WO2010133036A1 - 一种基站间通信方法、装置及通信系统 - Google Patents

一种基站间通信方法、装置及通信系统 Download PDF

Info

Publication number
WO2010133036A1
WO2010133036A1 PCT/CN2009/071926 CN2009071926W WO2010133036A1 WO 2010133036 A1 WO2010133036 A1 WO 2010133036A1 CN 2009071926 W CN2009071926 W CN 2009071926W WO 2010133036 A1 WO2010133036 A1 WO 2010133036A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
key
message
core network
broadcast
Prior art date
Application number
PCT/CN2009/071926
Other languages
English (en)
French (fr)
Inventor
夏林峰
李铮铮
牟梦雅
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN200980123374XA priority Critical patent/CN101999240B/zh
Priority to PCT/CN2009/071926 priority patent/WO2010133036A1/zh
Publication of WO2010133036A1 publication Critical patent/WO2010133036A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/06Authentication
    • H04W12/069Authentication using certificates or pre-shared keys

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method, device, and communication system for communication between base stations. Background technique
  • HNB Home NodeB, Home Base Station
  • HeNB Home Evolved NodeB, Home Evolved NodeB
  • the network system based on ⁇ or HeNB can effectively improve indoor coverage, improve indoor access rate, reduce delay, meet various user application requirements, and reduce the load of macro base stations, so that macro base station capacity mainly serves outdoor or sports.
  • User can effectively improve indoor coverage, improve indoor access rate, reduce delay, meet various user application requirements, and reduce the load of macro base stations, so that macro base station capacity mainly serves outdoor or sports.
  • H(e)B wants to exchange information with other H(e)NBs, H(e)B will transmit the interaction information to the core network through the public IP network, and then the core network forwards the information to other Hs ( e) NB or an eNB (Evolved NodeB) in an operator private network.
  • H(e)NB In the H(e)NB communication mode, the message transmission delay is large, and it is easy to cause the communication message between H(e)B not to be timely; the back-end resource is wasted.
  • H(e)NB also has a large number of deployments. If all H(e)B communication is forwarded through the core network, it will impose a heavy burden on the core network equipment.
  • H(e)NB can communicate directly through the air interface to reduce the delay and reduce the core network load.
  • H(e)NB cannot confirm the identity of the communication peer, and does not know whether the message sent by the other party is reliable. Therefore, the attacker can communicate with the legal H(e)NB by means of the fake H(e)NB, which affects the normal resource configuration and handover of the legal H(e)B.
  • the embodiments of the present invention provide a method, device, and communication system for communication between base stations, so as to improve communication security between H(e)B.
  • the technical solution is as follows:
  • An inter-base station communication method includes: after detecting a broadcast message of a neighbor base station, obtaining a key of the neighbor base station according to a broadcast message of the neighbor base station; And using the key of the neighboring base station to authenticate the message sent by the neighboring base station.
  • a base station comprising:
  • a key obtaining unit configured to obtain a key of the neighboring base station according to a broadcast message of the neighboring base station after detecting a broadcast message of the neighboring base station;
  • the message authentication unit is configured to use the key of the neighboring base station to authenticate the message sent by the neighboring base station.
  • a communication system includes a core network and at least two base stations;
  • a second base station configured to: after detecting a broadcast message of the first base station, obtain an identifier of the neighbor base station from a broadcast message of the first base station; send a key request message to the core network, where The key request message carries the identifier of the first base station;
  • the core network is configured to send a key response message to the second base station according to the key request message, where the key response message carries a key of the first base station;
  • the second base station receives a key response message sent by the core network, and uses the key of the first base station to authenticate the message sent by the first base station.
  • the second H(e)NB first obtains the first H(e)NB according to the broadcast message of the first H(e)NB before communicating with the first H(e)NB. Key.
  • the message is used to authenticate the message to confirm the identity of the sender and the reliability of the source. If an attacker impersonates the first H(e)NB to send a message to the second H(e)NB, the authentication will fail, and the second H(e)NB may refuse to receive the message.
  • each H(e)NB in the network can use the above mechanism to confirm the identity of the communication peer, thereby improving the communication security between H(e)B.
  • Embodiment 1 is a flowchart of a method according to Embodiment 1 of the present invention.
  • Embodiment 3 is a flowchart of a method according to Embodiment 3 of the present invention.
  • FIG. 4 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of another base station according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a core network of a communication system according to an embodiment of the present invention
  • FIG. 7 is another schematic structural diagram of a core network of a communication system according to an embodiment of the present invention.
  • an inter-base station communication method including:
  • the base station After detecting the broadcast message of the neighbor base station, the base station obtains the key of the neighbor base station according to the broadcast message of the neighbor base station; and uses the key of the neighbor base station to authenticate the message sent by the neighbor base station. .
  • the foregoing base station may be an HNB or a HeNB, and the foregoing technical solution is adopted.
  • the second H(e)NB Before the second H(e)NB communicates with the first H(e)NB, first obtaining the first according to the broadcast message of the first H(e)NB. H(e)NB's key. After receiving the message sent by the first H(e)NB, the message is used to authenticate the message to confirm the identity of the sender. If an attacker impersonates the first H(e)NB to send a message to the second H(e)NB, the authentication will fail, and the second H(e)NB may refuse to receive the message. Further, each H(e)NB in the network can use the above mechanism to confirm the identity of the communication peer, thereby improving the communication security between H(e)B. In order to make those skilled in the art better understand the technical solutions of the present invention, the specific embodiments of the present invention will be further described in detail below with reference to the accompanying drawings.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • FIG. 1 is a flowchart of implementing an inter-base station secure communication method according to an embodiment of the present invention, including the following steps:
  • the base station 2 obtains the identifier of the base station 1.
  • a base station can listen to broadcast messages of neighbor base stations through air interfaces, and can obtain various information of neighbor base stations, such as carrier configuration information, cell load status, and the like.
  • the base station may perform listening when it is just started, or may perform listening periodically.
  • the base station 1 is the neighbor base station of the base station 2, and the base station 2 can obtain the unique identifier of the base station 1 by listening to the broadcast message of the base station 1, such as the base station ID, the cell ID, and the like.
  • the base station 2 sends a key request message to the core network.
  • the base station 2 After the base station 2 detects the broadcast message of the base station 1, it indicates that the base station 1 is already within the distance range that can directly communicate with the base station 2. To ensure the security of the subsequent call, the base station 2 sends a key request message to the core network, requesting A key for authenticating a message transmitted by the base station 1 is obtained. Among them, in The key request message carries the identifier of the base station 1.
  • the core network verifies the identity of the base station 1.
  • Each base station needs to perform mutual authentication with the core network before accessing the core network. Therefore, for a base station with a legal identity, its associated authentication information will be stored in the core network.
  • the core network After receiving the key request message, the core network verifies the identity of the base station 1 according to the identifier of the base station 1 carried therein, that is, checks whether the relevant authentication information of the base station 1 is saved, and if so, the identity of the base station 1 is considered to be Legally, further query the key of base station 1.
  • the core network may first verify the identity of the sender of the message (ie, the base station 2), and confirm whether the base station 2 has the right to obtain the key of the base station 1 to further improve security. .
  • the core network sends a key response message to the base station 2.
  • the core network transmits a key response message to the base station 2, and carries the key of the base station 1 in the message. If the verification fails, the key will not be carried in the response message.
  • the base station 2 uses the key of the base station 1 to authenticate the message sent by the base station 1.
  • the base station 2 receives the key response message sent by the core network. If the response message does not carry the key, the base station 1 does not have a legal identity, and the base station 2 refuses to receive the message sent by the base station 1.
  • the response message carries the key of the base station 1, it indicates that the identity of the base station 1 is legal and can communicate with it.
  • the base station 2 stores the identity of the base station 1 in association with the obtained key. If the message sent by the base station 1 is received, the message of the base station 1 is used to authenticate the message to confirm the reliability of the source of the message.
  • the message sent by each base station is a signed message processed by its own key. If an attacker spoofs the base station 1 to send a message to the base station 2, since the attacker does not have the key of the base station 1, the sent message Authentication by the base station 2 will not be possible.
  • each base station maintains a network neighbor list, and the base station can obtain a key of each neighbor base station in the list from the core network, and save the acquired key corresponding to the network neighbor list, when the base station When communicating with each other, the message is authenticated using the corresponding key, which ensures The security of communication between base stations.
  • each base station actively obtains a key of another base station from the core network.
  • the core network may also trigger the base station to perform a process of acquiring a key, or may be performed by the core network. Proactively provide a key to the base station. For example, if the key of a certain base station changes, the core network may send a message to other base stations to instruct other base stations to re-acquire the updated key. Alternatively, the core network may directly report to the record of the previously sent key response message. The associated base station sends the updated key.
  • the base station sends a key request to the core network to obtain a key of the communication peer, and uses the key to authenticate the message sent by the peer. It is equivalent to ensuring the legitimacy of the identity of the base stations of the two parties by the core network, and the base station itself ensures the reliability of the subsequent reception of the message source.
  • the core network after receiving the key request message, it is only necessary to check whether it has the relevant authentication information of the base station corresponding to the identifier, and does not need to occupy a large resource. Moreover, the subsequent message interaction between the base stations does not require the participation of the core network, thereby reducing the communication delay between the base stations and reducing the burden on the core network.
  • Embodiment 2 Embodiment 2:
  • FIG. 2 is a flowchart of another implementation of secure communication between base stations according to an embodiment of the present invention, including the following steps:
  • the base station 2 obtains a broadcast certificate of the base station 1.
  • the base station 1 is a neighbor base station of the base station 2, and the base station 2 is listening to the base station.
  • the broadcast message of 1 can obtain the broadcast certificate of the base station 1.
  • the broadcast certificate carries the key of the base station 1, and the broadcast certificate is signed by the base station 1 with a third-party signature key.
  • the above-mentioned third-party signature key is provided by a certification authority (such as a core network), and the certification authority only provides a third-party signature key to a base station having a legal identity.
  • the third-party signature key may be pre-configured in the base station, or may be acquired by the base station to the certification authority in real time, or may be delivered to the base station by the certification authority in real time.
  • the third party signing key can be static or dynamically changing. It can be understood that the dynamically changing third-party signature key can further improve the security.
  • the base station needs to obtain the real-time access to the certification authority, or the certification authority can deliver the data to the base station in real time.
  • the base station 2 authenticates the broadcast certificate of the base station 1 by using a third-party signature key. After the base station 2 obtains the broadcast certificate of the base station 1, the base station 2 authenticates the broadcast certificate using the third-party signature key. Since the certification authority only provides the third-party signature key to the base station having the legal identity, the authentication of the broadcast certificate of the base station 1 is equivalent to verifying whether the base station 1 has a legitimate identity. If the authentication is passed, the key of the base station 1 carried in the broadcast certificate is saved.
  • the base station 2 authenticates the message sent by the base station 1 by using the key of the base station 1.
  • each legal base station uses a third-party signature key to sign its own broadcast certificate, and obtains a broadcast certificate of each neighbor base station. If the authentication of the broadcast certificate passes, the corresponding secret is obtained. The key is stored in association with the network neighbor list. When the base stations communicate with each other, the corresponding key is used to authenticate the message, so that the security of communication between the base stations can be ensured.
  • each base station authenticates the broadcast certificate of the other base station by using the third-party signature key, which is equivalent to ensuring the validity of the identity of the communication base station by the base station itself.
  • the burden on the core network can be further alleviated.
  • the embodiment further provides an inter-base station communication method to improve communication confidentiality.
  • the method flow diagram can be seen in FIG. 3, and it is assumed that both the base station 1 and the base station 2 are base stations with legal identity, and both have obtained the key of the other party (the key of the base station 1 is key1, and the key of the base station 2 is key2). ).
  • the base station 1 encrypts the message to be sent to the base station 2 using the key2.
  • the key 2 of the base station 2 is already stored in the base station 1.
  • the base station 1 may first perform encryption processing using the key2 to obtain a ciphertext message.
  • the base station 1 sends the encrypted message to the base station 2.
  • the base station 1 sends the ciphertext message to the base station 2. According to the first embodiment or the second embodiment, when transmitting the message, the base station 1 performs the signature processing on the ciphertext message again by using its own key key1.
  • the base station 2 receives the message, and decrypts the message by using the key2. After receiving the ciphertext message sent by the base station 1, the base station 2 first uses the key1 to authenticate the message, confirms the reliability of the source of the message, and then uses the key2 (or the private key corresponding to the key2) to perform the ciphertext message. Decrypt.
  • the above method flow is applicable to both the base station 1 and the base station 2, respectively.
  • the base station 1 or the base station 2 can also predetermine a communication private key, encrypt it and provide it to the other party by using the key of the other party, and the subsequent base station 1 and the base station 2 will use the communication private key. Confidential communication.
  • the present embodiment further improves the confidentiality of the communication and ensures that the communication content is obtained by the third party on the basis of ensuring the legality of the identity of the communication parties and the reliability of the communication message. This process does not require the participation of the core network.
  • the technical solution provided by the embodiment of the present invention can ensure the security of direct communication between H(e)NBs.
  • Direct communication between H(e)NBs in addition to reducing latency and reducing the burden on the core network, also assists in the self-configuration and self-optimization of H(e)NBs, and also provides benefits for interference coordination and fast handover.
  • the configuration of the neighbor can be sensed by acquiring surrounding information, for example, by reading the broadcast message of the neighbor, obtaining configuration information of the surrounding cell, such as the number of carriers used, the carrier usage, and the current cell.
  • the load status, neighboring area configuration and other information, the newly started H(e)NB completes its own parameter setting according to the monitored neighboring area information; during the H(e)NB operation, it can also monitor the surrounding cell information in real time. Therefore, resource scheduling and reconfiguration of working parameters are performed to avoid mutual interference.
  • the foregoing describes several specific embodiments of the present invention. It should be noted that the technical solution of the present invention is proposed for an application environment of HNB or He B, but all or part of the solution may also be applied in other similar communication environments to improve Communication security features, these should also be included in the scope of the present invention.
  • the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the foregoing storage medium includes: a ROM (Read-Only Memory), a RAM (Random Access Memory), a disk, or an optical disk, and the like.
  • the medium of the program code Embodiment 4:
  • the embodiment of the present invention further provides a base station, as shown in FIG. 4, including:
  • the key obtaining unit 410 is configured to obtain a key of the neighboring base station according to a broadcast message of the neighboring base station after detecting a broadcast message of the neighbor base station;
  • the message authentication unit 420 is configured to use the key of the neighboring base station to authenticate the message sent by the neighboring base station.
  • the base station provided by the embodiment of the present invention uses the key of the neighboring base station to authenticate the message sent by the neighboring base station to ensure the identity of the sender of the message.
  • the key obtaining unit 410 may include:
  • an identifier obtaining subunit configured to obtain an identifier of the neighbor base station from a broadcast message of the neighbor base station
  • a key requesting sub-unit configured to send a key request message to the core network, where the key request message carries an identifier of the neighboring base station;
  • the key receiving subunit is configured to receive a key response message sent by the core network, where the key response message carries a key of the neighboring base station.
  • the base station sends a key request to the core network to obtain a key of the communication peer, and uses the key to authenticate the message sent by the peer.
  • the base station Corresponding to the legitimacy of the core network to ensure the identity of the base stations of the two communicating parties, the base station itself ensures the reliability of the subsequent received message source.
  • the core network After the base station is applied, after receiving the key request message, the core network only needs to check whether the authentication information of the base station corresponding to the identifier is saved, and does not need to occupy a large resource.
  • the subsequent message interaction between the base stations does not require the participation of the core network, thereby reducing the communication delay between the base stations and reducing the burden on the core network.
  • the key obtaining unit 410 may further include:
  • a broadcast certificate obtaining sub-unit configured to obtain a broadcast certificate of the neighbor base station from a broadcast message of the base station, where the broadcast certificate carries a key of the neighbor base station;
  • a broadcast certificate authentication sub-unit configured to use a third-party signature key to authenticate a broadcast certificate of the neighbor base station, and if the authentication is passed, save a key of the neighbor base station; wherein the third-party signature is dense
  • the key is provided by the certification body.
  • FIG. 5 is a schematic structural diagram of another base station according to an embodiment of the present invention.
  • the base station further adds a message decrypting unit 430, where the message sent by the neighboring base station is a ciphertext message.
  • the ciphertext message is decrypted using its own key.
  • Embodiment 5 By applying the foregoing base station, the confidentiality of the communication can be further improved on the basis of ensuring the legality of the identity of the communication parties and the reliability of the communication message, and the communication content is prevented from being acquired by the third party, and the process does not require the participation of the core network.
  • Embodiment 5
  • the embodiment of the present invention further provides a communication system, including: a core network and at least two base stations; and a second base station, configured to: after detecting a broadcast message of a neighboring first base station, broadcast messages from the first base station And obtaining an identifier of the neighboring base station; sending a key request message to the core network, where the key request message carries the identifier of the first base station;
  • the core network is configured to send a key response message to the second base station according to the key request message, where the key response message carries a key of the first base station;
  • the second base station receives a key response message sent by the core network, and uses the key of the first base station to authenticate the message sent by the first base station.
  • the core network may include:
  • the first verification unit 610 is configured to: after receiving the key request message sent by the second base station, verify the identity of the first base station according to the identifier of the first base station;
  • the key sending unit 620 is configured to send a key response message to the second base station after the first verification unit passes the verification, where the key response message carries the key of the first base station.
  • the core network may further include a second verification unit 630, configured to verify the identity of the second base station after receiving the key request message sent by the second base station;
  • the first verification unit 620 after the second verification unit 630 verifies the verification, verifies the identity of the first base station according to the identifier of the first base station.
  • the core network ensures the legality of the identity of the base stations of the two communicating parties. Sexuality, the base station itself ensures the reliability of subsequent receiving sources.
  • the core network after receiving the key request message, it is only necessary to check whether the authentication information of the base station corresponding to the identifier is saved, and does not need to occupy a large resource.
  • the subsequent message interaction between the base stations does not require the participation of the core network, thereby reducing the communication delay between the base stations and reducing the burden on the core network.
  • the description is relatively simple, and the relevant parts can be referred to the description of the method embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

一种基站间通信方法、 装置及通信系统 技术领域
本发明涉及通信技术领域, 特别是涉及一种基站间通信方法、 装置及通信 系统。 背景技术
随着移动通信用户数量的迅速增加以及用户需求的不断提高,移动通信系 统设备也呈现出多样化的发展趋势。 HNB ( Home NodeB, 家庭基站)或 HeNB ( Home Evolved NodeB , 家庭演进基站)作为一种小型化的基站, 针对的是家 庭、 学校、 企业等应用场景。 基于 ΗΝΒ或 HeNB的网络系统, 可以有效改善 室内覆盖, 提高室内接入速率, 减少时延, 满足各种用户应用需求, 同时还能 够减少宏基站的负荷, 使宏基站容量主要服务于室外或运动中用户。
现有技术中, 如果 H(e) B希望和其他 H(e)NB交互信息, H(e) B将通 过公共 IP网络将交互信息传给核心网, 然后核心网将信息转发给其他 H(e)NB 或者处于运营商专用网络的 eNB ( Evolved NodeB, 演进基站)。 这种 H(e)NB 间通信方式,其消息传输时延较大,很容易造成 H(e) B间的通信消息不及时; 后端资源的浪费等问题。 此外, H(e)NB还具有部署数量大的特点, 如果所有 H(e) B之间的通信都通过核心网来转发,将会给核心网设备造成很大的负担。
理论上, H(e)NB之间可以直接通过空口进行通信, 以减少时延、 减轻核 心网负担。 但是 H(e)NB 之间的通过空口直接通信会存在安全问题: 由于 H(e)NB无法确认通信对端的身份, 并且不知道对方发送的消息是否可靠。 因 此, 攻击者可以通过假冒 H(e)NB的方式与合法的 H(e)NB进行通信, 从而对 合法 H(e) B的正常资源配置、 切换等操作造成影响。 发明内容
本发明实施例提供了一种基站间通信方法、 装置及通信系统, 以提高 H(e) B之间的通信安全性, 技术方案如下:
一种基站间通信方法, 包括: 在检测到邻居基站的广播消息后, 根据所述邻居基站的广播消息, 获得所述邻居基站的密钥; 使用所述邻居基站的密钥, 对所述邻居基站发送的消息进行鉴权。 一种基站, 包括:
密钥获得单元, 用于在检测到邻居基站的广播消息后, 根据所述邻居基站 的广播消息, 获得所述邻居基站的密钥;
消息鉴权单元, 用于使用所述邻居基站的密钥,对所述邻居基站发送的消 息进行鉴权。 一种通信系统, 包括核心网和至少两个基站;
第二基站, 用于在检测到相邻的第一基站的广播消息后, 从所述第一基站 的广播消息中, 获得所述邻居基站的标识; 向核心网发送密钥请求消息, 所述 密钥请求消息中携带所述第一基站的标识;
所述核心网, 用于根据所述密钥请求消息, 向所述第二基站发送密钥响应 消息, 所述密钥响应消息中携带所述第一基站的密钥;
所述第二基站接收核心网发送的密钥响应消息, 使用所述第一基站的密 钥, 对所述第一基站发送的消息进行鉴权。 应用本发明实施例所提供的技术方案, 第二 H(e)NB在与第一 H(e)NB通 信之前, 首先根据第一 H(e)NB的广播消息获得第一 H(e)NB的密钥。 当收到 第一 H(e)NB发送来的消息后, 使用该密钥对消息进行鉴权, 以确认发送方的 身份及消息来源的可靠性。 如果有攻击者假冒第一 H(e)NB向第二 H(e)NB发 送消息, 鉴权将无法通过, 第二 H(e)NB可以拒绝接收消息。 进一步讲, 网络 中的每个 H(e)NB 都可以使用上述的机制确认通信对端的身份, 从而提高 H(e) B之间的通信安全性。 附图说明
图 1为本发明实施例一的方法流程图;
图 2为本发明实施例二的方法流程图;
图 3为本发明实施例三的方法流程图;
图 4为本发明实施例基站的一种结构示意图;
图 5为本发明实施例基站的另一种结构示意图;
图 6为本发明实施例通信系统核心网的一种结构示意图; 图 7为本发明实施例通信系统核心网的另一种结构示意图。 具体实施方式
首先对本发明实施例的基站间通信方法进行说明, 包括:
基站在在检测到邻居基站的广播消息后, 根据所述邻居基站的广播消息, 获得所述邻居基站的密钥; 使用所述邻居基站的密钥, 对所述邻居基站发送的 消息进行鉴权。
其中,上述的基站可以是 HNB或 HeNB ,应用上述技术方案,第二 H(e)NB 在与第一 H(e)NB 通信之前, 首先根据第一 H(e)NB 的广播消息获得第一 H(e)NB 的密钥。 当收到第一 H(e)NB发送来的消息后, 使用该密钥对消息进 行鉴权,以确认发送方的身份。如果有攻击者假冒第一 H(e)NB向第二 H(e)NB 发送消息, 鉴权将无法通过, 第二 H(e)NB可以拒绝接收消息。 进一步讲, 网 络中的每个 H(e)NB 都可以使用上述的机制确认通信对端的身份, 从而提高 H(e) B之间的通信安全性。 为了使本技术领域的人员更好地理解本发明技术方案, 下面将结合附图, 对本发明的具体实施例方式作进一步的详细说明。
实施例一:
图 1所示为本发明实施例提供的一种基站间安全通信方法的实现流程图, 包括以下步骤:
S101 , 基站 2获得基站 1的标识。
某个基站通过空口侦听邻居基站的广播消息,可以获得邻居基站的多种信 息, 例如载波配置信息、 小区负荷状态等等。 其中, 基站可以是在刚刚启动时 进行侦听, 也可以是周期性地进行侦听。
本实施例中, 假设基站 1 为基站 2的邻居基站, 基站 2通过侦听基站 1 的广播消息, 可以获得基站 1的唯一标识符, 例如基站 ID、 Cell ID等。
S102, 基站 2向核心网发送密钥请求消息。
当基站 2侦听到基站 1的广播消息之后,说明基站 1 已经处于可以与基站 2直接通信的距离范围之内, 为保证后续通话的安全性, 基站 2向核心网发送 密钥请求消息, 请求获得用于对基站 1发送的消息进行鉴权的密钥。 其中, 在 密钥请求消息中, 携带有基站 1的标识符。
5103 , 核心网对基站 1的身份进行验证。
每个基站在接入核心网絡之前, 都需要与核心网络之间进行双向认证。 因 此, 对于一个拥有合法身份的基站而言, 在核心网将保存有其相关认证信息。
核心网收到密钥请求消息之后, 根据其中携带的基站 1的标识, 对基站 1 的身份进行验证, 即检查自身是否保存有基站 1的相关认证信息, 如果有, 则 认为基站 1的身份是合法的, 进一步查询基站 1的密钥。
优选地,核心网在收到密钥请求消息之后,还可以首先对消息的发送方(即 基站 2 )的身份进行验证, 确认基站 2是否有权限获得基站 1的密钥, 以进一 步提高安全性。
5104 , 核心网向基站 2发送密钥响应消息。
如果 S103中的验证通过, 核心网会向基站 2发送密钥响应消息, 并且将 基站 1的密钥携带于该消息中。 如果验证未通过, 则不会在响应消息中携带密 钥。
S105 , 基站 2使用基站 1的密钥对基站 1发送的消息进行鉴权。
基站 2接收核心网的发送的密钥响应消息, 如果响应消息中没有携带密 钥, 说明基站 1不具有合法的身份, 基站 2将拒绝接收基站 1发送来的消息。
如果响应消息中携带有基站 1的密钥, 说明基站 1的身份是合法的, 可以 与其进行通信。基站 2将基站 1的标识与所获得的密钥对应保存起来, 后续如 果收到基站 1发送的消息, 则使用基站 1的密钥对消息进行鉴权, 以确认消息 的来源的可靠性。每个基站向外发送的消息都是经过自身的密钥处理过的签名 消息, 如果有攻击者假冒基站 1向基站 2发送消息, 由于攻击者并不具有基站 1的密钥, 因此发送的消息将无法通过基站 2的鉴权。
本领域技术人员可以理解, 上述方法流程,对于基站 1和基站 2都是分别 适用的, 即对于基站 1而言, 当侦听到基站 2的广播消息后, 可以使用同样的 方法获得基站 2的密钥, 并使用基站 2的密钥对基站 2发送的消息进行鉴权。 在实际应用中, 每个基站都会维护一张网络邻居列表,基站可以从核心网获取 该列表中每个邻居基站的密钥,并将所获取的密钥与网络邻居列表对应保存起 来, 当基站间相互通信时, 分别使用相应的密钥对消息进行鉴权, 就可以保证 基站间通信的安全性。
需要说明的是, 在本实施例中, 是由各个基站主动向核心网获取其他基站 的密钥, 在实际应用中, 也可以由核心网来触发基站执行获取密钥的流程, 或 者由核心网主动向基站提供密钥。 例如, 某个基站的密钥发生了变化, 核心网 可以向其他基站发送消息, 指示其他基站重新获取更新后的密钥; 或者, 核心 网也可以根据之前发送密钥响应消息的记录,直接向相关的基站发送更新后的 密钥。
在本实施例中,基站通过向核心网发送密钥请求,以获得通信对端的密钥, 并使用该密钥对对端发来的消息进行鉴权。相当于由核心网来确保通信双方基 站身份的合法性, 由基站自身来确保后续接收消息来源的可靠性。 另一方面, 对于核心网而言, 收到密钥请求消息以后, 只需检查自身是否保存有标识所对 应的基站的相关认证信息, 并不需要占用很大的资源。 并且, 基站间后续的消 息交互也不需要核心网的参与, 从而能够降低基站间的通信时延, 同时减轻核 心网的负担。 实施例二:
图 2所示为本发明实施例提供的另一种基站间安全通信的实现流程图,包 括以下步骤:
S201, 基站 2获得基站 1的广播证书。
本实施例中, 仍然假设基站 1为基站 2的邻居基站,基站 2通过侦听基站
1的广播消息, 可以获得基站 1的广播证书。 该广播证书中, 携带有基站 1的 密钥, 并且, 该广播证书是由基站 1以第三方签名密钥进行过签名处理的。
其中, 上述的第三方签名密钥, 是由认证机构 (例如核心网) 所提供的, 认证机构只对拥有合法身份的基站提供第三方签名密钥。该第三方签名密钥可 以预先配置在基站中, 也可以由基站实时向认证机构获取, 或者由认证机构实 时向基站下发。 进一步而言, 该第三方签名密钥可以是静态的, 也可以是动态 变化的。 可以理解, 动态变化的第三方签名密钥能够进一步提高安全性, 这种 情况下, 需要由基站实时向认证机构获取, 或者由认证机构实时向基站下发。
S202, 基站 2使用第三方签名密钥对基站 1的广播证书进行鉴权。 基站 2获得基站 1的广播证书之后,使用第三方签名密钥对广播证书进行 鉴权。 由于认证机构只对拥有合法身份的基站提供第三方签名密钥, 因此, 基 站 1的广播证书进行鉴权,相当于验证基站 1是否具有合法的身份。如果鉴权 通过, 则将广播证书中携带的基站 1的密钥保存起来。
S203 , 基站 2使用基站 1的密钥对基站 1发送的消息进行鉴权。
本步骤与 S105所述类似, 这里不再重复说明。
与实施例一类似,上述方法流程,对于基站 1和基站 2也都是分别适用的。 在实际应用中,每个合法的基站都会用第三方签名密钥对自身的广播证书进行 签名处理, 并且获取每个邻居基站的广播证书, 如果对广播证书的鉴权通过, 则获取相应的密钥,并且与网络邻居列表对应保存起来,当基站间相互通信时, 分别使用相应的密钥对消息进行鉴权, 就可以保证基站间通信的安全性。
在本实施例中,各个基站通过使用第三方签名密钥对其他基站的广播证书 进行鉴权, 相当于由基站自身来确保通信对端基站身份的合法性。 与实施例一 相比, 可以进一步减轻核心网的负担。 实施例三:
上述两个实施例, 介绍了在基站通信过程中, 如何保证通信双方身份的合 法性以及通信消息的可靠性。在以上方案的基础上, 本实施例进一步提供一种 基站间通信方法, 以提高通信保密性。 方法流程示意图可参见图 3所示, 以下 假设基站 1和基站 2均为具有合法身份的基站,并且均已经获得对方的密钥(设 基站 1的密钥为 keyl , 基站 2的密钥为 key2 )。
5301 , 基站 1使用 key2对即将发送给基站 2的消息进行加密。
应用实施例一或实施例二的方案,基站 1中已经保存有基站 2的密钥 key2, 对于后续即将发送给基站 2的消息, 基站 1可以先使用 key2进行加密处理, 得到密文消息。
5302, 基站 1将加密后的消息发送给基站 2。
基站 1将密文消息发送给基站 2, 结合实施例一或实施例二可知, 基站 1 在发送消息时, 会用自身的密钥 keyl对该密文消息再次进行签名处理。
S303, 基站 2接收消息, 使用 key2对消息进行解密。 基站 2收到基站 1发送的密文消息后, 首先使用 keyl对消息进行鉴权, 确认消息的来源的可靠性之后,再使用 key2 (或者与 key2所对应的私有密钥 ) 对密文消息进行解密。
上述方法流程, 对于基站 1和基站 2都是分别适用的。 并且, 本领域技术 人员可以理解,基站 1或基站 2也可以预先确定一个通信专用密钥,使用对方 的密钥进行加密后提供给对方,后续基站 1和基站 2将使用该通信专用密钥进 行保密通信。
本实施例与实施例一或实施例二相比,在保证通信双方身份的合法性以及 通信消息的可靠性的基础上, 进一步提高了通信的保密性, 避免通信内容被第 三方获取, 并且, 该过程不需要核心网的参与。
应用本发明实施例所提供的技术方案, 能够保证 H(e)NB之间直接进行通 信的安全性。 H(e)NB之间直接进行通信, 除了可以减少时延、 减轻核心网负 担之外, 还会辅助 H(e)NB的自配置和自优化, 对干扰协调, 快速切换也会带 来好处。 例如, 当 H(e) B启动时, 可以通过获取周围信息来感知邻居的配置, 如, 通过读邻居的广播消息, 获得周围小区的配置信息, 如使用的载波数, 载 波使用情况, 当前小区的负荷状态, 邻区配置等信息, 新启动的 H(e)NB根据 监听到的邻区信息完成自己的参数设置; 在 H(e)NB运行过程中, 也可以通过 实时监听周围小区的信息,从而进行资源调度和工作参数重新配置,以达到避 免相互之间的千扰等目的。 以上介绍了本发明的几种具体实施例方式, 需要说明的是, 本发明技术方 案是针对 HNB或 He B的应用环境而提出, 但是方案的全部或部分也可以应 用其他类似通信环境中以提高通信安全性能,这些也应包含在本发明的保护范 围之内。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可 以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存 储介质中, 该程序在执行时, 执行包括上述方法实施例的步骤; 而前述的存储 介质包括: ROM( Read-Only Memory,只读存储记忆体)、 RAM( Random Access Memory, 随机存储记忆体)、 磁碟或者光盘等各种可以存储程序代码的介质。 实施例四:
相应于上面的方法实施例,本发明实施例还提供一种基站,参见图 4所示, 包括:
密钥获得单元 410 , 用于在检测到邻居基站的广播消息后, 根据所述邻居 基站的广播消息, 获得所述邻居基站的密钥;
消息鉴权单元 420 , 用于使用所述邻居基站的密钥, 对所述邻居基站发送 的消息进行鉴权。
本发明实施例所提供的基站,使用邻居基站的密钥, 对邻居基站发送的消 息进行鉴权, 以确保消息发送方的身份合法性。
进一步的, 所述密钥获得单元 410 , 可以包括:
标识符获得子单元, 用于从所述邻居基站的广播消息中, 获得所述邻居基 站的标识;
密钥请求子单元, 用于向核心网发送密钥请求消息, 所述密钥请求消息中 携带所述邻居基站的标识;
密钥接收子单元, 用于接收核心网发送的密钥响应消息, 所述密钥响应消 息中携带所述邻居基站的密钥。
上述基站通过向核心网发送密钥请求, 以获得通信对端的密钥, 并使用该 密钥对对端发来的消息进行鉴权。相当于由核心网来确保通信双方基站身份的 合法性, 由基站自身来确保后续接收消息来源的可靠性。 应用上述基站, 对于 核心网而言, 收到密钥请求消息以后, 只需检查自身是否保存有标识所对应的 基站的相关认证信息, 不需要占用很大的资源。 并且, 基站间后续的消息交互 也不需要核心网的参与, 从而能够降低基站间的通信时延, 同时减轻核心网的 负担。
所述密钥获得单元 410, 也可以包括:
广播证书获得子单元, 用于从所述部居基站的广播消息中, 获得所述邻居 基站的广播证书, 所述广播证书中携带所述邻居基站的密钥;
广播证书鉴权子单元,用于使用第三方签名密钥对所述邻居基站的广播证 书进行鉴权, 如果鉴权通过, 则保存所述邻居基站的密钥; 其中, 所述第三方 签名密钥由认证机构提供。 应用上述基站,各个基站通过使用第三方签名密钥对其他基站的广播证书 进行鉴权, 相当于由基站自身来确保通信对端基站身份的合法性,从而进一步 减轻核心网的负担。
图 5所示为本发明实施例所提供的另一种基站的结构示意图,与图 4相比, 该基站进一步增加了消息解密单元 430 , 用于在所述邻居基站发送的消息为密 文消息时, 使用自身的密钥对所述密文消息进行解密。
应用上述基站,能够在保证通信双方身份的合法性以及通信消息的可靠性 的基础上, 进一步提高通信的保密性, 避免通信内容被第三方获取, 并且, 该 过程不需要核心网的参与。 实施例五:
本发明实施例还提供一种通信系统, 包括: 核心网和至少两个基站; 第二基站, 用于在检测到相邻的第一基站的广播消息后, 从所述第一基站 的广播消息中, 获得所述邻居基站的标识; 向核心网发送密钥请求消息, 所述 密钥请求消息中携带所述第一基站的标识;
所述核心网, 用于根据所述密钥请求消息, 向所述第二基站发送密钥响应 消息, 所述密钥响应消息中携带所述第一基站的密钥;
所述第二基站接收核心网发送的密钥响应消息, 使用所述第一基站的密 钥, 对所述第一基站发送的消息进行鉴权。
参见图 6所示, 所述核心网, 可以包括:
第一验证单元 610 , 用于在收到所述第二基站发送的密钥请求消息后, 根 据所述第一基站的标识, 验证所述第一基站的身份;
密钥发送单元 620 , 用于在所述第一验证单元验证通过后, 向所述第二基 站发送密钥响应消息, 所述密钥响应消息中携带所述第一基站的密钥。
参见图 7所示, 所述核心网, 还可以进一步包括第二验证单元 630 , 用于 在收到所述第二基站发送的密钥请求消息后, 验证所述第二基站的身份; 则所述第一验证单元 620 , 在所述第二验证单元 630验证通过后, 根据所 述第一基站的标识, 验证所述第一基站的身份。
本实施例所提供的通信系统, 由核心网来确保通信双方基站身份的合法 性, 由基站自身来确保后续接收消息来源的可靠性。 对于核心网而言, 收到密 钥请求消息以后, 只需检查自身是否保存有标识所对应的基站的相关认证信 息, 不需要占用很大的资源。 并且, 基站间后续的消息交互也不需要核心网的 参与, 从而能够降低基站间的通信时延, 同时减轻核心网的负担。 对于装置与系统实施例而言, 由于其基本相应于方法实施例, 所以描述得 比较简单, 相关之处参见方法实施例的部分说明即可。 以上所描述的装置与系 统实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可 以不是物理上分开的, 作为单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者也可以分布到多个网络单元上。 可以根据实际的需 要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术 人员在不付出创造性劳动的情况下, 即可以理解并实施。 以上所述仅是本发明的具体实施方式, 应当指出, 对于本技术领域的普通 技术人员来说, 在不脱离本发明原理的前提下, 还可以做出若干改进和润饰, 这些改进和润饰也应视为本发明的保护范围。

Claims

权 利 要 求
1、 一种基站间通信方法, 其特征在于, 在检测到邻居基站的广播消息后, 该方法包括:
根据所述邻居基站的广播消息, 获得所述邻居基站的密钥;
使用所述邻居基站的密钥, 对所述邻居基站发送的消息进行鉴权。
2、 根据权利要求 1所述的方法, 其特征在于, 所述获得所述邻居基站的 密钥, 包括:
从核心网获得所述邻居基站的密钥。
3、 根据权利要求 2所述的方法, 其特征在于, 所述从核心网获得所述邻 居基站的密钥, 包括:
从所述邻居基站的广播消息中, 获得所述邻居基站的标识;
向核心网发送密钥请求消息,所述密钥请求消息中携带所述邻居基站的标 识;
接收核心网发送的密钥响应消息,所述密钥响应消息中携带所述邻居基站 的密钥。
4、 根据权利要求 3所述的方法, 其特征在于,
核心网收到所述密钥请求消息后,根据所述邻居基站的标识验证所述邻居 基站的身份, 如果验证通过, 则发送所述密钥响应消息。
5、 根据权利要求 1所述的方法, 其特征在于, 所述获得所述邻居基站的 密钥, 包括:
从所述邻居基站的广播消息中, 获得所述邻居基站的广播证书, 所述广播 证书中携带所述邻居基站的密钥;
使用第三方签名密钥对所述邻居基站的广播证书进行鉴权, 如果鉴权通 过,则保存所述邻居基站的密钥;其中,所述第三方签名密钥由认证机构提供。
6、 根据权利要求 5所述的方法, 其特征在于, 所述第三方签名为预先配 置的, 或者为从核心网即时获得的。
7、 根据权利要求 1至 6任一项所述的方法, 其特征在于, 所述邻居基站 发送的消息为密文消息, 则所述方法还包括:
使用自身的密钥对所述密文消息进行解密。
8、 一种基站, 其特征在于, 包括:
密钥获得单元, 用于在检测到邻居基站的广播消息后, 根据所述邻居基站 的广播消息, 获得所述邻居基站的密钥;
消息鉴权单元, 用于使用所述邻居基站的密钥,对所述邻居基站发送的消 息进行鉴权。
9、 根据权利要求 8所述的基站, 其特征在于, 所述密钥获得单元, 包括: 标识符获得子单元, 用于从所述邻居基站的广播消息中, 获得所述邻居基 站的标识;
密钥请求子单元, 用于向核心网发送密钥请求消息, 所述密钥请求消息中 携带所述邻居基站的标识;
密钥接收子单元, 用于接收核心网发送的密钥响应消息, 所述密钥响应消 息中携带所述邻居基站的密钥。
10、根据权利要求 8所述的基站,其特征在于, 所述密钥获得单元, 包括: 广播证书获得子单元, 用于从所述邻居基站的广播消息中, 获得所述邻居 基站的广播证书, 所述广播证书中携带所述邻居基站的密钥;
广播证书鉴权子单元,用于使用第三方签名密钥对所述邻居基站的广播证 书进行鉴权, 如果鉴权通过, 则保存所述邻居基站的密钥; 其中, 所述第三方 签名密钥由认证机构提供。
11、 根据权利要求 8至 10任一项所述的基站, 其特征在于, 所述基站还 包括:
消息解密单元, 用于在所述邻居基站发送的消息为密文消息时, 使用自身 的密钥对所述密文消息进行解密。
12、 一种通信系统, 其特征在于, 包括核心网和至少两个基站; 第二基站, 用于在检测到相邻的第一基站的广播消息后, 从所述第一基站 的广播消息中, 获得所述邻居基站的标识; 向核心网发送密钥请求消息, 所述 密钥请求消息中携带所述第一基站的标识;
所述核心网, 用于根据所述密钥请求消息, 向所述第二基站发送密钥响应 消息, 所述密钥响应消息中携带所述第一基站的密钥;
所述第二基站接收核心网发送的密钥响应消息, 使用所述第一基站的密 钥, 对所述第一基站发送的消息进行鉴权。
13、 根据权利要求 12所述的通信系统, 其特征在于, 所述核心网, 包括: 第一验证单元, 用于在收到所述第二基站发送的密钥请求消息后,根据所 述第一基站的标识, 验证所述第一基站的身份;
密钥发送单元, 用于在所述第一验证单元验证通过后, 向所述第二基站发 送密钥响应消息, 所述密钥响应消息中携带所述第一基站的密钥。
14、 根据权利要求 13所述的通信系统, 其特征在于, 所述核心网, 还包 括第二验证单元, 用于在收到所述第二基站发送的密钥请求消息后,验证所述 第二基站的身份; 所述第一验证单元, 在所述第二验证单元验证通过后, 根据 所述第一基站的标识, 验证所述第一基站的身份。
PCT/CN2009/071926 2009-05-22 2009-05-22 一种基站间通信方法、装置及通信系统 WO2010133036A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN200980123374XA CN101999240B (zh) 2009-05-22 2009-05-22 一种基站间通信方法、装置及通信系统
PCT/CN2009/071926 WO2010133036A1 (zh) 2009-05-22 2009-05-22 一种基站间通信方法、装置及通信系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2009/071926 WO2010133036A1 (zh) 2009-05-22 2009-05-22 一种基站间通信方法、装置及通信系统

Publications (1)

Publication Number Publication Date
WO2010133036A1 true WO2010133036A1 (zh) 2010-11-25

Family

ID=43125727

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/071926 WO2010133036A1 (zh) 2009-05-22 2009-05-22 一种基站间通信方法、装置及通信系统

Country Status (2)

Country Link
CN (1) CN101999240B (zh)
WO (1) WO2010133036A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108270560A (zh) * 2017-01-03 2018-07-10 中兴通讯股份有限公司 一种密钥传输方法及装置
CN112105024A (zh) * 2020-11-12 2020-12-18 新华三技术有限公司 一种基站身份认证方法、装置及设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114501513B (zh) * 2022-02-25 2024-03-26 成都中科微信息技术研究院有限公司 一种提升基站和核心网之间ng链路可靠性的方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020083812A (ko) * 2001-04-30 2002-11-04 주식회사 시큐어넥서스 브로드캐스팅 방식의 컨텐츠 서비스의 보안시스템 및 그의제어방법
CN101291249A (zh) * 2008-06-11 2008-10-22 中兴通讯股份有限公司 一种配置和显示家庭基站名称、内部用户组名称的方法
CN101345765A (zh) * 2008-08-21 2009-01-14 西安西电捷通无线网络通信有限公司 一种基于单播会话密钥的组播密钥分发方法及其更新方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020083812A (ko) * 2001-04-30 2002-11-04 주식회사 시큐어넥서스 브로드캐스팅 방식의 컨텐츠 서비스의 보안시스템 및 그의제어방법
CN101291249A (zh) * 2008-06-11 2008-10-22 中兴通讯股份有限公司 一种配置和显示家庭基站名称、内部用户组名称的方法
CN101345765A (zh) * 2008-08-21 2009-01-14 西安西电捷通无线网络通信有限公司 一种基于单播会话密钥的组播密钥分发方法及其更新方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108270560A (zh) * 2017-01-03 2018-07-10 中兴通讯股份有限公司 一种密钥传输方法及装置
CN108270560B (zh) * 2017-01-03 2023-06-09 中兴通讯股份有限公司 一种密钥传输方法及装置
CN112105024A (zh) * 2020-11-12 2020-12-18 新华三技术有限公司 一种基站身份认证方法、装置及设备

Also Published As

Publication number Publication date
CN101999240A (zh) 2011-03-30
CN101999240B (zh) 2013-03-13

Similar Documents

Publication Publication Date Title
EP3410758B1 (en) Wireless network connecting method and apparatus, and storage medium
US8254581B2 (en) Lightweight key distribution and management method for sensor networks
KR101256887B1 (ko) 티켓-기반 구성 파라미터들 확인
KR100832893B1 (ko) 무선 근거리 통신망으로 이동 단말의 보안 접근 방법 및 무선 링크를 통한 보안 데이터 통신 방법
US8838972B2 (en) Exchange of key material
US7734280B2 (en) Method and apparatus for authentication of mobile devices
KR101508576B1 (ko) 홈 노드-b 장치 및 보안 프로토콜
WO2017185999A1 (zh) 密钥分发、认证方法,装置及系统
US9392453B2 (en) Authentication
US20110320802A1 (en) Authentication method, key distribution method and authentication and key distribution method
KR20160078426A (ko) 무선 직접통신 네트워크에서 비대칭 키를 사용하여 아이덴티티를 검증하기 위한 방법 및 장치
KR20110067127A (ko) 티켓-기반 스펙트럼 인가 및 액세스 제어
WO2009094942A1 (fr) Procédé et système de réseau de communication pour établir une conjonction de sécurité
Li et al. Efficient authentication for fast handover in wireless mesh networks
CN109076086A (zh) 执行认证和密钥协商之前的安全信令
WO2023083170A1 (zh) 密钥生成方法、装置、终端设备及服务器
Yang et al. Improved handover authentication and key pre‐distribution for wireless mesh networks
JP2024507208A (ja) セルラネットワークを動作させるための方法
Sari et al. Addressing security challenges in WiMAX environment
WO2010133036A1 (zh) 一种基站间通信方法、装置及通信系统
Wang et al. An enhanced authentication protocol for WRANs in TV white space
Khan et al. Secure authentication and key management protocols for mobile multihop WiMAX networks
Wang et al. An efficient EAP-based pre-authentication for inter-WRAN handover in TV white space
JP2017139026A (ja) 信頼できる認証およびログオンのための方法および装置
KR101431010B1 (ko) 하드웨어 인증 모듈을 이용한 액세스 포인트 인증 장치 및 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980123374.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09844788

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09844788

Country of ref document: EP

Kind code of ref document: A1