WO2010136330A1 - Measuring a substrate having electrically conductive structures - Google Patents

Measuring a substrate having electrically conductive structures Download PDF

Info

Publication number
WO2010136330A1
WO2010136330A1 PCT/EP2010/056451 EP2010056451W WO2010136330A1 WO 2010136330 A1 WO2010136330 A1 WO 2010136330A1 EP 2010056451 W EP2010056451 W EP 2010056451W WO 2010136330 A1 WO2010136330 A1 WO 2010136330A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrically conductive
conductive structures
electrical signals
substrate
measuring
Prior art date
Application number
PCT/EP2010/056451
Other languages
German (de)
French (fr)
Inventor
Fatih Alatas
Martin KÖRDEL
Anton Schick
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to EP10720391A priority Critical patent/EP2435840A1/en
Publication of WO2010136330A1 publication Critical patent/WO2010136330A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/302Contactless testing
    • G01R31/312Contactless testing by capacitive methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2801Testing of printed circuits, backplanes, motherboards, hybrid circuits or carriers for multichip packages [MCP]
    • G01R31/2805Bare printed circuit boards
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/006Electronic inspection or testing of displays and display drivers, e.g. of LED or LCD displays

Definitions

  • the invention relates to a device and a method for measuring a substrate having electrically conductive structures.
  • the device has a measuring sensor and means for controlled movement of the measuring sensor relative to the substrate.
  • DE 10 2005 022 884 A1 describes a method for contactless inspection of a printed conductor structure formed on a planar support, in which an electrode is positioned at a predetermined distance relative to the printed conductor structure by means of a positioning device and an electrical connection between the electrode and the printed conductor structure Voltage is applied.
  • the electrode is moved in a plane parallel to the carrier, wherein at least at selected positions, a current flow is measured by an electrical line connected to the elec- rode. From the strength of the current flow, the local stress state is detected in a subregion of the conductor track structure. This stress state can be used to determine the quality of the trace structure.
  • defects such as short circuits, constrictions or line breaks generated by geometrical changes in the printed conductor structure can be detected.
  • the invention has for its object to improve the measurement of a substrate with electrically conductive structures.
  • a device for measuring a substrate having electrically conductive structures having a measuring sensor and means for controlled movement of the measuring sensor relative to the substrate, wherein the device has means for simultaneously feeding a plurality of different electrical signals into the electrically conductive structures , where the measuring sensor is used tion of fields generated by the electrical signals is provided by means of field coupling, the device having means for evaluating the measured fields and for determining properties of the electrically conductive structures based on the evaluation of the measured fields.
  • This object is achieved by a method for measuring a substrate having electrically conductive structures, in which a measuring sensor is moved in a controlled manner relative to the substrate, in which a plurality of different electrical signals are simultaneously fed into the electrically conductive structures, in which case the measuring sensor is triggered by the electrical signals generated fields by means of field coupling and in which the measured fields are evaluated and properties of the electrically conductive structures on the basis of the evaluation of the measured fields are determined.
  • the invention is based on the idea of introducing a plurality of different electrical signals into electrically conductive structures of a substrate and of measuring and evaluating the fields produced by these different electrical signals by means of field coupling and of using them to determine properties of the electrically conductive structures. Since several different electrical signals are fed simultaneously, several different electrically conductive structures can be examined simultaneously. This allows a considerable acceleration of the measurement.
  • the controlled movement of the measuring sensor relative to the substrate can be effected by a movement of the measuring sensor itself and / or by movement of the substrate relative to the measuring sensor.
  • the measuring sensor for measuring electrical fields generated by the electrical signals by means of capacitive field coupling intended. This allows a particularly simple non-contact measurement of the fields generated by the electrical signals.
  • the means for the simultaneous feeding of several mutually phase-shifted periodic electrical signals in the electric conductive structures are formed.
  • the fields generated by such type of mutually phase-shifted periodic electrical signals superimposed in such a way that in particular a reliable statement about the location of the source of electric fields, and thus on the location of the electrically conductive structures, is possible.
  • the superposition of stationary phase-shifted electrical signals leads to a phase modulation of a signal which is recorded by a measuring sensor when this measuring sensor is moved uniformly over the emitting, electrically conductive structures.
  • On the basis of the phase position of the resulting signal and on the basis of the respective amplitude of the signal conclusions about the electrically conductive structures can be made in a simple way se.
  • the means for feeding an electrical signal into a base of the substrate are formed, in particular in particular a periodic electrical signal having a frequency which is different from frequencies of the plurality of mutually phase-shifted periodic electrical signals.
  • the measuring sensor is designed for the simultaneous measurement of fields generated by a maximum of two electrical signals by means of field coupling.
  • FIG. 1 shows a device for measuring a substrate with electrically conductive structures
  • FIG. 3 shows a schematic representation of a sensor for measuring a substrate
  • the device shows an embodiment of a device according to the invention for measuring a substrate 1 with electrically conductive border structures 2, 3, for example, electrical lines, tracks or electrically conductive surfaces.
  • the device has a measuring sensor 4 and means 5 for the controlled movement of the measuring sensor 4 relative to the substrate 1.
  • the device further comprises means 6, 7 for the simultaneous feeding of a plurality of different electrical signals in the electrically conductive structures 2, 3.
  • the measuring sensor 4 is provided for measuring fields generated by the electrical signals by means of field coupling.
  • different capacitive couplings to the individual electrically conductive structures 2, 3 are formed. That is, signals on the individual electrically conductive structures 2, 3 couple differently depending on the local structure strong to the sensor surface of the measuring sensor 4 a.
  • the device also has means 8, 9, 10 for evaluating the measured fields and for determining properties of the electrically conductive structures 2, 3 on the basis of the evaluation of the measured fields.
  • the measuring sensor 4 is mounted on a support 12, for example made of glass, and surrounded by a shield 11, which is at a reference potential, in particular at ground potential.
  • the measuring sensor 4 is kept at a constant potential, in particular ground potential.
  • a measuring sensor 4 is also called a measuring electrode.
  • the measuring sensor for measuring by means of field coupling is not a classical field sensor, since influencing the original field by the measuring sensor itself is quite desirable. Measured z. B. capacitive Umladeströme or field-induced currents.
  • the measuring process takes place via an inductive or capacitive field coupling.
  • the simultaneous and high-quality measurement of several coupling fields and the simultaneous assignment of these field couplings to the individual coupling conductors is made possible.
  • An invented The device according to the invention can be part of non-contact inspection or measuring systems for substrates with electrically conductive structures.
  • Embodiments of the invention make use of the capacitive coupling between a measuring electrode and the lines or pixel areas of LCD substrates.
  • FIG. 2 shows an embodiment of a device according to the invention, which is used to measure a display 20.
  • the display 20 has individual pixels 32, which are shown in the enlarged representation indicated by the reference numeral 28.
  • the display 20 includes various electrically conductive structures 29, 30, 31. These electrically conductive structures are gate lines 29, Com, Bias, or
  • CS-lines 30, as well as data lines 31 For measuring the display 20, a measuring electrode 21 is provided, which can be moved by corresponding means 22 over at a constant distance over the substrate of the display 20. Means for simultaneously feeding a plurality of different electrical signals into the electrically conductive structures 29, 30, 31 of the display 20 are provided by way of a terminal strip 25. In this case, the means for feeding in are a frequency generator 24. Location-dependent capacitive couplings are formed between the measuring electrode 21 and the substrate surface. This situation is exploited by feeding suitable signals into the electrically conductive structures 29, 30, 31 for signal modulation. For example, with two sine waves on the lines that have the same frequency and amplitude but different phase angles. These would virtually phase encode the substrate lines and areas.
  • the measuring electrode 21 which is composed of the respective couplings of the line signals.
  • the composition of the measurement signal on the measuring electrode 21 changes continuously according to the substrate structure. This steady change is a signal modulation. In the case of different phase This is a phase modulation resulting from the nature of the substrate surface. Scanning across the substrate would thus provide a phase and amplitude modulated measurement signal.
  • demodulation can then be deduced back to the substrate structure.
  • the evaluation of the signals of the measuring electrode 21 takes place in the case shown by an electronics 23 and a computer 26.
  • the modulation takes place by the changing coupling sizes, ie when driving with the measuring electrode on the substrate. At every defined position of the measuring electrode above the substrate there is also only one defined resulting measuring signal.
  • FIG. 3 shows parts of an exemplary embodiment of a device for measuring a substrate 1 with electrically conductive structures 2, 3.
  • a measuring sensor 4 which is applied to a carrier 12, is shown.
  • the measuring sensor 4 is surrounded by a shield 11, in this case designed as a ground plane.
  • an amplifier circuit 8 is shown, which amplifies the signals output by the measuring sensor 4 and forwards them to means for evaluation, which are not shown in FIG. FIG. 3 serves to explain the possible sensor signals as a function of the signals applied to the conductive structures 2, 3.
  • These periodic signals are each represented by a phase diagram 30, 31,
  • phase diagram 31 periodic electrical signal is thereby fed into the conductive structure 2. It is in this case a periodic signal with the phase 0 °.
  • the phase shift in this case is 90 °, ie also that the phase position of the second signal fed into the electrically conductive structure 3 is 90 °.
  • the amplitude of both signals 31, 32 is as shown in the unit circle 1.
  • possible sensor signals of the measuring sensor 4 are reproduced. The actual Sensor signal depends on the position of the measuring sensor 4 with respect to the electrically conductive structures 2, 3 or the substrate 1.
  • the phase angle of the sensor signal can move in the case shown between 0 ° and 90 °.
  • the amplitude is maximum, if exactly one signal maximally couples into the measuring sensor 4, ie in this case at the phase position 0 ° - for a coupling solely by the electrically conductive structure 2 - or at the phase position 90 ° - for a coupling alone of
  • a phase position between 0 ° and 90 ° results for the resulting sensor signal and an amplitude ⁇ 1, indicated by the triangle shown in the phase diagram 30.
  • a sensor surface 4 which is moved at a constant distance d via electrically conductive structures 2, 3.
  • a periodic signal in this case a sinusoidal signal, with the phase 0 ° is fed into the electrically conductive structure 2.
  • a phase-shifted by 120 ° in the periodic electrical signal including a sinusoidal signal, is fed.
  • the signal curves identified by the reference numeral 40 show three sinusoidal oscillations phase-shifted by 120 °, with only two of these three signals being fed into the electrically conductive structures 2 and 3 in the exemplary embodiment shown here.
  • the resulting sensor signal which is supplied by the measuring sensor 4, is shown as a waveform 41.
  • the signal course 41 shows the resulting time signal during the movement of the measuring sensor from a position over the electrically conductive structure 2
  • phase position 0 ° Phase position 0 °
  • phase position 120 ° Phase position 120 °
  • the phase of the output signal of the measuring sensor 4 is dependent on the respective coupling capacitances between the sensor surface and the electrically conductive structures 2, 3.
  • the phase range of the output signal is specified by the applied sine waves.
  • the modulation corresponds to the changes in the coupling capacitances under the sensor surface. This means that the modulation frequency depends on the travel speed and the electrically conductive structures 2, 3. From the resulting phase can then the coupling capacity ratios to the electrically conductive
  • Structures 2, 3 are determined. From these, the respective proportions of the electrically conductive structures 2, 3 can be derived below the measuring sensor 4.
  • an amplitude modulation also takes place (see top picture with signal curves), but the amplitude is also dependent on the capacity ratios.
  • the maximum amplitude can only be achieved if only one signal is injected.
  • the coupling of more than one signal automatically leads to a lower maximum amplitude. Therefore, the achievable value range in the phase diagram is also a polygon and not a circle. If required, this attenuation of the amplitude can be corrected again by evaluating the phase information.
  • the amplitude depends on the total size of the coupling capacitances. This means that the (corrected) amplitude can be used to deduce the total signal area under the sensor surface.
  • the electrically conductive structures and their proportions, which are located simultaneously under a sensor surface can be determined.
  • the feeding in of signals with two or three different phases is advantageous.
  • the gate, data and com lines (if Com are present) and, in the case of (photo) detectors, the lines for gate, date and bias can be inspected simultaneously.
  • unconnected electrical surfaces, via the capacitive coupling to the pad be inspected.
  • the use of a different frequency of advantage since of the pad a much weaker coupling is expected.
  • FIG. 5 illustrates the dependence of the amplitude of a sensor signal on the respective conductive structure 2, from which a coupling-in signal is received.
  • a substrate 1 optionally with an electrically conductive structure 2 is shown.
  • a measuring sensor 4 which is applied to a carrier 12 and surrounded by a shield 11, is shown.
  • the measuring signal of the measuring sensor 4 is forwarded to an amplifier circuit 8.
  • the resulting measurement signal is represented in each case by a phase diagram 50, 51, 53.
  • the phase diagrams 52, 54 reproduce the respective periodic electrical signals fed into the conductive structure 2. In this case, therefore, a periodic electrical signal having the phase position 0 ° and an amplitude of 1 in the unit circle is fed into the electrically conductive structure 2.
  • the fed-in electrical signal couples differently into the measuring sensor 4, resulting in a measuring signal 51, 53 having a different amplitude.
  • the amplitude of the measurement signal 50 is naturally equal to zero.
  • FIG. 6 shows by way of example how the measurement signal can be canceled out by a wrong choice of the phase difference and by the action of three phase positions and thus can not be distinguished from a free area.
  • a substrate 1 with electrically conductive structures 2, 3 or 68, as well as a measuring sensor 4 located on a support 12, which is protected by a shield 11 is surrounded.
  • the measuring signal of the measuring sensor 4 is transmitted to an amplifier 8.
  • the periodic electrical signals fed into the respective conductive structures 2, 3 and 68 are represented by the phase diagrams 61, 62 and 64, 65, 66, respectively.
  • the resulting measurement signals are reproduced in the phase diagrams 60, 63, 67.
  • three conductive structures 2, 3, 68 are present, into which periodic electrical signals are fed, which are each shifted in phase by 120 ° in phase (see phase diagrams 64, 65, 66).
  • the measuring sensor 4 is in a position relative to the electrically conductive structures 2, 3, 68, in which the three coupling-in signals equally coupled, cancel the signals phase-shifted by 120 °, resulting in a measurement signal equal Zero.
  • they should each have 120 ° to each other.
  • two signals can always be decoded and have the greatest possible phase separation from each other.
  • more than two signal couplings can not be decoded independently of each other via the phase modulation.
  • phase diagram 63 indicates possible measurement signals during further movement of the measuring sensor 4 relative to the substrate 1 and thus relative to the electrically conductive structures 2, 3, 68.
  • the idea underlying the invention is thus the targeted signal modulation by field coupling by means of individual coded conductors.
  • the line coding takes place via the creation of defined signals. Based on this, the phase and amplitude modulation as well as modulation types based on this can be adapted to this method. However, the greatest benefit lies in the implementation of the phase modulations described above.
  • the frequency modulation can be used to detect changes in the field couplings (edge detection of the substrates).
  • the application of this method is not limited to the measurement and inspection of substrates. It is also a technique that can be used for field coupling measurements, both capacitive and inductive, where information about coupling strength or coupling ratios is needed.
  • the benefits of modulating through field coupling include:
  • phase modulation Due to the phase modulation, all signal lines are equally influenced by the frequency behavior of the DUT, so that the method is robust against misdetections. - In phase modulation, all signals have the same
  • Carrier frequency so only one frequency has to be filtered.
  • the lines can also be supplied with additional signals if they do not fall into the modulation range in the frequency range.
  • the transistors can be permanently switched on or off by applying a direct current voltage. This allows more and more accurate inspection options.
  • This method can be used in the measurement and inspection of electrically conductive structures.
  • Examples include: substrates for LCD / LCD TFT televisions and monitors, (photo) detectors, organic structures such as electronic newspapers, printed circuit boards of various kinds.
  • the invention thus relates to a method and a device for measuring a substrate 1 with electrically conductive structures 2, 3.
  • the device comprise a measuring sensor 4 and means 5 for the controlled movement of the measuring sensor 4 to the substrate 1, the device comprising means 6, 7 for simultaneously feeding a plurality of different electrical signals in the electrically conductive structures 2, 3, wherein the measuring sensor 4 is provided for measuring fields generated by the electrical signals by means of field coupling, wherein the device Having means 8, 9, 10 for evaluating the measured fields and for determining properties of the electrically conductive structures 2, 3 based on the evaluation of the measured fields.

Abstract

The invention relates to a method and an apparatus for measuring a substrate (1) having electrically conductive structures (2, 3). In order to improve such a measurement, it is proposed for the apparatus to comprise a measurement sensor (4) and means (5) for a targeted movement of the measurement sensor (4) relative to the substrate (1), wherein the apparatus comprises means (6, 7) for simultaneously feeding several different electrical signals in the electrically conductive structures (2, 3), wherein the measurement sensor (4) is provided to measure fields generated by the electrical signals by way of field coupling, wherein the apparatus comprises means (8, 9, 10) for analyzing the measured fields and for determining properties of the electrically conductive structures (2, 3) on the basis of the analysis of the measured fields.

Description

Messung eines Substrats mit elektrisch leitenden StrukturenMeasurement of a substrate with electrically conductive structures
Die Erfindung betrifft eine Vorrichtung sowie ein Verfahren zur Messung eines Substrats mit elektrisch leitenden Strukturen. Die Vorrichtung weist einen Messsensor und Mittel zur gesteuerten Bewegung des Messsensors relativ zum Substrat auf .The invention relates to a device and a method for measuring a substrate having electrically conductive structures. The device has a measuring sensor and means for controlled movement of the measuring sensor relative to the substrate.
Die DE 10 2005 022 884 Al beschreibt ein Verfahren zur kontaktlosen Inspektion von einer auf einem flächigen Träger ausgebildeten Leiterbahnstruktur, bei dem mittels einer Positioniereinrichtung eine Elektrode relativ zu der Leiterbahn- struktur in einem vorbestimmten Abstand positioniert wird und zwischen der Elektrode und der Leiterbahnstruktur eine elektrische Spannung angelegt wird. Die Elektrode wird in einer Ebene parallel zu dem Träger bewegt, wobei zumindest an ausgewählten Positionen ein Stromfluss durch eine mit der Elekt- rode verbundene elektrische Leitung gemessen wird. Aus der Stärke des Stromflusses wird der lokale Spannungszustand in einem Teilbereich der Leiterbahnstruktur detektiert. Dieser Spannungszustand kann zur Bestimmung der Qualität der Leiterbahnstruktur verwendet werden. Somit können durch geometri- sehe Veränderungen der Leiterbahnstruktur erzeugte Defekte wie Kurzschlüsse, Einschnürungen oder Leitungsbrüche erkannt werden .DE 10 2005 022 884 A1 describes a method for contactless inspection of a printed conductor structure formed on a planar support, in which an electrode is positioned at a predetermined distance relative to the printed conductor structure by means of a positioning device and an electrical connection between the electrode and the printed conductor structure Voltage is applied. The electrode is moved in a plane parallel to the carrier, wherein at least at selected positions, a current flow is measured by an electrical line connected to the elec- rode. From the strength of the current flow, the local stress state is detected in a subregion of the conductor track structure. This stress state can be used to determine the quality of the trace structure. Thus, defects such as short circuits, constrictions or line breaks generated by geometrical changes in the printed conductor structure can be detected.
Der Erfindung liegt die Aufgabe zugrunde, die Messung eines Substrats mit elektrisch leitenden Strukturen zu verbessern.The invention has for its object to improve the measurement of a substrate with electrically conductive structures.
Diese Aufgabe wird durch eine Vorrichtung zur Messung eines Substrats mit elektrisch leitenden Strukturen gelöst, wobei die Vorrichtung einen Messsensor und Mittel zur gesteuerten Bewegung des Messsensors relativ zum Substrat aufweist, wobei die Vorrichtung Mittel zur gleichzeitigen Einspeisung mehrerer unterschiedlicher elektrischer Signale in die elektrisch leitenden Strukturen aufweist, wobei der Messsensor zur Mes- sung von durch die elektrischen Signale erzeugten Feldern mittels Feldkopplung vorgesehen ist, wobei die Vorrichtung Mittel zur Auswertung der gemessenen Felder und zur Bestimmung von Eigenschaften der elektrisch leitenden Strukturen auf Basis der Auswertung der gemessenen Felder aufweist.This object is achieved by a device for measuring a substrate having electrically conductive structures, the device having a measuring sensor and means for controlled movement of the measuring sensor relative to the substrate, wherein the device has means for simultaneously feeding a plurality of different electrical signals into the electrically conductive structures , where the measuring sensor is used tion of fields generated by the electrical signals is provided by means of field coupling, the device having means for evaluating the measured fields and for determining properties of the electrically conductive structures based on the evaluation of the measured fields.
Diese Aufgabe wird durch ein Verfahren zur Messung eines Substrats mit elektrisch leitenden Strukturen gelöst, bei welchem ein Messsensor relativ zum Substrat gesteuert bewegt wird, bei welchem mehrere unterschiedliche elektrische Signale in die elektrisch leitenden Strukturen gleichzeitig eingespeist werden, bei welchem der Messsensor durch die elektrischen Signale erzeugte Felder mittels Feldkopplung misst und bei welchem die gemessenen Felder ausgewertet werden und Ei- genschaften der elektrisch leitenden Strukturen auf Basis der Auswertung der gemessenen Felder bestimmt werden.This object is achieved by a method for measuring a substrate having electrically conductive structures, in which a measuring sensor is moved in a controlled manner relative to the substrate, in which a plurality of different electrical signals are simultaneously fed into the electrically conductive structures, in which case the measuring sensor is triggered by the electrical signals generated fields by means of field coupling and in which the measured fields are evaluated and properties of the electrically conductive structures on the basis of the evaluation of the measured fields are determined.
Die Erfindung basiert auf der Idee, mehrere unterschiedliche elektrische Signale in elektrisch leitende Strukturen eines Substrats einzuleiten und die durch diese unterschiedlichen elektrischen Signale hervorgerufenen Felder mittels Feldkopplung zu messen, auszuwerten und zur Bestimmung von Eigenschaften der elektrisch leitenden Strukturen zu verwenden. Da mehrere unterschiedliche elektrische Signale gleichzeitig eingespeist werden, können mehrere unterschiedliche elektrisch leitende Strukturen gleichzeitig untersucht werden. Dies ermöglicht eine erhebliche Beschleunigung der Messung. Die gesteuerte Bewegung des Messsensors relativ zum Substrat kann dabei durch eine Bewegung des Messsensors selbst und/oder durch Bewegung des Substrats relativ zum Messsensor erfolgen .The invention is based on the idea of introducing a plurality of different electrical signals into electrically conductive structures of a substrate and of measuring and evaluating the fields produced by these different electrical signals by means of field coupling and of using them to determine properties of the electrically conductive structures. Since several different electrical signals are fed simultaneously, several different electrically conductive structures can be examined simultaneously. This allows a considerable acceleration of the measurement. The controlled movement of the measuring sensor relative to the substrate can be effected by a movement of the measuring sensor itself and / or by movement of the substrate relative to the measuring sensor.
Vorteilhafte Ausgestaltungen der Erfindung gehen aus den abhängigen Ansprüchen hervor.Advantageous embodiments of the invention will become apparent from the dependent claims.
Gemäß einer vorteilhaften Ausgestaltung der Erfindung ist der Messsensor zur Messung von durch die elektrischen Signale erzeugten elektrischen Feldern mittels kapazitiver Feldkopplung vorgesehen. Dies ermöglicht eine besonders einfache berührungslose Messung der durch die elektrischen Signale erzeugten Felder.According to an advantageous embodiment of the invention, the measuring sensor for measuring electrical fields generated by the electrical signals by means of capacitive field coupling intended. This allows a particularly simple non-contact measurement of the fields generated by the electrical signals.
Um die Auswertung der gemessenen Felder und die Bestimmung von Eigenschaften der elektrisch leitenden Strukturen auf Basis der Auswertung der gemessenen Felder zu vereinfachen, wird gemäß einer weiteren vorteilhaften Ausgestaltung der Erfindung vorgeschlagen, dass die Mittel zur gleichzeitigen Einspeisung mehrerer gegeneinander phasenverschobener periodischer elektrischer Signale in die elektrisch leitenden Strukturen ausgebildet sind. Die durch solche Art gegeneinander phasenverschobener periodischer elektrischer Signale erzeugten Felder überlagern sich derart, dass insbesondere eine zuverlässige Aussage über den Ort der Quelle der elektrischen Felder, und damit über den Ort der elektrisch leitenden Strukturen, möglich wird. Die Überlagerung ortsfester phasenverschobener elektrischer Signale führt zu einer Phasenmodulation eines Signals, welches durch einen Messsensor aufge- nommen wird, wenn dieser Messsensor über die aussendenden elektrisch leitenden Strukturen gleichmäßig verfahren wird. Anhand der Phasenlage des resultierenden Signals sowie anhand der jeweiligen Amplitude des Signals können Rückschlüsse über die elektrisch leitenden Strukturen auf einfache Art und Wei- se getroffen werden.In order to simplify the evaluation of the measured fields and the determination of properties of the electrically conductive structures on the basis of the evaluation of the measured fields, it is proposed according to a further advantageous embodiment of the invention that the means for the simultaneous feeding of several mutually phase-shifted periodic electrical signals in the electric conductive structures are formed. The fields generated by such type of mutually phase-shifted periodic electrical signals superimposed in such a way that in particular a reliable statement about the location of the source of electric fields, and thus on the location of the electrically conductive structures, is possible. The superposition of stationary phase-shifted electrical signals leads to a phase modulation of a signal which is recorded by a measuring sensor when this measuring sensor is moved uniformly over the emitting, electrically conductive structures. On the basis of the phase position of the resulting signal and on the basis of the respective amplitude of the signal conclusions about the electrically conductive structures can be made in a simple way se.
Als besonders vorteilhaft erweist sich eine Ausgestaltung der Erfindung, nach welcher die Mittel zur gleichzeitigen Einspeisung von zwei um 90° und/oder von drei um jeweils 120° gegeneinander phasenverschobenen periodischen elektrischen Signalen in die elektrisch leitenden Strukturen ausgebildet sind. Das führt zu einer besonders guten Signaltrennung bei nahezu gleichbleibend hohen Signalstärken.Particularly advantageous is an embodiment of the invention, according to which the means for the simultaneous feeding of two by 90 ° and / or of three by 120 ° to each other phase-shifted periodic electrical signals are formed in the electrically conductive structures. This leads to a particularly good signal separation with almost constant high signal strengths.
Um auch Eigenschaften einer Substratunterlage bestimmen zu können, sind gemäß einer weiteren vorteilhaften Ausgestaltung der Erfindung die Mittel zur Einspeisung eines elektrischen Signals in eine Unterlage des Substrats ausgebildet, insbe- sondere eines periodischen elektrischen Signals mit einer Frequenz, welche unterschiedlich zu Frequenzen der mehreren gegeneinander phasenverschobenen periodischen elektrischen Signale ist.In order to also be able to determine properties of a substrate substrate, according to a further advantageous embodiment of the invention, the means for feeding an electrical signal into a base of the substrate are formed, in particular in particular a periodic electrical signal having a frequency which is different from frequencies of the plurality of mutually phase-shifted periodic electrical signals.
Um eine ungewollte Beeinflussung von mehr als zwei elektrischen Signalen zu vermeiden, insbesondere eine Auslöschung, wird gemäß einer weiteren vorteilhaften Ausgestaltung der Erfindung vorgeschlagen, dass der Messsensor zur gleichzeitigen Messung von durch maximal zwei elektrische Signale erzeugte Felder mittels Feldkopplung ausgebildet ist.In order to avoid an unwanted influence of more than two electrical signals, in particular an extinction, it is proposed according to a further advantageous embodiment of the invention that the measuring sensor is designed for the simultaneous measurement of fields generated by a maximum of two electrical signals by means of field coupling.
Nachfolgend wird die Erfindung anhand der in den Figuren dargestellten Ausführungsbeispiele näher beschrieben und erläu- tert.The invention will be described in more detail with reference to the embodiments illustrated in the figures and explained.
Es zeigen:Show it:
FIG 1 eine Vorrichtung zur Messung eines Substrats mit elekt- risch leitenden Strukturen,1 shows a device for measuring a substrate with electrically conductive structures,
FIG 2 ein Inspektionssystem für elektrisch leitende Strukturen auf planaren Substraten,2 shows an inspection system for electrically conductive structures on planar substrates,
FIG 3 eine schematische Darstellung eines Sensors zur Messung eines Substrats,3 shows a schematic representation of a sensor for measuring a substrate,
FIG 4 eine schematische Darstellung einer Messung mehrerer phasenverschobener Signale,4 shows a schematic representation of a measurement of a plurality of phase-shifted signals,
FIG 5 die Auswirkung unterschiedlicher elektrisch leitender5 shows the effect of different electrically conductive
Strukturen auf ein Messergebnis, undStructures on a measurement result, and
FIG 6 die Auslöschung eines Messsignals durch entsprechende Wahl der eingespeisten Signale.6 shows the cancellation of a measurement signal by appropriate selection of the injected signals.
FIG 1 zeigt ein Ausführungsbeispiel einer erfindungsgemäßen Vorrichtung zur Messung eines Substrats 1 mit elektrisch lei- tenden Strukturen 2, 3, beispielsweise elektrische Leitungen, Leiterbahnen oder elektrisch leitende Flächen. Die Vorrichtung weist einen Messsensor 4 und Mittel 5 zur gesteuerten Bewegung des Messsensors 4 relativ zum Substrat 1 auf. Die Vorrichtung weist des Weiteren Mittel 6, 7 zur gleichzeitigen Einspeisung mehrerer unterschiedlicher elektrischer Signale in die elektrisch leitenden Strukturen 2, 3 auf. Dabei ist der Messsensor 4 zur Messung von durch die elektrischen Signale erzeugten Feldern mittels Feldkopplung vorgesehen. Ent- sprechend der örtlichen Lage des Messsensors 4 über dem Substrat 1 bilden sich unterschiedliche kapazitive Kopplungen zu den einzelnen elektrisch leitenden Strukturen 2, 3. Das heißt, Signale auf den einzelnen elektrisch leitenden Strukturen 2, 3 koppeln abhängig von der örtlichen Struktur unter- schiedlich stark zur Sensorfläche des Messsensors 4 ein.1 shows an embodiment of a device according to the invention for measuring a substrate 1 with electrically conductive border structures 2, 3, for example, electrical lines, tracks or electrically conductive surfaces. The device has a measuring sensor 4 and means 5 for the controlled movement of the measuring sensor 4 relative to the substrate 1. The device further comprises means 6, 7 for the simultaneous feeding of a plurality of different electrical signals in the electrically conductive structures 2, 3. In this case, the measuring sensor 4 is provided for measuring fields generated by the electrical signals by means of field coupling. Depending on the local position of the measuring sensor 4 above the substrate 1, different capacitive couplings to the individual electrically conductive structures 2, 3 are formed. That is, signals on the individual electrically conductive structures 2, 3 couple differently depending on the local structure strong to the sensor surface of the measuring sensor 4 a.
Die Vorrichtung weist zudem Mittel 8, 9, 10 zur Auswertung der gemessenen Felder und zur Bestimmung von Eigenschaften der elektrisch leitenden Strukturen 2, 3 auf Basis der Auswertung der gemessenen Felder auf. Der Messsensor 4 ist auf einem Träger 12 aufgebracht, beispielsweise aus Glas, sowie von einer Abschirmung 11 umgeben, welche sich auf einem Bezugspotential, insbesondere auf Massepotential, befindet. Der Messsensor 4 wird auf konstantem Potential, insbesondere Massepotential, gehalten. Ein Messsensor 4 wird auch als Messelektrode bezeichnet.The device also has means 8, 9, 10 for evaluating the measured fields and for determining properties of the electrically conductive structures 2, 3 on the basis of the evaluation of the measured fields. The measuring sensor 4 is mounted on a support 12, for example made of glass, and surrounded by a shield 11, which is at a reference potential, in particular at ground potential. The measuring sensor 4 is kept at a constant potential, in particular ground potential. A measuring sensor 4 is also called a measuring electrode.
Der Messsensor zur Messung mittels Feldkopplung ist dabei kein klassischer Feldsensor, da eine Beeinflussung des ursprünglichen Felds durch den Messsensor selbst durchaus ge- wollt ist. Gemessen werden z. B. kapazitive Umladeströme oder feldinduzierte Ströme.The measuring sensor for measuring by means of field coupling is not a classical field sensor, since influencing the original field by the measuring sensor itself is quite desirable. Measured z. B. capacitive Umladeströme or field-induced currents.
Bei Ausgestaltungen des erfindungsgemäßen Mess- bzw. Inspektionsverfahren erfolgt der Messvorgang über eine induktive oder kapazitive Feldkopplung. Dabei wird die gleichzeitige und qualitativ hochwertige Messung mehrerer einkoppelnder Felder und die gleichzeitige Zuordnung dieser Feldkopplungen zu den einzelnen koppelnden Leitern ermöglicht. Eine erfin- dungsgemäße Vorrichtung kann Teil von berührungslosen Inspek- tions- oder Messsystemen für Substrate mit elektrisch leitenden Strukturen sein. Ausgestaltungen der Erfindung nutzen die kapazitive Kopplung zwischen einer Messelektrode und den Lei- tungen bzw. Pixelflächen von LCD-Substraten.In embodiments of the measuring or inspection method according to the invention, the measuring process takes place via an inductive or capacitive field coupling. The simultaneous and high-quality measurement of several coupling fields and the simultaneous assignment of these field couplings to the individual coupling conductors is made possible. An invented The device according to the invention can be part of non-contact inspection or measuring systems for substrates with electrically conductive structures. Embodiments of the invention make use of the capacitive coupling between a measuring electrode and the lines or pixel areas of LCD substrates.
FIG 2 zeigt ein Ausführungsbeispiel einer erfindungsgemäßen Vorrichtung, welche zur Messung eines Displays 20 benutzt wird. Das Display 20 weist einzelne Pixel 32 auf, welche in der durch das Bezugszeichen 28 gekennzeichneten vergrößerten Darstellung dargestellt sind. Ein Pixel 32 weist jeweils ein TFT-Element 27 (TFT = Thin Film Transistor) und eine Pixelkapazität 33 auf. Zudem enthält das Display 20 verschiedene elektrisch leitende Strukturen 29, 30, 31. Diese elektrisch leitenden Strukturen sind Gate-Lines 29, Com-, Bias-, bzw.2 shows an embodiment of a device according to the invention, which is used to measure a display 20. The display 20 has individual pixels 32, which are shown in the enlarged representation indicated by the reference numeral 28. A pixel 32 has a TFT element 27 (TFT = Thin Film Transistor) and a pixel capacitance 33, respectively. In addition, the display 20 includes various electrically conductive structures 29, 30, 31. These electrically conductive structures are gate lines 29, Com, Bias, or
CS-Lines 30, sowie Data-Lines 31. Zur Messung des Displays 20 ist eine Messelektrode 21 vorgesehen, welche durch entsprechende Mittel 22 über auf konstantem Abstand über das Substrat des Displays 20 verfahrbar ist. Über eine Anschluss- leiste 25 sind Mittel zur gleichzeitigen Einspeisung mehrerer unterschiedlicher elektrischer Signale in die elektrisch leitenden Strukturen 29, 30, 31 des Displays 20 vorgesehen. Die Mittel zur Einspeisung sind in diesem Fall ein Frequenzgenerator 24. Zwischen der Messelektrode 21 und der Substratober- fläche bilden sich dabei ortsabhängige kapazitive Kopplungen. Dieser Sachverhalt wird durch Einspeisung geeigneter Signale in die elektrisch leitenden Strukturen 29, 30, 31 zur Signalmodulation genutzt. Beispielsweise mit zwei Sinusschwingungen auf den Leitungen, die gleiche Frequenz und Amplitude aber unterschiedliche Phasenlagen haben. Diese würden die Substratleitungen und -flächen quasi phasenkodieren . Entsprechend der Position über dem Substrat resultiert dann in der Messelektrode 21 ein neues Signal, welches sich aus den jeweiligen Kopplungen der Leitungssignale zusammensetzt. Wenn über das Substrat gefahren wird, ändert sich die Zusammensetzung des Messsignals auf der Messelektrode 21 stetig, entsprechend der Substratstruktur. Diese stetige Änderung ist eine Signalmodulation. Im Falle der unterschiedlichen Phasen- lagen handelt es sich um eine Phasenmodulation, die aus der Beschaffenheit der Substratoberfläche resultiert. Das Scannen über das Substrat würde somit ein phasen- und amplitudenmoduliertes Messsignal liefern. Durch geeignete Demodulation kann anschließend auf die Substratstruktur zurückgeschlossen werden. Die Auswertung der Signale der Messelektrode 21 erfolgt im dargestellten Fall durch eine Elektronik 23 sowie einen Rechner 26. Die Modulation findet durch die sich ändernden Koppelgrößen statt, also beim Fahren mit der Messelektrode über das Substrat. An jeder definierten Position der Messelektrode über dem Substrat gibt es auch nur ein definiertes resultierendes Messsignal.CS-lines 30, as well as data lines 31. For measuring the display 20, a measuring electrode 21 is provided, which can be moved by corresponding means 22 over at a constant distance over the substrate of the display 20. Means for simultaneously feeding a plurality of different electrical signals into the electrically conductive structures 29, 30, 31 of the display 20 are provided by way of a terminal strip 25. In this case, the means for feeding in are a frequency generator 24. Location-dependent capacitive couplings are formed between the measuring electrode 21 and the substrate surface. This situation is exploited by feeding suitable signals into the electrically conductive structures 29, 30, 31 for signal modulation. For example, with two sine waves on the lines that have the same frequency and amplitude but different phase angles. These would virtually phase encode the substrate lines and areas. Corresponding to the position above the substrate, a new signal then results in the measuring electrode 21, which is composed of the respective couplings of the line signals. When traveling over the substrate, the composition of the measurement signal on the measuring electrode 21 changes continuously according to the substrate structure. This steady change is a signal modulation. In the case of different phase This is a phase modulation resulting from the nature of the substrate surface. Scanning across the substrate would thus provide a phase and amplitude modulated measurement signal. By appropriate demodulation can then be deduced back to the substrate structure. The evaluation of the signals of the measuring electrode 21 takes place in the case shown by an electronics 23 and a computer 26. The modulation takes place by the changing coupling sizes, ie when driving with the measuring electrode on the substrate. At every defined position of the measuring electrode above the substrate there is also only one defined resulting measuring signal.
FIG 3 zeigt Teile eines Ausführungsbeispiels einer Vorrich- tung zur Messung eines Substrats 1 mit elektrisch leitenden Strukturen 2, 3. Dargestellt ist ein Messsensor 4, welcher auf einem Träger 12 aufgebracht ist. Der Messsensor 4 ist umgeben von einer Schirmung 11, in diesem Fall als Massefläche ausgeführt. Des Weiteren ist eine Verstärkerschaltung 8 dar- gestellt, welche die vom Messsensor 4 ausgegebenen Signale verstärkt und an Mittel zur Auswertung weitergibt, welche in FIG 3 nicht dargestellt sind. FIG 3 dient der Erläuterung der möglichen Sensorsignale, in Abhängigkeit von den an die leitenden Strukturen 2, 3 angelegten Signalen. Diese periodi- sehen Signale sind jeweils durch ein Phasendiagramm 30, 31,FIG. 3 shows parts of an exemplary embodiment of a device for measuring a substrate 1 with electrically conductive structures 2, 3. A measuring sensor 4, which is applied to a carrier 12, is shown. The measuring sensor 4 is surrounded by a shield 11, in this case designed as a ground plane. Furthermore, an amplifier circuit 8 is shown, which amplifies the signals output by the measuring sensor 4 and forwards them to means for evaluation, which are not shown in FIG. FIG. 3 serves to explain the possible sensor signals as a function of the signals applied to the conductive structures 2, 3. These periodic signals are each represented by a phase diagram 30, 31,
32 dargestellt. Das durch das Phasendiagramm 31 symbolisierte periodische elektrische Signal wird dabei in die leitende Struktur 2 eingespeist. Es handelt sich in diesem Fall um ein periodisches Signal mit der Phase 0°. Ein zweites periodi- sches elektrisches Signal, symbolisiert durch das Phasendiagramm 31, welches phasenverschoben ist gegenüber dem ersten Signal, wird in die elektrisch leitende Struktur 3 eingespeist. Die Phasenverschiebung in diesem Fall beträgt 90°, d. h. auch, dass die Phasenlage des zweiten in die elektrisch leitende Struktur 3 eingespeisten Signals 90° beträgt. Die Amplitude beider Signal 31, 32 beträgt wie dargestellt im Einheitskreis 1. Im Phasendiagramm 30 sind mögliche Sensorsignale des Messsensors 4 wiedergegeben. Das tatsächliche Sensorsignal hängt dabei von der Position des Messsensors 4 bezüglich der elektrisch leitenden Strukturen 2, 3 bzw. dem Substrat 1 ab. Die Phasenlage des Sensorsignals kann sich im gezeigten Fall zwischen 0° und 90° bewegen. Die Amplitude ist maximal, wenn genau ein Signal maximal in den Messsensor 4 einkoppelt, d. h. in diesem Fall bei der Phasenlage 0° - für eine Einkopplung allein von der elektrisch leitenden Struktur 2 - bzw. bei der Phasenlage 90° - für eine Einkopplung allein von der elektrisch leitenden Struktur 3. Bei einer Einkopp- lung von beiden elektrisch leitenden Strukturen 2, 3 ergibt sich für das resultierende Sensorsignal eine Phasenlage zwischen 0° und 90° und eine Amplitude < 1, angedeutet durch das im Phasendiagramm 30 dargestellte Dreieck.32 shown. The symbolized by the phase diagram 31 periodic electrical signal is thereby fed into the conductive structure 2. It is in this case a periodic signal with the phase 0 °. A second periodic electrical signal, symbolized by the phase diagram 31, which is phase-shifted with respect to the first signal, is fed into the electrically conductive structure 3. The phase shift in this case is 90 °, ie also that the phase position of the second signal fed into the electrically conductive structure 3 is 90 °. The amplitude of both signals 31, 32 is as shown in the unit circle 1. In the phase diagram 30 possible sensor signals of the measuring sensor 4 are reproduced. The actual Sensor signal depends on the position of the measuring sensor 4 with respect to the electrically conductive structures 2, 3 or the substrate 1. The phase angle of the sensor signal can move in the case shown between 0 ° and 90 °. The amplitude is maximum, if exactly one signal maximally couples into the measuring sensor 4, ie in this case at the phase position 0 ° - for a coupling solely by the electrically conductive structure 2 - or at the phase position 90 ° - for a coupling alone of In the case of a coupling of both electrically conductive structures 2, 3, a phase position between 0 ° and 90 ° results for the resulting sensor signal and an amplitude <1, indicated by the triangle shown in the phase diagram 30.
FIG 4 zeigt eine Sensorfläche 4, welche mit gleichbleibendem Abstand d über elektrisch leitende Strukturen 2, 3 verfahren wird. Dabei wird in die elektrisch leitende Struktur 2 ein periodisches Signal, in diesem Fall ein sinusförmiges Signal, mit der Phase 0° eingespeist. In die elektrisch leitende Struktur 3 wird ein um 120° in der Phase verschobenes periodisches elektrisches Signal, auch ein Sinussignal, eingespeist. Die mit dem Bezugszeichen 40 gekennzeichneten Signalverläufe zeigen drei um jeweils 120° phasenverschobene Sinusschwingungen, wobei bei dem hier gezeigten Ausführungsbei- spiel nur zwei dieser drei Signale in die elektrisch leitenden Strukturen 2 bzw. 3 eingespeist werden. Das resultierende Sensorsignal, welches vom Messsensor 4 geliefert wird, ist als Signalverlauf 41 dargestellt. Der Signalverlauf 41 zeigt das resultierende Zeitsignal beim Verfahren des Messsensors von einer Position über der elektrisch leitenden Struktur 24 shows a sensor surface 4, which is moved at a constant distance d via electrically conductive structures 2, 3. In this case, a periodic signal, in this case a sinusoidal signal, with the phase 0 ° is fed into the electrically conductive structure 2. In the electrically conductive structure 3, a phase-shifted by 120 ° in the periodic electrical signal, including a sinusoidal signal, is fed. The signal curves identified by the reference numeral 40 show three sinusoidal oscillations phase-shifted by 120 °, with only two of these three signals being fed into the electrically conductive structures 2 and 3 in the exemplary embodiment shown here. The resulting sensor signal, which is supplied by the measuring sensor 4, is shown as a waveform 41. The signal course 41 shows the resulting time signal during the movement of the measuring sensor from a position over the electrically conductive structure 2
(Phasenlage 0°) zu einer Position über der elektrisch leitenden Struktur 3 (Phasenlage 120°) . In den Phasendiagrammen 42, 43, 44 sind die resultierenden Phasen und Amplituden für drei Zeitpunkte des Sensorsignals 41 aufgezeigt. Das Dreieck stellt jeweils den erreichbaren Wertebereich bei den drei beispielhaft skizzierten Phasenlagen dar. Die Phase des Ausgangssignals des Messsensors 4 ist von den jeweiligen Koppelkapazitäten zwischen Sensorfläche und den elektrisch leitenden Strukturen 2, 3 abhängig. Somit wird durch die angelegten Sinusschwingungen auch der Phasenbereich des Ausgangssignals vorgegeben. Die Modulation entspricht dabei den Änderungen der Koppelkapazitäten unter der Sensorfläche. Das bedeutet die Modulationsfrequenz hängt von der Verfahrgeschwindigkeit und den elektrisch leitenden Strukturen 2, 3 ab . Aus der resultierenden Phase können anschließend die Koppelkapazitätsverhältnisse zu den elektrisch leitenden(Phase position 0 °) to a position above the electrically conductive structure 3 (phase position 120 °). In the phase diagrams 42, 43, 44 the resulting phases and amplitudes for three times of the sensor signal 41 are shown. The triangle in each case represents the achievable value range in the three phase positions sketched by way of example. The phase of the output signal of the measuring sensor 4 is dependent on the respective coupling capacitances between the sensor surface and the electrically conductive structures 2, 3. Thus, the phase range of the output signal is specified by the applied sine waves. The modulation corresponds to the changes in the coupling capacitances under the sensor surface. This means that the modulation frequency depends on the travel speed and the electrically conductive structures 2, 3. From the resulting phase can then the coupling capacity ratios to the electrically conductive
Strukturen 2, 3 bestimmt werden. Aus diesen können die jeweiligen Anteile der elektrisch leitenden Strukturen 2, 3 unter dem Messsensor 4 abgeleitet werden.Structures 2, 3 are determined. From these, the respective proportions of the electrically conductive structures 2, 3 can be derived below the measuring sensor 4.
Neben der Phasenmodulation findet auch eine Amplitudenmodulation statt (siehe oberes Bild mit Signalverläufen) , wobei die Amplitude aber auch von den Kapazitätsverhältnissen abhängig ist. Die maximale Amplitude kann nur erreicht werden, wenn nur ein Signal einkoppelt. Das Einkoppeln von mehr als einem Signal führt automatisch zu einer geringeren Maximalamplitude. Deswegen ist der erreichbare Wertebereich im Phasendiagramm auch ein Vieleck und nicht ein Kreis. Diese Abschwächung der Amplitude kann bei Bedarf durch die Auswertung der Phaseninformation wieder korrigiert werden.In addition to the phase modulation, an amplitude modulation also takes place (see top picture with signal curves), but the amplitude is also dependent on the capacity ratios. The maximum amplitude can only be achieved if only one signal is injected. The coupling of more than one signal automatically leads to a lower maximum amplitude. Therefore, the achievable value range in the phase diagram is also a polygon and not a circle. If required, this attenuation of the amplitude can be corrected again by evaluating the phase information.
Weiterhin ist die Amplitude von der Gesamtgröße der einkoppelnden Kapazitäten abhängig. Das heißt, über die (korrigierte) Amplitude kann auf die Gesamtsignalfläche unter der Sensorfläche geschlossen werden. Somit lassen sich mit nur einem Scann die elektrisch leitenden Strukturen und ihre Anteile, die sich gleichzeitig unter einer Sensorfläche befinden, bestimmen .Furthermore, the amplitude depends on the total size of the coupling capacitances. This means that the (corrected) amplitude can be used to deduce the total signal area under the sensor surface. Thus, with only one scan, the electrically conductive structures and their proportions, which are located simultaneously under a sensor surface, can be determined.
Die Einspeisung von Signalen mit zwei bzw. drei unterschied- liehen Phasen ist vorteilhaft. Damit können beispielsweise bei LCD-Substraten die Gate-, Data- und Com-Leitungen (wenn Com vorhanden), und bei (Photo-) Detektoren die Leitungen für Gate, Date und Bias gleichzeitig inspiziert werden. Zusatz- lieh ist es noch vorteilhaft die Unterlage (Chuck) unter dem Substrat mit einem kodierten Signal zu beaufschlagen. Somit können auch nicht verbundene elektrische Flächen, über die kapazitive Kopplung zur Unterlage, inspiziert werden. Hierfür ist zusätzlich die Anwendung einer unterschiedlichen Frequenz von Vorteil, da von der Unterlage eine viel schwächere Kopplung zu erwarten ist.The feeding in of signals with two or three different phases is advantageous. Thus, for example, in the case of LCD substrates, the gate, data and com lines (if Com are present) and, in the case of (photo) detectors, the lines for gate, date and bias can be inspected simultaneously. Additive- It is still advantageous to apply a coded signal to the underlay (chuck) under the substrate. Thus, also unconnected electrical surfaces, via the capacitive coupling to the pad, be inspected. For this purpose, in addition, the use of a different frequency of advantage, since of the pad a much weaker coupling is expected.
FIG 5 verdeutlicht die Abhängigkeit der Amplitude eines Sen- sorsignals von der jeweiligen leitenden Struktur 2, von der ein einkoppelndes Signal empfangen wird. Jeweils dargestellt ist ein Substrat 1, gegebenenfalls mit einer elektrisch leitenden Struktur 2. Des Weiteren ist ein Messsensor 4, welcher auf einem Träger 12 aufgebracht ist und durch eine Abschir- mung 11 umgeben ist, dargestellt. Das Messsignal des Messsensors 4 wird an eine Verstärkerschaltung 8 weitergegeben. Das resultierende Messsignal ist jeweils durch ein Phasendiagramm 50, 51, 53 wiedergegeben. Durch die Phasendiagramme 52, 54 sind die jeweils in die leitende Struktur 2 eingespeisten pe- riodischen elektrischen Signale wiedergegeben. In diesem Fall wird also ein periodisches elektrisches Signal mit der Phasenlage 0° und einer Amplitude von 1 im Einheitskreis in die elektrisch leitende Struktur 2 eingespeist. Abhängig vom Verhältnis der Ausdehnung der elektrisch leitenden Struktur 2 zur Ausdehnung des Messsensors 4 koppelt das eingespeiste elektrische Signal unterschiedlich stark in den Messsensor 4 ein, resultierend in ein Messsignal 51, 53 mit unterschiedlich starker Amplitude. Im Falle eines nicht vorhandenen eingespeisten elektrischen Signals ist die Amplitude des Mess- signals 50 naturgemäß gleich Null.FIG. 5 illustrates the dependence of the amplitude of a sensor signal on the respective conductive structure 2, from which a coupling-in signal is received. In each case, a substrate 1, optionally with an electrically conductive structure 2, is shown. Furthermore, a measuring sensor 4, which is applied to a carrier 12 and surrounded by a shield 11, is shown. The measuring signal of the measuring sensor 4 is forwarded to an amplifier circuit 8. The resulting measurement signal is represented in each case by a phase diagram 50, 51, 53. The phase diagrams 52, 54 reproduce the respective periodic electrical signals fed into the conductive structure 2. In this case, therefore, a periodic electrical signal having the phase position 0 ° and an amplitude of 1 in the unit circle is fed into the electrically conductive structure 2. Depending on the ratio of the extent of the electrically conductive structure 2 to the extent of the measuring sensor 4, the fed-in electrical signal couples differently into the measuring sensor 4, resulting in a measuring signal 51, 53 having a different amplitude. In the case of a non-existent supplied electrical signal, the amplitude of the measurement signal 50 is naturally equal to zero.
FIG 6 zeigt beispielhaft, wie durch eine falsche Wahl der Phasendifferenz und durch das Einwirken von drei Phasenlagen das Messsignal ausgelöscht werden kann und somit nicht von einer freien Fläche zu unterscheiden ist. Dargestellt ist wiederum jeweils ein Substrat 1 mit elektrisch leitenden Strukturen 2, 3 bzw. 68, sowie ein auf einem Träger 12 befindlicher Messsensor 4, welcher durch eine Abschirmung 11 umgeben ist. Das Messsignal des Messsensors 4 wird an einen Verstärker 8 weitergegeben. Die in die jeweiligen leitenden Strukturen 2, 3 bzw. 68 eingespeisten periodischen elektrischen Signale werden durch die Phasendiagramme 61, 62 bzw. 64, 65, 66 dargestellt. Die resultierenden Messsignale sind in den Phasendiagrammen 60, 63, 67 wiedergegeben. Im in FIG 6 ersten dargestellten Fall werden zwei periodische elektrische Signale eingespeist, welche eine Phasenverschiebung von genau 180° aufweisen. Befindet sich der Messsensor in entsprechen- der Lage über den elektrisch leitenden Strukturen 2, 3, d. h. in einer Lage, in welcher beide Signale gleich stark in den Messsensor 4 einkoppeln, dann löschen sich die beiden um 180° verschobenen Signale effektiv aus. D. h., das resultierende Messsignal ist gleich Null (siehe Phasendiagramm 60) . Bei Verwendung von zwei Phasen sollten diese daher eine Phasendifferenz von 90° zueinander haben. In diesem Fall beeinflussen sich diese beiden Signale nicht. Darüber hinaus liefert ein Quadratur-Amplituden-Demodulator (QAM demodulation) bei 90° Phasenunterschied der Signale direkt die jeweiligen Kop- pelgrößen.FIG. 6 shows by way of example how the measurement signal can be canceled out by a wrong choice of the phase difference and by the action of three phase positions and thus can not be distinguished from a free area. Shown again is in each case a substrate 1 with electrically conductive structures 2, 3 or 68, as well as a measuring sensor 4 located on a support 12, which is protected by a shield 11 is surrounded. The measuring signal of the measuring sensor 4 is transmitted to an amplifier 8. The periodic electrical signals fed into the respective conductive structures 2, 3 and 68 are represented by the phase diagrams 61, 62 and 64, 65, 66, respectively. The resulting measurement signals are reproduced in the phase diagrams 60, 63, 67. In the first case shown in FIG. 6, two periodic electrical signals are input, which have a phase shift of exactly 180 °. If the measuring sensor is located in a corresponding position above the electrically conductive structures 2, 3, ie in a position in which both signals are equally coupled into the measuring sensor 4, then the two signals shifted by 180 ° are effectively canceled out. That is, the resulting measurement signal is zero (see phase diagram 60). When using two phases they should therefore have a phase difference of 90 ° to each other. In this case, these two signals do not influence each other. In addition, a quadrature amplitude demodulator (QAM demodulation) with 90 ° phase difference of the signals directly supplies the respective coupling sizes.
Im zweiten dargestellten Fall sind drei leitende Strukturen 2, 3, 68 vorhanden, in die periodische elektrische Signale eingespeist werden, welche jeweils um 120° in der Phase ge- geneinander verschoben sind (siehe Phasendiagramme 64, 65, 66) . Für den Fall, dass sich der Messsensor 4 in einer Lage relativ zu den elektrisch leitenden Strukturen 2, 3, 68 befindet, in welcher die drei einkoppelnden Signale gleich stark einkoppeln, löschen sich die um 120° phasenverschobenen Signale aus, resultierend in einem Messsignal gleich Null. Bei der Nutzung von drei Phasen sollten diese jeweils 120° zueinander haben. Somit können zwei Signale immer decodiert werden und haben den größtmöglichen Phasenabstand zueinander. Mehr als zwei Signalkopplungen können über die Phasenmodula- tion prinzipbedingt nicht unabhängig voneinander decodiert werden. Im Falle der drei Phasen kommt es bei einer Einkopp- lung von allen drei genanten Phasenlagen zu den oben genannten gegenseitigen Beeinflussungen. Im Falle der 120°- Phasenabstände in Form einer Dämpfung des Signals. Bei gleich stark einkoppelnden Amplituden aller drei Phasenlagen wird das Signal ausgelöscht. D. h. bei der Messung sollte sichergestellt werden, dass nicht mehr als zwei Signale auf einmal nennenswert einkoppeln können. Das kann beispielsweise mit einer entsprechend kleinen Sensorelektrodenfläche des Messsensors 4 erreicht werden, die nur zwei elektrisch leitende Strukturen in der Diagonale bzw. dem Durchmesser misst.In the second case illustrated, three conductive structures 2, 3, 68 are present, into which periodic electrical signals are fed, which are each shifted in phase by 120 ° in phase (see phase diagrams 64, 65, 66). In the event that the measuring sensor 4 is in a position relative to the electrically conductive structures 2, 3, 68, in which the three coupling-in signals equally coupled, cancel the signals phase-shifted by 120 °, resulting in a measurement signal equal Zero. When using three phases, they should each have 120 ° to each other. Thus, two signals can always be decoded and have the greatest possible phase separation from each other. As a matter of principle, more than two signal couplings can not be decoded independently of each other via the phase modulation. In the case of the three phases, when all three phase positions are coupled in, the above-mentioned mutual influences occur. In the case of 120 ° Phase distances in the form of attenuation of the signal. If the amplitudes of all three phase positions are equally strong, the signal is canceled out. Ie. During the measurement, it should be ensured that not more than two signals can merge appreciably at a time. This can be achieved, for example, with a correspondingly small sensor electrode area of the measuring sensor 4, which measures only two electrically conductive structures in the diagonal or the diameter.
Das Dreieck im Phasendiagramm 63 deutet mögliche Messsignale beim weiteren Verfahren des Messsensors 4 relativ zum Substrat 1 und somit relativ zu den elektrisch leitenden Strukturen 2, 3, 68 an. Im dritten in FIG 6 gezeigten Beispiel befindet sich keine elektrisch leitende Struktur auf dem zu vermessenden Substrat 1, so dass auch ein Messsignal gleich Null (Phasendiagramm 67) resultiert.The triangle in the phase diagram 63 indicates possible measurement signals during further movement of the measuring sensor 4 relative to the substrate 1 and thus relative to the electrically conductive structures 2, 3, 68. In the third example shown in FIG. 6, there is no electrically conductive structure on the substrate 1 to be measured, so that a measurement signal likewise results in zero (phase diagram 67).
Die der Erfindung zugrundeliegende Idee ist somit die gezielte Signalmodulation durch Feldkopplungen mittels einzelner kodierter Leitern. Die Leitungskodierung erfolgt dabei über das Anlegen von definierten Signalen. Darauf aufbauend können die Phasen- und Amplitudenmodulation, sowie auf diese aufbauenden Modulationsarten auf dieses Verfahren adaptiert werden. Der größte Nutzen liegt allerdings in der Umsetzung der oben beschriebenen Phasenmodulationen.The idea underlying the invention is thus the targeted signal modulation by field coupling by means of individual coded conductors. The line coding takes place via the creation of defined signals. Based on this, the phase and amplitude modulation as well as modulation types based on this can be adapted to this method. However, the greatest benefit lies in the implementation of the phase modulations described above.
Die Frequenzmodulation kann im Falle der Phasenmodulation zur Erkennung von Änderungen in den Feldkopplungen (Kantendetek- tion bei den Substraten) verwendet werden.In the case of phase modulation, the frequency modulation can be used to detect changes in the field couplings (edge detection of the substrates).
Prinzipiell ist die Anwendung dieses Verfahren nicht auf das Vermessen und die Inspektion von Substraten begrenzt. Es ist ebenso ein Verfahren, das für Messungen über Feldkopplungen, sowohl kapazitiv als auch induktiv, eingesetzt werden kann, bei denen Informationen über die Kopplungsstärke oder die Kopplungsverhältnisse benötigt werden. Die Vorteile, die sich aus der Modulation über die Feldkopplung ergeben sind unter anderem:In principle, the application of this method is not limited to the measurement and inspection of substrates. It is also a technique that can be used for field coupling measurements, both capacitive and inductive, where information about coupling strength or coupling ratios is needed. The benefits of modulating through field coupling include:
- Besseres Signal-Rausch-Verhältnis (SNR) .- Better signal-to-noise ratio (SNR).
- Alle Leitungen sind auf Signalen mit hoher Amplitude. - Die Phasenmodulation hat eine Bandspreizung zur Folge, wodurch das SNR nochmals verbessert wird.- All lines are on high amplitude signals. - The phase modulation results in a band spread, which further improves the SNR.
- Mit einer Messung können mehrere Leitungen erkannt, zugeordnet und in besserer Qualität inspiziert werden.- With one measurement several lines can be detected, assigned and inspected in better quality.
- Aufgrund des hohen SNRs sind höhere Scangeschwindigkeiten möglich.- Due to the high SNR, higher scanning speeds are possible.
- Durch die Phasenmodulation sind alle Signalleitungen gleichermaßen vom Frequenzverhalten des Messobjekts beein- flusst, so dass das Verfahren robust gegen Fehldetektionen ist . - Bei der Phasenmodulation haben alle Signale die gleiche- Due to the phase modulation, all signal lines are equally influenced by the frequency behavior of the DUT, so that the method is robust against misdetections. - In phase modulation, all signals have the same
„Trägerfrequenz", somit muss nur um eine Frequenz gefiltert werden ."Carrier frequency", so only one frequency has to be filtered.
- Mit der Verfahrgeschwindigkeit kann auf die Modulationsbandbreite eingegangen werden, wodurch zwischen Qualität und Geschwindigkeit skaliert werden kann.- With the travel speed can be discussed on the modulation bandwidth, which can be scaled between quality and speed.
- Die Leitungen können auch mit zusätzlichen Signalen beaufschlagt werden, wenn diese im Frequenzbereich nicht in den Modulationsbereich hineinfallen. So können bei LCD-Displays beispielweise durch Beaufschlagen mit einer Gleichspannung die Transistoren dauerhaft ein- bzw. ausgeschaltet werden. Das erlaubt mehr und genauere Inspektionsmöglichkeiten.- The lines can also be supplied with additional signals if they do not fall into the modulation range in the frequency range. For example, in the case of LCD displays, the transistors can be permanently switched on or off by applying a direct current voltage. This allows more and more accurate inspection options.
Dieses Verfahren kann bei der Vermessung und Inspektion von elektrisch leitenden Strukturen eingesetzt werden. Beispiele dafür sind: Substrate für LCD/LCD-TFT Fernseher und Monitore, (Photo-) Detektoren, organische Strukturen wie elektronische Zeitungen, gedruckte Schaltungen verschiedenster Art.This method can be used in the measurement and inspection of electrically conductive structures. Examples include: substrates for LCD / LCD TFT televisions and monitors, (photo) detectors, organic structures such as electronic newspapers, printed circuit boards of various kinds.
Es wird vorteilhafterweise insbesondere bei der qualitativ besseren und schnelleren Inspektion der Leiterbahnen und - flächen auf planaren Oberflächen (z. B. Glas- oder Plastiksubstraten) , der Funktionsprüfung einfacher Schaltkreise (schaltet TFT zum Pixel) , und anderen ähnlichen Mess- und Inspektionsaufgaben eingesetzt.It is advantageous in particular for the qualitatively better and faster inspection of the printed conductors and surfaces on planar surfaces (eg glass or plastic substrates), the functional testing of simple circuits (switches TFT to pixel) and other similar measurement and inspection tasks.
Die Erfindung betrifft somit ein Verfahren sowie eine Vor- richtung zur Messung eines Substrats 1 mit elektrisch leitenden Strukturen 2, 3. Um eine solche Messung zu verbessern, wird vorgeschlagen, dass die Vorrichtung einen Messsensor 4 und Mittel 5 zur gesteuerten Bewegung des Messsensors 4 relativ zum Substrat 1 aufweist, wobei die Vorrichtung Mittel 6, 7 zur gleichzeitigen Einspeisung mehrerer unterschiedlicher elektrischer Signale in die elektrisch leitenden Strukturen 2, 3 aufweist, wobei der Messsensor 4 zur Messung von durch die elektrischen Signale erzeugten Feldern mittels Feldkopplung vorgesehen ist, wobei die Vorrichtung Mittel 8, 9, 10 zur Auswertung der gemessenen Felder und zur Bestimmung von Eigenschaften der elektrisch leitenden Strukturen 2, 3 auf Basis der Auswertung der gemessenen Felder aufweist. The invention thus relates to a method and a device for measuring a substrate 1 with electrically conductive structures 2, 3. In order to improve such a measurement, it is proposed that the device comprise a measuring sensor 4 and means 5 for the controlled movement of the measuring sensor 4 to the substrate 1, the device comprising means 6, 7 for simultaneously feeding a plurality of different electrical signals in the electrically conductive structures 2, 3, wherein the measuring sensor 4 is provided for measuring fields generated by the electrical signals by means of field coupling, wherein the device Having means 8, 9, 10 for evaluating the measured fields and for determining properties of the electrically conductive structures 2, 3 based on the evaluation of the measured fields.

Claims

Patentansprüche claims
1. Vorrichtung zur Messung eines Substrats (1) mit elektrisch leitenden Strukturen (2, 3), wobei die Vorrichtung einen Messsensor (4) und Mittel (5) zur gesteuerten Bewegung des Messsensors (4) relativ zum Substrat (1) aufweist, wobei die Vorrichtung Mittel (6, 7) zur gleichzeitigen Einspeisung mehrerer unterschiedlicher elektrischer Signale in die elektrisch leitenden Strukturen (2, 3) aufweist, wobei der Mess- sensor (4) zur Messung von durch die elektrischen Signale erzeugten Feldern mittels Feldkopplung vorgesehen ist, wobei die Vorrichtung Mittel (8, 9, 10) zur Auswertung der gemessenen Felder und zur Bestimmung von Eigenschaften der elektrisch leitenden Strukturen (2, 3) auf Basis der Auswertung der gemessenen Felder aufweist.1. Device for measuring a substrate (1) with electrically conductive structures (2, 3), the device having a measuring sensor (4) and means (5) for controlled movement of the measuring sensor (4) relative to the substrate (1), wherein the device comprises means (6, 7) for simultaneously feeding a plurality of different electrical signals into the electrically conductive structures (2, 3), wherein the measuring sensor (4) is provided for measuring fields generated by the electrical signals by means of field coupling, the device comprises means (8, 9, 10) for evaluating the measured fields and for determining properties of the electrically conductive structures (2, 3) on the basis of the evaluation of the measured fields.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der Messsensor (4) zur Messung von durch die elektrischen Signale erzeugten elektrischen Feldern mittels kapazitiver Feldkopplung vorgesehen ist.2. Apparatus according to claim 1, characterized in that the measuring sensor (4) is provided for measuring electrical signals generated by the electrical signals by means of capacitive field coupling.
3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Mittel (6, 7) zur gleichzeitigen Einspeisung mehrerer gegeneinander phasenverschobener periodischer elekt- rischer Signale in die elektrisch leitenden Strukturen (2, 3) ausgebildet sind.3. Apparatus according to claim 1 or 2, characterized in that the means (6, 7) for the simultaneous feeding of a plurality of mutually phase-shifted periodic electrical signals in the electrically conductive structures (2, 3) are formed.
4. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Mittel (6, 7) zur gleichzeiti- gen Einspeisung von zwei um 90° und/oder von drei um jeweils 120° gegeneinander phasenverschobenen periodischen elektrischen Signalen in die elektrisch leitenden Strukturen (2, 3) ausgebildet sind.4. Device according to one of the preceding claims, characterized in that the means (6, 7) for simultaneous supply of two by 90 ° and / or three by 120 ° phase-shifted periodic electrical signals in the electrically conductive structures ( 2, 3) are formed.
5. Vorrichtung nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass die Mittel (6, 7) zur Einspeisung eines elektrischen Signals in eine Unterlage des Substrats (1) ausgebildet sind, insbesondere eines periodischen elektrischen Signals mit einer Frequenz, welche unterschiedlich zu Frequenzen der mehreren gegeneinander phasenverschobenen periodischen elektrischen Signale ist.5. Apparatus according to claim 3 or 4, characterized in that the means (6, 7) for feeding an electrical signal in a pad of the substrate (1) are formed, in particular a periodic electrical signal having a frequency different from frequencies of the plurality of phase shifted periodic electrical signals.
6. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Messsensor (4) zur gleichzeitigen Messung von durch maximal zwei elektrische Signale erzeugte Felder mittels Feldkopplung ausgebildet ist.6. Device according to one of the preceding claims, characterized in that the measuring sensor (4) for the simultaneous measurement of fields generated by a maximum of two electrical signals is formed by means of field coupling.
7. Verfahren zur Messung eines Substrats (1) mit elektrisch leitenden Strukturen (2, 3), bei welchem ein Messsensor (4) relativ zum Substrat (1) gesteuert bewegt wird, bei welchem mehrere unterschiedliche elektrische Signale in die elektrisch leitenden Strukturen (2, 3) gleichzeitig eingespeist werden, bei welchem der Messsensor (4) durch die elektrischen Signale erzeugte Felder mittels Feldkopplung misst und bei welchem die gemessenen Felder ausgewertet werden und Eigenschaften der elektrisch leitenden Strukturen (2, 3) auf Basis der Auswertung der gemessenen Felder bestimmt werden.7. Method for measuring a substrate (1) with electrically conductive structures (2, 3), in which a measuring sensor (4) is moved in a controlled manner relative to the substrate (1), in which a plurality of different electrical signals are fed into the electrically conductive structures (2 , 3) are fed simultaneously, in which the measuring sensor (4) measures fields generated by the electrical signals by means of field coupling and in which the measured fields are evaluated and properties of the electrically conductive structures (2, 3) determined on the basis of the evaluation of the measured fields become.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass mehrere gegeneinander phasenverschobene periodische elektrische Signale in die elektrisch leitenden Strukturen (2, 3) gleichzeitig eingespeist werden.8. The method according to claim 7, characterized in that a plurality of mutually phase-shifted periodic electrical signals in the electrically conductive structures (2, 3) are fed simultaneously.
9. Verfahren nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass zwei um 90° und/oder drei um jeweils 120° gegeneinander phasenverschobene periodische elektrische Signale in die elektrisch leitenden Strukturen (2, 3) gleichzeitig einge- speist werden.9. The method according to claim 7 or 8, characterized in that two by 90 ° and / or three by 120 ° phase-shifted periodic electrical signals in the electrically conductive structures (2, 3) are fed simultaneously.
10. Verfahren nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, dass ein elektrisches Signal in eine Unterlage des Substrats (1) eingespeist wird, insbesondere ein periodi- sches elektrisches Signal mit einer Frequenz, welche unterschiedlich zu Frequenzen der mehreren gegeneinander phasenverschobenen periodischen elektrischen Signale ist. 10. The method according to any one of claims 7 to 9, characterized in that an electrical signal in a pad of the substrate (1) is fed, in particular a periodic electrical signal having a frequency which is different from frequencies of the plurality of mutually phase-shifted periodic electrical Signals is.
PCT/EP2010/056451 2009-05-28 2010-05-11 Measuring a substrate having electrically conductive structures WO2010136330A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP10720391A EP2435840A1 (en) 2009-05-28 2010-05-11 Measuring a substrate having electrically conductive structures

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009022965.5 2009-05-28
DE102009022965A DE102009022965A1 (en) 2009-05-28 2009-05-28 Measurement of a substrate with electrically conductive structures

Publications (1)

Publication Number Publication Date
WO2010136330A1 true WO2010136330A1 (en) 2010-12-02

Family

ID=42668857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/056451 WO2010136330A1 (en) 2009-05-28 2010-05-11 Measuring a substrate having electrically conductive structures

Country Status (3)

Country Link
EP (1) EP2435840A1 (en)
DE (1) DE102009022965A1 (en)
WO (1) WO2010136330A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103765235A (en) * 2011-08-26 2014-04-30 西门子公司 Contactless capacitive distance sensor
US20180080975A1 (en) * 2016-03-09 2018-03-22 Boe Technology Group Co., Ltd. Non-contact probe signal loading device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9562930B2 (en) 2011-04-14 2017-02-07 Siemens Aktiengesellschaft Method for the contactless determination of an electrical potential of an object using two different values for the electric flux, and device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58146866A (en) * 1982-02-25 1983-09-01 Fujitsu Ltd Inspecting method of conductive pattern
GB2151360A (en) * 1982-06-21 1985-07-17 Netzler & Dahlgren Co Aktiebol Apparatus for locating fault points in electric guide loops
US5486753A (en) * 1993-07-30 1996-01-23 Genrad, Inc. Simultaneous capacitive open-circuit testing
US5821759A (en) * 1997-02-27 1998-10-13 International Business Machines Corporation Method and apparatus for detecting shorts in a multi-layer electronic package
WO1999065287A2 (en) * 1998-06-16 1999-12-23 Orbotech Ltd. Non-contact test method and apparatus
US20050068051A1 (en) * 2003-09-27 2005-03-31 Tesdahl Curtis A. Capacitive sensor measurement method for discrete time sampled system for in-circuit test
DE102005022884A1 (en) * 2005-05-18 2006-11-23 Siemens Ag Method for inspecting a printed conductor structure

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2405215B (en) * 2003-08-21 2005-09-28 Micron Technology Inc System and method for testing devices utilizing capacitively coupled signalling
US7466161B2 (en) * 2005-04-22 2008-12-16 Photon Dynamics, Inc. Direct detect sensor for flat panel displays

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58146866A (en) * 1982-02-25 1983-09-01 Fujitsu Ltd Inspecting method of conductive pattern
GB2151360A (en) * 1982-06-21 1985-07-17 Netzler & Dahlgren Co Aktiebol Apparatus for locating fault points in electric guide loops
US5486753A (en) * 1993-07-30 1996-01-23 Genrad, Inc. Simultaneous capacitive open-circuit testing
US5821759A (en) * 1997-02-27 1998-10-13 International Business Machines Corporation Method and apparatus for detecting shorts in a multi-layer electronic package
WO1999065287A2 (en) * 1998-06-16 1999-12-23 Orbotech Ltd. Non-contact test method and apparatus
US20050068051A1 (en) * 2003-09-27 2005-03-31 Tesdahl Curtis A. Capacitive sensor measurement method for discrete time sampled system for in-circuit test
DE102005022884A1 (en) * 2005-05-18 2006-11-23 Siemens Ag Method for inspecting a printed conductor structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103765235A (en) * 2011-08-26 2014-04-30 西门子公司 Contactless capacitive distance sensor
US9410999B2 (en) 2011-08-26 2016-08-09 Siemens Aktiengesellschaft Contactless capacitive distance sensor
US20180080975A1 (en) * 2016-03-09 2018-03-22 Boe Technology Group Co., Ltd. Non-contact probe signal loading device
US10209295B2 (en) * 2016-03-09 2019-02-19 Boe Technology Group Co., Ltd. Non-contact probe signal loading device

Also Published As

Publication number Publication date
EP2435840A1 (en) 2012-04-04
DE102009022965A1 (en) 2010-12-02

Similar Documents

Publication Publication Date Title
DE10243748B4 (en) Electromagnetic flowmeter
EP2707734B1 (en) Contactless capacitive distance sensor
DE4317512A1 (en) Device for the contactless measurement of zero point, position and angle of rotation
WO2014166689A1 (en) Magnetic field sensor apparatus, operating apparatus and method for determining a relative position
DE102014010547A1 (en) Hall sensor
DE19755418A1 (en) Sensor measuring complex impedances
WO2010136330A1 (en) Measuring a substrate having electrically conductive structures
DE102005022884B4 (en) Method for inspecting a printed conductor structure
DE19939159A1 (en) Touch-sensitive capacitive sensor e.g. for computer input interface, has matrix field of sensor elements providing inhomogeneity in test signal indicating touch contact point
EP0772054B1 (en) Method and device for testing an electric conductor arrangement
DE112016005115T5 (en) Capacitive charging mode measuring circuit with compensation of measuring errors due to parasitic sensor impedances
EP2981851A1 (en) Object locater and method for locating a metallic and/or magnetizable object
DE102010029541A1 (en) Combined micromechanical rotation rate-and magnetic field sensor, has elastically deflectable suspended vibrating structure, and detection structure detecting deflection of vibrating structure caused by Coriolis-force and Lorentz-force
EP1078283B1 (en) Capacitive measuring method
EP0433680B1 (en) Method for measuring the potential of the conductor lines of a program-controlled integrated circuit
DE4447294A1 (en) Method and device for determining a respective local position of a body
DE102018106466B3 (en) Method for the continuous determination of all components of a resistance tensor of thin films
DE10240143B4 (en) Testing and detection of potential-carrying parts and conductor tracks by means of a film sensor on the basis of stray capacitance measurements
DE102008030545A1 (en) Device and method for contactless contacting of conductive structures, in particular of thin-film transistor liquid crystal displays (Thin Film Transistor Liquid Crystal Displays)
DE19857674C1 (en) Capacitive measurement sensors testing device especially for finger print sensors
DE3922204C1 (en) Non-contact voltage measurement method - has optically transparent plate in contact with liquid crystal coated IC with optical alignment and constant potential measurement
DE1257443C2 (en) DEVICE FOR ELECTRIC MEASUREMENT OF THE RUNNING ERROR OF A WORKPIECE
DE60315619T2 (en) Method and device for detecting the direction of rotation of two phases in a three-phase voltage system
DE102011017384A1 (en) LCD i.e. Thin film transistor-LCD, for mobile communication device, has sensor device detecting finger or hand of user in region that is arranged upstream of display, and electrode functioning as field providing electrode of sensor device
DE102005036288B4 (en) Active probe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10720391

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010720391

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE