WO2010136054A1 - Energieverteilung - Google Patents

Energieverteilung Download PDF

Info

Publication number
WO2010136054A1
WO2010136054A1 PCT/EP2009/004042 EP2009004042W WO2010136054A1 WO 2010136054 A1 WO2010136054 A1 WO 2010136054A1 EP 2009004042 W EP2009004042 W EP 2009004042W WO 2010136054 A1 WO2010136054 A1 WO 2010136054A1
Authority
WO
WIPO (PCT)
Prior art keywords
devices
level
energy distribution
modules
station
Prior art date
Application number
PCT/EP2009/004042
Other languages
English (en)
French (fr)
Inventor
Klaus Arzig
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to EP09776686A priority Critical patent/EP2436097A1/de
Priority to BRPI0925064A priority patent/BRPI0925064A2/pt
Priority to US13/322,714 priority patent/US20120072043A1/en
Priority to PCT/EP2009/004042 priority patent/WO2010136054A1/de
Priority to RU2011153793/07A priority patent/RU2506681C2/ru
Priority to CN200980159566.6A priority patent/CN102449877B/zh
Publication of WO2010136054A1 publication Critical patent/WO2010136054A1/de
Priority to ZA2011/08617A priority patent/ZA201108617B/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00004Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by the power network being locally controlled
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • H02J13/00016Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using a wired telecommunication network or a data transmission bus
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/10The network having a local or delimited stationary reach
    • H02J2310/12The local stationary network supplying a household or a building
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving

Definitions

  • the invention relates to an energy distribution system with a Feldgerateebene, a hierarchical parent station level and a Leittechnikebene hierarchically superior to the station level, the operation of belonging to the field level field devices, the operation of belonging to the station level Stationsgerate and the operation of belonging to Leittechnikebene Leittechnikge - Rate is defined by parameter.
  • Such power distribution systems are common today, for example, in electrical power distribution networks.
  • the invention has for its object to provide an energy distribution system, in which a change in the parameters easier fürbuchen than previous power distribution systems let.
  • a plurality of separate computing devices over a communication network is connected to one another and a decentralized Rechnersys ⁇ tem of Energyverteilstrom forms, level the field devices of FeId-, the station devices of the station level and the control technology devices of the control plane to the remote computer system connected or are formed by one or more computer devices of the decentralized computer system and the parameters for determining the mode of operation of the field devices, the station equipment and the control technology devices are distributed on at least two different computer devices of the decentralized computer system and the access of the field devices, the station devices and the control technology devices takes place on the parameters via the communication network.
  • a significant advantage of the energy distribution system according to the invention is the fact that in this case the parameters which determine the mode of operation of the field, station and control equipment can be changed decentrally by simply accessing the decentralized computer system of the energy distribution system.
  • the parameters are implemented or stored in the individual devices and therefore must also be changed individually for the device, a device-independent reparameterization is possible in the energy distribution system according to the invention. It is thus much faster and more cost-effective to reconfigure the power distribution system and to change the energy distribution in the energy distribution network, if, for example, due to an unexpected
  • Weather change less alternative energy eg wind energy or electro-voltaic energy is available than expected.
  • Another essential advantage of the energy distribution system according to the invention is that a distribution of the parameters is provided in the decentralized computer system.
  • a decentralized storage of the parameters it is namely mög ⁇ Lich to consider the spatial or geographical arrangement of the field, station and control devices and to store the parameters where they are needed; This reduces the load on the communication network and transmission problems or transmission errors in the transmission of the parameters to the respective field, station and control technology. devices.
  • the parameters can be stored redundantly to avoid any loss of data in case of failure of individual computing devices.
  • control software which controls the energy distribution through the energy distribution system and / or the protection of the energy distribution system by setting or changing the parameters for determining the operation of the Feldgerate, Stationsgerate and Leittechnikgerate on different computer devices of the decentralized computer system is distributed.
  • Such a distribution of the computing power offers the advantage that even those computer devices can be used which alone were not suitable for handling or executing the entire control software, but are certainly in the position to handle at least partial tasks autonomously.
  • the control software preferably has energy distribution modules which autonomously control the energy distribution by the energy distribution system, at least as a function of the energy availability and the energy requirement by setting or changing the parameters.
  • energy distribution modules which autonomously control the energy distribution by the energy distribution system, at least as a function of the energy availability and the energy requirement by setting or changing the parameters.
  • the provision of separate energy distribution modules offers the advantage that it is possible to provide the computing power for a local energy distribution specifically where it is needed spatially or geographically; this increases the processing speed and reduces the error probability.
  • the control software can also have separate protection modules that autonomously control the protection of the energy distribution system by setting or changing the parameters.
  • the energy distribution modules are designed such that they automatically detect whether in the energy distribution network Relevant energy suppliers or energy consumers have been added or eliminated, and make an adjustment of the parameters depending on the change in the network structure.
  • control software has a central management program part, the assignment of the Energyverteilmodule and / or the protection modules to individual computing devices of the decentralized computer system as a function of the current Availability and / or the current operating status of the computer facilities regularly, irregularly or event-controlled and changes if necessary.
  • the Energy distribution function of the local energy Preferably, local portions of the Energyverteilanla ⁇ ge individual Energyverteilmodule and / or individual protection modules are assigned for which the Energyverteilmodule fugles the energy distribution function of the local energy and control the local energy demand and / or the protective modules control the protection locally.
  • the central administration program part is designed such that it selects the assignment of the energy distribution modules and / or the protection modules to the computer devices of the decentralized computer system depending on the geographical location of the computer devices and the geographical location of the local sections, and although in such a way that when allocating the energy distribution modules and / or the protection modules to the computer devices, the computer devices located in the respective local sections or these neighboring computer devices are in preference to such computer devices. be kart, which have a greater distance from the respective local sections.
  • At least one of the energy distribution modules is suitable for predicting the future energy requirement in its local section in order to prepare an optimum energy distribution.
  • the energy distribution modules and / or the protection modules may, for example, each be assigned to a single computer device of the decentralized computer system.
  • the central management program part is preferably distributed to at least two computer devices of the decentralized computer system, since it usually has a relatively large demand for computing power due to its complexity.
  • the central administration program part is formed by management program submodules which are assigned to at least two computer devices of the decentralized computer system.
  • the communication via the communication network can at least also be carried out according to the IEC61850 protocol.
  • the IEC61850 protocol enables particularly simple This is the processing of voltage and current values in the decentralized computer system.
  • the invention also relates to a method for operating an energy distribution system having a field device level, a hierarchically superior station level and a control technology level, which is hierarchically superior to the station level, the mode of operation of field devices belonging to the field level, the mode of operation of station stations belonging to the station level and the mode of operation of the control technology devices belonging to the control technology level is defined by parameters.
  • the parameters for determining the operation of the field devices, the station devices and the control technology devices are distributed to at least two different computer devices of a decentralized computer system and the access of the field devices, the station devices and the control technology devices to the parameters takes place via a communication network.
  • FIG. 1 shows, for a general explanation, an unclaimed energy distribution system
  • FIG. 2 shows an exemplary embodiment of an energy distribution system according to the invention, by means of which an exemplary embodiment of the method according to the invention is also explained, and
  • FIG 3 shows a further exemplary embodiment of an inventive energy distribution system.
  • FIG. 1 shows an energy distribution system 10 which is connected to a power supply network 20 which is not shown in further detail.
  • the energy distribution system 10 is hierarchically structured and has a field device level 30 to which field devices 31, 32, 33 and 34 belong.
  • the field devices 31, 32, 33 and 34 can be protected, for example, by protective devices, payer, actuating devices, switches, switchgear or the like. be formed the same.
  • the Feldgerate 31, 32, 33 and 34 are directly or indirectly connected to the power supply network 20 in connection, for example via transducers, switching elements or other devices or devices.
  • station level 40 Hierarchically superior to the field device level 30 is a station level 40 which is formed, for example, by station devices 41 and 42.
  • the energy distribution system 10 also has a control technology level 50, which is hierarchically superior to the station level 40 and may include one or more control equipment 51.
  • the mode of operation of the field devices 31, 32, 33 and 34 belonging to the field level 30, the mode of operation of the station devices 41 and 42 belonging to the station level 40 and the mode of operation of the process control device 51 belonging to the process engineering level 50 are respectively defined by parameters which are respectively implemented in the respective devices are stored. If a change in the configuration of the power distribution system 10 is to take place, all affected devices must be reparameterized, which entails a not inconsiderable expense, since the reparameterization generally affects all hierarchy levels 30, 40 and 50.
  • FIG. 2 shows an exemplary embodiment of an energy distribution system 10 according to the invention.
  • field devices 31, 32, 33 and 34, station devices 41 and 42 and control technology device 51 are interconnected via a communication network 80.
  • they are connected via this communication network 80 to a decentralized computer system 100 of the power distribution system 10.
  • the distributed computer system 100 comprises six computer devices 101, 102, 103, 104, 105 and 106.
  • Distributed on one of these six computer devices - for example the computer device 101 - or on several of these computer devices is a control software SW which controls the energy distribution through the computer Energyverteilstrom 10 and / or the protection of the power distribution system 10 controls.
  • the task of the control software SW is, inter alia, to set and / or change the parameters P for specifying the function or operation of the field devices 31, 32, 33, 34, the station devices 41 and 42 and / or the control device 51 and the respectively valid ones Store parameter P in the decentralized computer system 100.
  • the control software SW will store the parameters P for the field, station or Leittechnikgerate in those computing devices of the decentralized computer system 100, which have the smallest possible spatial distance to the respective field, station or Leittechnikgeraten, so that a distribution of parameter P results in at least two un ⁇ ter Kunststoffliche computer devices of the distributed computing system 100th
  • the parameters P are stored, for example, distributed on the computer devices 102 and 103.
  • the field devices 31, 32, 33, 34, the station devices 41 and 42 as well as the control technology device 51 receive via the communication network 80 their respective parameters P, which are stored in the decentralized computer system 100.
  • the control software SW preferably has one or more Energyverteilmodule EM, the energy distribution through the energy distribution system at least in dependence on the Controlling energy availability and the energy demand independently by setting or changing the parameters P for determining the mode of operation of the field devices, the station devices and the control devices in accordance with a predetermined optimization algorithm with the aim of optimal energy distribution.
  • control software preferably has one or more protection modules SM, which autonomously control the protection of the energy distribution systems by setting the parameters P for determining the mode of operation of the field devices, the station devices and the control technology devices in accordance with a predetermined optimization algorithm with the goal of an optimum protection effect or change.
  • protection modules SM autonomously control the protection of the energy distribution systems by setting the parameters P for determining the mode of operation of the field devices, the station devices and the control technology devices in accordance with a predetermined optimization algorithm with the goal of an optimum protection effect or change.
  • the energy distribution modules EM are preferably designed such that they automatically check-for example regularly, irregularly or event-controlled-whether energy suppliers or energy consumers that are relevant in the energy distribution network have been added or omitted, and that they adapt the parameters depending on the change in the network structure P to make.
  • FIG. 3 shows a further exemplary embodiment of an energy distribution system 10 according to the invention.
  • the field devices, the station devices and the control technology device are formed by computer devices of the decentralized computer system 100. So will
  • the field device 32 according to FIGS. 1 and 2 by a computer device 32 ' the field device 33 according to FIGS. 1 and 2 by a computer device 33', the Feldgerat 34 according to Figures 1 and 2 by a
  • each field, station and process control device is formed by a single individual computer device.
  • individual or all of these devices can also be formed by a plurality of computer devices of the decentralized computer system 100, or their functionality can be distributed among a plurality of computer devices of the decentralized computer system 100. It is also possible that any or all computing devices of the distributed computing system 100 in whole or in part the functionality of two or more field, Sta ⁇ TION and control devices or provide map.
  • the computer devices 101 and 102 distributed - is the control software that controls the power distribution through the power distribution system 10 and / or the protection of the power distribution system 10.
  • the control software is formed by control software modules SW1 and SW2.
  • the task of the control software modules SWl and SW2 is, inter alia, the parameters for setting thejans. The mode of operation of the field devices, of the station devices and of the control technology device, and / or to change them, and of the respectively valid parameters P in the decentralized computer Save system 100.
  • the control software modules SW1 and SW2 preferably store the parameters P for the field, station or control technology devices in those computer devices of the decentralized computer system 100 which have the smallest possible spatial distance to the respective ones
  • Field, station or Leittechnikgeraten have, so that a distribution of the parameters results in at least two different computing devices of the distributed computer system 100.
  • the parameters P are stored, for example, distributed to the computer devices 103 and 104.
  • the control software modules SW1 and SW2 preferably each have one or more energy distribution modules that autonomously control the energy distribution by the energy distribution system at least as a function of the energy availability and the energy demand by setting the parameters P for determining the mode of operation of the field devices, the station rate and the Adjust or change control equipment according to a given optimization algorithm with the aim of optimizing energy distribution.
  • the energy distribution modules which may for example correspond to those in accordance with FIG. 2, or which may be identical or similar to these, are not explicitly shown in FIG. 3 for the sake of clarity.
  • control software modules SWl and SW2 preferably one or more protection modules, which ren the protection of Energyverteilstromsstandig tax by the parameters P for setting the function ⁇ , the field devices, the station devices and the control devices according to a predetermined optimization algorithm set or change the goal of optimal protection.
  • the protection modules for example, those according to 2 or may be identical or similar to these, are not shown explicitly in Figure 3 for the sake of clarity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

Die Erfindung bezieht sich auf eine Energieverteilanlage (10) mit einer Feldgeräteebene (30), einer hierarchisch übergeordneten Stationsebene (40) sowie einer Leittechnikebene (50), die der Stationsebene hierarchisch übergeordnet ist, wobei die Funktionsweise der zur Feldebene gehörenden Feldgerate (31, 32, 33, 34), die Funktionsweise der zur Stationsebene gehörenden Stationsgeräte (41, 42) und die Funktionsweise der zur Leittechnikebene gehörenden Leittechnikgeräte (51) durch Parameter (P) definiert ist. Erfindungsgemäß ist vorgesehen, dass eine Vielzahl separater Rechnereinrichtungen (101, 102, 103, 104, 105, 106) über ein Kommunikationsnetz (80) miteinander in Verbindung steht und ein dezentrales Rechnersystem (100) der Energieverteilanlage bildet, die Feldgeräte der Feldebene, die Stationsgeräte der Stationsebene sowie die Leittechnikgeräte der Leittechnikebene an das dezentrale Rechnersystem angeschlossen oder durch einzelne oder mehrere Rechnereinrichtungen des dezentralen Rechnersystems gebildet sind und die Parameter zum Festlegen der Funktionsweise der Feldgeräte, der Stationsgeräte sowie der Leittechnikgeräte auf zumindest zwei unterschiedlichen Rechnereinrichtungen des dezentralen Rechnersystems verteilt sind und der Zugriff der Feldgeräte, der Stationsgeräte und der Leittechnikgeräte auf die Parameter über das Kommunikationsnetz erfolgt.

Description

Beschreibung
Energieverteilung
Die Erfindung bezieht sich auf eine Energieverteilanlage mit einer Feldgerateebene, einer hierarchisch übergeordneten Stationsebene sowie einer Leittechnikebene, die der Stationsebene hierarchisch übergeordnet ist, wobei die Funktionsweise der zur Feldebene gehörenden Feldgerate, die Funktionsweise der zur Stationsebene gehörenden Stationsgerate und die Funktionsweise der zur Leittechnikebene gehörenden Leittechnikge- rate durch Parameter definiert ist. Derartige Energieverteilanlagen sind heutzutage beispielsweise bei elektrischen Energieverteilnetzen allgemein üblich.
Der Erfindung liegt die Aufgabe zugrunde, eine Energieverteilanlage anzugeben, bei der sich eine Änderung der Parameter einfacher als bei bisherigen Energieverteilanlagen durchfuhren lasst.
Diese Aufgabe wird durch eine Energieverteilanlage mit den Merkmalen gemäß Patentanspruch 1 gelost. Vorteilhafte Ausgestaltungen der erfindungsgemaßen Energieverteilanlage sind in Unteranspruchen angegeben.
Danach ist erfindungsgemaß vorgesehen, dass eine Vielzahl separater Rechnereinrichtungen über ein Kommunikationsnetz miteinander in Verbindung steht und ein dezentrales Rechnersys¬ tem der Energieverteilanlage bildet, die Feldgerate der FeId- ebene, die Stationsgerate der Stationsebene sowie die Leit- technikgerate der Leittechnikebene an das dezentrale Rechnersystem angeschlossen oder durch einzelne oder mehrere Rechnereinrichtungen des dezentralen Rechnersystems gebildet sind und die Parameter zum Festlegen der Funktionsweise der Feld- gerate, der Stationsgeräte sowie der Leittechnikgerate auf zumindest zwei unterschiedlichen Rechnereinrichtungen des dezentralen Rechnersystems verteilt sind und der Zugriff der Feldgerate, der Stationsgerate und der Leittechnikgerate auf die Parameter über das Kommunikationsnetz erfolgt.
Ein wesentlicher Vorteil der erfindungsgemaßen Energieverteilanlage ist darin zu sehen, dass bei dieser die Parameter, die die Funktionsweise der Feld-, Stations- und Leittechnik- gerate festlegen, dezentral geändert werden können, indem einfach auf das dezentrale Rechnersystem der Energieverteilanlage zugegriffen wird. Im Unterschied zu herkömmlichen Energieverteilanlagen, bei denen die Parameter in den einzelnen Geraten implementiert bzw. abgespeichert sind und daher auch gerateindividuell geändert werden müssen, ist bei der erfindungsgemaßen Energieverteilanlage eine geräteunabhängige Umparametrierung möglich. Es ist somit viel schneller und kostengünstiger möglich, die Energieverteilanlage umzukonfi- gurieren und die Energieverteilung im Energieverteilungsnetz zu andern, wenn beispielsweise aufgrund einer unerwarteten
Wetteränderung weniger alternative Energie (z. B. Windenergie oder elektrovoltaische Energie) zur Verfugung steht als erwartet .
Ein weiterer wesentlicher Vorteil der erfindungsgemaßen Energieverteilanlage besteht darin, dass eine Verteilung der Parameter im dezentralen Rechnersystem vorgesehen ist. Durch ein dezentrales Abspeichern der Parameter ist es nämlich mög¬ lich, die raumliche bzw. geografische Anordnung der Feld-, Stations- und Leittechnikgerate zu berücksichtigen und die Parameter dort abzuspeichern, wo sie benotigt werden; dies reduziert die Belastung des Kommunikationsnetzes und Ubertra- gungsprobleme bzw. Ubertragungsfehler bei der Übertragung der Parameter zu den jeweiligen Feld-, Stations- und Leittechnik- geraten. Auch können die Parameter redundant abgespeichert werden, um einen etwaigen Datenverlust bei Ausfall einzelner Rechnereinrichtungen zu vermeiden.
Gemäß einer besonders bevorzugten Ausgestaltung ist vorgesehen, dass Steuersoftware, die die Energieverteilung durch die Energieverteilanlage und/oder den Schutz der Energieverteilanlage steuert, indem sie die Parameter zum Festlegen der Funktionsweise der Feldgerate, der Stationsgerate sowie der Leittechnikgerate einstellt oder verändert, auf unterschiedliche Rechnereinrichtungen des dezentralen Rechnersystems verteilt ist. Eine solche Verteilung der Rechenleistung bietet den Vorteil, dass auch solche Rechnereinrichtungen herangezogen werden können, die allein nicht geeignet waren, die gesamte Steuersoftware zu handhaben bzw. auszufuhren, jedoch durchaus in der Lage sind, zumindest Teilaufgaben selbststan- dig zu erledigen.
Vorzugsweise weist die Steuersoftware Energieverteilmodule auf, die die Energieverteilung durch die Energieverteilanlage zumindest in Abhängigkeit von der Energieverfugbarkeit und dem Energiebedarf durch Einstellen oder Verandern der Parameter selbststandig steuern. Eine Bereitstellung separater Energieverteilmodule bietet den Vorteil, dass man die Rechen- leistung für eine lokale Energieverteilung gezielt dort bereitstellen kann, wo sie raumlich bzw. geographisch benotigt wird; dies erhöht die Bearbeitungsgeschwindigkeit und reduziert die Fehlerwahrscheinlichkeit. Alternativ oder zusatzlich kann die Steuersoftware auch separate Schutzmodule auf- weisen, die den Schutz der Energieverteilanlage durch Einstellen oder Verandern der Parameter selbststandig steuern.
Vorzugsweise sind die Energieverteilmodule derart ausgestaltet, dass sie selbsttätig erkennen, ob im Energieverteilnetz relevante Energiezulieferer oder Energieverbraucher hinzugekommen oder weggefallen sind, und je nach eingetretener Änderung der Netzstruktur eine Anpassung der Parameter vornehmen.
Mit Blick auf eine optimale Verteilung der Rechenleistung und Speicherauslastung der Rechnereinrichtungen des dezentralen Rechnersystems wird es als vorteilhaft angesehen, wenn die Steuersoftware ein zentrales Verwaltungsprogrammteil aufweist, das die Zuordnung der Energieverteilmodule und/oder der Schutzmodule zu einzelnen Rechnereinrichtungen des dezentralen Rechnersystems in Abhängigkeit von der aktuellen Verfügbarkeit und/oder des aktuellen Betriebsstatus der Rechnereinrichtungen regelmäßig, unregelmäßig oder ereignisgesteuert überprüft und bei Bedarf ändert.
Vorzugsweise sind lokalen Abschnitten der Energieverteilanla¬ ge individuelle Energieverteilmodule und/oder individuelle Schutzmodule zugeordnet, für die die Energieverteilmodule die Energieverteilung in Abhängigkeit von der lokalen Energiever- fugbarkeit und dem lokalen Energiebedarf steuern und/oder die Schutzmodule den Schutz lokal steuern.
Auch wird es als vorteilhaft angesehen, wenn das zentrale Verwaltungsprogrammteil derart ausgebildet ist, dass es die Zuordnung der Energieverteilmodule und/oder der Schutzmodule zu den Rechnereinrichtungen des dezentralen Rechnersystems in Abhängigkeit von der geographischen Lage der Rechnereinrichtungen und der geographischen Lage der lokalen Abschnitte wählt, und zwar derart, dass bei der Zuordnung der Energie- Verteilmodule und/oder der Schutzmodule zu den Rechnereinrichtungen die in den jeweiligen lokalen Abschnitten befindlichen Rechnereinrichtungen oder diesen benachbarte Rechnereinrichtungen gegenüber solchen Rechnereinrichtungen bevor- zugt werden, die einen größeren Abstand zu den jeweiligen lokalen Abschnitten aufweisen.
Vorzugsweise ist zumindest eines der Energieverteilmodule ge- eignet, den zukunftigen Energiebedarf in seinem lokalen Abschnitt zu prognostizieren, um eine optimale Energieverteilung vorzubereiten.
Die Energieverteilmodule und/oder die Schutzmodule können beispielsweise jeweils einer einzigen Rechnereinrichtung des dezentralen Rechnersystems zugeordnet sein.
Das zentrale Verwaltungsprogrammteil ist vorzugsweise auf zumindest zwei Rechnereinrichtungen des dezentralen Rechnersys- tems verteilt, da es aufgrund seiner Komplexität in der Regel einen relativ großen Bedarf an Rechenleistung aufweist. Bevorzugt ist das zentrale Verwaltungsprogrammteil durch Ver- waltungsprogrammteilmodule gebildet, die mindestens zwei Rechnereinrichtungen des dezentralen Rechnersystems zugeord- net sind.
Um Datenverlust zu vermeiden, wird es als vorteilhaft angesehen, wenn die Kommunikationsverbindung zwischen zumindest zwei Rechnereinrichtungen des dezentralen Rechnersystems und/oder zwischen zumindest einem Feldgerat der Feldebene, einem Stationsgerat der Stationsebene oder einem Leittechnik- gerat der Leittechnikebene und zumindest einer der Rechnereinrichtungen des dezentralen Rechnersystems redundant erfolgt.
Beispielsweise kann die Kommunikation über das Kommunikationsnetz zumindest auch nach dem IEC61850-Protokoll erfolgen. Das IEC61850-Protokoll ermöglicht in besonders einfacher Wei- se die Verarbeitung von Spannungs- und Stromwerten in dem dezentralen Rechnersystem.
Die Erfindung bezieht sich außerdem auf ein Verfahren zum Betreiben einer Energieverteilanlage mit einer Feldgerateebene, einer hierarchisch übergeordneten Stationsebene sowie einer Leittechnikebene, die der Stationsebene hierarchisch übergeordnet ist, wobei die Funktionsweise der zur Feldebene gehörenden Feldgerate, die Funktionsweise der zur Stations- ebene gehörenden Stationsgerate und die Funktionsweise der zur Leittechnikebene gehörenden Leittechnikgerate durch Parameter definiert ist.
Erfindungsgemaß ist vorgesehen, dass die Parameter zum Fest- legen der Arbeitsweise der Feldgerate, der Stationsgerate sowie der Leittechnikgerate auf zumindest zwei unterschiedlichen Rechnereinrichtungen eines dezentralen Rechnersystems verteilt werden und der Zugriff der Feldgerate, der Stationsgerate sowie der Leittechnikgerate auf die Parameter über ein Kommunikationsnetz erfolgt.
Bezuglich der Vorteile des erfindungsgemaßen Verfahrens sei auf die Vorteile der erfindungsgemaßen Energieverteilanlage verwiesen, da die Vorteile der erfindungsgemaßen Energiever- teilanlage denen des erfindungsgemaßen Verfahrens im Wesentlichen entsprechen.
Als besonders vorteilhaft wird es angesehen, wenn lokalen Abschnitten der Energieverteilanlage individuelle Energiever- teilmodule und/oder individuelle Schutzmodule zugeordnet werden, für die die Energieverteilmodule die Energieverteilung lokal steuern und/oder die Schutzmodule den Schutz lokal steuern, und wenn die Zuordnung der Energieverteilmodule und/oder der Schutzmodule zu den Rechnereinrichtungen des de- zentralen Rechnersystems in Abhängigkeit von der geographischen Lage der Rechnereinrichtungen und der geographischen Lage der lokalen Abschnitte gewählt wird, und zwar derart, dass bei der Zuordnung der Energieverteilmodule und/oder der Schutzmodule zu den Rechnereinrichtungen diejenigen Rechnereinrichtungen, die sich in den den Energieverteilmodulen und/oder Schutzmodulen zugeordneten lokalen Abschnitten oder in deren Nahe befinden, gegenüber entfernter befindlichen Rechnereinrichtungen bevorzugt werden.
Die Erfindung wird nachfolgend anhand von Figuren naher erläutert; dabei zeigen beispielhaft:
Figur 1 zur allgemeinen Erläuterung eine nicht beanspruch- te Energieverteilanlage,
Figur 2 ein Ausfuhrungsbeispiel für eine erfindungsgemaße Energieverteilanlage, anhand derer auch ein Ausfuhrungsbeispiel für das erfindungsgemaße Verfah- ren erläutert wird, und
Figur 3 ein weiteres Ausfuhrungsbeispiel für eine erfin- dungsgemaße Energieverteilanlage .
In den Figuren werden für identische oder vergleichbare Komponenten dieselben Bezugszeichen verwendet.
In der Figur 1 sieht man eine Energieverteilanlage 10, die an ein nicht weiter im Detail dargestelltes Energieversorgungs- netz 20 angeschlossen ist. Die Energieverteilanlage 10 ist hierarchisch strukturiert und weist eine Feldgerateebene 30 auf, zu der Feldgerate 31, 32, 33 und 34 gehören. Die Feldgerate 31, 32, 33 und 34 können beispielsweise durch Schutzgerate, Zahler, Stellgerate, Schalter, Schaltanlagen oder der- gleichen gebildet sein. Die Feldgerate 31, 32, 33 und 34 stehen unmittelbar oder mittelbar mit dem Energieversorgungsnetz 20 in Verbindung, beispielsweise über Messwandler, Schaltelemente oder sonstige Einrichtungen oder Gerate.
Der Feldgerateebene 30 hierarchisch übergeordnet ist eine Stationsebene 40, die beispielsweise durch Stationsgerate 41 und 42 gebildet ist.
Die Energieverteilanlage 10 weist außerdem eine Leittechnikebene 50 auf, die der Stationsebene 40 hierarchisch übergeordnet ist und ein oder mehrere Leittechnikgerate 51 umfassen kann.
Die Funktionsweise der zur Feldebene 30 gehörenden Feldgerate 31, 32, 33 und 34, die Funktionsweise der zur Stationsebene 40 gehörenden Stationsgerate 41 und 42 und die Funktionsweise des zur Leittechnikebene 50 gehörenden Leittechnikgerats 51 ist jeweils durch Parameter definiert, die in den jeweiligen Geraten implementiert bzw. abgespeichert sind. Wenn eine Änderung der Konfiguration der Energieverteilanlage 10 erfolgen soll, müssen alle betroffenen Gerate umparametriert werden, was einen nicht unerheblichen Aufwand mit sich bringt, da die Umparametrierung in der Regel alle Hierarchieebenen 30, 40 und 50 betrifft.
Die Figur 2 zeigt ein Ausfuhrungsbeispiel für eine erfin- dungsgemaße Energieverteilanlage 10. Bei dieser Energieverteilanlage 10 sind die Feldgerate 31, 32, 33 und 34, die Sta- tionsgerate 41 und 42 und das Leittechnikgerat 51 über ein Kommunikationsnetz 80 miteinander verbunden. Außerdem sind sie über dieses Kommunikationsnetz 80 an ein dezentrales Rechnersystem 100 der Energieverteilanlage 10 angeschlossen. Das dezentrale Rechnersystem 100 umfasst bei diesem Ausfuhrungsbeispiel sechs Rechnereinrichtungen 101, 102, 103, 104, 105 und 106. Auf einer dieser sechs Rechnereinrichtungen - beispielsweise der Rechnereinrichtung 101 - oder auf mehreren dieser Rechnereinrichtungen verteilt ist eine Steuersoftware SW installiert, die die Energieverteilung durch die Energieverteilanlage 10 und/oder den Schutz der Energieverteilanlage 10 steuert.
Die Aufgabe der Steuersoftware SW besteht unter anderem darin, die Parameter P zum Festlegen der Funktions- bzw. Arbeitsweise der Feldgerate 31, 32, 33, 34, der Stationsgerate 41 und 42 sowie des Leittechnikgerats 51 einzustellen und/oder zu verandern und die jeweils gültigen Parameter P in dem dezentralen Rechnersystem 100 abzuspeichern. Vorzugsweise wird die Steuersoftware SW die Parameter P für die Feld-, Stations- oder Leittechnikgerate in denjenigen Rechnereinrichtungen des dezentralen Rechnersystems 100 ablegen, die einen möglichst geringen raumlichen Abstand zu den jeweiligen Feld-, Stations- oder Leittechnikgeraten aufweisen, so dass sich eine Verteilung der Parameter P auf zumindest zwei un¬ terschiedliche Rechnereinrichtungen des dezentralen Rechnersystems 100 ergibt. Bei dem Ausfuhrungsbeispiel gemäß der Figur 2 werden die Parameter P beispielsweise auf den Rechner- einrichtungen 102 und 103 verteilt abgespeichert.
Die Feldgerate 31, 32, 33, 34, die Stationsgerate 41 und 42 sowie das Leittechnikgerat 51 erhalten über das Kommunikationsnetz 80 ihre jeweiligen Parameter P, die in dem dezentra- len Rechnersystem 100 hinterlegt sind.
Die Steuersoftware SW weist vorzugsweise ein oder mehrere Energieverteilmodule EM auf, die die Energieverteilung durch die Energieverteilanlage zumindest in Abhängigkeit von der Energieverfugbarkeit und dem Energiebedarf selbststandig steuern, indem sie die Parameter P zum Festlegen der Funktionsweise der Feldgerate, der Stationsgerate sowie der Leit- technikgerate gemäß einem vorgegebenen Optimierungsalgorith- mus mit dem Ziel einer optimalen Energieverteilung einstellen oder verandern.
Außerdem weist die Steuersoftware vorzugsweise ein oder mehrere Schutzmodule SM auf, die den Schutz der Energieverteil- anläge selbststandig steuern, indem sie die Parameter P zum Festlegen der Funktionsweise der Feldgerate, der Stationsgerate sowie der Leittechnikgerate gemäß einem vorgegebenen Optimierungsalgorithmus mit dem Ziel einer optimalen Schutzwirkung einstellen oder verandern.
Vorzugsweise sind die Energieverteilmodule EM derart ausgestaltet, dass sie selbsttätig prüfen - beispielsweise regelmäßig, unregelmäßig oder ereignisgesteuert -, ob im Energie- verteilnetz relevante Energiezulieferer oder Energieverbrau- eher hinzugekommen oder weggefallen sind, und dass sie je nach eingetretener Änderung der Netzstruktur eine Anpassung der Parameter P vornehmen.
Die Figur 3 zeigt ein weiteres Ausfuhrungsbeispiel für eine erfindungsgemaße Energieverteilanlage 10. Bei dieser Energieverteilanlage 10 sind die Feldgerate, die Stationsgerate und das Leittechnikgerat durch Rechnereinrichtungen des dezentralen Rechnersystems 100 gebildet. So wird
- das Feldgerat 31 gemäß den Figuren 1 und 2 durch eine Rechnereinrichtung 31',
- das Feldgerat 32 gemäß den Figuren 1 und 2 durch eine Rechnereinrichtung 32 ' , das Feldgerat 33 gemäß den Figuren 1 und 2 durch eine Rechnereinrichtung 33', das Feldgerat 34 gemäß den Figuren 1 und 2 durch eine
Rechnereinrichtung 34 ' , das Stationsgerat 41 gemäß den Figuren 1 und 2 durch eine
Rechnereinrichtung 41', - das Stationsgerat 42 gemäß den Figuren 1 und 2 durch eine
Rechnereinrichtung 42' und das Leittechnikgerat 51 gemäß den Figuren 1 und 2 durch eine Rechnereinrichtung 51' gebildet .
Bei der Ausfuhrungsvariante gemäß der Figur 3 wird jedes Feld-, Stations- und Leittechnikgerat durch eine einzige individuelle Rechnereinrichtung gebildet. Alternativ können einzelne oder alle diese Gerate auch durch mehrere Rechner- einrichtungen des dezentralen Rechnersystems 100 gebildet werden, bzw. es kann deren Funktionalität auf mehrere Rechnereinrichtungen des dezentralen Rechnersystems 100 verteilt sein. Auch ist es möglich, dass einzelne oder alle Rechnereinrichtungen des dezentralen Rechnersystems 100 ganz oder zum Teil die Funktionalitat zweier oder mehrerer Feld-, Sta¬ tions- und Leittechnikgerate bereitstellen bzw. abbilden.
Auf einer oder mehreren der Rechnereinrichtungen - hier beispielsweise den Rechnereinrichtungen 101 und 102 verteilt - ist die Steuersoftware, die die Energieverteilung durch die Energieverteilanlage 10 und/oder den Schutz der Energieverteilanlage 10 steuert. Die Steuersoftware wird durch Steuersoftwaremodule SWl und SW2 gebildet.
Die Aufgabe der Steuersoftwaremodule SWl und SW2 besteht unter anderem darin, die Parameter zum Festlegen der Funktionsbzw. Arbeitsweise der Feldgerate, der Stationsgerate sowie des Leittechnikgerats einzustellen und/oder zu verandern und die jeweils gültigen Parameter P in dem dezentralen Rechner- System 100 abzuspeichern. Vorzugsweise werden die Steuersoftwaremodule SWl und SW2 die Parameter P für die Feld-, Stati- ons- oder Leittechnikgerate in denjenigen Rechnereinrichtungen des dezentralen Rechnersystems 100 ablegen, die einen möglichst geringen räumlichen Abstand zu den jeweiligen
Feld-, Stations- oder Leittechnikgeraten aufweisen, so dass sich eine Verteilung der Parameter auf zumindest zwei unterschiedliche Rechnereinrichtungen des dezentralen Rechnersystems 100 ergibt. Bei dem Ausfuhrungsbeispiel gemäß der Figur 3 werden die Parameter P beispielsweise auf die Rechnereinrichtungen 103 und 104 verteilt abgespeichert.
Die Steuersoftwaremodule SWl und SW2 weisen vorzugsweise jeweils ein oder mehrere Energieverteilmodule auf, die die Energieverteilung durch die Energieverteilanlage zumindest in Abhängigkeit von der Energieverfugbarkeit und dem Energiebedarf selbststandig steuern, indem sie die Parameter P zum Festlegen der Funktionsweise der Feldgerate, der Stationsge- rate sowie der Leittechnikgerate gemäß einem vorgegebenen Op- timierungsalgorithmus mit dem Ziel einer optimalen Energie- verteilung einstellen oder verandern. Die Energieverteilmodule, die beispielsweise denen gemäß der Figur 2 entsprechen können bzw. mit diesen identisch oder zu diesen ahnlich sein können, sind der Übersicht halber m der Figur 3 nicht expli- zit eingezeichnet.
Alternativ oder zusätzlich weisen die Steuersoftwaremodule SWl und SW2 vorzugsweise ein oder mehrere Schutzmodule auf, die den Schutz der Energieverteilanlage selbststandig steu- ern, indem sie die Parameter P zum Festlegen der Funktions¬ weise der Feldgerate, der Stationsgerate sowie der Leittechnikgerate gemäß einem vorgegebenen Optimierungsalgorithmus mit dem Ziel einer optimalen Schutzwirkung einstellen oder verandern. Die Schutzmodule, die beispielsweise denen gemäß der Figur 2 entsprechen können bzw. mit diesen identisch oder zu diesen ahnlich sein können, sind der Übersicht halber in der Figur 3 nicht explizit eingezeichnet.

Claims

Patentansprüche
1. Energieverteilanlage (10) mit einer Feldgerateebene (30), einer hierarchisch übergeordneten Stationsebene (40) sowie einer Leittechnikebene (50) , die der Stationsebene hierarchisch übergeordnet ist, wobei die Funktionsweise der zur Feldebene gehörenden Feldgerate (31, 32, 33, 34), die Funktionsweise der zur Stationsebene gehörenden Stationsgerate (41, 42) und die Funktionsweise der zur Leittechnikebene gehoren- den Leittechnikgerate (51) durch Parameter (P) definiert ist, d a d u r c h g e k e n n z e i c h n e t , dass eine Vielzahl separater Rechnereinrichtungen (101, 102, 103, 104, 105, 106) über ein Kommunikationsnetz (80) miteinander in Verbindung steht und ein dezentrales Rechner- system der Energieverteilanlage bildet, die Feldgerate der Feldebene, die Stationsgerate der Stationsebene sowie die Leittechnikgerate der Leittechnikebene an das dezentrale Rechnersystem angeschlossen oder durch einzelne oder mehrere Rechnereinrichtungen des de- zentralen Rechnersystems gebildet sind und die Parameter zum Festlegen der Funktionsweise der Feldgerate, der Stationsgerate sowie der Leittechnikgerate auf zumindest zwei unterschiedlichen Rechnereinrichtungen des dezentralen Rechnersystems verteilt sind und der Zugriff der Feldgerate, der Stationsgerate und der Leittechnikge¬ rate auf die Parameter über das Kommunikationsnetz erfolgt.
2. Anordnung nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , dass die Steuersoftware (SW), die die Energieverteilung durch die Energieverteilanlage und/oder den Schutz der Energieverteilanlage steuert, indem sie die Parameter zum Festlegen der Funktionsweise der Feldgerate, der Stationsgerate sowie der Leittechnikgerate einstellt oder verändert, auf unterschiedliche Rechnereinrichtungen des dezentralen Rechnersystems verteilt ist.
3. Anordnung nach Anspruch 2, d a d u r c h g e k e n n z e i c h n e t , dass die Steuersoftware Energieverteilmodule (EM) aufweist, die die Energieverteilung durch die Energieverteilanlage zumindest in Abhängigkeit von der Energieverfugbarkeit und dem Energiebedarf durch Einstellen oder Verandern der Parameter selbststandig steuern, und/oder Schutzmodule (SM) aufweist, die den Schutz der Energieverteilanlage durch Einstellen oder Verandern der Parameter selbststandig steuern.
4. Anordnung nach Anspruch 3, d a d u r c h g e k e n n z e i c h n e t , dass die Steuersoftware ein zentrales Verwaltungsprogrammteil aufweist, das die Zuordnung der Energieverteilmodule und/oder der Schutzmodule zu einzelnen Rechnereinrichtungen des dezen- tralen Rechnersystems in Abhängigkeit von der aktuellen Verfügbarkeit und/oder des aktuellen Betriebsstatus der Rechnereinrichtungen regelmäßig, unregelmäßig oder ereignisgesteuert überprüft und bei Bedarf ändert.
5. Anordnung nach Anspruch 3 oder 4, d a d u r c h g e k e n n z e i c h n e t , dass lokalen Abschnitten der Energieverteilanlage individuelle Energieverteilmodule und/oder individuelle Schutzmodule zugeordnet sind, für die die Energieverteilmodule die Ener- gieverteilung in Abhängigkeit von der lokalen Energieverfugbarkeit und dem lokalen Energiebedarf steuern und/oder die Schutzmodule den Schutz lokal steuern.
6. Anordnung nach Anspruch 5, d a d u r c h g e k e n n z e i c h n e t , dass das zentrale Verwaltungsprogrammteil derart ausgebildet ist, dass es die Zuordnung der Energieverteilmodule und/oder der Schutzmodule zu den Rechnereinrichtungen des dezentralen Rechnersystems in Abhängigkeit von der geographischen Lage der Rechnereinrichtungen und der geographischen Lage der lokalen Abschnitte wählt, und zwar derart, dass bei der Zuordnung der Energieverteilmodule und/oder der Schutzmodule zu den Rechnereinrichtungen die in den jeweiligen lokalen Ab- schnitten befindlichen Rechnereinrichtungen oder diesen benachbarte Rechnereinrichtungen gegenüber solchen Rechnereinrichtungen bevorzugt werden, die einen größeren Abstand zu den jeweiligen lokalen Abschnitten aufweisen.
7. Anordnung nach einem der voranstehenden Ansprüche 3-6, d a d u r c h g e k e n n z e i c h n e t , dass zumindest eines der Energieverteilmodule geeignet ist, den zukunftigen Energiebedarf in seinem lokalen Abschnitt zu prognostizieren.
8. Anordnung nach einem der voranstehenden Ansprüche 3-7, d a d u r c h g e k e n n z e i c h n e t , dass die Energieverteilmodule und/oder die Schutzmodule jeweils einer einzigen Rechnereinrichtung des dezentralen Rech- nersystems zugeordnet sind.
9. Anordnung nach einem der voranstehenden Ansprüche 4-8, d a d u r c h g e k e n n z e i c h n e t , dass das zentrale Verwaltungsprogrammteil auf zumindest zwei Rechnereinrichtungen des dezentralen Rechnersystems verteilt ist.
10. Anordnung nach Anspruch 9, d a d u r c h g e k e n n z e i c h n e t , dass das zentrale Verwaltungsprogrammteil durch Verwaltungs- programmteilmodule gebildet ist, die mindestens zwei Rechnereinrichtungen des dezentralen Rechnersystems zugeordnet sind.
11. Anordnung nach Anspruch 2, d a d u r c h g e k e n n z e i c h n e t , dass die Steuersoftware Steuersoftwaremodule (SWl, SW2) aufweist, die jeweils einer einzigen Rechnereinrichtung des dezentralen Rechnersystems zugeordnet sind.
12. Anordnung nach einem der voranstehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass die Kommunikationsverbindung zwischen zumindest zwei Rechnereinrichtungen des dezentralen Rechnersystems und/oder zwi- sehen zumindest einem Feldgerat der Feldebene, einem Stati- onsgerat der Stationsebene oder einem Leittechnikgerat der Leittechnikebene und zumindest einer der Rechnereinrichtungen des dezentralen Rechnersystems redundant erfolgt.
13. Anordnung nach einem der voranstehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass die Kommunikation über das Kommunikationsnetz zumindest auch nach dem IEC61850-Protokoll erfolgt.
14. Verfahren zum Betreiben einer Energieverteilanlage (10) mit einer Feldgerateebene (30) , einer hierarchisch übergeord¬ neten Stationsebene (40) sowie einer Leittechnikebene (50), die der Stationsebene hierarchisch übergeordnet ist, wobei die Funktionsweise der zur Feldebene gehörenden Feldgerate (31, 32, 33, 34), die Funktionsweise der zur Stationsebene gehörenden Stationsgerate (41, 42) und die Funktionsweise der zur Leittechnikebene gehörenden Leittechnikgerate (51) durch Parameter (P) definiert ist, d a d u r c h g e k e n n z e i c h n e t , dass - die Parameter zum Festlegen der Arbeitsweise der Feldgerate, der Stationsgerate sowie der Leittechnikgerate auf zumindest zwei unterschiedlichen Rechnereinrichtungen (101, 102, 103, 104, 105, 106) eines dezentralen Rechnersystems (100) verteilt werden und
- der Zugriff der Feldgerate, der Stationsgerate sowie der Leittechnikgerate auf die Parameter über ein Kommunikationsnetz (80) erfolgt.
15. Verfahren nach Anspruch 14, d a d u r c h g e k e n n z e i c h n e t , dass lokalen Abschnitten der Energieverteilanlage individuelle Energieverteilmodule (EM) und/oder individuelle Schutzmodule (SM) zugeordnet werden, für die die Energie- Verteilmodule die Energieverteilung lokal steuern und/oder die Schutzmodule den Schutz lokal steuern, und
- dass die Zuordnung der Energieverteilmodule und/oder der Schutzmodule zu den Rechnereinrichtungen des dezentralen Rechnersystems in Abhängigkeit von der geographischen Lage der Rechnereinrichtungen und der geographischen Lage der lokalen Abschnitte gewählt wird, und zwar derart, dass bei der Zuordnung der Energieverteilmodule und/oder der Schutzmodule zu den Rechnereinrichtungen diejenigen Rechnereinrichtungen, die sich in den den Energieverteilmodu- len und/oder Schutzmodulen zugeordneten lokalen Abschnit¬ ten oder in deren Nahe befinden, gegenüber entfernter befindlichen Rechnereinrichtungen bevorzugt werden.
PCT/EP2009/004042 2009-05-29 2009-05-29 Energieverteilung WO2010136054A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP09776686A EP2436097A1 (de) 2009-05-29 2009-05-29 Energieverteilung
BRPI0925064A BRPI0925064A2 (pt) 2009-05-29 2009-05-29 distribuição de energia
US13/322,714 US20120072043A1 (en) 2009-05-29 2009-05-29 Power distribution
PCT/EP2009/004042 WO2010136054A1 (de) 2009-05-29 2009-05-29 Energieverteilung
RU2011153793/07A RU2506681C2 (ru) 2009-05-29 2009-05-29 Распределение энергии
CN200980159566.6A CN102449877B (zh) 2009-05-29 2009-05-29 能量分配
ZA2011/08617A ZA201108617B (en) 2009-05-29 2011-11-23 Power distribution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2009/004042 WO2010136054A1 (de) 2009-05-29 2009-05-29 Energieverteilung

Publications (1)

Publication Number Publication Date
WO2010136054A1 true WO2010136054A1 (de) 2010-12-02

Family

ID=41666596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/004042 WO2010136054A1 (de) 2009-05-29 2009-05-29 Energieverteilung

Country Status (7)

Country Link
US (1) US20120072043A1 (de)
EP (1) EP2436097A1 (de)
CN (1) CN102449877B (de)
BR (1) BRPI0925064A2 (de)
RU (1) RU2506681C2 (de)
WO (1) WO2010136054A1 (de)
ZA (1) ZA201108617B (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102592247A (zh) * 2010-12-15 2012-07-18 索尼公司 任务管理系统、任务管理方法以及程序
WO2013079112A1 (en) * 2011-12-01 2013-06-06 Siemens Aktiengesellschaft Processing data of a technical system comprising several assets

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130141549A (ko) * 2012-03-30 2013-12-26 가부시끼가이샤 도시바 사회 인프라 제어 시스템, 서버, 제어 방법 및 기록 매체
WO2017180303A1 (en) * 2016-04-12 2017-10-19 Cooper Technologies Company Controlling an electrical apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999009632A2 (de) * 1997-08-18 1999-02-25 Siemens Aktiengesellschaft Netzleitanordnung und verfahren zum betrieb eines energieversorgungsnetzes
WO2008037235A1 (de) * 2006-09-28 2008-04-03 Siemens Aktiengesellschaft Verfahren und system zum einbinden eines elektrischen gerätes in ein energieversorgungsnetz
WO2009024179A1 (de) * 2007-08-22 2009-02-26 Siemens Aktiengesellschaft Verfahren zum parametrieren einer schaltanlage

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2114747T3 (es) * 1994-07-08 1998-06-01 Siemens Ag Sistema de mando para una instalacion de una central electrica.
US6961641B1 (en) * 1994-12-30 2005-11-01 Power Measurement Ltd. Intra-device communications architecture for managing electrical power distribution and consumption
RU2143165C1 (ru) * 1998-05-29 1999-12-20 Молочков Виктор Федорович Устройство для контроля электроэнергетических систем
US6697951B1 (en) * 2000-04-26 2004-02-24 General Electric Company Distributed electrical power management system for selecting remote or local power generators
DE50015940D1 (de) * 2000-09-21 2010-07-29 Abb Schweiz Ag Konfiguration eines Leitsystems einer elektrischen Schaltanlage
US20020084655A1 (en) * 2000-12-29 2002-07-04 Abb Research Ltd. System, method and computer program product for enhancing commercial value of electrical power produced from a renewable energy power production facility
US6882904B1 (en) * 2000-12-29 2005-04-19 Abb Technology Ag Communication and control network for distributed power resource units
AU2003248368A1 (en) * 2002-02-25 2003-09-09 General Electric Company Method for power distribution system components identification, characterization and rating
US7729810B2 (en) * 2002-04-01 2010-06-01 Programable Control Services, Inc. Electrical power distribution control systems and processes
US7636616B2 (en) * 2003-02-25 2009-12-22 General Electric Company Protection system for power distribution systems
US7360100B2 (en) * 2003-08-01 2008-04-15 Ge Medical Systems Global Technology Company, Llc Intelligent power management control system and method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999009632A2 (de) * 1997-08-18 1999-02-25 Siemens Aktiengesellschaft Netzleitanordnung und verfahren zum betrieb eines energieversorgungsnetzes
WO2008037235A1 (de) * 2006-09-28 2008-04-03 Siemens Aktiengesellschaft Verfahren und system zum einbinden eines elektrischen gerätes in ein energieversorgungsnetz
WO2009024179A1 (de) * 2007-08-22 2009-02-26 Siemens Aktiengesellschaft Verfahren zum parametrieren einer schaltanlage

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102592247A (zh) * 2010-12-15 2012-07-18 索尼公司 任务管理系统、任务管理方法以及程序
WO2013079112A1 (en) * 2011-12-01 2013-06-06 Siemens Aktiengesellschaft Processing data of a technical system comprising several assets

Also Published As

Publication number Publication date
RU2506681C2 (ru) 2014-02-10
US20120072043A1 (en) 2012-03-22
CN102449877A (zh) 2012-05-09
RU2011153793A (ru) 2013-07-10
BRPI0925064A2 (pt) 2019-08-27
ZA201108617B (en) 2012-07-25
EP2436097A1 (de) 2012-04-04
CN102449877B (zh) 2015-05-20

Similar Documents

Publication Publication Date Title
EP3613118A1 (de) Ladestation zum laden mehrerer elektrofahrzeuge, insbesondere elektroautomobile
EP2713463B1 (de) Energiespeichersystem
WO2008049556A1 (de) Verfahren zum betreiben eines niederspannungsnetzes
EP2136076A2 (de) Verfahren zur Steuerung eines Windparks
DE102013222277A1 (de) Steuerung von dezentralen Energieerzeugern und/oder Verbrauchern in einem elektrischen Verbundnetz
DE102010006527A1 (de) Anpassen von Lastprofilen und/oder Einspeiseprofilen
DE102013012898A1 (de) System und Verfahren zur Regelung der Frequenz- und/oder Spannungshaltung aus dem Verteilnetz
WO2009033955A2 (de) Verfahren zum betreiben eines energieversorgungsnetzwerks
EP2436097A1 (de) Energieverteilung
EP3469680A1 (de) Verfahren, computer-programm-produkt, vorrichtung und "energie-cluster-service"-system zum managen von regelzielen, insbesondere lastausgleichen, bei der steuerung der versorgung, umwandlung, speicherung, einspeisung, verteilung und/oder des verbrauchs von energie in einem energienetz
EP3107175B1 (de) Netzregelung bei grenzwertüberschreitungen in einem nieder- oder mittelspannungsnetz
CH713282B1 (de) Verfahren zum Betreiben eines strukturierten Netzes zur Verteilung von elektrischer Energie.
DE112021002393T5 (de) Steuerschutzsystem für einen verteilten Serienkompensator
EP2533389A2 (de) Verfahren zur Verteilung von elektrischer Energie in einem Stromnetzwerk mit einer Vielzahl von Verteilungsnetzzellen
WO2016207074A1 (de) Vorrichtung und verfahren zum bidirektionalen verbinden zweier stromnetze
WO2012139656A1 (de) Energieverteilnetz und verfahren zu dessen betrieb
EP2883294B1 (de) Verfahren zur rechnergestützten steuerung eines elektrischen energieverteilnetzes aus einer vielzahl von netzknoten
DE102015210882A1 (de) Netzregelung bei Grenzwertüberschreitungen in einem Nieder- oder Mittelspannungsnetz
AT514766B1 (de) Verfahren zur Stabilisierung eines Energieverteilnetzes
EP3422522B1 (de) Bereitstellung von elektrischer leistung an ein energieversorgungsnetz mittels einer bereitstellungseinrichtung mit erhöhter dynamik
EP4120508A1 (de) Verfahren und zentrale rechneranordnung zur vorhersage eines netzzustands sowie computerprogrammprodukt
CH717615A1 (de) Netz zur Verteilung elektrischer Energie und Verfahren zur Strukturierung eines Netzes.
WO2014187501A1 (de) Energieverteilnetz und verfahren zu dessen betrieb
DE102017221145A1 (de) Energieversorgungsnetzwerke und -verfahren
DE102017108606A1 (de) Verfahren zum Betrieb einer Energieerzeugungsanlage und Energieerzeugungsanlage

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980159566.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09776686

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009776686

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 4683/KOLNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 13322714

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2011153793

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI0925064

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI0925064

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20111129