 25(4) 19(4) -1(3) 13(3) 4(3)C (1) 39 (3) 25 (4) 19 (4) -1 (3) 13 (3) 4 (3)
C(2) 31(3) 21(4) 17(4) -1(3) 14(3) 9(3)C (2) 31 (3) 21 (4) 17 (4) -1 (3) 14 (3) 9 (3)
C(3) 23(3) 22(4) 15(3) 3(3) -15(2) 1(2)C (3) 23 (3) 22 (4) 15 (3) 3 (3) -15 (2) 1 (2)
C(4) 12(2) 23(3) 7(3) 8(3) -2(2) 2(2)C (4) 12 (2) 23 (3) 7 (3) 8 (3) -2 (2) 2 (2)
C(5) 13(2) 17(3) 7(3) 8(2) 4(2) 6(2)C (5) 13 (2) 17 (3) 7 (3) 8 (2) 4 (2) 6 (2)
C(6) 25(3) 12(4) 21(4) -7(3) 9(3) -2(2)C (6) 25 (3) 12 (4) 21 (4) -7 (3) 9 (3) -2 (2)
C(7) 22(3) 17(3) 26(3) 13(3) 8(2) -1(2)C (7) 22 (3) 17 (3) 26 (3) 13 (3) 8 (2) -1 (2)
C(8) 20(3) 20(3) 17(3) 15(3) 5(3) 1(2) C(9) 24(3) 21(4) 15(4) 7(3) 10(3) 2(3)C (8) 20 (3) 20 (3) 17 (3) 15 (3) 5 (3) 1 (2) C (9) 24 (3) 21 (4) 15 (4) 7 (3) 10 (3) 2 (3)
C(10) 10(2) 10(3) 18(3) 2(2) 4(2) -2(2)C (10) 10 (2) 10 (3) 18 (3) 2 (2) 4 (2) -2 (2)
C(11) 19(2) 24(3) 14(4) 1(3) 5(2) -7(3)C (11) 19 (2) 24 (3) 14 (4) 1 (3) 5 (2) -7 (3)
C(12) 34(3) 25(4) 11(4) 0(3) -3(3) -8(3)C (12) 34 (3) 25 (4) 11 (4) 0 (3) -3 (3) -8 (3)
C(13) 22(3) 13(3) 14(4) -4(3) 6(3) 3(2)C (13) 22 (3) 13 (3) 14 (4) -4 (3) 6 (3) 3 (2)
C(14) 27(3) 28(4) 21(4) -13(3) 9(3) 5(3)C (14) 27 (3) 28 (4) 21 (4) -13 (3) 9 (3) 5 (3)
C(15) 24(3) 26(4) 24(4) -6(3) -2(3) -2(3)C (15) 24 (3) 26 (4) 24 (4) -6 (3) -2 (3) -2 (3)
C(16) 22(2) 18(3) 9(3) -12(3) -3(2) -7(2)C (16) 22 (2) 18 (3) 9 (3) -12 (3) -3 (2) -7 (2)
C(17) 30(3) 36(4) 17(4) 6(3) 16(3) -1(3)C (17) 30 (3) 36 (4) 17 (4) 6 (3) 16 (3) -1 (3)
C(18) 17(3) 12(4) 27(5) 2(3) 6(3) 1(3)C (18) 17 (3) 12 (4) 27 (5) 2 (3) 6 (3) 1 (3)
C(19) 11(2) 8(3) 13(3) -7(2) 4(2) -4(2)C (19) 11 (2) 8 (3) 13 (3) -7 (2) 4 (2) -4 (2)
C(20) 16(3) 19(4) 20(4) -9(3) -6(3) 5(3)C (20) 16 (3) 19 (4) 20 (4) -9 (3) -6 (3) 5 (3)
C(21) 29(3) 8(3) 49(4) -11(3) 5(3) 12(2)C (21) 29 (3) 8 (3) 49 (4) -11 (3) 5 (3) 12 (2)
C(22) 27(3) 34(4) 23(4) -13(3) 10(3) 0(3)C (22) 27 (3) 34 (4) 23 (4) -13 (3) 10 (3) 0 (3)
C(23) 25(3) 26(4) 8(4) -4(3) 5(3) 5(3)C (23) 25 (3) 26 (4) 8 (4) -4 (3) 5 (3) 5 (3)
C(24) 16(2) 14(3) 10(3) -1(2) 1(2) 1(2)C (24) 16 (2) 14 (3) 10 (3) -1 (2) 1 (2) 1 (2)
C(25) 15(3) 15(3) 31(4) -3(3) 4(3) 1(2)C (25) 15 (3) 15 (3) 31 (4) -3 (3) 4 (3) 1 (2)
C(26) 28(3) 24(4) 41(5) 1(3) 16(3) 3(3)C (26) 28 (3) 24 (4) 41 (5) 1 (3) 16 (3) 3 (3)
C(27) 21(2) 29(4) 13(4) 6(3) 1(2) 3(3)C (27) 21 (2) 29 (4) 13 (4) 6 (3) 1 (2) 3 (3)
C(28) 35(3) 32(4) 29(5) 13(3) 8(3) 20(3)C (28) 35 (3) 32 (4) 29 (5) 13 (3) 8 (3) 20 (3)
N(1) 12(2) 14(3) 9(3) -3(2) 1(2) 2(2)N (1) 12 (2) 14 (3) 9 (3) -3 (2) 1 (2) 2 (2)
N(2) 11(2) 17(3) 9(3) -1(3) 1(2) -3(2)N (2) 11 (2) 17 (3) 9 (3) -1 (3) 1 (2) -3 (2)
N(3) 13(2) 8(2) 8(3) -4(2) 2(2) -6(2)N (3) 13 (2) 8 (2) 8 (3) -4 (2) 2 (2) -6 (2)
N(4) 12(2) 5(3) 14(3) 3(2) 4(2) -1(2)N (4) 12 (2) 5 (3) 14 (3) 3 (2) 4 (2) -1 (2)
Zn(1) 13(1) 17(1) 13(1) 1(1) 3(1) -2(1)Zn (1) 13 (1) 17 (1) 13 (1) 1 (1) 3 (1) -2 (1)
Zn(2) 12(1) 16(1) 16(1) -2(1) 3(1) 1(1)Zn (2) 12 (1) 16 (1) 16 (1) -2 (1) 3 (1) 1 (1)
Tabelle 6: Wasserstoffkoordinaten (x 104) und isotrope Auslenkungsparameter (A2 X 103) für ZnBr2 (RR)-TECDATable 6: Hydrogen Coordinates (x 10 4 ) and Isotropic Displacement Parameters (A 2 X 10 3 ) for ZnBr 2 (RR) TECDA
X y Z U(eq)X y Z U (eq)
H(1A) 7684 499 2997 40H (1A) 7684 499 2997 40
H(1B) 9455 -94 3068 40H (1B) 9455-94 306840
H(1C) 9483 885 3549 40H (1C) 9483 885 3549 40
H(2A) 7652 -734 3911 26H (2A) 7652-734 3911 26
H(2B) 9528 -427 4441 26H (2B) 9528 -427 4441 26
H(3A) 5076 -216 3242 34H (3A) 5076-216 3242 34
H(3B) 3453 406 3384 34H (3B) 3453 406 3384 34
H(3C) 4199 -419 4020 34H (3C) 4199 -419 4020 34
H(4A) 6015 1278 3812 18H (4A) 6015 1278 3812 18
H(4B) 5182 1052 4594 18 H(5) 8794 -269 5676 14H (4B) 5182 1052 4594 18 H (5) 8794-269 5676 14
H(6A) 5185 -807 5205 23H (6A) 5185-807 5205 23
H(6B) 6771 -1402 4983 23H (6B) 6771 -1402 4983 23
H(7A) 7932 -1667 6402 25H (7A) 7932-1667 6402 25
H(7B) 5940 -2030 6175 25H (7B) 5940-2030 6175 25
H(8A) 6454 -1123 7418 23H (8A) 6454-1123 7418 23
H(8B) 4959 -653 6721 23H (8B) 4959-653 6721 23
H(9A) 8544 -38 7151 23H (9A) 8544-38 7151 23
H(9B) 6898 531 7341 23H (9B) 6898 531 7341 23
H(10) 5767 727 5900 15H (10) 5767 727 5900 15
H(11A) 10323 1121 6833 23H (11A) 10323 1121 6833 23
H(11B) 9048 1582 7368 23H (11B) 9048 1582 7368 23
H(12A) 10696 2698 6308 37H (12A) 10696 2698 6308 37
H(12B) 11567 2548 7267 37H (12B) 11567 2548 7267 37
H(12C) 9728 3084 7006 37H (12C) 9728 3084 7006 37
H(13A) 5752 2238 5580 19H (13A) 5752 2238 5580 19
H(13B) 7275 2924 6030 19H (13B) 7275 2924 6030 19
H(14A) 5049 1843 6842 37H (14A) 5049 1843 6842 37
H(14B) 5084 2966 6780 37H (14B) 5084 2966 6780 37
H(14C) 6701 2419 7341 37H (14C) 6701 2419 7341 37
H(15A) 3898 4566 -1057 39H (15A) 3898 4566 -1057 39
H(15B) 3568 3904 -1859 39H (15B) 3568 3904 -1859 39
H(15C) 4955 4747 -1776 39H (15C) 4955 4747 -1776 39
H(16A) 5356 3122 -743 21H (16A) 5356 3122 -743 21
H(16B) 6385 3281 -1472 21H (16B) 6385 3281 -1472 21
H(17A) 9631 3718 -1386 39H (17A) 9631 3718 -1386 39
H(17B) 9953 4752 -1706 39H (17B) 9953 4752 -1706 39
H(17C) 8113 4237 -2035 39H (17C) 8113 4237 -2035 39
H(18A) 9364 5001 -419 22H (18A) 9364 5001 -419 22
H(18B) 7580 5278 -1049 22H (18B) 7580 5278 -1049 22
H(19) 5574 4148 295 12H (19) 5574 4148 295 12
H(20A) 7612 5821 293 24H (20A) 7612 5821 293 24
H(20B) 5657 5680 -237 24H (20B) 5657 5680 -237 24
H(21A) 5623 6527 998 35H (21A) 5623 6527 998 35
H(21B) 4569 5557 985 35H (21B) 4569 5557 985 35
H(22A) 6453 5760 2296 33H (22A) 6453 5760 2296 33
H(22B) 8113 5844 1866 33H (22B) 8113 5844 1866 33
H(23A) 7922 4300 2381 23H (23A) 7922 4300 2381 23
H(23B) 5987 4192 1820 23H (23B) 5987 4192 1820 23
H(24) 9075 4477 1169 17H (24) 9075 4477 1169 17
H(25A) 7098 1847 854 24H (25A) 7098 1847 854 24
H(25B) 5792 2719 665 24 H(26A) 7064 1969 2285 45H (25B) 5792 2719 665 24 H (26A) 7064 1969 2285 45
H(26B) 5129 1806 1744 45H (26B) 5129 1806 1744 45
H(26C) 5726 2833 2087 45H (26C) 5726 2833 2087 45
H(27A) 9272 2937 2379 26H (27A) 9272 2937 2379 26
H(27B) 10700 3344 1902 26H (27B) 10700 3344 1902 26
H(28A) 9548 1434 1794 48H (28A) 9548 1434 1794 48
H(28B) 11392 1783 2330 48H (28B) 11392 1783 2330 48
H(28C) 11011 1846 1339 48H (28C) 11011 1846 1339 48
Beispiel 4: Darstellung von (Rc,RcRN,RN')-[ZnCI2 DEDMCDA] und (RcRcRN5RN )-[ZnBr2 DEDMCDA]Example 4: Preparation of (Rc, Rc R N , R N ' ) - [ZnCl 2 DEDMCDA] and (Rc Rc R N5 R N ) - [ZnBr 2 DEDMCDA]
In analoger Weise zu den Beispielen 1 bis 3 wurden die Komplexe (RCRCRN, RN )- [ZnCI2 DEDMCDA] und (RcRcRN1RN )-[ZnBr2 DEDMCDA] dargestellt.In an analogous manner to Examples 1 to 3, the complexes (C R C R RN, RN) - are detailed [ZnBr 2 DEDMCDA] - [ZnCl 2 DEDMCDA] and (RcRcR N1 R N).
Für die erhaltenen Komplexe ergaben sich die in der nachfolgenden Tabelle 7 und 8 angegebenen Strukturdaten.For the complexes obtained, the structural data given in Table 7 and 8 below were obtained.
ZeI I konstanten (RcRcRN1RN )-[ZnCI2 DEDMCDA]:ZeI I constant (RcRcR N1 R N ) - [ZnCl 2 DEDMCDA]:
Kristallsystem orthorhombisch Raumgruppe P212i21 (19)Crystal system orthorhombic space group P2 1 2i2 1 (19)
Zelldimension [A] a = 10.2752(11 ) b = 14.4299(16) c = 21.668(3) Zellvolumen [A3] 3212.8(6)Cell dimension [A] a = 10.2752 (11) b = 14.4299 (16) c = 21,668 (3) cell volume [A 3 ] 3212.8 (6)
Tabelle 7: Atomkoordinaten (x 104) und äquivalente isotrope Auslenkungsparameter (A x 10 ) für (RcRcRN1RN )-[ZnCI2-DEDMCDA]. U(eq) wird berechnet als ein Drittel der Spur des orthogonalen UÜ TensorsTable 7: Atomic coordinates (x 10 4 ) and equivalent isotropic displacement parameters (A x 10) for (RcRcR N1 R N ) - [ZnCI 2 -DEDMCDA]. U (eq) is calculated as one-third of the trace of the orthogonal UÜ tensor
X y Z U(eq)X y Z U (eq)
C(1) 5462(2) 4633(2) 9097(1) 36(1)C (1) 5462 (2) 4633 (2) 9097 (1) 36 (1)
C(2) 6529(2) 4648(2) 8087(1) 35(1)C (2) 6529 (2) 4648 (2) 8087 (1) 35 (1)
C(3) 7488(3) 5389(2) 8287(1) 50(1)C (3) 7488 (3) 5389 (2) 8287 (1) 50 (1)
C(4) 5128(2) 3332(2) 8356(1) 27(1)C (4) 5128 (2) 3332 (2) 8356 (1) 27 (1)
C(5) 3769(2) 3727(2) 8221(1) 37(1)C (5) 3769 (2) 3727 (2) 8221 (1) 37 (1)
C(6) 2860(3) 3000(2) 7958(1) 45(1)C (6) 2860 (3) 3000 (2) 7958 (1) 45 (1)
C(7) 2745(3) 2190(2) 8406(1) 44(1)C (7) 2745 (3) 2190 (2) 8406 (1) 44 (1)
C(8) 4087(2) 1777(2) 8532(1) 34(1)C (8) 4087 (2) 1777 (2) 8532 (1) 34 (1)
C(9) 5030(2) 2497(2) 8795(1) 26(1)C (9) 5030 (2) 2497 (2) 8795 (1) 26 (1)
CMO) 6839(3) 1478(2) 8454(1) 41(1) C(11) 6335(3) 1625(2) 9545(1) 41(1)CMO) 6839 (3) 1478 (2) 8454 (1) 41 (1) C (11) 6335 (3) 1625 (2) 9545 (1) 41 (1)
C(12) 7657(3) 1229(2) 9723(1) 55(1)C (12) 7657 (3) 1229 (2) 9723 (1) 55 (1)
C(13) 7759(3) 6184(2) 381(1) 48(1)C (13) 7759 (3) 6184 (2) 381 (1) 48 (1)
C(14) 9086(3) 6048(2) 1310(2) 52(1)C (14) 9086 (3) 6048 (2) 1310 (2) 52 (1)
C(15) 10349(3) 6232(2) 960(2) 67(1)C (15) 10349 (3) 6232 (2) 960 (2) 67 (1)
C(16) 6741(2) 6329(2) 1419(1) 33(1)C (16) 6741 (2) 6329 (2) 1419 (1) 33 (1)
C(17) 6248(3) 5329(2) 1382(2) 52(1)C (17) 6248 (3) 5329 (2) 1382 (2) 52 (1)
C(18) 5059(3) 5185(2) 1790(2) 56(1)C (18) 5059 (3) 5185 (2) 1790 (2) 56 (1)
C(19) 3985(3) 5833(2) 1590(1) 49(1)C (19) 3985 (3) 5833 (2) 1590 (1) 49 (1)
C(20) 4447(2) 6842(2) 1646(1) 40(1)C (20) 4447 (2) 6842 (2) 1646 (1) 40 (1)
C(21) 5670(2) 7021(2) 1262(1) 29(1)C (21) 5670 (2) 7021 (2) 1262 (1) 29 (1)
C(22) 6074(3) 8386(2) 1946(1) 38(1)C (22) 6074 (3) 8386 (2) 1946 (1) 38 (1)
C(23) 5418(3) 8605(2) 872(1) 41(1)C (23) 5418 (3) 8605 (2) 872 (1) 41 (1)
C(24) 5843(3) 9624(2) 901(2) 63(1)C (24) 5843 (3) 9624 (2) 901 (2) 63 (1)
Cl(1) 9242(1) 3140(1) 8342(1) 51(1)Cl (1) 9242 (1) 3140 (1) 8342 (1) 51 (1)
Cl(2) 7967(1) 3713(1) 9943(1) 52(1)Cl (2) 7967 (1) 3713 (1) 9943 (1) 52 (1)
Cl(3) 9377(1) 8296(1) 1856(1) 47(1)Cl (3) 9377 (1) 8296 (1) 1856 (1) 47 (1)
Cl(4) 8624(1) 8509(1) 138(1) 43(1)Cl (4) 8624 (1) 8509 (1) 138 (1) 43 (1)
N(1) 6060(2) 4049(1) 8606(1) 27(1)N (1) 6060 (2) 4049 (1) 8606 (1) 27 (1)
N(2) 6359(2) 2116(1) 8942(1) 28(1)N (2) 6359 (2) 2116 (1) 8942 (1) 28 (1)
N(3) 7929(2) 6502(1) 1029(1) 33(1)N (3) 7929 (2) 6502 (1) 1029 (1) 33 (1)
N(4) 6167(2) 8005(1) 1308(1) 29(1)N (4) 6167 (2) 8005 (1) 1308 (1) 29 (1)
Zn(1) 7575(1) 3274(1) 8984(1) 29(1)Zn (1) 7575 (1) 3274 (1) 8984 (1) 29 (1)
Zn(2) 8129(1) 7930(1) 1053(1) 28(1)Zn (2) 8129 (1) 7930 (1) 1053 (1) 28 (1)
H(1A) 6142 4995 9303 53H (1A) 6142 4995 9303 53
H(1B) 5029 4233 9400 53H (1B) 5029 4233 9400 53
H(1C) 4824 5053 8912 53H (1C) 4824 5053 8912 53
H(2A) 5770 4951 7891 42H (2A) 5770 4951 7891 42
H(2B) 6949 4250 7772 42H (2B) 6949 4250 7772 42
H(3A) 7050 5830 8561 75H (3A) 7050 5830 8561 75
H(3B) 7817 5716 7923 75H (3B) 7817 5716 7923 75
H(3C) 8215 5099 8507 75H (3C) 8215 5099 8507 75
H(4) 5493 3102 7957 32H (4) 5493 3102 7957 32
H(5A) 3393 3978 8607 44H (5A) 3393 3978 8607 44
H(5B) 3850 4245 7923 44H (5B) 3850 4245 7923 44
H(6A) 3199 2777 7557 54H (6A) 3199 2777 7557 54
H(6B) 1990 3275 7887 54H (6B) 1990 3275 7887 54
H(7A) 2169 1709 8228 52H (7A) 2169 1709 8228 52
H(7B) 2354 2406 8798 52H (7B) 2354 2406 8798 52
H(8A) 4447 1525 8143 41H (8A) 4447 1525 8143 41
H(8B) 4000 1259 8828 41H (8B) 4000 1259 8828 41
H(9) 4648 2727 9190 31H (9) 4648 2727 9190 31
H(IOA) 7774 1374 8510 62H (IOA) 7774 1374 8510 62
H(IOB) 6682 1755 8048 62H (IOB) 6682 1755 8048 62
H(IOC) 6376 886 8483 62H (IOC) 6376 886 8483 62
H(11A) 5693 1114 9524 50 H(11B) 6046 2061 9870 50H (11A) 5693 1114 9524 50 H (11B) 6046 2061 9870 50
H(12A) 7868 708 9451 83H (12A) 7868 708 9451 83
H(12B) 7629 1013 10151 83H (12B) 7629 1013 10151 83
H(12C) 8323 1710 9681 83H (12C) 8323 1710 9681 83
H(13A) 7824 5507 365 72H (13A) 7824 5507 365 72
H(13B) 8438 6459 122 72H (13B) 8438 6459 122 72
H(13C) 6902 6378 230 72H (13C) 6902 6378 230 72
H(14A) 8934 5371 1327 62H (14A) 8934 5371 1327 62
H(14B) 9184 6273 1739 62H (14B) 9184 6273 1739 62
H(15A) 10317 5920 559 101H (15A) 10317 5920 559 101
H(15B) 11085 5993 1199 101H (15B) 11085 5993 1199 101
H(15C) 10454 6900 898 101H (15C) 10454 6900 898 101
H(16) 6997 6444 1857 39H (16) 6997 6444 1857 39
H(17A) 6021 5180 949 62H (17A) 6021 5180 949 62
H(17B) 6949 4901 1514 62H (17B) 6949 4901 1514 62
H(18A) 4758 4535 1758 67H (18A) 4758 4535 1758 67
H(18B) 5289 5308 2226 67H (18B) 5289 5308 2226 67
H(19A) 3208 5737 1853 59H (19A) 3208 5737 1853 59
H(19B) 3740 5700 1157 59H (19B) 3740 5700 1157 59
H(20A) 3744 7261 1507 47H (20A) 3744 7261 1507 47
H(20B) 4632 6982 2085 47H (20B) 4632 6982 2085 47
H(21) 5430 6915 820 35H (21) 5430 6915 820 35
H(22A) 5158 8495 2049 58H (22A) 5158 8495 2049 58
H(22B) 6554 8972 1968 58H (22B) 6554 8972 1968 58
H(22C) 6448 7942 2238 58H (22C) 6448 7942 2238 58
H(23A) 4479 8563 972 49H (23A) 4479 8563 972 49
H(23B) 5540 8372 446 49H (23B) 5540 8372 446 49
H(24A) 5710 9861 1321 95H (24A) 5710 9861 1321 95
H(24B) 5324 9989 610 95H (24B) 5324 9989 610 95
H(24C) 6766 9672 792 95H (24C) 6766 9672 792 95
ZeI I konstanten (RcRcRN1RN )-[ZnBr2 DEDMCDA]:ZeI I constant (RcRcR N1 R N ) - [ZnBr 2 DEDMCDA]:
Kristallsystem orthorhombischCrystal system orthorhombic
Raumgruppe P212121 (19)Room group P2 1 2 1 2 1 (19)
Zelldimension [A] a = 9.9604(15) b = 12.2299(18) c = 13.610(2) Zellvolumen [A3] 1657.9(4) Tabelle 8: Atomkoordinaten (x 104) und äquivalente isotrope Auslenkungsparameter (A2 χ 103) für (RcRcRN1RN )-[ZnBr2-DEDMCDA]. U(eq) wird berechnet als ein Drittel der Spur des orthogonalen UÜ TensorsCell dimension [A] a = 9.9604 (15) b = 12.2299 (18) c = 13,610 (2) Cell volume [A 3 ] 1657.9 (4) Table 8: Atomic coordinates (x 10 4 ) and equivalent isotropic displacement parameters (A 2 χ 10 3 ) for (RcRcR N1 R N ) - [ZnBr 2 -DEDMCDA]. U (eq) is calculated as one-third of the trace of the orthogonal UÜ tensor
X y Z U(eq)X y Z U (eq)
Br(1) -2392(1) 10498(1) 2007(1) 42(1)Br (1) -2392 (1) 10498 (1) 2007 (1) 42 (1)
Br(2) -2597(1) 7215(1) 1937(1) 47(1)Br (2) -2597 (1) 7215 (1) 1937 (1) 47 (1)
C(1) 108(9) 9813(6) 3719(5) 50(2)C (1) 108 (9) 9813 (6) 3719 (5) 50 (2)
C(2) -90(9) 7842(6) 3867(5) 54(2)C (2) -90 (9) 7842 (6) 3867 (5) 54 (2)
C(3) -1405(10) 7968(7) 4425(6) 80(3)C (3) -1405 (10) 7968 (7) 4425 (6) 80 (3)
C(4) 1485(6) 8574(5) 2651(4) 33(2)C (4) 1485 (6) 8574 (5) 2651 (4) 33 (2)
C(5) 2721(7) 8916(7) 3259(5) 54(2)C (5) 2721 (7) 8916 (7) 3259 (5) 54 (2)
C(6) 4025(7) 8690(7) 2704(6) 61(2)C (6) 4025 (7) 8690 (7) 2704 (6) 61 (2)
C(7) 4028(8) 9289(7) 1740(7) 67(3)C (7) 4028 (8) 9289 (7) 1740 (7) 67 (3)
C(8) 2845(7) 8937(7) 1127(6) 47(2)C (8) 2845 (7) 8937 (7) 1127 (6) 47 (2)
C(9) 1499(6) 9123(5) 1646(4) 29(2)C (9) 1499 (6) 9123 (5) 1646 (4) 29 (2)
C(10) 498(7) 7650(5) 648(5) 43(2)C (10) 498 (7) 7650 (5) 648 (5) 43 (2)
C(11) 82(8) 9569(6) 228(5) 41(2)C (11) 82 (8) 9569 (6) 228 (5) 41 (2)
C(12) -1121(9) 9291(7) -392(5) 68(3)C (12) -1121 (9) 9291 (7) -392 (5) 68 (3)
N(1) 155(5) 8754(5) 3163(3) 32(1)N (1) 155 (5) 8754 (5) 3163 (3) 32 (1)
N(2) 317(5) 8777(5) 1040(3) 30(1)N (2) 317 (5) 8777 (5) 1040 (3) 30 (1)
Zn -1265(1) 8804(1) 2043(1) 28(1)Zn -1265 (1) 8804 (1) 2043 (1) 28 (1)
H(1A) -813 9951 3940 75H (1A) -813 9951 3940 75
H(1B) 402 10410 3290 75H (1B) 402 10410 3290 75
H(1C) 704 9768 4291 75H (1C) 704 9768 4291 75
H(2A) 660 7811 4344 65H (2A) 660 7811 4344 65
H(2B) -104 7142 3502 65H (2B) -104 7142 3502 65
H(3A) -1298 8521 4940 120H (3A) -1298 8521 4940 120
H(3B) -1649 7267 4726 120H (3B) -1649 7267 4726 120
H(3C) -2114 8195 3970 120H (3C) -2114 8195 3970 120
H(4) 1567 7770 2533 39H (4) 1567 7770 2533 39
H(5A) 2662 9705 3414 65H (5A) 2662 9705 3414 65
H(5B) 2726 8507 3887 65H (5B) 2726 8507 3887 65
H(6A) 4799 8931 3105 74H (6A) 4799 8931 3105 74
H(6B) 4115 7895 2584 74H (6B) 4115 7895 2584 74
H(7A) 4871 9131 1383 81H (7A) 4871 9131 1383 81
H(7B) 3982 10086 1860 81H (7B) 3982 10086 1860 81
H(8A) 2937 8151 967 57H (8A) 2937 8151 967 57
H(8B) 2851 9350 501 57H (8B) 2851 9350 501 57
H(9) 1411 9927 1759 35H (9) 1411 9927 1759 35
H(10A) 1144 7664 106 64H (10A) 1144 7664 106 64
H(10B) -366 7373 410 64H (10B) -366 7373 410 64
H(10C) 834 7173 1172 64H (10C) 834 7173 1172 64
H(11A) 888 9592 -197 49H (11A) 888 9592 -197 49
H(11B) -44 10307 512 49 H(12A) -935 8628 -773 101H (11B) -44 10307 512 49 H (12A) -935 8628 -773 101
H(12B) -1312 9898 -841 101H (12B) -1312 9898 -841 101
H(12C) -1899 9166 34 101H (12C) -1899 9166 34 101
Beispiel 5: Darstellung von (RcRcRN)-[ZnBr2-ETMCDA] und (RC,RC,RN)- [ZnCI2PTMCDA]Example 5: Preparation of (RcRcRN) - [ZnBr 2 -ETMCDA] and (R C , R C , R N ) - [ZnCl 2 PTMCDA]
In analoger Weise zu den Beispielen 1 bis 3 wurden die Komplexe (RcRcRw)- [Zn Br2- ETMCDA] und (RcRcRN)-[ZnCI2-PTMCDA] dargestellt.Analogously to Examples 1 to 3, the complexes (RcRcRw) - [Zn Br 2 - ETMCDA] and (RcRcRN) - [ZnCl 2 -PTMCDA] were prepared.
Für die erhaltenen Komplexe ergaben sich die in der nachfolgenden Tabelle 9 und 10 angegebenen Strukturdaten.For the complexes obtained, the structural data given in Table 9 and 10 below were obtained.
ZeI I konstanten (RcRcRw)-[ZnBr2ETMCDA]:ZeI I constant (RcRcRw) - [ZnBr 2 ETMCDA]:
Kristallsystem orthorhombisch Raumgruppe P2i2i2i (19) Zelldimension [A] a = 8.2219(9) b = 13.2393(15) c =14.1127(16)Orthorhombic Crystal System Space Group P2i2i2i (19) Cell Dimension [A] a = 8.2219 (9) b = 13.2393 (15) c = 14.1127 (16)
Zellvolumen [A3] 1536.2(3)Cell volume [A 3 ] 1536.2 (3)
Tabelle 9: Atomkoordinaten (x 104) und äquivalente isotrope Auslenkungsparameter (A2χ 103) für (RcRcRw)-[ZnBr2-ETMCDA]. U(eq) wird berechnet als ein Drittel der Spur des orthogonalen UÜ TensorsTable 9: Atomic coordinates (x 10 4 ) and equivalent isotropic displacement parameters (A 2 χ 10 3 ) for (RcRcRw) - [ZnBr 2 -ETMCDA]. U (eq) is calculated as one-third of the trace of the orthogonal UÜ tensor
X y Z U(eq)X y Z U (eq)
Br(1) 13180(1) 8680(1) 7393(1) 50(1)Br (1) 13180 (1) 8680 (1) 7393 (1) 50 (1)
Br(2) 11019(1) 6809(1) 9228(1) 42(1)Br (2) 11019 (1) 6809 (1) 9228 (1) 42 (1)
C(1) 10815(4) 9133(2) 10510(2) 41(1)C (1) 10815 (4) 9133 (2) 10510 (2) 41 (1)
C(2) 12805(3) 10057(2) 9615(2) 42(1)C (2) 12805 (3) 10057 (2) 9615 (2) 42 (1)
C(3) 9930(3) 10312(2) 9223(2) 25(1)C (3) 9930 (3) 10312 (2) 9223 (2) 25 (1)
C(4) 9446(3) 11087(2) 9983(2) 34(1)C (4) 9446 (3) 11087 (2) 9983 (2) 34 (1)
C(5) 6685(3) 11265(2) 9272(2) 44(1)C (5) 6685 (3) 11265 (2) 9272 (2) 44 (1)
C(6) 7151(3) 10521(2) 8490(2) 34(1)C (6) 7151 (3) 10521 (2) 8490 (2) 34 (1)
C(7) 8433(3) 9764(2) 8837(2) 25(1)C (7) 8433 (3) 9764 (2) 8837 (2) 25 (1)
C(8) 9093(4) 9450(2) 7150(2) 40(1)C (8) 9093 (4) 9450 (2) 7150 (2) 40 (1)
C(9) 7644(4) 8174(2) 8084(2) 41(1)C (9) 7644 (4) 8174 (2) 8084 (2) 41 (1)
C(10) 7942(5) 7361(3) 7384(3) 64(1)C (10) 7942 (5) 7361 (3) 7384 (3) 64 (1)
C(19) 8186(4) 11829(2) 9611(2) 41(1)C (19) 8186 (4) 11829 (2) 9611 (2) 41 (1)
N(1) 11194(3) 9572(2) 9566(2) 29(1)N (1) 11194 (3) 9572 (2) 9566 (2) 29 (1)
N(2) 8911(3) 8991(1) 8102(1) 27(1) Zn(2) 11161(1) 8432(1) 8551(1) 26(1)N (2) 8911 (3) 8991 (1) 8102 (1) 27 (1) Zn (2) 11161 (1) 8432 (1) 8551 (1) 26 (1)
H(1A) 10879 9663 10994 62H (1A) 10879 9663 10994 62
H(1B) 11601 8599 10657 62H (1B) 11601 8599 10657 62
H(1C) 9715 8848 10502 62H (1C) 9715 8848 10502 62
H(2A) 12804 10566 10119 63H (2A) 12804 10566 10119 63
H(2B) 13048 10382 9007 63H (2B) 13048 10382 9007 63
H(2C) 13634 9545 9751 63H (2C) 13634 9545 9751 63
H(3) 10421 10697 8685 30H (3) 10421 10697 8685 30
H(4A) 8999 10729 10541 41H (4A) 8999 10729 10541 41
H(4B) 10425 11463 10190 41H (4B) 10425 11463 10190 41
H(5A) 5874 11752 9028 53H (5A) 5874 11752 9028 53
H(5B) 6190 10894 9809 53H (5B) 6190 10894 9809 53
H(6A) 7586 10898 7940 41H (6A) 7586 10898 7940 41
H(6B) 6170 10150 8279 41H (6B) 6170 10150 8279 41
H(7) 7939 9386 9378 30H (7) 7939 9386 9378 30
H(8A) 8025 9667 6918 60H (8A) 8025 9667 6918 60
H(8B) 9554 8952 6713 60H (8B) 9554 8952 6713 60
H(8C) 9819 10036 7191 60H (8C) 9819 10036 7191 60
H(9A) 7577 7868 8723 49H (9A) 7577 7868 8723 49
H(9B) 6576 8486 7945 49H (9B) 6576 8486 7945 49
H(IOA) 7928 7646 6743 95H (IOA) 7928 7646 6743 95
H(IOB) 7090 6847 7440 95H (IOB) 7090 6847 7440 95
H(IOC) 9005 7053 7506 95H (IOC) 9005 7053 7506 95
H(19A) 7879 12307 10120 49H (19A) 7879 12307 10120 49
H(19B) 8654 12222 9081 49H (19B) 8654 12222 9081 49
ZeI I konstanten (RcRcRN)-[ZnCI2 PTMCDA]:ZeI I constant (RcRcR N ) - [ZnCl 2 PTMCDA]:
Raumgruppe P2i (4) Zelldimension [A] a = 12.3903(18) b = 12.8524(19) c = 12.6936(19) ß = 1 16.785(2)°Space group P2i (4) Cell dimension [A] a = 12.3903 (18) b = 12.8524 (19) c = 12.6936 (19) ß = 1 16.785 (2) °
Zellvolumen [A3] 1804.5(5)Cell volume [A 3 ] 1804.5 (5)
Tabelle 10: Atomkoordinaten (x 104) und äquivalente isotrope Auslenkungsparameter (A2 x 103) für (RcRcRN)-[ZnCI2-PTMCDA]. U(eq) wird berechnet als ein Drittel der Spur des orthogonalen UÜ Tensors x y z U(eq)Table 10: Atomic coordinates (x 10 4 ) and equivalent isotropic displacement parameters (A 2 x 10 3 ) for (RcRcR N ) - [ZnCl 2 -PTMCDA]. U (eq) is calculated as one third of the trace of the orthogonal UÜ tensor xyz U (eq)
C(1) 10029(2) 5552(2) 446(2) 34(1)C (1) 10029 (2) 5552 (2) 446 (2) 34 (1)
C(2) 9661(2) 4816(2) 2023(2) 35(1)C (2) 9661 (2) 4816 (2) 2023 (2) 35 (1)
C(3) 10965(2) 4929(2) 2954(2) 37(1) C(4) 11149(2) 4517(2) 4147(2) 37(1)C (3) 10965 (2) 4929 (2) 2954 (2) 37 (1) C (4) 11149 (2) 4517 (2) 4147 (2) 37 (1)
C(5) 12416(2) 4662(2) 5125(2) 40(1)C (5) 12416 (2) 4662 (2) 5125 (2) 40 (1)
C(6) 12532(2) 4352(2) 6325(2) 46(1)C (6) 12532 (2) 4352 (2) 6325 (2) 46 (1)
C(7) 7947(2) 5560(2) 277(2) 25(1)C (7) 7947 (2) 5560 (2) 277 (2) 25 (1)
C(8) 7612(2) 4682(2) -633(2) 37(1)C (8) 7612 (2) 4682 (2) -633 (2) 37 (1)
C(9) 6260(2) 4636(2) -1450(2) 49(1)C (9) 6260 (2) 4636 (2) -1450 (2) 49 (1)
C(10) 5829(2) 5671(2) -2070(2) 47(1)C (10) 5829 (2) 5671 (2) -2070 (2) 47 (1)
C(11) 6110(2) 6531(2) -1164(2) 37(1)C (11) 6110 (2) 6531 (2) -1164 (2) 37 (1)
C(12) 7461(2) 6601(2) -338(2) 26(1)C (12) 7461 (2) 6601 (2) -338 (2) 26 (1)
C(13) 6912(2) 7569(2) 1047(2) 49(1)C (13) 6912 (2) 7569 (2) 1047 (2) 49 (1)
C(14) 7837(3) 8479(2) 4(2) 52(1)C (14) 7837 (3) 8479 (2) 4 (2) 52 (1)
C(15) 7168(2) 3187(2) 5049(2) 34(1)C (15) 7168 (2) 3187 (2) 5049 (2) 34 (1)
C(16) 7837(2) 3579(2) 3554(2) 30(1)C (16) 7837 (2) 3579 (2) 3554 (2) 30 (1)
C(17) 7211(2) 2641(2) 2794(2) 34(1)C (17) 7211 (2) 2641 (2) 2794 (2) 34 (1)
C(18) 7596(2) 2510(2) 1816(2) 35(1)C (18) 7596 (2) 2510 (2) 1816 (2) 35 (1)
C(19) 7025(2) 1597(2) 998(2) 38(1)C (19) 7025 (2) 1597 (2) 998 (2) 38 (1)
C(20) 7463(3) 1483(2) 75(2) 51(1)C (20) 7463 (3) 1483 (2) 75 (2) 51 (1)
C(21) 7865(2) 4975(2) 4883(2) 26(1)C (21) 7865 (2) 4975 (2) 4883 (2) 26 (1)
C(22) 9057(2) 4751(2) 5990(2) 35(1)C (22) 9057 (2) 4751 (2) 5990 (2) 35 (1)
C(23) 9682(2) 5747(2) 6622(2) 40(1)C (23) 9682 (2) 5747 (2) 6622 (2) 40 (1)
C(24) 8842(2) 6374(2) 6946(2) 45(1)C (24) 8842 (2) 6374 (2) 6946 (2) 45 (1)
C(25) 7686(2) 6636(2) 5849(2) 39(1)C (25) 7686 (2) 6636 (2) 5849 (2) 39 (1)
C(26) 7033(2) 5653(2) 5187(2) 28(1)C (26) 7033 (2) 5653 (2) 5187 (2) 28 (1)
C(27) 5966(2) 6763(2) 3400(2) 45(1)C (27) 5966 (2) 6763 (2) 3400 (2) 45 (1)
C(28) 4885(2) 6104(2) 4435(2) 50(1)C (28) 4885 (2) 6104 (2) 4435 (2) 50 (1)
Cl(1) 9439(1) 7007(1) 3607(1) 35(1)Cl (1) 9439 (1) 7007 (1) 3607 (1) 35 (1)
Cl(2) 10940(1) 7951(1) 1706(1) 45(1)Cl (2) 10940 (1) 7951 (1) 1706 (1) 45 (1)
Cl(3) 5384(1) 4833(1) 1326(1) 40(1)Cl (3) 5384 (1) 4833 (1) 1326 (1) 40 (1)
Cl(4) 4075(1) 3608(1) 3272(1) 39(1)Cl (4) 4075 (1) 3608 (1) 3272 (1) 39 (1)
N(1) 9277(2) 5629(1) 1087(2) 26(1)N (1) 9277 (2) 5629 (1) 1087 (2) 26 (1)
N(2) 7783(2) 7470(1) 548(2) 31(1)N (2) 7783 (2) 7470 (1) 548 (2) 31 (1)
N(3) 7225(2) 4002(1) 4241(1) 25(1)N (3) 7225 (2) 4002 (1) 4241 (1) 25 (1)
N(4) 5865(2) 5878(2) 4105(2) 31(1)N (4) 5865 (2) 5878 (2) 4105 (2) 31 (1)
Zn(1) 9482(1) 7088(1) 1874(1) 26(1)Zn (1) 9482 (1) 7088 (1) 1874 (1) 26 (1)
Zn(2) 5504(1) 4520(1) 3097(1) 25(1)Zn (2) 5504 (1) 4520 (1) 3097 (1) 25 (1)
H(1A) 10877 5688 995 52H (1A) 10877 5688 995 52
H(1B) 9751 6065 -193 52H (1B) 9751 6065 -193 52
H(1C) 9955 4851 115 52H (1C) 9955 4851 115 52
H(2A) 9555 4123 1649 41H (2A) 9555 4123 1649 41
H(2B) 9126 4849 2412 41H (2B) 9126 4849 2412 41
H(3A) 11198 5672 3032 44H (3A) 11198 5672 3032 44
H(3B) 11498 4544 2698 44H (3B) 11498 4544 2698 44
H(4A) 10576 4874 4372 44H (4A) 10576 4874 4372 44
H(4B) 10951 3766 4069 44H (4B) 10951 3766 4069 44
H(5A) 12652 5401 5150 48H (5A) 12652 5401 5150 48
H(5B) 12983 4239 4948 48 H(6A) 12069 4838 6559 69H (5B) 12983 4239 4948 48 H (6A) 12069 4838 6559 69
H(6B) 13385 4373 6908 69H (6B) 13385 4373 6908 69
H(6C) 12218 3646 6283 69H (6C) 12218 3646 6283 69
H(7) 7533 5410 778 30H (7) 7533 5410 778 30
H(8A) 8051 4785 -1111 44H (8A) 8051 4785-1111 44
H(8B) 7876 4010 -214 44H (8B) 7876 4010-214 44
H(9A) 6091 4078 -2042 58H (9A) 6091 4078 -2042 58
H(9B) 5818 4471 -986 58H (9B) 5818 4471-986 58
H(IOA) 4947 5642 -2587 56H (IOA) 4947 5642 -2587 56
H(IOB) 6237 5817 -2569 56H (IOB) 6237 5817 -2569 56
H(11A) 5667 6397 -694 44H (11A) 5667 6397-694 44
H(11B) 5826 7204 -1576 44H (11B) 5826 7204 -1576 44
H(12) 7876 6749 -839 32H (12) 7876 6749 -839 32
H(13A) 7234 8053 1715 74H (13A) 7234 8053 1715 74
H(13B) 6786 6886 1317 74H (13B) 6786 6886 1317 74
H(13C) 6140 7834 439 74H (13C) 6140 7834 439 74
H(14A) 7042 8637 -646 78H (14A) 7042 8637-646 78
H(14B) 8436 8436 -300 78H (14B) 8436 8436 -300 78
H(14C) 8069 9031 598 78H (14C) 8069 9031 598 78
H(15A) 6612 2635 4584 51H (15A) 6612 2635 4584 51
H(15B) 6881 3497 5581 51H (15B) 6881 3497 5581 51
H(15C) 7976 2892 5513 51H (15C) 7976 2892 5513 51
H(16A) 8674 3382 4111 36H (16A) 8674 3382 4111 36
H(16B) 7884 4137 3038 36H (16B) 7884 4137 3038 36
H(17A) 6324 2734 2441 40H (17A) 6324 2734 2441 40
H(17B) 7425 2007 3290 40H (17B) 7425 2007 3290 40
H(18A) 7391 3155 1339 42H (18A) 7391 3155 1339 42
H(18B) 8486 2429 2183 42H (18B) 8486 2429 2183 42
H(19A) 7209 951 1471 46H (19A) 7209 951 1471 46
H(19B) 6136 1688 602 46H (19B) 6136 1688 602 46
H(20A) 7280 2119 -400 76H (20A) 7280 2119 -400 76
H(20B) 7056 890 -437 76H (20B) 7056 890-437 76
H(20C) 8338 1364 460 76H (20C) 8338 1364 460 76
H(21) 8072 5384 4329 31H (21) 8072 5384 4329 31
H(22A) 8889 4310 6538 42H (22A) 8889 4310 6538 42
H(22B) 9605 4360 5758 42H (22B) 9605 4360 5758 42
H(23A) 10426 5571 7345 48H (23A) 10426 5571 7345 48
H(23B) 9917 6164 6103 48H (23B) 9917 6164 6103 48
H(24A) 9250 7025 7345 54H (24A) 9250 7025 7345 54
H(24B) 8645 5971 7501 54H (24B) 8645 5971 7501 54
H(25A) 7882 7077 5320 47H (25A) 7882 7077 5320 47
H(25B) 7143 7037 6079 47H (25B) 7143 7037 6079 47
H(26) 6823 5241 5738 34H (26) 6823 5241 5738 34
H(27A) 5238 6795 2641 67H (27A) 5238 6795 2641 67
H(27B) 6677 6664 3263 67H (27B) 6677 6664 3263 67
H(27C) 6050 7415 3832 67H (27C) 6050 7415 3832 67
H(28A) 5071 6747 4899 75 Ringöffnungspolymerisation von Lactid mit Diamin-Zink-Komplexen und/oder polynuklearen Aminoethanolat-Zink-KomplexenH (28A) 5071 6747 4899 75 Ring-opening polymerization of lactide with diamine-zinc complexes and / or polynuclear aminoethanolate-zinc complexes
Die Ringöffnungspolymerisation von Lactid zu Polylactid wurde, wie in Fig. 8 gezeigt, in Anlehnung an Literaturvorschriften durchgeführt (J. Börner, S. Herres-Pawlis, U. Flörke, K. Huber, Eur. J. Inorg. Chem. 2007, 5645-5651 ; b) J. Börner, U. Flörke, K. Huber, A. Döring, D. Kuckling, S. Herres-Pawlis, Chem. Eur. J. 2009, 15, 2362- 2376). Für die Polymerisation werden außer den Diamin-Zink-Komplexen keine weiteren Initiatoren benötigt.The ring-opening polymerization of lactide to polylactide was carried out according to literature procedures, as shown in FIG. 8 (Börner, S. Herres-Pawlis, U. Flörke, K. Huber, Eur. J. Inorg. Chem. 2007, 5645 B. J. Börner, U. Flunk, K. Huber, A. Döring, D. Kuckling, S. Herres-Pawlis, Chem. Eur. J. 2009, 15, 2362-2376). For the polymerization, apart from the diamine-zinc complexes, no further initiators are needed.
Massenpolymerisationbulk
Das Lactid (25 mmol) und der Katalysator (0,05 mmol) werden in einen 50ml-The lactide (25 mmol) and the catalyst (0.05 mmol) are added to a 50 ml
Standkolben abgewogen. Der Kolben wird mit Argon gespült und mit einem Stopfen mit Metallklammer verschlossen. Das Reaktionsgemisch wird auf die gewünschteBalance piston weighed. The flask is purged with argon and sealed with a stopper with metal clip. The reaction mixture is adjusted to the desired
Reaktionstemperatur erhitzt.Reaction temperature heated.
Nach der Reaktionszeit wird der Rückstand in 25 ml Dichlormethan gelöst und dasAfter the reaction time, the residue is dissolved in 25 ml of dichloromethane and the
Polymer in 350 ml kaltem Ethanol unter Rühren gefällt. Das Polymer wird imPolymer in 350 ml of cold ethanol with stirring. The polymer is in the
Hochvakuum bei ca. 50 0C getrocknet.High vacuum dried at about 50 0 C.
Lösungspolymerisationsolution
Das Lactid (25 mmol) wird in einen 50ml-Rundkolben abgewogen. Der Kolben wird mit einem Septum verschlossen, mit Argon gespült und im Argongegenstrom mit dem absolutierten Lösungsmittel versetzt. Das Reaktionsgemisch wird unter Rühren auf die gewünschte Reaktionstemperatur erhitzt. Ist diese erreicht, wird eine Lösung des Katalysators (0,05 mmol) in dem für die Polymerisation verwendeten absolutierten Lösungsmittel mit Hilfe einer Spritze zugegeben.The lactide (25 mmol) is weighed into a 50 ml round bottom flask. The flask is closed with a septum, purged with argon and mixed in an argon countercurrent with the absolute solvent. The reaction mixture is heated with stirring to the desired reaction temperature. When this is achieved, a solution of the catalyst (0.05 mmol) in the solvent used for the polymerization is added by means of a syringe.
Nach der Reaktionszeit wird der Rückstand in 25 ml Dichlormethan gelöst und dasAfter the reaction time, the residue is dissolved in 25 ml of dichloromethane and the
Polymer in 350 ml kaltem Ethanol unter Rühren gefällt. Das Polymer wird imPolymer in 350 ml of cold ethanol with stirring. The polymer is in the
Hochvakuum bei ca. 50 0C getrocknet.High vacuum dried at about 50 0 C.
Beispiel 6: Ringöffnungspolymerisation mit ZnCI2-(R5R)-TMCDAExample 6: Ring-opening polymerization with ZnCl 2 - (R 5 R) -TMCDA
Bei einer Reaktionszeit von 24 h bei 150 0C erhält man in 27 % Ausbeute ein Polylactid mit einer molekularen Masse Mw von 38000 g/mol und einer Polydispersität von 1 ,6. Beispiel 7: Ringöffnungspolymerisation mit ZnCI2 (f?,f?)-DEDMCDAAt a reaction time of 24 h at 150 ° C., a polylactide with a molecular mass M w of 38000 g / mol and a polydispersity of 1.6 is obtained in 27% yield. Example 7: Ring-opening polymerization with ZnCl 2 (f?, F?) - DEDMCDA
Bei einer Reaktionszeit von 24 h bei 150 0C erhält man in 41 % Ausbeute ein Polylactid mit einer molekularen Masse Mw von 40000 g/mol und einer Polydispersität von 1 ,5. Nach 48 h beträgt die Ausbeute 56 %, die Molmasse Mw 52000 g/mol bei einer Polydispersität von 1 ,6.At a reaction time of 24 h at 150 0 C is obtained in 41% yield, a polylactide having a molecular weight M w of 40000 g / mol and a polydispersity of 1, 5. After 48 h, the yield is 56%, the molecular weight M w 52000 g / mol with a polydispersity of 1, 6.
Beispiel 8: Ringöffnungspolymerisation mit ZnBr2 (R5R)-TECDAExample 8: Ring-opening polymerization with ZnBr 2 (R 5 R) -TECDA
Bei einer Reaktionszeit von 24 h bei 150 0C erhält man in 92 % Ausbeute ein Polylactid mit einer molekularen Masse Mw von 133000 g/mol und einer Polydispersität von 1 ,9. Nach 48 h beträgt die Ausbeute 91 %, die Molmasse Mw 113000 g/mol bei einer Polydispersität von 1 ,9.At a reaction time of 24 h at 150 0 C 9 is obtained in 92% yield, a polylactide having a molecular mass M w of 133000 g / mol and a polydispersity of 1,. After 48 h, the yield is 91%, the molar mass M w 113000 g / mol with a polydispersity of 1, 9.
Tabelle 11 : Ergebnisse der katalytischen RingöffungspolymehsationTable 11: Results of the catalytic ring-opening polymerisation
Figure imgf000026_0001
Figure imgf000026_0001
Synthese der Aminoethanolat-Zink-KomplexeSynthesis of aminoethanolate-zinc complexes
Die Darstellung der erfindungsgemäßen Aminoethanolat-Zink-Komplexe, wie sie als Strukturmotive in Fig . 18 gezeigt sind, erfolgte zum einen durch Reaktion der Natrium-Salze der Ethanolamine mit Zink(ll)-Salzen ZnX2 (X z. B. Halogen, Acetat, Phenolat, Triflat) und zum anderen durch Umsetzung von Ethanolaminen mit Diorganozinkverbindungen ZnR2 (R = Alkyl, Aryl).The representation of the aminoethanolate-zinc complexes according to the invention, as shown as structural motifs in FIG. 18, was performed by reaction of the Sodium salts of ethanolamines with zinc (II) salts ZnX 2 (X eg halogen, acetate, phenolate, triflate) and by reacting ethanolamines with diorganozinc compounds ZnR 2 (R = alkyl, aryl).
Es ist zu betonen, dass für die erfindungsgemäßen Komplexe vorzugsweise aliphatische Ethanolamine mit verschiedenen Substitutionsmustern verwendet werden. Die Aminverbindungen sind z.T. kommerziell erhältlich. Racemische und chirale Verbindungen wurden analog synthetisiert.It should be emphasized that aliphatic ethanolamines having different substitution patterns are preferably used for the complexes according to the invention. The amine compounds are z.T. commercially available. Racemic and chiral compounds were synthesized analogously.
Die erfindungsgemäßen polynuklearen Aminotehanolat-Zink-Komplexe lassen sich allgemein mittels unterschiedlicher Syntheserouten erhalten.The polynuclear aminotehanolate-zinc complexes according to the invention can generally be obtained by means of different synthetic routes.
a) Synthese via R2Zna) Synthesis via R 2 Zn
Eine Lösung bestehend aus dem Liganden (n mmol) in Toluol oder n-Hexan (5 ml/mmol) wird unter Rückfluss zu einer äquimolaren Lösung aus R2Zn (R = Me, Et) in Toluol oder n-Hexan (l Oml/mmol) getropft. Nach Ende der Gasentwicklung wird das Lösungsmittel im Vakuum entfernt und das Produkt kann als farbloser Feststoff isoliert werden. Zur Röntgenstrukturanalyse geeignete farblose Kristalle konnten durch Umkristallisieren aus n-Hexan an Luft erhalten werden.A solution consisting of the ligand (n mmol) in toluene or n-hexane (5 ml / mmol) is added under reflux to an equimolar solution of R 2 Zn (R = Me, Et) in toluene or n-hexane (1 ml / mmol). After completion of the gas evolution, the solvent is removed in vacuo and the product can be isolated as a colorless solid. Colorless crystals suitable for X-ray structure analysis could be obtained by recrystallization from n-hexane in air.
b) Synthese via ZnCI2 b) Synthesis via ZnCl 2
Eine Nathum-Methanolat-Lösung, hergestellt durch Umsetzung von Natrium (2n mmol) mit Methanol, wurde tropfenweise mit dem Liganden (n mmol) versetzt. Diese Lösung wurde 1 h am Rückfluss erhitzt bevor das Methanol im Vakuum entfernt wurde. Der erhaltene farblose Feststoff wird in THF aufgenommen und zu einer Lösung von wasserfreien Zinkdichlorid (n mmol) in THF (2 ml/mmol) getropft. Nach 12 h Rühren bei Raumtemperatur wurde das THF im Vakuum abdestilliert, der verbleibende Feststoff mit CH2CI2 aufgenommen und das NaCI über Kieselgur (Celite 535®) abfiltriert. Das nun klare Filtrat wurde im Vakuum zur Trockene eingeengt und das Produkt kann als farbloser Feststoff isoliert werden. Zur Röntgenstrukturanalyse geeignete farblose Kristalle konnten durch Umkristallisieren aus einem 3/2 Gemisch CH2CI2 und n-Hexan an Luft erhalten werden. c) Synthese via Zn(OR)2 (R = Alkyl)A Nathum-methanolate solution prepared by reacting sodium (2n mmol) with methanol was added dropwise with the ligand (n mmol). This solution was refluxed for 1 h before the methanol was removed in vacuo. The resulting colorless solid is taken up in THF and added dropwise to a solution of anhydrous zinc dichloride (n mmol) in THF (2 ml / mmol). After 12 h stirring at room temperature the THF, the remaining solid with CH 2 Cl 2 was distilled off in vacuo, and NaCl through diatomaceous earth (Celite 535 ®) was filtered off. The now clear filtrate was concentrated to dryness in vacuo and the product can be isolated as a colorless solid. Colorless crystals suitable for X-ray structure analysis could be obtained by recrystallization from a 3/2 mixture of CH 2 Cl 2 and n-hexane in air. c) Synthesis via Zn (OR) 2 (R = alkyl)
Äquimolare Mengen des Zinkdialkoholats und des N-Organodiethanolamins werden in Toluol gelöst und die Reaktionsmischung wird 30 Minuten am Rückfluss erhitzt. Anschließend werden der gebildete Alkohol und das Toluol im Vakuum abdestilliert. Man erhält das Produkt als farblosen Feststoff.Equimolar amounts of the zinc dialcoholate and the N-organodiethanolamine are dissolved in toluene and the reaction mixture is refluxed for 30 minutes. Subsequently, the alcohol formed and the toluene are distilled off in vacuo. The product is obtained as a colorless solid.
d) Synthese via Zn(NR2J2 (R = Alkyl, Triorganosilyl, Aryl)d) Synthesis via Zn (NR 2 J 2 (R = alkyl, triorganosilyl, aryl)
Äquimolare Mengen des Zinkdiamids und des N-Organodiethanolamins werden in Toluol gelöst und die Reaktionsmischung wird 30 Minuten am Rückfluss erhitzt. Anschließend werden die flüchtigen Komponenten im Vakuum abdestilliert. Man erhält das Produkt als farblosen Feststoff.Equimolar amounts of the zinc diamine and N-organodiethanolamine are dissolved in toluene and the reaction mixture is refluxed for 30 minutes. Subsequently, the volatile components are distilled off in vacuo. The product is obtained as a colorless solid.
Beispiel 9: Darstellung von [(Zn)6(OCH2CH2)2NMe)4((HOCH2CH2)2NMe)2]Cl2 • H2OExample 9: Preparation of [(Zn) 6 (OCH 2 CH 2 ) 2 NMe) 4 ((HIGH 2 CH 2 ) 2 NMe) 2 ] Cl 2 • H 2 O
Die Reaktion lieferte diese Verbindung als ein farbloses Pulver, das gut in organischen polaren Lösungsmitteln wie CH2Cb löslich ist.The reaction provided this compound as a colorless powder that is well soluble in organic polar solvents such as CH 2 Cb.
Eine Nathum-Methanolat-Lösung, hergestellt durch eine Umsetzung von Natrium (1.69 g, 73.36 mmol) mit Methanol (100 ml), wurde tropfenweise mit N- Methyldiethanolamin (4.21 ml, 36.68 mmol) versetzt. Diese Lösung wurde 1 h am Rückfluss erhitzt. Anschließend wurde das Methanol im Vakuum abdestilliert, der erhaltene farblose Feststoff in THF (100 ml) aufgenommen und zu einer Lösung von wasserfreien Zinkdichlorid (5.14 g, 36.68 mmol) in THF (25 ml) getropft. Nach 12 h Rühren bei Raumtemperatur wurde das THF im Vakuum abdestilliert, der verbleibende Feststoff mit CH2CI2 (50 ml) aufgenommen und das NaCI über Kieselgur (Celite 535®) abfiltriert. Das nun klare Filtrat wurde im Vakuum zur Trockene eingeengt. So konnten 5.8 g (37.77 mmol, 87% d. Th.) 6-N-methyl-1 ,3,2- dioxazinkocan, mit einem Schmelzpunkt von 338-3410C (Zs.), erhalten werden.A Nathum-methanolate solution prepared by a reaction of sodium (1.69 g, 73.36 mmol) with methanol (100 mL) was added dropwise with N-methyldiethanolamine (4.21 mL, 36.68 mmol). This solution was heated at reflux for 1 h. Subsequently, the methanol was distilled off in vacuo, the colorless solid obtained was taken up in THF (100 ml) and added dropwise to a solution of anhydrous zinc dichloride (5.14 g, 36.68 mmol) in THF (25 ml). After 12 h stirring at room temperature the THF, the remaining solid with CH 2 CI was distilled off in vacuo, added 2 (50 ml) and NaCl on diatomaceous earth (Celite 535 ®) was filtered off. The now clear filtrate was concentrated to dryness in vacuo. Thus, 5.8 g were (37.77 mmol, 87% d. Th.) 6-N-methyl-1, 3,2-dioxazinkocan, having a melting point of 338-341 0 C (Zs.), Are obtained.
Das erhaltene Produkt zeigte die folgenden NMR-spektroskopischen Eigenschaften:The product obtained showed the following NMR spectroscopic properties:
1H-NMR (300.13 MHz, CDCI3): δ (ppm) = 2.38 (s, breites Signal Wi//2 = 134 Hz, CH3- N und CH2-N, 7 H), 3.82 (s, breites Signal Wi/2 = 127 Hz, CH2-O, 4 H). 1 H-NMR (300.13 MHz, CDCl 3 ): δ (ppm) = 2.38 (s, broad signal Wi // 2 = 134 Hz, CH 3 -N and CH 2 -N, 7 H), 3.82 (s, broad Signal Wi / 2 = 127 Hz, CH 2 -O, 4H).
13C(1H)-NMR (75.5 MHz, CDCI3): δ (ppm) = 42.8 (s, N-Me), 48.8(s, N-Me), 55.6 (s, CH2-N), 60.0 (breites Signal Wi/2 = 250 Hz, CH2-O), 62.3 (s), 63.6 (s), 64.7 (s). Schmelzpunkt 338°C-341°C (Zs.) 13 C ( 1 H) NMR (75.5 MHz, CDCl 3 ): δ (ppm) = 42.8 (s, N-Me), 48.8 (s, N-Me), 55.6 (s, CH 2 -N), 60.0 (wide signal Wi / 2 = 250 Hz, CH 2 -O), 62.3 (s), 63.6 (s), 64.7 (s). Melting point 338 ° C-341 ° C (Zs.)
Zur Einkristallröntgenstrukturanalyse (Fig. 21) geeignete Kristalle konnten aus CH2Cb und n-Hexan durch langsames Verdampfen des Lösungsmittels erhalten werden. Eine Elementaranalyse dieser Kristalle zeigt, dass diese mit [(Zn)6(OCH2CH2)2NMe)4((HOCH2CH2)2NMe)2]Cl2 H2O übereinstimmen (C: 30.4%, H 5.1%, N 7.1%).Crystals suitable for single-crystal X-ray diffraction analysis (Figure 21) could be obtained from CH 2 Cb and n-hexane by slow evaporation of the solvent. Elemental analysis of these crystals indicates that these with [(Zn) 6 (OCH2CH2) 2NMe) 4 ((HOCH 2 CH 2) 2NMe) 2] Cl2 H 2 O correspond (C: 30.4%, H 5.1%, N 7.1%) ,
Die Verbindung kristallisiert triklin in der Raumgruppe P1 mit vier Molekülen pro Elementarzelle aus. Ebenfalls sind zwei Moleküle Wasser pro Elementarzelle enthalten. Diese Verbindung ist ein hexanuklearer Zinkcluster, bei dem es sich formal um einen Hexamer des Zinkocans handelt. Dieser besteht aus einemThe compound crystallizes triklin in space group P1 with four molecules per unit cell. Also included are two molecules of water per unit cell. This compound is a hexanuclear zinc cluster that is formally a hexamer of zinc cocaine. This consists of a
Zinkoxanvierring Zn2A-O4A-Zn2-O4 , wobei jedes der beiden Zinkatome in diesem von zwei weiteren Zinkocanen koordiniert wird. Somit sind die Zinkatome Zn(2) und Zn(2A) im oben genannten Vierring verzerrt oktaedrisch koordiniert. Die restlichen vier Zinkatome des Clusters sind verzerrt trigonal bipyramidal koordiniert. Jedes der sechs enthaltenen Zinkatome trägt ein N-Methyldiethanolamin als Ligand. Ebenfalls sind zwei Chloridionen Cl(1) und CI(IA) in der Verbindung enthalten. Diese bilden die Gegenionen zum zweifach positiv geladenen Cluster.Zinc-oxane four-membered ring Zn2A-O4A-Zn2-O4, where each of the two zinc atoms in it is coordinated by two other zinc cocans. Thus, the zinc atoms Zn (2) and Zn (2A) are distorted octahedrally in the above-mentioned four-membered ring. The remaining four zinc atoms of the cluster are distorted trigonal bipyramidally coordinated. Each of the six zinc atoms contained carries an N-methyldiethanolamine as a ligand. Also, two chloride ions Cl (1) and CI (IA) are contained in the compound. These form the counterions to the doubly positively charged cluster.
Für den erhaltenen Komplex ergaben sich die in den nachfolgenden Tabellen 11 und 12 angegebenen Strukturdaten.For the resulting complex, the structural data given in Tables 11 and 12 below were obtained.
Tabelle 11: Ausgewählte Bindungslängen (A) in [(Zn)6(OCH2CH2)2NMe)4((HOCH2CH2)2NMe)2]Cl2 H2OTable 11: Selected bond lengths (A) in [(Zn) 6 (OCH2CH2) 2NMe) 4 ((HIGH 2 CH2) 2NMe) 2] Cl2 H 2 O
Zn(2)-O(4) 2.2813(1) Zn(2)-Zn(3A) 3.1301(1)Zn (2) -O (4) 2.2813 (1) Zn (2) -Zn (3A) 3.1301 (1)
Zn(3)-O(4A) 2.0700(1) Zn(3)-Zn(3A) 2.2149(1)Zn (3) -O (4A) 2.0700 (1) Zn (3) -Zn (3A) 2.2149 (1)
Zn(3)-O(5A) 1.9781(1) Zn(2)-Zn(3) 3.1498(1)Zn (3) -O (5A) 1.9781 (1) Zn (2) -Zn (3) 3.1498 (1)
Zn(2)-O(5) 2.0179(1) Zn(I)-N(I) 2.2702(1)Zn (2) -O (5) 2.0179 (1) Zn (I) -N (I) 2.2702 (1)
Zn(2)-O(2) 2.0063(1) Zn(I)-CI(I) 2.2649(1)Zn (2) -O (2) 2.0063 (1) Zn (I) -CI (I) 2.2649 (1)
Zn(1)-O(2) 1.9895(1) CI(1)-H(2L) 2.4403(1)Zn (1) -O (2) 1.9895 (1) CI (1) -H (2L) 2.4403 (1)
Zn(I)-O(I) 2.1233(1) O(3)-H(2L) 3.1929(1)Zn (I) -O (I) 2.1233 (1) O (3) -H (2L) 3.1929 (1)
Zn(3)-O(1) 1.9852(1) O(3)-H(1L) 2.2125(1)Zn (3) -O (1) 1.9852 (1) O (3) -H (1L) 2.2125 (1)
Zn(3)-O(6A) 2.0238(1) CI(1)-H(1L) 3.1632(1)Zn (3) -O (6A) 2.0238 (1) CI (1) -H (1L) 3.1632 (1)
Zn(2)-O(1) 2.3806(1) Zn(1)-O(3) 2.0384(1)Zn (2) -O (1) 2.3806 (1) Zn (1) -O (3) 2.0384 (1)
Zn(2)-O(4A) 2.0356(1) Zn(1)Zn(2) 3.2406(1) Zn(2)-N(2) 2.1761(1 )Zn (2) -O (4A) 2.0356 (1) Zn (1) Zn (2) 3.2406 (1) Zn (2) -N (2) 2.1761 (1)
Die Einkristallröntgenstrukturanalyse wurde auf einem Gerät vom Typ SMART CCD der Firma BrukerAXS mit Mo-Kα-Strahlung (0.71073 A) bei 173(1 ) K aufgenommen. Zur Lösung der Strukturen wurde die direkte Methode SHELXS97[4] und anschließende sukzessive Differenzfouriersynthese verwandt. Zur Verfeinerung wurde die Methode der kleinsten Fehlerquadrate SHELXL97[5] verwandt. Atomstreufaktoren für neutrale Atome und Real- und Imaginärteile der Dispersion wurden den International Tables for X-Ray Crystallography[6] entnommen. Die Abbildungen wurden mit dem Programm SHELXTlJ71 sowie Diamond 3.0 erstellt.Single-crystal X-ray diffraction analysis was performed on a Bruker AXS SMART CCD device with Mo-K α radiation (0.71073 A) at 173 (1) K. To solve the structures, the direct method SHELXS97 [4] followed by successive differential Fourier synthesis was used. For refinement, the least squares method SHELXL97 [5] was used . Atom scattering factors for neutral atoms and real and imaginary parts of the dispersion were taken from the International Tables for X-Ray Crystallography [6] . The pictures were created with the program SHELXTlJ 71 and Diamond 3.0.
Tabelle 12: Verzeichnis der kristallographischen Daten der Verbindung [(Zn)6(OCH2CH2)2NMe)4((HOCH2CH2)2NMe)2]Cl2 H2OTable 12: List of the crystallographic data of the compound [(Zn) 6 (OCH2CH2) 2NMe) 4 ((HOCH 2 CH 2) 2NMe) 2] Cl2 H 2 O
[(Zn)6(OCH2CH2)2NMe)4((HOCH2CH2)2NMe)2]Cl2[(Zn) 6 (OCH 2 CH 2 ) 2 NMe) 4 ((HIGH 2 CH 2 ) 2 NMe) 2 ] Cl2
- H2O- H 2 O
Summenformel C30H66N6O12CI2Zn6 H2OMolecular formula C 30 H 66 N 6 O 12 Cl 2 Zn 6 H 2 O
Molekulargewicht /g/mol 1166Molecular weight / g / mol 1166
Kristallsystem triklinCrystal system triklin
Kristallgröße 0.15 x 0.29 x 0.32Crystal size 0.15 x 0.29 x 0.32
Raumgruppe P -1 a /A 9.6846(4) b /A 10.6787(5) c /A 11.7943(6) α /° 84.9 ß /° 79.42 γ /° 68.05Space group P -1 a / A 9.6846 (4) b / A 10.6787 (5) c / A 11.7943 (6) α / ° 84.9 β / ° 79.42 γ / ° 68.05
V / A3 1111.81(7)V / A 3 1111.81 (7)
Z 1Z 1
Pberechnet / g/m3 1.741 μ /mm"1 3.36Pberechnet / g / m 3 1.741 μ / mm "1 3.36
F(OOO) 598F (OOO) 598
Θ-Winkel /° 2-28Θ angle / ° 2-28
-12 < h < 12 h, k, I Werte -14 < k < 13-12 <h <12 h, k, I values -14 <k <13
-15 < l < 15-15 <l <15
Gemessene Reflexe 19363Measured reflexes 19363
Vollständigkeit von θmax - unabh. Reflexe 5283 /0.0221Completeness of θ max - independent Reflexes 5283 /0.0221
Reflexe mit (l>2σ(l)) 4482 Verfeinerungsparameter 293Reflexes with (l> 2σ (l)) 4482 Refinement parameter 293
GooF (F2) 1.072 R1 (F)(l>2σ(l)) 0.0223 wR2 (F2) 0.0597GooF (F 2 ) 1.072 R1 (F) (l> 2σ (l)) 0.0223 wR2 (F 2 ) 0.0597
Maximaler /minimalerMaximum / minimum
0.64 /-0.49 Differenzpeak e/ A3 0.64 / -0.49 difference peak e / A 3
Beispiel 10: Darstellung VOn[MeN(CH2C(CHShO)2Zn]6* H2OExample 10: Preparation of Vnn [MeN (CH 2 C (CH 2 H 2 ) 2 Zn] 6 * H 2 O
Eine Lösung aus /V-Methyl-2,2*-Bis(dimethyl)-diethanolamin (5.5 mmol, 0.96 g) in Toluol (25 ml) wurde bei Raumtemperatur zu einer Lösung aus Et2Zn (5.5 mmol, 1M in n-Hexan) in Toluol (55 ml) getropft und anschließend eine Stunde am Rückfluss erhitzt. Nach Entfernen des Lösungsmittels im Vakuum konnten 1.30 g (5.44 mmol, 99 % d. Th.) 4-Λ/-methyl-2,7-bis(dimethyl)-2,8,4-dioxazazinkocan als farbloser Feststoff erhalten werden. Zur Röntgenstrukturanalyse geeignete farblose Kristalle konnten durch Umkristallisieren aus n-Hexan an Luft erhalten werden.A solution of / V-methyl-2,2 * -bis (dimethyl) -diethanolamine (5.5 mmol, 0.96 g) in toluene (25 ml) was added at room temperature to a solution of Et 2 Zn (5.5 mmol, 1M in n-). Hexane) in toluene (55 ml) and then heated at reflux for one hour. After removal of the solvent in vacuo, 1.30 g (5.44 mmol, 99% of theory) of 4-Λ / -methyl-2,7-bis (dimethyl) -2,8,4-dioxazazincocane were obtained as a colorless solid. Colorless crystals suitable for X-ray structure analysis could be obtained by recrystallization from n-hexane in air.
Für den erhaltenen Komplex ergaben sich die in der nachfolgenden Tabelle 13 angegebenen Strukturdaten.For the complex obtained, the structural data given in Table 13 below were obtained.
ZeI I konstanten [MeN(CH2C(CHs)2O)2Zn]6- H2O:ZeI I constant [MeN (CH 2 C (CH 2 ) 2 O) 2 Zn] 6 - H 2 O:
Raumgruppe Triklin, P1Room group Triklin, P1
Zelldimension [A] a = 11.6421 (7) b = 11.6518(6) c =15.1304(8) ß = 77.604(5)° Zellvolumen [A3] 1684.47(16)Cell dimension [A] a = 11.6421 (7) b = 11.6518 (6) c = 15.1304 (8) β = 77.604 (5) ° cell volume [A 3 ] 1684.47 (16)
Tabelle 13: Atomkoordinaten (x 104) und äquivalente isotrope Auslenkungsparameter (A2 x 103) für [MeN(CH2C(CHs)2O)2Zn]6* berechnet als ein Drittel der Spur des orthogonalen UÜ TensorsTable 13: Atomic coordinates (x 10 4 ) and equivalent isotropic displacement parameters (A 2 x 10 3 ) for [MeN (CH 2 C (CHs) 2 O) 2 Zn] 6 * calculated as one-third of the trace of the orthogonal UÜ tensor
U(eq)U (eq)
Zn(I) 6155(1) 137(1) 967 (1) 13(1)Zn (I) 6155 (1) 137 (1) 967 (1) 13 (1)
Zn(2) 4210 (1) -424 (1) 2528(1) 16(1) Zn(3) 5375(1) -2024 (1) 1105(1) 13(1)Zn (2) 4210 (1) -424 (1) 2528 (1) 16 (1) Zn (3) 5375 (1) -2024 (1) 1105 (1) 13 (1)
0(1) 4440(2) -1(2) 1141 (1) 13(1)0 (1) 4440 (2) -1 (2) 1141 (1) 13 (1)
0(11) 5991 (2) -523(2) 2390(1) 15(1)0 (11) 5991 (2) -523 (2) 2390 (1) 15 (1)
0(17) 5603(2) 1837 (2) -111(1) 13(1)0 (17) 5603 (2) 1837 (2) -111 (1) 13 (1)
0(21) 2769(2) 796(2) 3131(1) 24(1)0 (21) 2769 (2) 796 (2) 3131 (1) 24 (1)
0(27) 2539(2) 3329(2) 2564 (2) 33(1)0 (27) 2539 (2) 3329 (2) 2564 (2) 33 (1)
0(31) 4667 (2) -2300(2) 2470 (1) 16(1)0 (31) 4667 (2) -2300 (2) 2470 (1) 16 (1)
0(37) 6879(2) -1514 (2) 442 (1) 14(1)0 (37) 6879 (2) -1514 (2) 442 (1) 14 (1)
N(14) 7263(2) 1018(2) 1324 (2) 17(1)N (14) 7263 (2) 1018 (2) 1324 (2) 17 (1)
N(24) 504 (2) 2878(2) 4036(2) 22(1)N (24) 504 (2) 2878 (2) 4036 (2) 22 (1)
N(34) 7161 (2) -3988(2) 1724 (2) 16(1)N (34) 7161 (2) -3988 (2) 1724 (2) 16 (1)
C(Il) 7917 (2) -1414 (3) 3231 (2) 24(1)C (Il) 7917 (2) -1414 (3) 3231 (2) 24 (1)
C(12) 6593(2) -173(3) 2913(2) 17(1)C (12) 6593 (2) -173 (3) 2913 (2) 17 (1)
C(13) 6720(3) 1093(3) 2294 (2) 20(1)C (13) 6720 (3) 1093 (3) 2294 (2) 20 (1)
C(14) 8734 (2) 338(3) 1273(2) 27(1)C (14) 8734 (2) 338 (3) 1273 (2) 27 (1)
C(15) 6766(3) 2386(3) 663(2) 19(1)C (15) 6766 (3) 2386 (3) 663 (2) 19 (1)
C(16) 6479(2) 2421 (3) -290(2) 15(1)C (16) 6479 (2) 2421 (3) -290 (2) 15 (1)
C(17) 5710(3) 230(3) 3776(2) 25(1)C (17) 5710 (3) 230 (3) 3776 (2) 25 (1)
C(18) 5767 (3) 3917 (3) -811 (2) 22(1)C (18) 5767 (3) 3917 (3) -811 (2) 22 (1)
C(19) 7699(2) 1666(3) -881 (2) 23(1)C (19) 7699 (2) 1666 (3) -881 (2) 23 (1)
C(21) 1305(3) -86(3) 3044 (2) 33(1)C (21) 1305 (3) -86 (3) 3044 (2) 33 (1)
C(22) 1633(3) 645(3) 3555(2) 21(1)C (22) 1633 (3) 645 (3) 3555 (2) 21 (1)
C(23) 450(2) 2097 (3) 3477 (2) 22(1)C (23) 450 (2) 2097 (3) 3477 (2) 22 (1)
C(24) -421 (3) 2985(3) 4858(2) 29(1)C (24) -421 (3) 2985 (3) 4858 (2) 29 (1)
C(25) 478(3) 4187 (3) 3515(2) 26(1)C (25) 478 (3) 4187 (3) 3515 (2) 26 (1)
C(26) 1827 (3) 4138(3) 3219(2) 23(1)C (26) 1827 (3) 4138 (3) 3219 (2) 23 (1)
C(27) 1858(3) -123(3) 4571 (2) 29(1)C (27) 1858 (3) -123 (3) 4571 (2) 29 (1)
C(28) 2630(3) 3570(3) 4067 (2) 30(1)C (28) 2630 (3) 3570 (3) 4067 (2) 30 (1)
C(29) 1630(3) 5570(3) 2706(2) 32(1)C (29) 1630 (3) 5570 (3) 2706 (2) 32 (1)
C(31) 5385(3) -3208(3) 4052 (2) 25(1)C (31) 5385 (3) -3208 (3) 4052 (2) 25 (1)
C(32) 5457 (3) -3508(3) 3120(2) 19(1)C (32) 5457 (3) -3508 (3) 3120 (2) 19 (1)
C(33) 6926(2) -4024 (3) 2739(2) 20(1)C (33) 6926 (2) -4024 (3) 2739 (2) 20 (1)
C(34) 7414 (3) -5291 (3) 1587 (2) 26(1)C (34) 7414 (3) -5291 (3) 1587 (2) 26 (1)
C(35) 8314 (2) -3720(3) 1312 (2) 18(1)C (35) 8314 (2) -3720 (3) 1312 (2) 18 (1)
C(36) 8090(2) -2695(3) 350(2) 16(1)C (36) 8090 (2) -2695 (3) 350 (2) 16 (1)
C(37) 4955(3) -4569(3) 3334 (2) 26(1)C (37) 4955 (3) -4569 (3) 3334 (2) 26 (1)
C(38) 7979(3) -3239(3) -409(2) 23(1)C (38) 7979 (3) -3239 (3) -409 (2) 23 (1)
C(39) 9250(2) -2361 (3) 79(2) 23(1)C (39) 9250 (2) -2361 (3) 79 (2) 23 (1)
H(IO) 3970(20) 460(30) 785(19) 16H (IO) 3970 (20) 460 (30) 785 (19) 16
H(27O) 2620(30) 2580(30) 2770(20) 39H (270) 2620 (30) 2580 (30) 2770 (20) 39
H(IlA) 8415 -1787 2709 35H (ILA) 8415 -1787 2709 35
H(IlB) 7749 -2096 3713 35H (IIB) 7749-2096 3713 35
H(IlC) 8414 -1136 3469 35H (IlC) 8414-1136 346935
H(13A) 5851 1880 2272 23H (13A) 5851 1880 2272 23
H(13B) 7287 1240 2583 23H (13B) 7287 1240 2583 23
H(14A) 9027 813 1511 40H (14A) 9027 813 1511 40
H(14B) 9070 352 634 40H (14B) 9070 352 63440
H(14C) 9057 -591 1640 40H (14C) 9057-591 1640 40
H(15A) 7417 2711 567 23H (15A) 7417 2711 567 23
H(15B) 5959 3010 943 23H (15B) 5959 3010 943 23
H(17A) 4856 965 3590 37H (17A) 4856 965 3590 37
H(17B) 6109 519 4097 37H (17B) 6109 519 4097 37
H(17C) 5607 -540 4186 37H (17C) 5607 -540 4186 37
H (18A) 5613 3982 -1427 34H (18A) 5613 3982 -1427 34
H(18B) 6305 4349 -855 34H (18B) 6305 4349-855 34
H(18C) 4935 4363 -478 34H (18C) 4935 4363 -478 34
H (19A) 7447 1821 -1489 34H (19A) 7447 1821 -1489 34
H(19B) 8090 706 -584 34H (19B) 8090 706-584 34
H(19C) 8330 1994 -943 34H (19C) 8330 1994 -943 34
H(21A) 2030 -984 3068 49H (21A) 2030-984 3068 49
H(21B) 1161 424 2404 49H (21B) 1161 424 2404 49
H(21C) 519 -157 3340 49H (21C) 519-157 3340 49
H (23A) 408 2606 2827 26H (23A) 408 2606 2827 26
H(23B) -362 2016 3664 26 H(24A) -311 2091 5203 44H (23B) -362 2016 3664 26 H (24A) -311 2091 5203 44
H(24B) -1312 3548 4667 44H (24B) -1312 3548 4667 44
H(24C) -250 3386 5246 44H (24C) -250 3386 5246 44
H (25A) -14 4833 3898 31H (25A) -14 4833 3898 31
H(25B) 0 4530 2959 31H (25B) 0 4530 2959 31
H(27B) 2055 359 4876 44H (27B) 2055 359 4876 44
H(27C) 2588 -1021 4608 44H (27C) 2588-1021 4608 44
H(27D) 1074 -195 4873 44H (27D) 1074-195 4873 44
H(28A) 2747 2662 4374 45H (28A) 2747 2662 4374 45
H(28B) 2168 4143 4493 45H (28B) 2168 4143 4493 45
H(28C) 3481 3545 3870 45H (28C) 3481 3545 3870 45
H (29A) 1146 5892 2164 48H (29A) 1146 5892 2164 48
H(29B) 2477 5556 2517 48H (29B) 2477 5556 2517 48
H(29C) 1140 6169 3114 48H (29C) 1140 6169 3114 48
H(31A) 4498 -2923 4335 38H (31A) 4498-2923 4335 38
H(31B) 5628 -2494 3941 38H (31B) 5628-2494 3941 38
H(31C) 5985 -4018 4463 38H (31C) 5985-4018 4463 38
H (33A) 7263 -3472 2849 24H (33A) 7263-3472 2849 24
H(33B) 7433 -4956 3091 24H (33B) 7433-4956 3091 24
H(34A) 8190 -6019 1896 39H (34A) 8190-6019 1896 39
H(34B) 7550 -5246 931 39H (34B) 7550 -5246 931 39
H(34C) 6666 -5458 1846 39H (34C) 6666 -5458 1846 39
H (35A) 9084 -4575 1254 21H (35A) 9084-4575 1254 21
H(35B) 8507 -3375 1737 21H (35B) 8507-3375 1737 21
H(37A) 4050 -4193 3583 38H (37A) 4050 -4193 3583 38
H(37B) 5491 -5371 3783 38H (37B) 5491-5371 3783 38
H(37C) 5011 -4806 2769 38H (37C) 5011 -4806 2769 38
H(38A) 7932 -2601 1006 35H (38A) 7932 -2601 1006 35
H(38B) 7193 -3355 -272 35H (38B) 7193-3355-272 35
H(38C) 8742 -4102 -424 35H (38C) 8742 -4102 -424 35
H (39A) 9133 -1722 -524 34H (39A) 9133 -1722 -524 34
H(39B) 10061 -3183 54 34H (39B) 10061-3183 54 34
H(39C) 9286 -1969 535 34H (39C) 9286 -1969 535 34
Beispiel 11 : Ringöffnungspolymerisation mit [(Zn)6(OCH2CH2)2NMe)4((HOCH2CH2)2NMe)2]Cl2 H2OExample 11: ring-opening polymerization with [(Zn) 6 (OCH2CH2) 2NMe) 4 ((HOCH 2 CH 2) 2NMe) 2] Cl2 H 2 O
Unter den Bedingungen der oben beschriebenen Massen- oder Lösungspolymerisation wurde bei einer Reaktionszeit von 24 h bei 150 0C in 91 % Ausbeute ein Polylactid mit einer molekularen Masse Mw von 98500 g/mol und einer Polydispersität von 1 ,82 erhalten. Nach 48 h betrug die Ausbeute 92 %, die Molmasse Mw 88200 g/mol bei einer Polydispersität von 1 ,85. Under the conditions of the mass or solution polymerization described above was conducted at a reaction time of 24 h at 150 0 C in 91% yield, a polylactide having a molecular mass M w of 98500 g / mol and a polydispersity of 1 obtained 82nd After 48 h, the yield was 92%, the molecular weight M w 88200 g / mol with a polydispersity of 1.85.

Claims

Patentansprüche claims
1. Verfahren zur katalytischen Ringöffnungspolymerisation von cyclischen Monomeren, dadurch gekennzeichnet, dass als Polymerisationskatalysator wenigstens eine Verbindung der Gruppe bestehen aus Diamin-Zink- Komplexen und polynuklearen Aminoethanolat-Zink-Komplexen eingesetzt wird.1. A process for the catalytic ring-opening polymerization of cyclic monomers, characterized in that at least one compound of the group consisting of diamine-zinc complexes and polynuclear aminoethanolate-zinc complexes is used as the polymerization catalyst.
2. Verfahren gemäß Anspruch 1 , wobei das cyclische Monomer ein Lacton, Lactam, Lactim, Lactol, Lactid, Thiolacton oder Thiolactid ist.2. The method according to claim 1, wherein the cyclic monomer is a lactone, lactam, lactim, lactol, lactide, thiolactone or thiolactide.
3. Verfahren gemäß einem der vorgehenden Ansprüche, wobei als Polymerisationskatalysator eine Verbindung der Gruppe bestehend aus ZnX2*(R,R)-TMCDA, ZnX2^RR)-TECDA1 (RcRcRN1RN )-[ZnX2 DEDMCDA], (RCRCRAz)-[ZnX2 ETMCDA]1 (RcRc 1RN)-[ZnX2 PTMCDA]1 [Zn(TEMCDA)X2], [(Zn)6(OCH2CH2)2NMe)4((HOCH2CH2)2NMe)2]X2 • H2O, [MeN(CH2C(CH3)2O)2Zn]6 * H2O mit X = Cl oder Br eingesetzt wird.3. The method according to any one of the preceding claims, wherein as a polymerization catalyst a compound of the group consisting of ZnX 2 * (R, R) -TMCDA, ZnX 2 ^ RR) -TECDA 1 (N1 RcRcR R N) - [2 ZnX DEDMCDA] (R C R C R A z) - [Zn X 2 ETMCDA] 1 (Rc Rc 1 R N ) - [Zn X 2 PTMCDA] 1 [Zn (TEMCDA) X 2 ], [(Zn) 6 (OCH 2 CH 2 ) 2 NMe) 4 ((HIGH 2 CH 2 ) 2 NMe) 2 ] X 2 • H 2 O, [MeN (CH 2 C (CH 3 ) 2 O) 2 Zn] 6 * H 2 O with X = Cl or Br becomes.
4. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei der Polymerisationskatalysator in einem molaren Verhältnis zwischen 1 :5000 bis 1 :50, vorzugsweise zwischen 1 :2000 bis 1 :100, noch bevorzugter zwischen4. The method according to any one of the preceding claims, wherein the polymerization catalyst in a molar ratio between 1: 5000 to 1: 50, preferably between 1: 2000 to 1: 100, more preferably between
1 :1000 und 1 :250 zum cyclischen Monomer eingesetzt wird.1: 1000 and 1: 250 to the cyclic monomer is used.
5. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei die Polymerisation bei einer Temperatur zwischen 80 0C und 250 0C, vorzugsweise 100 0C und 200 0C durchgeführt wird.5. The method according to any one of the preceding claims, wherein the polymerization at a temperature between 80 0 C and 250 0 C, preferably 100 0 C and 200 0 C is performed.
6. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei die Polymerisation als Massenpolymerisation oder Lösungspolymerisation durchgeführt wird.6. The method according to any one of the preceding claims, wherein the polymerization is carried out as a bulk polymerization or solution polymerization.
7. Verfahren zur Herstellung eines Katalysator zur Ringöffnungspolymerisation von cyclischen Monomeren gemäß einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass eine zweiwertige Zinkverbindung mit einer Verbindung ausgewählt aus der Gruppe bestehend aus (1 R,2R)-Λ/,Λ/,Λ/',Λ/'- Tetramethylcyclohexan-1 ,2-diamin, (1 R,2R)-Λ/,Λ/,Λ/',Λ/'-Tetraethylcyclohexan- 1 ,2-diamin, (1 R,2R)-Λ/,Λ/,Λ/',Λ/'-Diethyldimethylcyclohexan-1 ,2-diamin, (1 R,2R)-Λ/,Λ/,Λ/',Λ/'-Thethylmethylcyclohexan-1 ,2-diamin, (1 R,2R)-N,N,N',N'- Ethylthmethylcyclohexan-1 ,2-diamin, (1 R,2R)-N,N,N',N'- Pentyltrimethylcyclohexan-1 ,2-diamin, (NaOC2H4)2N-CH3, und N-Methy\-2,T- Bis(dimethyl)-diethanolamin umgesetzt wird.7. A process for producing a catalyst for ring-opening polymerization of cyclic monomers according to any one of claims 1 to 6, characterized in that a divalent zinc compound with a compound selected from the group consisting of (1R, 2R) -Λ /, Λ /, Λ / ' , Λ / ' - tetramethylcyclohexane-1,2-diamine, (1R, 2R) -Λ /, Λ /, Λ / ' , Λ / ' -Tetraethylcyclohexane-1,2-diamine, (1R, 2R) -Λ /, Λ /, Λ / ' , Λ / ' -diethyldimethylcyclohexane-1,2-diamine, (1R, 2R) - Λ /, Λ /, Λ / ' , Λ / ' - thymethylcyclohexane-1,2-diamine, (1R, 2R) -N, N, N ' , N ' - ethylthymethylcyclohexane-1,2-diamine, (1R , 2R) -N, N, N ', N' - Pentyltrimethylcyclohexan-1, 2-diamine, (NaOC 2 H 4) 2 N-CH 3, and N-methyl \ -2, T- implemented H bis (dimethyl) -diethanolamine becomes.
8. Verfahren gemäß Anspruch 7, dadurch gekennzeichnet, wobei die zweiwertige Zinkverbindung aus der Gruppe bestehend aus ZnX2 mit X = Br oder Cl, R2Zn mit R = Me oder Et, Zn(OR)2 mit R = AIIyI und Zn(NR2)2 mit R = Alkyl, Thorganosilyl oder Aryl ausgewählt ist.8. The method according to claim 7, characterized in that the divalent zinc compound from the group consisting of ZnX 2 with X = Br or Cl, R 2 Zn with R = Me or Et, Zn (OR) 2 with R = AIIyI and Zn ( NR 2 ) 2 with R = alkyl, thorganosilyl or aryl.
9. Verwendung eines Diamin-Zink-Komplexen und / oder eines polynuklearen Aminoethanolat-Zink-Komplexen zur katalytischen Ringöffnungspolymerisation von cyclischen Monomeren.9. Use of a diamine-zinc complexes and / or a polynuclear aminoethanolate-zinc complexes for the catalytic ring-opening polymerization of cyclic monomers.
10.Verwendung gemäß Anspruch 9, wobei das cyclische Monomer ein Lacton, Lactam, Lactim, Lactol, Lactid, Thiolacton oder Thiolactid ist. 10. Use according to claim 9, wherein the cyclic monomer is a lactone, lactam, lactim, lactol, lactide, thiolactone or thiolactide.
PCT/EP2010/057360 2009-05-28 2010-05-27 Process for catalytic ring-opening polymerization of cyclic monomers WO2010136544A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102009023656.2 2009-05-28
DE200910023656 DE102009023656A1 (en) 2009-05-28 2009-05-28 Ring-opening polymerization of lactide using diamine-zinc complexes as catalysts
DE200910031594 DE102009031594A1 (en) 2009-06-30 2009-06-30 Catalytic ring-opening polymerization of cyclic monomers e.g. lactam, lactim, lactol or lactide, using polymerization catalyst comprising diamine-zinc complexes and/or polynuclear aminoethoxide-zinc complexes
DE102009031594.2 2009-06-30

Publications (1)

Publication Number Publication Date
WO2010136544A1 true WO2010136544A1 (en) 2010-12-02

Family

ID=42338296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/057360 WO2010136544A1 (en) 2009-05-28 2010-05-27 Process for catalytic ring-opening polymerization of cyclic monomers

Country Status (1)

Country Link
WO (1) WO2010136544A1 (en)

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
A. P. COLE; V. MAHADEVAN; L. M. MIRICA; X. OTTENWAELDER; T. D. P. STACK, INORG. CHEM., vol. 44, 2005, pages 7345
ANCA DUMITRESCU, BLANCA MARTIN-VACA, HEINZ GORNITZKA, JEAN-BERNARD CAZAUX, DIDIER BOURISSOU, GUY BERTRAND: "Zinc(II), Samarium(III) and Tin(II) Complexes Featuring a TridentateNitrogen Donor for the Ring-Opening Copolymerization of (D,L)-Lactide andGlycolide", EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, no. 8, 2002, pages 1948 - 1951, XP002593592 *
ANGEW. CHEM. INT. ED., vol. 46, 2007, pages 8281 - 8283
C. STROHMANN; V. H. GESSNER, ANGES. CHEM., vol. 119, 2007, pages 8429 - 8432
DEBASHIS CHAKRABORTY, EUGENE Y.-X. CHEN: "Chiral Amido Aluminum and Zinc Alkyls: A Synthetic,Structural, and Polymerization Study", ORGANOMETALLICS, vol. 22, 16 January 2003 (2003-01-16), pages 769 - 774, XP002593591 *
F. LARROX; E. N. JACOBSEN, J. ORG. CHEM., vol. 59, 1994, pages 1939
G. FRAENKEL; J. GALLUCCI; H. S. ROSENZWEIG, J. ORG. CHEM., vol. 54, 1989, pages 681 - 683
J. BÖRNER; S. HERRES-PAWLIS; U. FLÖRKE; K. HUBER, EUR. J. LNORG. CHEM., 2007, pages 5645 - 5651
J. BÖRNER; U. FLÖRKE; K. HUBER; A. DÖRING; D. KUCKLING; S. HERRES-PAWLIS, CHEM. EUR. J., vol. 15, 2009, pages 2362 - 2376
J.-C. KIZIRIAN; N. CABELLO; L. PINCHARD; J.-C. CAILLE; A. ALEXAKIS, TETRAHEDRON, vol. 61, 2005, pages 8939
NA YOUNG LEE, JONG UK YOON, JONG HWA JEONG: "Dichlorido[N,N,N0,N0-tetramethylcyclohexane-1,2-diamine-j2N,N0]zinc(II)", ACTA CRYSTALLOGRAPHICA SECTION E, vol. E63, 2007, pages M2471, XP002593590 *
WILLIAMS C K ET AL: "A Highly Active Zinc Catalyst for the Controlled Polymerization of Lactide", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, AMERICAN CHEMICAL SOCIETY, NEW YORK, US LNKD- DOI:10.1021/JA0359512, vol. 125, no. 37, 1 January 2003 (2003-01-01), pages 11350 - 11359, XP002534371, ISSN: 0002-7863, [retrieved on 20030821] *

Similar Documents

Publication Publication Date Title
DE3752381T2 (en) Preparation of copolyanhydrides
EP1866320B1 (en) Nitrogen-containing bridged derivatives of 6h-dibenz(e,e)(1,2)-oxaphosphorine-6-oxides method for production and use thereof as flame-retardant agents
DE60016900T2 (en) BIODEGRADABLE AND HEAT-SENSITIVE POLYPHOSPHAZENE AND PROCESS FOR THEIR PREPARATION
EP1036080A1 (en) Method for producing dialkylphosphinic acid salts
EP2222687A1 (en) Spiro compounds
EP2906568A1 (en) Method for converting reactive groups of si-c-bound groups of silanes while simultaneously increasing the physical distance between said groups
Ma et al. Dimethylaluminium iminophosphoranylenamides and iminophosphoranylanilides: Synthesis, characterisation, and their controlled ring-opening polymerisation of ε-caprolactone
DE102012213694A1 (en) η5: η1-cyclopentadienylidene-phosphorane-constrained-geometry complexes of rare-earth metals
CH496023A (en) Epoxy resin composition comprises besides the epoxy resin a curing agent consisting of a complex of formula; (I) - (III) (where O&#39;, O&#39;&#39; and O&#39;&#39;&#39; are respectivel
WO2011113926A1 (en) Method for preparing tin alkoxides
EP0866086A2 (en) Process for the preparation of SiOH-funktional carbosilane dendrimers
DE1907243A1 (en) Hexafluoroantimonate Amine Catalysts
CN101812084B (en) Rare earth metal amine compound containing aromatic amine methylene pyrrole ligand, preparation method and application thereof
WO2010136544A1 (en) Process for catalytic ring-opening polymerization of cyclic monomers
DE102010054892A1 (en) Producing a polyester, useful to produce molded bodies, comprises carrying out dehydration or partial condensation of hydroxycarboxylic acid and dicarboxylic acid, adding zinc containing catalyst and performing polycondensation
DE102008014117A1 (en) Preparation of 6-amino-(6H)-dibenz(c,e)(1,2)-oxaphosphorin-6-sulfide compounds, useful as flame retardants for e.g. epoxy resins, comprises reaction of 6-amino-(6H)-dibenz(c,e)(1,2)-oxaphosphorine compounds with elemental sulfur
EP2739631A1 (en) Homoleptic rare earth triaryl complexes
DE3538327A1 (en) FREE RADICAL INITIATORS AND METHOD FOR THEIR PRODUCTION
DE2748535C3 (en) Process for the preparation of mixed polyimino derivatives of aluminum and magnesium and of magnesium amides
DE2701143A1 (en) DOUBLE YLIDE COMPLEXES OF METALS AND METHOD FOR THE PRODUCTION THEREOF
DE102009023656A1 (en) Ring-opening polymerization of lactide using diamine-zinc complexes as catalysts
WO2014118076A1 (en) Method for polymerizing ε-caprolactam
DE60006242T2 (en) polymerization catalysts
DE102009031594A1 (en) Catalytic ring-opening polymerization of cyclic monomers e.g. lactam, lactim, lactol or lactide, using polymerization catalyst comprising diamine-zinc complexes and/or polynuclear aminoethoxide-zinc complexes
WO2001072852A1 (en) Method for producing polymers and copolymers of alpha-substituted acrylic compounds and the resulting polymers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10721506

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 10721506

Country of ref document: EP

Kind code of ref document: A1