WO2010133735A2 - Transparent lithium-ion secondary battery - Google Patents

Transparent lithium-ion secondary battery Download PDF

Info

Publication number
WO2010133735A2
WO2010133735A2 PCT/ES2010/000227 ES2010000227W WO2010133735A2 WO 2010133735 A2 WO2010133735 A2 WO 2010133735A2 ES 2010000227 W ES2010000227 W ES 2010000227W WO 2010133735 A2 WO2010133735 A2 WO 2010133735A2
Authority
WO
WIPO (PCT)
Prior art keywords
transparent
battery according
battery
negative electrode
positive electrode
Prior art date
Application number
PCT/ES2010/000227
Other languages
Spanish (es)
French (fr)
Other versions
WO2010133735A3 (en
Inventor
Francisco de Paula MARTÍN JIMÉNEZ
Luis SÁNCHEZ GRANADOS
Elena Navarrete Astorga
Julián MORALES PALOMINO
José Ramón RAMOS BARRADO
de Córdoba Universidad
Original Assignee
Universidad De Malaga
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Malaga filed Critical Universidad De Malaga
Publication of WO2010133735A2 publication Critical patent/WO2010133735A2/en
Publication of WO2010133735A3 publication Critical patent/WO2010133735A3/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention is framed in the field of secondary lithium ion batteries. More particularly, the present invention offers a new type of secondary lithium ion battery with a thin, transparent sheet and solid polymer electrolyte, which can be manufactured by low cost techniques and has a low thermal emissivity (low-e) effect.
  • low-e thermal emissivity
  • the need to achieve self-sufficient energy buildings leads on the one hand to the energy use of the incident sunlight on the glass surfaces of buildings, through their conversion into electrical energy, and on the other, and by thermal comfort and energy saving needs, to regulate the energy flows through them.
  • the thin-film photovoltaic cells fulfill the first mission and the low thermal emissivity glasses (low-é) together with the electrochromic devices with the second.
  • Low thermal emissivity coatings with visible transparency, nominally infrared mirrors (heat mirrors), are of interest since they reduce thermal radiation through glazed windows and surfaces.
  • This type of coatings is generally formed by dielectric-metal-dielectric multilayers, and they are widely used in thermal control of buildings. In general they consist of thin layers of Ag that are located between dielectric layers.
  • Layers of transparent oxides and sulphides such as TiO 2 , SnO 2 , ZnO, ZnS, have been used in this type of structures to produce infrared mirrors, for example multilayers such as (TiO 2 / Ag / TiO 2 ) n or (SnO 2 / Ag / SnO 2 ) ⁇
  • Lithium-ion batteries are one of the types of secondary batteries most used in consumer electronics. In these, as the "memory effect" does not occur, the performance of the recharging process is facilitated, they exhibit a better cyclability of the loading and unloading process, and develop high energy values. The multimillion-dollar market for these devices has led to intensified research on this type of batteries aimed at improving the energy / weight ratio, as well as its safety. The first battery Rechargeable lithium ion was marketed by Sony in 1991. Since then, research developed in this area has been extensive. Today it focuses on the search for new electrodes (both positive and negative) that, in addition to developing high specific capacity values, do not present safety problems when reacting with lithium ions at extreme voltages and that can be quickly recharged.
  • morphology the electrodes configured by nanoparticles, nanofibers, nanotubes and combinations of these morphologies have made their way. Recently, the electrochemical performance of these batteries has been significantly improved when they are prepared in a nanometric form and their morphology is also controlled specifically.
  • ionic polymeric conductors provide in relation to good contact between electrolyte / electrode.
  • the polymer is used as a solid solvent of a lithium salt, and does not contain any type of organic liquid, as with the previous generation of lithium batteries.
  • the low ionic conductivity that these dry polymers generally have is an inconvenience to overcome.
  • Frequently used polymers are polyethylene oxide (PEO), and polyacrylonitrile, solvents based on carbonates (EC, PC) and their mixtures (DME / EC / PC, DEC / EC / PC), DMSO, sulfurized organic compounds, THF, etc.
  • LiPF 6 , LiClO 4 , LiCF 3 SO 3 or Li (TFSi) are usually used.
  • These polymeric electrolytes show conductivities of Li + normally in the range of 10 "4 to 10 " 7 S-cm "1 , at room temperature.
  • Another alternative to improve The morphological and electrochemical properties of polymeric electrolytes is the introduction of ceramic additives (fillers), with these ceramic additives, it is intended to improve the conductivity of the polymer that contains them by increasing the amorphous degree of the same.
  • Lithium ion would allow, through its inclusion in photovoltaic cells, to store and regulate the energy obtained from the incident sunlight on the windows or transparent surfaces, achieving greater energy self-sufficiency in buildings and devices.
  • the large-scale application of this type of transparent batteries needs simple methods and low cost for manufacturing
  • the invention proposes a secondary transparent lithium ion battery comprising a first transparent support, a first transparent electronic conductor, a transparent negative electrode, a transparent positive electrode, a solid lithium ion electrolyte between the negative electrode and the positive electrode. , a second transparent conductor, a second transparent support.
  • the negative electrode is preferably Ag or Li 4 Ti 5 O 12.
  • the positive electrode comprises LiFeO 2 or
  • the electrolyte preferably comprises a PVP ionic conductive polymer (polyvinyl pilorridone) and a lithium salt.
  • the transparent conductors are preferably ITO, SnO 2 + F, ZnO + Al or ZnO + Ga.
  • the invention also comprises a method of manufacturing the battery in which the different transparent constituent layers are deposited on the transparent supports by means of pyrolysis and dip-coating spray techniques, or, alternatively, by sputtering or other techniques for obtaining thin sheets,
  • the battery object of the invention can be integrated with a thin-leaf solar cell, whose connection would be regulated by printed circuit and which in turn can be derive connection to external lighting systems such as LED or OLED, lighting systems that can alternatively be integrated in the form of a thin sheet on the battery-photovoltaic cell tandem itself, and even directly on the battery.
  • the secondary lithium ion battery object of the invention has the advantage of being obtained in large areas.
  • its transparency to sunlight and visible light, and the fact that it can be manufactured directly on transparent supports (glass or polymers) allows its integration into glazed surfaces of buildings, and combined with solar cells to be used in saving systems and energy efficiency in buildings, including lighting, as an external source for LED or OLED systems, or through the integration of LED or OLED systems as thin multilayers in the tandem (LED or OLED system + lithium ion battery + photovoltaic solar cell of thin sheet).
  • Characteristic of this battery is its low thermal emissivity behavior, representing an added value for its use in thermal comfort in the building. Together or alternatively to its low thermal emissivity effect, its electrochromic effect can be enhanced.
  • the battery object of the invention is also capable of being used in other devices of smaller area, such as consumer electronics, solar roofs of vehicles, or where a thin battery is needed and / or transparency is required in the solar or visible spectrum.
  • FIG. L- Scheme of integrated system in thin-film battery glass and transparent thin-layer photovoltaic cell connected to low-power LED or OLED lighting system by printed circuit shows a battery according to the invention, comprising the following components: glass or transparent polymer (1); transparent conductor (2), negative electrode (3); electrolyte (4), positive electrode (5).
  • (b) is the common transparent conductor for the battery and for the photovoltaic cell.
  • (c) shows a transparent thin layer photovoltaic cell block, layer p (6), layer n (7).
  • (d) shows the set consisting of battery plus photovoltaic cell.
  • (e) show a block with current regulator circuit and connection to low consumption lighting device (f) (LED or OLED).
  • Figure 2 Components of the battery object of the invention and an example of its integration into windows or glazed surfaces of buildings: two transparent sheets of glass or polymer (1); a transparent electronic conductor sheet (2), on which a negative electrode (3) is deposited; a solid ionic conductive electrolyte, PVP + Li salt (4); a transparent positive electrode (5); a transparent electronic conductor (2); and a transparent support (1).
  • Figure 5 Transmission spectrum of a battery object of the invention composed of glass / TOC / negative electrode / electrolyte / positive electrode / TOC / glass, together with the AMl.5 solar spectrum and the visual efficiency curve.
  • the applications of the battery object of the invention are based both on its composition and on the fact that it is transparent to sunlight and visible, which allows its integration into glazed surfaces (understood as glass or polymeric), or on any other surface or device in which its design is evaluated in thin film, and the ability to transmit visible light along with the electrical storage. It also behaves as an infrared mirror and can be manufactured using low-cost atmospheric thin film techniques (pyrolysis spray and dip-coating) and obtained in large surfaces, and can potentially have an electrochromic effect by modifying the anode. Additionally, it can be used in the integration with a photovoltaic (thin-film) laminar device by superimposing sheets of the constituent elements of the lithium-ion battery, all integrated into glazed surfaces.
  • Figure 1 shows both the components of the battery itself and its integration with a voltaic cell and with a low consumption lighting system. It has been obtained by a simple method of preparation, a set of negative electrode material (3), positive electrode (5), and solid polymer electrolyte (4), transparent, and the set of the three elements (negative electrode, electrolyte, electrode positive) exhibits an optimal high-performance electrochemical behavior as an energy storage system, and that functions as a low thermal emissivity device, and which can also operate in an ambient atmosphere without the need for protective external coatings.
  • the constituents of the battery object of the invention are shown in Figure 2, in which a preferred embodiment of the invention is shown.
  • the negative electrode (3) is deposited on the transparent electronic conductor sheet (2) by thin-sheet techniques (specifically dip-coating and pyrolysis spray; but can be obtained by sputtering, or other techniques for obtaining thin sheets).
  • a transparent positive electrode (5) is deposited, and again a transparent electronic conductor (2) and a transparent support (1).
  • Negative electrode (3) and Positive electrode (5) have thicknesses in the range of hundreds of nanometers, while the electrolyte (4), and the total thickness of the 5 layers, has it in the range of the mine.
  • the transparent electronic conductor (2) is chosen from the ITO group, SnO 2 + F,
  • ITO transparent conductive oxide
  • SnO 2 + F transparent conductive oxide
  • ZnO + Al, ZnO + Ga can be obtained by pyrolysis spray.
  • the transparent negative electrode (3) preferably comprises Ag, since this provides low thermal emissivity to the assembly.
  • transparent compounds that react at low potential values with lithium ions such as Li 4 Ti 5 O 12
  • lanthanide metal oxides are candidates for use as transparent materials, such as CeO 2 and La 2 O 3 .
  • Another candidate is carbon, as the preparation of thin translucent sheets of carbon nanotubes is known.
  • an electrochromic effect can be used as a negative electrode (3) compounds of known photoelectrochemical character such as the oxides of MoO 3 and WO 3 .
  • the transparent positive electrode (5) is preferably a LiFeO 2 compound
  • cathodes (5) such as LiFe 5 O 8 , or mixtures of LiFeO 2 and LiFe 5 O 8 can be used , since in thin film they transmit sufficiently in the visible.
  • Other candidates to be used as transparent materials are Li 2 FeSiO 4 and Li 3 V 2 (P ⁇ 4 ) 3 , as well as any other lithium silicate or phosphate and colored transition metal. Also, and apart from the compounds contained in the JP 2006216336 patent application, any lithium oxide and colored transition metal can be considered, or that prepared in the form of a thin sheet transmits enough visible light.
  • a transparent conductor (2) is reapplied on a second transparent support (1).
  • a fundamental part of the motive battery of the invention is its solid polymer electrolyte (4). It is an ionic conductive polymer and electronic insulator, preferably PVP + Li salt (for example, LiPO 4 ) obtained by dip-coating technique, which acts as an ionic conductor and not as an electronic conductor, and whose conductivity values in Temperature function are as follows:
  • Figure 3 (b) shows the evolution of the specific capacity retention values (in percentage) with respect to the initial capacity supplied by the battery. It can be seen that the battery maintains a constant supply of energy during the first 50 cycles, and that there is only a loss of ten percent of it at the end of the first two hundred cycles. Therefore, the battery shows excellent energy efficiency during loading / unloading operations.
  • the voltage values [Figure 3 (a), Figure 4] of the battery charge / discharge curves show that it is a battery of practically 2 volts (0.0 - 1.9 volts).
  • the battery object of the invention has shown a good transmission both in the visible and throughout the solar spectrum.
  • the battery whose transmission spectrum has been represented together with the solar spectrum AMl.5 (ASTM G 173) and the visual efficiency curve (figure 5) and which corresponds to the same prototype for which the electrochemical values mentioned above have been represented, it presents a transmission in the visible (illuminant D65), of 50%, the negative electrode being the element of the battery that most conditions this transmittance, which can be checked by comparing the transmittance of the battery (figure 5), with the transmittance spectra of electrolyte (4) (PVP + Li salt) and positive electrode (5) (LiFeO 2 ) (figure 6), both on glass.
  • the effect of low thermal emissivity is evidenced by the zero transmittance that it presents in the IR (transmission at lengths greater than 2500 nm), whereby glazed surfaces containing this battery would allow solar energy to enter, but not IR radiation output of longer wavelength.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

The invention relates to a transparent lithium-ion secondary battery. More specifically, the invention relates to a transparent lithium-ion secondary battery comprising a first transparent substrate (1), a first transparent electronic conductor (2), a transparent negative electrode (3), a transparent positive electrode (5), a solid lithium-ion electrolyte (4) between the negative electrode (3) and the positive electrode (5), a second transparent conductor (2), and a second transparent substrate (1). The battery is advantageous in that it can be produced on large surfaces. In addition, the fact that the battery is transparent to sunlight and visible light and the fact that it can be produced directly on transparent substrates (glass or polymer) allow same be built into the glazed surfaces of buildings and combined with solar cells in order to be used in energy saving and self-sufficiency systems in buildings, including lighting.

Description

Título Title
Batería transparente secundaria de ion litioTransparent lithium ion secondary battery
Sector técnicoTechnical sector
La presente invención se enmarca en el campo de las baterías secundarias de ion litio. Más en particular, la presente invención ofrece un nuevo tipo de batería secundaria de ion litio de lámina delgada, transparente y electrolito polimérico sólido, que puede ser fabricada mediante técnicas de bajo coste y presenta efecto de baja emisividad térmica (low-e).The present invention is framed in the field of secondary lithium ion batteries. More particularly, the present invention offers a new type of secondary lithium ion battery with a thin, transparent sheet and solid polymer electrolyte, which can be manufactured by low cost techniques and has a low thermal emissivity (low-e) effect.
Técnica anteriorPrior art
La necesidad de conseguir edificios autosuficientes energéticamente conduce por un lado al aprovechamiento energético de la luz solar incidente sobre las superficies acristaladas de edificios, mediante su conversión en energía eléctrica, y por otro, y por necesidades de confort térmico y ahorro energético, a regular los flujos energéticos a través de las mismas. Las células fotovoltaicas de lámina delgada cumplen con la primera misión y los vidrios de baja emisividad térmica (low-é) junto con los dispositivos electrocrómicos con la segunda. Los recubrimientos de baja emisividad térmica con transparencia en el visible, nominalmente espejos infrarrojos (heat mirrors), tienen interés ya que reducen la radiación térmica a través de ventanas y superficies acristaladas. Este tipo de recubrimientos está generalmente formado por multicapas dieléctrico-metal-dieléctrico, y son ampliamente usadas en el control térmico de edificios. En general consisten de capas delgadas de Ag que se sitúan entre capas dieléctricas. Capas de óxidos y sulfuros transparentes como TiO2, SnO2, ZnO, ZnS, han sido utilizados en este tipo de estructuras para producir espejos infrarrojos, por ejemplo multicapas como (TiO2/ Ag/TiO2)n ó (SnO2/Ag/SnO2)π The need to achieve self-sufficient energy buildings leads on the one hand to the energy use of the incident sunlight on the glass surfaces of buildings, through their conversion into electrical energy, and on the other, and by thermal comfort and energy saving needs, to regulate the energy flows through them. The thin-film photovoltaic cells fulfill the first mission and the low thermal emissivity glasses (low-é) together with the electrochromic devices with the second. Low thermal emissivity coatings with visible transparency, nominally infrared mirrors (heat mirrors), are of interest since they reduce thermal radiation through glazed windows and surfaces. This type of coatings is generally formed by dielectric-metal-dielectric multilayers, and they are widely used in thermal control of buildings. In general they consist of thin layers of Ag that are located between dielectric layers. Layers of transparent oxides and sulphides such as TiO 2 , SnO 2 , ZnO, ZnS, have been used in this type of structures to produce infrared mirrors, for example multilayers such as (TiO 2 / Ag / TiO 2 ) n or (SnO 2 / Ag / SnO 2 ) π
Las baterías de ion litio son uno de los tipos de baterías secundarias más empleadas en la electrónica de consumo. En éstas, al no ocurrir el "efecto memoria", se facilita el rendimiento del proceso de recarga, exhiben una mejor ciclabilidad del proceso de carga y descarga, y desarrollan elevados valores de energía. El mercado multimillonario de estos dispositivos ha hecho que se intensifique la investigación sobre este tipo de baterías dirigida a mejorar la razón energía/peso, así como su seguridad. La primera batería recargable de ion litio fue comercializada por Sony en 1991. Desde entonces, la investigación desarrollada en esta área ha sido muy extensa. Hoy en día se centra en la búsqueda de nuevos electrodos (tanto positivos como negativos) que, además de desarrollar elevados valores de capacidad específica, no presenten problemas de seguridad al reaccionar con los iones litio a voltajes extremos y que puedan ser recargados rápidamente. En estos trabajos, se han propuesto numerosos compuestos inorgánicos para la configuración de dichos electrodos (electrodos positivos: LiCoO2, LiNiO2, LiMn2O4, LiFePO4, TiO2; electrodos negativos: grafito, SnO2, Li4Ti5Oi2, CuO, Si, Sn, entre otros). La solicitud de patente JP 2006216336 describe una batería con óxidos Li-M-O, donde M = Ti, Mn, Co, Ni, o sus mezclas; ó M-O, donde M = Ti, Nb, Zn, In, ó Sn como electrodos. En cuanto a la morfología, se han abierto paso los electrodos configurados por nanopartículas, nanofibras, nanotubos y combinaciones de estas morfologías. Recientemente se ha mejorado ostensiblemente el rendimiento electroquímico de dichas baterías cuando se preparan en forma nanométrica y además se controla su morfología de forma específica.Lithium-ion batteries are one of the types of secondary batteries most used in consumer electronics. In these, as the "memory effect" does not occur, the performance of the recharging process is facilitated, they exhibit a better cyclability of the loading and unloading process, and develop high energy values. The multimillion-dollar market for these devices has led to intensified research on this type of batteries aimed at improving the energy / weight ratio, as well as its safety. The first battery Rechargeable lithium ion was marketed by Sony in 1991. Since then, research developed in this area has been extensive. Today it focuses on the search for new electrodes (both positive and negative) that, in addition to developing high specific capacity values, do not present safety problems when reacting with lithium ions at extreme voltages and that can be quickly recharged. In these works, numerous inorganic compounds have been proposed for the configuration of said electrodes (positive electrodes: LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiFePO 4 , TiO 2 ; negative electrodes: graphite, SnO 2 , Li 4 Ti 5 Oi 2 , CuO, Si, Sn, among others). Patent application JP 2006216336 describes a battery with Li-MO oxides, where M = Ti, Mn, Co, Ni, or mixtures thereof; or MO, where M = Ti, Nb, Zn, In, or Sn as electrodes. As for morphology, the electrodes configured by nanoparticles, nanofibers, nanotubes and combinations of these morphologies have made their way. Recently, the electrochemical performance of these batteries has been significantly improved when they are prepared in a nanometric form and their morphology is also controlled specifically.
También se han propuesto diseños en tres dimensiones, que deberían sustituir en un futuro a los diseños actuales en dos dimensiones, o capas superpuestas. En estas arquitecturas tridimensionales, las fibras, nanofibras o nanotubos, configurarían un electrodo, mientras que el contraelectrodo se constituiría por el material que ocupa los huecos. Otro punto de atención importante es el desarrollo de nuevos electrolitos que aumenten la seguridad de la batería. En la actualidad, las baterías comerciales utilizan en su mayoría electrolitos líquidos, que a los voltajes extremos que se alcanzan durante las operaciones de carga/recarga, se descomponen parcialmente originando componentes orgánicos de cierta inflamabilidad. En este sentido, el desarrollo tecnológico va imponiendo la utilización de electrolitos sólidos poliméricos. Las baterías poliméricas son más ligeras y ofrecen un diseño, tipo laminar, más seguro. No obstante la estabilización de la interfase electrodo/electrolito sigue siendo un problema.Three-dimensional designs have also been proposed, which should replace current two-dimensional designs, or overlapping layers, in the future. In these three-dimensional architectures, fibers, nanofibers or nanotubes, would configure an electrode, while the counter electrode would be constituted by the material that occupies the gaps. Another important point of attention is the development of new electrolytes that increase battery safety. At present, commercial batteries mostly use liquid electrolytes, which at the extreme voltages that are reached during charging / recharging operations, partially decompose causing organic components of certain flammability. In this sense, technological development is imposing the use of polymeric solid electrolytes. Polymeric batteries are lighter and offer a laminar, safer design. However, the stabilization of the electrode / electrolyte interface remains a problem.
Actualmente están reconocidas las ventajas que los conductores poliméricos iónicos proporcionan en relación al buen contacto entre electrolito/electrodo. En los electrolitos poliméricos sólidos y "secos", el polímero se emplea como un disolvente sólido de una sal de litio, y no contiene ningún tipo de líquido orgánico, como sucede con la generación anterior de baterías de litio. Sin embargo la baja conductividad iónica que generalmente presentan estos polímeros secos es un inconveniente a superar. Polímeros con frecuencia utilizados son el óxido de polietileno (PEO), y poliacrilnitrilo, disolventes basados en carbonates (EC, PC) y sus mezclas (DME/EC/PC, DEC/EC/PC), DMSO, compuestos orgánicos sulfurados, THF, etc. Como sales se emplea habitualmente LiPF6, LiClO4, LiCF3SO3 ó Li(TFSi). Estos electrolitos poliméricos muestran conductividades de Li+ normalmente en el rango de 10"4 a 10"7 S-cm"1, a temperatura ambiente. Hoy en día se está investigando la utilización de nuevas generaciones de polímeros conductores. Otra alternativa para mejorar las propiedades morfológicas y electroquímicas de los electrolitos poliméricos es la introducción de aditivos cerámicos (fillers). Con estos aditivos cerámicos se pretende mejorar la conductividad del polímero que los contiene por medio de un incremento del grado de amorfo del mismo. La preparación de baterías transparentes de ion litio permitiría, mediante su inclusión en células fotovoltaicas, almacenar y regular la energía obtenida de la luz solar incidente sobre las ventanas o superficies transparentes, consiguiéndose una mayor autosuficiencia energética en edificios y dispositivos. Por otra parte, la aplicación a gran escala de este tipo de baterías transparentes necesita de métodos sencillos y de bajo coste para su fabricaciónThe advantages that ionic polymeric conductors provide in relation to good contact between electrolyte / electrode are currently recognized. In solid and "dry" polymer electrolytes, the polymer is used as a solid solvent of a lithium salt, and does not contain any type of organic liquid, as with the previous generation of lithium batteries. However, the low ionic conductivity that these dry polymers generally have is an inconvenience to overcome. Frequently used polymers are polyethylene oxide (PEO), and polyacrylonitrile, solvents based on carbonates (EC, PC) and their mixtures (DME / EC / PC, DEC / EC / PC), DMSO, sulfurized organic compounds, THF, etc. As salts, LiPF 6 , LiClO 4 , LiCF 3 SO 3 or Li (TFSi) are usually used. These polymeric electrolytes show conductivities of Li + normally in the range of 10 "4 to 10 " 7 S-cm "1 , at room temperature. Nowadays, the use of new generations of conductive polymers is being investigated. Another alternative to improve The morphological and electrochemical properties of polymeric electrolytes is the introduction of ceramic additives (fillers), with these ceramic additives, it is intended to improve the conductivity of the polymer that contains them by increasing the amorphous degree of the same. Lithium ion would allow, through its inclusion in photovoltaic cells, to store and regulate the energy obtained from the incident sunlight on the windows or transparent surfaces, achieving greater energy self-sufficiency in buildings and devices. On the other hand, the large-scale application of this type of transparent batteries needs simple methods and low cost for manufacturing
Divulgación de la invenciónDisclosure of the invention
El objeto de la presente invención es resolver los problemas técnicos descritos anteriormente. Para ello, la invención propone una batería transparente secundaria de ion litio que comprende un primer soporte transparente, un primer conductor electrónico transparente, un electrodo negativo transparente, un electrodo positivo transparente, un electrolito de ion litio sólido entre el electrodo negativo y el electrodo positivo, un segundo conductor transparente, un segundo soporte transparente. El electrodo negativo es, preferentemente, de Ag ó Li4Ti5O12. El electrodo positivo comprende óxido LiFeO2 óThe object of the present invention is to solve the technical problems described above. To this end, the invention proposes a secondary transparent lithium ion battery comprising a first transparent support, a first transparent electronic conductor, a transparent negative electrode, a transparent positive electrode, a solid lithium ion electrolyte between the negative electrode and the positive electrode. , a second transparent conductor, a second transparent support. The negative electrode is preferably Ag or Li 4 Ti 5 O 12. The positive electrode comprises LiFeO 2 or
LiFe5O8 (o sus mezclas) dopado con Ag. El electrolito comprende preferentemente un polímero conductor iónico PVP (polivinil pilorridona) y una sal de litio. Los conductores transparentes son preferentemente ITO, SnO2+F, ZnO+Al ó ZnO+Ga. La invención comprende también un procedimiento de fabricación de la batería en el que las distintas capas constituyentes transparentes se depositan sobre los soportes transparentes mediante técnicas de spray pirólisis y dip-coating, o, alternativamente, mediante sputtering u otras técnicas de obtención de láminas delgadas ,LiFe 5 O 8 (or mixtures thereof) doped with Ag. The electrolyte preferably comprises a PVP ionic conductive polymer (polyvinyl pilorridone) and a lithium salt. The transparent conductors are preferably ITO, SnO 2 + F, ZnO + Al or ZnO + Ga. The invention also comprises a method of manufacturing the battery in which the different transparent constituent layers are deposited on the transparent supports by means of pyrolysis and dip-coating spray techniques, or, alternatively, by sputtering or other techniques for obtaining thin sheets,
La batería objeto de la invención puede integrarse con una célula solar de lámina delgada, cuya conexión quedaría regulada por circuito impreso y del que a su vez se puede derivar conexión a sistemas de iluminación extema tipo LED u OLED, sistemas de iluminación que alternativamente pueden integrarse en forma de lámina delgada sobre el propio tándem batería-célula fotovoltaica, e incluso directamente sobre la batería.The battery object of the invention can be integrated with a thin-leaf solar cell, whose connection would be regulated by printed circuit and which in turn can be derive connection to external lighting systems such as LED or OLED, lighting systems that can alternatively be integrated in the form of a thin sheet on the battery-photovoltaic cell tandem itself, and even directly on the battery.
La batería secundaria de ion litio objeto de la invención tiene como ventaja la posibilidad de ser obtenida en grandes superficies. Además, su transparencia a la luz solar y visible, y el hecho de que puede ser fabricada directamente sobre soportes transparentes (vidrios o polímeros), permite su integración en superficies acristaladas de edificios, y combinada con células solares para ser utilizada en sistemas de ahorro y suficiencia energética en edificios, incluida la iluminación, como fuente externa para sistemas LED u OLED, o mediante la integración de los sistemas LED u OLED como multicapas delgadas en el tándem (sistema LED u OLED + batería de ion litio + célula solar fotovoltaica de lámina fina). Característico de esta batería es su comportamiento de baja emisividad térmica, representando un valor añadido para su empleo en el confort térmico en la edificación. Junto o alternativamente a su efecto de baja emisividad térmica, puede potenciarse su efecto electrocrómico. La batería objeto de la invención es también susceptible de ser usada en otro tipo de dispositivos de menor área, como pueden ser dispositivos electrónicos de consumo, techos solares de vehículos, o allí donde se necesite de una batería delgada y/o se requiera transparencia en el espectro solar o visible.The secondary lithium ion battery object of the invention has the advantage of being obtained in large areas. In addition, its transparency to sunlight and visible light, and the fact that it can be manufactured directly on transparent supports (glass or polymers), allows its integration into glazed surfaces of buildings, and combined with solar cells to be used in saving systems and energy efficiency in buildings, including lighting, as an external source for LED or OLED systems, or through the integration of LED or OLED systems as thin multilayers in the tandem (LED or OLED system + lithium ion battery + photovoltaic solar cell of thin sheet). Characteristic of this battery is its low thermal emissivity behavior, representing an added value for its use in thermal comfort in the building. Together or alternatively to its low thermal emissivity effect, its electrochromic effect can be enhanced. The battery object of the invention is also capable of being used in other devices of smaller area, such as consumer electronics, solar roofs of vehicles, or where a thin battery is needed and / or transparency is required in the solar or visible spectrum.
Descripción de las figurasDescription of the figures
Con objeto de ayudar a una mejor comprensión de la presente descripción, y de acuerdo con un ejemplo preferente de realización práctica de la invención, se adjuntan las siguientes figuras, cuyo carácter es ilustrativo y no limitativo:In order to help a better understanding of the present description, and in accordance with a preferred example of practical embodiment of the invention, the following figures are attached, the character of which is illustrative and not limiting:
Figura L- Esquema de sistema integrado en vidrio de batería en lámina delgada y célula fotovoltaica en capa fina transparente conectado a sistema de iluminación de bajo consumo LED u OLED mediante circuito impreso, (a) muestra una batería según la invención, que comprende los siguientes componentes: vidrio o polímero transparente (1); conductor transparente (2), electrodo negativo (3); electrolito (4), electrodo positivo (5). (b) es el conductor transparente común para la batería y para la célula fotovoltaica. (c) muestra un bloque de célula fotovoltaica de capa fina transparente, capa p (6), capa n (7). (d) muestra el conjunto formado por batería más célula fotovoltaica. (e) muestra un bloque con circuito regulador de corriente y conexión a dispositivo de iluminación de bajo consumo (f) (LED u OLED).Figure L- Scheme of integrated system in thin-film battery glass and transparent thin-layer photovoltaic cell connected to low-power LED or OLED lighting system by printed circuit, (a) shows a battery according to the invention, comprising the following components: glass or transparent polymer (1); transparent conductor (2), negative electrode (3); electrolyte (4), positive electrode (5). (b) is the common transparent conductor for the battery and for the photovoltaic cell. (c) shows a transparent thin layer photovoltaic cell block, layer p (6), layer n (7). (d) shows the set consisting of battery plus photovoltaic cell. (e) show a block with current regulator circuit and connection to low consumption lighting device (f) (LED or OLED).
Figura 2.- Componentes de la batería objeto de la invención y un ejemplo de su integración en ventanas o superficies acristaladas de edificios: dos láminas transparentes de vidrio o de polímero (1); una lámina de conductor electrónico transparente (2), sobre la que se deposita un electrodo negativo (3); un electrolito conductor iónico sólido, PVP+sal de Li (4); un electrodo positivo transparente (5); un conductor electrónico transparente (2); y un soporte transparente (1).Figure 2.- Components of the battery object of the invention and an example of its integration into windows or glazed surfaces of buildings: two transparent sheets of glass or polymer (1); a transparent electronic conductor sheet (2), on which a negative electrode (3) is deposited; a solid ionic conductive electrolyte, PVP + Li salt (4); a transparent positive electrode (5); a transparent electronic conductor (2); and a transparent support (1).
Figura 3.- Curvas de carga y descarga de una batería objeto de la invención compuesta porFigure 3.- Charge and discharge curves of a battery object of the invention composed of
ITO/LiFeO2-Ag/PVP-Li/Ag/ITO en el rango de 0.0-1.9 V. (a) Ciclos número 1, 50 y 200 de carga-descarga frente a voltaje, (b) Porcentaje de retención de la capacidad inicial suministrada por la batería.ITO / LiFeO 2 -Ag / PVP-Li / Ag / ITO in the range of 0.0-1.9 V. (a) Number 1, 50 and 200 charge-discharge cycles against voltage, (b) Capacity retention percentage initial supplied by the battery.
Figura 4.- Ciclos de carga descarga frente a voltaje de una batería de acuerdo con la invención.Figure 4.- Charge cycles discharge against voltage of a battery according to the invention.
Figura 5.- Espectro de transmisión de una batería objeto de la invención compuesta por vidrio/TOC/electrodo negativo/electrolito/electrodo positivo/TOC/vidrio, junto con el espectro solar AMl.5 y la curva de eficiencia visual.Figure 5.- Transmission spectrum of a battery object of the invention composed of glass / TOC / negative electrode / electrolyte / positive electrode / TOC / glass, together with the AMl.5 solar spectrum and the visual efficiency curve.
Figura 6.- Espectros de transmisión del electrolito polimérico (PVP + sal de Li) y el electrodo positivo (LiFeO2) soportados sobre vidrio, así como el espectro de transmisión del vidrio.Figure 6.- Transmission spectra of the polymer electrolyte (PVP + Li salt) and the positive electrode (LiFeO 2 ) supported on glass, as well as the transmission spectrum of the glass.
Maneras de realización de la invenciónWays of carrying out the invention
Las aplicaciones de la batería objeto de la invención se basan tanto en su composición como en el hecho de que resulta transparente a la luz solar y visible, lo que permite su integración en superficies acristaladas (entiéndase vidrio o poliméricas), o en cualquier otra superficie o dispositivo en el que se valore su diseño en lámina delgada, y la capacidad de transmitir luz visible junto con el almacenamiento eléctrico. Tiene también comportamiento como espejo infrarrojo y puede ser fabricada mediante técnicas de lámina delgada atmosféricas de bajo coste (spray pirólisis y dip-coating) y obtenida en grandes superficies, y potencialmente puede presentar efecto electrocrómico mediante la modificación del ánodo. Adicionalmente, se puede emplear en la integración con un dispositivo laminar fotovoltaico (de lámina delgada) mediante la superposición de láminas de los elementos constituyentes de la batería de ion litio, todo ello integrado en superficies acristaladas. Ello incluye la posibilidad de integrar a su vez sistemas LED u OLED, para constituir un sistema completo de captación solar, almacenamiento eléctrico e iluminación, autosuficiente. En la figura 1 se representan tanto los componentes de la batería propiamente dicha como su integración con una célula voltaica y con un sistema de iluminación de bajo consumo. Se ha obtenido mediante un método sencillo de preparación, un conjunto de material electródico negativo (3), electrodo positivo (5), y electrolito polimérico sólido (4), transparentes, y el conjunto de los tres elementos (electrodo negativo, electrolito, electrodo positivo) exhibe un comportamiento electroquímico óptimo de alto rendimiento como sistema de almacenamiento de energía, y que funciona como dispositivo de baja emisividad térmica, y que además puede operar en atmósfera ambiental sin necesidad de recubrimientos externos protectores. Estas características peculiares se consiguen gracias a:The applications of the battery object of the invention are based both on its composition and on the fact that it is transparent to sunlight and visible, which allows its integration into glazed surfaces (understood as glass or polymeric), or on any other surface or device in which its design is evaluated in thin film, and the ability to transmit visible light along with the electrical storage. It also behaves as an infrared mirror and can be manufactured using low-cost atmospheric thin film techniques (pyrolysis spray and dip-coating) and obtained in large surfaces, and can potentially have an electrochromic effect by modifying the anode. Additionally, it can be used in the integration with a photovoltaic (thin-film) laminar device by superimposing sheets of the constituent elements of the lithium-ion battery, all integrated into glazed surfaces. This includes the possibility of integrating in turn LED or OLED systems, to constitute a complete system of solar collection, electrical storage and lighting, self-sufficient. Figure 1 shows both the components of the battery itself and its integration with a voltaic cell and with a low consumption lighting system. It has been obtained by a simple method of preparation, a set of negative electrode material (3), positive electrode (5), and solid polymer electrolyte (4), transparent, and the set of the three elements (negative electrode, electrolyte, electrode positive) exhibits an optimal high-performance electrochemical behavior as an energy storage system, and that functions as a low thermal emissivity device, and which can also operate in an ambient atmosphere without the need for protective external coatings. These peculiar characteristics are achieved thanks to:
i) la utilización de un electrolito (4) cuyo funcionamiento electroquímico tolera cierto grado de humedad, ii) la utilización del óxido LiFeO2 como electrodo positivo transparente (5) cuyo comportamiento electroquímico óptimo se consigue gracias a su preparación en forma de lámina delgada y nanométrica, y además con la presencia de Ag como conductor electrónico, y iii) la utilización de Ag como electrodo negativo (3), transparente en forma de lámina delgada.i) the use of an electrolyte (4) whose electrochemical operation tolerates a certain degree of humidity, ii) the use of LiFeO 2 oxide as a transparent positive electrode (5) whose optimal electrochemical behavior is achieved thanks to its thin-film-shaped preparation and nanometric, and also with the presence of Ag as an electronic conductor, and iii) the use of Ag as a negative electrode (3), transparent in the form of a thin sheet.
Los constituyentes de la batería objeto de la invención se muestran en la figura 2, en la que se muestra una realización preferente de la invención. El electrodo negativo (3) se deposita sobre la lámina de conductor electrónico transparente (2) mediante técnicas de lámina delgada (específicamente dip-coating y spray pirólisis; pero pudiendo obtenerse por sputtering, u otras técnicas de obtención de láminas delgadas). Por las mismas técnicas de lámina delgada se deposita un electrodo positivo transparente (5), y de nuevo un conductor electrónico transparente (2) y un soporte transparente (1). Electrodo negativo (3) y electrodo positivo (5) tienen espesores en el rango de la centena de nanómetros, mientras que el electrolito (4), y el total del espesor de las 5 capas, lo tiene en el rango de la miera.The constituents of the battery object of the invention are shown in Figure 2, in which a preferred embodiment of the invention is shown. The negative electrode (3) is deposited on the transparent electronic conductor sheet (2) by thin-sheet techniques (specifically dip-coating and pyrolysis spray; but can be obtained by sputtering, or other techniques for obtaining thin sheets). By the same thin-sheet techniques, a transparent positive electrode (5) is deposited, and again a transparent electronic conductor (2) and a transparent support (1). Negative electrode (3) and Positive electrode (5) have thicknesses in the range of hundreds of nanometers, while the electrolyte (4), and the total thickness of the 5 layers, has it in the range of the mine.
El conductor electrónico transparente (2) es escogido del grupo ITO, SnO2+F,The transparent electronic conductor (2) is chosen from the ITO group, SnO 2 + F,
ZnO+Al, ZnO+Ga. En el caso de usarse ITO, el mismo puede adquirirse comercialmente (vidrio con ITO depositado), o ser obtenido mediante sputtering tanto sobre vidrio como sobre polímeros. Alternativamente, estos óxidos conductores transparentes (ITO, SnO2+F,ZnO + Al, ZnO + Ga. In the case of ITO being used, it can be purchased commercially (glass with deposited ITO), or obtained by sputtering on both glass and polymers. Alternatively, these transparent conductive oxides (ITO, SnO 2 + F,
ZnO+ Al, ZnO+Ga) pueden obtenerse mediante spray pirólisis.ZnO + Al, ZnO + Ga) can be obtained by pyrolysis spray.
El electrodo negativo transparente (3) comprende preferentemente Ag, ya que ésta proporciona una baja emisividad térmica al conjunto. Además de Ag en lámina delgada, pueden emplearse como material de electrodo negativo (3) compuestos transparentes que reaccionen a bajos valores de potencial con los iones litio, como por ejemplo Li4Ti5O12, lo que mejora significativamente los valores de transmisión en el visible de la batería, aunque su uso puede suponer la pérdida del efecto de baja emisividad térmica. Por sus coloraciones claras, los óxidos de metales lantánidos son candidatos a ser utilizados como materiales transparentes, como por ejemplo CeO2 y La2O3. Otro candidato es el carbono, pues es conocida la preparación de láminas delgadas translúcidas de nanotubos de carbono. Si se desea un efecto electrocrómico puede emplearse como electrodo negativo (3) compuestos de conocido carácter fotoelectroquímico como son los óxidos de MoO3 y WO3. El electrodo positivo transparente (5) es preferentemente un compuesto de LiFeO2 The transparent negative electrode (3) preferably comprises Ag, since this provides low thermal emissivity to the assembly. In addition to thin film Ag, transparent compounds that react at low potential values with lithium ions, such as Li 4 Ti 5 O 12 , can be used as negative electrode material (3), which significantly improves transmission values in the visible of the battery, although its use may result in the loss of the effect of low thermal emissivity. Because of their clear colorations, lanthanide metal oxides are candidates for use as transparent materials, such as CeO 2 and La 2 O 3 . Another candidate is carbon, as the preparation of thin translucent sheets of carbon nanotubes is known. If desired, an electrochromic effect can be used as a negative electrode (3) compounds of known photoelectrochemical character such as the oxides of MoO 3 and WO 3 . The transparent positive electrode (5) is preferably a LiFeO 2 compound
+Ag. Se pueden emplear otros cátodos (5) como el LiFe5O8, o mezclas de LiFeO2 y LiFe5O8, ya que en lámina delgada transmiten suficientemente en el visible. Otros candidatos a ser utilizados como materiales transparentes son el Li2FeSiO4 y el Li3V2(Pθ4)3, así como cualquier otro silicato o fosfato de litio y metal de transición coloreado. También, y aparte de los compuestos que recoge la solicitud de patente JP 2006216336, se puede considerar cualquier óxido de litio y metal de transición coloreado, o que preparado en forma de lámina delgada transmita suficiente luz visible. Finalmente se vuelve a aplicar un conductor transparente (2) sobre un segundo soporte transparente (1).+ Ag. Other cathodes (5) such as LiFe 5 O 8 , or mixtures of LiFeO 2 and LiFe 5 O 8 can be used , since in thin film they transmit sufficiently in the visible. Other candidates to be used as transparent materials are Li 2 FeSiO 4 and Li 3 V 2 (Pθ 4 ) 3 , as well as any other lithium silicate or phosphate and colored transition metal. Also, and apart from the compounds contained in the JP 2006216336 patent application, any lithium oxide and colored transition metal can be considered, or that prepared in the form of a thin sheet transmits enough visible light. Finally, a transparent conductor (2) is reapplied on a second transparent support (1).
Parte fundamental de la batería motivo de la invención es su electrolito polimérico sólido (4). Se trata de un polímero conductor iónico y aislante electrónico, preferentemente PVP + sal de Li (por ejemplo, LiPO4) obtenido mediante técnica de dip-coating, que se comporta como conductor iónico y no como conductor electrónico, y cuyos valores de conductividad en función de la temperatura son los siguientes:
Figure imgf000010_0001
A fundamental part of the motive battery of the invention is its solid polymer electrolyte (4). It is an ionic conductive polymer and electronic insulator, preferably PVP + Li salt (for example, LiPO 4 ) obtained by dip-coating technique, which acts as an ionic conductor and not as an electronic conductor, and whose conductivity values in Temperature function are as follows:
Figure imgf000010_0001
Un prototipo de la batería objeto de la invención compuesta por ITO/LiFeO2- Ag/PVP-Li/Ag/ITO ha mostrado una gran capacidad de recarga, ya que esta se mantiene prácticamente constante durante los test de ciclabilidad (figura 3). En la figura 3(a) puede comprobarse así mismo como estos ciclos son idénticos después de doscientos ciclos de carga/descarga, lo que indica la gran estabilidad de los procesos electroquímicos que acontecen en la batería, que prácticamente no se altera tras un elevado número de ciclos.A prototype of the battery object of the invention composed of ITO / LiFeO 2 - Ag / PVP-Li / Ag / ITO has shown a great capacity of recharging, since this remains practically constant during the cyclability tests (figure 3). In Figure 3 (a) it can also be verified how these cycles are identical after two hundred charge / discharge cycles, which indicates the great stability of the electrochemical processes that occur in the battery, which practically does not alter after a large number of cycles
Por otro lado, y en confirmación de las buenas prestaciones electroquímicas de esta batería, la figura 3 (b) muestra la evolución de los valores retención de capacidad específica (en porcentaje) respecto a la capacidad inicial suministrada por la batería. Se puede observar que la batería mantiene un suministro constante de energía durante los primeros 50 ciclos, y que tan sólo existe una pérdida del diez por ciento de la misma al finalizar los doscientos primeros ciclos. Por tanto, la batería muestra una excelente eficiencia energética durante las operaciones de carga/descarga. Los valores de voltaje [figura 3 (a), figura 4] de las curvas de carga/descarga de la batería muestran que se trata de una batería de prácticamente 2 voltios (0,0 - 1.9 voltios).On the other hand, and in confirmation of the good electrochemical performance of this battery, Figure 3 (b) shows the evolution of the specific capacity retention values (in percentage) with respect to the initial capacity supplied by the battery. It can be seen that the battery maintains a constant supply of energy during the first 50 cycles, and that there is only a loss of ten percent of it at the end of the first two hundred cycles. Therefore, the battery shows excellent energy efficiency during loading / unloading operations. The voltage values [Figure 3 (a), Figure 4] of the battery charge / discharge curves show that it is a battery of practically 2 volts (0.0 - 1.9 volts).
La batería objeto de la invención ha mostrado una buena transmisión tanto en el visible como en todo el espectro solar. La batería cuyo espectro de transmisión se ha representado junto a el espectro solar AMl.5 (ASTM G 173) y la curva de eficiencia visual (figura 5) y que corresponde al mismo prototipo para el que se han representado los valores electroquímicos antes comentados, presenta una transmisión en el visible (iluminante D65), del 50%, siendo el electrodo negativo el elemento de la batería que más condiciona esta transmitancia, lo que puede comprobarse comparando la transmitancia de la batería (figura 5), con los espectros de transmitancia del electrolito (4) (PVP + sal de Li) y del electrodo positivo (5) (LiFeO2) (figura 6), ambos sobre vidrio.The battery object of the invention has shown a good transmission both in the visible and throughout the solar spectrum. The battery whose transmission spectrum has been represented together with the solar spectrum AMl.5 (ASTM G 173) and the visual efficiency curve (figure 5) and which corresponds to the same prototype for which the electrochemical values mentioned above have been represented, it presents a transmission in the visible (illuminant D65), of 50%, the negative electrode being the element of the battery that most conditions this transmittance, which can be checked by comparing the transmittance of the battery (figure 5), with the transmittance spectra of electrolyte (4) (PVP + Li salt) and positive electrode (5) (LiFeO 2 ) (figure 6), both on glass.
La batería presenta una ligera coloración amarillenta en la luz transmitida (coordenadas colorimétricas CIELAB L*=76, a*=l,2, b*=9,4) debida fundamentalmente al cátodo (5) (L*=89, a*=0,5, b*=15). El efecto de baja emisividad térmica se pone de manifiesto por la nula transmitancia que presenta en el IR (transmisión a longitudes superiores a los 2500 nm), con lo cual superficies vidriadas que contengan esta batería permitirían la entrada de la energía solar, pero no la salida de la radiación IR de mayor longitud de onda. The battery has a slight yellowing in the transmitted light (CIELAB colorimetric coordinates L * = 76, a * = l, 2, b * = 9.4) mainly due to the cathode (5) (L * = 89, a * = 0.5, b * = 15). The effect of low thermal emissivity is evidenced by the zero transmittance that it presents in the IR (transmission at lengths greater than 2500 nm), whereby glazed surfaces containing this battery would allow solar energy to enter, but not IR radiation output of longer wavelength.

Claims

Reivindicaciones Claims
1. Batería transparente secundaria de ion litio que comprende: a. un primer soporte transparente (1 ), b. un primer conductor electrónico transparente (2), c. un electrodo negativo transparente (3), d. un electrolito de ion litio sólido (4) entre el electrodo negativo (3) y el electrodo positivo (5), e. un electrodo positivo transparente (5), f. un segundo conductor transparente (2), g. un segundo soporte transparente (1); caracterizada en que el electrolito (4) comprende un polímero conductor iónico PVP y una sal de litio.1. Secondary transparent lithium ion battery comprising: a. a first transparent support (1), b. a first transparent electronic conductor (2), c. a transparent negative electrode (3), d. a solid lithium ion electrolyte (4) between the negative electrode (3) and the positive electrode (5), e. a transparent positive electrode (5), f. a second transparent conductor (2), g. a second transparent support (1); characterized in that the electrolyte (4) comprises a PVP ionic conductive polymer and a lithium salt.
2. Batería según la reivindicación anterior, caracterizada porque el electrodo negativo (3) es Ag.2. Battery according to the preceding claim, characterized in that the negative electrode (3) is Ag.
3. Batería según la reivindicación 1, caracterizada porque el electrodo negativo (3) es un compuesto transparente que reacciona a bajos valores de potencial con los iones litio.3. Battery according to claim 1, characterized in that the negative electrode (3) is a transparent compound that reacts to low potential values with lithium ions.
4. Batería según la reivindicación anterior, caracterizada porque el electrodo negativo (3) es Li4Ti5O12. 4. Battery according to the preceding claim, characterized in that the negative electrode (3) is Li 4 Ti 5 O 12 .
5. Batería según cualquiera de las reivindicaciones anteriores, caracterizada porque el electrodo positivo (5) comprende óxido LiFeO2 ó LiFe5O8 (o sus mezclas) dopado con Ag. 5. Battery according to any of the preceding claims, characterized in that the positive electrode (5) comprises LiFeO 2 or LiFe 5 O 8 oxide (or mixtures thereof) doped with Ag.
6. Batería según cualquiera de las reivindicaciones 1 a 4, caracterizada porque el electrodo positivo (5) es Li2FeSiO4 ó Li3V2(PO^3. 6. Battery according to any of claims 1 to 4, characterized in that the positive electrode (5) is Li 2 FeSiO 4 or Li 3 V 2 (PO ^ 3 .
7. Batería según cualquiera de las reivindicaciones anteriores, caracterizada porque los conductores transparentes (2) comprenden un material escogido del grupo de los conductores transparentes ITO, SnO2+F, ZnO+Al, ZnO+Ga.7. Battery according to any of the preceding claims, characterized in that the transparent conductors (2) comprise a material chosen from the group of the transparent conductors ITO, SnO 2 + F, ZnO + Al, ZnO + Ga.
8. Batería según cualquiera del las reivindicaciones anteriores, caracterizada porque la sal de litio es uno de los compuestos del grupo LiPF6, LiClO4, LiCF3SO3, Li(TFSi) ó LiPO4.8. Battery according to any of the preceding claims, characterized in that the lithium salt is one of the compounds of the group LiPF 6 , LiClO 4 , LiCF 3 SO 3 , Li (TFSi) or LiPO 4 .
9. Procedimiento de fabricación de una batería según cualquiera de las reivindicaciones anteriores, caracterizado porque las distintas capas transparentes se depositan sobre los soportes transparentes mediante técnica de spray pirólisis y dip-coating. 9. Method of manufacturing a battery according to any of the preceding claims, characterized in that the different transparent layers are deposited on the transparent supports by means of a pyrolysis and dip-coating spray technique.
10. Procedimiento de fabricación de una batería según cualquiera de las reivindicaciones 1 a 8, caracterizado porque las distintas capas transparentes se depositan sobre los soportes transparentes mediante técnica de sputtering.10. Method of manufacturing a battery according to any of claims 1 to 8, characterized in that the different transparent layers are deposited on the transparent supports by sputtering technique.
11. Sistema que comprende una batería según cualquiera de las reivindicaciones anteriores y una célula fotovoltaica de capa fina transparente (c) transparentes y/o un sistema LED u OLED de iluminación (f). 11. System comprising a battery according to any of the preceding claims and a transparent thin layer photovoltaic cell (c) transparent and / or an LED or OLED lighting system (f).
PCT/ES2010/000227 2009-05-22 2010-05-21 Transparent lithium-ion secondary battery WO2010133735A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200901267 2009-05-22
ES200901267A ES2352492B2 (en) 2009-05-22 2009-05-22 SECONDARY TRANSPARENT BATTERY OF LITHIUM ION.

Publications (2)

Publication Number Publication Date
WO2010133735A2 true WO2010133735A2 (en) 2010-11-25
WO2010133735A3 WO2010133735A3 (en) 2011-07-14

Family

ID=43126586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2010/000227 WO2010133735A2 (en) 2009-05-22 2010-05-21 Transparent lithium-ion secondary battery

Country Status (2)

Country Link
ES (1) ES2352492B2 (en)
WO (1) WO2010133735A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130022868A1 (en) * 2011-07-20 2013-01-24 The Board Of Trustees Of The Leland Stanford Junior University Transparent electrochemical energy storage devices
US20150104718A1 (en) * 2012-08-14 2015-04-16 Empire Technology Development Llc Flexible transparent air-metal batteries
JP2019102399A (en) * 2017-12-08 2019-06-24 日本電信電話株式会社 Light transmission type battery, device using the battery, and determination method of remaining battery charge

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0953218B1 (en) * 1996-12-20 2003-03-26 Danionics A/S Lithium secondary battery
WO2001089023A1 (en) * 2000-05-19 2001-11-22 Korea Institute Of Science And Technology A lithium secondary battery comprising a super fine fibrous polymer electrolyte and its fabrication method
KR100686848B1 (en) * 2005-10-11 2007-02-26 삼성에스디아이 주식회사 Lithium rechargeable battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130022868A1 (en) * 2011-07-20 2013-01-24 The Board Of Trustees Of The Leland Stanford Junior University Transparent electrochemical energy storage devices
US8956757B2 (en) 2011-07-20 2015-02-17 The Board Of Trustees Of The Leland Stanford Junior University Transparent electrochemical energy storage devices
US20150104718A1 (en) * 2012-08-14 2015-04-16 Empire Technology Development Llc Flexible transparent air-metal batteries
JP2019102399A (en) * 2017-12-08 2019-06-24 日本電信電話株式会社 Light transmission type battery, device using the battery, and determination method of remaining battery charge

Also Published As

Publication number Publication date
ES2352492A1 (en) 2011-02-21
WO2010133735A3 (en) 2011-07-14
ES2352492B2 (en) 2011-11-18

Similar Documents

Publication Publication Date Title
JP7281902B2 (en) Non-negative lithium metal battery and manufacturing method thereof
KR100942477B1 (en) Lithium ion secondary battery and a solid electrolyte thereof
Manthiram et al. Lithium battery chemistries enabled by solid-state electrolytes
US9786953B2 (en) Non-aqueous electrolyte secondary battery and assembly thereof
JP5002852B2 (en) Thin film solid secondary battery
ES2550143T3 (en) Coated metal oxide particles, with low dissolution rate, preparation procedures and use in electrochemical systems
KR101130123B1 (en) All solid lithium ion secondary battery and a solid electrolyte therefor
US8709647B2 (en) Battery structures and related methods
KR101970813B1 (en) Battery Cell Having Hole
CN1307731A (en) Encapsulated lithium electrodes having glass protective layers and method for their preparation
KR20130000227A (en) Solid electrolyte, manufacturing method thereof, and lithium battery employing the same
WO2011023110A1 (en) Lithium sulphur battery
KR102681720B1 (en) Electrolytes for secondary battery, and secondary battery
CA2618635A1 (en) Compliant seal structures for protected active metal anodes
ES2546609T3 (en) A method to charge a lithium-sulfur cell
KR101475763B1 (en) Positive electrode for lithium-sulfur battery and lithium-sulfur battery comprising the same
JP6687249B2 (en) Lithium ion secondary battery
KR20160062616A (en) Hybrid self-charging battery and manufacturing method thereof
WO2010133735A2 (en) Transparent lithium-ion secondary battery
ES2930155T3 (en) Composite Electrode Materials
US20210384547A1 (en) Light Transmissive Battery and Power Generating Glass
KR101799566B1 (en) Battery Pack with Improved Charge Performance at High and Low Temperature
CN103688216A (en) Infrared-modulating electroactive devices with visible region transparency
KR102709968B1 (en) Glass-based solid electrolyte complex sheet for lithium secondary battery
Kammampata et al. Solid-state electrolytes for lithium-ion batteries

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10777404

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10777404

Country of ref document: EP

Kind code of ref document: A2