WO2010136411A1 - Chloroaluminate compound, process for the preparation thereof, radiation-emitting device comprising the chloroaluminate compound and process for producing the radiation-emitting device - Google Patents

Chloroaluminate compound, process for the preparation thereof, radiation-emitting device comprising the chloroaluminate compound and process for producing the radiation-emitting device Download PDF

Info

Publication number
WO2010136411A1
WO2010136411A1 PCT/EP2010/057076 EP2010057076W WO2010136411A1 WO 2010136411 A1 WO2010136411 A1 WO 2010136411A1 EP 2010057076 W EP2010057076 W EP 2010057076W WO 2010136411 A1 WO2010136411 A1 WO 2010136411A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
emitting device
conversion material
chloroaluminate
primary
Prior art date
Application number
PCT/EP2010/057076
Other languages
German (de)
French (fr)
Other versions
WO2010136411A8 (en
Inventor
Ute Liepold
Original Assignee
Osram Opto Semiconductors Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram Opto Semiconductors Gmbh filed Critical Osram Opto Semiconductors Gmbh
Publication of WO2010136411A1 publication Critical patent/WO2010136411A1/en
Publication of WO2010136411A8 publication Critical patent/WO2010136411A8/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7734Aluminates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/30Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/006Compounds containing, besides manganese, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12044OLED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials

Definitions

  • a chloroaluminate compound a process for the production thereof, a radiation-emitting device comprising the chloroaluminate compound, and a process for producing the radiation-emitting device
  • a chloroaluminate compound according to claim 1 is provided, such as a radiation emitting device comprising the chloroaluminate compound. Further, a process for producing the chloroaluminate compound as well as a process for producing the radiation-emitting device are given.
  • a widespread problem of radiation-emitting devices is that the brightness and efficiency of the semiconductor chip are dependent on the current supply. If the radiation-emitting device comprises a phosphor, the chip and phosphor react differently to temperature increases, which may be the result of a higher electrical voltage, which changes the proportion of the primary radiation emitted directly by the chip and the secondary radiation converted by the phosphor relative to one another. This in turn can result in that the color impression of the of the
  • Radiation-emitting device emitted radiation can change depending on the current.
  • An object of the embodiments of the radiation-emitting device is to provide a radiation-emitting device whose light color is largely independent of the respective brightness of the semiconductor chip.
  • Another object is to provide a phosphor which can be used for such radiation-emitting devices.
  • a chloroaluminate compound according to claim 1 The object is achieved by a chloroaluminate compound according to claim 1. Further embodiments of the chloroaluminate compound and a radiation-emitting device with the chloroaluminate compound are the subject of further claims. Furthermore, a method for producing the chloroaluminate compound and the radiation-emitting device is also claimed.
  • Me 1 SX- Y Eu x Mn 7 Al 2 O 5 Cl 2
  • Me 1 represents at least one element selected from: Mg, Ca, Sr, Ba, or any combination thereof, and 0> x ⁇ 3; 0 ⁇ y ⁇ 3; x + y ⁇ 3.
  • a chloroaluminate compound of the stated composition can be excited by UV radiation, emitting radiation in the visible range. Due to the fact that the exciting radiation can be largely outside the visible range, it does not contribute, or only slightly, to the color location of the radiation emitted by a radiation-emitting device, the color locus being represented by the color coordinates of the CIE system can be defined. Thus, the color location is wholly or largely independent of the brightness of the radiation source with which the phosphor is excited.
  • the luminescence properties can be influenced, for example, by the proportion of Eu and / or Mn.
  • Me 1 is the following sub-formula:
  • the Sr obtained in the compound may be at least partially replaced by one or more of Mg, Ca, Ba.
  • the luminescence properties such as excitation range or even luminescence color can be influenced.
  • the replacement of Sr for Ca results in a slight shift
  • the replacement of Sr for Ba results in a greater shift of the emission spectrum to shorter wavelengths.
  • chloroaluminate compound may be represented by the general formula:
  • the chloroaluminate compound according to the general formula Sr 3 - x Eu x Al 2 O 5 Cl 2 can be excited in the UV range and in the short-wave visible range up to approximately 470 nm. Very good is the connection in the UV range and in the short-wave Visible range to about 425 nm excite. In the latter range, the reflectivity with respect to the excitation radiation is less than 30 percent. This means that only a small amount of radiation is reflected by the conversion material, and a large proportion is absorbed and thus can be converted.
  • the chloroaluminate compound shows intense orange-yellow luminescence. The emission spectrum extends from the blue-green spectral range to the IR and has a half-width of about 167 nm. The orange-yellow emission of the chloroaluminate compound has a very high half-width, which is approximately in the range of 167 nm. The emission ranges from green to the near IR range.
  • the maximum of the emission is about 616 nm.
  • Color coordinates are to be understood as the color coordinates according to the CIE system.
  • the dominant wavelength of this phosphor is 585 nm.
  • the dominant wavelength is the wavelength which can be determined as follows: In the CIE color diagram, a line is drawn from the white point to the color locus (c x , c y ) of the phosphor and up to the horseshoe-shaped line of the chart. On the horseshoe-shaped line, the wavelengths of the visible spectral range are plotted. The wavelength at which the extended connecting line meets the horseshoe-shaped line is the dominant wavelength.
  • a range for the parameter x of 0.015 ⁇ x ⁇ 0.3 is preferred, and 0.015 ⁇ x ⁇ 0.15 is particularly preferred.
  • a fraction of less than 0.015 for x would only lead to a weak emission. With a proportion of greater than 0.15 can already use a deletion of the emission, ie the emitted radiation is absorbed by the conversion material again.
  • a radiation emitting device comprising the chloroaluminate compound is also claimed.
  • An embodiment of the radiation-emitting device in this case comprises a radiation source which emits a primary radiation and a conversion material which is arranged in the beam path of the radiation source.
  • the conversion material comprises at least one of the above-described chloroaluminate compounds.
  • the radiation source emits a primary radiation which is at least partially converted by the conversion material into a secondary radiation.
  • the conversion material in this case comprises a chloroaluminate compound according to the invention.
  • the radiation emitted by the radiation-emitting device can be both pure secondary radiation if the primary radiation is completely converted into secondary radiation. But it may also be mixed light, which results from the mixture of secondary radiation and unconverted primary radiation.
  • the primary radiation emitted by the radiation source can here be matched to the absorption region of the conversion material.
  • the radiation source emits a primary Radiation in a wavelength range of 180 nm to 470 nm, wherein the range 280 to 470 nm is preferred
  • Such primary radiation can be readily absorbed by the chloroaluminate compound. Thus, a large proportion of the primary radiation can be converted into the secondary radiation.
  • the conversion material converts the primary radiation into a secondary radiation which lies in the visible spectral range from 450 nm to 780 nm, preferably in the range from 450 nm to 700 nm.
  • the primary radiation in the UV or short-wave visible range is converted into secondary radiation having a broad emission spectrum with respect to the visible region.
  • the spectrum of the secondary radiation has an intensity maximum in the wavelength range from 600 nm to 630 nm.
  • the chloroaluminate compound has an intensity maximum in the orange range, it is possible to produce white light by combining the secondary radiation with a certain proportion of blue primary radiation.
  • the conversion material has a reflectivity of less than 30% with respect to a primary radiation from the wavelength range from 180 nm to 420 nm. Due to the low reflectivity of the conversion material is able to absorb a high proportion of the primary radiation and convert.
  • the proportion by weight of the chloroaluminate compound in the conversion material allows the proportion of the primary light converted by the conversion material to be controlled. If an excessively high proportion of the chloroaluminate compound is chosen in relation to the matrix, it may be extinguished by complete absorption of the secondary radiation.
  • the conversion material comprises, in addition to the chloroaluminate compound, further phosphors.
  • the conversion material can be introduced into a matrix in one embodiment.
  • a matrix material for example, a silicone, an epoxy or other resin can be used.
  • Embodiments are also conceivable in which the conversion material is introduced into a glass or a ceramic.
  • the matrix material is preferably permeable to the secondary radiation. Embodiments are conceivable in which the matrix material is also permeable to the primary radiation, but embodiments are also possible in which the matrix material partially absorbs the primary radiation.
  • a filter is present in the beam path after the conversion material, which filters out the primary radiation which has not been converted by the conversion material.
  • a filter may comprise a UV absorber such as TiO 2, but it may also be formed as a photonic crystal, for example.
  • the radiation-emitting device emits a mixed light of the primary radiation and the secondary radiation.
  • the radiation-emitting device In the case where the primary radiation is not completely converted into secondary radiation, and the matrix material does not fully absorb the unconverted primary radiation, and the radiation-emitting device in the beam path does not have an additional filter that filters out the primary radiation, the radiation-emitting device also emits one in addition to the secondary radiation certain amount of primary radiation.
  • the proportions of primary radiation and secondary radiation which can be done for example via the proportion of the conversion material in the matrix
  • the wavelength of the mixed light which is composed of primary radiation and secondary radiation, can be adjusted specifically.
  • the radiation-emitting device can emit white light.
  • the radiation source comprises a semiconductor diode.
  • the semiconductor diode can be used to emit the primary radiation in the UV or short-wave visible range.
  • the semiconductor material may in this case be based, for example, on nitride compound semiconductors or phosphide compound semiconductors. But they are too Embodiments possible in which an organic LED (OLED) is used as the radiation source.
  • OLED organic LED
  • nitride compound semiconductors in the present context means that the active epitaxial layer sequence or at least one layer thereof comprises a nitride III / V compound semiconductor material, preferably Al n Ga m In n m N, where O ⁇ n ⁇ l, O ⁇ m ⁇ l and n + m ⁇ 1.
  • this material does not necessarily have to have a mathematically exact composition according to the above formula, but rather it may have one or more dopants and additional constituents which have the characteristic physical properties of Al n Ga m ini- n _ m N material does not substantially change.
  • the major components of the crystal lattice Al, Ga, in, N
  • the semiconductor body in particular the active region, preferably comprises Al n Ga m In n m p, where 0 ⁇ n ⁇ l, 0 ⁇ m ⁇ l and n + m ⁇ 1, preferably with n ⁇ 0 and / or m ⁇ 0.
  • this material does not necessarily have to have a mathematically exact composition according to the above formula Rather, it may comprise one or more dopants as well as additional constituents which substantially substantially preserve the physical properties of the material
  • the above formula contains only the essential constituents of the crystal lattice (Al, Ga, In, P), even though these may be partially replaced by small amounts of other substances.
  • the chloroaluminate compound itself, a process for its preparation is claimed.
  • a variant of the production process for the preparation of one of the chloroaluminate compound described above comprises the process steps:
  • the proportion of Eu is determined, with which the compound is doped.
  • the carbonates or chlorides By appropriate choice of the carbonates or chlorides, the corresponding composition of Me 1 is controlled, and the chloride content in the product. After homogenization of the powder mixture, the powder mixture is subsequently annealed.
  • the powder mixture in process step A) additionally comprises MnO 2 and the stoichiometric amounts thus relate to the composition Me 1 SX- Y Eu x Mn 7 Al 2 O 5 Cl 2 .
  • the temperature range for the annealing in process step C) is in the range from 1000 ° C. to 1400 ° C., preferably in the range from 1000 ° C. to 1250 ° C.
  • the annealing in process step C) takes place in the forming gas stream.
  • a process for producing a radiation-emitting device comprising such a chloroaluminate compound is also claimed.
  • a method variant for producing one of the radiation-emitting devices described above comprises the method steps: a) providing a radiation source emitting a primary radiation, b) introducing a conversion material into a matrix material, c) introducing the matrix material comprising the conversion material into the beam path of the radiation source in that at least part of the primary radiation is converted by the conversion material into a secondary radiation.
  • a material is used for the conversion material, which comprises a compound according to one of the above-described chloroaluminate compound.
  • both an LED and an OLED can be used as the radiation source.
  • a silicone, an epoxide or another resin can be used as the matrix material in process step b).
  • the introduction of the matrix material in method step c) can be effected for example by the direct application of the matrix material to the radiation exit surface of the radiation source.
  • the application can take place in such a way that a layer is formed on the radiation source, but it can also take place in that the entire radiation source is poured into the matrix material.
  • the matrix material for example, as a layer on a transparent support is applied, and then the carrier is introduced with the matrix material in the beam path.
  • Figure 1 shows a schematic side view of an embodiment in which the entire primary radiation is converted into secondary radiation.
  • Figure 2 shows a schematic side view of an embodiment in which only a portion of the primary radiation is converted into secondary radiation.
  • Figure 3 shows a schematic side view of an embodiment in which the matrix is formed as a layer on the radiation source.
  • Figure 4 shows a schematic side view of an embodiment in which the inner walls of the housing are chamfered.
  • FIG. 5 shows two emission spectra (I and II) in which the relative intensity (I r ) was plotted against the wavelength ( ⁇ ).
  • FIG. 6 shows two spectra (I and II) in which the reflectivity (R) was plotted against the wavelength ( ⁇ ).
  • FIG. 1 shows a schematic side view of an exemplary embodiment of the radiation-emitting device 1.
  • the radiation-emitting device 1 in this case comprises a housing 10 which is pot-shaped. On the inside of the bottom surface of the housing 10, two circuit boards 11 are arranged. On one of the two circuit boards 11, the radiation source 4 is arranged so that it occupies a centered position relative to the housing 10. The upper side of the radiation source 4 is electrically conductively connected via a bonding wire 12 to the printed circuit board 11 which is at a distance from the radiation source. Thus, the radiation source 4 is now in electrically conductive contact with each of the two circuit boards 11. By applying voltage to the two circuit boards 11, the radiation source 4 can emit primary radiation 2. The entire radiation source 4 is potted in the housing 10 with a matrix 13.
  • the conversion material 5 is embedded in the matrix 13.
  • the concentration of the conversion material 5 is in this case selected so that the entire emitted primary radiation 2 is converted by the conversion material 5 into secondary radiation 3. Due to the complete conversion of the primary radiation 2 into secondary radiation 3, the radiation-emitting device 1 emits exclusively secondary radiation 3 via its radiation exit surface 14. The complete conversion of the primary radiation 2 into secondary radiation 3 can be achieved, for example, via the corresponding concentration of the conversion material 5 in the matrix 13.
  • the housing 10, the etching plates 11, the radiation source 4 and the bonding wire 12 are arranged analogously to the exemplary embodiment illustrated in FIG.
  • the concentration of the conversion material 5 in the matrix 13 is selected so that only part of the primary radiation 2 is converted into secondary radiation 3.
  • FIG. 3 shows the schematic side view of a further exemplary embodiment of the radiation-emitting device 1.
  • the radiation source 4 is arranged here on a printed circuit board 11.
  • the upper side of the radiation source 4 is electrically conductively connected via a bond wire 12 to a further printed circuit board 11.
  • the radiation source 4 is thus electrically conductively connected to a printed circuit board 11 at the top or bottom, respectively.
  • On the upper side of the radiation source 4 a conversion layer of the matrix 13 is arranged, in which the conversion material 5 is embedded.
  • the primary radiation 2 emitted by the radiation source 4 is converted into secondary radiation 3 as it passes through the matrix 13 by the conversion material 5.
  • the radiation-emitting device 1 thus emits exclusively the secondary radiation 3.
  • partial conversion ie the generation of mixed light of primary radiation 2 and secondary radiation 3, is also possible in this exemplary embodiment.
  • the radiation-emitting device 1 comprises a housing 10 with bevelled inner walls 15.
  • the surface of the inner walls 15 may in this case be coated with a reflective material, so that the radiation is transmitted to the inner walls 15 hits is deflected upwards.
  • the radiation source 4 is on one of the two circuit boards 11th arranged and electrically connected to a bonding wire 12 to the other circuit board.
  • the housing 10 is filled with a matrix 13, in which the converter material 5 is embedded.
  • FIG. 5 shows two emission spectra I and II in which in each case the relative intensity (I r ) of the emission of two differently processed chloroaluminate phosphors is plotted against the wavelength ( ⁇ ) in nm.
  • the excitation of the phosphor was carried out here with a radiation of wavelength of 360 nm. Shown is an emission wavelength range of 450 nm to 800 nm for each of the phosphor emitted radiation.
  • the spectrum I shows the spectrum of the chloroaluminate compound Sr 2 , 9Euo, iAl 2 0 5 Cl2. This sample was prepared by annealing for 8 hours at 1250 0 C and is almost phase pure.
  • Curve II shows the spectrum of a chloroaluminate compound, which was processed at 1250 0 C for 4 hours. This sample still has 10 to 20% foreign phases (Sri 2 Ali 4 ⁇ 33, SrCl 2 ).
  • the emission spectrum I in the illustrated wavelength range has a higher relative intensity (I r ) than the emission spectrum II, which still has foreign phase components.
  • FIG. 6 shows two spectra I and II in which the reflectivity (R) is plotted against the wavelength ( ⁇ ) in nm.
  • the wavelength at which the phosphor is irradiated was varied from 300 nm to 800 nm, and the respective reflectivity for the corresponding wavelength was measured relative to corresponding values of a white standard with ⁇ 100% reflectivity.
  • the measured samples of spectra I and II correspond to those the measured in Figure 5 for the corresponding emission spectra I and II substances.
  • the chloroaluminate compound Sr 2 , gEuo, 1Al 2 O 5 Cl 2 below 400 nm has a low reflectivity and thus a high absorption. In the range of 400 to 430 nm, the compound also has a significant absorption capacity. By contrast, the sample with the foreign phase fractions of 10 to 20 percent has a significantly higher reflectivity, as shown in Spectrum II.
  • the starting powders are weighed in the following ratios: 1.9 mol SrCO 3 , 1 mol SrCl 2 ⁇ 6 H 2 O, 1 mol Al 2 O 3 and 0.05 mol Eu 2 O 3 .
  • the powder mixture is homogenized and then annealed in a corundum boat with lid at a temperature between 1000 0 C and 1400 0 C, preferably between 1100 0 C and 1300 0 C, for 12 hours in the Formiergasstrom.
  • the result is a powder having the following composition: Sr 2 , 9 Euo, 1Al 2 O 5 Cl 2 .
  • the resulting powder can be excited with 366 nm electromagnetic radiation to emit white-orange light.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Luminescent Compositions (AREA)

Abstract

Chloroaluminate compound having the general formula: Me1 3-x-yEuxMnyAl2O5Cl2,where Me1 is at least one element selected from among: Mg, Ca, Sr, Ba or any combinations thereof and: 0 < x < 3; 0 = y < 3; x + y < 3.

Description

Beschreibungdescription
Chloroaluminat-Verbindung, Verfahren zu deren Herstellung, Strahlungsemittierende Vorrichtung umfassend die Chloroaluminat-Verbindung und Verfahren zur Herstellung der Strahlungsemittierenden VorrichtungA chloroaluminate compound, a process for the production thereof, a radiation-emitting device comprising the chloroaluminate compound, and a process for producing the radiation-emitting device
Diese Patentanmeldung beansprucht die Prioritäten der deutschen Patentanmeldungen 10 2009 022 561.7 und 10 2009 037 861.8, deren Offenbarungsgehalt hiermit durch Rückbezug aufgenommen wird.This patent application claims the priorities of German patent applications 10 2009 022 561.7 and 10 2009 037 861.8, the disclosure of which is hereby incorporated by reference.
Es wird eine Chloroaluminat-Verbindung nach dem Anspruch 1 angegeben, so wie eine Strahlungsemittierende Vorrichtung, welche die Chloroaluminat-Verbindung umfasst. Des Weiteren wird ein Verfahren zur Herstellung der Chloroaluminat- Verbindung wie auch ein Verfahren zur Herstellung der Strahlungsemittierenden Vorrichtung angegeben.A chloroaluminate compound according to claim 1 is provided, such as a radiation emitting device comprising the chloroaluminate compound. Further, a process for producing the chloroaluminate compound as well as a process for producing the radiation-emitting device are given.
Ein weit verbreitetes Problem von Strahlungsemittierenden Vorrichtungen, beispielsweise weißen LEDs, ist, dass die Helligkeit und Effizienz des Halbleiterchips von der Bestromung abhängig sind. Umfasst die Strahlungsemittierende Vorrichtung einen Leuchtstoff, so reagieren Chip und Leuchtstoff unterschiedlich auf Temperaturerhöhungen, welche die Folge einer höheren elektrischen Spannung sein kann, was den Anteil der direkt vom Chip emittierten Primärstrahlung und der durch den Leuchtstoff konvertierten Sekundärstrahlung relativ zueinander verändert. Dies kann wiederum zur Folge haben, dass sich der Farbeindruck des von derA widespread problem of radiation-emitting devices, for example white LEDs, is that the brightness and efficiency of the semiconductor chip are dependent on the current supply. If the radiation-emitting device comprises a phosphor, the chip and phosphor react differently to temperature increases, which may be the result of a higher electrical voltage, which changes the proportion of the primary radiation emitted directly by the chip and the secondary radiation converted by the phosphor relative to one another. This in turn can result in that the color impression of the of the
Strahlungsemittierenden Vorrichtung emittierten Strahlung in Abhängigkeit von der Bestromung ändern kann. Eine Aufgabe der Ausführungsformen der strahlungs- emittierenden Vorrichtung ist es, eine Strahlungsemittierende Vorrichtung bereitzustellen, deren Lichtfarbe von der jeweiligen Helligkeit des Halbleiterchips weitgehend unabhängig ist.Radiation-emitting device emitted radiation can change depending on the current. An object of the embodiments of the radiation-emitting device is to provide a radiation-emitting device whose light color is largely independent of the respective brightness of the semiconductor chip.
Eine weitere Aufgabe ist es, einen Leuchtstoff bereitzustellen, welcher für solche Strahlungsemittierende Vorrichtungen verwendet werden kann.Another object is to provide a phosphor which can be used for such radiation-emitting devices.
Die Aufgabe wird durch eine Chloroaluminat-Verbindung nach Anspruch 1 gelöst. Weitere Ausführungsformen der Chloroaluminat-Verbindung sowie eine Strahlungsemittierende Vorrichtung mit der Chloroaluminat-Verbindung sind Gegenstand weiterer Patentansprüche. Des Weiteren wird auch ein Verfahren zur Herstellung der Chloroaluminat-Verbindung sowie der Strahlungsemittierenden Vorrichtung beansprucht.The object is achieved by a chloroaluminate compound according to claim 1. Further embodiments of the chloroaluminate compound and a radiation-emitting device with the chloroaluminate compound are the subject of further claims. Furthermore, a method for producing the chloroaluminate compound and the radiation-emitting device is also claimed.
Eine Ausführungsform der Erfindung betrifft eine Chloroaluminat-Verbindung gemäß der allgemeinen Formel:One embodiment of the invention relates to a chloroaluminate compound according to the general formula:
Me1S-X-YEuxMn7Al2O5Cl2 wobei Me1 für mindestens ein Element steht ausgewählt aus: Mg, Ca, Sr, Ba, oder beliebige Kombinationen daraus und es gilt: 0 < x < 3; 0 ≤ y < 3; x + y < 3.Me 1 SX- Y Eu x Mn 7 Al 2 O 5 Cl 2 where Me 1 represents at least one element selected from: Mg, Ca, Sr, Ba, or any combination thereof, and 0> x <3; 0 ≤ y <3; x + y <3.
Eine Chloroaluminat-Verbindung der angegebenen Zusammensetzung kann durch Strahlung aus dem UV-Bereich angeregt werden, wobei sie dann Strahlung im sichtbaren Bereich emittiert. Dadurch, dass die anregende Strahlung weitgehend außerhalb des sichtbaren Bereichs liegen kann, trägt diese nicht oder nur geringfügig zum Farbort der von einer Strahlungsemittierenden Vorrichtung emittierten Strahlung bei, wobei der Farbort durch die Farbkoordinaten des CIE-Systems definiert werden kann. Somit ist der Farbort ganz oder weitgehend unabhängig von der Helligkeit der Strahlungsquelle mit welcher der Leuchtstoff angeregt wird. Die Lumineszenzeigenschaften können beispielsweise über den Anteil an Eu und/oder Mn beeinflusst werden.A chloroaluminate compound of the stated composition can be excited by UV radiation, emitting radiation in the visible range. Due to the fact that the exciting radiation can be largely outside the visible range, it does not contribute, or only slightly, to the color location of the radiation emitted by a radiation-emitting device, the color locus being represented by the color coordinates of the CIE system can be defined. Thus, the color location is wholly or largely independent of the brightness of the radiation source with which the phosphor is excited. The luminescence properties can be influenced, for example, by the proportion of Eu and / or Mn.
Gemäß einer weiteren erfindungsgemäßen Ausführungsform steht Me1 für die folgende Teilformel:According to a further embodiment of the invention, Me 1 is the following sub-formula:
(Sri_zMe2 z) wodurch sich folgende Formel ergibt:(S ri _ z z Me 2), whereby the following formula results:
(Sr1^Me2J 3-X-YEuxMn7Al2O5Cl2 wobei Me2 für mindestens ein Element steht ausgewählt aus: Mg, Ca, Ba, und es gilt: 0 ≤ z < 1.(Sr 1) Me 2 J 3 -X- Y Eu x Mn 7 Al 2 O 5 Cl 2 where Me 2 represents at least one element selected from: Mg, Ca, Ba, and 0 ≤ z <1.
Das in der Verbindung erhaltene Sr kann zumindest teilweise durch eines oder auch mehrere der folgenden Elemente ersetzt sein: Mg, Ca, Ba. Durch das teilweise Austauschen des Sr können die Lumineszenzeigenschaften wie beispielsweise Anregungsbereich oder auch Lumineszenzfarbe beeinflusst werden. So hat beispielsweise der Austausch von Sr gegen Ca eine leichte Verschiebung und der Austausch von Sr gegen Ba eine stärkere Verschiebung des Emissionsspektrums zu kürzeren Wellenlängen hin zur Folge.The Sr obtained in the compound may be at least partially replaced by one or more of Mg, Ca, Ba. By partially exchanging the Sr, the luminescence properties such as excitation range or even luminescence color can be influenced. For example, the replacement of Sr for Ca results in a slight shift and the replacement of Sr for Ba results in a greater shift of the emission spectrum to shorter wavelengths.
In einer weiteren Ausführungsform der Erfindung kann die Chloroaluminat-Verbindung durch die allgemeine Formel:In another embodiment of the invention, the chloroaluminate compound may be represented by the general formula:
Sr3-XEuxAl2O5Cl2 beschrieben werden, wobei gilt: 0 < x < 3.Sr 3 -XEu x Al 2 O 5 Cl 2 , where 0 <x <3.
Die Chloroaluminat-Verbindung gemäß der allgemeinen Formel Sr3-xEuxAl2θ5Cl2 ist im UV-Bereich und im kurzwelligen sichtbaren Bereich bis etwa 470 nm anregbar. Sehr gut lässt sich die Verbindung im UV-Bereich und im kurzwelligen sichtbaren Bereich bis zirka 425 nm anregen. Im letzteren Bereich liegt die Reflektivität im Bezug auf die Anregungsstrahlung unter 30 Prozent. Dies bedeutet, dass nur ein geringer Anteil an Strahlung vom Konversionsmaterial reflektiert wird, und ein großer Anteil absorbiert wird und somit konvertiert werden kann. Die Chloroaluminat-Verbindung zeigt eine intensive orange-gelbe Lumineszenz. Das Emissionsspektrum erstreckt sich vom blaugrünen Spektralbereich bis ins IR und besitzt eine Halbwertsbreite von etwa 167 nm. Die orange-gelbe Emission der Chloroaluminat-Verbindung hat eine sehr hohe Halbwertsbreite welche etwa im Bereich von 167 nm liegt. Die Emission reicht vom Grün bis in den nahen IR-Bereich.The chloroaluminate compound according to the general formula Sr 3 - x Eu x Al 2 O 5 Cl 2 can be excited in the UV range and in the short-wave visible range up to approximately 470 nm. Very good is the connection in the UV range and in the short-wave Visible range to about 425 nm excite. In the latter range, the reflectivity with respect to the excitation radiation is less than 30 percent. This means that only a small amount of radiation is reflected by the conversion material, and a large proportion is absorbed and thus can be converted. The chloroaluminate compound shows intense orange-yellow luminescence. The emission spectrum extends from the blue-green spectral range to the IR and has a half-width of about 167 nm. The orange-yellow emission of the chloroaluminate compound has a very high half-width, which is approximately in the range of 167 nm. The emission ranges from green to the near IR range.
Das Maximum der Emission liegt bei etwa 616 nm. Für eine Zusammensetzung gemäß der Formel Sr2, 9Euo,iAl205Cl2 liegen die Farbkoordinaten etwa bei Cx = 0,537 und cy = 0,448 bei einer Anregung mit 360 nm und einem Messbereich von 380 bis 800 nm. Unter Farbkoordinaten sind die Farbkoordinaten nach dem CIE- System zu verstehen. Die Dominantwellenlänge dieses Leuchtstoffes liegt bei 585 nm. Unter der Dominantwellenlänge versteht man die Wellenlänge, welche wie folgt ermittelt werden kann: Im CIE-Farbdiagramm wird eine Linie vom Weißpunkt zum Farbort (cx,cy) des Leuchtstoffs gezogen und bis zur hufeisenförmigen Linie des Diagramms verlängert. Auf der hufeisenförmigen Linie sind die Wellenlängen des sichtbaren Spektralbereichs aufgetragen. Die Wellenlänge, bei der die verlängerte Verbindungslinie auf die hufeisenförmige Linie trifft, ist die Dominantwellenlänge.The maximum of the emission is about 616 nm. For a composition according to the formula Sr 2 , 9Euo, iAl 2 0 5 Cl 2, the color coordinates are approximately at C x = 0.537 and c y = 0.448 with a 360 nm excitation and a measurement range of 380 to 800 nm. Color coordinates are to be understood as the color coordinates according to the CIE system. The dominant wavelength of this phosphor is 585 nm. The dominant wavelength is the wavelength which can be determined as follows: In the CIE color diagram, a line is drawn from the white point to the color locus (c x , c y ) of the phosphor and up to the horseshoe-shaped line of the chart. On the horseshoe-shaped line, the wavelengths of the visible spectral range are plotted. The wavelength at which the extended connecting line meets the horseshoe-shaped line is the dominant wavelength.
Bei den in den drei zuvor beschriebenen Ausführungsformen ist jeweils ein Bereich für den Parameter x von 0,015 ≤ x ≤ 0,3 bevorzugt, von 0,015 ≤ x ≤ 0,15 besonders bevorzugt. Ein Anteil von unter 0,015 für x würde nur zu einer schwachen Emission führen. Bei einem Anteil von größer 0,15 kann bereits eine Löschung der Emission einsetzen, d.h. die emittierte Strahlung wird durch das Konversionsmaterial wieder absorbiert.In the three embodiments described above, a range for the parameter x of 0.015 ≦ x ≦ 0.3 is preferred, and 0.015 ≦ x ≦ 0.15 is particularly preferred. A fraction of less than 0.015 for x would only lead to a weak emission. With a proportion of greater than 0.15 can already use a deletion of the emission, ie the emitted radiation is absorbed by the conversion material again.
Neben der Chloroaluminat-Verbindung selbst wird auch eine Strahlungsemittierende Vorrichtung beansprucht, die die Chloroaluminat-Verbindung umfasst .In addition to the chloroaluminate compound itself, a radiation emitting device comprising the chloroaluminate compound is also claimed.
Eine Ausführungsform der Strahlungsemittierenden Vorrichtung umfasst hierbei eine Strahlungsquelle, die eine Primärstrahlung emittiert und ein Konversionsmaterial, das im Strahlengang der Strahlungsquelle angeordnet ist. Hierbei umfasst das Konversionsmaterial zumindest eine der zuvor beschriebenen Chloroaluminat-Verbindungen .An embodiment of the radiation-emitting device in this case comprises a radiation source which emits a primary radiation and a conversion material which is arranged in the beam path of the radiation source. Here, the conversion material comprises at least one of the above-described chloroaluminate compounds.
Die Strahlungsquelle emittiert hierbei eine Primärstrahlung, welche durch das Konversionsmaterial zumindest teilweise in eine Sekundärstrahlung konvertiert wird. Das Konversionsmaterial umfasst hierbei eine erfindungsgemäße Chloroaluminat-Verbindung. Bei der von der strahlungs- emittierenden Vorrichtung emittierten Strahlung kann es sich sowohl um reine Sekundärstrahlung handeln, wenn die Primärstrahlung vollständig in Sekundärstrahlung konvertiert wird. Es kann sich aber auch um Mischlicht handeln, welches sich aus der Mischung von Sekundärstrahlung und nicht konvertierter Primärstrahlung ergibt. Die von der Strahlungsquelle emittierte Primärstrahlung kann hierbei auf den Absorptionsbereich des Konversionsmaterials abgestimmt werden .The radiation source emits a primary radiation which is at least partially converted by the conversion material into a secondary radiation. The conversion material in this case comprises a chloroaluminate compound according to the invention. The radiation emitted by the radiation-emitting device can be both pure secondary radiation if the primary radiation is completely converted into secondary radiation. But it may also be mixed light, which results from the mixture of secondary radiation and unconverted primary radiation. The primary radiation emitted by the radiation source can here be matched to the absorption region of the conversion material.
In einer weiteren Ausführungsform der Strahlungsemittierenden Vorrichtung emittiert die Strahlungsquelle eine Primär- Strahlung in einem Wellenlängenbereich von 180 nm bis 470 nm, wobei der Bereich 280 bis 470 nm bevorzugt istIn a further embodiment of the radiation-emitting device, the radiation source emits a primary Radiation in a wavelength range of 180 nm to 470 nm, wherein the range 280 to 470 nm is preferred
Eine solche Primärstrahlung kann gut durch die Chloro- aluminat-Verbindung absorbiert werden. Somit kann ein großer Anteil der Primärstrahlung in die Sekundärstrahlung konvertiert werden.Such primary radiation can be readily absorbed by the chloroaluminate compound. Thus, a large proportion of the primary radiation can be converted into the secondary radiation.
In einer weiteren Ausführungsform der Strahlungsemittierenden Vorrichtung konvertiert das Konversionsmaterial die Primärstrahlung in eine Sekundärstrahlung die im sichtbaren Spektralbereich 450 nm bis 780 nm liegt, vorzugsweise im Bereich von 450 nm bis 700 nm.In a further embodiment of the radiation-emitting device, the conversion material converts the primary radiation into a secondary radiation which lies in the visible spectral range from 450 nm to 780 nm, preferably in the range from 450 nm to 700 nm.
Somit wird die Primärstrahlung im UV-Bereich oder im kurzwelligen sichtbaren Bereich in Sekundärstrahlung konvertiert, die ein breites Emissionsspektrum in Bezug auf den sichtbaren Bereich aufweist.Thus, the primary radiation in the UV or short-wave visible range is converted into secondary radiation having a broad emission spectrum with respect to the visible region.
In einer weiteren Ausführungsform weist das Spektrum der Sekundärstrahlung im Wellenlängenbereich von 600 nm bis 630 nm ein Intensitäts-Maximum auf.In a further embodiment, the spectrum of the secondary radiation has an intensity maximum in the wavelength range from 600 nm to 630 nm.
Dadurch dass die Chloroaluminat-Verbindung ein Intensitäts- Maximum im orangen Bereich aufweist ist es möglich durch Kombination der Sekundärstrahlung mit einem gewissen Anteil an blauer Primärstrahlung Weißlicht zu erzeugen.Because the chloroaluminate compound has an intensity maximum in the orange range, it is possible to produce white light by combining the secondary radiation with a certain proportion of blue primary radiation.
In einer weiteren Ausführungsform weist das Konversionsmaterial bezüglich einer Primärstrahlung aus dem Wellenlängenbereich von 180 nm bis 420 nm eine Reflektivität von kleiner 30% auf. Durch die geringe Reflektivität ist das Konversionsmaterial in der Lage, einen hohen Anteil der Primärstrahlung zu absorbieren und zu konvertieren.In a further embodiment, the conversion material has a reflectivity of less than 30% with respect to a primary radiation from the wavelength range from 180 nm to 420 nm. Due to the low reflectivity of the conversion material is able to absorb a high proportion of the primary radiation and convert.
Über den Gewichtsanteil der Chloroaluminat-Verbindung im Konversionsmaterial lässt sich beispielsweise der Anteil des vom Konversionsmaterial konvertierten Primärlichtes steuern. Wird ein zu hoher Anteil an der Chloroaluminat-Verbindung im Verhältnis zur Matrix gewählt, so kann es zur Löschung durch vollständige Absorption der Sekundärstrahlung kommen.By way of example, the proportion by weight of the chloroaluminate compound in the conversion material allows the proportion of the primary light converted by the conversion material to be controlled. If an excessively high proportion of the chloroaluminate compound is chosen in relation to the matrix, it may be extinguished by complete absorption of the secondary radiation.
Es sind auch Ausführungsformen denkbar, in denen das Konversionsmaterial neben der Chloroaluminat-Verbindung weitere Leuchtstoffe umfasst.Embodiments are also conceivable in which the conversion material comprises, in addition to the chloroaluminate compound, further phosphors.
Das Konversionsmaterial kann in einer Ausführungsform in eine Matrix eingebracht werden. Als Matrixmaterial kann beispielsweise ein Silikon, ein Epoxid oder ein anderes Harz verwendet werden. Es sind auch Ausführungsbeispiele denkbar, in denen das Konversionsmaterial in ein Glas oder eine Keramik eingebracht wird.The conversion material can be introduced into a matrix in one embodiment. As a matrix material, for example, a silicone, an epoxy or other resin can be used. Embodiments are also conceivable in which the conversion material is introduced into a glass or a ceramic.
Das Matrixmaterial ist vorzugsweise durchlässig für die Sekundärstrahlung. Es sind Ausführungsformen denkbar, in denen das Matrixmaterial auch für die Primärstrahlung durchlässig ist, es sind aber ebenso Ausführungsformen möglich, in denen das Matrixmaterial die Primärstrahlung teilweise absorbiert.The matrix material is preferably permeable to the secondary radiation. Embodiments are conceivable in which the matrix material is also permeable to the primary radiation, but embodiments are also possible in which the matrix material partially absorbs the primary radiation.
Es ist auch eine Ausführungsform möglich, bei der im Strahlengang nach dem Konversionsmaterial ein Filter vorhanden ist, der die Primärstrahlung, welche nicht durch das Konversionsmaterial konvertiert wurde, herausfiltert. Der Filter kann beispielsweise einen UV-Absorber, wie beispielsweise Tiθ2 umfassen, er kann beispielsweise aber auch als photonischer Kristall ausgeformt sein.An embodiment is also possible in which a filter is present in the beam path after the conversion material, which filters out the primary radiation which has not been converted by the conversion material. Of the For example, a filter may comprise a UV absorber such as TiO 2, but it may also be formed as a photonic crystal, for example.
In einer weiteren Ausführungsform emittiert die Strahlungsemittierende Vorrichtung ein Mischlicht aus der Primärstrahlung und der Sekundärstrahlung.In a further embodiment, the radiation-emitting device emits a mixed light of the primary radiation and the secondary radiation.
In dem Fall, dass die Primärstrahlung nicht vollständig in Sekundärstrahlung konvertiert wird, und das Matrixmaterial die nicht konvertierte Primärstrahlung nicht vollständig absorbiert, und die Strahlungsemittierende Vorrichtung im Strahlengang keinen zusätzlichen Filter aufweist, der die Primärstrahlung herausfiltert, emittiert die Strahlungsemittierende Vorrichtung neben der Sekundärstrahlung auch einen gewissen Anteil an Primärstrahlung. Durch ein gezieltes Einstellen der Anteile von Primärstrahlung und Sekundärstrahlung, was beispielsweise über den Anteil des Konversionsmaterials in der Matrix erfolgen kann, kann die Wellenlänge des Mischlichtes, welches sich aus Primärstrahlung und Sekundärstrahlung zusammensetzt, gezielt eingestellt werden. Somit ist es beispielsweise unter Verwendung von blauer Primärstrahlung möglich, dass die Strahlungsemittierende Vorrichtung Weißlicht emittiert.In the case where the primary radiation is not completely converted into secondary radiation, and the matrix material does not fully absorb the unconverted primary radiation, and the radiation-emitting device in the beam path does not have an additional filter that filters out the primary radiation, the radiation-emitting device also emits one in addition to the secondary radiation certain amount of primary radiation. By a targeted adjustment of the proportions of primary radiation and secondary radiation, which can be done for example via the proportion of the conversion material in the matrix, the wavelength of the mixed light, which is composed of primary radiation and secondary radiation, can be adjusted specifically. Thus, for example, using blue primary radiation, it is possible for the radiation-emitting device to emit white light.
In einer weiteren Ausführungsform umfasst die Strahlungsquelle eine Halbleiterdiode.In a further embodiment, the radiation source comprises a semiconductor diode.
Die Halbleiterdiode kann dazu verwendet werden, die Primärstrahlung im UV-Bereich oder kurzwelligen sichtbaren Bereich zu emittieren. Das Halbleitermaterial kann hierbei beispielsweise auf Nitrid- Verbindungshalbleitern oder Phosphid- Verbindungshalbleitern basieren. Es sind aber auch Ausführungsbeispiele möglich, in der als Strahlungsquelle eine organische LED (OLED) verwendet wird.The semiconductor diode can be used to emit the primary radiation in the UV or short-wave visible range. The semiconductor material may in this case be based, for example, on nitride compound semiconductors or phosphide compound semiconductors. But they are too Embodiments possible in which an organic LED (OLED) is used as the radiation source.
„Auf Nitrid-Verbindungshalbleitern basierend" bedeutet im vorliegenden Zusammenhang, dass die aktive Epitaxie- Schichtenfolge oder zumindest eine Schicht davon ein Nitrid- III/V-Verbindungshalbleitermaterial, vorzugsweise AlnGamIni-n_mN umfasst, wobei O ≤ n ≤ l, O ≤ m ≤ l und n+m ≤ 1. Dabei muss dieses Material nicht zwingend eine mathematisch exakte Zusammensetzung nach obiger Formel aufweisen. Vielmehr kann es einen oder mehrere Dotierstoffe sowie zusätzliche Bestandteile aufweisen, die die charakteristischen physikalischen Eigenschaften des AlnGamIni-n_mN-Materials im Wesentlichen nicht ändern. Der Einfachheit halber beinhaltet obige Formel jedoch nur die wesentlichen Bestandteile des Kristallgitters (Al, Ga, In, N) , auch wenn diese teilweise durch geringe Mengen weiterer Stoffe ersetzt sein können."Based on nitride compound semiconductors" in the present context means that the active epitaxial layer sequence or at least one layer thereof comprises a nitride III / V compound semiconductor material, preferably Al n Ga m In n m N, where O ≦ n ≦ l, O ≤ m ≤ l and n + m ≤ 1. In this case, this material does not necessarily have to have a mathematically exact composition according to the above formula, but rather it may have one or more dopants and additional constituents which have the characteristic physical properties of Al n Ga m ini- n _ m N material does not substantially change. For simplicity, includes above formula, however, only the major components of the crystal lattice (Al, Ga, in, N), even though these can be replaced in part by small amounts of other substances.
„Auf Phosphid-Verbindungshalbleitern basierend" bedeutet in diesem Zusammenhang, dass der Halbleiterkörper, insbesondere der aktive Bereich vorzugsweise AlnGamIni-n_mP umfasst, wobei 0 ≤ n ≤ l, O ≤ m ≤ l und n+m ≤ 1 ist, vorzugsweise mit n ≠ 0 und/oder m ≠ 0. Dabei muss dieses Material nicht zwingend eine mathematisch exakte Zusammensetzung nach obiger Formel aufweisen. Vielmehr kann es ein oder mehrere Dotierstoffe sowie zusätzliche Bestandteile aufweisen, die die physikalischen Eigenschaften des Materials im Wesentlichen nicht ändern. Der Einfachheit halber beinhaltet obige Formel jedoch nur die wesentlichen Bestandteile des Kristallgitters (Al, Ga, In, P) , auch wenn diese teilweise durch geringe Mengen weiterer Stoffe ersetzt sein können. Neben der Chloroaluminat-Verbindung selbst wird auch ein Verfahren zu dessen Herstellung beansprucht.In this context, "based on phosphide compound semiconductors" means that the semiconductor body, in particular the active region, preferably comprises Al n Ga m In n m p, where 0 ≦ n ≦ l, 0 ≦ m ≦ l and n + m ≦ 1, preferably with n ≠ 0 and / or m ≠ 0. In this case, this material does not necessarily have to have a mathematically exact composition according to the above formula Rather, it may comprise one or more dopants as well as additional constituents which substantially substantially preserve the physical properties of the material For the sake of simplicity, however, the above formula contains only the essential constituents of the crystal lattice (Al, Ga, In, P), even though these may be partially replaced by small amounts of other substances. In addition to the chloroaluminate compound itself, a process for its preparation is claimed.
Eine Variante des Herstellungsverfahrens zur Herstellung einer der zuvor beschriebenen Chloroaluminat-Verbindung umfasst die Verfahrensschritte:A variant of the production process for the preparation of one of the chloroaluminate compound described above comprises the process steps:
A) Bereitstellen einer Pulvermischung umfassend jeweils eine stöchiometrische Menge bezogen auf die Zusammensetzung Me1S-XEuxAl2O5Cl2 an Me1CO3 und Me1Cl2, Al2O3, Eu2O3, B) Homogenisieren der Pulvermischung aus A) , sowie C) Glühen der Pulvermischung aus B) .A) providing a powder mixture comprising in each case a stoichiometric amount based on the composition Me 1 S-XEu x Al 2 O 5 Cl 2 to Me 1 CO 3 and Me 1 Cl 2 , Al 2 O 3 , Eu 2 O 3 , B) homogenizing the powder mixture from A), and C) annealing the powder mixture from B).
Durch die entsprechende Wahl der Menge der Ausgangsstoffe wird der Anteil an Eu bestimmt, mit dem die Verbindung dotiert ist. Durch die entsprechende Auswahl der Carbonate oder Chloride wird die entsprechende Zusammensetzung von Me1 gesteuert, sowie der Chloridgehalt im Produkt. Nach der Homogenisierung der Pulvermischung wird die Pulvermischung anschließend geglüht.By appropriate choice of the amount of starting materials, the proportion of Eu is determined, with which the compound is doped. By appropriate selection of the carbonates or chlorides, the corresponding composition of Me 1 is controlled, and the chloride content in the product. After homogenization of the powder mixture, the powder mixture is subsequently annealed.
In einer weiteren Verfahrensvariante umfasst die Pulvermischung im Verfahrenschritt A) zusätzlich noch MnO2 und die stöchiometrischen Mengen beziehen sich somit auf die Zusammensetzung Me1S-X-YEuxMn7Al2O5Cl2.In a further process variant, the powder mixture in process step A) additionally comprises MnO 2 and the stoichiometric amounts thus relate to the composition Me 1 SX- Y Eu x Mn 7 Al 2 O 5 Cl 2 .
In einer weiteren Verfahrensvariante liegt der Temperaturbereich für das Glühen im Verfahrensschritt C) im Bereich von 1000 0C bis 1400 0C, vorzugsweise im Bereich von 1000 0C bis 1250 0C.In a further process variant, the temperature range for the annealing in process step C) is in the range from 1000 ° C. to 1400 ° C., preferably in the range from 1000 ° C. to 1250 ° C.
In einer weiteren Verfahrensvariante erfolgt das Glühen im Verfahrensschritt C) im Formiergasstrom. Neben dem Verfahren zur Herstellung der Chloroaluminat- Verbindung wird auch ein Verfahren zur Herstellung einer Strahlungsemittierenden Vorrichtung beansprucht, die eine derartige Chloroaluminat-Verbindung umfasst.In a further process variant, the annealing in process step C) takes place in the forming gas stream. In addition to the process for producing the chloroaluminate compound, a process for producing a radiation-emitting device comprising such a chloroaluminate compound is also claimed.
Eine Verfahrensvariante zur Herstellung einer der zuvor beschriebenen Strahlungsemittierenden Vorrichtungen umfasst die Verfahrensschritte: a) Bereitstellen einer Strahlungsquelle, die eine Primärstrahlung emittiert, b) Einbringen eines Konversionsmaterials in ein Matrixmaterial, c) Einbringen des Matrixmaterials, welches das Konversionsmaterial umfasst, in den Strahlengang der Strahlungsquelle, so dass zumindest ein Teil der Primärstrahlung durch das Konversionsmaterial in eine Sekundärstrahlung konvertiert wird. Hierbei wird für das Konversionsmaterial ein Material verwendet, welches eine Verbindung gemäß einer der zuvor beschriebenen Chloroaluminat-Verbindung umfasst .A method variant for producing one of the radiation-emitting devices described above comprises the method steps: a) providing a radiation source emitting a primary radiation, b) introducing a conversion material into a matrix material, c) introducing the matrix material comprising the conversion material into the beam path of the radiation source in that at least part of the primary radiation is converted by the conversion material into a secondary radiation. Here, a material is used for the conversion material, which comprises a compound according to one of the above-described chloroaluminate compound.
Im Verfahrensschritt a) kann als Strahlungsquelle sowohl eine LED wie auch eine OLED verwendet werden. Als Matrixmaterial im Verfahrensschritt b) kann beispielsweise ein Silikon, ein Epoxid oder ein anderes Harz verwendet werden. Das Einbringen des Matrixmaterials im Verfahrensschritt c) kann beispielsweise durch das direkte Aufbringen des Matrixmaterials auf die Strahlungsaustrittsfläche der Strahlungsquelle erfolgen. Das Aufbringen kann so erfolgen, dass auf der Strahlungsquelle eine Schicht ausgebildet, es kann aber auch dadurch erfolgen, dass die gesamte Strahlungsquelle in das Matrixmaterial eingegossen wird. Es sind aber auch Varianten möglich, in denen das Matrixmaterial beispielsweise als Schicht auf einen transparenten Träger aufgebracht wird, und anschließend der Träger mit dem Matrixmaterial in den Strahlengang eingebracht wird.In method step a), both an LED and an OLED can be used as the radiation source. For example, a silicone, an epoxide or another resin can be used as the matrix material in process step b). The introduction of the matrix material in method step c) can be effected for example by the direct application of the matrix material to the radiation exit surface of the radiation source. The application can take place in such a way that a layer is formed on the radiation source, but it can also take place in that the entire radiation source is poured into the matrix material. However, variants are also possible in which the matrix material, for example, as a layer on a transparent support is applied, and then the carrier is introduced with the matrix material in the beam path.
Im Folgenden sollen Varianten der Erfindung anhand von Figuren und Ausführungsbeispielen näher erläutert werden.In the following, variants of the invention will be explained in more detail with reference to figures and exemplary embodiments.
Figur 1 zeigt eine schematische Seitenansicht einer Ausführungsform bei der die gesamte Primärstrahlung in Sekundärstrahlung konvertiert wird.Figure 1 shows a schematic side view of an embodiment in which the entire primary radiation is converted into secondary radiation.
Figur 2 zeigt eine schematische Seitenansicht einer Ausführungsform bei der nur ein Teil der Primärstrahlung in Sekundärstrahlung konvertiert wird.Figure 2 shows a schematic side view of an embodiment in which only a portion of the primary radiation is converted into secondary radiation.
Figur 3 zeigt eine schematische Seitenansicht einer Ausführungsform bei der die Matrix als Schicht auf der Strahlungsquelle ausgeformt ist.Figure 3 shows a schematic side view of an embodiment in which the matrix is formed as a layer on the radiation source.
Figur 4 zeigt eine schematische Seitenansicht einer Ausführungsform bei der die Innenwände des Gehäuses abgeschrägt sind.Figure 4 shows a schematic side view of an embodiment in which the inner walls of the housing are chamfered.
Figur 5 zeigt zwei Emissionsspektren (I und II), bei denen jeweils die relative Intensität (Ir) gegen die Wellenlänge (λ) aufgetragen wurde.FIG. 5 shows two emission spectra (I and II) in which the relative intensity (I r ) was plotted against the wavelength (λ).
Figur 6 zeigt zwei Spektren (I und II), bei denen jeweils die Reflektivität (R) gegen die Wellenlänge (λ) aufgetragen wurde .FIG. 6 shows two spectra (I and II) in which the reflectivity (R) was plotted against the wavelength (λ).
Die Figur 1 zeigt eine schematische Seitenansicht eines Ausführungsbeispiels der Strahlungsemittierenden Vorrichtung 1. Die Strahlungsemittierende Vorrichtung 1 umfasst hierbei ein Gehäuse 10, welches topfartig ausgeformt ist. Auf der Innenseite der Bodenfläche des Gehäuses 10 sind zwei Leiterplatten 11 angeordnet. Auf einer der beiden Leiterplatten 11 ist die Strahlungsquelle 4 so angeordnet, dass sie eine zentrierte Position bezüglich des Gehäuses 10 einnimmt. Die Oberseite der Strahlungsquelle 4 ist über einen Bond-Draht 12 mit der von der Strahlungsquelle beabstandeten Leiterplatte 11 elektrisch leitend verbunden. Somit steht die Strahlungsquelle 4 jetzt im elektrisch leitenden Kontakt mit jeder der beiden Leiterplatten 11. Durch Anlegen von Spannung an die beiden Leiterplatten 11 kann die Strahlungsquelle 4 Primärstrahlung 2 emittieren. Die gesamte Strahlungsquelle 4 ist in dem Gehäuse 10 mit einer Matrix 13 vergossen. In die Matrix 13 ist hierbei das Konversionsmaterial 5 eingebettet. Die Konzentration des Konversionsmaterials 5 ist hierbei so gewählt, dass die gesamte emittierte Primärstrahlung 2 durch das Konversionsmaterial 5 in Sekundärstrahlung 3 konvertiert wird. Durch die vollständige Konversion der Primärstrahlung 2 in Sekundärstrahlung 3 emittiert die Strahlungsemittierende Vorrichtung 1 über ihre Strahlungsaustrittsfläche 14 ausschließlich Sekundärstrahlung 3. Die vollständige Konversion der Primärstrahlung 2 in Sekundärstrahlung 3 kann beispielsweise über die entsprechende Konzentration des Konversionsmaterials 5 in der Matrix 13 erreicht werden.FIG. 1 shows a schematic side view of an exemplary embodiment of the radiation-emitting device 1. The radiation-emitting device 1 in this case comprises a housing 10 which is pot-shaped. On the inside of the bottom surface of the housing 10, two circuit boards 11 are arranged. On one of the two circuit boards 11, the radiation source 4 is arranged so that it occupies a centered position relative to the housing 10. The upper side of the radiation source 4 is electrically conductively connected via a bonding wire 12 to the printed circuit board 11 which is at a distance from the radiation source. Thus, the radiation source 4 is now in electrically conductive contact with each of the two circuit boards 11. By applying voltage to the two circuit boards 11, the radiation source 4 can emit primary radiation 2. The entire radiation source 4 is potted in the housing 10 with a matrix 13. In this case, the conversion material 5 is embedded in the matrix 13. The concentration of the conversion material 5 is in this case selected so that the entire emitted primary radiation 2 is converted by the conversion material 5 into secondary radiation 3. Due to the complete conversion of the primary radiation 2 into secondary radiation 3, the radiation-emitting device 1 emits exclusively secondary radiation 3 via its radiation exit surface 14. The complete conversion of the primary radiation 2 into secondary radiation 3 can be achieved, for example, via the corresponding concentration of the conversion material 5 in the matrix 13.
In dem in Figur 2 dargestellten Ausführungsbeispiel einer weiteren Strahlungsemittierenden Vorrichtung sind das Gehäuse 10, die Leierplatten 11, die Strahlungsquelle 4 und der Bond- Draht 12 analog zu dem in Figur 1 dargestellten Ausführungsbeispiel angeordnet. Jedoch ist hier die Konzentration des Konversionsmaterials 5 in der Matrix 13 so gewählt, dass nur ein Teil der Primärstrahlung 2 in Sekundärstrahlung 3 konvertiert wird. Somit emittiert die Strahlungsemittierende Vorrichtung 1 ein Mischlicht 6 welches sich aus der Primärstrahlung 2 und der Sekundärstrahlung 3 zusammensetzt .In the exemplary embodiment of a further radiation-emitting device illustrated in FIG. 2, the housing 10, the etching plates 11, the radiation source 4 and the bonding wire 12 are arranged analogously to the exemplary embodiment illustrated in FIG. However, here the concentration of the conversion material 5 in the matrix 13 is selected so that only part of the primary radiation 2 is converted into secondary radiation 3. Thus, the emits Radiation-emitting device 1, a mixed light 6 which is composed of the primary radiation 2 and the secondary radiation 3.
Figur 3 zeigt die schematische Seitenansicht eines weiteren Ausführungsbeispiels der Strahlungsemittierenden Vorrichtung 1. Die Strahlungsquelle 4 ist hierbei auf eine Leiterplatte 11 angeordnet. Die Oberseite der Strahlungsquelle 4 ist über einen Bond-Draht 12 mit einer weiteren Leiterplatte 11 elektrisch leitend verbunden. Die Strahlungsquelle 4 ist somit an der Ober- beziehungsweise Unterseite jeweils elektrisch leitend mit einer Leiterplatte 11 verbunden. Auf der Oberseite der Strahlungsquelle 4 ist eine Konversionsschicht der Matrix 13 angeordnet, in welche das Konversionsmaterial 5 eingebettet ist. Die von der Strahlungsquelle 4 emittierte Primärstrahlung 2 wird beim Durchlaufen der Matrix 13 durch das Konversionsmaterial 5 in Sekundärstrahlung 3 konvertiert. Die Strahlungsemittierende Vorrichtung 1 emittiert somit ausschließlich die Sekundärstrahlung 3. Ja nach Dicke der Konversionsschicht bzw. Konzentration des Konversionsmaterials 5 in der Konversionsschicht ist auch bei diesem Ausführungsbeispiel eine Teilkonversion, also die Erzeugung von Mischlicht aus Primärstrahlung 2 und Sekundärstrahlung 3, möglich.FIG. 3 shows the schematic side view of a further exemplary embodiment of the radiation-emitting device 1. The radiation source 4 is arranged here on a printed circuit board 11. The upper side of the radiation source 4 is electrically conductively connected via a bond wire 12 to a further printed circuit board 11. The radiation source 4 is thus electrically conductively connected to a printed circuit board 11 at the top or bottom, respectively. On the upper side of the radiation source 4, a conversion layer of the matrix 13 is arranged, in which the conversion material 5 is embedded. The primary radiation 2 emitted by the radiation source 4 is converted into secondary radiation 3 as it passes through the matrix 13 by the conversion material 5. The radiation-emitting device 1 thus emits exclusively the secondary radiation 3. Depending on the thickness of the conversion layer or concentration of the conversion material 5 in the conversion layer, partial conversion, ie the generation of mixed light of primary radiation 2 and secondary radiation 3, is also possible in this exemplary embodiment.
Die Figur 4 eine schematische Seitenansicht eines weiteren Ausführungsbeispiels der Strahlungsemittierenden Vorrichtung 1. Die Strahlungsemittierende Vorrichtung 1 umfasst ein Gehäuse 10 mit abgeschrägten Innenwänden 15. Die Oberfläche der Innenwände 15 kann hierbei mit einem reflektierenden Material beschichtet sein, so dass die Strahlung, welche auf die Innenwände 15 trifft nach oben abgelenkt wird. Die Strahlungsquelle 4 ist auf einer der beiden Leiterplatten 11 angeordnet und mit einem Bond-Draht 12 mit der anderen Leiterplatte elektrisch leitend verbunden. Das Gehäuse 10 ist mit einer Matrix 13 ausgegossen, in welches das Konvertermaterial 5 eingebettet ist.4 shows a schematic side view of a further embodiment of the radiation-emitting device 1. The radiation-emitting device 1 comprises a housing 10 with bevelled inner walls 15. The surface of the inner walls 15 may in this case be coated with a reflective material, so that the radiation is transmitted to the inner walls 15 hits is deflected upwards. The radiation source 4 is on one of the two circuit boards 11th arranged and electrically connected to a bonding wire 12 to the other circuit board. The housing 10 is filled with a matrix 13, in which the converter material 5 is embedded.
Die Figur 5 zeigt zwei Emissionsspektren I und II bei denen jeweils die relative Intensität (Ir) der Emission zwei unterschiedlich prozessierten Chloroaluminat-Leuchtstoffe gegen die Wellenlänge (λ) in nm aufgetragen ist. Die Anregung des Leuchtstoffs erfolgte hierbei mit einer Strahlung der Wellenlänge von 360 nm. Dargestellt ist ein Emissions- Wellenlängenbereich von 450 nm bis 800 nm für die jeweils vom Leuchtstoff emittierte Strahlung. Das Spektrum I zeigt hierbei das Spektrum der Chloroaluminat-Verbindung Sr2, 9Euo,iAl205Cl2. Diese Probe wurde mittels Glühens über 8 Stunden bei 1250 0C hergestellt und ist nahezu phasenrein. Die Kurve II zeigt das Spektrum einer Chloroaluminat- Verbindung, die bei 1250 0C über 4 Stunden prozessiert wurde. Diese Probe weist noch 10 bis 20% Fremdphasen (Sri2Ali4θ33, SrCl2) auf.5 shows two emission spectra I and II in which in each case the relative intensity (I r ) of the emission of two differently processed chloroaluminate phosphors is plotted against the wavelength (λ) in nm. The excitation of the phosphor was carried out here with a radiation of wavelength of 360 nm. Shown is an emission wavelength range of 450 nm to 800 nm for each of the phosphor emitted radiation. The spectrum I shows the spectrum of the chloroaluminate compound Sr 2 , 9Euo, iAl 2 0 5 Cl2. This sample was prepared by annealing for 8 hours at 1250 0 C and is almost phase pure. Curve II shows the spectrum of a chloroaluminate compound, which was processed at 1250 0 C for 4 hours. This sample still has 10 to 20% foreign phases (Sri 2 Ali 4 θ33, SrCl 2 ).
Wie in Figur 5 zu sehen ist, weist das Emissionsspektrum I in dem dargestellten Wellenlängenbereich eine höhere relative Intensität (Ir) auf, als das Emissionsspektrum II, welches noch Fremdphasenanteile aufweist.As can be seen in FIG. 5, the emission spectrum I in the illustrated wavelength range has a higher relative intensity (I r ) than the emission spectrum II, which still has foreign phase components.
Figur 6 zeigt zwei Spektren I und II bei denen die Reflektivität (R) gegen die Wellenlänge (λ) in nm aufgetragen ist. Bei diesem Versuch wurde die Wellenlänge, mit dem der Leuchtstoff bestrahlt wird, von 300 nm bis 800 nm variiert, und die jeweilige Reflektivität für die entsprechende Wellenlänge relativ zu entsprechenden Werten eines Weißstandards mit ~100% Reflektivität gemessen. Die vermessenen Proben der Spektren I und II entsprechen jenen der in Figur 5 für die entsprechenden Emissionsspektren I und II vermessenen Stoffe.FIG. 6 shows two spectra I and II in which the reflectivity (R) is plotted against the wavelength (λ) in nm. In this experiment, the wavelength at which the phosphor is irradiated was varied from 300 nm to 800 nm, and the respective reflectivity for the corresponding wavelength was measured relative to corresponding values of a white standard with ~ 100% reflectivity. The measured samples of spectra I and II correspond to those the measured in Figure 5 for the corresponding emission spectra I and II substances.
Wie in Figur 6 zu sehen ist, weist die Chloroaluminat- Verbindung Sr2, gEuo, 1Al2O5Cl2 unterhalb von 400 nm eine geringe Reflektivität und damit eine hohe Absorption auf. Im Bereich von 400 bis 430 nm weist die Verbindung auch noch ein deutliches Absorptionsvermögen auf. Die Probe mit den Fremdphasenanteilen von 10 bis 20 Prozent weist hingegen, wie im Spektrum II dargestellt, eine deutlich höhere Reflektivität auf.As can be seen in Figure 6, the chloroaluminate compound Sr 2 , gEuo, 1Al 2 O 5 Cl 2 below 400 nm has a low reflectivity and thus a high absorption. In the range of 400 to 430 nm, the compound also has a significant absorption capacity. By contrast, the sample with the foreign phase fractions of 10 to 20 percent has a significantly higher reflectivity, as shown in Spectrum II.
Im Folgenden wird eine Variante des Herstellungsverfahrens für Sr3_xEuxAl205Cl2 beschrieben.In the following, a variant of the production method for Sr 3 _ x Eu x Al 2 0 5 Cl 2 will be described.
In dieser Variante werden die Ausgangspulver in folgenden Verhältnissen eingewogen: 1,9 Mol SrCO3, 1 Mol SrCl2 x 6 H2O, 1 Mol Al2O3 und 0,05 Mol Eu2O3. Die Pulvermischung wird homogenisiert und anschließend in einem Korundschiffchen mit Deckel bei einer Temperatur zwischen 1000 0C und 1400 0C, vorzugsweise zwischen 1100 0C und 1300 0C, für 12 Stunden im Formiergasstrom geglüht. Das Ergebnis ist ein Pulver mit der folgenden Zusammensetzung: Sr2, 9Euo, 1Al2O5Cl2. Das erhaltene Pulver kann mit elektromagnetischer Strahlung der Wellenlänge 366 nm zur Emission von weiß-orangenem Licht angeregt werden.In this variant, the starting powders are weighed in the following ratios: 1.9 mol SrCO 3 , 1 mol SrCl 2 × 6 H 2 O, 1 mol Al 2 O 3 and 0.05 mol Eu 2 O 3 . The powder mixture is homogenized and then annealed in a corundum boat with lid at a temperature between 1000 0 C and 1400 0 C, preferably between 1100 0 C and 1300 0 C, for 12 hours in the Formiergasstrom. The result is a powder having the following composition: Sr 2 , 9 Euo, 1Al 2 O 5 Cl 2 . The resulting powder can be excited with 366 nm electromagnetic radiation to emit white-orange light.
Die Erfindung ist nicht durch die Beschreibung anhand der Ausführungsbeispiele beschränkt. Vielmehr umfasst die Erfindung jedes neue Merkmal sowie jede Kombination von Merkmalen, was insbesondere jede Kombination von Merkmalen in den Patentansprüchen beinhaltet, auch wenn dieses Merkmal oder diese Kombination selbst nicht explizit in den Patentansprüchen oder Ausführungsbeispielen angegeben ist. The invention is not limited by the description with reference to the embodiments. Rather, the invention encompasses any novel feature as well as any combination of features, including in particular any combination of features in the claims, even if this feature or combination itself is not explicitly stated in the patent claims or exemplary embodiments.

Claims

Patentansprüche claims
1. Chloroaluminat-Verbindung gemäß der allgemeinen Formel:1. Chloroaluminate compound according to the general formula:
Me1S-X-YEuxMn7Al2O5Cl2 wobei Me1 für mindestens ein Element steht ausgewählt aus: Mg, Ca, Sr, Ba, oder beliebige Kombinationen daraus und es gilt: 0 < x < 3; 0 ≤ y < 3; x + y < 3.Me 1 SX- Y Eu x Mn 7 Al 2 O 5 Cl 2 where Me 1 represents at least one element selected from: Mg, Ca, Sr, Ba, or any combination thereof, and 0> x <3; 0 ≤ y <3; x + y <3.
2. Chloroaluminat-Verbindung gemäß Anspruch 1, wobei Me1 für die folgende Teilformel steht:A chloroaluminate compound according to claim 1, wherein Me 1 is the following partial formula:
(Sri_zMe2 z) wodurch sich folgende Formel ergibt:(S ri _ z z Me 2), whereby the following formula results:
(Sr1^Me2J 3-x-yEuxMnyAl205Cl2 wobei Me2 für mindestens ein Element steht ausgewählt aus: Mg, Ca, Ba, und es gilt: 0 ≤ z < 1.(Sr 1) Me 2 J 3 -x-yEu x Mn y Al 2 O 5 Cl 2 where Me 2 represents at least one element selected from: Mg, Ca, Ba, and 0 ≤ z <1.
3. Chloroaluminat-Verbindung nach einem der vorhergehenden Ansprüche, gemäß der allgemeinen Formel:3. chloroaluminate compound according to any one of the preceding claims, according to the general formula:
Sr3-XEuxAl2O5Cl2.Sr 3 -XEu x Al 2 O 5 Cl 2 .
4. Chloroaluminat-Verbindung nach einem der vorhergehenden Ansprüche, wobei gilt: 0,015 ≤ x ≤ 0,3.4. chloroaluminate compound according to any one of the preceding claims, wherein: 0.015 ≤ x ≤ 0.3.
5. Strahlungsemittierende Vorrichtung (1), umfassend:5. A radiation-emitting device (1), comprising:
- eine Strahlungsquelle (4), die eine Primärstrahlung (2) emittiert,a radiation source (4) emitting a primary radiation (2),
- ein Konversionsmaterial (5) , das im Strahlengang der Strahlungsquelle (4) angeordnet ist, wobei das Konversionsmaterial (5) eine Verbindung gemäß einem der Ansprüche 1 bis 3 umfasst, und zumindest einen Teil der Primärstrahlung (2) durch das Konversionsmaterial (5) in eine Sekundärstrahlung (3) konvertiert wird.a conversion material (5) which is arranged in the beam path of the radiation source (4), wherein the conversion material (5) comprises a compound according to one of claims 1 to 3, and at least a portion of the primary radiation (2) is converted by the conversion material (5) into a secondary radiation (3).
6. Strahlungsemittierende Vorrichtung (1) nach Anspruch 5, wobei die Strahlungsquelle (4) eine Primärstrahlung (2) in einem Wellenlängenbereich von 180 nm bis 470 nm emittiert.6. radiation-emitting device (1) according to claim 5, wherein the radiation source (4) emits a primary radiation (2) in a wavelength range of 180 nm to 470 nm.
7. Strahlungsemittierende Vorrichtung (1) nach einem der Ansprüche 5 oder 6, wobei das Konversionsmaterial (5) die Primärstrahlung (2) in Sekundärstrahlung (3) konvertiert, die im sichtbaren Spektralbereich von einer Wellenlänge von 450 nm bis 780 nm reicht .7. Radiation-emitting device (1) according to any one of claims 5 or 6, wherein the conversion material (5) converts the primary radiation (2) into secondary radiation (3), which ranges in the visible spectral range of a wavelength of 450 nm to 780 nm.
8. Strahlungsemittierende Vorrichtung (1) nach Anspruch 7, wobei das Spektrum der Sekundärstrahlung (3) im Wellenlängenbereich von 600 nm bis 630 nm ein Intensitäts- Maximum aufweist.8. radiation-emitting device (1) according to claim 7, wherein the spectrum of the secondary radiation (3) in the wavelength range of 600 nm to 630 nm has an intensity maximum.
9. Strahlungsemittierende Vorrichtung (1) nach einem der Ansprüche 5 bis 8, wobei das Konversionsmaterial (5) bezüglich einer Primärstrahlung (2) aus dem Wellenlängenbereich von 180 nm bis 420 nm eine Reflektivität von kleiner 30% aufweist.9. radiation-emitting device (1) according to one of claims 5 to 8, wherein the conversion material (5) with respect to a primary radiation (2) from the wavelength range of 180 nm to 420 nm has a reflectivity of less than 30%.
10. Strahlungsemittierende Vorrichtung (1) nach einem der Ansprüche 5 bis 9, die ein Mischlicht (6) aus der Primärstrahlung (2) und der Sekundärstrahlung (3) emittiert.10. radiation-emitting device (1) according to one of claims 5 to 9, which emits a mixed light (6) from the primary radiation (2) and the secondary radiation (3).
11. Strahlungsemittierende Vorrichtung (1) nach einem der Ansprüche 4 bis 10, wobei die Strahlungsquelle (4) eine Halbleiterdiode umfasst. 11. The radiation-emitting device (1) according to any one of claims 4 to 10, wherein the radiation source (4) comprises a semiconductor diode.
12. Verfahren zur Herstellung einer Chloroaluminat-Verbindung nach einem der Ansprüche 1 bis 4, umfassend die Verfahrensschritte:12. A process for producing a chloroaluminate compound according to any one of claims 1 to 4, comprising the process steps:
A) Bereitstellen einer Pulvermischung umfassend jeweils eine stöchiometrische Menge an Me1CO3 und Me1Cl2, Al2O3, Eu2O3,A) providing a powder mixture comprising in each case a stoichiometric amount of Me 1 CO 3 and Me 1 Cl 2 , Al 2 O 3 , Eu 2 O 3 ,
B) Homogenisieren der Pulvermischung aus A) ,B) homogenizing the powder mixture from A),
C) Glühen der Pulvermischung aus B) .C) annealing the powder mixture from B).
13. Verfahren nach Anspruch 12, wobei die Pulvermischung im Verfahrenschritt A) zusätzlich noch MnO2 umfasst.13. The method of claim 12, wherein the powder mixture in step A) additionally comprises MnO 2 .
14. Verfahren nach einem der Ansprüche 12 oder 13, wobei das Glühen in Verfahrensschritt C) bei einer Temperatur erfolgt, welche im Temperaturbereich von 1000 0C bis 1400 0C liegt .14. The method according to any one of claims 12 or 13, wherein the annealing in step C) takes place at a temperature which is in the temperature range of 1000 0 C to 1400 0 C.
15. Verfahren zur Herstellung einer Strahlungsemittierenden Vorrichtung (1) nach einem der Ansprüche 5 bis 11, umfassend die Verfahrensschritte: a) Bereitstellen einer Strahlungsquelle (4), die eine Primärstrahlung (2) emittiert, b) Einbringen eines Konversionsmaterials (5) in ein Matrixmaterial (13), c) Einbringen des Matrixmaterials (13), welches das Konversionsmaterial (5) umfasst in den Strahlengang der Strahlungsquelle (4), so dass zumindest ein Teil der Primärstrahlung (2) durch das Konversionsmaterial (5) in eine Sekundärstrahlung (3) konvertiert wird, wobei für das Konversionsmaterial (5) ein Material verwendet wird, welches eine Verbindung gemäß einem der Ansprüche 1 bis 3 umfasst. 15. A method for producing a radiation-emitting device (1) according to one of claims 5 to 11, comprising the method steps: a) providing a radiation source (4) emitting a primary radiation (2), b) introducing a conversion material (5) into a Matrix material (13), c) introducing the matrix material (13), which comprises the conversion material (5) in the beam path of the radiation source (4), so that at least a portion of the primary radiation (2) by the conversion material (5) into a secondary radiation ( 3), using for the conversion material (5) a material comprising a compound according to any one of claims 1 to 3.
PCT/EP2010/057076 2009-05-25 2010-05-21 Chloroaluminate compound, process for the preparation thereof, radiation-emitting device comprising the chloroaluminate compound and process for producing the radiation-emitting device WO2010136411A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102009022561 2009-05-25
DE102009022561.7 2009-05-25
DE102009037861A DE102009037861A1 (en) 2009-05-25 2009-08-18 A chloroaluminate compound, a process for the production thereof, a radiation-emitting device comprising the chloroaluminate compound, and a process for producing the radiation-emitting device
DE102009037861.8 2009-08-18

Publications (2)

Publication Number Publication Date
WO2010136411A1 true WO2010136411A1 (en) 2010-12-02
WO2010136411A8 WO2010136411A8 (en) 2011-03-03

Family

ID=43028649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/057076 WO2010136411A1 (en) 2009-05-25 2010-05-21 Chloroaluminate compound, process for the preparation thereof, radiation-emitting device comprising the chloroaluminate compound and process for producing the radiation-emitting device

Country Status (2)

Country Link
DE (1) DE102009037861A1 (en)
WO (1) WO2010136411A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010031241A (en) * 2008-07-24 2010-02-12 National Chiao Tung Univ White light-emitting phosphor and lighting apparatus using the same
CN103059843A (en) * 2013-01-14 2013-04-24 云南民族大学 Orange-red rear-earth phosphors and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014207323B4 (en) 2014-04-16 2018-08-16 Koenig & Bauer Ag Method for identifying an object

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040099844A1 (en) * 2002-11-21 2004-05-27 Matsushita Electric Industrial Co., Ltd. Stable blue phosphor for plasma display panel applications
EP1865564A1 (en) * 2005-03-18 2007-12-12 Mitsubishi Chemical Corporation Light-emitting device, white light-emitting device, illuminator, and image display

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3448056A (en) * 1966-04-27 1969-06-03 Sylvania Electric Prod Europium activated barium and strontium haloaluminate phosphors
US3649550A (en) * 1970-07-27 1972-03-14 Sylvania Electric Prod Luminescent manganese-activated strontium barium chloro-aluminate phosphor composition process and lamp
GB1500902A (en) * 1974-01-17 1978-02-15 Thorn Electrical Ind Ltd Phosphors and their preparation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040099844A1 (en) * 2002-11-21 2004-05-27 Matsushita Electric Industrial Co., Ltd. Stable blue phosphor for plasma display panel applications
EP1865564A1 (en) * 2005-03-18 2007-12-12 Mitsubishi Chemical Corporation Light-emitting device, white light-emitting device, illuminator, and image display

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DATABASE INSPEC [online] THE INSTITUTION OF ELECTRICAL ENGINEERS, STEVENAGE, GB; 1986, LEIB W ET AL: "Sr3Al2O5Cl2, an oxohalogenoaluminate with Ba3Fe2O5Cl2-structure", XP002598741, Database accession no. 2986114 *
KYEONG YOUL JUNG: "Luminescent Properties of (Ba,Sr)MgAl10O17:Mn,Eu Green Phosphor Prepared by Spray Pyrolysis under VUV Excitation", CHEMISTRY OF MATERIALS, vol. 17, 14 April 2005 (2005-04-14), pages 2729 - 2734, XP002598742, DOI: 10.1021/cm050074f *
REVUE DE CHIMIE MINERALE FRANCE, vol. 23, no. 6, 1986, pages 760 - 765, ISSN: 0035-1032 *
YU-SHENG TANG: "Near-ultraviolet excitable orange-yellow Sr3(Al2O5)Cl2:Eu2+ phosphor for potential application in light-emitting diodes", APPLIED PHYSICS LETTERS, vol. 93, 3 October 2008 (2008-10-03), usa, pages 131114-1 - 131114-3, XP002598730, DOI: 10.1063/1.2996278 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010031241A (en) * 2008-07-24 2010-02-12 National Chiao Tung Univ White light-emitting phosphor and lighting apparatus using the same
CN103059843A (en) * 2013-01-14 2013-04-24 云南民族大学 Orange-red rear-earth phosphors and preparation method thereof

Also Published As

Publication number Publication date
DE102009037861A1 (en) 2010-12-02
WO2010136411A8 (en) 2011-03-03

Similar Documents

Publication Publication Date Title
DE112006003161B4 (en) Charge-compensated nitride phosphors and their use
DE112006001722B4 (en) Phosphor and process for its production and use of the phosphor
EP2912688B1 (en) Led module
DE112016003002T5 (en) Stabilized quantum dot structure and method for producing a stabilized quantum dot structure
DE102011115879A1 (en) Optoelectronic component and phosphors
WO2010020495A1 (en) Alpha-sialon phosphor
EP2356196A1 (en) Sr2s15n8 luminous substance emitting red and light source comprising a luminous substance of said kind and method for producing the luminous substance
WO2011012388A1 (en) Light-emitting diode with compensating conversion element and corresponding conversion element
DE102007020782A1 (en) Radiation emitting device comprises a radiation-emitting functional layer emitting primary radiation in blue region, radiation conversion material arranged in beam path of the functional layer, and radiation conversion luminescent material
EP3077478B1 (en) Luminescent-substance mixture, light-emitting semiconductor component having a luminescent-substance mixture, and streetlamp having a luminescent-substance mixture
DE102011113498A1 (en) Phosphor mixture, optoelectronic component with a phosphor mixture and street lamp with a phosphor mixture
WO2010136411A1 (en) Chloroaluminate compound, process for the preparation thereof, radiation-emitting device comprising the chloroaluminate compound and process for producing the radiation-emitting device
DE102011014958B4 (en) Yellow light-emitting fluorosulfide phosphors and their manufacturing processes, and a white light-emitting diode comprising this phosphor
WO2019238496A1 (en) Yellow emitting luminophore and illuminating device
WO2019238506A1 (en) Luminescent substance and illuminating device
WO2020025196A1 (en) Green emitting luminophore and lighting device
WO2019068551A1 (en) Luminescent substance and conversion led
DE102014117448A1 (en) Optoelectronic semiconductor chip, method for producing an optoelectronic semiconductor chip, conversion element and phosphor for a conversion element
DE112021007723T5 (en) Oxide phosphor, light-emitting device and method for producing oxide phosphor
WO2018041675A1 (en) Fluorescent substance, use of a fluorescent substance, and method for producing a fluorescent substance
WO2014184003A1 (en) Method for producing a luminescent material, luminescent material and optoelectronic component
WO2019068550A1 (en) Luminescent substance and conversion led
DE112019001792B4 (en) FLUORESCENT AND LIGHTING DEVICE
DE112014006750B4 (en) Phosphor, light-emitting device containing a phosphor and method for producing a phosphor
WO2024078931A1 (en) Luminophore, method for producing a luminophore, and radiation-emitting component

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10720624

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10720624

Country of ref document: EP

Kind code of ref document: A1