WO2010135867A1 - 频谱检测方法、系统及基站 - Google Patents

频谱检测方法、系统及基站 Download PDF

Info

Publication number
WO2010135867A1
WO2010135867A1 PCT/CN2009/072021 CN2009072021W WO2010135867A1 WO 2010135867 A1 WO2010135867 A1 WO 2010135867A1 CN 2009072021 W CN2009072021 W CN 2009072021W WO 2010135867 A1 WO2010135867 A1 WO 2010135867A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection result
relay node
detection
cooperative
frequency detection
Prior art date
Application number
PCT/CN2009/072021
Other languages
English (en)
French (fr)
Inventor
庄宏成
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2009/072021 priority Critical patent/WO2010135867A1/zh
Priority to CN200980120586.2A priority patent/CN102405677B/zh
Priority to EP09845084.4A priority patent/EP2288214B1/en
Publication of WO2010135867A1 publication Critical patent/WO2010135867A1/zh
Priority to US12/962,037 priority patent/US8410771B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/382Monitoring; Testing of propagation channels for resource allocation, admission control or handover
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/026Co-operative diversity, e.g. using fixed or mobile stations as relays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15592Adapting at the relay station communication parameters for supporting cooperative relaying, i.e. transmission of the same data via direct - and relayed path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a frequency detection method, system, and base station. Background technique
  • CR Cognitive Radio
  • the secondary system unlicensed use of the spectrum
  • the primary system authorized use of the spectrum
  • the secondary system is used in an opportunistic manner with the primary system (authorized use of the spectrum), or in a common frequency band for spectrum sharing with other subsystems in accordance with certain spectrum etiquette.
  • the key to this kind of spectrum sharing is that the system can obtain the state information of the idle spectrum quickly, accurately and reliably, and the acquisition of this state information depends on the spectrum sensing technology in cognitive radio technology.
  • spectrum sensing technology involves two key aspects: First, how CR users get accurate detection information in the noise interference environment; Second, how the detection results can be reliably and low-cost shared or reported.
  • a terminal can connect to a corresponding cellular cell base station through one or more relay nodes, thereby reducing path loss and greatly increasing the capacity and coverage of the entire cell. Therefore, in view of the ever-expanding application range of cellular multi-hop networks, how to improve the spectrum utilization rate of cellular multi-hop networks is an urgent problem for researchers.
  • Embodiments of the present invention provide a frequency detection method, system, and base station to improve spectrum utilization of a cellular multi-hop network.
  • each node includes a cooperative detection non-relay node and a cooperative detection relay node;
  • the intermediate frequency detection result includes: cooperatively detecting a first spectrum detection result of the non-relay node and a cooperative detection relay node. Second frequency test results;
  • the intermediate frequency detection result includes: Following the second frequency detection result of the node;
  • the intermediate frequency detection result includes one of the following:
  • the cooperatively detecting a second frequency detection result of the relay node The cooperatively detecting a first frequency detection result that is relayed by the cooperative detection non-relay node reported by the relay node; the cooperative detection relay node And a second frequency detection result and a first spectrum detection result relayed by the cooperative detection non-relay node.
  • a result receiving unit configured to receive an intermediate frequency detection result sent by each node, where the node includes a cooperative detection non-relay node and a cooperative detection relay node;
  • a result processing unit configured to perform fusion processing on the intermediate frequency detection result to obtain a final spectrum detection result
  • the intermediate frequency detection result includes: cooperatively detecting a first spectrum detection result of the non-relay node and a cooperative detection relay node. Second frequency test results;
  • the intermediate frequency detection result includes: Following the second frequency detection result of the node;
  • the intermediate frequency detection result includes one of the following:
  • the frequency detection system of the embodiment of the present invention includes: at least one cooperative detection non-relay node, at least one cooperative detection relay node, and a base station;
  • the cooperative detecting non-relay node is configured to perform frequency detection in the first time slot, and when the first frequency detection result is obtained, and the first frequency detection result can be reported, the first spectrum is used.
  • the detection result is sent to the base station; when the first frequency detection result can be obtained, but the first frequency detection result cannot be reported, the first frequency detection result is relayed to the cooperative detection relay node When the first frequency detection result is not obtained, relaying the detection signal to the cooperative detection relay node;
  • the cooperative detection relay node is configured to perform frequency detection in the second time slot, obtain a second spectrum detection result, and send the second frequency detection result to the base station; Receiving, by the node, the first frequency detection result, and not reporting the first frequency detection result, receiving the first frequency detection result relayed by the cooperative detection non-relay node, the first Frequency detection result, or sending the first spectrum detection result and the second frequency detection result to the base station;
  • the base station is configured to perform fusion processing according to the received frequency detection result to obtain a final spectrum detection result.
  • the frequency detection method, system and base station perform two-stage frequency detection by cooperatively detecting a non-relay node and a cooperative detection relay node, and then the base station performs fusion processing according to the two-level frequency detection result.
  • the final frequency detection result is obtained, which improves the spectrum utilization rate in the cellular multi-hop network and effectively improves the overall performance of the frequency detection.
  • FIG. 1 is a flowchart of a frequency detection method according to an embodiment of the present invention.
  • FIG. 2 is a flowchart of a second frequency detection method according to an embodiment of the present invention.
  • FIG. 3 is a flowchart of detecting, by a cooperative detection non-relay node and a cooperative detection relay node, in a second frequency detection method according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a third base station according to an embodiment of the present invention.
  • FIG. 5 is a structural diagram of a third base station according to Embodiment 3 of the present invention.
  • FIG. 6 is a schematic diagram of a four-frequency speech detecting system according to an embodiment of the present invention.
  • the frequency detection method according to the first embodiment of the present invention introduces a hierarchical cooperative frequency detection technology in a cellular multi-hop network, and combines a data fusion mechanism.
  • the method according to Embodiment 1 of the present invention includes the following steps:
  • Step 11 The base station receives the intermediate frequency detection result sent by each node.
  • the node includes a cooperative detection non-relay node and a cooperative detection relay node.
  • the intermediate frequency detection result includes the following three cases: Case 1: When the cooperative detection non-relay node performs frequency detection and determines that the detection result can be reported, cooperatively detecting the non-relay node a first spectrum detection result and a second frequency detection result of the cooperative detection relay node;
  • Case 2 When the cooperative detecting non-relay node performs frequency speech detection and can determine the detection result, but cannot report the detection result, the cooperative detecting the second frequency detection result of the relay node, or the cooperative detection relay node The reported first spectrum detection node relayed by the cooperative detection non-relay node a second frequency detection result of the cooperative detection relay node and a first frequency detection result relayed by the cooperative detection non-relay node;
  • Case 3 When the cooperative detecting non-relay node performs frequency speech detection and cannot determine the detection result, and relays the detection signal to the cooperative detection relay node, the cooperatively detects the second frequency of the relay node. Language test results.
  • Step 12 The base station performs fusion processing on the intermediate frequency detection result to obtain a final frequency detection result.
  • the two-level frequency detection of the non-relay node and the cooperative detection relay node is detected by cooperative detection, and then the base station according to the two-level frequency language
  • the detection result is fused to obtain the final frequency detection result, which improves the spectrum utilization rate in the cellular multi-hop network and effectively improves the overall performance of the frequency detection.
  • the CR system is used as a secondary system for frequency sharing with the primary system.
  • the transmission power is limited and the coverage of the one-hop link is limited because it is necessary to avoid the interference of the secondary user to the primary user.
  • multi-hop can be considered, and the terminal is used as a relay node to improve the coverage of the CR system.
  • the CR users receive The primary user signals are also not identical.
  • the cell of the CR base station is divided into a cluster head area and a non-cluster head area based on the spatial location, and a relay node that can participate in cooperative detection, that is, a cooperative detection relay node is selected in the cluster head area, and then coordinated.
  • Detecting relay nodes and cooperatively detecting non-relay nodes are detected hierarchically, and are rooted According to the detection situation and the link state, the detection result is flexibly reported, and finally, the base station performs fusion processing on the detection results of the two levels.
  • the frequency detection method according to Embodiment 2 of the present invention includes:
  • Step 21 The base station broadcasts channel available channel information on the common control channel, and carries a cluster head selection message in the information.
  • the cluster head selection message includes: a base station location, a cell radius R, a cluster head threshold C, and detection parameters ⁇ ⁇ 2 , D.
  • the detection parameters may be determined in the following manner.
  • x(t) represents the signal received by the CR user
  • 0 is the main user transmit signal
  • 0 is additive white Gaussian noise
  • A is the link gain, H. , indicating that the primary user exists and the primary user does not exist. If it is, it means the signal-to-noise ratio, then pass the energy detector and then about H.
  • the distribution of the decision statistics can be expressed as:
  • the detection statistic is expressed as:
  • the secondary system needs to set the minimum detection probability P d Min ; and in order to make full use of the spectrum, the maximum false alarm probability p f Max needs to be set. From this, the detection parameter ⁇ 2 can be calculated.
  • the decision threshold can be obtained by the given maximum false alarm probability, that is, the detection parameter can be obtained by Get:
  • I m — is a (m-1)-order modified Bes sel (Bessel) function.
  • the base station In order to improve the accuracy of the detection, the base station needs to make a correct decision. This requires obtaining the frequency detection results of multiple independent terminals, and at the same time making full use of the dispersion of users in the system to improve the stability of the cooperative performance. If there is a strong correlation between the terminals participating in the collaborative detection, the performance of the cooperative spectrum sensing will be greatly reduced.
  • the detection parameter D is:
  • Step 22 The node that receives the cluster head selection message calculates the distance L between the node and the base station, to Confirm if it is in the cluster head area.
  • the distance L is in a predetermined interval, such as [i?/2, 3i?/4], it can be determined that the node is in the cluster head area, otherwise the node is in the non-cluster head area.
  • the node in the cluster head area is referred to as a cluster head node.
  • Step 23 If the path loss and the residual energy E ⁇ of the cluster head node satisfy the following formula, the cluster head node sends a cluster head response message to the base station, and carries the remaining energy and location information in the cluster head response message.
  • Step 24 The base station determines, according to the received cluster head response message, combined with the remaining energy and location information reported by the cluster head node, a cooperative detection relay node, and sends a cluster head confirmation to the cooperative detection relay node. Message.
  • the other nodes including the nodes in the cluster head area except for the cooperative detection relay node and the nodes in the non-cluster header area, can be considered as cooperative detection non-relay nodes.
  • the cooperative detection relay node is determined according to the above sorting result.
  • the number of the cooperative detection relay nodes may be multiple.
  • Dij represents the distance between two cluster head nodes
  • D is the detection parameter:
  • Step 25 The cooperative detection relay node sends the intra-cluster channel available information, and carries the cluster head announcement message.
  • the cluster head announcement message preferably includes the detection parameters ⁇ i and ⁇ 2 .
  • Step 26 The node that receives the cluster head advertisement message records information of the cooperative detection relay node, and sends a cluster head advertisement response message to the cooperative detection relay node, and carries the cluster head advertisement response message. Its remaining energy and location information.
  • the cooperative detection relay node and the cooperative detection non-relay node perform hierarchical cooperative frequency speech detection.
  • the base station divides the detection time slot into two detection time slots, detects the non-relay node by the cooperative detection in the first detection time slot, and performs frequency detection by the cooperative detection relay node in the second detection time slot.
  • a soft hard decision mechanism is adopted in the process of detecting the relay node and cooperatively detecting the non-relay node. . details as follows:
  • Each node divides the signal energy obtained by detecting the received signal into three intervals: energy interval 1, energy interval 2, energy interval 3; wherein in energy interval 1, the signal energy is smaller than the detection parameter ⁇ 1 ; In interval 2, the signal energy is in the interval [ ⁇ ⁇ ⁇ 2 ]; in energy interval 3, the signal energy is greater than the detection parameter ⁇ 2 .
  • the node When the node detects that the signal energy is in the energy interval 2, it indicates that the node cannot determine the detection result. Then, for cooperative detection of non-relay nodes, it will relay the detection signal to the cooperative detection relay node or abandon the detection. For the cooperative detection relay node, it will abandon this detection or cooperate with the detection of the detection signal or detection result of the non-relay node relay for corresponding processing. This process will be described in detail when the cooperative detection relay node performs frequency detection. When the signal energy falls in the energy interval 1, it is considered that the frequency band is not occupied by the primary user, and each node reports the result 0; when the signal energy falls in the energy interval 3, the frequency band is considered to be occupied by the primary user, and each node reports the result. 1.
  • Step 27 The cooperative detection non-relay node performs frequency detection on the received signal to obtain a first spectrum detection result.
  • the cooperative detection non-relay node performs frequency detection on the received signal, according to the soft hard decision mechanism described above, if the signal energy Y is detected to fall in the energy interval 1 or the energy interval 3, the cooperative detection non-relay node itself can determine the detection result, and the first spectrum detection result can be obtained.
  • the terminal can obtain the link state between the base station and the base station through the channel estimation through the available channel information broadcast by the base station or other system broadcast messages, that is, the signal to noise ratio ⁇ . .
  • the state of the link between the terminal and the cooperative relay node, that is, the signal to noise ratio ⁇ can also be obtained.
  • the cooperative detection non-relay node performs frequency detection on the received signal, according to the soft hard decision mechanism described above, if the detected signal energy Y falls in the energy interval 2, the cooperative detection is non-relayed. The node itself is not able to determine the test results. Well, in this case, if r. ⁇ r d
  • Step 28 The cooperative detection relay node performs frequency detection on the received signal to obtain a second spectrum detection result.
  • the cooperative detection relay node performs frequency detection on the received signal in the second time slot to obtain a second frequency detection result.
  • the equal gain combining EGC method, the maximum combining ratio MRC method, and the selective combining SC method can be employed.
  • the EGC method is taken as an example in this embodiment.
  • h , h m , A represent the channel gains of the cooperative detection relay node and the primary user, the i-th cooperative detection non-relay node and the primary user, the cooperative detection relay node and the ith terminal, respectively.
  • the cooperative detection relay node detects the signal, and the obtained signal energy is:
  • the cooperative detection relay node performs the cooperative detection relay node according to the soft hard decision mechanism described above, if it is detected that the signal energy Y falls in the energy interval 1 or the energy interval 3 and the detection result is considered to be more reliable. Report the second frequency detection result. If it is detected that the signal energy Y falls in the energy interval 1 or the energy interval 3 and the detection result is considered to be insufficiently reliable, the cooperative detection relay node passes the first frequency detection result and the second frequency detection result thereof. The common channel is reported to the base station. Alternatively, after processing the first frequency detection result and the second frequency detection result, the processed third frequency detection result is reported to the base station through the common channel.
  • the first frequency detection result is indicated, and S is 1 as long as one of them is 1. This means that as long as a cooperative detection non-relay node detects that the frequency band is occupied by the primary user, it indicates that the frequency band cannot be used in the sector.
  • the first frequency detection result from the cooperative detection non-relay node is directly forwarded to the base station.
  • Step 29 The base station performs fusion processing on the received frequency detection result from the cooperative detection non-relay node and/or the cooperative detection relay node.
  • the base station uses the "K of N” rule to combine the received frequency detection results as follows:
  • the cooperative detection detects the frequency detection result reported by the non-relay node and the cooperative detection relay node.
  • the above equation shows that if any of the N detected frequency detection results is "1", it means that K detection nodes of the N detection nodes detect that the frequency band is occupied by the primary user. Then, the base station will determine that the frequency band is occupied by the primary user and cannot be used in the local cell; otherwise, the frequency band is not occupied by the primary user and can be used.
  • Step 210 The base station will use the spectrum available information in the common control channel to broadcast the channel available information or carry the spectrum available information in other system broadcast messages to notify the user in the cell of the spectrum condition that the user can use.
  • clustering processing and cluster head node selection are also performed while determining the cooperative detection relay node. Therefore, the cluster head node can receive the channel available information broadcasted by the base station and the cooperative detection relay node. Therefore, to further improve spectrum utilization, the use of available spectrum can also be performed at two levels.
  • the base station divides the detection results into two categories, one is the available frequency band within the cell range, and the other is the available frequency band within a certain cluster area. And, based on the clustered broadcast available channel information, as shown in Table 1 below.
  • Cluster area 3 F9 , F10 , F3 , F4 ... where F3 and F4 are available frequency bands in the cell, F1 and F2 represent available frequency bands that can only be used in cluster area 1, F5 and F6 indicate that only The available frequency bands used in cluster area 2, F9 and F1 0 represent the available frequency bands that can only be used in cluster area 3.
  • the available frequency bands in the cell are preferentially used on the second hop link and the direct link of the CR user.
  • Each cluster head node preferentially uses the available channels in the cluster according to the second spectrum detection result of the cooperative detection relay node and the spectrum available information of the base station, that is, in the intra-cluster communication, that is, on the first hop link of the CR user.
  • the terminal using a certain channel detects the presence of the primary user, it immediately stops the occupation of the frequency band, and reports the cooperative detection relay node through the common control channel.
  • the technical solution of the embodiment is used to detect the two-level frequency detection of the non-relay node and the cooperative detection relay node, and then the base station according to the two-level frequency phrase.
  • the detection result is fused to obtain the final frequency detection result, which improves the spectrum utilization rate in the cellular multi-hop network and effectively improves the overall performance of the frequency detection.
  • the storage medium may be a magnetic disk, an optical disk, a Read-Only Memory (ROM), or a Random Acces s Memory (RAM).
  • the third embodiment of the present invention further provides a base station, as shown in FIG. 4, including: a result receiving unit 41, configured to receive an intermediate frequency detection result sent by each node; a result processing unit 42, configured to The intermediate frequency detection result is subjected to fusion processing to obtain a final frequency detection result;
  • the intermediate frequency detection result includes: cooperatively detecting a first spectrum detection result of the non-relay node and a cooperative detection relay node. Second frequency test results;
  • the intermediate frequency detection result includes: Following the second frequency detection result of the node;
  • the intermediate frequency detection result includes one of the following:
  • the result processing unit 42 may include:
  • a result processing module 421 configured to perform a combining process on the intermediate frequency detection results
  • a result obtaining module 422 configured to: when at least one intermediate frequency detection result in the intermediate frequency detection result indicates that the frequency band is occupied, Then, the final frequency detection result is that the frequency band is occupied.
  • the base station may further include: a node determining unit 43 configured to determine the cooperative detection relay node.
  • the manner in which the node determining unit 43 determines to cooperatively detect the relay node is the same as the manner described in the second embodiment of the present invention.
  • the base station may further include: an information sending unit 44, configured to broadcast channel available information to the cluster head node according to the final frequency detection result, so that the cluster head node is in the cluster
  • the available channels within the cluster are preferentially used for communication.
  • the base station according to Embodiment 3 of the present invention obtains the final frequency detection by performing the two-level frequency detection on the cooperative detection non-relay node and the cooperative detection relay node, and then performing fusion processing according to the two-level frequency detection result.
  • the spectrum utilization in the cellular multi-hop network is improved, and the efficiency is effectively improved.
  • the overall performance of frequency detection is improved.
  • the fourth embodiment of the present invention further provides a frequency detection system, including: at least one cooperative detection non-relay node 61, at least one cooperative detection relay node 62, and a base station 63;
  • the cooperative detecting non-relay node 61 is configured to perform frequency detection in the first time slot, and when the first frequency detection result can be obtained and the first frequency detection result can be reported, the first The frequency detection result is sent to the base station; when the first frequency detection result can be obtained, but the first frequency detection result cannot be reported, the first frequency detection result is relayed to the cooperative detection. Following the node; when the first frequency detection result cannot be obtained, relaying the detection signal to the cooperative detection relay node;
  • the cooperative detection relay node 62 is configured to perform frequency detection on the second time slot, obtain a second frequency detection result, and send the second spectrum detection result to the base station; Receiving, by the relay node, the first frequency detection result, and not reporting the first frequency detection result, receiving the first frequency detection result relayed by the cooperative detection non-relay node, a frequency detection result, or sending the first frequency detection result and the second frequency detection result to the base station;
  • the base station 63 is configured to perform fusion processing according to the received frequency detection result to obtain a final spectrum detection result.
  • the cooperative detection relay node 62 is further configured to: when the cooperative detection non-relay node performs frequency detection, cannot detect the result, and relay the first frequency detection result to the cooperative detection. Following the node, the first frequency detection result is processed to obtain a third frequency detection result. At this time, the base station 63 is further configured to obtain a final frequency detection result according to the third frequency detection result.
  • the frequency detection method, system, and base station detect the two-level frequency detection of the non-relay node and the cooperative detection relay node by cooperative detection, and then the base station according to the two-level frequency phrase.
  • the detection result is fused to obtain the final frequency detection result, which improves the cellular multi-hop
  • the spectrum utilization in the network effectively improves the overall performance of the frequency detection.

Description

频谱检测方法、 系统及基站 技术领域
本发明涉及通信技术领域, 尤其涉及一种频语检测方法、 系统及基站。 背景技术
随着无线网络的宽带化, 无线频谱资源日益紧张, 认知无线电技术
( Cogni t ive Radio, CR )是提高频谱利用率的重要手段。 通过认知无线电技 术, 次系统(非授权使用频谱) 以机会方式与主系统(授权使用频谱), 或者 在公共频段按照某种频谱礼仪与其他次系统进行频谱共享。 这种频谱共享的 关键在于该次系统能够快捷、 准确和可靠的获取空闲频谱的状态信息, 而这 种状态信息的获取依赖于认知无线电技术中的频谱感知技术。
实际应用中, 频谱感知技术涉及到两个关键方面: 一是 CR用户如何在噪 声干扰环境下得到准确的检测信息; 二是检测结果如何能可靠和低开销的分 享或上报。
在实现本发明的过程中, 发明人发现:
在蜂窝多跳网络中, 终端能够通过一个或多个中继节点连接到对应的蜂 窝小区基站, 从而减少了路径损耗, 大大提高了整个蜂窝小区的容量和覆盖 范围。 因此, 鉴于蜂窝多跳网络的应用范围不断扩大, 如何提高蜂窝多跳网 络的频谱利用率, 是相关研究人员亟待解决的问题。
发明内容
本发明实施例提供了一种频 "普检测方法、 系统以及基站, 以提高蜂窝多 跳网络的频谱利用率。
本发明实施例的频语检测方法包括:
接收由各节点发送的中间频语检测结果, 所述节点包括协作检测非中继 节点和协作检测中继节点;
将所述中间频语检测结果进行融合处理, 获得最终频语检测结果; 其中, 当协作检测非中继节点进行频语检测并确定能上报检测结果时, 所述中间频语检测结果包括: 协作检测非中继节点的第一频谱检测结果和协 作检测中继节点的第二频语检测结果;
当所述协作检测非中继节点进行频普检测并不能确定检测结果、 而将其 检测信号中继到所述协作检测中继节点时, 所述中间频语检测结果包括: 所 述协作检测中继节点的第二频语检测结果;
当协作检测非中继节点进行频普检测并能确定检测结果、 而不能上报检 测结果时, 所述中间频语检测结果包括下述之一:
所述协作检测中继节点的第二频语检测结果; 所述协作检测中继节点上 报的由所述协作检测非中继节点中继的第一频语检测结果; 所述协作检测中 继节点的第二频语检测结果以及由所述协作检测非中继节点中继的第一频谱 检测结果。
本发明实施例的基站包括:
结果接收单元, 用于接收由各节点发送的中间频语检测结果, 所述节点 包括协作检测非中继节点和协作检测中继节点;
结果处理单元, 用于将所述中间频语检测结果进行融合处理, 获得最终 频谱检测结果;
其中, 当协作检测非中继节点进行频语检测并确定能上报检测结果时, 所述中间频语检测结果包括: 协作检测非中继节点的第一频谱检测结果和协 作检测中继节点的第二频语检测结果;
当所述协作检测非中继节点进行频普检测并不能确定检测结果、 而将其 检测信号中继到所述协作检测中继节点时, 所述中间频语检测结果包括: 所 述协作检测中继节点的第二频语检测结果;
当协作检测非中继节点进行频普检测并能确定检测结果、 而不能上报检 测结果时, 所述中间频语检测结果包括下述之一:
所述协作检测中继节点的第二频语检测结果; 所述协作检测中继节点上 报的由所述协作检测非中继节点中继的第一频语检测结果; 所述协作检测中 继节点的第二频语检测结果以及由所述协作检测非中继节点中继的第一频谱 检测结果。
本发明实施例的频语检测系统包括: 至少一个协作检测非中继节点, 至 少一个协作检测中继节点, 和基站; 其中,
所述协作检测非中继节点, 用于在第一时隙进行频语检测, 当能够获得 第一频语检测结果, 且能够上报所述第一频语检测结果时, 将所述第一频谱 检测结果发送给所述基站; 当能够获得第一频语检测结果, 而不能上报所述 第一频语检测结果时, 将所述第一频语检测结果中继到所述协作检测中继节 点; 当不能获得第一频语检测结果时, 将其检测信号中继到所述协作检测中 继节点;
所述协作检测中继节点, 用于在第二时隙进行频语检测, 获得第二频谱 检测结果, 并将所述第二频语检测结果发送给所述基站; 当所述协作检测非 中继节点能够获得第一频语检测结果, 而不能上报所述第一频语检测结果时, 接收所述协作检测非中继节点中继的所述第一频语检测结果, 将所述第一频 语检测结果, 或将所述第一频谱检测结果和第二频语检测结果发送给所述基 站;
所述基站, 用于根据收到的频语检测结果进行融合处理, 获得最终频谱 检测结果。
本发明实施例所述的频语检测方法、 系统及基站, 通过在协作检测非中 继节点和协作检测中继节点的两级频语检测, 然后由基站根据两级频语检测 结果进行融合处理而获得最终的频语检测结果, 提高了蜂窝多跳网络中的频 谱利用率, 有效的提高了频语检测的整体性能。
附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例描述中所 需要使用的附图作一简单地介绍, 显而易见地, 下面描述中的附图仅仅是本 发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的 前提下, 还可以根据这些附图获得其他的附图。
图 1是本发明实施例一频语检测方法的流程图;
图 2是本发明实施例二频语检测方法的流程图;
图 3是本发明实施例二频语检测方法中, 协作检测非中继节点和协作检 测中继节点进行检测的流程图;
图 4是本发明实施例三基站的示意图;
图 5是本发明实施例三基站的结构图;
图 6是本发明实施例四频语检测系统的示意图。
具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而 不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作 出创造性劳动前提下所获得的所有其他实施例 , 都属于本发明保护的范围。
为提高蜂窝多跳网络的频谱利用率, 本发明实施例一所述的频语检测方 法, 在蜂窝多跳网络中引入层次协作频语检测技术, 并结合了数据融合机制。 如图 1所示, 本发明实施例一所述的方法包括如下步骤:
步骤 11、 基站接收由各节点发送的中间频语检测结果。 其中, 所述节点 包括协作检测非中继节点和协作检测中继节点。
其中, 在此实施例中, 所述中间频语检测结果包括以下三种情况: 情况一、 当协作检测非中继节点进行频语检测并确定能上报检测结果时, 协作检测非中继节点的第一频谱检测结果和协作检测中继节点的第二频语检 测结果;
情况二、 当协作检测非中继节点进行频语检测并能确定检测结果、 而不 能上报检测结果时, 所述协作检测中继节点的第二频语检测结果, 或所述协 作检测中继节点上报的由所述协作检测非中继节点中继的第一频谱检测结 果, 或所述协作检测中继节点的第二频语检测结果以及由所述协作检测非中 继节点中继的第一频语检测结果;
情况三、 当所述协作检测非中继节点进行频语检测并不能确定检测结果、 而将其检测信号中继到所述协作检测中继节点时, 所述协作检测中继节点的 第二频语检测结果。
步骤 12、 基站将所述中间频语检测结果进行融合处理, 获得最终频语检 测结果。
在此步骤中, 所述基站将中间频语检测结果进行融合处理, 主要是将所 述各中间频谱检测结果进行合并处理, 当 Ν个(Ν>=1 , 且 Ν为整数) 中间频 语检测结果中有至少 Κ个(Κ>=1 , 且 Κ为整数) 中间频 "普检测结果表明频段 被占用时, 则所述最终频 "普检测结果为频段被占用。
由本发明实施例一所述的方法可以看出, 利用此实施例的技术方案, 通 过在协作检测非中继节点和协作检测中继节点的两级频语检测, 然后由基站 根据两级频语检测结果进行融合处理而获得最终的频语检测结果, 提高了蜂 窝多跳网络中的频谱利用率, 有效的提高了频语检测的整体性能。
以下结合实施例二详细描述一下本发明实施例的频语检测方法的实现过 程。
在此实施例中, CR 系统作为次系统, 与主系统进行频语共享的使用。 由 于需要避免次用户对主用户的干扰, 一般发送功率受限, 一跳链路的覆盖有 限。 为了增强 CR系统的应用, 可以考虑采用多跳, 同时利用终端作为中继节 点提高 CR系统的覆盖。 考虑在空间随机分布有多个 CR用户, 且各 CR用户的 链路传播特性如衰落幅度随时间、 空间及移动速度不完全相同, 主用户的出 现也是随机的, 因此, 各 CR用户所接收到的主用户信号也不完全相同。
在本发明实施例二中, 把 CR基站的小区基于空间位置划分为簇头区和非 簇头区, 在簇头区选择能参与协作检测的中继节点即协作检测中继节点, 然 后由协作检测中继节点和协作检测非中继节点分层次进行检测, 并由二者根 据其检测情况和链路状态灵活上报检测结果, 最后再由基站对两个层次的检 测结果进行融合处理。
如图 2所示, 本发明实施例二所述的频语检测方法包括:
步骤 21、 基站在公共控制信道广播小区可用信道信息, 在所述信息中携 带簇头选择消息。 其中所述簇头选择消息包括: 基站位置、 小区半径 R、 簇头 阈值 C、 检测参数 λ^ λ2、 D。 在本发明实施例中, 可采用以下方式确定检测参数。
(一) λ^^λ2的确定。
由于终端的能量有限, 在此采用复杂度低的能量检测方法, CR用户接收 到的信号如下式:
Λ
Figure imgf000008_0001
其中, x(t)表示 CR用户接收到的信号, 0为主用户发射信号, 0为加性 白高斯噪声, A为链路增益, H。, 分别表示主用户存在和主用户不存在。 若以,表示信噪比, 则通过能量检测器后, 关于 H。或 的判决统计 的分布 可表示为:
Figure imgf000008_0002
检测统计量表示为:
Υ =(Ε, Ε 其中采样次数 M =2TW, Τ和 W分别为检测时间与信号带宽, Es, En分别表示 主用户信号能量和噪声能量。
为了减少对主系统的干扰, 次系统需要设置最小检测概率 Pd Min; 同时为了 充分利用频谱, 需要设置最大虚警概率 pf Max 。 由此可计算得到检测参数 λ2
通过给定的最大虚警概率, 可获得判决门限, 即检测参数 可由下式获 得:
Pf Max = P(Y > ψ,) = erfc[^^] erfc(z) = -^]exp(- 2)^ 通过最小检测概率, 可获得检测参数 λ 2:d Mm = P(Y >
Figure imgf000009_0001
d 其中, fr (x)为 SNR的分布, 取决于信号的衰落情况。 如若主信号经历阴 影衰落时, SNR服从对数正态分布; 若信号经历 Rayleigh多径衰落后, SNR服 从指数分布等。
其中, Qm ()为 Marcum Q-函数:
Figure imgf000009_0002
其中, Im— )为 (m-1 ) 阶修正的 Bes sel (贝塞尔) 函数。
(二)检测参数 D的确定。
为了提高检测的准确性, 基站要作出正确的判决, 这就需要获得多个独 立的终端的频语检测结果, 同时又要充分利用系统中用户的分散性来提高协 作性能的稳定性。 如果参与协作检测的终端之间有较强的相关性, 则协作频 谱感知的性能会大打折扣。
由信道相关参数 P , 可获得节点间信道具有独立性的距离, 即检测参数 D 为:
Figure imgf000009_0003
其中 Δ d为两个节点间的距离, d。M为使信道不相关的节点间最小距离。 步骤 22、 收到所述簇头选择消息的节点计算其与基站之间的距离 L, 以 确认是否位于簇头区。 当所述距离 L位于预定区间, 如 [i?/2,3i?/4] , 时, 即可 确定该节点处于簇头区, 否则该节点处于非簇头区。 在此, 将处于簇头区的 节点称为簇头节点。
步骤 23、 若簇头节点的路损 和剩余能量 E^满足下式, 则该簇头节点 向所述基站发送簇头响应消息 , 在所述簇头响应消息中携带其剩余能量和位 置信息。
Ploss I Erest < C
其中 为路损, E 为剩余能量, C为簇头阈值。
步骤 24、 所述基站根据收到的簇头响应消息, 并结合所述簇头节点上报 的剩余能量和位置信息, 确定协作检测中继节点, 并向所述协作检测中继节 点发送簇头确认消息。
而其他的节点, 包括簇头区中除确定为协作检测中继节点外的节点和非 簇头区中的节点都可认为是协作检测非中继节点。
在确定协作检测中继节点的时候, 可根据下式进行排序
argmind ,)
其中, 《>1, 为系统参数, 表示路损的权重。
通过上式可以看出, 在所有的簇头节点中, 进行排序的原则是路损最小、 剩余能量最大。
之后, 再根据检测参数 D和簇头节点之间的距离 Dij, 根据上述的排序结 果确定协作检测中继节点。 其中, 所述协作检测中继节点的数量可以有多个。 设 Ri表示排序中的第 i个簇头节点, i = 1, 2, N, S= {R1? R2, ..., RN } 表示簇头集合, S, 表示协作检测中继节点的集合, Dij表示两个簇头节点之间 的距离, D为检测参数:
for ( i =1; i<=N-l; i + + )
for ( j =i+l ; j <=N ; j + + )
Figure imgf000011_0001
步骤 25、 协作检测中继节点发送簇内信道可用信息, 并携带簇头公告消 息, 在所述簇头公告消息中优选的包括有检测参数 λ i和 λ 2
步骤 26、 收到所述簇头公告消息的节点记录所述协作检测中继节点的信 息, 并向所述协作检测中继节点发送簇头公告响应消息, 在所述簇头公告响 应消息中携带其剩余能量和位置信息。
以下, 由协作检测中继节点和协作检测非中继节点进行层次协作频语检 测。 其中基站将检测时隙划分为两个检测时隙, 在第一检测时隙由协作检测 非中继节点进行检测, 在第二检测时隙由协作检测中继节点进行频语检测。
此外, 在本发明实施例中, 为了提高检测的可靠性, 同时又不增加检测 结果上报的开销, 在协作检测中继节点和协作检测非中继节点进行检测的过 程中采用软的硬判决机制。 具体如下:
各节点将对收到的信号进行检测而获得的信号能量划分为三个区间: 能 量区间 1、 能量区间 2、 能量区间 3 ; 其中在能量区间 1中, 信号能量小于检 测参数 λ 1 ; 在能量区间 2 , 信号能量位于 [ λ ΐ λ 2]区间; 在能量区间 3 , 信 号能量大于检测参数 λ 2
当节点检测到信号能量位于能量区间 2 时, 即可表明该节点不能确定检 测结果。 那么对于协作检测非中继节点来说, 其将会中继检测信号到协作检 测中继节点或放弃此次检测。 而对于协作检测中继节点来说, 其将会放弃此 次检测或者结合协作检测非中继节点中继的检测信号或检测结果进行相应的 处理。 此过程将在协作检测中继节点进行频语检测的时候进行详细描述。 而 当信号能量落在能量区间 1 时, 则认为该频段没有被主用户占用, 各节点上 报结果 0; 当信号能量落在能量区间 3时, 则认为该频段被主用户占用, 各节 点上报结果 1。
下面描述一下协作检测非中继节点和协作检测中继节点进行频 "普检测的 过程。
步骤 27、 协作检测非中继节点对收到的信号进行频语检测, 获得第一频 谱检测结果。
如图 3所示, 所述协作检测非中继节点在对收到的信号进行频语检测后, 按照以上描述的软的硬判决机制, 如果检测到信号能量 Y落在能量区间 1或 能量区间 3 , 则该协作检测非中继节点本身能够确定检测结果, 即可获得第一 频谱检测结果。
在确定其本身能够确定检测结果后, 如何实现第一频语检测结果的可靠 上报是协作检测非中继节点的关键。
假定系统上报结果的误比特率为 BERmin, 其对应的链路的信噪比为 rmin。 终端通过基站广播的可用信道信息或其他系统广播消息, 通过信道估计可以 获得其与基站之间的链路状态, 即信噪比 Γ。。 同理, 还可获得该终端与协作 中继节点之间链路的状态, 即信噪比 Γ 。
若 Γ。≥rmin , 则表明该协作检测非中继节点可以直接向基站上报其检测结 果。 否则, 需要判断进行中继上报是否能够带来更好的效果。 若 rQ < rR , rR = ( Γ, , Γ2分别表示协作检测非中继节点与协作检测中继节点、 协作 检测中继节点与基站之间链路的信噪比), 则表明进行中继上报能够提高结果 上报的可靠性。 那么, 该协作检测非中继节点则会将其第一频语检测结果中 继给协作检测中继节点, 由协作检测中继节点进行相应的处理。 否则, 该协 作检测非中继节点将会放弃此次检测的结果。
如果所述协作检测非中继节点在对收到的信号进行频语检测后, 按照以 上描述的软的硬判决机制, 如果检测到信号能量 Y落在能量区间 2 , 则该协作 检测非中继节点本身不能够确定检测结果。 那么, 在这种情况下, 如果 r。≥rd
( rd表示检测阈值 ) 所述协作检测非中继节点将会将其检测信号中继到协作 检测中继节点, 由协作检测中继节点进行检测。 步骤 28、 协作检测中继节点对收到的信号进行频语检测, 获得第二频谱 检测结果。
再如图 3 所示, 所述协作检测中继节点在第二时隙对接收到的信号进行 频语检测, 以获得第二频语检测结果。 在检测过程中, 可采用等增益合并 EGC 方法, 最大合并比 MRC方法,选择性合并 SC方法等。考虑到终端能耗的限制, 在此实施例中以 EGC方法为例进行描述。
协作检测中继节点收到的信号可以表示成下式: x(t、 = hps(t) + Κί) + n(t)
h , hm , A,分别表示协作检测中继节点与主用户、 第 i 个协作检测非中 继节点与主用户、 协作检测中继节点与第 i个终端的信道增益。
所述协作检测中继节点对上述信号进行检测, 得到的信号能量为:
Figure imgf000013_0001
同样, 所述协作检测中继节点按照以上描述的软的硬判决机制, 如果检 测到信号能量 Y落在能量区间 1或能量区间 3且认为其检测结果更可靠时, 则该协作检测中继节点上报其第二频语检测结果。 如果检测到信号能量 Y 落 在能量区间 1或能量区间 3且认为其检测结果不够可靠时, 则所述协作检测 中继节点会将第一频语检测结果以及其第二频语检测结果都通过公共信道向 基站上报。 或者, 将第一频语检测结果以及其第二频语检测结果进行处理后, 将处理后的第三频语检测结果通过公共信道向基站上报。
如果检测到信号能量 Y落在能量区间 2 ,则表示该协作检测中继节点无法 确定其检测结果, 将会结合协作检测非中继节点的第一频语检测结果进行上 报。 具体的上报方式, 可采用 "或" 的原则, 如下式:
Figure imgf000013_0002
其中, 表示各第一频语检测结果, 只要其中一个 为 1 , 则 S就为 1。 这说明, 只要一个协作检测非中继节点检测到频段被主用户占用, 则表示该 频段不能在本扇区使用。
或者, 协作检测中继节点无法确定其检测结果时, 直接转发来自协作检 测非中继节点的第一频语检测结果到基站。
步骤 29、基站对收到的来自于协作检测非中继节点和 /或协作检测中继节 点的频 "普检测结果, 进行融合处理。
在此步骤中, 采用 "K of N" 规则, 基站对收到的频语检测结果进行合 并, 如下式:
H , S^ K
Ho ,其他
其中, 表示协作检测非中继节点和协作检测中继节点上报的频语检测结 果。 上式表明, 如果在 N个上报的频语检测结果中, 有其中任意 K个检测结 果为 "1" , 则表明 N个检测节点中有 K个检测节点检测到该频段被主用户占 用。 那么, 基站将判断为在本小区内, 该频段被主用户占用, 不能使用; 否 则, 该频段没有被主用户占用, 可以使用。
步骤 210、基站将检测到的频谱可用信息, 在公共控制信道广播信道可用 信息或者在其他系统广播消息中携带该频谱可用信息, 以通知本小区内的用 户本小区能够使用的频谱情况。
通过上述的步骤可以看出, 在本发明实施例所述的方法中, 在确定协作 检测中继节点的同时, 还进行了分簇处理和簇头节点的选择。 因此, 对于基 站和协作检测中继节点广播的信道可用信息, 簇头节点都能收到。 因此, 为 进一步提高频谱利用率, 可用频谱的使用也可在两级进行。
首先, 基站将检测结果划分成两类, 一类是小区范围内的可用频段, 另 一类是某个簇区内可用频段。 并且, 基于分簇广播可用信道信息, 如下表 1 所示。
表 1 区 可用信道
簇区 1 Fl , F2 , F3 , F4……
簇区 2 F5 , F6 , F3 , F4 ... ...
簇区 3 F9 , F10 , F3 , F4 ... ... 其中, F3和 F4是小区内可用频段, F1和 F2表示只能在簇区 1内使用的 可用频段, F5和 F6表示只能在簇区 2内使用的可用频段, F9和 F1 0表示只 能在簇区 3内使用的可用频段。 基站在进行频谱分配时, 在 CR用户的第二跳 链路上和直连链路上, 优先使用小区内的可用频段。
各簇头节点根据协作检测中继节点的第二频谱检测结果以及基站的频谱 可用信息, 在簇内通信时, 即在 CR用户的第一跳链路上, 优先使用本簇内的 可用信道。 但是, 当使用某信道的终端如果检测到主用户出现, 则立即停止 对该频段的占用, 并通过公共控制信道上报协作检测中继节点。
由本发明实施例二所述的方法可以看出, 利用此实施例的技术方案, 通 过在协作检测非中继节点和协作检测中继节点的两级频语检测, 然后由基站 根据两级频语检测结果进行融合处理而获得最终的频语检测结果, 提高了蜂 窝多跳网络中的频谱利用率, 有效的提高了频语检测的整体性能。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流 程, 是可以通过计算机程序来指令相关的硬件来完成, 所述的程序可存储于 一计算机可读取存储介质中, 该程序在执行时, 可包括如上述各方法的实施 例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体( Read-Only Memory , ROM )或随机存储记忆体 ( Random Acces s Memory, RAM )等。
此外, 本发明实施例三还提供了一种基站, 如图 4所示, 包括: 结果接收单元 41 , 用于接收由各节点发送的中间频语检测结果; 结果处理单元 42 , 用于将所述中间频语检测结果进行融合处理, 获得最 终频语检测结果; 其中, 当协作检测非中继节点进行频语检测并确定能上报检测结果时, 所述中间频语检测结果包括: 协作检测非中继节点的第一频谱检测结果和协 作检测中继节点的第二频语检测结果;
当所述协作检测非中继节点进行频普检测并不能确定检测结果、 而将其 检测信号中继到所述协作检测中继节点时, 所述中间频语检测结果包括: 所 述协作检测中继节点的第二频语检测结果;
当协作检测非中继节点进行频普检测并能确定检测结果、 而不能上报检 测结果时, 所述中间频语检测结果包括下述之一:
所述协作检测中继节点的第二频语检测结果;
所述协作检测中继节点上报的由所述协作检测非中继节点中继的第一频 谱检测结果;
所述协作检测中继节点的第二频语检测结果以及由所述协作检测非中继 节点中继的第一频语检测结果。
其中, 如图 5所示, 所述结果处理单元 42可包括:
结果处理模块 421 , 用于将所述各中间频语检测结果进行合并处理; 结果 获取模块 422 ,用于当所述中间频语检测结果中有至少一个中间频语检测结果 表明频段被占用时, 则所述最终频语检测结果为频段被占用。
此外, 为保证频语检测准确性, 如图 5 所示, 所述基站还可包括: 节点 确定单元 43 , 用于确定所述协作检测中继节点。 其中, 所述节点确定单元 43 确定协作检测中继节点的方式与本发明实施例二中描述的方式相同。
为进一步提高频语检测可靠性, 所述基站还可包括: 信息发送单元 44 , 用于根据所述最终频语检测结果, 向簇头节点广播信道可用信息, 使得所述 簇头节点在簇内通信时优先使用簇内的可用信道。
本发明实施例三所述的基站, 通过在协作检测非中继节点和协作检测中 继节点的两级频语检测, 然后由根据两级频语检测结果进行融合处理而获得 最终的频语检测结果, 提高了蜂窝多跳网络中的频谱利用率, 有效的提高了 频语检测的整体性能。
如图 6 所示, 本发明实施例四还提供了一种频语检测系统, 包括: 至少 一个协作检测非中继节点 61 , 至少一个协作检测中继节点 62 , 和基站 63; 其 中,
所述协作检测非中继节点 61 , 用于在第一时隙进行频语检测, 当能够获 得第一频语检测结果, 且能够上报所述第一频语检测结果时, 将所述第一频 语检测结果发送给所述基站; 当能够获得第一频语检测结果, 而不能上报所 述第一频语检测结果时, 将所述第一频语检测结果中继到所述协作检测中继 节点; 当不能获得第一频语检测结果时, 将其检测信号中继到所述协作检测 中继节点;
所述协作检测中继节点 62 , 用于在第二时隙进行频语检测, 获得第二频 语检测结果, 并将所述第二频谱检测结果发送给所述基站; 当所述协作检测 非中继节点能够获得第一频语检测结果, 而不能上报所述第一频语检测结果 时, 接收所述协作检测非中继节点中继的所述第一频语检测结果, 将所述第 一频语检测结果, 或将所述第一频语检测结果和第二频语检测结果发送给所 述基站;
所述基站 63 , 用于根据收到的频语检测结果进行融合处理, 获得最终频 谱检测结果。
此外, 所述协作检测中继节点 62 , 还用于当所述协作检测非中继节点进 行频语检测而不能上 检测结果、 而将其第一频语检测结果中继到所述协作 检测中继节点时, 将所述第一频语检测结果进行处理后得到第三频语检测结 果。 此时, 所述基站 63还用于根据所述第三频语检测结果, 获得最终频语检 测结果。
综上所述, 本发明实施例所述的频语检测方法、 系统及基站, 通过在协 作检测非中继节点和协作检测中继节点的两级频语检测, 然后由基站根据两 级频语检测结果进行融合处理而获得最终的频语检测结果, 提高了蜂窝多跳 网络中的频谱利用率, 有效的提高了频语检测的整体性能。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护 范围应以所述权利要求的保护范围为准。

Claims

权利要求 书
1、 一种频语检测方法, 其特征在于, 包括:
接收由各节点发送的中间频语检测结果, 所述节点包括协作检测非中继节 点和协作检测中继节点;
将所述中间频语检测结果进行融合处理, 获得最终频语检测结果; 其中, 当协作检测非中继节点进行频谱检测并确定能上报检测结果时, 所 述中间频 i普检测结果包括: 协作检测非中继节点的第一频语检测结果和协作检 测中继节点的第二频 ΐ普检测结果;
当所述协作检测非中继节点进行频 ΐ普检测并不能确定检测结果、 而将其检 测信号中继到所述协作检测中继节点时 , 所述中间频语检测结果包括: 所述协 作检测中继节点的第二频昝检测结果;
当协作检测非中继节点进行频普检测并能确定检测结果、 而不能直接上报 检测结果时, 所述中间频语检测结果包括下述之一:
所述协作检测中继节点的第二频语检测结果; 所述协作检测中继节点上报 的由所述协作检测非中继节点中继的第一频谱检测结果; 所述协作检测中继节 点的第二频语检测结果以及由所述协作检测非中继节点中继的第一频语检测结 果。
2、 根据权利要求 1所述的方法, 其特征在于, 所述中间频 检测结果还包 括第三频语检测结果, 其中, 所述第三频借检测结果是当所述协作检测非中继 节点进行频语检测而不能上才艮检测结果、 而将其第一频语检测结果中继到所述 协作检测中继节点时, 由所述协作检测中继节点将所述第一频 i普检测结果进行 处理得到的。
3、 根据权利要求 1所述的方法, 其特征在于, 在所述接收中间频语检测结 果前, 所述方法还包括:
确定协作检测中继节点。
4、 根据权利要求 3所述的方法, 所述确定协作检测中继节点包括: 向所述各节点发送簇头选择消息, 在所述簇头选择消息中携带簇头选择参 数;
接收由符合所述簇头选择参数的簇头节点发送的簇头响应消息, 在所述簇 头响应消息中携带所述簇头节点的剩余能量和位置参数;
根据所述簇头响应消息, 从所述簇头节点中确定协作检测中继节点。
5、 根据权利要求 4所述的方法, 其特征在于, 所述方法还包括: 所述协作检测中继节点发送簇头公告消息 , 所述簇头公告消息中携带检测 参数。
6、 根据权利要求 1所述的方法, 其特征在于, 所述方法还包括: 协作检测 非中继节点进行频语检测并判断是否能够确定检测结果 , 具体为:
所述协作检测非中继节点在第一检测时隙对接收到的信号进行频普检测, 得到第一频谱检测结果;
当所述第一频语检测结果位于能量上报区间时, 所述协作检测非中继节点 能确定检测结果, 否则所述协作检测非中继节点不能确定检测结果。
7、 根据权利要求 6所述的方法, 其特征在于, 所述方法还包括: 协作检测 非中继节点判断是否能够上报检测结果, 具体为:
当所述协作检测非中继节点能确定检测结果时, 若所述协作检测非中继节 点与基站之间链路满足结果上报条件, 确定所述协作检测非中继节点能够上报 所述第一频傳检测结果; 否则, 确定所述协作检测非中继节点不能上报所述第 一频语检测结果。
8、 根据权利要求 1所述的方法, 其特征在于, 所述方法还包括: 协作检测 中继节点在第二时隙对接收到的信号进行频谱检测, 获得所述第二频谱检测结 果;
当所述第二频普检测结果位于能量上报区间时 , 所述协作中继节点将所述 第二频谱检测结果上 4艮给基站;
当所述协作检测中继节点收到由所述协作检测非中继节点中继的第一频谱 检测结果, 且所述第二频语检测结果位于能量上报区间时, 所述协作中继节点 将下述之一上报给基站:
所述第二频语检测结果; 由所述协作检测非中继节点中继的第一频语检测 结果; 所述第二频语检测结果以及由所述协作检测非中继节点中继的第一频谱 检测结果。
9、 根据权利要求 1所述的方法, 其特征在于, 将所述中间频普检测结果进 行融合处理, 获得最终频语检测结果包括:
将所述各中间频谱检测结果进行合并处理;
当所述中间频语检测结果中有至少一个中间频语检测结果表明频段被占用 时, 则所述最终频 "普检测结果为频段被占用。
10、 一种基站, 其特征在于, 包括:
结果接收单元, 用于接收由各节点发送的中间频语检测结果, 所述节点包 括协作检测非中继节点和协作检测中继节点;
结果处理单元, 用于将所述中间频语检测结果进行融合处理, 获得最终频 谱检测结果;
其中, 当协作检测非中继节点进行频语检测并确定能上报检测结果时, 所 述中间频语检测结果包括: 协作检测非中继节点的第一频语检测结果和协作检 测中继节点的第二频语检测结果;
当所述协作检测非中继节点进行频普检测并不能确定检测结果、 而将其检 测信号中继到所述协作检测中继节点时, 所述中间频语检测结果包括: 所述协 作检测中继节点的第二频语检测结果;
当协作检测非中继节点进行频普检测并能确定检测结果、 而不能上报检测 结果时, 所述中间频语检测结果包括下述之一:
所述协作检测中继节点的第二频语检测结果;
所述协作检测中继节点上报的由所述协作检测非中继节点中继的第一频谱 检测结果; 所述协作检测中继节点的第二频语检测结果以及由所述协作检测非中继节 点中继的第一频语检测结果。
11、 根据权利要求 10所述的基站, 其特征在于, 所述结果处理单元包括: 结果处理模块, 用于将所述各中间频语检测结果进行合并处理;
结果获取模块, 用于当所述中间频语检测结果中有至少一个中间频语检测 结果表明频段被占用时, 则所述最终频语检测结果为频段被占用。
12、 根据权利要求 10或 11所述的基站, 其特征在于, 还包括:
节点确定单元, 用于确定所述协作检测中继节点。
13、 根据权利要求 12所述的基站, 其特征在于, 还包括:
信息发送单元, 用于根据所述最终频语检测结果, 向簇头节点广播信道可 用信息。
14、 一种频 "普检测系统, 其特征在于, 包括: 至少一个协作检测非中继节 点, 至少一个协作检测中继节点, 和基站; 其中,
所述协作检测非中继节点, 用于在第一时隙进行频语检测, 当能够获得第 一频语检测结果, 且能够上报所述第一频语检测结果时, 将所述第一频语检测 结果发送给所述基站; 当能够获得第一频语检测结果, 而不能上报所述第一频 语检测结果时, 将所述第一频语检测结果中继到所述协作检测中继节点; 当不 能获得第一频语检测结果时, 将其检测信号中继到所述协作检测中继节点; 所述协作检测中继节点, 用于在第二时隙进行频语检测, 获得第二频语检 测结果, 并将所述第二频语检测结果发送给所述基站; 当所述协作检测非中继 节点能够获得第一频语检测结果, 而不能上报所述第一频语检测结果时, 接收 所述协作检测非中继节点中继的所述第一频谱检测结果, 将所述第一频语检测 结果, 或将所述第一频语检测结果和第二频语检测结果发送给所述基站;
所述基站, 用于根据收到的频语检测结果进行融合处理, 获得最终频语检 测结果。
15、 根据权利要求 14所述的系统, 其特征在于, 所述协作检测中继节点, 还用于当所述协作检测非中继节点进行频普检测而不能上 4艮检测结果、 而将其 第一频语检测结果中继到所述协作检测中继节点时, 将所述第一频语检测结果 进行处理后得到第三频语检测结果;
所述基站还用于根据所述第三频语检测结果, 获得最终频语检测结果。
PCT/CN2009/072021 2009-05-27 2009-05-27 频谱检测方法、系统及基站 WO2010135867A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2009/072021 WO2010135867A1 (zh) 2009-05-27 2009-05-27 频谱检测方法、系统及基站
CN200980120586.2A CN102405677B (zh) 2009-05-27 2009-05-27 频谱检测方法、系统及基站
EP09845084.4A EP2288214B1 (en) 2009-05-27 2009-05-27 Spectrum detecting method, system and base station
US12/962,037 US8410771B2 (en) 2009-05-27 2010-12-07 Method and apparatus for spectrum detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2009/072021 WO2010135867A1 (zh) 2009-05-27 2009-05-27 频谱检测方法、系统及基站

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/962,037 Continuation US8410771B2 (en) 2009-05-27 2010-12-07 Method and apparatus for spectrum detection

Publications (1)

Publication Number Publication Date
WO2010135867A1 true WO2010135867A1 (zh) 2010-12-02

Family

ID=43222117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/072021 WO2010135867A1 (zh) 2009-05-27 2009-05-27 频谱检测方法、系统及基站

Country Status (4)

Country Link
US (1) US8410771B2 (zh)
EP (1) EP2288214B1 (zh)
CN (1) CN102405677B (zh)
WO (1) WO2010135867A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108039904A (zh) * 2017-11-30 2018-05-15 中国航空工业集团公司沈阳飞机设计研究所 一种无人机地面站通信频道选择方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8805428B2 (en) * 2010-10-27 2014-08-12 Dynamic Invention Llc Cooperative spectrum sensing in cognitive radio networks
US8831625B2 (en) * 2011-08-03 2014-09-09 Spectrum Bridge, Inc. Systems and methods for processing spectrum coexistence information to optimize spectrum allocation
GB2567092B (en) 2013-02-18 2019-07-17 Ubiquisys Ltd Controlling uplink resource allocation in a plurality of basestations
CN104065430B (zh) * 2014-07-09 2016-07-13 南通大学 基于节点识别的协作频谱检测方法
US9699786B2 (en) * 2015-09-07 2017-07-04 Network Performance Research Group Llc Method and apparatus for integrating radio agent data in network organization of dynamic channel selection in wireless networks

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1205140A (zh) * 1996-09-23 1999-01-13 诺基亚电信公司 基站接收机及信号接收方法
CN1708931A (zh) * 2002-11-01 2005-12-14 Ip无线有限公司 在扩展频谱通信系统中产生序列所用的设备和方法
CN101414865A (zh) * 2008-11-12 2009-04-22 东南大学 无线中继器辅助多用户接入系统的联合多用户发送方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0769364B2 (ja) * 1987-03-06 1995-07-31 アンリツ株式会社 スペクトラムアナライザ
JP4176479B2 (ja) * 2001-03-14 2008-11-05 株式会社アドバンテスト 周波数分析方法、周波数分析装置及びスペクトラムアナライザ
US6621277B2 (en) * 2001-10-30 2003-09-16 Agilent Technologies, Inc. Phase noise measurement module and method for a spectrum analyzer
US6771957B2 (en) 2001-11-30 2004-08-03 Interdigital Technology Corporation Cognition models for wireless communication systems and method and apparatus for optimal utilization of a radio channel based on cognition model data
US7289972B2 (en) 2004-06-25 2007-10-30 Virginia Tech Intellectual Properties, Inc. Cognitive radio engine based on genetic algorithms in a network
US7418245B2 (en) 2005-10-11 2008-08-26 Accton Technology Corporation Wireless device and method for radio control
US7668262B2 (en) 2005-10-21 2010-02-23 Samsung Electro-Mechanics Systems, methods, and apparatuses for coarse spectrum-sensing modules
US7860197B2 (en) 2006-09-29 2010-12-28 Samsung Electro-Mechanics Spectrum-sensing algorithms and methods
US8031618B2 (en) 2006-10-16 2011-10-04 Stmicroelectronics, Inc. Methods of RF sensing control and dynamic frequency selection control for cognitive radio based dynamic spectrum access network systems-cognitive dynamic frequency hopping
KR101303652B1 (ko) 2007-01-05 2013-09-04 인하대학교 산학협력단 협력 다이버시티 방법 및 그 장치
US7768252B2 (en) 2007-03-01 2010-08-03 Samsung Electro-Mechanics Systems and methods for determining sensing thresholds of a multi-resolution spectrum sensing (MRSS) technique for cognitive radio (CR) systems
US8655283B2 (en) * 2007-04-23 2014-02-18 Lingna Holdings Pte., Llc Cluster-based cooperative spectrum sensing in cognitive radio systems
KR101362060B1 (ko) 2007-09-20 2014-02-12 재단법인서울대학교산학협력재단 인지 무선 단말 장치 및 인지 무선 통신 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1205140A (zh) * 1996-09-23 1999-01-13 诺基亚电信公司 基站接收机及信号接收方法
CN1708931A (zh) * 2002-11-01 2005-12-14 Ip无线有限公司 在扩展频谱通信系统中产生序列所用的设备和方法
CN101414865A (zh) * 2008-11-12 2009-04-22 东南大学 无线中继器辅助多用户接入系统的联合多用户发送方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108039904A (zh) * 2017-11-30 2018-05-15 中国航空工业集团公司沈阳飞机设计研究所 一种无人机地面站通信频道选择方法

Also Published As

Publication number Publication date
US20110074387A1 (en) 2011-03-31
CN102405677A (zh) 2012-04-04
EP2288214A4 (en) 2011-11-02
EP2288214A1 (en) 2011-02-23
US8410771B2 (en) 2013-04-02
CN102405677B (zh) 2014-10-08
EP2288214B1 (en) 2016-12-21

Similar Documents

Publication Publication Date Title
JP6185040B2 (ja) ネットワークコーディングを用いたネットワーク支援型ピア発見
Zou et al. A selective-relay based cooperative spectrum sensing scheme without dedicated reporting channels in cognitive radio networks
JP3792662B2 (ja) 多重ホップ転送方法および多重ホップ転送が可能な移動端末
WO2010135867A1 (zh) 频谱检测方法、系统及基站
CN107079352A (zh) 增强的rts/cts启用和检测
Devaraj et al. Adaptive cluster‐based heuristic approach in cognitive radio networks for 5G applications
RU2739588C2 (ru) Оконечное устройство, базовая станция, способ и носитель информации
Dai et al. An adaptive cooperation communication strategy for enhanced opportunistic spectrum access in cognitive radios
Li et al. Oppcast: Opportunistic broadcast ofwarning messages in vanets with unreliable links
Wu et al. Enabling device to device broadcast for LTE cellular networks
CN110121913A (zh) 波束选择方法、装置及系统
CN104717662B (zh) 一种联合空时频谱共享的合作中继传输方法
Hirai et al. Performance evaluation of NOMA for sidelink cellular-V2X mode 4 in driver assistance system with crash warning
CN1943188B (zh) 确定用于经由无线特设网络的信道转播在节点中接收的分组的延迟的方法
CN110381563B (zh) 一种自组织接力转发网络的上行通信资源分配方法
KR101278730B1 (ko) 바이너리 cdma 통신의 주파수 간섭 회피 방법, 장치, 및 컴퓨터로 판독 가능한 기록 매체
Song et al. Random network coding enabled routing in swarm unmanned aerial vehicle networks
Nie et al. Sensing-throughput tradeoff in cluster-based cooperative cognitive radio networks: A novel frame structure
Chen et al. Decentralized wireless relay network channel modeling: An analogous approach to mobile radio channel characterization
Yang et al. A novel location relay selection scheme for ALLIANCES
Chen et al. An opportunistic multiradio MAC protocol in multirate wireless ad hoc networks
Garey et al. Performance Evaluation of Proximity Services and Wi-Fi for Public Safety Mission Critical Voice Application
Pawelczak et al. Comparison of opportunistic spectrum multichannel medium access control protocols
Gu et al. Security-reliability performance of cognitive AF relay-based wireless communication system with channel estimation error
JP2009212691A (ja) 複数のアンテナを使用して無線信号を送信する方法および装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980120586.2

Country of ref document: CN

REEP Request for entry into the european phase

Ref document number: 2009845084

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009845084

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09845084

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE