WO2010133031A1 - 一种载波聚合下的ack信道分配方法、设备及系统 - Google Patents

一种载波聚合下的ack信道分配方法、设备及系统 Download PDF

Info

Publication number
WO2010133031A1
WO2010133031A1 PCT/CN2009/071895 CN2009071895W WO2010133031A1 WO 2010133031 A1 WO2010133031 A1 WO 2010133031A1 CN 2009071895 W CN2009071895 W CN 2009071895W WO 2010133031 A1 WO2010133031 A1 WO 2010133031A1
Authority
WO
WIPO (PCT)
Prior art keywords
ack channel
sequence number
mapping sequence
carrier
carrier mapping
Prior art date
Application number
PCT/CN2009/071895
Other languages
English (en)
French (fr)
Inventor
陈小波
薛丽霞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN2009801247028A priority Critical patent/CN102084704B/zh
Priority to PCT/CN2009/071895 priority patent/WO2010133031A1/zh
Publication of WO2010133031A1 publication Critical patent/WO2010133031A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management

Definitions

  • the embodiments of the present invention relate to communication technologies, and in particular, to an ACK channel allocation method, device, and system under carrier aggregation. Background technique
  • LTE-A Long Term Evolution - Advanced
  • LTE-A with carrier aggregation multiple component carriers can be used simultaneously to obtain a wider transmission bandwidth.
  • Each member carrier in the LTE-A system may be configured to be compatible with the LTE system, and the spectrum of each component carrier may be an adjacent spectrum.
  • an LTE user equipment can access only one or a pair of component carriers for data transmission and reception, and an LTE-A UE can simultaneously access multiple according to its capability and service requirements.
  • the component carrier performs data transmission and reception.
  • Carrier aggregation technology is sometimes called Spectrum Aggregation or Bandwidth Extension.
  • each member carrier has a separate HARQ (Hybrid Automatic Repeat Request) process, and the LTE-A UE can be configured with different UL CCs (UpLink Component Carriers). Carrier) and the number of DL CCs (downlink component carriers).
  • UL CCs UpLink Component Carriers
  • Carrier Downlink Component Carriers
  • DL CCs downlink component carriers
  • PDCCHs Physical Layer Downlink Control Channels
  • DL CCs Physical Layer Downlink Control Channels
  • uplink ACK channels uplink response channels
  • PUSCHs Physical Uplink Shared CHannel, Physical Layer Uplink Shared Channel
  • the LTE-A base station allocates an ACK channel for multiple CCs by setting different ACK channel mapping start offsets for each CC, resulting in discontinuity of ACK channel allocation, and requiring a base station for each
  • the initial offset is sent signaling, which increases the number of signaling that the base station sends.
  • the embodiment of the invention provides a method, a device and a system for allocating an ACK channel under carrier aggregation. It is used to continuously allocate ACK channels corresponding to the actual use subframes of different carriers.
  • An embodiment of the present invention provides a method for allocating an ACK channel under carrier aggregation, including: allocating a carrier mapping sequence number to at least one component carrier CC;
  • the CC allocates an ACK channel.
  • the embodiment of the invention further provides a base station, including:
  • a first allocation module configured to allocate a carrier mapping sequence number to the at least one CC
  • a second allocation module configured to allocate an ACK channel to the at least one CC according to the carrier mapping sequence number and the actual number of subframes associated with each DL CC.
  • An embodiment of the present invention further provides a UE, including:
  • a third allocation module configured to allocate an ACK channel to the at least one CC according to the carrier mapping sequence number and the actual number of subframes associated with each DL CC.
  • An ACK channel allocation method, device, and system for carrier aggregation can be based on a carrier mapping sequence number and an actual number of subframes associated with each CC.
  • the ACK channels corresponding to the subframes that are not actually used are also continuously allocated together, and these consecutive idle ACK channels correspond to each other.
  • the resource blocks are better able to be dynamically scheduled.
  • the ACK channel corresponding to the subframe is actually used in the prior art, and the ACK channel corresponding to each CC is separately notified of the initial offset, which can effectively reduce the signaling sent by the base station.
  • LTE-A TDD LTE-A Time Division Duplex
  • FIG. 2 is a schematic diagram of an ACK channel allocation embodiment of the present invention.
  • FIG. 3 is a schematic diagram of an embodiment of assigning a carrier mapping sequence number to at least one DL CC and allocating an uplink ACK channel according to the present invention
  • An uplink ACK channel 4 is at least one DL CC issued PDCCH assignment dispersed in a UL CC £ disposed in a schematic view;
  • FIG. 5 is a schematic diagram of an uplink ACK channel allocated by a PDCCH delivered by all DL CCs in a configured UL CC;
  • FIG. 6 is a schematic diagram of resource reservation and allocation of uplink ACK channel in the embodiment of FIG. 3;
  • FIG. 7 is a schematic diagram of another embodiment of the uplink ACK channel resource reservation and allocation in the embodiment of FIG. 3;
  • FIG. 8 is a schematic diagram of an embodiment of the present invention for allocating an uplink ACK channel for at least one DL CC;
  • FIG. 10 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of a UE according to an embodiment of the present invention. detailed description
  • the embodiment of the present invention provides a method and a device for allocating an ACK channel under carrier aggregation, and further describes the technical solution of the embodiment of the present invention in further detail.
  • the uplink ACK channel mapping start offset set by the i-th DL CC is ⁇ ⁇ ⁇ , then N ⁇ CCH , M - N ⁇ CCH , which is shown as the CCE (Control Channel Element) label of the i-th DL CC.
  • a method similar to n CCE to n CCH mapping in the LTE system is adopted in each component carrier.
  • the mapping manner from / to £ to n CCH is as follows:
  • the downlink associated subframe set index K 'Uf 'K is defined for each uplink subframe as shown in Table 1 below.
  • the problem of allocating an uplink ACK channel to the PDCCHs that are sent in multiple uplink subframes in one uplink subframe is solved.
  • the sub-frame set index is associated with the downlink.
  • the number of elements in the set M indicates that the uplink ACK channel is allocated to the PDCCHs that are transmitted in the M subframes of the uplink subframe; the order of the elements, that is, the subscript (0 ⁇ ⁇ _) 1), indicating the subframe mapping order of the M downlink subframes when the uplink ACK channel is allocated; the value of the element ⁇ indicates that the corresponding downlink subframe or special subframe is the corresponding number of subframes starting from the uplink subframe The corresponding subframe is followed by a downlink subframe set that feeds back ACK/NACK (ACKnowledgement/Negative-ACKnowledgement acknowledgement/deny response) in the uplink subframe.
  • ACK/NACK ACKnowledgement/Negative-ACKnowledgement acknowledgement/deny response
  • the downlink associated subframe set index in the uplink and downlink subframe ratio of the LTE TDD is assumed to be occupied by a certain PDCCH scheduled in a downlink subframe or a special subframe corresponding to the element ⁇ in the downlink associated subframe set index.
  • the initial CCE label is w CC £
  • the corresponding assigned uplink ACK channel label is / ⁇ CCH
  • a p value is selected from the set pe ⁇ 0, l, 2, 3 ⁇ such that N p ⁇ n CCE ⁇ N p +1 , then substitute the obtained ⁇ value
  • n uccH ⁇ M -m- ⁇ )xN p +mx N p+1 + n CCE + N CCH
  • PUCCH Physical Layer Uplink Control CHannel
  • N p max ⁇ 0, x ⁇ N c xp-4)]/ 36 J ⁇
  • N R D B L is the downlink system bandwidth expressed by the number of resource blocks
  • N is the number of consecutive subcarriers occupied by a resource block in the frequency domain
  • L" indicates Take the whole operation.
  • the LTE TDD system uses the uplink and downlink subframe ratios 1 and 3
  • the number of elements in the downlink associated subframe set index in the uplink subframe is different.
  • the uplink ACK channel mapping start offset A ⁇ ca/ is set, the largest element in the index of the uplink and downlink associated subframe set is determined according to the ratio. The number is set. For example, when the uplink and downlink subframe ratio is 3, the maximum number of elements in the downlink associated subframe set index is 3, that is, the uplink ACK channel resource is reserved according to the number of CCEs of the three downlink subframes.
  • the reserved uplink ACK channel resources may exceed actual requirements.
  • the resource blocks corresponding to the idle uplink ACK channel can be dynamically scheduled for PUSCH transmission in the LTE TDD system.
  • the uplink ACK channel is not idle continuous, it is difficult to simultaneously dynamically scheduled PUSCH transmissions.
  • mapping start offsets are respectively set for each of a plurality of DL CCs that map an uplink ACK channel with the same UL CC, corresponding to each DL CC
  • the maximum number of elements in the downlink associated subframe set index is set.
  • Figure 1 shows an example in which all component carriers adopt the uplink and downlink subframe ratio 3, and the same UL CC is sent in 3 DL CCs.
  • the PDCCH allocates the corresponding uplink ACK channel; from Table 1, it can be seen that there are at most 3 subframes in the downlink associated subframe set index when the uplink and downlink subframe ratio is 3, so the uplink ACK channel mapping start offset is set according to 3 sub-frames.
  • Frames are set; in subframes 3 and 4 of the UL CC, the uplink ACK channels allocated for the two subframes in the downlink associated subframe set index of each DL CC are respectively shown in gray and black blocks in FIG.
  • each small block corresponds to a plurality of consecutive uplink ACK channels.
  • the white space corresponding to the idle uplink ACK channel in the uplink ACK channel reserved for each DL CC is small. Blocks are not continuously distributed, and these discontinuous white patches cannot be utilized during data transmission, so waste is formed.
  • the embodiment of the present invention is capable of allocating corresponding ACK channels for actual used subframes of different carriers according to a carrier mapping sequence number and an actual number of subframes associated with each CC.
  • the allocation is continuous, so that the ACK channels corresponding to the subframes that are not actually used are also continuously allocated together, and the resource blocks corresponding to the consecutive idle ACK channels can be dynamically scheduled.
  • the ACK channel corresponding to the subframe is actually used in the prior art, the ACK channel corresponding to each carrier is separately notified of the initial offset, which can effectively reduce the signaling sent by the base station.
  • 2 is a schematic diagram of an ACK channel allocation embodiment of the present invention. This embodiment includes:
  • Step 201 At least one CC allocates a carrier mapping sequence number.
  • Step 202 Allocate an ACK channel to the at least one CC according to the carrier mapping sequence number and the actual number of subframes associated with each CC.
  • This embodiment is applicable to the LTE-A TDD and LTE-A FDD (LTE-A Frequency Division Duplex) systems in which the base station allocates an ACK channel to the CC.
  • the execution body of step 201 and step 202 in this embodiment is a base station, and the execution body of the further step 201 may be the first allocation module, and the execution body of step 202 may be the second allocation module of the base station.
  • the ACK channel is an uplink ACK channel accordingly; if the plurality of CCs are a plurality of UL CCs, the ACK channel is a downlink ACK channel accordingly.
  • the base station divides the CC into pairs and unpaired before allocating the ACK channel, and then assigns a carrier mapping sequence number to them, wherein the carrier mapping sequence number may be selected for the paired and unpaired CCs; or only the unpaired CC
  • the above carrier map sequence number is allocated. According to the above carrier mapping sequence number, and the actual number of subframes associated with each CC, the ACK channel label to be allocated is obtained by calculating a formula.
  • the actual number of subframes associated with each CC is a number determined in advance according to the downlink subframe ratio setting and the HARQ timing relationship on the component carrier; for the FDD system, the above-mentioned actual subframe associated with each CC The number is 1.
  • the embodiment of the present invention can be based on the carrier mapping sequence number and the actual number of subframes associated with each CC.
  • the ACK channels corresponding to the subframes that are not actually used are also continuously allocated together, and these consecutive The resource blocks corresponding to the idle ACK channel can be better dynamically scheduled.
  • the ACK channel corresponding to each carrier is separately notified of the initial offset, which can effectively reduce the signaling sent by the base station.
  • FIG. 3 is a schematic diagram of an embodiment of the present invention for assigning a carrier mapping sequence number to at least one DL CC, and then allocating an uplink ACK channel. This embodiment includes:
  • Step 301 The base station allocates a carrier mapping sequence number to the at least one DL CC.
  • Step 302 The base station allocates an uplink ACK channel to the at least one DL CC according to the carrier mapping sequence number and the actual number of subframes associated with each DL CC.
  • This embodiment is applicable to the LTE-A TDD and LTE-A FDD systems, in which the base station allocates an uplink ACK channel for the DL CC.
  • the executor of the step 301 and the step 302 is a base station, and the executor of the further step 301 may be the first allocation module of the base station, and the executor of the step 302 may be the second allocation module of the base station.
  • the base station Before allocating the uplink ACK channel, the base station divides the DL CC into pairs and unpaired, and then assigns a carrier mapping sequence number to them, and calculates the number of actual subframes associated with each CC according to the carrier mapping sequence number. Formula, get / ⁇ ca/ of the uplink ACK channel to be allocated. Each step is explained in detail below.
  • the LTE UE can only access one UL CC and one DL CC at the same time, and the LTE-A UE can simultaneously access £ UL CC and A D £ DL CC , where L and A D £ are positive An integer and the two can be unequal.
  • the LTE-A UE when the configured DL CC number A D £ > 1 and the PDCCH is dispersed and transmitted on the configured DL CC, according to the DL CC and the uplink ACK channel where the LTE-A UE PDCCH is located In the correspondence relationship of the UL CC, it is possible to allocate an uplink ACK channel to the PDCCH that is transmitted to the LTE-A UE under multiple DL CCs in the same UL CC.
  • a corresponding relationship is that the uplink ACK channels allocated for the PDCCHs sent by the multiple DL CCs are dispersed in the configured A U £ UL CCs, as shown in FIG.
  • DL CC 1 and DL CC 2 are configured for one LTE-A UE.
  • DLCC 3 ULCC 1 and DLCC 2
  • the PDCCH transmitted in DLCC1 allocates a corresponding uplink ACK channel in UL CC 1
  • the PDCCH transmitted in DL CC 2 and DL CC 3 allocates a corresponding uplink ACK channel in UL CC 2.
  • Another type of correspondence is to concentrate the uplink ACK channels allocated by the PDCCHs delivered by all configured DL CCs in a certain configured UL CC.
  • DLCC 1 and DLCC 2 are configured for a certain LTE-A UE.
  • the PDCCHs transmitted in DLCC 1, DL CC 2, and DL CC 3 are all concentrated on the uplink ACK channel corresponding to the UL CC 2 allocation. Note that in the description of the example, it is from the perspective of an LTE-AUE. From a system perspective, the correspondence between the DL CC where the PDCCH of each LTE-A UE and the uplink ACK channel are located may be the same or different.
  • the UL CC is The PDCCH issued by the DL CC ⁇ reserves and allocates an uplink ACK channel.
  • one ULCC and one DLCC can be simultaneously accessed by one LTE UE, it is called a component pair component carrier, and will be called each other as a pair of component carriers; otherwise, it is called a group.
  • Unpaired member carriers and will be referred to each other as the unpaired member carrier of the other party.
  • ULCC1 and DLCC1, ULCC2 and DLCC2 are such two component pairs of component carriers; in the remaining case, one ULCC and one DLCC constitute a set of unpaired component carriers.
  • step 301 when the base station is to allocate an uplink ACK channel for a PDCCH (( 0 ⁇ 1) DL CCs to be transmitted in one UL CC, the DL CCs are set to DL CC ⁇ , .
  • the method of mapping the sequence numbers is to assign carrier mapping numbers to the DL CCs, where they are paired.
  • the component carrier allocates the carrier mapping sequence number 0, and may also choose to allocate the maximum carrier mapping sequence number for the unpaired DL CC having the largest bandwidth; another method of allocating the carrier mapping sequence number is to allocate the carrier only for the unpaired DL CC in the DL DL CCs. Map sequence number.
  • assigning the same carrier mapping sequence number to two DL CCs causes the allocated uplink ACK channels to be in the same area, there may be uplink ACK channel collisions between DL CCs, and it is recommended to assign different carrier mapping numbers to different DL CCs.
  • a different carrier mapping sequence number is assigned to each DL CC, it can be regarded as a set.
  • ⁇ . , ⁇ , Mapping to the set ⁇ 0, ⁇ , ⁇ >-1 ⁇ ; when there is and only DL CC.
  • a pair of component carriers is assigned to different pairs of DL CCs in different DL CCs, it can be regarded as a set of ... _J to the set ⁇ , ⁇ , ⁇ - 2 ⁇ .
  • the base station can notify by:
  • the base station broadcasts the assigned carrier mapping sequence number in the paired DL CC broadcast of the UL CC.
  • the base station allocates an uplink ACK channel for DL CC1, 2, 3, and 4 in UL CC2, and only DL CC2 is a pair of component carriers of UL CC2, and when assigning a different carrier mapping sequence number to each DL CC, DL CC1, 2, 3, and 4 respectively notify carrier mapping numbers 3, 0, 1, and 2, or notify carrier mapping numbers 3, 1, and 2 for DL CC1, 3, and 4, respectively, and DL CC2 is automatically assigned carriers for paired component carriers.
  • the allocated carrier mapping sequence number is mapped according to the preset multiple DL CC labels.
  • the preset rule may be a one-to-one mapping of the carrier label to the carrier mapping sequence number.
  • the base station allocates an uplink ACK channel for DL CC1, 2, 3, and 4 in UL CC2, where only DL CC2 is a pair of component carriers of UL CC2, and when assigning a different carrier mapping sequence number to each DL CC, Paired DL CCs are starting - mapping, assigning carrier mapping numbers 3, 0, 1, and 2 for DL CC1, 2, 3, and 4, respectively; in unpaired DL CCs only
  • carrier mapping numbers 0, 1, and 2 may be assigned to DLCCs 1, 3, and 4, respectively, according to the mapping of the unpaired DL CC labels to the carrier mapping sequence number.
  • the base station For the LTE-A UE, the base station notifies at least the carrier mapping sequence number of the DL CC configured by the LTE-A UE by using UE-specific signaling. For example, the base station allocates an uplink ACK channel for the DLCCs 1, 2, 3, and 4 in the ULCC2, where only the DLCC2 is a pair of component carriers of the ULCC2, and the PDCCHs allocated by the LTE-A UEDL CC2 and the 4 are allocated in the uplink corresponding to the UL CC2 allocation.
  • the ACK channel when assigning a different carrier mapping sequence number to each DL CC, may respectively notify the carrier mapping sequence numbers 0 and 2 for the DL CCs 2 and 4 through the UE-specific signaling, or notify the carrier mapping sequence number 2 for the DL CC4,
  • DL CC2 is a paired component carrier that automatically assigns a carrier mapping sequence number 0; when only a different carrier mapping sequence number is assigned to an unpaired DL CC, the carrier mapping sequence number 2 can be notified to the DLCC 4 by UE-specific signaling.
  • step 302 when the base station allocates an uplink ACK channel to multiple DL CCs according to the carrier mapping sequence number and the actual number of subframes associated with each DL CC, an implementation manner of the most simple is based on the carrier mapping sequence number from small to large. A consecutive uplink ACK channel is sequentially allocated for a plurality of DL CCs.
  • the LTE TDD system can be similar to the uplink and downlink subframe ratio setting and the HARQ timing relationship of the component carrier, and the downlink associated subframe set index is defined for the plurality of DLCCs in the ULCC.
  • the uplink and downlink subframe ratio settings are the same, it is recommended to use the same downlink associated subframe set index as the LTE TDD system, as shown in Table 1.
  • the actual number of subframes associated with each DLCC is the number of elements in the downlink associated subframe set index defined for the current uplink subframe of the UL CC.
  • the uplink ACK of the LTE TDD is used in each carrier.
  • the principle of assigning an uplink ACK channel is as follows:
  • /(" CC£ ) represents a function of the CCE label £
  • N +1 represents the DL CC to which the carrier mapping sequence number is assigned - all PDCCHs in the downlink subframe occupy P and P + 1 orthogonal frequency division multiplexing symbols
  • the number of uplink ACK channels allocated at the time, ⁇ indicates the number of downlink associated subframe set index elements of the DL CC to which the carrier mapping sequence number is assigned, and ⁇ indicates the downlink associated subframe set of the DL CC to which the carrier mapping sequence number is assigned.
  • N CCH indicates the initial offset of the uplink ACK channel mapped according to the multiple DL CC CCE labels in all PUCCH formats 1/la/lb channel.
  • the CCE labeled n CCE is the CCE occupied by the PDCCH.
  • the PDCCH occupies multiple CCEs it may also be the starting CCE occupied by the PDCCH.
  • the actual number of subframes associated with each DLCC described above is one.
  • the specific process of allocating the uplink ACK channel is as follows :
  • /(" CC£ ) denotes the CCE label " ⁇ Function
  • N CCH denotes the uplink ACK channel mapped according to the plurality of DL CC CCE labels in all PUCCH formats 1/la/lb channel The starting offset in .
  • the CCE labeled n CCE is the CCE occupied by the PDCCH.
  • the PDCCH occupies multiple CCEs it may also be the starting CCE occupied by the PDCCH.
  • a carrier mapping sequence number is assigned to each of the DL CCs, there are usually only one pair of DL CCs among the DL CCs.
  • the PDCCH may be sent to the LTE UE and the uplink ACK channel is allocated in the ULCC. Therefore, the carrier mapping sequence number 0 is allocated to the paired DL CC, and the uplink ACK channel allocation mechanism of the LTE system is reused to maintain the LTE-A system pair.
  • J n CCE J n CCE
  • f (n CCE ) can be specific
  • W s D represents the width indicated by the number of resource blocks of the DL CC to which the carrier mapping number j is allocated, and is the resource compression factor of the DL CC to which the base station broadcast notification is assigned the carrier mapping sequence number, and “ ⁇ indicates the rounding operation.
  • L means rounding down
  • min y ⁇ means taking and y
  • max ⁇ jc,y ⁇ means taking the larger of JC and y
  • mod ⁇ jc,y ⁇ means that JC takes modulo operations on y.
  • the PDCCH may be sent by the LTE UE and the uplink ACK channel may be allocated in the foregoing UL CC.
  • the uplink ACK channel allocation mechanism of the LTE system needs to be completely reused to maintain the backward compatibility of the LTE-A system to the LTE system.
  • the foregoing specific process of allocating the uplink ACK channel is only used for the unpaired DL CC to which the carrier mapping sequence number is assigned, and the W CCH is the uplink ACK channel for the unpaired DL CC CCE label mapping notified by the base station broadcast in all PUCCH formats 1/la/lb.
  • the starting offset in the channel For LTE-ATDD systems, / ⁇ £ ) and can be specific
  • f (n CCE ) can be specific
  • W s D represents a bandwidth represented by the number of resource blocks of the DL CC to which the carrier mapping number j is allocated, and is a resource compression factor of the DL CC to which the base station broadcast notification is assigned with the carrier mapping sequence number, ", indicating an up-rounding operation , L" means rounding down, min ⁇ jc, y ⁇ means taking JC and y The smaller one, And the larger of y, mod ⁇ jc, y ⁇ means modulo operation on y.
  • the uplink ACK channel allocation process is described by taking the uplink ACK channel allocation principle of the LTE system in each component carrier as an example.
  • the allocated uplink ACK channel is always on the paired UL CCs of the DL CCs that are transmitting the PDCCH. Therefore, the uplink ACK channel allocation process of the PDCCH of the LTE-A UE that is not sent by the DL CC may not use the uplink ACK channel allocation principle of the LTE system, and may still be allocated to multiple DL CCs according to the carrier mapping sequence number from small to large. Continuous uplink ACK channel.
  • Embodiments of the present invention propose to allocate a carrier mapping sequence number for multiple DL CCs that map an uplink ACK channel in the same UL CC, and continuously allocate uplink ACKs for multiple DL CCs according to a carrier mapping sequence number and an actual number of subframes associated with each DL CC.
  • the channels such that the uplink ACK channels corresponding to the subframes that are not actually used are also continuously allocated together, and the resource blocks corresponding to the consecutive idle uplink ACK channels can better dynamically schedule PUSCH transmission.
  • LTE-A TDD system according to the example of FIG.
  • DL CC3 is a pair of DL CCs, and when carrier mapping numbers 1, 2, and 0 are allocated for DL CC1, 2, and 3, respectively, for each DL CC.
  • the uplink ACK channel is shown in Figure 6.
  • the uplink ACK channel allocated for each DL CC is as shown in FIG.
  • the embodiment of the present invention can organize the idle uplink ACK channel blocks corresponding to the DL CC into a continuous distribution.
  • the embodiment of the present invention prevents the base station from notifying an uplink ACK channel mapping start offset for each DL CC, and only needs to notify a common uplink ACK channel mapping start offset or notify one of the paired and unpaired DL CCs respectively.
  • the uplink ACK channel mapping start offset can effectively reduce the signaling sent by the base station.
  • FIG. 8 is a schematic diagram of an embodiment of the present invention for reserving an uplink ACK channel for at least one DL CC. This embodiment includes:
  • Step 801 The base station allocates a carrier mapping sequence number to the at least one DL CC.
  • Step 802 The base station reserves an uplink ACK channel for the at least one DL CC according to the maximum number of subframes associated with the DL CC.
  • Step 803 The base station allocates an uplink ACK channel to the at least one DL CC according to the foregoing carrier mapping sequence number and the actual number of subframes associated with each DL CC.
  • This embodiment is applicable to the LTE-A TDD and LTE-A FDD systems, in which the base station allocates an uplink ACK channel for the DL CC.
  • the execution body of the step 801, the step 802 and the step 803 is the base station, and the execution body of the step 801 may be the first allocation module, and the execution body of the step 802 may be the first reserved module of the base station, and the execution body of the step 803 It can be a second allocation module of the base station.
  • the base station Before allocating the uplink ACK channel, the base station first divides the DL CC into a paired and unpaired pair, and allocates a carrier mapping sequence number to them; and reserves an uplink ACK channel for multiple DL CCs according to the maximum number of subframes associated with the DL CC. ; mapping according to the carrier number, and the number associated with each sub-frame the actual CC by formula, to give an uplink ACK channel to be allocated ⁇ ⁇ .
  • Each step is explained in detail below.
  • step 802 an uplink ACK channel is reserved for a plurality of DL CCs according to the maximum number of subframes associated with the DL CC.
  • the LTE TDD system can be similar to the uplink and downlink subframe ratio setting and the HARQ timing relationship of the component carrier, and the downlink associated subframe set index is defined for the plurality of DL CCs in the UL CC.
  • the uplink and downlink subframe ratio settings are the same, it is recommended to use the same downlink associated subframe set index as the LTE TDD system.
  • a resource reservation manner of a single unit is based on the maximum number of elements in the downlink associated subframe set index of each DL CC, that is, the largest subframe associated with the DL CC.
  • the number is reserved for the uplink ACK channel for multiple DL CCs.
  • the maximum number of subframes associated with each DL CC described above is one.
  • the uplink ACK channel resource reserved for a plurality of DL CCs informs the UE by indicating the start offset N CCH in the uplink ACK channel mapped according to the plurality of DL CC CCE labels in all PUCCH format 1/1 a/lb channels.
  • the carrier mapping sequence number is assigned to each of the 01 ⁇ CCs
  • the paired DL CCs and the unpaired DL CCs use the same N CCH ⁇
  • the uplink is mapped according to multiple DL CC CCE labels.
  • the starting offset N CCH of the ACK channel in all PUCCH format 1/la/lb channels refers to N m .
  • step 803 the base station allocates an uplink ACK channel to the DL CCs for which the ACK channel is reserved according to the carrier mapping sequence number and the actual number of subframes associated with each DL CC.
  • the specific allocation method is the same as step 302, that is, the DL CC with the ACK channel reserved is allocated a set of ACK channels according to step 302.
  • the allocation of the uplink ACK channel to the PDCCH delivered by the unpaired DL CC may only occur in the LTE-A UE, so this part of the resource allocation may not consider the backward compatibility of the LTE UE.
  • the uplink ACK channel resources reserved for the unpaired DL CC may not be reserved according to the maximum number of CCEs as in the LTE system, but introduce some overhead compression mechanism.
  • An overhead compression mechanism is that the base station broadcasts the number of uplink ACK channels that are reserved for unpaired DL CCs, such as N or N.
  • Another type of overhead compression mechanism is a resource compression factor used by the base station to notify the unpaired DL CC of the uplink ACK channel, such as K, where is a positive integer, which may be the same or different for each unpaired DL CC.
  • K a resource compression factor used by the base station to notify the unpaired DL CC of the uplink ACK channel
  • K a positive integer
  • the number of uplink ACK channels reserved for the unpaired DL CC to which the carrier mapping sequence number is assigned is calculated according to the notified resource compression factor, for example, for the LTE-A TDD system.
  • LTE-A FDD system max ⁇ 0,L[N . x (N S cx P — 4)]/36_
  • P max represents the maximum number of orthogonal frequency division multiplexing symbols occupied by the PDCCH within the subframe.
  • the value of P may be 2 3 or 4
  • the embodiment of the present invention proposes to allocate a carrier mapping sequence number for multiple DL CCs that map the uplink ACK channel in the same UL CC, and reserve an uplink ACK channel for multiple DL CCs according to the maximum number of subframes associated with the DL CC, according to the carrier mapping sequence number and The actual number of subframes associated with each DL CC is used to continuously allocate uplink ACK channels for multiple DL CCs.
  • the embodiments of the present invention can organize the idle uplink ACK channel blocks corresponding to the DL CC into a continuous distribution, so that the PUSCH transmission can be dynamically supported on the resource blocks corresponding to the idle uplink ACK channel blocks.
  • FIG. 9 is a schematic diagram of an embodiment of allocating a downlink ACK channel according to the present invention.
  • the embodiment includes: Step 901: A base station allocates a carrier mapping sequence number to at least one UL CC;
  • Step 902 The base station allocates a downlink ACK channel to the at least one UL CC according to the carrier mapping sequence number and the actual number of subframes associated with each UL CC.
  • This embodiment is applicable to the LTE-A TDD and LTE-A FDD systems, in which the base station allocates a downlink ACK channel for the UL CC.
  • the base station Before assigning the downlink ACK channel, the base station first divides the UL CC into a paired and unpaired pair, and then allocates a carrier mapping sequence number according to the carrier mapping sequence number, and the actual number of subframes associated with each UL CC. The formula is calculated to obtain n p g : CH and n s H q ICH of the uplink ACK channel to be allocated. Each step is explained in detail below.
  • the PUSCH allocates a downlink ACK channel. From a system perspective, for a DL CC, as long as at least one LTE-A UE and/or an LTE UE transmits a corresponding downlink ACK channel to the PUSCH of the UL CC, the DL CC is UL.
  • the PUSCH transmitted by CC i reserves and allocates a downlink ACK channel.
  • one ULCC and one DLCC can be simultaneously accessed by one LTE UE, it is called a component pair component carrier, and will be called each other's paired component carriers; otherwise, it is called a group.
  • Unpaired member carriers and will be referred to each other as the unpaired member carrier of the other party.
  • a method for allocating carrier mapping sequence numbers is to allocate carrier mapping sequence numbers for A UL CCs, where carrier mapping sequence number 0 is allocated for paired UL CCs; another method for assigning carrier mapping sequence numbers is only for A UL CCs. Assigning a carrier mapping sequence number to the UL CC.
  • Carrier mapping sequence number When assigning different carrier mapping sequence numbers to A ULCCs, it can be regarded as a set, ⁇ -J to the set ⁇ 0, ⁇ , ⁇ -1 ⁇ --map; ULCC is a pair of component carriers, and when different carrier mapping numbers are assigned to only unpaired UL CCs in one ULCC, it can be regarded as a set ⁇ -J to a set ⁇ 0, ⁇ , ⁇ -2 ⁇ - mapping.
  • the base station can notify by the three methods in the embodiment of FIG. 3.
  • step 902 when a downlink ACK channel is allocated to multiple UL CCs according to a carrier mapping sequence number and an actual number of subframes associated with each UL CC, an implementation of the most compact is based on a carrier mapping sequence number from small to large.
  • a plurality of UL CCs sequentially allocate consecutive downlink ACK channels.
  • the LTE TDD system can be similar to the uplink and downlink subframe ratio setting and the HARQ timing relationship of the component carrier, and the uplink association is defined for the multiple ULCCs in the DLCC.
  • Frame number index table When the uplink and downlink subframe ratio settings are the same, it is recommended to use the same uplink associated subframe number index table as the LTE TDD system, as shown in Table 2.
  • the values 2, 1, and 0 in Table 2 indicate that the downlink subframe is a downlink ACK channel allocated for the PUSCH transmitted by the 2, 1 and 0 uplink subframes.
  • the actual number of subframes associated with each UL CC is the value of the corresponding number of subframes given in the uplink associated subframe number index table defined for the current downlink subframe of the DL CC.
  • the number of uplink subframes in the LTE-A FDD system is LTE.
  • the actual number of subframes associated with the DL CC is ⁇ ⁇
  • the downlink ACK channel is identified by the label pair ( H , iCH ), the specific process of assigning the downlink ACK channel is as follows :
  • the physical resource block number indicating the PUSCH corresponding to the allocated downlink ACK channel is obtained by the recently received demodulated pilot cyclic shift information of the corresponding PUSCH, or directly set to 0 when there is no indication.
  • the raiC H allocates the carrier mapping number j of the UL CC corresponding to the uplink and downlink subframe ratio 0 in the TDD system, and the PUSCH is located in the subframe 4 or the subframe 9 and takes a value of 1, other times, the value is 0, and the Ni OT is
  • the value of the short cyclic prefix subframe structure is 4, which is long.
  • the value of the cyclic prefix subframe structure is 2, and N ⁇ H represents the number of downlink ACK channel groups reserved for one subframe of the UL CC to which the carrier mapping sequence i is allocated in the DL CC.
  • the number of physical resource blocks occupied by the PUSCH is greater than 1, according to whether the PUSCH adopts a multiple input multiple output technology and a corresponding ACK/NACK information feedback scheme,
  • the PUSCH may be transmitted for the LTE UE and the downlink ACK channel is allocated in the DL CC, so the carrier mapping sequence number 0 is allocated for the paired UL CC, and the uplink ACK channel allocation mechanism of the LTE system is reused to maintain the LTE-A system.
  • the reserved downlink ACK channels are uniformly numbered according to the order in which the paired UL CCs are unpaired UL CCs. In the short cyclic prefix subframe structure, it may be specifically]), and may be specifically configured in the long cyclic prefix subframe structure.
  • N is the base station assigned the mapping sequence number j in the DL CC.
  • the carrier mapping sequence number is allocated only for the unpaired UL CCs in the UL CCs, there is usually one and only one pair of UL CCs among the A UL CCs.
  • the PUSCH may be transmitted for the LTE UE and the downlink ACK channel is allocated in the DL CC, and the downlink ACK channel allocation mechanism of the LTE system needs to be completely reused to maintain the backward compatibility of the LTE-A system to the LTE system.
  • N SS One parameter of the UL CC broadcast notification, N SS is the bandwidth of the UL CC to which the mapping sequence number j is allocated, represented by the number of resource blocks.
  • the base station may be the same value of the multiple broadcast notifications of the multiple UL CCs, or may be the same or different value that the base station broadcasts the notifications for the multiple UL CCs.
  • the embodiments of the present invention can use the same principle for the uplink ACK channel allocation and the downlink ACK channel allocation, and can implement the system design.
  • the base station is also prevented from transmitting a downlink ACK channel allocation for each UL CC to notify the start offset of a downlink ACK channel mapping, which can effectively reduce the signaling sent by the base station.
  • 10 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • the base station in this embodiment includes: a first allocation module 1001, configured to allocate a carrier mapping sequence number to at least one CC;
  • the second allocation module 1002 is configured to allocate an ACK channel to the at least one CC according to the carrier mapping sequence number and the actual number of subframes associated with each DL CC.
  • the base station may further include:
  • the first sending module 1003 is configured to receive a carrier mapping sequence number allocated by the first allocation module, and send a carrier mapping sequence number or a CC label.
  • the base station can also include:
  • the first reservation module 1004 is configured to reserve an uplink ACK channel for the at least one DL CC according to the maximum number of subframes associated with the DL CC, and send the reserved result to the second allocation module.
  • FIG. 11 is a schematic structural diagram of a UE according to an embodiment of the present invention, where the UE in this embodiment includes:
  • the third allocating module 1101 is configured to allocate an ACK channel to the at least one CC according to the foregoing carrier mapping sequence number and the actual number of subframes associated with each DL CC.
  • the UE further includes:
  • the first receiving module 1102 is configured to receive a carrier mapping sequence number or a CC label.
  • the first receiving module receives the CC label, it also includes:
  • the first mapping module 1103 is configured to map the allocated carrier mapping sequence number according to the received CC label according to a preset rule.
  • the embodiments of the present invention are used in the embodiments shown in FIG. 2, 3, 8, and 9, and are not described herein again.
  • the technical solution of the present invention may be embodied in the form of a software product, which may be stored in a non-volatile storage medium (which may be a CD-ROM, a USB flash drive, a mobile hard disk, etc.), including several The instructions are for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform the methods described above in accordance with various embodiments of the present invention.
  • a computer device which may be a personal computer, server, or network device, etc.
  • modules in the apparatus in the embodiments may be distributed in the apparatus of the embodiment according to the embodiment, or may be correspondingly changed in one or more apparatuses different from the embodiment.
  • the modules of the above embodiments may be combined into one module, or may be further split into a plurality of sub-modules.

Description

一种载波聚合下的 ACK信道分配方法、 设备及系统 技术领域
本发明实施例涉及通信技术,特别是涉及一种载波聚合下的 ACK信道 分配方法、 设备及系统。 背景技术
在由 LTE ( Long Term Evolution , 长期演进) 系统进一步演进的增强系 统 LTE-A ( Long Term Evolution - Advanced, 高级长期演进 ) 中, 载波聚合 ( Carrier Aggregation )技术被选中使用, 以支持更宽的带宽, 满足国际电 信联盟对于第四代通信技术的峰值数据速率要求。 一个 LTE系统, 仅使用 一个或一对成员载波( Component Carrier ), 载波聚合的 LTE-A中, 可以同 时使用多个成员载波, 以得到更宽传输带宽。 LTE-A 系统中的每个成员载 波都可能被配置成 LTE系统可兼容的, 各成员载波的频谱可以是相邻的连 谱。 在 LTE-A系统中, LTE UE ( LTE User Equipment, LTE用户设备 ) 只 能接入其中一个或一对成员载波进行数据收发,而 LTE-A UE根据其能力和 业务需求可以同时接入多个成员载波进行数据收发。 载波聚合技术有时也 叫频谱聚合 ( Spectrum Aggregation ) 技术, 或者带宽扩展 ( Bandwidth Extension )技术。
LTE-A 系统中, 每个成员载波都有独立的 HARQ ( Hybrid Automatic Repeat Request, 物理层混合自动重传请求)过程, 且为 LTE-A UE可以配 置不同的 UL CC ( UpLink Component Carrier, 上行成员载波)和 DL CC ( Downlink Component Carrier, 下行成员载波)数目。 当 LTE-A UE同时 接入多个 DL CC和多个 UL CC收发数据时, 可能要在一个 UL CC为多个 DL CC下发的多个 PDCCH ( Physical Downlink Control CHannel, 物理层下 行控制信道 )分别分配上行 ACK信道(上行应答信道),或要在一个 DL CC 为基站在多个 UL CC调度的多个 PUSCH ( Physical Uplink Shared CHannel, 物理层上行共享信道)分别分配下行 ACK信道。
现有技术中, LTE-A基站为多个 CC分配 ACK信道的方法是在为每个 CC分别设置不同的 ACK信道映射起始偏置,导致了 ACK信道分配的不连 续, 并且需要基站为每个起始偏置下发信令, 增加了基站的下发信令的数 量。 发明内容
本发明实施例提供了一种载波聚合下的 ACK信道分配方法、 设备及系 统。 用以连续地分配不同载波实际使用子帧对应的 ACK信道。
本发明实施例提供了一种载波聚合下的 ACK信道分配方法, 包括: 为至少一个成员载波 CC分配载波映射序号;
根据上述载波映射序号和与每个 CC关联的实际子帧数目来为至少一个
CC分配 ACK信道。
本发明实施例还提供了一种基站, 包括:
第一分配模块, 用于为至少一个 CC分配载波映射序号;
第二分配模块, 用于根据载波映射序号和与每个 DL CC关联的实际子 帧数目来为至少一个 CC分配 ACK信道。
本发明实施例还提供了一种 UE, 包括:
第三分配模块, 用于根据载波映射序号和与每个 DL CC关联的实际子 帧数目来为至少一个 CC分配 ACK信道。
本发明实施例提供的一种载波聚合下的 ACK信道分配方法、 设备及系 统, 能够根据载波映射序号和与每个 CC关联的实际子帧数目, 按照一定顺 序, 为不同载波的实际使用子帧分配对应的 ACK信道, 由于这种分配是连 续的, 从而没有实际使用的子帧对应的 ACK信道也被连续地分配在一起, 这些连续的空闲 ACK信道对应的资源块能够更好地被动态调度。 并且还可 以避免现有技术中不连续分配不同载波实际使用子帧对应的 ACK信道时, 对每一个 CC对应的 ACK信道分别通知起始偏置, 可以有效减少基站下发的 信令。 附图说明
图 1为现有技术 LTE-A TDD ( LTE-A Time Division Duplex, LTE-A时 分双工) 系统中为多个 DL CC分别设置不同的上行 ACK信道映射起始偏 置时的资源预留和分配示意图;
图 2为本发明 ACK信道分配实施例示意图;
图 3为本发明为至少一个 DL CC分配载波映射序号,再分配上行 ACK 信道的实施例示意图;
图 4为至少一个 DL CC下发的 PDCCH分配的上行 ACK信道分散在配 置的 £个 UL CC中的示意图;
图 5为所有 DL CC下发的 PDCCH分配的上行 ACK信道集中在配置的 某个 UL CC中的示意图;
图 6为图 3实施例上行 ACK信道资源预留和分配示意图;
图 7为图 3实施例上行 ACK信道资源预留和分配另一示意图; 图 8为本发明为至少一个 DL CC预留上行 ACK信道的实施例示意图; 图 9为本发明分配下行 ACK信道的实施例示意图;
图 10为本发明实施例基站的结构示意图;
图 11为本发明实施例 UE的结构示意图。 具体实施方式
本发明实施例提供了一种载波聚合下的 ACK信道分配方法及设备, 下 面对本发明实施例的技术方案做进一步的详细描述。
发明人在实现本发明实施例的过程中, 发现 LTE-A的现有技术中基站 为多个 DL CC分配上行 ACK信道的方法是在为每个 CC分别设置不同的 ACK信道映射起始偏置, 并且需要基站为每个起始偏置下发信令。 由于 ACK信道分配的不连续, 从而空闲的 ACK信道也不连续, 所以很难将这 些空闲的资源动态调度到数据传输上; 并且增加了基站的下发信令的数量。
例如第 i个 DL CC设置的上行 ACK信道映射起始偏置为 Ν εαΐΛ , 则 N ^CCH ,M - N ^CCH , 示为第 i个 DL CC的 CCE ( Control Channel Element, 控制信道单元)标号《CC£到上行 ACK信道标号 ^CH映射预留的上行 ACK 信道数目。在每个成员载波内采用类似 LTE系统中 nCCE到 n CCH映射的方式。
LTE TDD中 /^£到 n CCH的映射方式是: 根据上下行子帧配比和 HARQ 定时关系, 为每个上行子帧定义了下行关联子帧集索引 K 'Uf 'K 如下表 1所示,以解决在一个上行子帧为多个下行子帧下发的 PDCCH分别 分配上行 ACK信道的问题。 在下行关联子帧集索引 。 , ···, ― J中, 集 合中元素的数目 M表示在该上行子帧为 M个下行子帧下发的 PDCCH分别 分配上行 ACK信道; 元素的顺序、 即 的下标 (0≤ ≤ _ 1) , 表示 M个 下行子帧在分配上行 ACK信道时的子帧映射顺序;元素的取值 ^表示对应 的下行子帧或特殊子帧是从该上行子帧开始往前数相应数目子帧后相应的 那 个 子 帧 , 从 而 给 出 了 在 该 上 行子 帧 反馈 ACK/NACK ( ACKnowledgement/Negative-ACKnowledgement 确认应答 /否认应答) 的 下行子帧集合。 以上下行子帧配比 3和子帧 2为例, 在该上行子帧内反馈 M = 3个子帧的 ACK/NACK, 集合 中元素的数值 "7、 6、 11" 分别指明了 这 3个子帧分别是前一个无线帧的第 5、 6和 1子帧。
Figure imgf000006_0002
表 1 LTETDD各上下行子帧配比下的下行关联子帧集索引 对于在与下行关联子帧集索引 中元素 ^对应的下行子帧或特殊子帧 中调度的某个 PDCCH,假设其占用的起始 CCE标号为 wCC£,设对应分配的 上行 ACK信道标号为 /^CCH, 则先从集合 pe{0,l,2,3}中选择一个 p值使得 Np < nCCE < Np+1 , 再将得到的 ρ值代入
n uccH ={M -m-\)xNp +mx N p+1 + nCCE + N CCH
中计算得到分配的上行 ACK信道标号,其中 A^ca/表示根据 CCE标号映射 的上行 ACK信道在所有 PUCCH ( Physical Uplink Control CHannel, 物理层 上 行 控 制 信 道 ) 格 式 1/la/lb 信 道 中 的 起 始 偏 置 、 Np = max{0,
Figure imgf000006_0001
x {N c xp-4)]/ 36 J}、 NR D B L是用资源块数目表示的下行系统带 宽、 N 是一个资源块在频域上占用的连续子载波数目、 L」表示向下取整 运算。
从表 1可以看到, LTE TDD系统采用上下行子帧配比 1和 3时, 在不 同上行子帧内下行关联子帧集索引 中元素数目不同, 此时在设置上行 ACK信道映射起始偏置 A^ca/时, 要根据该配比上下行关联子帧集索引 中的最大元素数目来设置。 例如在上下行子帧配比 3 时, 下行关联子帧集 索引 中的最大元素数目为 3 , 即要根据 3个下行子帧的 CCE数目来预留 上行 ACK信道资源。 当一个上行子帧的下行关联子帧集索引 中元素数目 较少时, 例如上下行子帧配比 3中的子帧 3和子帧 4中, 预留的上行 ACK 信道资源会超出实际需求, 这些空闲上行 ACK信道对应的资源块在 LTE TDD系统中可以动态地被调度用于 PUSCH传输。
然而在将 LTE系统中 /^£到"^^映射的方式用到 LTE-A TDD系统中 后, 这些空闲的上行 ACK信道就不连续了, 很难同时动态地被调度用于 PUSCH传输。在 LTE-A系统中当为在相同 UL CC映射上行 ACK信道的多 个 DL CC中的每个 DL CC分别设置不同的上行 ACK信道映射起始偏置时, 也要根据与每个 DL CC对应的下行关联子帧集索引 中的最大元素数目来 设置。 图 1给出了一个例子, 其中所有成员载波都采用上下行子帧配比 3 , 且在相同的 UL CC为在 3个 DL CC下发的 PDCCH分配对应的上行 ACK 信道;从表 1可以看到上下行子帧配比 3时下行关联子帧集索引中最多有 3 个子帧, 所以设置上行 ACK信道映射起始偏置时根据 3个子帧来设置; 在 UL CC的子帧 3和 4中, 为各 DL CC的下行关联子帧集索引中的 2个子帧 分配的上行 ACK信道分别如图 1中灰色和黑色小块所示,还有与 1个子帧 对应的预留上行 ACK信道空闲, 如图 1中白色小块所示, 注意每个小块都 对应着多个标号连续的上行 ACK信道。 从图 1中可以看到, 为各 DL CC 预留的上行 ACK信道中空闲上行 ACK信道对应的白色小块是不连续分布 的, 这些不连续的白色小块无法在数据传输时被利用, 所以形成了浪费。
本发明实施例能够根据载波映射序号和与每个 CC 关联的实际子帧数 目, 按照一定顺序, 为不同载波的实际使用子帧分配对应的 ACK信道, 由 于这种分配是连续的,从而没有实际使用的子帧对应的 ACK信道也被连续 地分配在一起,这些连续的空闲 ACK信道对应的资源块能够更好地被动态 调度。 并且还可以避免现有技术中不连续分配不同载波实际使用子帧对应 的 ACK信道时, 对每一个载波对应的 ACK信道分别通知起始偏置, 可以 有效减少基站下发的信令。 图 2为本发明 ACK信道分配实施例示意图。 本实施例包括:
步骤 201 , 至少一个 CC分配载波映射序号;
步骤 202,根据上述载波映射序号和与每个 CC关联的实际子帧数目来为 至少一个 CC分配 ACK信道。
本实施例适用于 LTE-A TDD和 LTE-A FDD ( LTE-A Frequency Division Duplex, LTE-A频分双工) 系统中, 基站为 CC分配 ACK信道的过程中。 本 实施例中步骤 201和步骤 202的执行主体是基站, 进一步步骤 201的执行主体 可以是第一分配模块, 步骤 202的执行主体可以是基站第二分配模块。
如果上述多个 CC是多个 DL CC , 相应地上述 ACK信道为上行 ACK信 道;如果上述多个 CC是多个 UL CC,相应地上述 ACK信道为下行 ACK信道。 基站在分配 ACK信道之前, 先将 CC分为成对的和不成对的, 再为它们分配 载波映射序号, 其中可以选择为成对和不成对 CC分配上述载波映射序号; 或者只为不成对 CC分配上述载波映射序号。 根据上述载波映射序号, 和与 每个 CC关联的实际子帧数目,通过计算公式,得到要分配的 ACK信道标号。 对于 TDD系统, 上述与每个 CC关联的实际子帧数目是根据成员载波上下行 子帧配比设置和 HARQ定时关系预先定义确定的数目;对于 FDD系统,上述 与每个 CC关联的实际子帧数目是 1。下面通过三个实施例对每个步骤做详细 的说明。
本发明实施例能够根据载波映射序号和与每个 CC 关联的实际子帧数 目, 按照一定顺序, 为不同载波的实际使用子帧分配对应的 ACK信道, 由 于这种分配是连续的,从而没有实际使用的子帧对应的 ACK信道也被连续 地分配在一起,这些连续的空闲 ACK信道对应的资源块能够更好地被动态 调度。 并且还可以避免现有技术中不连续分配不同载波实际使用子帧对应 的 ACK信道时, 对每一个载波对应的 ACK信道分别通知起始偏置, 可以 有效减少基站下发的信令。 图 3为本发明为至少一个 DL CC分配载波映射序号,再分配上行 ACK 信道的实施例示意图, 本实施例包括:
步骤 301 , 基站为至少一个 DL CC分配载波映射序号;
步骤 302, 基站根据上述载波映射序号和与每个 DL CC关联的实际子帧 数目来为至少一个 DL CC分配上行 ACK信道。
本实施例适用于 LTE-A TDD和 LTE-A FDD系统中, 基站为 DL CC分配 上行 ACK信道的过程中。 步骤 301和步骤 302的执行主体是基站, 进一步步 骤 301的执行主体可以是基站第一分配模块, 步骤 302的执行主体可以是基 站第二分配模块。
基站在分配上行 ACK信道之前, 先将 DL CC分为成对的和不成对的, 再为它们分配载波映射序号,根据上述载波映射序号,和与每个 CC关联的 实际子帧数目, 通过计算公式, 得到要分配的上行 ACK信道的 /^ca/。 下 面对每个步骤做详细的说明。
在 LTE- A系统中, LTE UE只能同时接入一个 UL CC和一个 DL CC , LTE-A UE能同时接入 £个 UL CC和 A个 DL CC , 其中 L和 A都是正 整数且两者可以不等。
对 LTE-A UE, 当配置的 DL CC数目 A > 1且 PDCCH分散在配置的 DL CC上传输时, 根据 LTE-A UE PDCCH所在 DL CC和上行 ACK信道所 在 UL CC的对应关系, 有可能在相同 UL CC为在多个 DL CC下发给该 LTE-A UE的 PDCCH分配上行 ACK信道。一种对应关系是将为多个 DL CC 下发的 PDCCH分配的上行 ACK信道分散在配置的 A个 UL CC, 如图 4 示例,其中为某一个 LTE-AUE配置了 DLCC 1、 DLCC 2、 DLCC 3、 ULCC 1和 DLCC 2,在 DLCC1下发的 PDCCH在 ULCC 1分配对应的上行 ACK 信道, 在 DL CC 2和 DL CC 3下发的 PDCCH在 UL CC 2分配对应的上行 ACK信道。 另一种对应关系是将配置的所有 DLCC下发的 PDCCH分配的 上行 ACK信道集中在配置的某个 UL CC ,如图 5示例,其中为某一个 LTE-A UE配置了 DLCC 1、 DLCC 2、 DLCC 3、 ULCC 1和 DLCC 2, 在 DLCC 1、 DL CC 2和 DL CC 3下发的 PDCCH都集中在 UL CC 2分配对应的上行 ACK信道。 注意, 在对示例的描述中, 是从一个 LTE-AUE的角度出发的。 从系统的角度看,各 LTE-A UE的 PDCCH所在 DL CC和上行 ACK信道所 在 ULCC对应关系可以相同, 也可以不同。
从系统的角度看,对一个 UL CC ,只要有至少一个 LTE- A UE和 /或 LTE UE在 DL CCi下发的 PDCCH在该 UL CC分配对应的上行 ACK信道, 那 么就要在该 UL CC为 DL CC ί下发的 PDCCH预留和分配上行 ACK信道。
为描述方便, 在本发明实施例中,如果一个 ULCC和一个 DLCC能够 被一个 LTEUE同时接入,称为一组成对成员载波, 并将彼此称为对方的成 对成员载波; 否则称为一组不成对成员载波, 并将彼此称为对方的不成对 成员载波。 在图 4和图 5中, ULCC1和 DLCC1、 ULCC2和 DLCC2, 就 是这样的两组成对成员载波;其余情况下的一个 ULCC和一个 DLCC则构 成一组不成对成员载波。
在步骤 301中当基站要在一个 UL CC中为 (Λ0≥ 1)个 DL CC下发的 PDCCH分配上行 ACK信道时, 设这 Λ)个 DLCC为 DLCC^, .,^— —种 分配载波映射序号的方法是为 Λ个 DL CC分配载波映射序号, 其中为成对 成员载波分配载波映射序号 0 ,还可以选择为具有最大带宽的不成对 DL CC 分配最大载波映射序号; 另一种分配载波映射序号的方法是只为 Λ个 DL CC中的不成对 DL CC分配载波映射序号。 考虑到为两个 DL CC分配相同 载波映射序号会导致分配的上行 ACK信道处在相同区域,可能存在 DL CC 间的上行 ACK信道冲突, 推荐为不同 DL CC分配不同的载波映射序号。 当为 Λ)个 DL CC 分别分配不同载波映射序号时, 可以看作一个集合
{。,···, — 到集合 {0,···,Α> -1}的 映射;当有且只有 DL CC。是成对成员载 波、只为 Λ个 DL CC中的不成对 DL CC分别分配不同载波映射序号时,可 以看作集合 … _J到集合 {Ο,···,^ - 2}的——映射。
在分配载波映射序号后,如果需要将分配的载波映射序号通知给 LTE-A UE, 基站可以通过如下方式通知:
方式一, 基站在 UL CC的成对 DL CC广播通知分配的载波映射序号。 例如, 基站在 UL CC2为 DL CC1、 2、 3和 4分配上行 ACK信道, 且只有 DL CC2是 UL CC2的成对成员载波,在为每个 DL CC分配一个不同的载波 映射序号时, 可以为 DL CC1、 2、 3和 4分别通知载波映射序号 3、 0、 1 和 2, 或者为 DL CC1、 3和 4分别通知载波映射序号 3、 1和 2, DL CC2 是成对成员载波自动分配载波映射序号 0; 在只为不成对 DL CC分配一个 不同载波映射序号时, 可以为 DL CC1、 3和 4分别通知载波映射序号 0、 1 和 2。
方式二, 根据预设规则按照通知的多个 DL CC标号来映射分配的载波 映射序号, 进一步地, 上述预设规则可以是载波标号到载波映射序号的一 一映射。 例如, 基站在 UL CC2为 DL CC1、 2、 3和 4分配上行 ACK信道, 其中只有 DL CC2是 UL CC2的成对成员载波, 在为每个 DL CC分配一个 不同的载波映射序号时, 可以按照成对 DL CC为起始的——映射, 为 DL CC1、 2、 3和 4分别分配载波映射序号 3、 0、 1和 2; 在只为不成对 DL CC 分配一个不同载波映射序号时, 可以按照不成对 DL CC标号的升序到载波 映射序号的——映射,为 DLCC1、 3和 4分别分配载波映射序号 0、 1和 2。
方式三, 对 LTE-AUE, 基站通过 UE专有的信令至少通知给该 LTE-A UE配置的 DLCC的载波映射序号。 例如, 基站在 ULCC2为 DLCC1、 2、 3和 4分配上行 ACK信道,其中只有 DLCC2是 ULCC2的成对成员载波, 且配置某 LTE-A UEDL CC2和 4下发的 PDCCH在 UL CC2分配对应的上 行 ACK信道, 在为每个 DL CC分配一个不同的载波映射序号时, 可以通 过 UE专有的信令为 DL CC2和 4分别通知载波映射序号 0和 2, 或者为 DL CC4通知载波映射序号 2, DL CC2是成对成员载波自动分配载波映射 序号 0; 在只为不成对 DLCC分配一个不同载波映射序号时, 可以通过 UE 专有的信令为 DLCC4通知载波映射序号 2。
在步骤 302中, 基站根据上述载波映射序号和与每个 DLCC关联的实际 子帧数目来为多个 DL CC分配上行 ACK信道时, 一种最筒单的实现方式是 根据载波映射序号从小到大为多个 DL CC依次分配连续的上行 ACK信道。
对 LTE-A TDD系统, 可以类似 LTE TDD系统, 才艮据成员载波上下行子 帧配比设置和 HARQ定时关系,在 ULCC为多个 DLCC分别定义下行关联子 帧集索引。 当上下行子帧配比设置相同时, 推荐采用与 LTE TDD系统相同 的下行关联子帧集索引, 如表 1所示。 上述与每个 DLCC关联的实际子帧数 目是为 UL CC的当前上行子帧定义的下行关联子帧集索引中元素的数目。 在分配了载波映射序号 的 DLCC中,对于与下行关联子帧集索引的第 m个 元素 km对应的下行子帧中标号为 nCCE的 CCE,当每个载波内都采用 LTE TDD 的上行 ACK信道分配原理时, 分配上行 ACK信道的具体过程如下:
(1) 先 从 集 合 pe{0,l,2,3} 中 选 择 一 个 p 值 使 得 NLp <f(nCCE)<N p+i;
(2) 设分配的上行 ACK信道标号为 将得到的 P值代入 CH = fl +(Mj -m-l)xN^p +mxN p+l+f(nCCE) + N UCCH 中计算得到分配的上行 ACK信道标号。
其中, /("CC£)表示 CCE标号 £的函数, 和 N +1表示分配了载波映 射序号 的 DL CC—个下行子帧内所有 PDCCH占用 P和 P + 1个正交频分复 用符号时分配的上行 ACK信道数目, Μ^ΡΜ·表示分配了载波映射序号 "和 的 DLCC的下行关联子帧集索引元素数目, ^表示为分配了载波映射序 号 "的 DL CC的下行关联子帧集索引第 个元素对应的下行子帧预留的上 行 ACK信道数目, N CCH表示根据多个 DL CC CCE标号映射的上行 ACK信 道在所有 PUCCH格式 1/la/lb信道中的起始偏置。
进一步地, 标号为 nCCE的 CCE是 PDCCH所占用的 CCE。 当 PDCCH 占用多个 CCE时还可以是 PDCCH占用的起始 CCE。
对 LTE-AFDD系统, 上述与每个 DLCC关联的实际子帧数目是 1。 在分 配了载波映射序号 j的 DL CC中,对于对应的下行子帧中标号为 CE的 CCE, 当每个载波内都采用 LTE FDD的上行 ACK信道分配原理时, 分配上行 ACK 信道的具体过程如下:
设 分 配 的 上 行 ACK 信 道 标 号 为 IJCCH , 根 据 n UCcH = ^ +/("CC£) + N CCH计算得到分配的上行 ACK信道标号。 其中, /("CC£)表示 CCE标号" ^的函数, 表示为分配了载波映射序 号 "的 DLCC的下行子帧预留的上行 ACK信道数目, N CCH表示根据多个 DL CC CCE标号映射的上行 ACK信道在所有 PUCCH格式 1/la/lb信道中的起始 偏置。
进一步地, 标号为 nCCE的 CCE是 PDCCH所占用的 CCE。 当 PDCCH占用 多个 CCE时还可以是 PDCCH占用的起始 CCE。 在为 Λ)个 DL CC分别分配载波映射序号时, 通常 Λ)个 DL CC中有且只 有一个成对 DL CC。 成对 DL CC里面可能为 LTE UE下发 PDCCH并在上述 ULCC分配上行 ACK信道, 所以为成对 DLCC分配载波映射序号 0, 并重用 LTE系统的上行 ACK信道分配机制,以维持 LTE-A系统对 LTE系统的后向兼 容性。 对 LTE-A TDD系统, J nCCE )和 可以具体为
f(nCCE) = nCCE , N p
Figure imgf000014_0001
, 或者
如 ' = 0
f(nCCE)
mod(wCC£ +mod(N^ +1,2) x 其它
N' , 或者 sc xp-4)]/36
Figure imgf000014_0002
对 LTE- A FDD系统, f (nCCE )可以具体为
f(nCCE ) = nCCE , 或者
如 ' = 0
f(nCCE)- mod(wCC£ +mod(N CA +l,2)x ,N CK) 其它 或者 如 ' = 0 其它
Figure imgf000014_0003
其中, Ws D 表示分配了载波映射序号 j的 DL CC的用资源块数目表示的 宽, 是基站广播通知的分配了载波映射序号 '的 DL CC的资源压缩因 , 「 Ί表示向上取整运算, L」表示向下取整运算, min ,y}表示取 和 y中 较小者运算, max{jc,y}表示取 JC和 y中较大者运算, mod{jc,y}表示 JC对 y取模 运算。
在只为 ^个01^ CC中的不成对 DL CC分别分配载波映射序号时, 通常 个 DL CC中有且只有一个成对 DL CC。 成对 DL CC里面可能为 LTE UE下 发 PDCCH并在上述 UL CC分配上行 ACK信道, 需要完全重用 LTE系统的上 行 ACK信道分配机制, 以维持 LTE-A系统对 LTE系统的后向兼容性。前述分 配上行 ACK信道的具体过程只用于分配了载波映射序号的不成对 DL CC , W CCH是基站广播通知的为不成对 DL CC CCE标号映射的上行 ACK信道在 所有 PUCCH格式 1/la/lb信道中的起始偏置。 对 LTE-ATDD系统, / ^£)和 可以具体为
f(nCCE) = nCCE , Nj,p = max{0,L[N x Nsc x P"4)]/36j , 或者
NLp
Figure imgf000015_0001
max{0丄 [N ,· x (Nsc xp- 4)]/ 36」}
Figure imgf000015_0002
Figure imgf000015_0004
对 LTE- A FDD系统, f (nCCE )可以具体为
f(nCCE ) = nCCE , 或者 f(nCCE ) = mod(wCC£ + CK Ό , 或者
Figure imgf000015_0003
其中, Ws D 表示分配了载波映射序号 j的 DL CC的用资源块数目表示的 带宽, 是基站广播通知的分配了载波映射序号 '的 DL CC的资源压缩因 子, 「,表示向上取整运算, L」表示向下取整运算, min{jc,y}表示取 JC和 y中 较小者运算,
Figure imgf000016_0001
和 y中较大者运算, mod{jc, y}表示 对 y取模 运算。
其中, 在上面讨论上行 ACK信道分配过程时, 都是以每个成员载波内 都采用 LTE系统的上行 ACK信道分配原理为例来进行说明的。 对 LTE UE, 分配的上行 ACK信道总在下发 PDCCH的 DL CC的成对 UL CC上。 所以不成 对 DL CC下发的 LTE-A UE的 PDCCH的上行 ACK信道分配过程可以不采用 LTE系统的上行 ACK信道分配原理, 此时仍然可以根据载波映射序号从小 到大为多个 DL CC依次分配连续的上行 ACK信道。
本发明实施例提出为在相同 UL CC映射上行 ACK信道的多个 DL CC分 配载波映射序号, 根据载波映射序号和与每个 DL CC关联的实际子帧数目 来为多个 DL CC连续分配上行 ACK信道, 从而没有实际使用的子帧对应的 上行 ACK信道也被连续地分配在一起, 这些连续的空闲上行 ACK信道对应 的资源块能够更好地动态调度 PUSCH传输。 LTE-A TDD系统中, 按照图 1 的例子, 4叚设 DL CC3是成对 DL CC, 当为 DL CC1、 2和 3分别分配载波映射 序号 1、 2和 0时, 为各 DL CC分配的上行 ACK信道如图 6所示。 当只为不成 对 DL CC1和 2分别分配载波映射序号 0和 1 , 为成对和不成对 DL CC的上行
Figure imgf000016_0002
, 为各 DL CC分 配的上行 ACK信道如图 7所示。 从图 6和图 7可以看到, 本发明实施例能够将 DL CC对应的空闲上行 ACK信道块组织成连续分布的。
同时, 本发明实施例避免基站针对每个 DL CC通知一个上行 ACK信道 映射起始偏置, 只需要通知一个共同的上行 ACK信道映射起始偏置或为成 对和不成对 DL CC分别通知一个上行 ACK信道映射起始偏置, 可以有效减 少基站下发的信令。
在 LTE- A FDD系统中使用本实施例中提供的方法, 可以保持 LTE- A TDD和 FDD系统的相同设计。 图 8为本发明为至少一个 DL CC预留上行 ACK信道的实施例示意图。 本实施例包括:
步骤 801 , 基站为至少一个 DL CC分配载波映射序号;
步骤 802, 基站根据与 DL CC关联的最大子帧数目为至少一个 DL CC预 留上行 ACK信道;
步骤 803 , 基站根据上述载波映射序号和与每个 DL CC关联的实际子帧 数目来为至少一个 DL CC分配上行 ACK信道。
本实施例适用于 LTE-A TDD和 LTE-A FDD系统中, 基站为 DL CC分配 上行 ACK信道的过程中。 本实施例中步骤 801、 步骤 802和步骤 803的执行主 体是基站, 进一步步骤 801的执行主体可以是第一分配模块, 步骤 802的执 行主体可以是基站第一预留模块, 步骤 803的执行主体可以是基站第二分配 模块。
基站在分配上行 ACK信道之前, 先将 DL CC分为成对的和不成对的, 为它们分配载波映射序号; 再根据与 DL CC关联的最大子帧数目为多个 DL CC预留上行 ACK信道; 根据上述载波映射序号, 和与每个 CC关联的实际子 帧数目, 通过计算公式, 得到要分配的上行 ACK信道的 ^。 下面对每个 步骤做详细的说明。
步骤 801分配载波映射序号的方法与步骤 301相同, 在这里不再赘述。 在步骤 802中根据与 DL CC关联的最大子帧数目为多个 DL CC预留上行 ACK信道。 对 LTE-A TDD系统, 可以类似 LTE TDD系统, 才艮据成员载波上 下行子帧配比设置和 HARQ定时关系,在 UL CC为多个 DL CC分别定义下行 关联子帧集索引。 当上下行子帧配比设置相同时, 推荐采用与 LTE TDD系 统相同的下行关联子帧集索引。 一种筒单的资源预留方式是根据每个 DL CC的下行关联子帧集索引中的最大元素数目、 即与 DL CC关联的最大子帧 数目来为多个 DL CC预留上行 ACK信道。 对 LTE- A FDD系统, 上述与每个 DL CC关联的最大子帧数目是 1。
为多个 DL CC预留的上行 ACK信道资源通过表示根据多个 DL CC CCE 标号映射的上行 ACK信道在所有 PUCCH格式 1/1 a/lb信道中的起始偏置 N CCH来通知 UE。 在为 ^个01^ CC分别分配载波映射序号时, 成对 DL CC 和不成对 DL CC使用相同的 N CCH · 而在只为 个 DL CC中的不成对 DL CC 分别分配载波映射序号时, 成对 DL CC和不成对 DL CC使用不同的 N CCH , 分别设为 N CCH, 和 ? 此时根据多个 DL CC CCE标号映射的上行
ACK信道在所有 PUCCH格式 1/la/lb信道中的起始偏置 N CCH指的是 Nm
在步骤 803中基站根据上述载波映射序号和与每个 DL CC关联的实际 子帧数目来为多个 DL CC分配上行 ACK信道是指基站为预留了 ACK信道的 DL CC分别分配上行 ACK信道, 具体的分配方法与步骤 302相同, 即对预留 了 ACK信道的 DL CC按照步骤 302分配一套 ACK信道。
对一个 UL CC, 为不成对 DL CC下发的 PDCCH分配上行 ACK信道只可 能发生于 LTE-A UE,所以这部分资源分配可以不考虑 LTE UE后向兼容性的 问题。为了减少上行 ACK信道的资源开销,为不成对 DL CC预留的上行 ACK 信道资源可以不用像 LTE系统那样根据最大 CCE数目来进行预留,而是引入 一些开销压缩机制。 一种开销压缩机制是基站广播通知为不成对 DL CC预 留的上行 ACK信道数目, 例如 N 或 N 。 另一种开销压缩机制是基站广 通通知为不成对 DL CC预留上行 ACK信道时所使用的资源压缩因子, 例如 K , 其中 是正整数, 对各不成对 DL CC可以相同, 也可以不同。 在 通知资源压缩因子时,为分配了载波映射序号 j的不成对 DL CC预留的上行 ACK信道数目根据通知的资源压缩因子来计算, 例如对 LTE-A TDD系统 maX{0 [N x (NSc x P ― 4)] / 36_
Ν'; ,L
LTE-A FDD 系 统 max{0,L[N . x (NSc x P — 4)]/36_
, 其中 Pmax表示子帧内 PDCCH占用 的最大正交频分复用符号数目。在 LTE系统中,根据下行系统带宽和是否是 携带 TDD系统同步信道的子帧, P 的取值可以为 2 3或 4
本发明实施例提出为在相同 UL CC映射上行 ACK信道的多个 DL CC分 配载波映射序号,根据与 DL CC关联的最大子帧数目为多个 DL CC预留上行 ACK信道, 根据载波映射序号和与每个 DL CC关联的实际子帧数目来为多 个 DL CC连续分配上行 ACK信道。 本发明实施例能够将 DL CC对应的空闲 上行 ACK信道块组织成连续分布的, 因而能够更好地支持在与这些空闲上 行 ACK信道块对应的资源块上动态调度 PUSCH传输。
图 9为本发明分配下行 ACK信道的实施例示意图。 本实施例包括: 步骤 901 , 基站为至少一个 UL CC分配载波映射序号;
步骤 902, 基站根据上述载波映射序号和与每个 UL CC关联的实际子帧 数目来为至少一个 UL CC分配下行 ACK信道。
本实施例适用于 LTE-A TDD和 LTE-A FDD系统中,基站为 UL CC分配下 行 ACK信道的过程中。 基站在分配下行 ACK信道之前, 先将 UL CC分为成 对的和不成对的, 再为它们分配载波映射序号, 根据上述载波映射序号, 和与每个 UL CC关联的实际子帧数目, 通过计算公式, 得到要分配的上行 ACK信道的 np g:CH和 ns H q ICH。 下面对每个步骤做详细的说明。 对 LTE-A UE, 当配置的 UL CC数目 £ > 1时, 根据 LTE-A UE PUSCH 所在 UL CC和下行 ACK信道所在 DL CC的对应关系, 有可能在相同 DL CC 为在多个 UL CC传输的 PUSCH分配下行 ACK信道。 从系统的角度看, 对一个 DL CC , 只要有至少一个 LTE- A UE和 /或 LTE UE在 UL CC传输的 PUSCH在该 DL CC分配对应的下行 ACK信道, 那么就 要在该 DL CC为 UL CC i传输的 PUSCH预留和分配下行 ACK信道。
为描述方便,在本发明实施例中,如果一个 ULCC和一个 DLCC能够被 一个 LTEUE同时接入, 称为一组成对成员载波, 并将彼此称为对方的成对 成员载波; 否则称为一组不成对成员载波, 并将彼此称为对方的不成对成 员载波。
在步骤 901中对一个 DL CC, 为 A (A≥l)个 UL CC传输的 PUSCH分配下 行 ACK信道时, 设这 个111^( (为1;1^( (^。, ',^-1, 一种分配载波映射序号 的方法是为 A个 UL CC分配载波映射序号,其中为成对 UL CC分配载波映射 序号 0; 另一种分配载波映射序号的方法是只为 A个 UL CC中的不成对 UL CC分配载波映射序号。 考虑到为两个 UL CC分配相同载波映射序号会导致 分配的下行 ACK信道处在相同区域, 可能存在 UL CC间的下行 ACK信道冲 突,推荐为不同 ULCC分配不同的载波映射序号。 当为 A个 ULCC分别分配 不同载波映射序号时,可以看作一个集合 , ··· -J到集合 {0,···,Α-1}的—— 映射; 当有且只有 ULCC。是成对成员载波、只为 Α个 ULCC中的不成对 UL CC分别分配不同载波映射序号时, 可以看作集合 { ^-J到集合 {0,···,Α-2}的——映射。
在分配载波映射序号后,如果需要将分配的载波映射序号通知给 LTE-A UE, 基站可以通过图 3实施例中的三种方式通知。
在步骤 902中, 根据载波映射序号和与每个 UL CC关联的实际子帧数目 来为多个 UL CC分配下行 ACK信道时, 一种最筒单的实现方式是根据载波 映射序号从小到大为多个 UL CC依次分配连续的下行 ACK信道。
对 LTE-A TDD系统, 可以类似 LTE TDD系统, 才艮据成员载波上下行子 帧配比设置和 HARQ定时关系,在 DLCC为多个 ULCC分别定义上行关联子 帧数索引表。 当上下行子帧配比设置相同时, 推荐采用与 LTE TDD系统相 同的上行关联子帧数索引表, 如表 2所示。 表 2中数值 2、 1和 0分别表示该下 行子帧为 2、 1和 0个上行子帧传输的 PUSCH分配对应下行 ACK信道。上述与 每个 UL CC关联的实际子帧数目是为 DL CC的当前下行子帧定义的上行关 联子帧数索引表中给出的对应子帧数目取值。
Figure imgf000021_0002
表 2 LTE TDD各上下行子帧配比下的上行关联子帧数索引表 对 LTE-A FDD系统, 上述与每个 UL CC关联的实际子帧数目是 1。 对分配了载波映射序号 J的 UL CC,设其与 DL CC关联的实际子帧数目 是 Μ · , 且下行 ACK信道通过标号对 ( H, iCH)来标识, 则分配下行 ACK 信道的具体过程如下:
-1
^ group M N group j lowest _index Λ group j N group
1V1 ai .a ^ V1 , α=0
yjsecl ― ΤΤΊπΗ ? Κί PHICH
~
Figure imgf000021_0001
其中, 表示与分配的下行 ACK信道对应的 PUSCH占用的物理 资源块标号, ¾ ^通过最近收到的对应 PUSCH的解调导频循环移位信息来 得到指示、或者在没有指示时直接设置为 0, raiCH在 TDD系统中分配了载波 映射序号 j的 UL CC对应上下行子帧配比 0且 PUSCH位于子帧 4或子帧 9时取 值为 1、 其它时候取值为 0, Ni OT在短循环前缀子帧结构中取值为 4、 在长 循环前缀子帧结构中取值为 2 , N^H 表示 DL CC中为分配了载波映射序号 i的 UL CC的一个子帧预留的下行 ACK信道组数目。
进一步地, 当 PUSCH占用的物理资源块数目大于 1时, 根据 PUSCH是 否采用多输入多输出技术以及相应的 ACK/NACK信息反馈方案,
示 PUSCH占用的一个或多个标号最小物理资源块的标号。
在为 A个 UL CC分别分配载波映射序号时,通常 A个 UL CC中有且只有 一个成对 UL CC。 成对 UL CC里面可能为 LTE UE传输 PUSCH并在上述 DL CC分配下行 ACK信道, 所以为成对 UL CC分配载波映射序号 0, 并重用 LTE 系统的上行 ACK信道分配机制, 以维持 LTE-A系统对 LTE系统的后向兼容 性。 此时按照先成对 UL CC再不成对 UL CC的顺序为预留的下行 ACK信道 统一编号 。 在短循环前缀子 帧 结构 中 可 以 具体为 )] 、 在长循环前缀子帧结构 中 可以具体为
Figure imgf000022_0001
其中 N是基站在上述 DL CC为分配了映射序号 j的
UL CC广播通知的一个参数, NSS在 · = 0时是用资源块数目表示的上述 DL CC的带宽、 在 ' > 0时是用资源块数目表示的分配了映射序号 '的 UL CC的 带宽。
在只为 Α个 UL CC中的不成对 UL CC分别分配载波映射序号时,通常 A 个 UL CC中有且只有一个成对 UL CC。 成对 UL CC里面可能为 LTE UE传输 PUSCH并在上述 DL CC分配下行 ACK信道, 需要完全重用 LTE系统的下行 ACK信道分配机制,以维持 LTE- A系统对 LTE系统的后向兼容性。前述分配 下行 ACK信道的具体过程只用于分配了载波映射序号的不成对 UL CC, 将 为不成对 UL CC预留的下行 ACK信道统一编号, 并将为成对 UL CC和不成 对 UL CC预留的下行 ACK信道分开编号。 在短循环前缀子帧结构中 可以具体为 N H J = rN (N«s /8)] ¾ 在长循环前缀子帧结构中可以具体为
Figure imgf000023_0001
其中 N是基站在上述 DL CC为分配了映射序号 j的
UL CC广播通知的一个参数, NSS是用资源块数目表示的分配了映射序号 j 的 UL CC的带宽。
其中, 可以是基站为多个 UL CC共同广播通知的一个相同数值, 也 可以是基站为多个 UL CC分别广播通知的相同或不同数值。
本发明实施例能够让上行 ACK信道分配和下行 ACK信道分配采用相同 的原理, 能够筒化系统设计。 还避免了基站为每个 UL CC的下行 ACK信道 分配通知一个下行 ACK信道映射的起始偏置, 可以有效减少基站下发的信 令。 图 10为本发明实施例基站的结构示意图, 本实施例中的基站包括: 第一分配模块 1001 , 用于为至少一个 CC分配载波映射序号;
第二分配模块 1002, 用于根据上述载波映射序号和与每个 DL CC关联 的实际子帧数目来为至少一个 CC分配 ACK信道。
如果基站发送载波映射序号或 CC标号, 则基站还可以包括:
第一发送模块 1003 , 用于接收第一分配模块分配的载波映射序号, 并 发送载波映射序号或 CC标号;
基站还可以包括:
第一预留模块 1004, 用于根据与 DL CC关联的最大子帧数目为至少一 个 DL CC预留上行 ACK信道, 并将预留的结果发送给第二分配模块。
本发明实施例用于图 2、 3、 8、 9所示的实施例中, 在这里不再赘述。 图 11为本发明实施例 UE的结构示意图, 本实施例中的 UE包括: 第三分配模块 1101 , 用于根据上述载波映射序号和与每个 DL CC关联 的实际子帧数目来为至少一个 CC分配 ACK信道。
如果基站发送载波映射序号或 CC标号, 则 UE还包括:
第一接收模块 1102, 用于接收载波映射序号或 CC标号;
如果第一接收模块接收的是 CC标号, 还包括:
第一映射模块 1103, 用于根据预设规则按照接收的 CC标号来映射分配 的载波映射序号。
本发明实施例用于图 2、 3、 8、 9所示的实施例中, 在这里不再赘述。 通过以上的实施方式的描述, 本领域的技术人员可以清楚地了解到本 发明可以通过硬件实现, 也可以借助软件加必要的通用硬件平台的方式来 实现。 基于这样的理解, 本发明的技术方案可以以软件产品的形式体现出 来, 该软件产品可以存储在一个非易失性存储介质 (可以是 CD-ROM, U 盘, 移动硬盘等) 中, 包括若干指令用以使得一台计算机设备(可以是个 人计算机, 服务器, 或者网络设备等)执行本发明各个实施例上述的方法。
本领域技术人员可以理解附图只是一个优选实施例的示意图, 附图中 的模块或流程并不一定是实施本发明所必须的。
本领域技术人员可以理解实施例中的装置中的模块可以按照实施例描 述进行分布于实施例的装置中, 也可以进行相应变化位于不同于本实施例 的一个或多个装置中。 上述实施例的模块可以合并为一个模块, 也可以进 一步拆分成多个子模块。
上述本发明实施例序号仅仅为了描述, 不代表实施例的优劣。
以上公开的仅为本发明的几个具体实施例, 但是, 本发明并非局限于 此, 任何本领域的技术人员能思之的变化都应落入本发明的保护范围。

Claims

权 利 要 求
1.一种载波聚合下的 ACK信道分配方法, 其特征在于, 包括: 为至少一个成员载波 CC分配载波映射序号;
根据所述载波映射序号和与每个 CC关联的实际子帧数目来为至少一个 CC分配 ACK信道。
2.如权利要求 1所述的一种载波聚合下的 ACK信道分配方法, 其特 征在于, 所述为至少一个 CC分配载波映射序号包括:
为成对和不成对 CC分配所述载波映射序号; 或
为不成对 CC分配所述载波映射序号。
3.如权利要求 2所述的一种载波聚合下的 ACK信道分配方法, 其特 征在于, 如果所述为至少一个 CC分配载波映射序号包括为不同的 CC分 配不同的所述载波映射序号;当所述为至少一个 CC分配载波映射序号包 括是为成对和不成对 CC分配所述载波映射序号时还包括为成对 CC分配 所述载波映射序号 0。
4.如权利要求 1所述的一种载波聚合下的 ACK信道分配方法, 其特 征在于, 所述为至少一个 CC分配载波映射序号之后还包括:
在成对 CC广播中发送所述载波映射序号; 或
发送 CC标号; 或
通过用户设备 UE专有的信令发送为所述 UE配置的 CC的载波映射序 号。
5.如权利要求 1所述的一种载波聚合下的 ACK信道分配方法, 其特 征在于, 所述每个 CC关联的实际子帧数目具体包括:
对于时分双工 TDD系统, 根据成员载波上下行子帧配比设置和 HARQ 定时关系预先定义确定的数目; 或
对于频分双工 FDD系统, 实际子帧数目为 1。
6.如权利要求 1所述的一种载波聚合下的 ACK信道分配方法, 其特 征在于, 包括:
当所述 CC为 DLCC时: 所述 ACK信道为上行 ACK信道; 或
当所述 CC为 UL CC时: 所述 ACK信道为下行 ACK信道。
7.如权利要求 6所述的一种载波聚合下的 ACK信道分配方法, 其特 征在于, 所述 ACK信道为上行 ACK信道时, 所述分配 ACK信道包括: 对于 TDD系统, 当所述为至少一个 DL CC分配载波映射序号是为成对 和不成对 DL CC分配所述载波映射序号时:
先从集合 p e {0,1,2,3}中选择一个 p值使得 NLp < f(nCCE)< N Lp+1; 将得到 的 p值代入 n UCCH =∑∑N^m K + (Mj -m-l)xN^p + mx N ^ρ+1 + f(nCCE) + N^UCCH 中计算得到连续分配的上行 ACK信道标号; 或
对于 TDD系统, 当所述为至少一个 DL CC分配载波映射序号是不成对 DL CC分配所述载波映射序号时, 对于不成对 DL CC:
先从集合 p e {0,1,2,3}中选择一个 p值使得 NLp < f(nCCE)< N Lp+1; 将得到 的 p值代入
Figure imgf000026_0001
中计算得到连续分配的上行 ACK信道标号;
其中, /(«CC£)表示控制信道单元 CCE标号^ £的函数, 和 表示 分配了载波映射序号 j的 OL CC一个下行子帧内所有物理层下行控制 PDCCH占用 p和 p + 1个正交频分复用符号时分配的上行 ACK信道数目, Ma 和 M表示分配了载波映射序号 ^和 ·的 DL CC的下行关联子帧集索引元素 数目, N 表示为分配了载波映射序号 i^々DLCC的下行关联子帧集索引第 m个元素对应的下行子帧预留的上行 ACK信道数目, A ^表示根据至少一 个 DL CC CCE标号映射的上行 ACK信道在所有物理层上行控制信道 PUCCH格式 1/la/lb信道中的起始偏置; 或
对于 FDD系统, 当所述为至少一个 DL CC分配载波映射序号是为成对 和不成对 DL CC分配所述载波映射序号时: 根据 = X N K + f (nCCE ) + N CCH计算得到连续分配的上行 ACK信 道标号; 或
对于 FDD系统, 当所述为至少一个 DL CC分配载波映射序号是只为不 成对 DL CC分配所述载波映射序号时, 对于不成对 DL CC: 根据
Figure imgf000027_0001
计算得到连续分配的上行 ACK 信道标号;
其中, /(«CC£)表示 CCE标号 /^£的函数, N ^表示为分配了载波映射序 号^的01^(的下行子帧预留的上行 ACK信道数目, A ^表示根据至少一 个 DL CC CCE标号映射的上行 ACK信道在所有 PUCCH格式 1/la/lb信道中 的起始偏置。
8.如权利要求 6所述的一种载波聚合下的 ACK信道分配方法, 其特 征在于, 当所述 CC为 DL CC时还包括:
根据与 DL CC关联的最大子帧数目为至少一个 DL CC预留上行 ACK信 道。
9.如权利要求 6所述的一种载波聚合下的 ACK信道分配方法, 其特 征在于, 所述 ACK信道为下行 ACK信道时, 所述分配 ACK信道包括: 当所述为至少一个 UL CC分配载波映射序号是为成对和不成对 UL CC 分配所述载波映射序号时:
根据 y M N group + (I lowest - index + n )》 mod N、 group +/ N、 group , yj (\ J mCid O AT PHICH
― L1
Figure imgf000028_0001
计算得到分配的下行 ACK信道标号; 或
当所述为至少一个 UL CC分配载波映射序号是只为不成对 UL CC分配 所述载波映射序号时, 对于不成对 ULCC:
根据
= V Ngroup ^moAN8^ +/ Ngroup , yj | mnc\ 9 AJPHICH
― L1
计算得到分配的下行 ACK信道标号;
其中, 表示与分配的下行 ACK信道对应的物理层上行共享信道
PUSCH占用的物理资源块标号, nmms由最近收到的对应 PUSCH的解调导频 循环移位信息指示、或者在没有指示时直接设置为 0, //¾/^/在丁00系统中分 配了载波映射序号 j的 UL CC对应上下行子帧配比 0且 PUSCH位于子帧 4或 子帧 9时取值为 1、 其它时候取值为 0,
Figure imgf000028_0002
在短循环前缀子帧结构中取值 为 4、 在长循环前缀子帧结构中取值为 2, N= ^表示 DL CC中为分配了载 波映射序号 j的 UL CC的一个子帧预留的下行 ACK信道组数目。
10. 如权利要求 9所述的一种载波聚合下的 ACK信道分配方法,其 特征在于, 所述 N ;包括: 在短循环前缀子帧结构中可以具体为 A^ HJ= |Ni(N«S/8)|; 或 在长循环前缀子帧结构中可以具体为 = 2-rN (N,S/8)]; 其中 是基站在上述 DL CC为分配了映射序号 '的 UL CC广播通知的 一个参数; 在为成对和不成对的 ULCC分配载波映射序号时, Nss在 ' = 0时 是用资源块数目表示的上述 DL CC的带宽、 在 > 0时是用资源块数目表示 的分配了映射序号 '的 UL CC的带宽; 在为不成对的 UL CC分配载波映射序 号时, NRB是用资源块数目表示的分配了映射序号 j的 UL CC的带宽。
11. 如权利要求 10所述的一种载波聚合下的 ACK信道分配方法, 其特征在于, 所述 N 包括:
基站为至少一个 UL CC共同广播通知的一个相同数值; 或
基站为至少一个 UL CC分别广播通知的相同或不同数值。
12. 如权利要求 1所述的一种载波聚合下的 ACK信道分配方法,所 述根据所述载波映射序号和与每个 CC关联的实际子帧数目来为至少一 个 CC分配 ACK信道之后还包括:
通知一个共同的上行 ACK信道映射起始偏置或为成对和不成对 DL CC 分别通知一个上行 ACK信道映射起始偏置。
13. 一种基站, 其特征在于, 包括:
第一分配模块, 用于为至少一个 CC分配载波映射序号;
第二分配模块, 用于根据载波映射序号和与每个 DL CC关联的实际子 帧数目来为至少一个 CC分配 ACK信道。
14. 如权利要求 11所述的一种基站, 其特征在于, 包括: 第一发送模块, 用于发送载波映射序号或 CC标号。
15. 如权利要求 11所述的一种基站, 其特征在于, 包括: 第一预留模块, 用于根据与 DL CC关联的最大子帧数目为至少一个 DL CC预留上行 ACK信道。
16. 一种 UE, 其特征在于, 包括:
第三分配模块, 用于根据载波映射序号和与每个 DL CC关联的实际子 帧数目来为至少一个 CC分配 ACK信道。
17. 如权利要求 14所述一种 UE, 其特征在于, 还包括: 第一接收模块, 用于接收载波映射序号或 CC标号。
18. 如权利要求 15所述一种 UE, 其特征在于, 如果所述第一接收 模块接收的是 CC标号, 还包括:
第一映射模块, 用于根据预设规则按照接收的 CC标号来映射分配的载 波映射序号。
19. 一种载波聚合下的 ACK信道分配系统, 其特征在于, 包括基 站:
所述基站用于为至少一个 CC分配载波映射序号; 根据载波映射序号和 与每个 DL CC关联的实际子帧数目来为至少一个 CC分配 ACK信道。
PCT/CN2009/071895 2009-05-21 2009-05-21 一种载波聚合下的ack信道分配方法、设备及系统 WO2010133031A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2009801247028A CN102084704B (zh) 2009-05-21 2009-05-21 一种载波聚合下的ack信道分配方法、设备及系统
PCT/CN2009/071895 WO2010133031A1 (zh) 2009-05-21 2009-05-21 一种载波聚合下的ack信道分配方法、设备及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2009/071895 WO2010133031A1 (zh) 2009-05-21 2009-05-21 一种载波聚合下的ack信道分配方法、设备及系统

Publications (1)

Publication Number Publication Date
WO2010133031A1 true WO2010133031A1 (zh) 2010-11-25

Family

ID=43125722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/071895 WO2010133031A1 (zh) 2009-05-21 2009-05-21 一种载波聚合下的ack信道分配方法、设备及系统

Country Status (2)

Country Link
CN (1) CN102084704B (zh)
WO (1) WO2010133031A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015024248A1 (zh) * 2013-08-23 2015-02-26 华为技术有限公司 信息传输方法和设备
WO2016197343A1 (zh) * 2015-06-10 2016-12-15 华为技术有限公司 信息发送或接收方法、用户设备及基站
RU2739162C1 (ru) * 2016-03-23 2020-12-21 Нтт Докомо, Инк. Терминал, способ радиосвязи и базовая станция

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK2742756T3 (en) 2011-08-12 2015-03-09 Ericsson Telefon Ab L M BASIC STATION, USER EQUIPMENT AND METHODS OF TIME MANAGEMENT CONFIGURATION ALLOCATION IN A MULTIPLE CELL TELECOMMUNICATION NETWORK
WO2013066387A1 (en) 2011-11-04 2013-05-10 Intel Corporation Selection of acknowledgment timing in wireless communications
EP2815530B1 (en) 2012-02-14 2018-05-23 Samsung Electronics Co., Ltd. Method and apparatus for transmitting uplink and downlink data in tdd system
CN103891191B (zh) * 2012-10-16 2017-02-22 华为技术有限公司 混合自动重传确认信息的传输方法、装置、ue及基站

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101222291A (zh) * 2008-01-05 2008-07-16 中兴通讯股份有限公司 用于物理上行控制信道的发送方法和装置
WO2009035233A1 (en) * 2007-09-13 2009-03-19 Lg Electronics Inc. Method for transmitting uplink signals
CN101399646A (zh) * 2007-09-30 2009-04-01 大唐移动通信设备有限公司 Lte-tdd系统指示ack/nack传输的方法和装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009035233A1 (en) * 2007-09-13 2009-03-19 Lg Electronics Inc. Method for transmitting uplink signals
CN101399646A (zh) * 2007-09-30 2009-04-01 大唐移动通信设备有限公司 Lte-tdd系统指示ack/nack传输的方法和装置
CN101222291A (zh) * 2008-01-05 2008-07-16 中兴通讯股份有限公司 用于物理上行控制信道的发送方法和装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015024248A1 (zh) * 2013-08-23 2015-02-26 华为技术有限公司 信息传输方法和设备
US10291360B2 (en) 2013-08-23 2019-05-14 Huawei Technologies Co., Ltd. Information transmission method and device
WO2016197343A1 (zh) * 2015-06-10 2016-12-15 华为技术有限公司 信息发送或接收方法、用户设备及基站
US10355832B2 (en) 2015-06-10 2019-07-16 Huawei Technologies Co., Ltd. Information sending or receiving method, user equipment, and base station
RU2739162C1 (ru) * 2016-03-23 2020-12-21 Нтт Докомо, Инк. Терминал, способ радиосвязи и базовая станция

Also Published As

Publication number Publication date
CN102084704A (zh) 2011-06-01
CN102084704B (zh) 2013-06-05

Similar Documents

Publication Publication Date Title
US11038631B2 (en) Method and apparatus for determining number of HARQ processes in wireless communication system
US11405903B2 (en) Device and method for transmitting uplink control channel in wireless communication system
US20210266114A1 (en) Node and method for downlink scheduling and hybrid automatic repeat request timing
KR102108474B1 (ko) 무선 통신 시스템에서 신호의 전송 방법 및 장치
CN107637151B (zh) 用于实现支持多达32个CC并且增强针对关联使用的动态PUCCH资源分配的eCA的方法
KR101541985B1 (ko) 무선 통신 시스템에서 ack/nack 전송 방법 및 장치
US9351289B2 (en) Method for transmitting uplink control information and user equipment, and method for receiving uplink control information and base station
WO2012150666A1 (ja) ユーザ端末、無線基地局装置、無線通信システム及び無線通信方法
JP2015233332A (ja) Tddベースの無線通信システムにおけるharq実行方法及び装置
WO2013023555A1 (zh) Lte-a tdd不同上下行配比的反馈方法
WO2013064106A1 (zh) Pucch的资源配置方法、传输方法、装置和系统
WO2010083782A1 (zh) 资源分配及确认信息处理的方法及装置
US9030974B2 (en) Transmission method and reception method for downlink signal, user equipment, and base station
WO2010133031A1 (zh) 一种载波聚合下的ack信道分配方法、设备及系统
WO2012022239A1 (zh) 一种控制信道传输和资源确定方法、基站及用户设备
WO2012013149A1 (zh) 反馈信息的信道资源指示方法及设备
WO2013013643A1 (zh) 控制信道的接收和发送方法和装置
US20230247627A1 (en) Method, device, and system for transmitting physical uplink control channel in wireless communication system
WO2012175019A1 (zh) 一种时分双工tdd通信方法、基站和用户设备
EP2957058A1 (en) Allocation of uplink control channel resources from mapped resource region
WO2010135860A1 (zh) 一种多载波ack信道分配的方法及设备
WO2011137822A1 (zh) 下行分配指示的发送方法及装置、应答信息的反馈方法及装置
JP2013021416A (ja) 移動通信システム、基地局装置、移動局装置および通信方法
WO2010108313A1 (zh) 一种信道分配方法及装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980124702.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09844783

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09844783

Country of ref document: EP

Kind code of ref document: A1