WO2010131736A1 - Boundary acoustic wave device and method for manufacturing same - Google Patents

Boundary acoustic wave device and method for manufacturing same Download PDF

Info

Publication number
WO2010131736A1
WO2010131736A1 PCT/JP2010/058183 JP2010058183W WO2010131736A1 WO 2010131736 A1 WO2010131736 A1 WO 2010131736A1 JP 2010058183 W JP2010058183 W JP 2010058183W WO 2010131736 A1 WO2010131736 A1 WO 2010131736A1
Authority
WO
WIPO (PCT)
Prior art keywords
linbo
cut angle
film thickness
thickness
total
Prior art date
Application number
PCT/JP2010/058183
Other languages
French (fr)
Japanese (ja)
Inventor
三村 昌和
玉崎 大輔
毅 山根
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2011513384A priority Critical patent/JP5136689B2/en
Publication of WO2010131736A1 publication Critical patent/WO2010131736A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14538Formation
    • H03H9/14541Multilayer finger or busbar electrode
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/08Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of resonators or networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/0222Details of interface-acoustic, boundary, pseudo-acoustic or Stonely wave devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • H03H9/02937Means for compensation or elimination of undesirable effects of chemical damage, e.g. corrosion
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02984Protection measures against damaging

Definitions

  • the present invention relates to a boundary acoustic wave device using a boundary acoustic wave and a manufacturing method thereof, and more particularly, to a three-medium type boundary acoustic wave device and a manufacturing method thereof.
  • elastic wave devices have been used for RF filters and IF filters for mobile phones, VCO resonators, television VIF filters, and the like.
  • a surface acoustic wave device using a surface acoustic wave has been generally used as the surface acoustic wave device.
  • a boundary acoustic wave can be used because it can be made smaller than a surface acoustic wave device. Such boundary acoustic wave devices have come to be used.
  • the surface acoustic wave device uses surface acoustic waves that propagate with concentration of energy on the surface of the medium, so that a dielectric film is formed on the surface of the medium or the surface is etched. Therefore, it is possible to adjust the manufacturing variation of the frequency characteristics such as the resonance frequency and the center frequency relatively easily.
  • the boundary acoustic wave utilized by the boundary acoustic wave device is an acoustic wave that propagates while concentrating energy at the boundary between the media.
  • the boundary acoustic wave device the boundary acoustic wave is hardly affected by the state of the surface of the medium located in the uppermost layer, and a dielectric film is formed on the surface of the medium located in the uppermost layer, or the surface is etched.
  • the frequency characteristics cannot be adjusted.
  • the boundary acoustic wave device has a problem in that it is difficult to suppress manufacturing variations in frequency characteristics.
  • Patent Document 1 a three-medium type boundary acoustic wave device in which a second medium and a third medium are stacked in this order on a first medium made of a piezoelectric body.
  • the frequency characteristics and the like are adjusted by adjusting the thickness of the second medium, and then the third medium is formed.
  • the thickness of the second medium affects the sound speed of the higher-order mode as described in Patent Document 2 above.
  • the sound speed of the higher order mode affects the magnitude of the higher order mode spurious. For this reason, when the thickness of the second medium is different, the magnitude of the higher-order mode spurious is also different.
  • the size of the higher-order mode spurious becomes larger than the desired size depending on the thickness of the adjusted second medium. There is a case. Therefore, there has been a problem that the yield of the boundary acoustic wave device may decrease.
  • the present invention has been made in view of such points, and an object thereof is to provide a boundary acoustic wave device that can be produced with a high yield.
  • the present inventor has found that the change in the sound speed of the higher mode accompanying the change in the thickness of the second medium can be suppressed by setting the IDT electrode configuration to a predetermined configuration. Invented the invention.
  • the boundary acoustic wave device includes a first medium, a second medium, a third medium, and an IDT electrode.
  • the first medium is made of a piezoelectric body.
  • the second medium is formed on the first medium.
  • the second medium is made of a dielectric material.
  • the third medium is formed on the second medium.
  • the third medium is made of a dielectric.
  • the IDT electrode is formed at the boundary between the first medium and the second medium.
  • the sound velocity of the second medium is slower than the sound velocity of the first and third media.
  • the IDT electrode has a first electrode layer, a second electrode layer, and a third electrode layer.
  • the first electrode layer is formed on the first medium.
  • the second electrode layer is formed on the first electrode layer.
  • the third electrode layer is formed on the second electrode layer.
  • the density of the second electrode layer is lower than the density of the first and third electrode layers.
  • the boundary acoustic wave device according to the present invention satisfies 0.55 ⁇ h3 / (h1 + h3) ⁇ 0.95, where h1 is the thickness of the first electrode layer and h3 is the thickness of the third electrode layer.
  • the boundary acoustic wave device satisfies 0.70 ⁇ h3 / (h1 + h3) ⁇ 0.95. According to this configuration, the dependence of the magnitude of the higher-order mode spurious on the thickness of the second medium can be more effectively reduced.
  • the boundary acoustic wave device is configured such that the thickness of the second electrode layer is h2 and the wavelength of the boundary acoustic wave determined by the pitch of the IDT electrode is ⁇ . 0.05 ⁇ h2 / ⁇ ⁇ 0.25. According to this configuration, the effect of reducing the dependency of the size of the higher-order mode spurious on the thickness of the second medium is more suitably exhibited. When h2 / ⁇ is 0.05 or less, it may be difficult to obtain an effect of reducing the dependency of the magnitude of the higher-order mode spurious on the thickness of the second medium. On the other hand, when h2 / ⁇ is 0.25 or more, the electromechanical coupling coefficient becomes small, or the shape accuracy of the second and third media formed on the IDT electrode cannot be obtained sufficiently. There is.
  • the boundary acoustic wave device is configured such that the thickness of the second medium is H and the wavelength of the boundary acoustic wave determined by the pitch of the IDT electrode is ⁇ . 0.3 ⁇ H / ⁇ ⁇ 0.7 is satisfied. According to this configuration, the effect that the dependency of the size of the higher-order mode spurious on the thickness of the second medium can be further reduced is more preferably exhibited.
  • each of the first and third electrode layers is a metal selected from the group consisting of Au, Pt, W, Ta, Ag, and Cu, or Au , Pt, W, Ta, Ag, and Cu, and an alloy mainly composed of one or more metals selected from the group consisting of.
  • the second electrode layer is a metal selected from the group consisting of Al, Ti, Mg, Cr, Fe, Ni, Ag, and Cu, or Al, It consists of the alloy which has as a main component 1 or more types of metals chosen from the group which consists of Ti, Mg, Cr, Fe, Ni, Ag, and Cu.
  • each of the first and third electrode layers is made of Pt or an alloy containing Pt as a main component
  • the second electrode layer is made of Al or Al. It consists of an alloy containing the main component. According to this configuration, it is possible to achieve both low resistance of the IDT electrode and high reliability.
  • the second medium is made of silicon oxide. According to this configuration, the frequency temperature characteristic can be improved.
  • the first medium is made of LiNbO 3 .
  • the first medium is composed of a 0 ° -37 ° rotated Y-cut LiNbO 3 substrate
  • the boundary acoustic wave device is an SH type boundary acoustic wave. Is used. In this configuration, high-order mode spurious is likely to occur, and the present invention is particularly suitable.
  • the third medium is made of silicon, silicon nitride, silicon carbide, aluminum oxide, or aluminum nitride.
  • the third medium is made of silicon nitride. In this configuration, the third medium can be easily processed.
  • the boundary acoustic wave device further includes a dielectric layer formed between the first medium and the IDT electrode. According to this configuration, surge resistance can be improved.
  • the first medium is made of a LiNbO 3 substrate
  • each of the first and third electrode layers is made of Pt
  • the second electrode layer is made of It is made of Al
  • the second medium is made of a SiO 2 film
  • the cut angles of the (h1 + h3), h3 / (h1 + h3), h2, H, and LiNbO 3 substrates are any of the following first to third groups: It is a combination of.
  • the method for manufacturing a boundary acoustic wave device according to the present invention is a method for manufacturing the boundary acoustic wave device according to the present invention, wherein the third medium is adjusted after adjusting the frequency characteristics by adjusting the thickness of the second medium.
  • the boundary acoustic wave device is a three-medium type boundary acoustic wave device having first to third media
  • the IDT electrode includes the first and third electrode layers, the first and third electrodes.
  • a second electrode layer located between the electrode layers and having a lower density than the first and third electrode layers, the thickness of the first electrode layer being h1, and the third electrode layer
  • the thickness of h3 is h3, 0.55 ⁇ h3 / (h1 + h3) ⁇ 0.95. For this reason, the dependence of the sound speed of the higher-order mode on the thickness of the second medium is low.
  • the thickness of the second medium changes, the sound speed of the higher-order mode hardly changes, and the magnitude of the higher-order mode spurious does not easily change as the thickness of the second medium changes. Therefore, even when the thickness of the second medium is adjusted in order to adjust the frequency characteristics and the like, it is effectively suppressed that the size of the higher-order mode spurious becomes larger than the desired size. Therefore, it is difficult for defects relating to frequency characteristics and the like to occur, and defects relating to the magnitude of higher-order mode spurs are less likely to occur. As a result, boundary acoustic wave devices can be manufactured with a high yield.
  • FIG. 1 is a schematic cross-sectional view of a boundary acoustic wave device according to a first embodiment.
  • FIG. 2 is a graph showing the relationship between the thickness (H) of the second medium and the sound speed of the higher-order mode when h3 / (h1 + h3) is 0.30.
  • FIG. 3 is a graph showing the relationship between the thickness (H) of the second medium and the sound speed of the higher-order mode when h3 / (h1 + h3) is 0.55.
  • FIG. 4 is a graph showing the relationship between the thickness (H) of the second medium and the sound speed of the higher-order mode when h3 / (h1 + h3) is 0.70.
  • FIG. 1 is a schematic cross-sectional view of a boundary acoustic wave device according to a first embodiment.
  • FIG. 2 is a graph showing the relationship between the thickness (H) of the second medium and the sound speed of the higher-order mode when h3 / (h1 + h3)
  • FIG. 5 is a graph showing the relationship between the thickness (H) of the second medium and the sound speed of the higher-order mode when h3 / (h1 + h3) is 0.90.
  • FIG. 6 is a graph showing the relationship between the thickness (H) of the second medium and the sound speed of the higher-order mode when h3 / (h1 + h3) is 0.95.
  • FIG. 7 shows the thickness (H) of the second medium 12 and the sound speed of the higher-order mode when the thickness (h2) of the second electrode layer 22 is 0.07 ⁇ and h3 / (h1 + h3) is 0.30. It is a graph showing the relationship.
  • FIG. 8 shows the thickness (H) of the second medium 12 and the sound speed of the higher-order mode when the thickness (h2) of the second electrode layer 22 is 0.07 ⁇ and h3 / (h1 + h3) is 0.55. It is a graph showing the relationship.
  • FIG. 9 shows the thickness (H) of the second medium 12 and the sound speed of the higher-order mode when the thickness (h2) of the second electrode layer 22 is 0.07 ⁇ and h3 / (h1 + h3) is 0.70. It is a graph showing the relationship.
  • FIG. 10 shows the thickness (H) of the second medium 12 and the sound speed of the higher-order mode when the thickness (h2) of the second electrode layer 22 is 0.07 ⁇ and h3 / (h1 + h3) is 0.90.
  • FIG. 11 shows the thickness (H) of the second medium 12 and the sound speed of the higher-order mode when the thickness (h2) of the second electrode layer 22 is 0.07 ⁇ and h3 / (h1 + h3) is 0.95.
  • FIG. 12 shows the thickness (H) of the second medium 12 and the sound speed of the higher-order mode when the thickness (h2) of the second electrode layer 22 is 0.20 ⁇ and h3 / (h1 + h3) is 0.30. It is a graph showing the relationship.
  • FIG. 11 shows the thickness (H) of the second medium 12 and the sound speed of the higher-order mode when the thickness (h2) of the second electrode layer 22 is 0.07 ⁇ and h3 / (h1 + h3) is 0.95.
  • FIG. 12 shows the thickness (H) of the second medium 12 and the sound speed of the higher-order mode when the thickness (h2) of the second electrode layer 22 is 0.20 ⁇ and h3 / (h1 + h3) is 0.30. It is a graph showing the relationship.
  • FIG. 13 shows the thickness (H) of the second medium 12 and the sound speed of the higher-order mode when the thickness (h2) of the second electrode layer 22 is 0.20 ⁇ and h3 / (h1 + h3) is 0.55. It is a graph showing the relationship.
  • FIG. 14 shows the thickness (H) of the second medium 12 and the sound speed of the higher-order mode when the thickness (h2) of the second electrode layer 22 is 0.20 ⁇ and h3 / (h1 + h3) is 0.70. It is a graph showing the relationship.
  • FIG. 15 shows the thickness (H) of the second medium 12 and the sound speed of the higher-order mode when the thickness (h2) of the second electrode layer 22 is 0.20 ⁇ and h3 / (h1 + h3) is 0.90.
  • FIG. 16 shows the thickness (H) of the second medium 12 and the sound speed of the higher-order mode when the thickness (h2) of the second electrode layer 22 is 0.20 ⁇ and h3 / (h1 + h3) is 0.95. It is a graph showing the relationship.
  • FIG. 17 shows that the total thickness (h1 + h3) of the first and third electrode layers 21 and 23 is 0.04 ⁇ , the thickness (h2) of the second electrode layer 22 is 0.14 ⁇ , and h3 / (h1 + h3).
  • 6 is a graph showing the relationship between the thickness (H) of the second medium 12 and the sound speed of a higher-order mode when is 0.30.
  • FIG. 16 shows the thickness (H) of the second medium 12 and the sound speed of the higher-order mode when the thickness (h2) of the second electrode layer 22 is 0.20 ⁇ and h3 / (h1 + h3) is 0.95.
  • FIG. 17 shows that the total thickness (h1 + h3) of the first and third electrode layers 21 and 23 is 0.04
  • the total thickness (h1 + h3) of the first and third electrode layers 21 and 23 is 0.04 ⁇
  • the thickness (h2) of the second electrode layer 22 is 0.14 ⁇
  • 6 is a graph showing the relationship between the thickness (H) of the second medium 12 and the sound speed of a higher-order mode when is 0.55.
  • the total thickness (h1 + h3) of the first and third electrode layers 21 and 23 is 0.04 ⁇
  • the thickness (h2) of the second electrode layer 22 is 0.14 ⁇
  • 6 is a graph showing the relationship between the thickness (H) of the second medium 12 and the sound speed of the higher-order mode when is 0.70.
  • FIG. 19 the total thickness (h1 + h3) of the first and third electrode layers 21 and 23 is 0.04 ⁇
  • the thickness (h2) of the second electrode layer 22 is 0.14 ⁇
  • 6 is a graph showing the relationship
  • the total thickness (h1 + h3) of the first and third electrode layers 21 and 23 is 0.04 ⁇
  • the thickness (h2) of the second electrode layer 22 is 0.14 ⁇
  • 6 is a graph showing the relationship between the thickness (H) of the second medium 12 and the sound speed of a higher-order mode when is 0.90.
  • FIG. 21 shows that the total thickness (h1 + h3) of the first and third electrode layers 21, 23 is 0.04 ⁇
  • the thickness (h2) of the second electrode layer 22 is 0.14 ⁇
  • 6 is a graph showing the relationship between the thickness (H) of the second medium 12 and the sound speed of a higher-order mode when is 0.95.
  • FIG. 21 shows that the total thickness (h1 + h3) of the first and third electrode layers 21, 23 is 0.04 ⁇
  • the thickness (h2) of the second electrode layer 22 is 0.14 ⁇
  • 6 is
  • FIG. 22 shows the thickness of the second medium 12 when the first electrode layer 21: Au / second electrode layer: Al / third electrode layer: Au and h3 / (h1 + h3) is 0.30. It is a graph showing the relationship between (H) and the sound speed of a higher-order mode.
  • FIG. 23 shows the thickness of the second medium 12 when the first electrode layer 21: Au / second electrode layer: Al / third electrode layer: Au and h3 / (h1 + h3) is 0.55. It is a graph showing the relationship between (H) and the sound speed of a higher-order mode.
  • FIG. 23 shows the thickness of the second medium 12 when the first electrode layer 21: Au / second electrode layer: Al / third electrode layer: Au and h3 / (h1 + h3) is 0.55. It is a graph showing the relationship between (H) and the sound speed of a higher-order mode.
  • FIG. 24 shows the thickness of the second medium 12 when the first electrode layer 21: Au / second electrode layer: Al / third electrode layer: Au and h3 / (h1 + h3) is 0.70. It is a graph showing the relationship between (H) and the sound speed of a higher-order mode.
  • FIG. 25 shows the thickness of the second medium 12 when the first electrode layer 21: Au / second electrode layer: Al / third electrode layer: Au and h3 / (h1 + h3) is 0.90. It is a graph showing the relationship between (H) and the sound speed of a higher-order mode.
  • FIG. 25 shows the thickness of the second medium 12 when the first electrode layer 21: Au / second electrode layer: Al / third electrode layer: Au and h3 / (h1 + h3) is 0.90. It is a graph showing the relationship between (H) and the sound speed of a higher-order mode.
  • FIG. 26 shows the thickness of the second medium 12 when the first electrode layer 21: Au / second electrode layer: Al / third electrode layer: Au and h3 / (h1 + h3) is 0.95. It is a graph showing the relationship between (H) and the sound speed of a higher-order mode.
  • FIG. 27 shows the thickness of the second medium 12 when the first electrode layer 21: W / second electrode layer: Al / third electrode layer: W and h3 / (h1 + h3) is 0.30. It is a graph showing the relationship between (H) and the sound speed of a higher-order mode.
  • FIG. 27 shows the thickness of the second medium 12 when the first electrode layer 21: W / second electrode layer: Al / third electrode layer: W and h3 / (h1 + h3) is 0.30. It is a graph showing the relationship between (H) and the sound speed of a higher-order mode.
  • FIG. 28 shows the thickness of the second medium 12 when the first electrode layer 21: W / second electrode layer: Al / third electrode layer: W and h3 / (h1 + h3) is 0.55. It is a graph showing the relationship between (H) and the sound speed of a higher-order mode.
  • FIG. 29 shows the thickness of the second medium 12 when the first electrode layer 21: W / second electrode layer: Al / third electrode layer: W and h3 / (h1 + h3) is 0.70. It is a graph showing the relationship between (H) and the sound speed of a higher-order mode.
  • FIG. 29 shows the thickness of the second medium 12 when the first electrode layer 21: W / second electrode layer: Al / third electrode layer: W and h3 / (h1 + h3) is 0.70. It is a graph showing the relationship between (H) and the sound speed of a higher-order mode.
  • FIG. 30 shows the thickness of the second medium 12 when the first electrode layer 21: W / second electrode layer: Al / third electrode layer: W and h3 / (h1 + h3) is 0.90. It is a graph showing the relationship between (H) and the sound speed of a higher-order mode.
  • FIG. 31 shows the thickness of the second medium 12 when the first electrode layer 21: W / second electrode layer: Al / third electrode layer: W and h3 / (h1 + h3) is 0.95. It is a graph showing the relationship between (H) and the sound speed of a higher-order mode.
  • FIG. 32 shows the thickness of the second medium 12 when the first electrode layer 21: Ta / second electrode layer: Al / third electrode layer: Ta and h3 / (h1 + h3) is 0.30. It is a graph showing the relationship between (H) and the sound speed of a higher-order mode.
  • FIG. 33 shows the thickness of the second medium 12 when the first electrode layer 21: Ta / second electrode layer: Al / third electrode layer: Ta and h3 / (h1 + h3) is 0.55. It is a graph showing the relationship between (H) and the sound speed of a higher-order mode.
  • FIG. 33 shows the thickness of the second medium 12 when the first electrode layer 21: Ta / second electrode layer: Al / third electrode layer: Ta and h3 / (h1 + h3) is 0.55. It is a graph showing the relationship between (H) and the sound speed of a higher-order mode.
  • FIG. 34 shows the thickness of the second medium 12 when the first electrode layer 21: Ta / second electrode layer: Al / third electrode layer: Ta and h3 / (h1 + h3) is 0.70. It is a graph showing the relationship between (H) and the sound speed of a higher-order mode.
  • FIG. 35 shows the thickness of the second medium 12 when the first electrode layer 21: Ta / second electrode layer: Al / third electrode layer: Ta and h3 / (h1 + h3) is 0.90. It is a graph showing the relationship between (H) and the sound speed of a higher-order mode.
  • FIG. 35 shows the thickness of the second medium 12 when the first electrode layer 21: Ta / second electrode layer: Al / third electrode layer: Ta and h3 / (h1 + h3) is 0.90. It is a graph showing the relationship between (H) and the sound speed of a higher-order mode.
  • FIG. 36 shows the thickness of the second medium 12 when the first electrode layer 21: Ta / second electrode layer: Al / third electrode layer: Ta and h3 / (h1 + h3) is 0.95. It is a graph showing the relationship between (H) and the sound speed of a higher-order mode.
  • FIG. 37 shows the thickness of the second medium 12 when the first electrode layer 21: Cu / second electrode layer: Al / third electrode layer: Cu and h3 / (h1 + h3) is 0.30. It is a graph showing the relationship between (H) and the sound speed of a higher-order mode.
  • FIG. 37 shows the thickness of the second medium 12 when the first electrode layer 21: Cu / second electrode layer: Al / third electrode layer: Cu and h3 / (h1 + h3) is 0.30. It is a graph showing the relationship between (H) and the sound speed of a higher-order mode.
  • FIG. 38 shows the thickness of the second medium 12 when the first electrode layer 21: Cu / second electrode layer: Al / third electrode layer: Cu and h3 / (h1 + h3) is 0.55. It is a graph showing the relationship between (H) and the sound speed of a higher-order mode.
  • FIG. 39 shows the thickness of the second medium 12 when the first electrode layer 21: Cu / second electrode layer: Al / third electrode layer: Cu and h3 / (h1 + h3) is 0.70. It is a graph showing the relationship between (H) and the sound speed of a higher-order mode.
  • FIG. 39 shows the thickness of the second medium 12 when the first electrode layer 21: Cu / second electrode layer: Al / third electrode layer: Cu and h3 / (h1 + h3) is 0.70. It is a graph showing the relationship between (H) and the sound speed of a higher-order mode.
  • FIG. 40 shows the thickness of the second medium 12 when the first electrode layer 21: Cu / second electrode layer: Al / third electrode layer: Cu and h3 / (h1 + h3) is 0.90. It is a graph showing the relationship between (H) and the sound speed of a higher-order mode.
  • FIG. 41 shows the thickness of the second medium 12 when the first electrode layer 21: Cu / second electrode layer: Al / third electrode layer: Cu and h3 / (h1 + h3) is 0.95. It is a graph showing the relationship between (H) and the sound speed of a higher-order mode.
  • FIG. 40 shows the thickness of the second medium 12 when the first electrode layer 21: Cu / second electrode layer: Al / third electrode layer: Cu and h3 / (h1 + h3) is 0.90. It is a graph showing the relationship between (H) and the sound speed of a higher-order mode.
  • FIG. 41 shows the thickness of the second medium 12 when the first electrode layer 21: Cu / second electrode layer: Al
  • FIG. 42 shows the thickness of the second medium 12 when the first electrode layer 21: Pt / second electrode layer: Cu / third electrode layer: Pt and h3 / (h1 + h3) is 0.30. It is a graph showing the relationship between (H) and the sound speed of a higher-order mode.
  • FIG. 43 shows the thickness of the second medium 12 when the first electrode layer 21: Pt / second electrode layer: Cu / third electrode layer: Pt and h3 / (h1 + h3) is 0.55. It is a graph showing the relationship between (H) and the sound speed of a higher-order mode.
  • FIG. 43 shows the thickness of the second medium 12 when the first electrode layer 21: Pt / second electrode layer: Cu / third electrode layer: Pt and h3 / (h1 + h3) is 0.55. It is a graph showing the relationship between (H) and the sound speed of a higher-order mode.
  • FIG. 44 shows the thickness of the second medium 12 when the first electrode layer 21: Pt / second electrode layer: Cu / third electrode layer: Pt and h3 / (h1 + h3) is 0.70. It is a graph showing the relationship between (H) and the sound speed of a higher-order mode.
  • FIG. 45 shows the thickness of the second medium 12 when the first electrode layer 21: Pt / second electrode layer: Cu / third electrode layer: Pt and h3 / (h1 + h3) is 0.90. It is a graph showing the relationship between (H) and the sound speed of a higher-order mode.
  • FIG. 45 shows the thickness of the second medium 12 when the first electrode layer 21: Pt / second electrode layer: Cu / third electrode layer: Pt and h3 / (h1 + h3) is 0.90. It is a graph showing the relationship between (H) and the sound speed of a higher-order mode.
  • FIG. 46 shows the thickness of the second medium 12 when the first electrode layer 21: Pt / second electrode layer: Cu / third electrode layer: Pt and h3 / (h1 + h3) is 0.95. It is a graph showing the relationship between (H) and the sound speed of a higher-order mode.
  • FIG. 47 is a graph showing impedance (Z) characteristics when a 37 ° Y-cut LiNbO 3 substrate is used as the first medium.
  • FIG. 48 is a graph showing phase characteristics when a 37 ° Y-cut LiNbO 3 substrate is used as the first medium.
  • FIG. 49 is a graph showing impedance (Z) characteristics when a 0 ° Y-cut LiNbO 3 substrate is used as the first medium.
  • FIG. 50 is a graph showing phase characteristics when a 0 ° Y-cut LiNbO 3 substrate is used as the first medium.
  • FIG. 51 is a schematic cross-sectional view of a boundary acoustic wave device according to the second embodiment.
  • FIG. 52 is a schematic cross-sectional view of an IDT electrode in a boundary acoustic wave device according to a third embodiment.
  • FIG. 53 is a schematic cross-sectional view of an IDT electrode in a boundary acoustic wave device according to a fourth embodiment.
  • FIG. 54 is a schematic cross-sectional view of a boundary acoustic wave device according to a fifth embodiment.
  • FIG. 51 is a schematic cross-sectional view of a boundary acoustic wave device according to the second embodiment.
  • FIG. 52 is a schematic cross-sectional view of an IDT electrode in a boundary acoustic wave device according to a third embodiment.
  • FIG. 53 is a schematic cross-sectional view of
  • the SiO 2 film thickness (H) is 0.40 ⁇
  • the ratio (h3 / (h1 + h3)) to the total Pt film thickness of the first Pt film is 0.45
  • the Al film thickness (h2) Is the relationship between the cut angle of LiNbO 3 and the SV wave ratio band when the total Pt film thickness (h1 + h3) is 0.02 ⁇ , 0.025 ⁇ , or 0.03 ⁇ .
  • the SiO 2 film thickness is 0.40 ⁇
  • the ratio of the first Pt film to the total Pt film thickness is 0.45
  • the Al film thickness is 0.10 ⁇
  • the total Pt film thickness is 0.
  • .02Ramuda is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025 ⁇ or 0.03.
  • the SiO 2 film thickness is 0.40 ⁇
  • the ratio of the first Pt film to the total Pt film thickness is 0.45
  • the Al film thickness is 0.12 ⁇
  • the total Pt film thickness is 0. .02Ramuda
  • FIG. 57 is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025 ⁇ or 0.03.
  • the SiO 2 film thickness is 0.40 ⁇
  • the ratio of the first Pt film to the total Pt film thickness is 0.50
  • the Al film thickness is 0.08 ⁇
  • the total Pt film thickness is 0. .02Ramuda
  • FIG. 59 is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025 ⁇ or 0.03.
  • the SiO 2 film thickness is 0.40 ⁇
  • the ratio of the first Pt film to the total Pt film thickness is 0.50
  • the Al film thickness is 0.10 ⁇
  • the total Pt film thickness is 0.
  • .02Ramuda is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025 ⁇ or 0.03.
  • the SiO 2 film thickness is 0.40 ⁇
  • the ratio of the first Pt film to the total Pt film thickness is 0.50
  • the Al film thickness is 0.12 ⁇
  • the total Pt film thickness is 0. .02Ramuda
  • FIG. 60 is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025 ⁇ or 0.03.
  • the SiO 2 film thickness is 0.40 ⁇
  • the ratio of the first Pt film to the total Pt film thickness is 0.55
  • the Al film thickness is 0.08 ⁇
  • the total Pt film thickness is 0. .02Ramuda
  • FIG. 62 is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025 ⁇ or 0.03.
  • the SiO 2 film thickness is 0.40 ⁇
  • the ratio of the first Pt film to the total Pt film thickness is 0.55
  • the Al film thickness is 0.10 ⁇
  • the total Pt film thickness is 0.
  • .02Ramuda is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025 ⁇ or 0.03.
  • the SiO 2 film thickness is 0.40 ⁇
  • the ratio of the first Pt film to the total Pt film thickness is 0.55
  • the Al film thickness is 0.12 ⁇
  • the total Pt film thickness is 0. .02Ramuda
  • FIG. 63 is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025 ⁇ or 0.03.
  • the SiO 2 film thickness is 0.45 ⁇
  • the ratio of the first Pt film to the total Pt film thickness is 0.45
  • the Al film thickness is 0.08 ⁇
  • the total Pt film thickness is 0. .02Ramuda
  • FIG. 65 the SiO 2 film thickness is 0.45 ⁇
  • the ratio of the first Pt film to the total Pt film thickness is 0.45
  • the Al film thickness is 0.10 ⁇
  • the total Pt film thickness is 0. .02Ramuda
  • the SiO 2 film thickness is 0.45 ⁇
  • the ratio of the first Pt film to the total Pt film thickness is 0.45
  • the Al film thickness is 0.12 ⁇
  • the total Pt film thickness is 0. .02Ramuda
  • the SiO 2 film thickness is 0.45 ⁇
  • the ratio of the first Pt film to the total Pt film thickness is 0.50
  • the Al film thickness is 0.08 ⁇
  • the total Pt film thickness is 0.
  • .02Ramuda is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025 ⁇ or 0.03.
  • the SiO 2 film thickness is 0.45 ⁇
  • the ratio of the first Pt film to the total Pt film thickness is 0.50
  • the Al film thickness is 0.10 ⁇
  • the total Pt film thickness is 0. .02Ramuda
  • FIG. 68 is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025 ⁇ or 0.03.
  • the SiO 2 film thickness is 0.45 ⁇
  • the ratio of the first Pt film to the total Pt film thickness is 0.50
  • the Al film thickness is 0.12 ⁇
  • the total Pt film thickness is 0. .02Ramuda
  • FIG. 70 the SiO 2 film thickness is 0.45 ⁇
  • the ratio of the first Pt film to the total Pt film thickness is 0.55
  • the Al film thickness is 0.08 ⁇
  • the total Pt film thickness is 0. .02Ramuda
  • the SiO 2 film thickness is 0.45 ⁇
  • the ratio of the first Pt film to the total Pt film thickness is 0.55
  • the Al film thickness is 0.10 ⁇
  • the total Pt film thickness is 0. .02Ramuda
  • the SiO 2 film thickness is 0.45 ⁇
  • the ratio of the first Pt film to the total Pt film thickness is 0.55
  • the Al film thickness is 0.12 ⁇
  • the total Pt film thickness is 0.
  • .02Ramuda is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025 ⁇ or 0.03.
  • the SiO 2 film thickness is 0.50 ⁇
  • the ratio of the first Pt film to the total Pt film thickness is 0.45
  • the Al film thickness is 0.08 ⁇
  • the total Pt film thickness is 0. .02Ramuda
  • FIG. 73 is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025 ⁇ or 0.03.
  • the SiO 2 film thickness is 0.50 ⁇
  • the ratio of the first Pt film to the total Pt film thickness is 0.45
  • the Al film thickness is 0.10 ⁇
  • the total Pt film thickness is 0. .02Ramuda
  • FIG. 75 the SiO 2 film thickness is 0.50 ⁇
  • the ratio of the first Pt film to the total Pt film thickness is 0.45
  • the Al film thickness is 0.12 ⁇
  • the total Pt film thickness is 0. .02Ramuda
  • the SiO 2 film thickness is 0.50 ⁇
  • the ratio of the first Pt film to the total Pt film thickness is 0.50
  • the Al film thickness is 0.08 ⁇
  • the total Pt film thickness is 0. .02Ramuda
  • the SiO 2 film thickness is 0.50 ⁇
  • the ratio of the first Pt film to the total Pt film thickness is 0.50
  • the Al film thickness is 0.10 ⁇
  • the total Pt film thickness is 0.
  • .02Ramuda is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025 ⁇ or 0.03.
  • the SiO 2 film thickness is 0.50 ⁇
  • the ratio of the first Pt film to the total Pt film thickness is 0.50
  • the Al film thickness is 0.12 ⁇
  • the total Pt film thickness is 0. .02Ramuda
  • FIG. 78 is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025 ⁇ or 0.03.
  • the SiO 2 film thickness is 0.50 ⁇
  • the ratio of the first Pt film to the total Pt film thickness is 0.55
  • the Al film thickness is 0.08 ⁇
  • the total Pt film thickness is 0. .02Ramuda
  • FIG. 80 the SiO 2 film thickness is 0.50 ⁇
  • the ratio of the first Pt film to the total Pt film thickness is 0.55
  • the Al film thickness is 0.10 ⁇
  • the total Pt film thickness is 0. .02Ramuda
  • the SiO 2 film thickness is 0.50 ⁇
  • the ratio of the first Pt film to the total Pt film thickness is 0.55
  • the Al film thickness is 0.12 ⁇
  • the total Pt film thickness is 0. .02Ramuda
  • the SiO 2 film thickness is 0.40 ⁇
  • the ratio of the first Pt film to the total Pt film thickness is 0.75
  • the Al film thickness is 0.06 ⁇
  • the total Pt film thickness is 0.
  • .02Ramuda is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025 ⁇ or 0.03.
  • the SiO 2 film thickness is 0.40 ⁇
  • the ratio of the first Pt film to the total Pt film thickness is 0.75
  • the Al film thickness is 0.08 ⁇
  • the total Pt film thickness is 0. .02Ramuda
  • FIG. 83 is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025 ⁇ or 0.03.
  • the SiO 2 film thickness is 0.40 ⁇
  • the ratio of the first Pt film to the total Pt film thickness is 0.75
  • the Al film thickness is 0.10 ⁇
  • the total Pt film thickness is 0. .02Ramuda
  • FIG. 85 the SiO 2 film thickness is 0.40 ⁇
  • the ratio of the first Pt film to the total Pt film thickness is 0.80
  • the Al film thickness is 0.06 ⁇
  • the total Pt film thickness is 0. .02Ramuda
  • the SiO 2 film thickness is 0.40 ⁇
  • the ratio of the first Pt film to the total Pt film thickness is 0.80
  • the Al film thickness is 0.08 ⁇
  • the total Pt film thickness is 0. .02Ramuda
  • the SiO 2 film thickness is 0.40 ⁇
  • the ratio of the first Pt film to the total Pt film thickness is 0.80
  • the Al film thickness is 0.10 ⁇
  • the total Pt film thickness is 0.
  • .02Ramuda is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025 ⁇ or 0.03.
  • the SiO 2 film thickness is 0.40 ⁇
  • the ratio of the first Pt film to the total Pt film thickness is 0.85
  • the Al film thickness is 0.06 ⁇
  • the total Pt film thickness is 0. .02Ramuda
  • FIG. 88 is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025 ⁇ or 0.03.
  • the SiO 2 film thickness is 0.40 ⁇
  • the ratio of the first Pt film to the total Pt film thickness is 0.85
  • the Al film thickness is 0.08 ⁇
  • the total Pt film thickness is 0. .02Ramuda
  • the SiO 2 film thickness is 0.40 ⁇
  • the ratio of the first Pt film to the total Pt film thickness is 0.85
  • the Al film thickness is 0.10 ⁇
  • the total Pt film thickness is 0. .02Ramuda
  • the SiO 2 film thickness is 0.45 ⁇
  • the ratio of the first Pt film to the total Pt film thickness is 0.75
  • the Al film thickness is 0.06 ⁇
  • the total Pt film thickness is 0. .02Ramuda
  • the SiO 2 film thickness is 0.45 ⁇
  • the ratio of the first Pt film to the total Pt film thickness is 0.75
  • the Al film thickness is 0.08 ⁇
  • the total Pt film thickness is 0.
  • .02Ramuda is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025 ⁇ or 0.03.
  • the SiO 2 film thickness is 0.45 ⁇
  • the ratio of the first Pt film to the total Pt film thickness is 0.75
  • the Al film thickness is 0.10 ⁇
  • the total Pt film thickness is 0. .02Ramuda
  • FIG. 93 is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025 ⁇ or 0.03.
  • the SiO 2 film thickness is 0.45 ⁇
  • the ratio of the first Pt film to the total Pt film thickness is 0.80
  • the Al film thickness is 0.06 ⁇
  • the total Pt film thickness is 0. .02Ramuda
  • FIG. 95 the SiO 2 film thickness is 0.45 ⁇
  • the ratio of the first Pt film to the total Pt film thickness is 0.80
  • the Al film thickness is 0.08 ⁇
  • the total Pt film thickness is 0. .02Ramuda
  • the SiO 2 film thickness is 0.45 ⁇
  • the ratio of the first Pt film to the total Pt film thickness is 0.80
  • the Al film thickness is 0.10 ⁇
  • the total Pt film thickness is 0. .02Ramuda
  • the SiO 2 film thickness is 0.45 ⁇
  • the ratio of the first Pt film to the total Pt film thickness is 0.85
  • the Al film thickness is 0.06 ⁇
  • the total Pt film thickness is 0.
  • .02Ramuda is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025 ⁇ or 0.03.
  • the SiO 2 film thickness is 0.45 ⁇
  • the ratio of the first Pt film to the total Pt film thickness is 0.85
  • the Al film thickness is 0.08 ⁇
  • the total Pt film thickness is 0. .02Ramuda
  • the SiO 2 film thickness is 0.45 ⁇
  • the ratio of the first Pt film to the total Pt film thickness is 0.85
  • the Al film thickness is 0.10 ⁇
  • the total Pt film thickness is 0. .02Ramuda
  • FIG. 100 the SiO 2 film thickness is 0.50 ⁇
  • the ratio of the first Pt film to the total Pt film thickness is 0.75
  • the Al film thickness is 0.06 ⁇
  • the total Pt film thickness is 0. It is a figure which shows the relationship between the cut angle in the case of 0.02 ⁇ , 0.025 ⁇ , or 0.03 ⁇ and the SV wave ratio band.
  • the SiO 2 film thickness is 0.50 ⁇
  • the ratio of the first Pt film to the total Pt film thickness is 0.75
  • the Al film thickness is 0.08 ⁇
  • the total Pt film thickness is 0. .02Ramuda
  • the SiO 2 film thickness is 0.50 ⁇
  • the ratio of the first Pt film to the total Pt film thickness is 0.75
  • the Al film thickness is 0.10 ⁇
  • the total Pt film thickness is 0. .02Ramuda
  • the SiO 2 film thickness is 0.50 ⁇
  • the ratio of the first Pt film to the total Pt film thickness is 0.80
  • the Al film thickness is 0.06 ⁇
  • the total Pt film thickness is 0. .02Ramuda
  • the SiO 2 film thickness is 0.50 ⁇
  • the ratio of the first Pt film to the total Pt film thickness is 0.80
  • the Al film thickness is 0.08 ⁇
  • the total Pt film thickness is 0.
  • .02Ramuda is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025 ⁇ or 0.03.
  • the SiO 2 film thickness is 0.50 ⁇
  • the ratio of the first Pt film to the total Pt film thickness is 0.80
  • the Al film thickness is 0.10 ⁇
  • the total Pt film thickness is 0. .02Ramuda
  • FIG. 105 is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025 ⁇ or 0.03.
  • the SiO 2 film thickness is 0.50 ⁇
  • the ratio of the first Pt film to the total Pt film thickness is 0.85
  • the Al film thickness is 0.06 ⁇
  • the total Pt film thickness is 0. .02Ramuda
  • FIG. 107 is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025 ⁇ or 0.03.
  • the SiO 2 film thickness is 0.50 ⁇
  • the ratio of the first Pt film to the total Pt film thickness is 0.85
  • the Al film thickness is 0.08 ⁇
  • the total Pt film thickness is 0.
  • .02Ramuda is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025 ⁇ or 0.03.
  • FIG. 108 shows that the SiO 2 film thickness is 0.50 ⁇ , the ratio of the first Pt film to the total Pt film thickness is 0.85, the Al film thickness is 0.10 ⁇ , and the total Pt film thickness is 0. .02Ramuda, is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025 ⁇ or 0.03.
  • the SiO 2 film thickness is 0.30 ⁇
  • the ratio of the first Pt film to the total Pt film thickness is 0.80
  • the Al film thickness is 0.08 ⁇
  • the total Pt film thickness is 0. .02Ramuda
  • the SiO 2 film thickness is 0.30 ⁇
  • the ratio of the first Pt film to the total Pt film thickness is 0.80
  • the Al film thickness is 0.10 ⁇
  • the total Pt film thickness is 0.
  • .02Ramuda is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025 ⁇ or 0.03.
  • the SiO 2 film thickness is 0.30 ⁇
  • the ratio of the first Pt film to the total Pt film thickness is 0.80
  • the Al film thickness is 0.12 ⁇
  • the total Pt film thickness is 0. .02Ramuda
  • FIG. 111 is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025 ⁇ or 0.03.
  • the SiO 2 film thickness is 0.30 ⁇
  • the ratio of the first Pt film to the total Pt film thickness is 0.85
  • the Al film thickness is 0.08 ⁇
  • the total Pt film thickness is 0. .02Ramuda
  • the SiO 2 film thickness is 0.30 ⁇
  • the ratio of the first Pt film to the total Pt film thickness is 0.85
  • the Al film thickness is 0.10 ⁇
  • the total Pt film thickness is 0. .02Ramuda
  • the SiO 2 film thickness is 0.30 ⁇
  • the ratio of the first Pt film to the total Pt film thickness is 0.85
  • the Al film thickness is 0.12 ⁇
  • the total Pt film thickness is 0. .02Ramuda
  • the SiO 2 film thickness is 0.30 ⁇
  • the ratio of the first Pt film to the total Pt film thickness is 0.90
  • the Al film thickness is 0.08 ⁇
  • the total Pt film thickness is 0.
  • .02Ramuda is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025 ⁇ or 0.03.
  • the SiO 2 film thickness is 0.30 ⁇
  • the ratio of the first Pt film to the total Pt film thickness is 0.90
  • the Al film thickness is 0.10 ⁇
  • the total Pt film thickness is 0. .02Ramuda
  • FIG. 116 is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025 ⁇ or 0.03.
  • the SiO 2 film thickness is 0.30 ⁇
  • the ratio of the first Pt film to the total Pt film thickness is 0.90
  • the Al film thickness is 0.12 ⁇
  • the total Pt film thickness is 0. .02Ramuda
  • the SiO 2 film thickness is 0.35 ⁇
  • the ratio of the first Pt film to the total Pt film thickness is 0.80
  • the Al film thickness is 0.08 ⁇
  • the total Pt film thickness is 0.
  • .02Ramuda is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025 ⁇ or 0.03.
  • FIG. 119 shows that the SiO 2 film thickness is 0.35 ⁇ , the ratio of the first Pt film to the total Pt film thickness is 0.80, the Al film thickness is 0.10 ⁇ , and the total Pt film thickness is 0. .02Ramuda, is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025 ⁇ or 0.03.
  • FIG. 119 shows that the SiO 2 film thickness is 0.35 ⁇ , the ratio of the first Pt film to the total Pt film thickness is 0.80, the Al film thickness is 0.10 ⁇ , and the total Pt film thickness is 0. .02Ramuda, is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025 ⁇ or 0.03.
  • the SiO 2 film thickness is 0.35 ⁇
  • the ratio of the first Pt film to the total Pt film thickness is 0.80
  • the Al film thickness is 0.12 ⁇
  • the total Pt film thickness is 0. .02Ramuda
  • the SiO 2 film thickness is 0.35 ⁇
  • the ratio of the first Pt film to the total Pt film thickness is 0.85
  • the Al film thickness is 0.08 ⁇
  • the total Pt film thickness is 0. .02Ramuda
  • the SiO 2 film thickness is 0.35 ⁇
  • the ratio of the first Pt film to the total Pt film thickness is 0.85
  • the Al film thickness is 0.10 ⁇
  • the total Pt film thickness is 0. .02Ramuda
  • the SiO 2 film thickness is 0.35 ⁇
  • the ratio of the first Pt film to the total Pt film thickness is 0.85
  • the Al film thickness is 0.12 ⁇
  • the total Pt film thickness is 0.
  • .02Ramuda is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025 ⁇ or 0.03.
  • the SiO 2 film thickness is 0.35 ⁇
  • the ratio of the first Pt film to the total Pt film thickness is 0.90
  • the Al film thickness is 0.08 ⁇
  • the total Pt film thickness is 0. .02Ramuda
  • FIG. 124 is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025 ⁇ or 0.03.
  • the SiO 2 film thickness is 0.35 ⁇
  • the ratio of the first Pt film to the total Pt film thickness is 0.90
  • the Al film thickness is 0.10 ⁇
  • the total Pt film thickness is 0. .02Ramuda
  • FIG. 126 is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025 ⁇ or 0.03.
  • the SiO 2 film thickness is 0.35 ⁇
  • the ratio of the first Pt film to the total Pt film thickness is 0.90
  • the Al film thickness is 0.12 ⁇
  • the total Pt film thickness is 0.
  • .02Ramuda is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025 ⁇ or 0.03.
  • the SiO 2 film thickness is 0.40 ⁇
  • the ratio of the first Pt film to the total Pt film thickness is 0.80
  • the Al film thickness is 0.08 ⁇
  • the total Pt film thickness is 0. .02Ramuda
  • FIG. 127 is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025 ⁇ or 0.03.
  • the SiO 2 film thickness is 0.40 ⁇
  • the ratio of the first Pt film to the total Pt film thickness is 0.80
  • the Al film thickness is 0.10 ⁇
  • the total Pt film thickness is 0. .02Ramuda
  • the SiO 2 film thickness is 0.40 ⁇
  • the ratio of the first Pt film to the total Pt film thickness is 0.80
  • the Al film thickness is 0.12 ⁇
  • the total Pt film thickness is 0. .02Ramuda
  • the SiO 2 film thickness is 0.40 ⁇
  • the ratio of the first Pt film to the total Pt film thickness is 0.85
  • the Al film thickness is 0.08 ⁇
  • the total Pt film thickness is 0. .02Ramuda
  • the SiO 2 film thickness is 0.40 ⁇
  • the ratio of the first Pt film to the total Pt film thickness is 0.85
  • the Al film thickness is 0.10 ⁇
  • the total Pt film thickness is 0.
  • .02Ramuda is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025 ⁇ or 0.03.
  • the SiO 2 film thickness is 0.40 ⁇
  • the ratio of the first Pt film to the total Pt film thickness is 0.85
  • the Al film thickness is 0.12 ⁇
  • the total Pt film thickness is 0. .02Ramuda
  • FIG. 132 is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025 ⁇ or 0.03.
  • the SiO 2 film thickness is 0.40 ⁇
  • the ratio of the first Pt film to the total Pt film thickness is 0.90
  • the Al film thickness is 0.08 ⁇
  • the total Pt film thickness is 0. .02Ramuda
  • the SiO 2 film thickness is 0.40 ⁇
  • the ratio of the first Pt film to the total Pt film thickness is 0.90
  • the Al film thickness is 0.10 ⁇
  • the total Pt film thickness is 0.
  • .02Ramuda is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025 ⁇ or 0.03.
  • the SiO 2 film thickness is 0.40 ⁇
  • the ratio of the first Pt film to the total Pt film thickness is 0.90
  • the Al film thickness is 0.12 ⁇
  • the total Pt film thickness is 0. .02Ramuda
  • FIG. 136 is a diagram showing the relationship between the thickness of the Al film as the fourth electrode layer and the frequency temperature coefficient TCF in the seventh embodiment of the present invention.
  • boundary acoustic wave apparatus 1 may be a boundary acoustic wave resonator, for example, and may be a boundary acoustic wave filter apparatus.
  • the boundary acoustic wave device 1 includes a first medium 11, a second medium 12, and a third medium 13.
  • the first medium 11 is made of a piezoelectric body.
  • the type of the piezoelectric body that constitutes the first medium 11 is not particularly limited.
  • the first medium 11 can be composed of, for example, a LiNbO 3 substrate such as a 0 ° to 37 ° rotated Y-cut LiNbO 3 substrate, a LiTaO 3 substrate, or the like.
  • a second medium 12 is formed on the first medium 11. Furthermore, a third medium 13 is formed on the second medium 12.
  • Each of the second and third media 12 and 13 is made of a dielectric.
  • the forming materials of the second and third media 12 and 13 are selected so that the sound speed of the second medium 12 is slower than the sound speed of the first and third media 11 and 13.
  • the second medium 12 is made of silicon oxide such as SiO 2
  • the third medium 13 is silicon, silicon nitride, silicon oxynitride, silicon carbide, aluminum oxide, aluminum nitride, diamond-like carbon (DLC). Or the like.
  • the second medium 12 is made of silicon oxide, the frequency temperature characteristics can be improved.
  • the third medium 13 is more preferably made of silicon nitride such as SiN. In this case, it is because processing becomes easy.
  • the thickness of the second and third media 12 and 13 is not particularly limited.
  • the thickness of the second medium 12 is preferably in the range of 0.3 ⁇ to 0.7 ⁇ , where ⁇ is the wavelength of the boundary acoustic wave generated in the IDT electrode 20 described later.
  • is the wavelength of the boundary acoustic wave generated in the IDT electrode 20 described later.
  • the thickness of the second medium 12 is H, it is preferable that 0.3 ⁇ H / ⁇ ⁇ 0.7 is satisfied.
  • the thickness of the third medium 13 is preferably such that the amount of displacement of the elastic wave on the surface of the third medium 13 is substantially zero.
  • the thickness of the third medium 13 is preferably in the range of 0.6 ⁇ to 2 ⁇ , for example.
  • the thickness of the first medium 11 is also preferably such that the amount of elastic wave displacement on the surface of the first medium 11 is substantially zero.
  • the method for forming the second and third media 12 and 13 is not particularly limited.
  • the second and third media can be formed using a sputtering method, a vapor deposition method, a CVD method, a spin coating method, a bonding method, or the like. 12, 13 can be formed.
  • An IDT electrode 20 is formed at the boundary between the first medium 11 and the second medium 12.
  • a dielectric layer 14 made of tantalum oxide such as Ta 2 O 5 is formed between the IDT electrode 20 and the first medium 11.
  • surge resistance can be improved.
  • the dielectric layer 14 is not essential, and the IDT electrode 20 may be formed directly on the first medium 11.
  • the IDT electrode 20 has at least three electrode layers stacked. Specifically, the IDT electrode 20 includes a first electrode layer 21 formed on the first medium 11, and a second electrode layer 22 formed on the first electrode layer 21. And a third electrode layer 23 formed on the second electrode layer 22. Of the first to third electrode layers 21 to 23, the upper and lower first and third electrode layers 21 and 23 have a relatively high density. On the other hand, the density of the second electrode layer 22 positioned between the first and third electrode layers 21 and 23 is lower than that of the first and third electrode layers 21 and 23, respectively.
  • the forming material of the first to third electrode layers 21 to 23 is not particularly limited as long as the density of the second electrode layer 22 is lower than the density of the first and third electrode layers 21 and 23.
  • Each of the first and third electrode layers 21 and 23 is made of, for example, a metal selected from the group consisting of Au, Pt, W, Ta, Ag, and Cu, or Au, Pt, W, Ta, Ag, and Cu. You may consist of an alloy which has as a main component 1 or more types of metals chosen from the group.
  • the second electrode layer 22 is a metal selected from the group consisting of Al, Ti, Mg, Cr, Fe, Ni, Ag and Cu, or a group consisting of Al, Ti, Mg, Cr, Fe, Ni, Ag and Cu.
  • each of the first and third electrode layers 21 and 23 is made of Pt or an alloy containing Pt as a main component
  • the second electrode layer 22 is made of Al or an alloy containing Al as a main component. Is preferred. In this case, it is possible to achieve both low resistance and high reliability of the IDT electrode 20.
  • the sound speed of the higher order mode also changes when the thickness of the second medium 12 changes.
  • the ease of leakage to the first and third media 11 and 13 in the higher order mode also changes.
  • the magnitude of higher order mode spurs also changes. Specifically, when the sound speed of the higher-order mode is increased, the higher-order mode is liable to leak to the first and third media 11 and 13, and the magnitude of the higher-order mode spurious is reduced.
  • the higher-order mode when the sound speed of the higher-order mode becomes slower, the higher-order mode is confined to the second medium and is less likely to leak into the first and third media 11 and 13, and the magnitude of the higher-order mode spurious increases. Therefore, when the frequency characteristic or the like is adjusted by adjusting the thickness of the second medium 12, the size of the higher-order mode spurious becomes larger than a desired size, and the obtained boundary acoustic wave device may be defective. . As a result, the yield of the boundary acoustic wave device may decrease.
  • the present inventor can suppress the change in the sound speed of the higher-order mode accompanying the change in the thickness of the second medium 12 by devising the film configuration of the IDT electrode 20. I found.
  • the boundary acoustic wave device of the present embodiment has been conceived in which the frequency characteristics and the like can be adjusted by adjusting the thickness of the second medium 12 without greatly changing the magnitude of the higher-order mode spurious. .
  • this will be described in more detail based on a specific example.
  • the inventor examined the relationship between the thickness of the second medium 12 and the sound speed of the higher-order mode by changing h3 / (h1 + h3) variously in the boundary acoustic wave device having the following design parameters. The results are shown in FIGS.
  • First medium 11 20 ° Y-cut X-propagation LiNbO 3 substrate
  • Second medium SiO 2 film
  • Third medium SiN film
  • Third medium thickness 1.0 ⁇ Wavelength ( ⁇ ) determined by the electrode finger pitch of the IDT electrode 20: 1.9 ⁇ m
  • Material of the first and third electrode layers 21 and 23 Pt Material of the second electrode layer 22: Al Sum of the thickness of the first electrode layer 21 and the thickness of the third electrode layer 23 (h1 + h3): 0.06 ⁇ Thickness (h2) of second electrode layer 22: 0.14 ⁇
  • FIG. 2 is a graph showing the relationship between the thickness (H) of the second medium 12 and the sound speed of the higher order mode when h3 / (h1 + h3) is 0.30.
  • FIG. 3 is a graph showing the relationship between the thickness (H) of the second medium 12 and the sound speed of the higher-order mode when h3 / (h1 + h3) is 0.55.
  • FIG. 4 is a graph showing the relationship between the thickness (H) of the second medium 12 and the speed of sound in the higher mode when h3 / (h1 + h3) is 0.70.
  • FIG. 5 is a graph showing the relationship between the thickness (H) of the second medium 12 and the sound speed of the higher-order mode when h3 / (h1 + h3) is 0.90.
  • FIG. 6 is a graph showing the relationship between the thickness (H) of the second medium 12 and the sound speed of the higher-order mode when h3 / (h1 + h3) is 0.95.
  • the sound speed of the higher-order mode greatly changes with the change in the thickness (H) of the second medium 12. Specifically, it can be seen that as the thickness (H) of the second medium 12 increases, the sound speed of the higher-order mode rapidly decreases. From this result, for example, when the thickness (H) of the second medium 12 is reduced in order to adjust the frequency characteristics and the like, the magnitude of the higher-order mode spurious is reduced, but the second medium 12 It can be seen that when the thickness (H) is increased, the magnitude of the higher-order mode spurious increases.
  • the range of the thickness (H) of the second medium 12 that can be adjusted for adjusting the frequency characteristics is narrow, and in some cases, the frequency characteristics are preferable. In some cases, the adjustment cannot be made.
  • the thickness (H) of the second medium 12 is adjusted to be large for adjusting the frequency characteristics and the like, the magnitude of the higher-order mode spurious becomes too large and may be defective. Therefore, the yield of the boundary acoustic wave device is lowered.
  • the thickness (H) of the second medium 12 can be freely changed to adjust the frequency characteristics and the like. Therefore, even when the thickness (H) of the second medium 12 is largely changed, it is possible to effectively suppress the size of the high-order mode spurious from becoming too large. Therefore, the boundary acoustic wave device 1 can be manufactured with a high yield.
  • h3 / (h1 + h3) is set to be greater than 0.7, it is possible to more effectively suppress the change in the sound speed of the higher mode with the change in the thickness (H) of the second medium 12. Therefore, by setting 0.7 ⁇ h3 / (h1 + h3) ⁇ 0.95, the boundary acoustic wave device 1 can be manufactured with a higher yield.
  • the thickness (H) of the second medium 12 is set to 0.3 ⁇ H / ⁇ ⁇ 0.7 while h3 / (h1 + h3) is in a predetermined range.
  • the thickness (H) of the second medium 12 is preferably 0.3 ⁇ to 0.7 ⁇ .
  • FIG. 7 shows the thickness (H) of the second medium 12 and the sound speed of the higher-order mode when the thickness (h2) of the second electrode layer 22 is 0.07 ⁇ and h3 / (h1 + h3) is 0.30. It is a graph showing the relationship.
  • FIG. 8 shows the thickness (H) of the second medium 12 and the sound speed of the higher-order mode when the thickness (h2) of the second electrode layer 22 is 0.07 ⁇ and h3 / (h1 + h3) is 0.55. It is a graph showing the relationship.
  • FIG. 9 shows the thickness (H) of the second medium 12 and the sound speed of the higher-order mode when the thickness (h2) of the second electrode layer 22 is 0.07 ⁇ and h3 / (h1 + h3) is 0.70. It is a graph showing the relationship.
  • FIG. 10 shows the thickness (H) of the second medium 12 and the sound speed of the higher-order mode when the thickness (h2) of the second electrode layer 22 is 0.07 ⁇ and h3 / (h1 + h3) is 0.90. It is a graph showing the relationship.
  • FIG. 11 shows the thickness (H) of the second medium 12 and the sound speed of the higher-order mode when the thickness (h2) of the second electrode layer 22 is 0.07 ⁇ and h3 / (h1 + h3) is 0.95. It is a graph showing the relationship.
  • FIG. 12 shows the thickness (H) of the second medium 12 and the sound speed of the higher-order mode when the thickness (h2) of the second electrode layer 22 is 0.20 ⁇ and h3 / (h1 + h3) is 0.30. It is a graph showing the relationship.
  • FIG. 13 shows the thickness (H) of the second medium 12 and the sound speed of the higher-order mode when the thickness (h2) of the second electrode layer 22 is 0.20 ⁇ and h3 / (h1 + h3) is 0.55. It is a graph showing the relationship.
  • FIG. 14 shows the thickness (H) of the second medium 12 and the sound speed of the higher-order mode when the thickness (h2) of the second electrode layer 22 is 0.20 ⁇ and h3 / (h1 + h3) is 0.70. It is a graph showing the relationship.
  • FIG. 15 shows the thickness (H) of the second medium 12 and the sound speed of the higher-order mode when the thickness (h2) of the second electrode layer 22 is 0.20 ⁇ and h3 / (h1 + h3) is 0.90. It is a graph showing the relationship.
  • FIG. 16 shows the thickness (H) of the second medium 12 and the sound speed of the higher-order mode when the thickness (h2) of the second electrode layer 22 is 0.20 ⁇ and h3 / (h1 + h3) is 0.95. It is a graph showing the relationship.
  • FIG. 17 shows that the total thickness (h1 + h3) of the first and third electrode layers 21 and 23 is 0.04 ⁇ , the thickness (h2) of the second electrode layer 22 is 0.14 ⁇ , and h3 / (h1 + h3).
  • 6 is a graph showing the relationship between the thickness (H) of the second medium 12 and the sound speed of a higher-order mode when is 0.30.
  • the total thickness (h1 + h3) of the first and third electrode layers 21 and 23 is 0.04 ⁇
  • the thickness (h2) of the second electrode layer 22 is 0.14 ⁇
  • 6 is a graph showing the relationship between the thickness (H) of the second medium 12 and the sound speed of a higher-order mode when is 0.55.
  • the total thickness (h1 + h3) of the first and third electrode layers 21 and 23 is 0.04 ⁇
  • the thickness (h2) of the second electrode layer 22 is 0.14 ⁇
  • 6 is a graph showing the relationship between the thickness (H) of the second medium 12 and the sound speed of the higher-order mode when is 0.70.
  • the total thickness (h1 + h3) of the first and third electrode layers 21 and 23 is 0.04 ⁇
  • the thickness (h2) of the second electrode layer 22 is 0.14 ⁇
  • 6 is a graph showing the relationship between the thickness (H) of the second medium 12 and the sound speed of a higher-order mode when is 0.90.
  • FIG. 21 shows that the total thickness (h1 + h3) of the first and third electrode layers 21, 23 is 0.04 ⁇ , the thickness (h2) of the second electrode layer 22 is 0.14 ⁇ , and h3 / (h1 + h3).
  • 6 is a graph showing the relationship between the thickness (H) of the second medium 12 and the sound speed of a higher-order mode when is 0.95.
  • the thickness (H) of the second medium 12 is set to 0.3 ⁇ H / ⁇ ⁇ 0 while h3 / (h1 + h3) is within a predetermined range. .7, it is possible to particularly effectively suppress the change in the sound speed of the higher-order mode accompanying the change in the thickness (H) of the second medium 12. Therefore, it can be seen that the thickness (H) of the second medium 12 is preferably 0.3 ⁇ to 0.7 ⁇ regardless of the thickness of the second electrode layer 22.
  • the thickness (h2) of the second electrode layer 22 is preferably in the range of 0.05 ⁇ to 0.25 ⁇ . If the thickness (h2) of the second electrode layer 22 is too small, the dependency of the magnitude of higher-order mode spurious on the thickness (H) of the second medium 12 may not be sufficiently reduced. In addition, the frequency temperature characteristic may be deteriorated. On the other hand, if the thickness (h2) of the second electrode layer 22 is too large, the electromechanical coupling coefficient becomes too small, or the thickness of the IDT electrode 20 becomes too thick, and the shape of the third medium 13 becomes poor. There is a case.
  • the materials of the first to third electrode layers 21 to 23 were variously changed, and the relationship between the thickness (H) of the second medium 12 and the sound speed of the higher-order mode was examined.
  • the results are shown in FIGS. 22 to 46, the total thickness (h1 + h3) of the first and third electrode layers 21 and 23 is 0.06 ⁇ , and the thickness (h2) of the second electrode layer 22 is 0.14 ⁇ . It is.
  • first electrode layer 21 Au / second electrode layer: Al / third electrode layer: Au 27 to 31: first electrode layer 21: W / second electrode layer: Al / third electrode layer: W 32 to 36: first electrode layer 21: Ta / second electrode layer: Al / third electrode layer: Ta 37 to 41: First electrode layer 21: Cu / second electrode layer: Al / third electrode layer: Cu FIGS. 42 to 46: First electrode layer 21: Pt / second electrode layer : Cu / third electrode layer: Pt H3 / (h1 + h3) in FIGS. 22, 27, 32, 37 and 42: 0.30 H3 / (h1 + h3) in FIGS.
  • the thickness (H) of the second medium 12 is set to 0.3 ⁇ H / ⁇ while h3 / (h1 + h3) is within a predetermined range. By setting it to ⁇ 0.7, it can suppress especially effectively that the sound speed of a higher mode changes with the thickness (H) of the 2nd medium 12 changing. Therefore, it is understood that the thickness (H) of the second medium 12 is preferably 0.3 ⁇ to 0.7 ⁇ regardless of the material of the first to third electrode layers 21 and 23.
  • FIG. 47 is a graph showing impedance (Z) characteristics when a 37 ° Y-cut LiNbO 3 substrate is used as the first medium.
  • FIG. 48 is a graph showing phase characteristics when a 37 ° Y-cut LiNbO 3 substrate is used as the first medium.
  • FIG. 49 is a graph showing impedance (Z) characteristics when a 0 ° Y-cut LiNbO 3 substrate is used as the first medium.
  • FIG. 50 is a graph showing phase characteristics when a 0 ° Y-cut LiNbO 3 substrate is used as the first medium.
  • FIG. 51 is a schematic cross-sectional view of a boundary acoustic wave device according to the second embodiment.
  • the IDT electrode 20 further includes a fourth electrode layer 24 formed on the first to third electrode layers 21 to 23.
  • the resistance of the IDT electrode 20 can be further reduced. Therefore, the loss of the boundary acoustic wave device can be further reduced.
  • the fourth electrode layer 24 is formed of a material having a low electrical resistance, more specifically, a material having an electrical resistance equal to or lower than that of the materials of the first to third electrode layers 21 to 23.
  • the fourth electrode layer 24 is preferably formed of Al or an alloy containing Al as a main component.
  • the fourth electrode layer 24 is formed of Al
  • the second medium 12 is made of silicon oxide such as SiO 2 . Since Al and silicon oxide have elastic constants and densities close to each other, even if the fourth electrode layer 24 is added, the sound velocity of the fundamental mode, the electromechanical coupling coefficient, the sound velocity of the higher mode, etc. The acoustic characteristics are difficult to change. For this reason, the resistance of the IDT electrode 20 can be effectively reduced without changing the acoustic characteristics.
  • FIG. 52 is a schematic cross-sectional view of an IDT electrode in a boundary acoustic wave device according to a third embodiment.
  • layers 25a to 25d for improving adhesion and suppressing diffusion may be further provided.
  • Each of the layers 25a to 25d may be formed of, for example, a metal such as Ti, Ni, or Cr, or an alloy mainly composed of one or more metals selected from the group consisting of Ti, Ni, and Cr. it can.
  • FIG. 53 is a schematic cross-sectional view of an IDT electrode in a boundary acoustic wave device according to a fourth embodiment.
  • each of the first to third electrode layers 21 to 23 is formed of a single electrode layer.
  • the present invention is not limited to this configuration.
  • at least one of the first to third electrode layers 21 to 23 may be composed of a plurality of layers.
  • another layer may be interposed between a plurality of layers constituting the electrode layer.
  • at least one of the first to third electrode layers 21 to 23 may be divided into a plurality of layers by other layers, for example.
  • the second electrode layer 22 is divided into three layers by layers 22a and 22b made of Ti or Cu.
  • FIG. 54 is a schematic cross-sectional view of a boundary acoustic wave device according to a fifth embodiment.
  • the surface of the second medium 12 has a shape corresponding to the shape of the IDT electrode 20. It may be said.
  • the surface of the third medium 13 may be shaped according to the shape of the IDT electrode 20.
  • the first medium is a LiNbO 3 substrate
  • the second medium is a SiO 2 film
  • the cut angle of LiNbO 3 the thickness of each metal film in the IDT electrode
  • the SiO 2 film in the first embodiment It differs from the first embodiment in that the thickness of the two films is in a specific range.
  • spurious due to the response of the Stoneley wave can be effectively suppressed. This will be described based on a specific experimental example.
  • the first group to the third group are LiNbO 3 cut angles, Pt film thickness total (h1 + h3), and upper Pt film thickness / Pt film thickness total (h3 / () suitable for use in a specific filter, respectively. h1 + h3)), the thickness of the Al film (h2), and the central value of each parameter of the SiO 2 film (H).
  • the first group to the third group are groups having parameters around the center value. Details will be explained for each group.
  • the SV wave specific band in this application is used in the meaning of the specific band of the Stoneley wave which is a boundary wave mainly composed of SV waves.
  • FIGS. 55 to 63 show results when the thickness of the SiO 2 film is 0.40 ⁇ .
  • 55 to 57 show the results when the upper Pt film thickness / Pt film thickness is 0.45
  • FIGS. 58 to 60 are 0.50
  • FIGS. 61 to 63 are 0.55.
  • the thickness of the Al film is 0.08 ⁇ , 0.10 ⁇ , or 0.12 ⁇ .
  • the thickness of the Al film is 0.08 ⁇
  • the thickness of the Al film is 0.08 ⁇ , 0.10 ⁇ , or 0.12 ⁇ in FIGS. 61 to 63.
  • 55 to 63 further show the relationship between the cut angle of LiNbO 3 and the SV wave ratio band when the total Pt film thickness is changed to 0.02 ⁇ , 0.025 ⁇ , or 0.03 ⁇ . Has been.
  • FIGS. 64 to 72 show the results when the thickness of the SiO 2 film is 0.45 ⁇ .
  • FIGS. 64 to 66 show the results when the upper Pt film thickness / Pt film thickness is 0.45
  • FIGS. 67 to 69 are 0.50
  • FIGS. 70 to 72 are 0.55.
  • the film thickness of the Al film is 0.08 ⁇ , 0.10 ⁇ , or 0.12 ⁇ .
  • the film thickness of the Al film is 0.08 ⁇
  • the thickness of the Al film is 0.08 ⁇ , 0.10 ⁇ , or 0.12 ⁇ in FIGS. 70 to 72 as well.
  • 64 to 72 further show the relationship between the cut angle of LiNbO 3 and the SV wave ratio band when the total Pt film thickness is changed.
  • FIGS. 73 to 81 show results when the thickness of the SiO 2 film is 0.50 ⁇ .
  • FIGS. 73 to 75 show the results when the upper Pt film thickness / Pt film thickness is 0.45
  • FIGS. 76 to 78 are 0.50
  • FIGS. 79 to 81 are 0.55.
  • the film thickness of the Al film is 0.08 ⁇ , 0.10 ⁇ , or 0.12 ⁇ .
  • the film thickness of the Al film is 0.08 ⁇
  • the thickness of the Al film is 0.08 ⁇ , 0.10 ⁇ , or 0.12 ⁇ in FIGS. 79 to 81 as well.
  • (Second group) 82 to 108 show a cut angle of LiNbO 3 of 25 °, a total Pt film thickness of 2.72% (ratio to wavelength), an upper Pt film thickness / total Pt film thickness of 0.78, and an Al film thickness of 7.9. % (versus wavelength ratio), and the center 45.6% the thickness of the SiO 2 film (versus wavelength ratio) is a diagram showing the relationship between the parameters and SV wave ratio band.
  • FIGS. 82 to 90 show results when the thickness of the SiO 2 film is 0.40 ⁇ .
  • FIGS. 82 to 84 show the results when the upper Pt film thickness / Pt film thickness is 0.75
  • FIGS. 85 to 87 are 0.80
  • FIGS. 88 to 90 are 0.85.
  • the film thickness of the Al film is 0.06 ⁇ , 0.08 ⁇ , or 0.10 ⁇ .
  • the film thickness of the Al film is 0.06 ⁇
  • the thickness of the Al film is 0.06 ⁇ , 0.08 ⁇ , or 0.10 ⁇ in FIGS. 88 to 90.
  • FIGS. 91 to 99 show results when the thickness of the SiO 2 film is 0.45 ⁇ .
  • FIGS. 91 to 93 show the results when the upper Pt film thickness / Pt film thickness is 0.75
  • FIGS. 94 to 96 are 0.80
  • FIGS. 97 to 99 are 0.85.
  • the thickness of the Al film is 0.06 ⁇ , 0.08 ⁇ , or 0.10 ⁇ .
  • the thickness of the Al film is 0.06 ⁇
  • the thickness of the Al film is 0.06 ⁇ , 0.08 ⁇ , or 0.10 ⁇ in FIGS. 97 to 99.
  • FIGS. 100 to 108 show the results when the thickness of the SiO 2 film is 0.50 ⁇ .
  • FIGS. 100 to 102 show the results when the upper Pt film thickness / Pt film thickness is 0.75
  • FIGS. 103 to 105 are 0.80
  • FIGS. 106 to 108 are 0.85.
  • the thickness of the Al film is 0.06 ⁇ , 0.08 ⁇ , or 0.10 ⁇ .
  • the thickness of the Al film is 0.06 ⁇
  • the thickness of the Al film is 0.06 ⁇ , 0.08 ⁇ , or 0.10 ⁇ in FIGS. 106 to 108 as well.
  • 100 to 108 further show the relationship between the cut angle of LiNbO 3 and the SV wave ratio band when the total Pt film thickness is changed.
  • FIGS. 82 to 108 are summarized as follows.
  • 0.55 ⁇ h3 / (h1 + h3) ⁇ 0.95 the range in which the SV wave ratio band is 0.03% or less, that is, spurious due to the Stoneley wave. It can be seen that the range in which can be suppressed is a combination of any of the following (c1) to (c81).
  • (Third group) 109 to 135 show a cut angle of LiNbO 3 of 25 °, a total Pt film thickness of 2.53% (vs. wavelength ratio), an upper Pt film thickness / total Pt film thickness of 0.86, and an Al film thickness of 9.0. % (versus wavelength ratio), and the center 36.3% the thickness of the SiO 2 film (versus wavelength ratio) is a diagram showing the relationship between the parameters and SV wave ratio band.
  • FIGS. 109 to 117 show results when the thickness of the SiO 2 film is 0.30 ⁇ .
  • FIGS. 109 to 111 show the results when the upper Pt film thickness / Pt film thickness is 0.80, FIGS. 112 to 114 are 0.85, and FIGS. 115 to 117 are 0.90.
  • the thickness of the Al film is 0.08 ⁇ , 0.10 ⁇ , or 0.12 ⁇ .
  • the thickness of the Al film is 0.08 ⁇
  • the thickness of the Al film is 0.08 ⁇ , 0.10 ⁇ , or 0.12 ⁇ in FIGS. 115 to 117 as well.
  • the thickness of the SiO 2 film shows the results when the 0.35Ramuda.
  • FIGS. 118 to 120 show the results when the upper Pt film thickness / Pt film thickness is 0.80
  • FIGS. 121 to 123 are 0.85
  • FIGS. 124 to 126 are 0.90.
  • the thickness of the Al film is 0.08 ⁇ , 0.10 ⁇ , or 0.12 ⁇ .
  • the thickness of the Al film is 0.08 ⁇
  • the thickness of the Al film is 0.08 ⁇ , 0.10 ⁇ , or 0.12 ⁇ in FIGS. 124 to 126 as well.
  • 127 to 135 show the results when the thickness of the SiO 2 film is 0.40 ⁇ .
  • 127 to 129 show the results when the upper Pt film thickness / Pt film thickness is 0.80, FIGS. 130 to 132 are 0.85, and FIGS. 133 to 135 are 0.90.
  • the film thickness of the Al film is 0.08 ⁇ , 0.10 ⁇ , or 0.12 ⁇ .
  • the film thickness of the Al film is 0.08 ⁇
  • the thickness of the Al film is 0.08 ⁇ , 0.10 ⁇ , or 0.12 ⁇ in FIGS. 133 to 135 as well.
  • 127 to 135 further show the relationship between the cut angle of LiNbO 3 and the SV wave ratio band when the total Pt film thickness is changed.
  • the seventh embodiment is similar to the sixth embodiment in that a fourth electrode layer 24 is formed on the first to third electrode layers 21 to 23. And different.
  • FIG. 136 is a diagram showing a change in the frequency temperature coefficient TCF when the thickness of the Al film that is the fourth electrode layer 24 is changed in the seventh embodiment.
  • SiO 2 has a positive frequency temperature coefficient TCF.
  • LiNbO 3 has a negative frequency temperature coefficient.
  • LiNbO 3 frequency temperature coefficient TCF of the boundary acoustic wave device formed by laminating a SiO 2 substrate indicates the negative value of the intermediate of SiO 2 film and the LiNbO 3 substrate.
  • the absolute value of the frequency temperature coefficient TCF tends to increase as the thickness of the Al film as the fourth electrode layer 24 increases.
  • the absolute value of the frequency temperature coefficient TCF is increased.
  • the frequency temperature coefficient TCF slightly deteriorates as the thickness of the Al film as the fourth electrode layer 24 is increased.
  • the frequency temperature coefficient TCF is about 2 ppm / ° C. compared to the case where the Al film as the fourth electrode layer 24 is not formed. It turns out that it has deteriorated.
  • the thickness of the Al film as the fourth electrode layer 24 is 0.1 ⁇ or less, the deterioration of the frequency temperature coefficient TCF can be within 2 ppm / ° C.
  • the thickness of the Al film that is the fourth electrode layer 24 is set to 0.1 ⁇ or less.
  • a dielectric layer 14 made of tantalum oxide such as Ta 2 O 5 may be formed between the IDT electrode 20 and the first medium 11.
  • the thickness of the dielectric layer 14 is desirably thick to some extent in order to improve surge resistance, but if the thickness of the dielectric layer 14 is too thick, the electromechanical coupling coefficient may be reduced. Therefore, the thickness of the dielectric layer 14 is preferably about 0.03 ⁇ or less. In addition, a decrease in the electromechanical coupling coefficient is suppressed as the dielectric constant of the dielectric layer 14 is increased. Therefore, a material having a high dielectric constant is desirable for the dielectric layer 14.
  • the material constituting the dielectric layer 14 for improving the surge resistance is not limited to tantalum oxide, and various dielectric materials having a dielectric constant of about 10 or more can be used. That is, preferably, the dielectric layer 14 is formed of one kind of dielectric material selected from the group consisting of tantalum oxide, titanium oxide, and aluminum oxide having such a dielectric constant. It is particularly preferable to use tantalum oxide because of its high dielectric constant and high insulation resistance.
  • a Ti film or NiCr film is laminated on the lower surface side of the Al film as the fourth electrode layer 24 to prevent metal diffusion.
  • the adhesion between the metal films may be increased.
  • the thickness of these other metal films is preferably not so large as not to affect the electrical characteristics, and is preferably as thin as, for example, about 20 nm or less.
  • the Al film may be divided into a plurality of Al films.
  • the Al film itself may have a structure in which a plurality of Al films are stacked.
  • the Al film and the Pt film may be formed of an alloy mainly composed of Al or Pt.

Abstract

Disclosed is a boundary acoustic wave device which can be manufactured with high yield. Specifically disclosed is a boundary acoustic wave device (1) which comprises a first medium (11) that is formed of a piezoelectric body, a second medium (12) that is formed of a dielectric body, a third medium (13) that is formed of a dielectric body, and an IDT electrode (20) that is formed in the boundary between the first medium (11) and the second medium (12). The acoustic velocity of the second medium (12) is lower than the acoustic velocities of the first and third media (11, 13). The IDT electrode (20) has a first electrode layer (21), a second electrode layer (22) and a third electrode layer (23). The density of the second electrode layer (22) is lower than the densities of the first and third electrode layers (21, 23). When the thickness of the first electrode layer (21) is represented by h1 and the thickness of the third electrode layer (23) is represented by h3, the boundary acoustic wave device (1) satisfies the following relation: 0.55 < h3/(h1 + h3) < 0.95.

Description

弾性境界波装置及びその製造方法Boundary acoustic wave device and manufacturing method thereof
 本発明は、弾性境界波を利用する弾性境界波装置及びその製造方法に関し、詳細には、3媒質型の弾性境界波装置及びその製造方法に関する。 The present invention relates to a boundary acoustic wave device using a boundary acoustic wave and a manufacturing method thereof, and more particularly, to a three-medium type boundary acoustic wave device and a manufacturing method thereof.
 従来、携帯電話用のRFフィルタやIFフィルタ、VCO用共振子、テレビジョン用VIFフィルタなどに弾性波装置が用いられている。弾性波装置としては、従来、弾性表面波を利用した弾性表面波装置が一般的に用いられていたが、近年、弾性表面波装置よりも小型化が可能であることより、弾性境界波を利用した弾性境界波装置が用いられるようになってきている。 Conventionally, elastic wave devices have been used for RF filters and IF filters for mobile phones, VCO resonators, television VIF filters, and the like. Conventionally, a surface acoustic wave device using a surface acoustic wave has been generally used as the surface acoustic wave device. However, in recent years, a boundary acoustic wave can be used because it can be made smaller than a surface acoustic wave device. Such boundary acoustic wave devices have come to be used.
 ところで、弾性表面波装置は、媒質の表面にエネルギーを集中させて伝搬する弾性表面波を利用するものであるため、媒質の表面上に誘電体膜を形成したり、表面をエッチングしたりすることにより比較的容易に、共振周波数や中心周波数などの周波数特性の製造ばらつきを調整することができる。それに対して、弾性境界波装置が利用する弾性境界波は、媒質間の境界にエネルギーを集中させて伝搬する弾性波である。このため、弾性境界波装置では、弾性境界波は、最上層に位置する媒質の表面の状態に影響されにくく、最上層に位置する媒質の表面上に誘電体膜を形成したり、表面をエッチングしたりしても、周波数特性を調整することができない。すなわち、弾性境界波装置には、周波数特性の製造ばらつきを抑制するのが困難であるという問題があった。 By the way, the surface acoustic wave device uses surface acoustic waves that propagate with concentration of energy on the surface of the medium, so that a dielectric film is formed on the surface of the medium or the surface is etched. Therefore, it is possible to adjust the manufacturing variation of the frequency characteristics such as the resonance frequency and the center frequency relatively easily. On the other hand, the boundary acoustic wave utilized by the boundary acoustic wave device is an acoustic wave that propagates while concentrating energy at the boundary between the media. Therefore, in the boundary acoustic wave device, the boundary acoustic wave is hardly affected by the state of the surface of the medium located in the uppermost layer, and a dielectric film is formed on the surface of the medium located in the uppermost layer, or the surface is etched. However, the frequency characteristics cannot be adjusted. In other words, the boundary acoustic wave device has a problem in that it is difficult to suppress manufacturing variations in frequency characteristics.
 このような問題に鑑み、例えば、下記の特許文献1では、圧電体からなる第1の媒質の上に、第2及び第3の媒質がこの順番で積層された3媒質型の弾性境界波装置の製造に際して、第2の媒質を形成した後に、第2の媒質の厚みを調整することにより周波数特性等を調整し、その後、第3の媒質を形成することが提案されている。 In view of such a problem, for example, in Patent Document 1 below, a three-medium type boundary acoustic wave device in which a second medium and a third medium are stacked in this order on a first medium made of a piezoelectric body. In manufacturing, it is proposed that after the second medium is formed, the frequency characteristics and the like are adjusted by adjusting the thickness of the second medium, and then the third medium is formed.
WO2005/093949 A1号公報WO2005 / 0993949 A1 Publication WO2006/114930 A1号公報WO2006 / 114930 A1 Publication
 ところで、第2の媒質の厚みは、上記の特許文献2に記載のように、高次モードの音速に影響を及ぼす。そして、高次モードの音速は、高次モードスプリアスの大きさに影響を及ぼす。このため、第2の媒質の厚みが異なると、高次モードスプリアスの大きさも異なることとなる。 Incidentally, the thickness of the second medium affects the sound speed of the higher-order mode as described in Patent Document 2 above. The sound speed of the higher order mode affects the magnitude of the higher order mode spurious. For this reason, when the thickness of the second medium is different, the magnitude of the higher-order mode spurious is also different.
 従って、第2の媒質の厚みを調整することにより周波数特性等を調整した場合、調整後の第2の媒質の厚みによっては、高次モードスプリアスの大きさが所望する大きさよりも大きくなってしまう場合がある。従って、弾性境界波装置の歩留まりが低下する場合があるという問題があった。 Therefore, when the frequency characteristic or the like is adjusted by adjusting the thickness of the second medium, the size of the higher-order mode spurious becomes larger than the desired size depending on the thickness of the adjusted second medium. There is a case. Therefore, there has been a problem that the yield of the boundary acoustic wave device may decrease.
 本発明は、かかる点に鑑みてなされたものであり、その目的は、高い歩留まりで生産し得る弾性境界波装置を提供することにある。 The present invention has been made in view of such points, and an object thereof is to provide a boundary acoustic wave device that can be produced with a high yield.
 本発明者は、鋭意研究の結果、IDT電極の構成を所定の構成とすることにより、第2の媒質の厚みの変化に伴う高次モードの音速の変化を抑制できることを見出し、その結果、本発明をなすに至った。 As a result of diligent research, the present inventor has found that the change in the sound speed of the higher mode accompanying the change in the thickness of the second medium can be suppressed by setting the IDT electrode configuration to a predetermined configuration. Invented the invention.
 すなわち、本発明に係る弾性境界波装置は、第1の媒質と、第2の媒質と、第3の媒質と、IDT電極とを備えている。第1の媒質は、圧電体からなる。第2の媒質は、第1の媒質の上に形成されている。第2の媒質は、誘電体からなる。第3の媒質は、第2の媒質の上に形成されている。第3の媒質は、誘電体からなる。IDT電極は、第1の媒質と、第2の媒質との境界に形成されている。本発明に係る弾性境界波装置では、第2の媒質の音速が、第1及び第3の媒質の音速よりも遅い。IDT電極は、第1の電極層と、第2の電極層と、第3の電極層とを有する。第1の電極層は、第1の媒質の上に形成されている。第2の電極層は、第1の電極層の上に形成されている。第3の電極層は、第2の電極層の上に形成されている。第2の電極層の密度は、第1及び第3の電極層の密度よりも低い。本発明に係る弾性境界波装置は、第1の電極層の厚みをh1、第3の電極層の厚みをh3としたときに、0.55<h3/(h1+h3)<0.95を満たす。 That is, the boundary acoustic wave device according to the present invention includes a first medium, a second medium, a third medium, and an IDT electrode. The first medium is made of a piezoelectric body. The second medium is formed on the first medium. The second medium is made of a dielectric material. The third medium is formed on the second medium. The third medium is made of a dielectric. The IDT electrode is formed at the boundary between the first medium and the second medium. In the boundary acoustic wave device according to the present invention, the sound velocity of the second medium is slower than the sound velocity of the first and third media. The IDT electrode has a first electrode layer, a second electrode layer, and a third electrode layer. The first electrode layer is formed on the first medium. The second electrode layer is formed on the first electrode layer. The third electrode layer is formed on the second electrode layer. The density of the second electrode layer is lower than the density of the first and third electrode layers. The boundary acoustic wave device according to the present invention satisfies 0.55 <h3 / (h1 + h3) <0.95, where h1 is the thickness of the first electrode layer and h3 is the thickness of the third electrode layer.
 本発明に係る弾性境界波装置のある特定の局面では、弾性境界波装置は、0.70<h3/(h1+h3)<0.95を満たす。この構成によれば、高次モードスプリアスの大きさの第2の媒質の厚みに対する依存性をより効果的に低減することができる。 In a specific aspect of the boundary acoustic wave device according to the present invention, the boundary acoustic wave device satisfies 0.70 <h3 / (h1 + h3) <0.95. According to this configuration, the dependence of the magnitude of the higher-order mode spurious on the thickness of the second medium can be more effectively reduced.
 本発明に係る弾性境界波装置の他の特定の局面では、弾性境界波装置は、第2の電極層の厚みをh2、IDT電極のピッチで定められる弾性境界波の波長をλとしたときに、0.05<h2/λ<0.25を満たす。この構成によれば、上記高次モードスプリアスの大きさの第2の媒質の厚みに対する依存性を低減できる効果がより好適に発現する。h2/λが0.05以下である場合は、上記高次モードスプリアスの大きさの第2の媒質の厚みに対する依存性を低減できる効果が得難くなる場合がある。一方、h2/λが0.25以上となると、電気機械結合係数が小さくなったり、IDT電極の上に形成される、第2及び第3の媒質の形状精度が十分に得られなくなったりする場合がある。 In another specific aspect of the boundary acoustic wave device according to the present invention, the boundary acoustic wave device is configured such that the thickness of the second electrode layer is h2 and the wavelength of the boundary acoustic wave determined by the pitch of the IDT electrode is λ. 0.05 <h2 / λ <0.25. According to this configuration, the effect of reducing the dependency of the size of the higher-order mode spurious on the thickness of the second medium is more suitably exhibited. When h2 / λ is 0.05 or less, it may be difficult to obtain an effect of reducing the dependency of the magnitude of the higher-order mode spurious on the thickness of the second medium. On the other hand, when h2 / λ is 0.25 or more, the electromechanical coupling coefficient becomes small, or the shape accuracy of the second and third media formed on the IDT electrode cannot be obtained sufficiently. There is.
 本発明に係る弾性境界波装置の別の特定の局面では、弾性境界波装置は、第2の媒質の厚みをH、IDT電極のピッチで定められる弾性境界波の波長をλとしたときに、0.3<H/λ<0.7を満たす。この構成によれば、上記高次モードスプリアスの大きさの第2の媒質の厚みに対する依存性をより低減できる効果がさらに好適に発現する。 In another specific aspect of the boundary acoustic wave device according to the present invention, the boundary acoustic wave device is configured such that the thickness of the second medium is H and the wavelength of the boundary acoustic wave determined by the pitch of the IDT electrode is λ. 0.3 <H / λ <0.7 is satisfied. According to this configuration, the effect that the dependency of the size of the higher-order mode spurious on the thickness of the second medium can be further reduced is more preferably exhibited.
 本発明に係る弾性境界波装置のさらに他の特定の局面では、第1及び第3の電極層のそれぞれが、Au,Pt,W,Ta,Ag及びCuからなる群から選ばれた金属またはAu,Pt,W,Ta,Ag及びCuからなる群から選ばれた一種以上の金属を主成分とする合金からなる。 In still another specific aspect of the boundary acoustic wave device according to the present invention, each of the first and third electrode layers is a metal selected from the group consisting of Au, Pt, W, Ta, Ag, and Cu, or Au , Pt, W, Ta, Ag, and Cu, and an alloy mainly composed of one or more metals selected from the group consisting of.
 本発明に係る弾性境界波装置のさらに別の特定の局面では、第2の電極層が、Al,Ti,Mg,Cr,Fe,Ni,Ag及びCuからなる群から選ばれた金属またはAl,Ti,Mg,Cr,Fe,Ni,Ag及びCuからなる群から選ばれた一種以上の金属を主成分とする合金からなる。 In still another specific aspect of the boundary acoustic wave device according to the present invention, the second electrode layer is a metal selected from the group consisting of Al, Ti, Mg, Cr, Fe, Ni, Ag, and Cu, or Al, It consists of the alloy which has as a main component 1 or more types of metals chosen from the group which consists of Ti, Mg, Cr, Fe, Ni, Ag, and Cu.
 本発明に係る弾性境界波装置のまた他の特定の局面では、第1及び第3の電極層のそれぞれがPtまたはPtを主成分とする合金からなり、第2の電極層がAlまたはAlを主成分とする合金からなる。この構成によれば、IDT電極の低抵抗化と、高信頼性とを両立させることができる。 In another specific aspect of the boundary acoustic wave device according to the present invention, each of the first and third electrode layers is made of Pt or an alloy containing Pt as a main component, and the second electrode layer is made of Al or Al. It consists of an alloy containing the main component. According to this configuration, it is possible to achieve both low resistance of the IDT electrode and high reliability.
 本発明に係る弾性境界波装置のまた別の特定の局面では、第2の媒質が酸化ケイ素からなる。この構成によれば、周波数温度特性を改善することができる。 In another specific aspect of the boundary acoustic wave device according to the present invention, the second medium is made of silicon oxide. According to this configuration, the frequency temperature characteristic can be improved.
 本発明に係る弾性境界波装置のさらにまた他の特定の局面では、第1の媒質がLiNbOからなる。 In still another specific aspect of the boundary acoustic wave device according to the present invention, the first medium is made of LiNbO 3 .
 本発明に係る弾性境界波装置のさらにまた別の特定の局面では、第1の媒質が、0°~37°回転YカットLiNbO基板からなり、弾性境界波装置は、SH型の弾性境界波を用いる。この構成では、高次モードスプリアスが生じやすいため、本発明が特に好適である。 In still another specific aspect of the boundary acoustic wave device according to the present invention, the first medium is composed of a 0 ° -37 ° rotated Y-cut LiNbO 3 substrate, and the boundary acoustic wave device is an SH type boundary acoustic wave. Is used. In this configuration, high-order mode spurious is likely to occur, and the present invention is particularly suitable.
 本発明に係る弾性境界波装置のまたさらに他の特定の局面では、第3の媒質が、ケイ素、窒化ケイ素、炭化ケイ素、酸化アルミニウムまたは窒化アルミニウムからなる。 In still another specific aspect of the boundary acoustic wave device according to the present invention, the third medium is made of silicon, silicon nitride, silicon carbide, aluminum oxide, or aluminum nitride.
 本発明に係る弾性境界波装置のまたさらに別の特定の局面では、第3の媒質が窒化ケイ素からなる。この構成では、第3の媒質の加工が容易である。 In yet another specific aspect of the boundary acoustic wave device according to the present invention, the third medium is made of silicon nitride. In this configuration, the third medium can be easily processed.
 本発明に係る弾性境界波装置のさらに異なる他の特定の局面では、弾性境界波装置は、第1の媒質とIDT電極との間に形成されている誘電体層をさらに備える。この構成によれば、耐サージ性を向上することができる。 In another specific aspect of the boundary acoustic wave device according to the present invention, the boundary acoustic wave device further includes a dielectric layer formed between the first medium and the IDT electrode. According to this configuration, surge resistance can be improved.
 本発明に係る弾性境界波装置のさらに異なる別の特定の局面では、第1の媒質がLiNbO基板からなり、第1及び第3の電極層のそれぞれがPtからなり、第2の電極層がAlからなり、第2の媒質がSiO膜からなり、(h1+h3)、h3/(h1+h3)、h2、H、及びLiNbO基板のカット角が、下記の第1~第3のグループのいずれかの組み合わせとされている。 In another specific aspect of the boundary acoustic wave device according to the present invention, the first medium is made of a LiNbO 3 substrate, each of the first and third electrode layers is made of Pt, and the second electrode layer is made of It is made of Al, the second medium is made of a SiO 2 film, and the cut angles of the (h1 + h3), h3 / (h1 + h3), h2, H, and LiNbO 3 substrates are any of the following first to third groups: It is a combination of.
 (第1のグループ)
 (a1)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.55~0.575、h2が、0.07λ~0.09λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、21.5°~27°
 (a2)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.55~0.575、h2が、0.07λ~0.09λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、23°~30.5°
 (a3)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.55~0.575、h2が、0.07λ~0.09λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、23.5°~30°
 (a4)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.55~0.575、h2が、0.09λ~0.11λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、21.5°~27.5°
 (a5)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.55~0.575、h2が、0.09λ~0.11λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、23°~30°
 (a6)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.55~0.575、h2が、0.09λ~0.11λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、23.5°~29.5°
 (a7)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.55~0.575、h2が、0.11λ~0.13λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、21.5°~27.5°
 (a8)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.55~0.575、h2が、0.11λ~0.13λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、23°~30°
 (a9)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.55~0.575、h2が、0.11λ~0.13λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、23.5°~29°
 (a10)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.55~0.575、h2が、0.07λ~0.09λ、Hが、0.425λ~0.475λのとき、LiNbO3のカット角が、23°~28.5°
 (a11)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.55~0.575、h2が、0.07λ~0.09λ、Hが、0.425λ~0.475λのとき、LiNbO3のカット角が、24°~31°
 (a12)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.55~0.575、h2が、0.07λ~0.09λ、Hが、0.425λ~0.475λのとき、LiNbO3のカット角が、23.5°~30°
 (a13)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.55~0.575、h2が、0.09λ~0.11λ、Hが、0.425λ~0.475λのとき、LiNbO3のカット角が、23°~29°
 (a14)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.55~0.575、h2が、0.09λ~0.11λ、Hが、0.425λ~0.475λのとき、LiNbO3のカット角が、23.5°~31°
 (a15)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.55~0.575、h2が、0.09λ~0.11λ、Hが、0.425λ~0.475λのとき、LiNbO3のカット角が、23.5°~29°
 (a16)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.55~0.575、h2が、0.11λ~0.13λ、Hが、0.425λ~0.475λのとき、LiNbO3のカット角が、23°~29.5°
 (a17)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.55~0.575、h2が、0.11λ~0.13λ、Hが、0.425λ~0.475λのとき、LiNbO3のカット角が、23.5°~30.5°
 (a18)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.55~0.575、h2が、0.11λ~0.13λ、Hが、0.425λ~0.475λのとき、LiNbO3のカット角が、23.5°~28.5°
 (a19)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.55~0.575、h2が、0.07λ~0.09λ、Hが、0.475λ~0.525λのとき、LiNbO3のカット角が、24°~30°
 (a20)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.55~0.575、h2が、0.07λ~0.09λ、Hが、0.475λ~0.525λのとき、LiNbO3のカット角が、24°~31.5°
 (a21)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.55~0.575、h2が、0.07λ~0.09λ、Hが、0.475λ~0.525λのとき、LiNbO3のカット角が、23°~30°
 (a22)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.55~0.575、h2が、0.09λ~0.11λ、Hが、0.475λ~0.525λのとき、LiNbO3のカット角が、24°~30.5°
 (a23)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.55~0.575、h2が、0.09λ~0.11λ、Hが、0.475λ~0.525λのとき、LiNbO3のカット角が、24°~31°
 (a24)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.55~0.575、h2が、0.09λ~0.11λ、Hが、0.475λ~0.525λのとき、LiNbO3のカット角が、23.5°~29°
 (a25)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.55~0.575、h2が、0.11λ~0.13λ、Hが、0.475λ~0.525λのとき、LiNbO3のカット角が、23.5°~30.5°
 (a26)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.55~0.575、h2が、0.11λ~0.13λ、Hが、0.475λ~0.525λのとき、LiNbO3のカット角が、23.5°~30.5°
 (a27)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.55~0.575、h2が、0.11λ~0.13λ、Hが、0.475λ~0.525λのとき、LiNbO3のカット角が、23°~28°
(First group)
(A1) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.55 to 0.575, h2 is 0.07λ to 0.09λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 21.5 ° ~ 27 °
(A2) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.55 to 0.575, h2 is 0.07λ to 0.09λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 23 ° ~ 30.5 °
(A3) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.55 to 0.575, h2 is 0.07λ to 0.09λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 23.5 ° -30 °
(A4) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.55 to 0.575, h2 is 0.09λ to 0.11λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 21.5 ° ~ 27.5 °
(A5) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.55 to 0.575, h2 is 0.09λ to 0.11λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 23 ° -30 °
(A6) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.55 to 0.575, h2 is 0.09λ to 0.11λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 23.5 ° ~ 29.5 °
(A7) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.55 to 0.575, h2 is 0.11λ to 0.13λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 21.5 ° ~ 27.5 °
(A8) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.55 to 0.575, h2 is 0.11λ to 0.13λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 23 ° -30 °
(A9) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.55 to 0.575, h2 is 0.11λ to 0.13λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 23.5 ° -29 °
(A10) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.55 to 0.575, h2 is 0.07λ to 0.09λ, and H is 0.425λ to 0.475λ, LiNbO 3 Cut angle is 23 ° ~ 28.5 °
(A11) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.55 to 0.575, h2 is 0.07λ to 0.09λ, and H is 0.425λ to 0.475λ, LiNbO 3 Cut angle is 24 ° ~ 31 °
(A12) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.55 to 0.575, h2 is 0.07λ to 0.09λ, and H is 0.425λ to 0.475λ, LiNbO 3 Cut angle is 23.5 ° -30 °
(A13) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.55 to 0.575, h2 is 0.09λ to 0.11λ, and H is 0.425λ to 0.475λ, LiNbO 3 Cut angle is 23 ° ~ 29 °
(A14) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.55 to 0.575, h2 is 0.09λ to 0.11λ, and H is 0.425λ to 0.475λ, LiNbO 3 Cut angle is 23.5 ° -31 °
(A15) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.55 to 0.575, h2 is 0.09λ to 0.11λ, and H is 0.425λ to 0.475λ, LiNbO 3 Cut angle is 23.5 ° -29 °
(A16) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.55 to 0.575, h2 is 0.11λ to 0.13λ, and H is 0.425λ to 0.475λ, LiNbO 3 Cut angle is 23 ° ~ 29.5 °
(A17) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.55 to 0.575, h2 is 0.11λ to 0.13λ, and H is 0.425λ to 0.475λ, LiNbO 3 Cut angle is 23.5 ° ~ 30.5 °
(A18) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.55 to 0.575, h2 is 0.11λ to 0.13λ, and H is 0.425λ to 0.475λ, LiNbO 3 Cut angle is 23.5 ° ~ 28.5 °
(A19) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.55 to 0.575, h2 is 0.07λ to 0.09λ, and H is 0.475λ to 0.525λ, LiNbO 3 Cut angle is 24 ° -30 °
(A20) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.55 to 0.575, h2 is 0.07λ to 0.09λ, and H is 0.475λ to 0.525λ, LiNbO 3 Cut angle is 24 ° ~ 31.5 °
(A21) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.55 to 0.575, h2 is 0.07λ to 0.09λ, and H is 0.475λ to 0.525λ, LiNbO 3 Cut angle is 23 ° -30 °
(A22) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.55 to 0.575, h2 is 0.09λ to 0.11λ, and H is 0.475λ to 0.525λ, LiNbO 3 Cut angle is 24 ° ~ 30.5 °
(A23) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.55 to 0.575, h2 is 0.09λ to 0.11λ, and H is 0.475λ to 0.525λ, LiNbO 3 Cut angle is 24 ° ~ 31 °
(A24) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.55 to 0.575, h2 is 0.09λ to 0.11λ, and H is 0.475λ to 0.525λ, LiNbO 3 Cut angle is 23.5 ° -29 °
(A25) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.55 to 0.575, h2 is 0.11λ to 0.13λ, and H is 0.475λ to 0.525λ, LiNbO 3 Cut angle is 23.5 ° ~ 30.5 °
(A26) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.55 to 0.575, h2 is 0.11λ to 0.13λ, and H is 0.475λ to 0.525λ, LiNbO 3 Cut angle is 23.5 ° ~ 30.5 °
(A27) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.55 to 0.575, h2 is 0.11λ to 0.13λ, and H is 0.475λ to 0.525λ, LiNbO 3 Cut angle is 23 ° ~ 28 °
 (第2のグループ)
 (c1)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.725~0.775、h2が、0.05λ~0.07λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、22°~28.5°
 (c2)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.725~0.775、h2が、0.05λ~0.07λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、23.5°~30°
 (c3)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.725~0.775、h2が、0.05λ~0.07λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、23.5°~28°
 (c4)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.725~0.775、h2が、0.07λ~0.09λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、22.5°~29°
 (c5)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.725~0.775、h2が、0.07λ~0.09λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、24°~29.5°
 (c6)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.725~0.775、h2が、0.07λ~0.09λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、24.5°~26.5°
 (c7)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.725~0.775、h2が、0.09λ~0.11λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、23°~29°
 (c8)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.725~0.775、h2が、0.09λ~0.11λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、24.5°~29°
 (c9)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.725~0.775、h2が、0.09λ~0.11λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、23.5°~26.5°
 (c10)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.775~0.825、h2が、0.05λ~0.07λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、22.5°~28.5°
 (c11)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.775~0.825、h2が、0.05λ~0.07λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、23.5°~30°
 (c12)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.775~0.825、h2が、0.05λ~0.07λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、23.5°~27°
 (c13)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.775~0.825、h2が、0.07λ~0.09λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、23°~29°
 (c14)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.775~0.825、h2が、0.07λ~0.09λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、24°~29°
 (c15)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.775~0.825、h2が、0.07λ~0.09λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、23.5°~26°
 (c16)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.775~0.825、h2が、0.09λ~0.11λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、23°~29.5°
 (c17)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.775~0.825、h2が、0.09λ~0.11λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、25°~28.5°
 (c18)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.775~0.825、h2が、0.09λ~0.11λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、22°~26.5°
 (c19)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.825~0.875、h2が、0.05λ~0.07λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、23°~29°
 (c20)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.825~0.875、h2が、0.05λ~0.07λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、24°~29.5°
 (c21)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.825~0.875、h2が、0.05λ~0.07λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、24°~26.5°
 (c22)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.825~0.875、h2が、0.07λ~0.09λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、23°~29.5°
 (c23)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.825~0.875、h2が、0.07λ~0.09λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、24.5°~28.5°
 (c24)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.825~0.875、h2が、0.07λ~0.09λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、22.5°~26°
 (c25)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.825~0.875、h2が、0.09λ~0.11λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、23.5°~29.5°
 (c26)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.825~0.875、h2が、0.09λ~0.11λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、24.5°~27°
 (c27)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.825~0.875、h2が、0.09λ~0.11λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、21°~27°
 (c28)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.725~0.775、h2が、0.05λ~0.07λ、Hが、0.425λ~0.475λのとき、LiNbO3のカット角が、23.5°~30°
 (c29)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.725~0.775、h2が、0.05λ~0.07λ、Hが、0.425λ~0.475λのとき、LiNbO3のカット角が、24°~30.5°
 (c30)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.725~0.775、h2が、0.05λ~0.07λ、Hが、0.425λ~0.475λのとき、LiNbO3のカット角が、23.5°~28°
 (c31)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.725~0.775、h2が、0.07λ~0.09λ、Hが、0.425λ~0.475λのとき、LiNbO3のカット角が、23.5°~30°
 (c32)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.725~0.775、h2が、0.07λ~0.09λ、Hが、0.425λ~0.475λのとき、LiNbO3のカット角が、24°~29.5°
 (c33)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.725~0.775、h2が、0.07λ~0.09λ、Hが、0.425λ~0.475λのとき、LiNbO3のカット角が、24°~25.5°
 (c34)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.725~0.775、h2が、0.09λ~0.11λ、Hが、0.425λ~0.475λのとき、LiNbO3のカット角が、23.5°~30°
 (c35)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.725~0.775、h2が、0.09λ~0.11λ、Hが、0.425λ~0.475λのとき、LiNbO3のカット角が、24°~28.5°
 (c36)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.725~0.775、h2が、0.09λ~0.11λ、Hが、0.425λ~0.475λのとき、LiNbO3のカット角が、22°~26°
 (c37)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.775~0.825、h2が、0.05λ~0.07λ、Hが、0.425λ~0.475λのとき、LiNbO3のカット角が、23.5°~30°
 (c38)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.775~0.825、h2が、0.05λ~0.07λ、Hが、0.425λ~0.475λのとき、LiNbO3のカット角が、23.5°~30°
 (c39)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.775~0.825、h2が、0.05λ~0.07λ、Hが、0.425λ~0.475λのとき、LiNbO3のカット角が、23.5°~27°
 (c40)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.775~0.825、h2が、0.07λ~0.09λ、Hが、0.425λ~0.475λのとき、LiNbO3のカット角が、23.5°~30°
 (c41)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.775~0.825、h2が、0.07λ~0.09λ、Hが、0.425λ~0.475λのとき、LiNbO3のカット角が、24°~29°
 (c42)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.775~0.825、h2が、0.07λ~0.09λ、Hが、0.425λ~0.475λのとき、LiNbO3のカット角が、22.5°~25.5°
 (c43)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.775~0.825、h2が、0.09λ~0.11λ、Hが、0.425λ~0.475λのとき、LiNbO3のカット角が、24°~30°
 (c44)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.775~0.825、h2が、0.09λ~0.11λ、Hが、0.425λ~0.475λのとき、LiNbO3のカット角が、25°~27°
 (c45)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.775~0.825、h2が、0.09λ~0.11λ、Hが、0.425λ~0.475λのとき、LiNbO3のカット角が、20.5°~26°
 (c46)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.825~0.875、h2が、0.05λ~0.07λ、Hが、0.425λ~0.475λのとき、LiNbO3のカット角が、23.5°~30°
 (c47)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.825~0.875、h2が、0.05λ~0.07λ、Hが、0.425λ~0.475λのとき、LiNbO3のカット角が、24°~29.5°
 (c48)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.825~0.875、h2が、0.05λ~0.07λ、Hが、0.425λ~0.475λのとき、LiNbO3のカット角が、24°~25.5°
 (c49)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.825~0.875、h2が、0.07λ~0.09λ、Hが、0.425λ~0.475λのとき、LiNbO3のカット角が、23.5°~30°
 (c50)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.825~0.875、h2が、0.07λ~0.09λ、Hが、0.425λ~0.475λのとき、LiNbO3のカット角が、24.5°~28°
 (c51)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.825~0.875、h2が、0.07λ~0.09λ、Hが、0.425λ~0.475λのとき、LiNbO3のカット角が、21°~25.5°
 (c52)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.825~0.875、h2が、0.09λ~0.11λ、Hが、0.425λ~0.475λのとき、LiNbO3のカット角が、24°~30°
 (c53)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.825~0.875、h2が、0.09λ~0.11λ、Hが、0.425λ~0.475λのとき、LiNbO3のカット角が、24°~26.5°
 (c54)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.825~0.875、h2が、0.09λ~0.11λ、Hが、0.425λ~0.475λのとき、LiNbO3のカット角が、19.5°~25.5°
 (c55)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.725~0.775、h2が、0.05λ~0.07λ、Hが、0.475λ~0.525λのとき、LiNbO3のカット角が、24°~31°
 (c56)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.725~0.775、h2が、0.05λ~0.07λ、Hが、0.475λ~0.525λのとき、LiNbO3のカット角が、24°~31°
 (c57)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.725~0.775、h2が、0.05λ~0.07λ、Hが、0.475λ~0.525λのとき、LiNbO3のカット角が、23°~27.5°
 (c58)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.725~0.775、h2が、0.07λ~0.09λ、Hが、0.475λ~0.525λのとき、LiNbO3のカット角が、24°~3°
 (c59)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.725~0.775、h2が、0.07λ~0.09λ、Hが、0.475λ~0.525λのとき、LiNbO3のカット角が、24°~29°
 (c60)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.725~0.775、h2が、0.07λ~0.09λ、Hが、0.475λ~0.525λのとき、LiNbO3のカット角が、23°~26.5°
 (c61)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.725~0.775、h2が、0.09λ~0.11λ、Hが、0.475λ~0.525λのとき、LiNbO3のカット角が、24°~30.5°
 (c62)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.725~0.775、h2が、0.09λ~0.11λ、Hが、0.475λ~0.525λのとき、LiNbO3のカット角が、24°~27.5°
 (c63)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.725~0.775、h2が、0.09λ~0.11λ、Hが、0.475λ~0.525λのとき、LiNbO3のカット角が、20.5°~25°
 (c64)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.775~0.825、h2が、0.05λ~0.07λ、Hが、0.475λ~0.525λのとき、LiNbO3のカット角が、24°~31°
 (c65)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.775~0.825、h2が、0.05λ~0.07λ、Hが、0.475λ~0.525λのとき、LiNbO3のカット角が、24°~30°
 (c66)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.775~0.825、h2が、0.05λ~0.07λ、Hが、0.475λ~0.525λのとき、LiNbO3のカット角が、23°~26.5°
 (c67)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.775~0.825、h2が、0.07λ~0.09λ、Hが、0.475λ~0.525λのとき、LiNbO3のカット角が、24°~31°
 (c68)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.775~0.825、h2が、0.07λ~0.09λ、Hが、0.475λ~0.525λのとき、LiNbO3のカット角が、24°~28.5°
 (c69)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.775~0.825、h2が、0.07λ~0.09λ、Hが、0.475λ~0.525λのとき、LiNbO3のカット角が、21.5°~25°
 (c70)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.775~0.825、h2が、0.09λ~0.11λ、Hが、0.475λ~0.525λのとき、LiNbO3のカット角が、24°~30°
 (c71)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.775~0.825、h2が、0.09λ~0.11λ、Hが、0.475λ~0.525λのとき、LiNbO3のカット角が、22°~26°
 (c72)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.775~0.825、h2が、0.09λ~0.11λ、Hが、0.475λ~0.525λのとき、LiNbO3のカット角が、19°~25°
 (c73)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.825~0.875、h2が、0.05λ~0.07λ、Hが、0.475λ~0.525λのとき、LiNbO3のカット角が、24°~31°
 (c74)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.825~0.875、h2が、0.05λ~0.07λ、Hが、0.475λ~0.525λのとき、LiNbO3のカット角が、24°~29.5°
 (c75)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.825~0.875、h2が、0.05λ~0.07λ、Hが、0.475λ~0.525λのとき、LiNbO3のカット角が、23.5°~26°
 (c76)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.825~0.875、h2が、0.07λ~0.09λ、Hが、0.475λ~0.525λのとき、LiNbO3のカット角が、24°~30.5°
 (c77)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.825~0.875、h2が、0.07λ~0.09λ、Hが、0.475λ~0.525λのとき、LiNbO3のカット角が、24°~27°
 (c78)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.825~0.875、h2が、0.07λ~0.09λ、Hが、0.475λ~0.525λのとき、LiNbO3のカット角が、20°~25°
 (c79)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.825~0.875、h2が、0.09λ~0.11λ、Hが、0.475λ~0.525λのとき、LiNbO3のカット角が、24.5°~30°
 (c80)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.825~0.875、h2が、0.09λ~0.11λ、Hが、0.475λ~0.525λのとき、LiNbO3のカット角が、23°~26°
 (c81)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.825~0.875、h2が、0.09λ~0.11λ、Hが、0.475λ~0.525λのとき、LiNbO3のカット角が、18°~24.5°
(Second group)
(C1) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.725 to 0.775, h2 is 0.05λ to 0.07λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 22 ° ~ 28.5 °
(C2) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.725 to 0.775, h2 is 0.05λ to 0.07λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 23.5 ° -30 °
(C3) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.725 to 0.775, h2 is 0.05λ to 0.07λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 23.5 ° -28 °
(C4) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.725 to 0.775, h2 is 0.07λ to 0.09λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 22.5 ° -29 °
(C5) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.725 to 0.775, h2 is 0.07λ to 0.09λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 24 ° ~ 29.5 °
(C6) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.725 to 0.775, h2 is 0.07λ to 0.09λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 24.5 ° ~ 26.5 °
(C7) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.725 to 0.775, h2 is 0.09λ to 0.11λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 23 ° ~ 29 °
(C8) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.725 to 0.775, h2 is 0.09λ to 0.11λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 24.5 ° -29 °
(C9) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.725 to 0.775, h2 is 0.09λ to 0.11λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 23.5 ° ~ 26.5 °
(C10) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.05λ to 0.07λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 22.5 ° ~ 28.5 °
(C11) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.05λ to 0.07λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 23.5 ° -30 °
(C12) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.05λ to 0.07λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 23.5 ° -27 °
(C13) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.07λ to 0.09λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 23 ° ~ 29 °
(C14) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.07λ to 0.09λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 24 ° ~ 29 °
(C15) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.07λ to 0.09λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 23.5 ° -26 °
(C16) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.09λ to 0.11λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 23 ° ~ 29.5 °
(C17) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.09λ to 0.11λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 25 ° ~ 28.5 °
(C18) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.09λ to 0.11λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 22 ° ~ 26.5 °
(C19) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.05λ to 0.07λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 23 ° ~ 29 °
(C20) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.05λ to 0.07λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 24 ° ~ 29.5 °
(C21) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.05λ to 0.07λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 24 ° ~ 26.5 °
(C22) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.07λ to 0.09λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 23 ° ~ 29.5 °
(C23) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.07λ to 0.09λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 24.5 ° ~ 28.5 °
(C24) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.07λ to 0.09λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 22.5 ° -26 °
(C25) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.09λ to 0.11λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 23.5 ° ~ 29.5 °
(C26) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.09λ to 0.11λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 24.5 ° -27 °
(C27) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.09λ to 0.11λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 21 ° ~ 27 °
(C28) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.725 to 0.775, h2 is 0.05λ to 0.07λ, and H is 0.425λ to 0.475λ, LiNbO 3 Cut angle is 23.5 ° -30 °
(C29) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.725 to 0.775, h2 is 0.05λ to 0.07λ, and H is 0.425λ to 0.475λ, LiNbO 3 Cut angle is 24 ° ~ 30.5 °
(C30) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.725 to 0.775, h2 is 0.05λ to 0.07λ, and H is 0.425λ to 0.475λ, LiNbO 3 Cut angle is 23.5 ° -28 °
(C31) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.725 to 0.775, h2 is 0.07λ to 0.09λ, and H is 0.425λ to 0.475λ, LiNbO 3 Cut angle is 23.5 ° -30 °
(C32) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.725 to 0.775, h2 is 0.07λ to 0.09λ, and H is 0.425λ to 0.475λ, LiNbO 3 Cut angle is 24 ° ~ 29.5 °
(C33) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.725 to 0.775, h2 is 0.07λ to 0.09λ, and H is 0.425λ to 0.475λ, LiNbO 3 Cut angle is 24 ° ~ 25.5 °
(C34) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.725 to 0.775, h2 is 0.09λ to 0.11λ, and H is 0.425λ to 0.475λ, LiNbO 3 Cut angle is 23.5 ° -30 °
(C35) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.725 to 0.775, h2 is 0.09λ to 0.11λ, and H is 0.425λ to 0.475λ, LiNbO 3 Cut angle is 24 ° ~ 28.5 °
(C36) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.725 to 0.775, h2 is 0.09λ to 0.11λ, and H is 0.425λ to 0.475λ, LiNbO 3 Cut angle is 22 ° ~ 26 °
(C37) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.05λ to 0.07λ, and H is 0.425λ to 0.475λ, LiNbO 3 Cut angle is 23.5 ° -30 °
(C38) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.05λ to 0.07λ, and H is 0.425λ to 0.475λ, LiNbO 3 Cut angle is 23.5 ° -30 °
(C39) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.05λ to 0.07λ, and H is 0.425λ to 0.475λ, LiNbO 3 Cut angle is 23.5 ° -27 °
(C40) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.07λ to 0.09λ, and H is 0.425λ to 0.475λ, LiNbO 3 Cut angle is 23.5 ° -30 °
(C41) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.07λ to 0.09λ, and H is 0.425λ to 0.475λ, LiNbO 3 Cut angle is 24 ° ~ 29 °
(C42) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.07λ to 0.09λ, and H is 0.425λ to 0.475λ, LiNbO 3 Cut angle is 22.5 ° ~ 25.5 °
(C43) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.09λ to 0.11λ, and H is 0.425λ to 0.475λ, LiNbO 3 Cut angle is 24 ° -30 °
(C44) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.09λ to 0.11λ, and H is 0.425λ to 0.475λ, LiNbO 3 Cut angle is 25 ° ~ 27 °
(C45) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.09λ to 0.11λ, and H is 0.425λ to 0.475λ, LiNbO 3 Cut angle is 20.5 ° -26 °
(C46) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.05λ to 0.07λ, and H is 0.425λ to 0.475λ, LiNbO 3 Cut angle is 23.5 ° -30 °
(C47) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.05λ to 0.07λ, and H is 0.425λ to 0.475λ, LiNbO 3 Cut angle is 24 ° ~ 29.5 °
(C48) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.05λ to 0.07λ, and H is 0.425λ to 0.475λ, LiNbO 3 Cut angle is 24 ° ~ 25.5 °
(C49) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.07λ to 0.09λ, and H is 0.425λ to 0.475λ, LiNbO 3 Cut angle is 23.5 ° -30 °
(C50) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.07λ to 0.09λ, and H is 0.425λ to 0.475λ, LiNbO 3 Cut angle is 24.5 ° -28 °
(C51) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.07λ to 0.09λ, and H is 0.425λ to 0.475λ, LiNbO 3 Cut angle is 21 ° ~ 25.5 °
(C52) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.09λ to 0.11λ, and H is 0.425λ to 0.475λ, LiNbO 3 Cut angle is 24 ° -30 °
(C53) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.09λ to 0.11λ, and H is 0.425λ to 0.475λ, LiNbO 3 Cut angle is 24 ° ~ 26.5 °
(C54) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.09λ to 0.11λ, and H is 0.425λ to 0.475λ, LiNbO 3 Cut angle is 19.5 ° ~ 25.5 °
(C55) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.725 to 0.775, h2 is 0.05λ to 0.07λ, and H is 0.475λ to 0.525λ, LiNbO 3 Cut angle is 24 ° ~ 31 °
(C56) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.725 to 0.775, h2 is 0.05λ to 0.07λ, and H is 0.475λ to 0.525λ, LiNbO 3 Cut angle is 24 ° ~ 31 °
(C57) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.725 to 0.775, h2 is 0.05λ to 0.07λ, and H is 0.475λ to 0.525λ, LiNbO 3 Cut angle is 23 ° -27.5 °
(C58) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.725 to 0.775, h2 is 0.07λ to 0.09λ, and H is 0.475λ to 0.525λ, LiNbO 3 Cut angle is 24 ° ~ 3 °
(C59) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.725 to 0.775, h2 is 0.07λ to 0.09λ, and H is 0.475λ to 0.525λ, LiNbO 3 Cut angle is 24 ° ~ 29 °
(C60) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.725 to 0.775, h2 is 0.07λ to 0.09λ, and H is 0.475λ to 0.525λ, LiNbO 3 Cut angle is 23 ° ~ 26.5 °
(C61) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.725 to 0.775, h2 is 0.09λ to 0.11λ, and H is 0.475λ to 0.525λ, LiNbO 3 Cut angle is 24 ° ~ 30.5 °
(C62) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.725 to 0.775, h2 is 0.09λ to 0.11λ, and H is 0.475λ to 0.525λ, LiNbO 3 Cut angle is 24 ° ~ 27.5 °
(C63) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.725 to 0.775, h2 is 0.09λ to 0.11λ, and H is 0.475λ to 0.525λ, LiNbO 3 Cut angle is 20.5 ° -25 °
(C64) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.05λ to 0.07λ, and H is 0.475λ to 0.525λ, LiNbO 3 Cut angle is 24 ° ~ 31 °
(C65) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.05λ to 0.07λ, and H is 0.475λ to 0.525λ, LiNbO 3 Cut angle is 24 ° -30 °
(C66) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.05λ to 0.07λ, and H is 0.475λ to 0.525λ, LiNbO 3 Cut angle is 23 ° ~ 26.5 °
(C67) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.07λ to 0.09λ, and H is 0.475λ to 0.525λ, LiNbO 3 Cut angle is 24 ° ~ 31 °
(C68) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.07λ to 0.09λ, and H is 0.475λ to 0.525λ, LiNbO 3 Cut angle is 24 ° ~ 28.5 °
(C69) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.07λ to 0.09λ, and H is 0.475λ to 0.525λ, LiNbO 3 Cut angle is 21.5 ° -25 °
(C70) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.09λ to 0.11λ, and H is 0.475λ to 0.525λ, LiNbO 3 Cut angle is 24 ° -30 °
(C71) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.09λ to 0.11λ, and H is 0.475λ to 0.525λ, LiNbO 3 Cut angle is 22 ° ~ 26 °
(C72) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.09λ to 0.11λ, and H is 0.475λ to 0.525λ, LiNbO 3 Cut angle is 19 ° ~ 25 °
(C73) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.05λ to 0.07λ, and H is 0.475λ to 0.525λ, LiNbO 3 Cut angle is 24 ° ~ 31 °
(C74) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.05λ to 0.07λ, and H is 0.475λ to 0.525λ, LiNbO 3 Cut angle is 24 ° ~ 29.5 °
(C75) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.05λ to 0.07λ, and H is 0.475λ to 0.525λ, LiNbO 3 Cut angle is 23.5 ° -26 °
(C76) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.07λ to 0.09λ, and H is 0.475λ to 0.525λ, LiNbO 3 Cut angle is 24 ° ~ 30.5 °
(C77) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.07λ to 0.09λ, and H is 0.475λ to 0.525λ, LiNbO 3 Cut angle is 24 ° ~ 27 °
(C78) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.07λ to 0.09λ, and H is 0.475λ to 0.525λ, LiNbO 3 Cut angle is 20 ° ~ 25 °
(C79) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.09λ to 0.11λ, and H is 0.475λ to 0.525λ, LiNbO 3 Cut angle is 24.5 ° -30 °
(C80) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.09λ to 0.11λ, and H is 0.475λ to 0.525λ, LiNbO 3 Cut angle is 23 ° ~ 26 °
(C81) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.09λ to 0.11λ, and H is 0.475λ to 0.525λ, LiNbO 3 Cut angle is 18 ° ~ 24.5 °
 (第3のグループ)
 (d1)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.775~0.825、h2が、0.07λ~0.09λ、Hが、0.275λ~0.325λのとき、LiNbO3のカット角が、19.5°~25°
 (d2)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.775~0.825、h2が、0.07λ~0.09λ、Hが、0.275λ~0.325λのとき、LiNbO3のカット角が、23.5°~29.5°
 (d3)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.775~0.825、h2が、0.07λ~0.09λ、Hが、0.275λ~0.325λのとき、LiNbO3のカット角が、25.5°~28.5°
 (d4)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.775~0.825、h2が、0.09λ~0.11λ、Hが、0.275λ~0.325λのとき、LiNbO3のカット角が、19°~25°
 (d5)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.775~0.825、h2が、0.09λ~0.11λ、Hが、0.275λ~0.325λのとき、LiNbO3のカット角が、23.5°~29.5°
 (d6)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.775~0.825、h2が、0.09λ~0.11λ、Hが、0.275λ~0.325λのとき、LiNbO3のカット角が、25.5°~28°
 (d7)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.775~0.825、h2が、0.11λ~0.13λ、Hが、0.275λ~0.325λのとき、LiNbO3のカット角が、18.5°~24°
 (d8)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.775~0.825、h2が、0.11λ~0.13λ、Hが、0.275λ~0.325λのとき、LiNbO3のカット角が、23.5°~29.5°
 (d9)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.775~0.825、h2が、0.11λ~0.13λ、Hが、0.275λ~0.325λのとき、LiNbO3のカット角が、27°~29°
 (d10)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.825~0.875、h2が、0.07λ~0.09λ、Hが、0.275λ~0.325λのとき、LiNbO3のカット角が、20°~26°
 (d11)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.825~0.875、h2が、0.07λ~0.09λ、Hが、0.275λ~0.325λのとき、LiNbO3のカット角が、24°~29.5°
 (d12)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.825~0.875、h2が、0.07λ~0.09λ、Hが、0.275λ~0.325λのとき、LiNbO3のカット角が、25°~27.5°
 (d13)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.825~0.875、h2が、0.09λ~0.11λ、Hが、0.275λ~0.325λのとき、LiNbO3のカット角が、20°~26°
 (d14)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.825~0.875、h2が、0.09λ~0.11λ、Hが、0.275λ~0.325λのとき、LiNbO3のカット角が、24.5°~30°
 (d15)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.825~0.875、h2が、0.09λ~0.11λ、Hが、0.275λ~0.325λのとき、LiNbO3のカット角が、26°~29.5°
 (d16)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.825~0.875、h2が、0.11λ~0.13λ、Hが、0.275λ~0.325λのとき、LiNbO3のカット角が、19.5°~25.5°
 (d17)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.825~0.875、h2が、0.11λ~0.13λ、Hが、0.275λ~0.325λのとき、LiNbO3のカット角が、25°~30°
 (d18)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.825~0.875、h2が、0.11λ~0.13λ、Hが、0.275λ~0.325λのとき、LiNbO3のカット角が、26°~31°
 (d19)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.875~0.925、h2が、0.07λ~0.09λ、Hが、0.275λ~0.325λのとき、LiNbO3のカット角が、20.5°~21.5°
 (d20)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.875~0.925、h2が、0.07λ~0.09λ、Hが、0.275λ~0.325λのとき、LiNbO3のカット角が、25°~30°
 (d21)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.875~0.925、h2が、0.07λ~0.09λ、Hが、0.275λ~0.325λのとき、LiNbO3のカット角が、25.5°~29°
 (d22)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.875~0.925、h2が、0.09λ~0.11λ、Hが、0.275λ~0.325λのとき、LiNbO3のカット角が、21°~27°
 (d23)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.875~0.925、h2が、0.09λ~0.11λ、Hが、0.275λ~0.325λのとき、LiNbO3のカット角が、26°~30°
 (d24)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.875~0.925、h2が、0.09λ~0.11λ、Hが、0.275λ~0.325λのとき、LiNbO3のカット角が、25°~30.5°
 (d25)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.875~0.925、h2が、0.11λ~0.13λ、Hが、0.275λ~0.325λのとき、LiNbO3のカット角が、21°~26.5°
 (d26)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.875~0.925、h2が、0.11λ~0.13λ、Hが、0.275λ~0.325λのとき、LiNbO3のカット角が、26.5°~30°
 (d27)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.875~0.925、h2が、0.11λ~0.13λ、Hが、0.275λ~0.325λのとき、LiNbO3のカット角が、25.5°~32°
 (d28)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.775~0.825、h2が、0.07λ~0.09λ、Hが、0.325λ~0.375λのとき、LiNbO3のカット角が、21.5°~28°
 (d29)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.775~0.825、h2が、0.07λ~0.09λ、Hが、0.325λ~0.375λのとき、LiNbO3のカット角が、24°~29.5°
 (d30)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.775~0.825、h2が、0.07λ~0.09λ、Hが、0.325λ~0.375λのとき、LiNbO3のカット角が、25.5°~26.5°
 (d31)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.775~0.825、h2が、0.09λ~0.11λ、Hが、0.325λ~0.375λのとき、LiNbO3のカット角が、21.5°~28°
 (d32)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.775~0.825、h2が、0.09λ~0.11λ、Hが、0.325λ~0.375λのとき、LiNbO3のカット角が、24.5°~29.5°
 (d33)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.775~0.825、h2が、0.09λ~0.11λ、Hが、0.325λ~0.375λのとき、LiNbO3のカット角が、24°~28°
 (d34)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.775~0.825、h2が、0.11λ~0.13λ、Hが、0.325λ~0.375λのとき、LiNbO3のカット角が、22°~28°
 (d35)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.775~0.825、h2が、0.11λ~0.13λ、Hが、0.325λ~0.375λのとき、LiNbO3のカット角が、25.5°~29°
 (d36)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.775~0.825、h2が、0.11λ~0.13λ、Hが、0.325λ~0.375λのとき、LiNbO3のカット角が、23.5°~28.5°
 (d37)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.825~0.875、h2が、0.07λ~0.09λ、Hが、0.325λ~0.375λのとき、LiNbO3のカット角が、22°~28.5°
 (d38)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.825~0.875、h2が、0.07λ~0.09λ、Hが、0.325λ~0.375λのとき、LiNbO3のカット角が、24.5°~29.5°
 (d39)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.825~0.875、h2が、0.07λ~0.09λ、Hが、0.325λ~0.375λのとき、LiNbO3のカット角が、24°~27°
 (d40)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.825~0.875、h2が、0.09λ~0.11λ、Hが、0.325λ~0.375λのとき、LiNbO3のカット角が、22.5°~28.5°
 (d41)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.825~0.875、h2が、0.09λ~0.11λ、Hが、0.325λ~0.375λのとき、LiNbO3のカット角が、25°~29°
 (d42)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.825~0.875、h2が、0.09λ~0.11λ、Hが、0.325λ~0.375λのとき、LiNbO3のカット角が、23°~28.5°
 (d43)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.825~0.875、h2が、0.11λ~0.13λ、Hが、0.325λ~0.375λのとき、LiNbO3のカット角が、23°~29°
 (d44)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.825~0.875、h2が、0.11λ~0.13λ、Hが、0.325λ~0.375λのとき、LiNbO3のカット角が、25°~28°
 (d45)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.825~0.875、h2が、0.11λ~0.13λ、Hが、0.325λ~0.375λのとき、LiNbO3のカット角が、23°~29.5°
 (d46)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.875~0.925、h2が、0.07λ~0.09λ、Hが、0.325λ~0.375λのとき、LiNbO3のカット角が、22.5°~29°
 (d47)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.875~0.925、h2が、0.07λ~0.09λ、Hが、0.325λ~0.375λのとき、LiNbO3のカット角が、25°~29°
 (d48)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.875~0.925、h2が、0.07λ~0.09λ、Hが、0.325λ~0.375λのとき、LiNbO3のカット角が、23°~28°
 (d49)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.875~0.925、h2が、0.09λ~0.11λ、Hが、0.325λ~0.375λのとき、LiNbO3のカット角が、23.5°~29°
 (d50)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.875~0.925、h2が、0.09λ~0.11λ、Hが、0.325λ~0.375λのとき、LiNbO3のカット角が、25°~28°
 (d51)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.875~0.925、h2が、0.09λ~0.11λ、Hが、0.325λ~0.375λのとき、LiNbO3のカット角が、22°~28.5°
 (d52)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.875~0.925、h2が、0.11λ~0.13λ、Hが、0.325λ~0.375λのとき、LiNbO3のカット角が、24°~29.5°
 (d53)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.875~0.925、h2が、0.11λ~0.13λ、Hが、0.325λ~0.375λのとき、LiNbO3のカット角が、26°~30°
 (d54)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.875~0.925、h2が、0.11λ~0.13λ、Hが、0.325λ~0.375λのとき、LiNbO3のカット角が、22°~30°
 (d55)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.775~0.825、h2が、0.07λ~0.09λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、22.5°~29°
 (d56)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.775~0.825、h2が、0.07λ~0.09λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、24°~29°
 (d57)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.775~0.825、h2が、0.07λ~0.09λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、23.5°~26°
 (d58)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.775~0.825、h2が、0.09λ~0.11λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、23°~29.5°
 (d59)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.775~0.825、h2が、0.09λ~0.11λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、25°~28.5°
 (d60)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.775~0.825、h2が、0.09λ~0.11λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、22°~27°
 (d61)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.775~0.825、h2が、0.11λ~0.13λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、23.5°~29.5°
 (d62)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.775~0.825、h2が、0.11λ~0.13λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、25°~28°
 (d63)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.775~0.825、h2が、0.11λ~0.13λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、21°~27.5°
 (d64)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.825~0.875、h2が、0.07λ~0.09λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、23°~29.5°
 (d65)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.825~0.875、h2が、0.07λ~0.09λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、24.5°~28.5°
 (d66)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.825~0.875、h2が、0.07λ~0.09λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、22.5°~26.5°
 (d67)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.825~0.875、h2が、0.09λ~0.11λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、23.5°~29.5°
 (d68)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.825~0.875、h2が、0.09λ~0.11λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、24.5°~28.5°
 (d69)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.825~0.875、h2が、0.09λ~0.11λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、21°~27°
 (d70)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.825~0.875、h2が、0.11λ~0.13λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、24°~30°
 (d71)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.825~0.875、h2が、0.11λ~0.13λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、24°~28°
 (d72)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.825~0.875、h2が、0.11λ~0.13λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、20°~27.5°
 (d73)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.875~0.925、h2が、0.07λ~0.09λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、23.5°~29.5°
 (d74)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.875~0.925、h2が、0.07λ~0.09λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、25°~28°
 (d75)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.875~0.925、h2が、0.07λ~0.09λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、21.5°~26.5°
 (d76)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.875~0.925、h2が、0.09λ~0.11λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、24°~29.5°
 (d77)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.875~0.925、h2が、0.09λ~0.11λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、24.5°~28°
 (d78)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.875~0.925、h2が、0.09λ~0.11λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、20°~27°
 (d79)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.875~0.925、h2が、0.11λ~0.13λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、25°~29.5°
 (d80)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.875~0.925、h2が、0.11λ~0.13λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、23.5°~29°
 (d81)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.875~0.925、h2が、0.11λ~0.13λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、19°~27.5°
(Third group)
(D1) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.07λ to 0.09λ, and H is 0.275λ to 0.325λ, LiNbO 3 Cutting angle is 19.5 ° -25 °
(D2) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.07λ to 0.09λ, and H is 0.275λ to 0.325λ, LiNbO 3 Cut angle is 23.5 ° ~ 29.5 °
(D3) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.07λ to 0.09λ, and H is 0.275λ to 0.325λ, LiNbO 3 Cut angle is 25.5 ° ~ 28.5 °
(D4) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.09λ to 0.11λ, and H is 0.275λ to 0.325λ, LiNbO 3 Cut angle is 19 ° ~ 25 °
(D5) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.09λ to 0.11λ, and H is 0.275λ to 0.325λ, LiNbO 3 Cut angle is 23.5 ° ~ 29.5 °
(D6) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.09λ to 0.11λ, and H is 0.275λ to 0.325λ, LiNbO 3 Cut angle is 25.5 ° -28 °
(D7) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.11λ to 0.13λ, and H is 0.275λ to 0.325λ, LiNbO 3 Cut angle is 18.5 ° -24 °
(D8) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.11λ to 0.13λ, and H is 0.275λ to 0.325λ, LiNbO 3 Cut angle is 23.5 ° ~ 29.5 °
(D9) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.11λ to 0.13λ, and H is 0.275λ to 0.325λ, LiNbO 3 Cut angle is 27 ° ~ 29 °
(D10) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.07λ to 0.09λ, and H is 0.275λ to 0.325λ, LiNbO 3 Cut angle is 20 ° ~ 26 °
(D11) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.07λ to 0.09λ, and H is 0.275λ to 0.325λ, LiNbO 3 Cut angle is 24 ° ~ 29.5 °
(D12) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.07λ to 0.09λ, and H is 0.275λ to 0.325λ, LiNbO 3 Cut angle is 25 ° ~ 27.5 °
(D13) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.09λ to 0.11λ, and H is 0.275λ to 0.325λ, LiNbO 3 Cut angle is 20 ° ~ 26 °
(D14) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.09λ to 0.11λ, and H is 0.275λ to 0.325λ, LiNbO 3 Cut angle is 24.5 ° -30 °
(D15) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.09λ to 0.11λ, and H is 0.275λ to 0.325λ, LiNbO 3 Cut angle is 26 ° ~ 29.5 °
(D16) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.11λ to 0.13λ, and H is 0.275λ to 0.325λ, LiNbO 3 Cut angle is 19.5 ° ~ 25.5 °
(D17) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.11λ to 0.13λ, and H is 0.275λ to 0.325λ, LiNbO 3 Cut angle is 25 ° -30 °
(D18) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.11λ to 0.13λ, and H is 0.275λ to 0.325λ, LiNbO 3 Cut angle is 26 ° ~ 31 °
(D19) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.875 to 0.925, h2 is 0.07λ to 0.09λ, and H is 0.275λ to 0.325λ, LiNbO 3 Cut angle is 20.5 ° ~ 21.5 °
(D20) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.875 to 0.925, h2 is 0.07λ to 0.09λ, and H is 0.275λ to 0.325λ, LiNbO 3 Cut angle is 25 ° -30 °
(D21) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.875 to 0.925, h2 is 0.07λ to 0.09λ, and H is 0.275λ to 0.325λ, LiNbO 3 Cut angle is 25.5 ° -29 °
(D22) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.875 to 0.925, h2 is 0.09λ to 0.11λ, and H is 0.275λ to 0.325λ, LiNbO 3 Cut angle is 21 ° ~ 27 °
(D23) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.875 to 0.925, h2 is 0.09λ to 0.11λ, and H is 0.275λ to 0.325λ, LiNbO 3 Cut angle is 26 ° -30 °
(D24) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.875 to 0.925, h2 is 0.09λ to 0.11λ, and H is 0.275λ to 0.325λ, LiNbO 3 Cut angle is 25 ° ~ 30.5 °
(D25) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.875 to 0.925, h2 is 0.11λ to 0.13λ, and H is 0.275λ to 0.325λ, LiNbO 3 Cut angle is 21 ° ~ 26.5 °
(D26) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.875 to 0.925, h2 is 0.11λ to 0.13λ, and H is 0.275λ to 0.325λ, LiNbO 3 Cut angle is 26.5 ° -30 °
(D27) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.875 to 0.925, h2 is 0.11λ to 0.13λ, and H is 0.275λ to 0.325λ, LiNbO 3 Cut angle is 25.5 ° ~ 32 °
(D28) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.07λ to 0.09λ, and H is 0.325λ to 0.375λ, LiNbO 3 Cut angle is 21.5 ° -28 °
(D29) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.07λ to 0.09λ, and H is 0.325λ to 0.375λ, LiNbO 3 Cut angle is 24 ° ~ 29.5 °
(D30) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.07λ to 0.09λ, and H is 0.325λ to 0.375λ, LiNbO 3 Cut angle is 25.5 ° ~ 26.5 °
(D31) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.09λ to 0.11λ, and H is 0.325λ to 0.375λ, LiNbO 3 Cut angle is 21.5 ° -28 °
(D32) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.09λ to 0.11λ, and H is 0.325λ to 0.375λ, LiNbO 3 Cut angle is 24.5 ° ~ 29.5 °
(D33) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.09λ to 0.11λ, and H is 0.325λ to 0.375λ, LiNbO 3 Cut angle is 24 ° ~ 28 °
(D34) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.11λ to 0.13λ, and H is 0.325λ to 0.375λ, LiNbO 3 Cut angle is 22 ° -28 °
(D35) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.11λ to 0.13λ, and H is 0.325λ to 0.375λ, LiNbO 3 Cut angle is 25.5 ° -29 °
(D36) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.11λ to 0.13λ, and H is 0.325λ to 0.375λ, LiNbO 3 Cut angle is 23.5 ° ~ 28.5 °
(D37) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.07λ to 0.09λ, and H is 0.325λ to 0.375λ, LiNbO 3 Cut angle is 22 ° ~ 28.5 °
(D38) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.07λ to 0.09λ, and H is 0.325λ to 0.375λ, LiNbO 3 Cut angle is 24.5 ° ~ 29.5 °
(D39) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.07λ to 0.09λ, and H is 0.325λ to 0.375λ, LiNbO 3 Cut angle is 24 ° ~ 27 °
(D40) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.09λ to 0.11λ, and H is 0.325λ to 0.375λ, LiNbO 3 Cut angle is 22.5 ° ~ 28.5 °
(D41) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.09λ to 0.11λ, and H is 0.325λ to 0.375λ, LiNbO 3 Cut angle is 25 ° ~ 29 °
(D42) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.09λ to 0.11λ, and H is 0.325λ to 0.375λ, LiNbO 3 Cut angle is 23 ° ~ 28.5 °
(D43) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.11λ to 0.13λ, and H is 0.325λ to 0.375λ, LiNbO 3 Cut angle is 23 ° ~ 29 °
(D44) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.11λ to 0.13λ, and H is 0.325λ to 0.375λ, LiNbO 3 Cut angle is 25 ° to 28 °
(D45) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.11λ to 0.13λ, and H is 0.325λ to 0.375λ, LiNbO 3 Cut angle is 23 ° ~ 29.5 °
(D46) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.875 to 0.925, h2 is 0.07λ to 0.09λ, and H is 0.325λ to 0.375λ, LiNbO 3 Cut angle is 22.5 ° -29 °
(D47) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.875 to 0.925, h2 is 0.07λ to 0.09λ, and H is 0.325λ to 0.375λ, LiNbO 3 Cut angle is 25 ° ~ 29 °
(D48) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.875 to 0.925, h2 is 0.07λ to 0.09λ, and H is 0.325λ to 0.375λ, LiNbO 3 Cut angle is 23 ° ~ 28 °
(D49) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.875 to 0.925, h2 is 0.09λ to 0.11λ, and H is 0.325λ to 0.375λ, LiNbO 3 Cut angle is 23.5 ° -29 °
(D50) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.875 to 0.925, h2 is 0.09λ to 0.11λ, and H is 0.325λ to 0.375λ, LiNbO 3 Cut angle is 25 ° to 28 °
(D51) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.875 to 0.925, h2 is 0.09λ to 0.11λ, and H is 0.325λ to 0.375λ, LiNbO 3 Cut angle is 22 ° ~ 28.5 °
(D52) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.875 to 0.925, h2 is 0.11λ to 0.13λ, and H is 0.325λ to 0.375λ, LiNbO 3 Cut angle is 24 ° ~ 29.5 °
(D53) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.875 to 0.925, h2 is 0.11λ to 0.13λ, and H is 0.325λ to 0.375λ, LiNbO 3 Cut angle is 26 ° -30 °
(D54) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.875 to 0.925, h2 is 0.11λ to 0.13λ, and H is 0.325λ to 0.375λ, LiNbO 3 Cut angle is 22 ° -30 °
(D55) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.07λ to 0.09λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 22.5 ° -29 °
(D56) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.07λ to 0.09λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 24 ° ~ 29 °
(D57) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.07λ to 0.09λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 23.5 ° -26 °
(D58) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.09λ to 0.11λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 23 ° ~ 29.5 °
(D59) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.09λ to 0.11λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 25 ° ~ 28.5 °
(D60) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.09λ to 0.11λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 22 ° ~ 27 °
(D61) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.11λ to 0.13λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 23.5 ° ~ 29.5 °
(D62) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.11λ to 0.13λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 25 ° to 28 °
(D63) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.11λ to 0.13λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 21 ° ~ 27.5 °
(D64) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.07λ to 0.09λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 23 ° ~ 29.5 °
(D65) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.07λ to 0.09λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 24.5 ° ~ 28.5 °
(D66) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.07λ to 0.09λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 22.5 ° ~ 26.5 °
(D67) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.09λ to 0.11λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 23.5 ° ~ 29.5 °
(D68) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.09λ to 0.11λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 24.5 ° ~ 28.5 °
(D69) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.09λ to 0.11λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 21 ° ~ 27 °
(D70) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.11λ to 0.13λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 24 ° -30 °
(D71) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.11λ to 0.13λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 24 ° ~ 28 °
(D72) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.11λ to 0.13λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 20 ° ~ 27.5 °
(D73) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.875 to 0.925, h2 is 0.07λ to 0.09λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 23.5 ° ~ 29.5 °
(D74) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.875 to 0.925, h2 is 0.07λ to 0.09λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 25 ° to 28 °
(D75) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.875 to 0.925, h2 is 0.07λ to 0.09λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 21.5 ° ~ 26.5 °
(D76) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.875 to 0.925, h2 is 0.09λ to 0.11λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 24 ° ~ 29.5 °
(D77) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.875 to 0.925, h2 is 0.09λ to 0.11λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 24.5 ° -28 °
(D78) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.875 to 0.925, h2 is 0.09λ to 0.11λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 20 ° ~ 27 °
(D79) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.875 to 0.925, h2 is 0.11λ to 0.13λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 25 ° ~ 29.5 °
(D80) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.875 to 0.925, h2 is 0.11λ to 0.13λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 23.5 ° -29 °
(D81) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.875 to 0.925, h2 is 0.11λ to 0.13λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 19 ° ~ 27.5 °
 本発明に係る弾性境界波装置の製造方法は、上記本発明に係る弾性境界波装置の製造方法であって、第2の媒質の厚みを調整することにより周波数特性を調整した後に第3の媒質を形成する。 The method for manufacturing a boundary acoustic wave device according to the present invention is a method for manufacturing the boundary acoustic wave device according to the present invention, wherein the third medium is adjusted after adjusting the frequency characteristics by adjusting the thickness of the second medium. Form.
 本発明では、弾性境界波装置が、第1~第3の媒質を有する3媒質型の弾性境界波装置であり、IDT電極が、第1及び第3の電極層と、第1及び第3の電極層の間に位置しており、第1及び第3の電極層よりも密度が低い第2の電極層とを有し、かつ、第1の電極層の厚みをh1、第3の電極層の厚みをh3としたときに、0.55<h3/(h1+h3)<0.95とされている。このため、第2の媒質の厚みに対する高次モードの音速の依存性が低い。すなわち、第2の媒質の厚みが変化しても高次モードの音速が変化しにくく、第2の媒質の厚みの変化にともなって高次モードスプリアスの大きさも変化しにくい。よって、周波数特性等を調整するために、第2の媒質の厚みを調整した場合であっても、高次モードスプリアスの大きさが所望の大きさよりも大きくなることが効果的に抑制される。従って、周波数特性等に関する不良が生じ難いと共に、高次モードスプリアスの大きさに関する不良も生じ難く、その結果、高い歩留まりで弾性境界波装置を製造することができる。 In the present invention, the boundary acoustic wave device is a three-medium type boundary acoustic wave device having first to third media, the IDT electrode includes the first and third electrode layers, the first and third electrodes. A second electrode layer located between the electrode layers and having a lower density than the first and third electrode layers, the thickness of the first electrode layer being h1, and the third electrode layer When the thickness of h3 is h3, 0.55 <h3 / (h1 + h3) <0.95. For this reason, the dependence of the sound speed of the higher-order mode on the thickness of the second medium is low. That is, even if the thickness of the second medium changes, the sound speed of the higher-order mode hardly changes, and the magnitude of the higher-order mode spurious does not easily change as the thickness of the second medium changes. Therefore, even when the thickness of the second medium is adjusted in order to adjust the frequency characteristics and the like, it is effectively suppressed that the size of the higher-order mode spurious becomes larger than the desired size. Therefore, it is difficult for defects relating to frequency characteristics and the like to occur, and defects relating to the magnitude of higher-order mode spurs are less likely to occur. As a result, boundary acoustic wave devices can be manufactured with a high yield.
図1は、第1の実施形態に係る弾性境界波装置の略図的断面図である。FIG. 1 is a schematic cross-sectional view of a boundary acoustic wave device according to a first embodiment. 図2は、h3/(h1+h3)が0.30のときの第2の媒質の厚み(H)と高次モードの音速との関係を表すグラフである。FIG. 2 is a graph showing the relationship between the thickness (H) of the second medium and the sound speed of the higher-order mode when h3 / (h1 + h3) is 0.30. 図3は、h3/(h1+h3)が0.55のときの第2の媒質の厚み(H)と高次モードの音速との関係を表すグラフである。FIG. 3 is a graph showing the relationship between the thickness (H) of the second medium and the sound speed of the higher-order mode when h3 / (h1 + h3) is 0.55. 図4は、h3/(h1+h3)が0.70のときの第2の媒質の厚み(H)と高次モードの音速との関係を表すグラフである。FIG. 4 is a graph showing the relationship between the thickness (H) of the second medium and the sound speed of the higher-order mode when h3 / (h1 + h3) is 0.70. 図5は、h3/(h1+h3)が0.90のときの第2の媒質の厚み(H)と高次モードの音速との関係を表すグラフである。FIG. 5 is a graph showing the relationship between the thickness (H) of the second medium and the sound speed of the higher-order mode when h3 / (h1 + h3) is 0.90. 図6は、h3/(h1+h3)が0.95のときの第2の媒質の厚み(H)と高次モードの音速との関係を表すグラフである。FIG. 6 is a graph showing the relationship between the thickness (H) of the second medium and the sound speed of the higher-order mode when h3 / (h1 + h3) is 0.95. 図7は、第2の電極層22の厚み(h2)が0.07λであり、h3/(h1+h3)が0.30のときの第2の媒質12の厚み(H)と高次モードの音速との関係を表すグラフである。FIG. 7 shows the thickness (H) of the second medium 12 and the sound speed of the higher-order mode when the thickness (h2) of the second electrode layer 22 is 0.07λ and h3 / (h1 + h3) is 0.30. It is a graph showing the relationship. 図8は、第2の電極層22の厚み(h2)が0.07λであり、h3/(h1+h3)が0.55のときの第2の媒質12の厚み(H)と高次モードの音速との関係を表すグラフである。FIG. 8 shows the thickness (H) of the second medium 12 and the sound speed of the higher-order mode when the thickness (h2) of the second electrode layer 22 is 0.07λ and h3 / (h1 + h3) is 0.55. It is a graph showing the relationship. 図9は、第2の電極層22の厚み(h2)が0.07λであり、h3/(h1+h3)が0.70のときの第2の媒質12の厚み(H)と高次モードの音速との関係を表すグラフである。FIG. 9 shows the thickness (H) of the second medium 12 and the sound speed of the higher-order mode when the thickness (h2) of the second electrode layer 22 is 0.07λ and h3 / (h1 + h3) is 0.70. It is a graph showing the relationship. 図10は、第2の電極層22の厚み(h2)が0.07λであり、h3/(h1+h3)が0.90のときの第2の媒質12の厚み(H)と高次モードの音速との関係を表すグラフである。FIG. 10 shows the thickness (H) of the second medium 12 and the sound speed of the higher-order mode when the thickness (h2) of the second electrode layer 22 is 0.07λ and h3 / (h1 + h3) is 0.90. It is a graph showing the relationship. 図11は、第2の電極層22の厚み(h2)が0.07λであり、h3/(h1+h3)が0.95のときの第2の媒質12の厚み(H)と高次モードの音速との関係を表すグラフである。FIG. 11 shows the thickness (H) of the second medium 12 and the sound speed of the higher-order mode when the thickness (h2) of the second electrode layer 22 is 0.07λ and h3 / (h1 + h3) is 0.95. It is a graph showing the relationship. 図12は、第2の電極層22の厚み(h2)が0.20λであり、h3/(h1+h3)が0.30のときの第2の媒質12の厚み(H)と高次モードの音速との関係を表すグラフである。FIG. 12 shows the thickness (H) of the second medium 12 and the sound speed of the higher-order mode when the thickness (h2) of the second electrode layer 22 is 0.20λ and h3 / (h1 + h3) is 0.30. It is a graph showing the relationship. 図13は、第2の電極層22の厚み(h2)が0.20λであり、h3/(h1+h3)が0.55のときの第2の媒質12の厚み(H)と高次モードの音速との関係を表すグラフである。FIG. 13 shows the thickness (H) of the second medium 12 and the sound speed of the higher-order mode when the thickness (h2) of the second electrode layer 22 is 0.20λ and h3 / (h1 + h3) is 0.55. It is a graph showing the relationship. 図14は、第2の電極層22の厚み(h2)が0.20λであり、h3/(h1+h3)が0.70のときの第2の媒質12の厚み(H)と高次モードの音速との関係を表すグラフである。FIG. 14 shows the thickness (H) of the second medium 12 and the sound speed of the higher-order mode when the thickness (h2) of the second electrode layer 22 is 0.20λ and h3 / (h1 + h3) is 0.70. It is a graph showing the relationship. 図15は、第2の電極層22の厚み(h2)が0.20λであり、h3/(h1+h3)が0.90のときの第2の媒質12の厚み(H)と高次モードの音速との関係を表すグラフである。FIG. 15 shows the thickness (H) of the second medium 12 and the sound speed of the higher-order mode when the thickness (h2) of the second electrode layer 22 is 0.20λ and h3 / (h1 + h3) is 0.90. It is a graph showing the relationship. 図16は、第2の電極層22の厚み(h2)が0.20λであり、h3/(h1+h3)が0.95のときの第2の媒質12の厚み(H)と高次モードの音速との関係を表すグラフである。FIG. 16 shows the thickness (H) of the second medium 12 and the sound speed of the higher-order mode when the thickness (h2) of the second electrode layer 22 is 0.20λ and h3 / (h1 + h3) is 0.95. It is a graph showing the relationship. 図17は、第1及び第3の電極層21,23の厚みの合計(h1+h3)が0.04λ、第2の電極層22の厚み(h2)が0.14λであり、h3/(h1+h3)が0.30のときの第2の媒質12の厚み(H)と高次モードの音速との関係を表すグラフである。FIG. 17 shows that the total thickness (h1 + h3) of the first and third electrode layers 21 and 23 is 0.04λ, the thickness (h2) of the second electrode layer 22 is 0.14λ, and h3 / (h1 + h3). 6 is a graph showing the relationship between the thickness (H) of the second medium 12 and the sound speed of a higher-order mode when is 0.30. 図18は、第1及び第3の電極層21,23の厚みの合計(h1+h3)が0.04λ、第2の電極層22の厚み(h2)が0.14λであり、h3/(h1+h3)が0.55のときの第2の媒質12の厚み(H)と高次モードの音速との関係を表すグラフである。In FIG. 18, the total thickness (h1 + h3) of the first and third electrode layers 21 and 23 is 0.04λ, the thickness (h2) of the second electrode layer 22 is 0.14λ, and h3 / (h1 + h3). 6 is a graph showing the relationship between the thickness (H) of the second medium 12 and the sound speed of a higher-order mode when is 0.55. 図19は、第1及び第3の電極層21,23の厚みの合計(h1+h3)が0.04λ、第2の電極層22の厚み(h2)が0.14λであり、h3/(h1+h3)が0.70のときの第2の媒質12の厚み(H)と高次モードの音速との関係を表すグラフである。In FIG. 19, the total thickness (h1 + h3) of the first and third electrode layers 21 and 23 is 0.04λ, the thickness (h2) of the second electrode layer 22 is 0.14λ, and h3 / (h1 + h3). 6 is a graph showing the relationship between the thickness (H) of the second medium 12 and the sound speed of the higher-order mode when is 0.70. 図20は、第1及び第3の電極層21,23の厚みの合計(h1+h3)が0.04λ、第2の電極層22の厚み(h2)が0.14λであり、h3/(h1+h3)が0.90のときの第2の媒質12の厚み(H)と高次モードの音速との関係を表すグラフである。In FIG. 20, the total thickness (h1 + h3) of the first and third electrode layers 21 and 23 is 0.04λ, the thickness (h2) of the second electrode layer 22 is 0.14λ, and h3 / (h1 + h3). 6 is a graph showing the relationship between the thickness (H) of the second medium 12 and the sound speed of a higher-order mode when is 0.90. 図21は、第1及び第3の電極層21,23の厚み(h1+h3)の合計が0.04λ、第2の電極層22の厚み(h2)が0.14λであり、h3/(h1+h3)が0.95のときの第2の媒質12の厚み(H)と高次モードの音速との関係を表すグラフである。FIG. 21 shows that the total thickness (h1 + h3) of the first and third electrode layers 21, 23 is 0.04λ, the thickness (h2) of the second electrode layer 22 is 0.14λ, and h3 / (h1 + h3). 6 is a graph showing the relationship between the thickness (H) of the second medium 12 and the sound speed of a higher-order mode when is 0.95. 図22は、第1の電極層21:Au/第2の電極層:Al/第3の電極層:Auであり、h3/(h1+h3)が0.30のときの第2の媒質12の厚み(H)と高次モードの音速との関係を表すグラフである。FIG. 22 shows the thickness of the second medium 12 when the first electrode layer 21: Au / second electrode layer: Al / third electrode layer: Au and h3 / (h1 + h3) is 0.30. It is a graph showing the relationship between (H) and the sound speed of a higher-order mode. 図23は、第1の電極層21:Au/第2の電極層:Al/第3の電極層:Auであり、h3/(h1+h3)が0.55のときの第2の媒質12の厚み(H)と高次モードの音速との関係を表すグラフである。FIG. 23 shows the thickness of the second medium 12 when the first electrode layer 21: Au / second electrode layer: Al / third electrode layer: Au and h3 / (h1 + h3) is 0.55. It is a graph showing the relationship between (H) and the sound speed of a higher-order mode. 図24は、第1の電極層21:Au/第2の電極層:Al/第3の電極層:Auであり、h3/(h1+h3)が0.70のときの第2の媒質12の厚み(H)と高次モードの音速との関係を表すグラフである。FIG. 24 shows the thickness of the second medium 12 when the first electrode layer 21: Au / second electrode layer: Al / third electrode layer: Au and h3 / (h1 + h3) is 0.70. It is a graph showing the relationship between (H) and the sound speed of a higher-order mode. 図25は、第1の電極層21:Au/第2の電極層:Al/第3の電極層:Auであり、h3/(h1+h3)が0.90のときの第2の媒質12の厚み(H)と高次モードの音速との関係を表すグラフである。FIG. 25 shows the thickness of the second medium 12 when the first electrode layer 21: Au / second electrode layer: Al / third electrode layer: Au and h3 / (h1 + h3) is 0.90. It is a graph showing the relationship between (H) and the sound speed of a higher-order mode. 図26は、第1の電極層21:Au/第2の電極層:Al/第3の電極層:Auであり、h3/(h1+h3)が0.95のときの第2の媒質12の厚み(H)と高次モードの音速との関係を表すグラフである。FIG. 26 shows the thickness of the second medium 12 when the first electrode layer 21: Au / second electrode layer: Al / third electrode layer: Au and h3 / (h1 + h3) is 0.95. It is a graph showing the relationship between (H) and the sound speed of a higher-order mode. 図27は、第1の電極層21:W/第2の電極層:Al/第3の電極層:Wであり、h3/(h1+h3)が0.30のときの第2の媒質12の厚み(H)と高次モードの音速との関係を表すグラフである。FIG. 27 shows the thickness of the second medium 12 when the first electrode layer 21: W / second electrode layer: Al / third electrode layer: W and h3 / (h1 + h3) is 0.30. It is a graph showing the relationship between (H) and the sound speed of a higher-order mode. 図28は、第1の電極層21:W/第2の電極層:Al/第3の電極層:Wであり、h3/(h1+h3)が0.55のときの第2の媒質12の厚み(H)と高次モードの音速との関係を表すグラフである。FIG. 28 shows the thickness of the second medium 12 when the first electrode layer 21: W / second electrode layer: Al / third electrode layer: W and h3 / (h1 + h3) is 0.55. It is a graph showing the relationship between (H) and the sound speed of a higher-order mode. 図29は、第1の電極層21:W/第2の電極層:Al/第3の電極層:Wであり、h3/(h1+h3)が0.70のときの第2の媒質12の厚み(H)と高次モードの音速との関係を表すグラフである。FIG. 29 shows the thickness of the second medium 12 when the first electrode layer 21: W / second electrode layer: Al / third electrode layer: W and h3 / (h1 + h3) is 0.70. It is a graph showing the relationship between (H) and the sound speed of a higher-order mode. 図30は、第1の電極層21:W/第2の電極層:Al/第3の電極層:Wであり、h3/(h1+h3)が0.90のときの第2の媒質12の厚み(H)と高次モードの音速との関係を表すグラフである。FIG. 30 shows the thickness of the second medium 12 when the first electrode layer 21: W / second electrode layer: Al / third electrode layer: W and h3 / (h1 + h3) is 0.90. It is a graph showing the relationship between (H) and the sound speed of a higher-order mode. 図31は、第1の電極層21:W/第2の電極層:Al/第3の電極層:Wであり、h3/(h1+h3)が0.95のときの第2の媒質12の厚み(H)と高次モードの音速との関係を表すグラフである。FIG. 31 shows the thickness of the second medium 12 when the first electrode layer 21: W / second electrode layer: Al / third electrode layer: W and h3 / (h1 + h3) is 0.95. It is a graph showing the relationship between (H) and the sound speed of a higher-order mode. 図32は、第1の電極層21:Ta/第2の電極層:Al/第3の電極層:Taであり、h3/(h1+h3)が0.30のときの第2の媒質12の厚み(H)と高次モードの音速との関係を表すグラフである。FIG. 32 shows the thickness of the second medium 12 when the first electrode layer 21: Ta / second electrode layer: Al / third electrode layer: Ta and h3 / (h1 + h3) is 0.30. It is a graph showing the relationship between (H) and the sound speed of a higher-order mode. 図33は、第1の電極層21:Ta/第2の電極層:Al/第3の電極層:Taであり、h3/(h1+h3)が0.55のときの第2の媒質12の厚み(H)と高次モードの音速との関係を表すグラフである。FIG. 33 shows the thickness of the second medium 12 when the first electrode layer 21: Ta / second electrode layer: Al / third electrode layer: Ta and h3 / (h1 + h3) is 0.55. It is a graph showing the relationship between (H) and the sound speed of a higher-order mode. 図34は、第1の電極層21:Ta/第2の電極層:Al/第3の電極層:Taであり、h3/(h1+h3)が0.70のときの第2の媒質12の厚み(H)と高次モードの音速との関係を表すグラフである。FIG. 34 shows the thickness of the second medium 12 when the first electrode layer 21: Ta / second electrode layer: Al / third electrode layer: Ta and h3 / (h1 + h3) is 0.70. It is a graph showing the relationship between (H) and the sound speed of a higher-order mode. 図35は、第1の電極層21:Ta/第2の電極層:Al/第3の電極層:Taであり、h3/(h1+h3)が0.90のときの第2の媒質12の厚み(H)と高次モードの音速との関係を表すグラフである。FIG. 35 shows the thickness of the second medium 12 when the first electrode layer 21: Ta / second electrode layer: Al / third electrode layer: Ta and h3 / (h1 + h3) is 0.90. It is a graph showing the relationship between (H) and the sound speed of a higher-order mode. 図36は、第1の電極層21:Ta/第2の電極層:Al/第3の電極層:Taであり、h3/(h1+h3)が0.95のときの第2の媒質12の厚み(H)と高次モードの音速との関係を表すグラフである。FIG. 36 shows the thickness of the second medium 12 when the first electrode layer 21: Ta / second electrode layer: Al / third electrode layer: Ta and h3 / (h1 + h3) is 0.95. It is a graph showing the relationship between (H) and the sound speed of a higher-order mode. 図37は、第1の電極層21:Cu/第2の電極層:Al/第3の電極層:Cuであり、h3/(h1+h3)が0.30のときの第2の媒質12の厚み(H)と高次モードの音速との関係を表すグラフである。FIG. 37 shows the thickness of the second medium 12 when the first electrode layer 21: Cu / second electrode layer: Al / third electrode layer: Cu and h3 / (h1 + h3) is 0.30. It is a graph showing the relationship between (H) and the sound speed of a higher-order mode. 図38は、第1の電極層21:Cu/第2の電極層:Al/第3の電極層:Cuであり、h3/(h1+h3)が0.55のときの第2の媒質12の厚み(H)と高次モードの音速との関係を表すグラフである。FIG. 38 shows the thickness of the second medium 12 when the first electrode layer 21: Cu / second electrode layer: Al / third electrode layer: Cu and h3 / (h1 + h3) is 0.55. It is a graph showing the relationship between (H) and the sound speed of a higher-order mode. 図39は、第1の電極層21:Cu/第2の電極層:Al/第3の電極層:Cuであり、h3/(h1+h3)が0.70のときの第2の媒質12の厚み(H)と高次モードの音速との関係を表すグラフである。FIG. 39 shows the thickness of the second medium 12 when the first electrode layer 21: Cu / second electrode layer: Al / third electrode layer: Cu and h3 / (h1 + h3) is 0.70. It is a graph showing the relationship between (H) and the sound speed of a higher-order mode. 図40は、第1の電極層21:Cu/第2の電極層:Al/第3の電極層:Cuであり、h3/(h1+h3)が0.90のときの第2の媒質12の厚み(H)と高次モードの音速との関係を表すグラフである。FIG. 40 shows the thickness of the second medium 12 when the first electrode layer 21: Cu / second electrode layer: Al / third electrode layer: Cu and h3 / (h1 + h3) is 0.90. It is a graph showing the relationship between (H) and the sound speed of a higher-order mode. 図41は、第1の電極層21:Cu/第2の電極層:Al/第3の電極層:Cuであり、h3/(h1+h3)が0.95のときの第2の媒質12の厚み(H)と高次モードの音速との関係を表すグラフである。FIG. 41 shows the thickness of the second medium 12 when the first electrode layer 21: Cu / second electrode layer: Al / third electrode layer: Cu and h3 / (h1 + h3) is 0.95. It is a graph showing the relationship between (H) and the sound speed of a higher-order mode. 図42は、第1の電極層21:Pt/第2の電極層:Cu/第3の電極層:Ptであり、h3/(h1+h3)が0.30のときの第2の媒質12の厚み(H)と高次モードの音速との関係を表すグラフである。FIG. 42 shows the thickness of the second medium 12 when the first electrode layer 21: Pt / second electrode layer: Cu / third electrode layer: Pt and h3 / (h1 + h3) is 0.30. It is a graph showing the relationship between (H) and the sound speed of a higher-order mode. 図43は、第1の電極層21:Pt/第2の電極層:Cu/第3の電極層:Ptであり、h3/(h1+h3)が0.55のときの第2の媒質12の厚み(H)と高次モードの音速との関係を表すグラフである。FIG. 43 shows the thickness of the second medium 12 when the first electrode layer 21: Pt / second electrode layer: Cu / third electrode layer: Pt and h3 / (h1 + h3) is 0.55. It is a graph showing the relationship between (H) and the sound speed of a higher-order mode. 図44は、第1の電極層21:Pt/第2の電極層:Cu/第3の電極層:Ptであり、h3/(h1+h3)が0.70のときの第2の媒質12の厚み(H)と高次モードの音速との関係を表すグラフである。FIG. 44 shows the thickness of the second medium 12 when the first electrode layer 21: Pt / second electrode layer: Cu / third electrode layer: Pt and h3 / (h1 + h3) is 0.70. It is a graph showing the relationship between (H) and the sound speed of a higher-order mode. 図45は、第1の電極層21:Pt/第2の電極層:Cu/第3の電極層:Ptであり、h3/(h1+h3)が0.90のときの第2の媒質12の厚み(H)と高次モードの音速との関係を表すグラフである。FIG. 45 shows the thickness of the second medium 12 when the first electrode layer 21: Pt / second electrode layer: Cu / third electrode layer: Pt and h3 / (h1 + h3) is 0.90. It is a graph showing the relationship between (H) and the sound speed of a higher-order mode. 図46は、第1の電極層21:Pt/第2の電極層:Cu/第3の電極層:Ptであり、h3/(h1+h3)が0.95のときの第2の媒質12の厚み(H)と高次モードの音速との関係を表すグラフである。FIG. 46 shows the thickness of the second medium 12 when the first electrode layer 21: Pt / second electrode layer: Cu / third electrode layer: Pt and h3 / (h1 + h3) is 0.95. It is a graph showing the relationship between (H) and the sound speed of a higher-order mode. 図47は、37°YカットLiNbO基板を第1の媒質として用いた場合のインピーダンス(Z)特性を表すグラフである。FIG. 47 is a graph showing impedance (Z) characteristics when a 37 ° Y-cut LiNbO 3 substrate is used as the first medium. 図48は、37°YカットLiNbO基板を第1の媒質として用いた場合の位相特性を表すグラフである。FIG. 48 is a graph showing phase characteristics when a 37 ° Y-cut LiNbO 3 substrate is used as the first medium. 図49は、0°YカットLiNbO基板を第1の媒質として用いた場合のインピーダンス(Z)特性を表すグラフである。FIG. 49 is a graph showing impedance (Z) characteristics when a 0 ° Y-cut LiNbO 3 substrate is used as the first medium. 図50は、0°YカットLiNbO基板を第1の媒質として用いた場合の位相特性を表すグラフである。FIG. 50 is a graph showing phase characteristics when a 0 ° Y-cut LiNbO 3 substrate is used as the first medium. 図51は、第2の実施形態に係る弾性境界波装置の略図的断面図である。FIG. 51 is a schematic cross-sectional view of a boundary acoustic wave device according to the second embodiment. 図52は、第3の実施形態に係る弾性境界波装置におけるIDT電極の略図的断面図である。FIG. 52 is a schematic cross-sectional view of an IDT electrode in a boundary acoustic wave device according to a third embodiment. 図53は、第4の実施形態に係る弾性境界波装置におけるIDT電極の略図的断面図である。FIG. 53 is a schematic cross-sectional view of an IDT electrode in a boundary acoustic wave device according to a fourth embodiment. 図54は、第5の実施形態に係る弾性境界波装置の略図的断面図である。FIG. 54 is a schematic cross-sectional view of a boundary acoustic wave device according to a fifth embodiment. 図55は、SiO膜の膜厚(H)が0.40λ、第1のPt膜のPt膜厚合計に対する比(h3/(h1+h3))が0.45、Al膜の膜厚(h2)が0.08λであり、Pt膜厚合計(h1+h3)が0.02λ、0.025λまたは0.03λの場合のLiNbOのカット角とSV波比帯域との関係を示す図である。In FIG. 55, the SiO 2 film thickness (H) is 0.40λ, the ratio (h3 / (h1 + h3)) to the total Pt film thickness of the first Pt film is 0.45, and the Al film thickness (h2). Is the relationship between the cut angle of LiNbO 3 and the SV wave ratio band when the total Pt film thickness (h1 + h3) is 0.02λ, 0.025λ, or 0.03λ. 図56は、SiO膜の膜厚が0.40λ、第1のPt膜のPt膜厚合計に対する比が0.45、Al膜の膜厚が0.10λであり、Pt膜厚合計が0.02λ、0.025λまたは0.03λの場合のLiNbOのカット角とSV波比帯域との関係を示す図である。In FIG. 56, the SiO 2 film thickness is 0.40λ, the ratio of the first Pt film to the total Pt film thickness is 0.45, the Al film thickness is 0.10λ, and the total Pt film thickness is 0. .02Ramuda, is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025λ or 0.03. 図57は、SiO膜の膜厚が0.40λ、第1のPt膜のPt膜厚合計に対する比が0.45、Al膜の膜厚が0.12λであり、Pt膜厚合計が0.02λ、0.025λまたは0.03λの場合のLiNbOのカット角とSV波比帯域との関係を示す図である。In FIG. 57, the SiO 2 film thickness is 0.40λ, the ratio of the first Pt film to the total Pt film thickness is 0.45, the Al film thickness is 0.12λ, and the total Pt film thickness is 0. .02Ramuda, is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025λ or 0.03. 図58は、SiO膜の膜厚が0.40λ、第1のPt膜のPt膜厚合計に対する比が0.50、Al膜の膜厚が0.08λであり、Pt膜厚合計が0.02λ、0.025λまたは0.03λの場合のLiNbOのカット角とSV波比帯域との関係を示す図である。In FIG. 58, the SiO 2 film thickness is 0.40λ, the ratio of the first Pt film to the total Pt film thickness is 0.50, the Al film thickness is 0.08λ, and the total Pt film thickness is 0. .02Ramuda, is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025λ or 0.03. 図59は、SiO膜の膜厚が0.40λ、第1のPt膜のPt膜厚合計に対する比が0.50、Al膜の膜厚が0.10λであり、Pt膜厚合計が0.02λ、0.025λまたは0.03λの場合のLiNbOのカット角とSV波比帯域との関係を示す図である。In FIG. 59, the SiO 2 film thickness is 0.40λ, the ratio of the first Pt film to the total Pt film thickness is 0.50, the Al film thickness is 0.10λ, and the total Pt film thickness is 0. .02Ramuda, is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025λ or 0.03. 図60は、SiO膜の膜厚が0.40λ、第1のPt膜のPt膜厚合計に対する比が0.50、Al膜の膜厚が0.12λであり、Pt膜厚合計が0.02λ、0.025λまたは0.03λの場合のLiNbOのカット角とSV波比帯域との関係を示す図である。In FIG. 60, the SiO 2 film thickness is 0.40λ, the ratio of the first Pt film to the total Pt film thickness is 0.50, the Al film thickness is 0.12λ, and the total Pt film thickness is 0. .02Ramuda, is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025λ or 0.03. 図61は、SiO膜の膜厚が0.40λ、第1のPt膜のPt膜厚合計に対する比が0.55、Al膜の膜厚が0.08λであり、Pt膜厚合計が0.02λ、0.025λまたは0.03λの場合のLiNbOのカット角とSV波比帯域との関係を示す図である。In FIG. 61, the SiO 2 film thickness is 0.40λ, the ratio of the first Pt film to the total Pt film thickness is 0.55, the Al film thickness is 0.08λ, and the total Pt film thickness is 0. .02Ramuda, is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025λ or 0.03. 図62は、SiO膜の膜厚が0.40λ、第1のPt膜のPt膜厚合計に対する比が0.55、Al膜の膜厚が0.10λであり、Pt膜厚合計が0.02λ、0.025λまたは0.03λの場合のLiNbOのカット角とSV波比帯域との関係を示す図である。In FIG. 62, the SiO 2 film thickness is 0.40λ, the ratio of the first Pt film to the total Pt film thickness is 0.55, the Al film thickness is 0.10λ, and the total Pt film thickness is 0. .02Ramuda, is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025λ or 0.03. 図63は、SiO膜の膜厚が0.40λ、第1のPt膜のPt膜厚合計に対する比が0.55、Al膜の膜厚が0.12λであり、Pt膜厚合計が0.02λ、0.025λまたは0.03λの場合のLiNbOのカット角とSV波比帯域との関係を示す図である。In FIG. 63, the SiO 2 film thickness is 0.40λ, the ratio of the first Pt film to the total Pt film thickness is 0.55, the Al film thickness is 0.12λ, and the total Pt film thickness is 0. .02Ramuda, is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025λ or 0.03. 図64は、SiO膜の膜厚が0.45λ、第1のPt膜のPt膜厚合計に対する比が0.45、Al膜の膜厚が0.08λであり、Pt膜厚合計が0.02λ、0.025λまたは0.03λの場合のLiNbOのカット角とSV波比帯域との関係を示す図である。In FIG. 64, the SiO 2 film thickness is 0.45λ, the ratio of the first Pt film to the total Pt film thickness is 0.45, the Al film thickness is 0.08λ, and the total Pt film thickness is 0. .02Ramuda, is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025λ or 0.03. 図65は、SiO膜の膜厚が0.45λ、第1のPt膜のPt膜厚合計に対する比が0.45、Al膜の膜厚が0.10λであり、Pt膜厚合計が0.02λ、0.025λまたは0.03λの場合のLiNbOのカット角とSV波比帯域との関係を示す図である。In FIG. 65, the SiO 2 film thickness is 0.45λ, the ratio of the first Pt film to the total Pt film thickness is 0.45, the Al film thickness is 0.10λ, and the total Pt film thickness is 0. .02Ramuda, is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025λ or 0.03. 図66は、SiO膜の膜厚が0.45λ、第1のPt膜のPt膜厚合計に対する比が0.45、Al膜の膜厚が0.12λであり、Pt膜厚合計が0.02λ、0.025λまたは0.03λの場合のLiNbOのカット角とSV波比帯域との関係を示す図である。In FIG. 66, the SiO 2 film thickness is 0.45λ, the ratio of the first Pt film to the total Pt film thickness is 0.45, the Al film thickness is 0.12λ, and the total Pt film thickness is 0. .02Ramuda, is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025λ or 0.03. 図67は、SiO膜の膜厚が0.45λ、第1のPt膜のPt膜厚合計に対する比が0.50、Al膜の膜厚が0.08λであり、Pt膜厚合計が0.02λ、0.025λまたは0.03λの場合のLiNbOのカット角とSV波比帯域との関係を示す図である。In FIG. 67, the SiO 2 film thickness is 0.45λ, the ratio of the first Pt film to the total Pt film thickness is 0.50, the Al film thickness is 0.08λ, and the total Pt film thickness is 0. .02Ramuda, is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025λ or 0.03. 図68は、SiO膜の膜厚が0.45λ、第1のPt膜のPt膜厚合計に対する比が0.50、Al膜の膜厚が0.10λであり、Pt膜厚合計が0.02λ、0.025λまたは0.03λの場合のLiNbOのカット角とSV波比帯域との関係を示す図である。In FIG. 68, the SiO 2 film thickness is 0.45λ, the ratio of the first Pt film to the total Pt film thickness is 0.50, the Al film thickness is 0.10λ, and the total Pt film thickness is 0. .02Ramuda, is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025λ or 0.03. 図69は、SiO膜の膜厚が0.45λ、第1のPt膜のPt膜厚合計に対する比が0.50、Al膜の膜厚が0.12λであり、Pt膜厚合計が0.02λ、0.025λまたは0.03λの場合のLiNbOのカット角とSV波比帯域との関係を示す図である。In FIG. 69, the SiO 2 film thickness is 0.45λ, the ratio of the first Pt film to the total Pt film thickness is 0.50, the Al film thickness is 0.12λ, and the total Pt film thickness is 0. .02Ramuda, is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025λ or 0.03. 図70は、SiO膜の膜厚が0.45λ、第1のPt膜のPt膜厚合計に対する比が0.55、Al膜の膜厚が0.08λであり、Pt膜厚合計が0.02λ、0.025λまたは0.03λの場合のLiNbOのカット角とSV波比帯域との関係を示す図である。In FIG. 70, the SiO 2 film thickness is 0.45λ, the ratio of the first Pt film to the total Pt film thickness is 0.55, the Al film thickness is 0.08λ, and the total Pt film thickness is 0. .02Ramuda, is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025λ or 0.03. 図71は、SiO膜の膜厚が0.45λ、第1のPt膜のPt膜厚合計に対する比が0.55、Al膜の膜厚が0.10λであり、Pt膜厚合計が0.02λ、0.025λまたは0.03λの場合のLiNbOのカット角とSV波比帯域との関係を示す図である。In FIG. 71, the SiO 2 film thickness is 0.45λ, the ratio of the first Pt film to the total Pt film thickness is 0.55, the Al film thickness is 0.10λ, and the total Pt film thickness is 0. .02Ramuda, is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025λ or 0.03. 図72は、SiO膜の膜厚が0.45λ、第1のPt膜のPt膜厚合計に対する比が0.55、Al膜の膜厚が0.12λであり、Pt膜厚合計が0.02λ、0.025λまたは0.03λの場合のLiNbOのカット角とSV波比帯域との関係を示す図である。In FIG. 72, the SiO 2 film thickness is 0.45λ, the ratio of the first Pt film to the total Pt film thickness is 0.55, the Al film thickness is 0.12λ, and the total Pt film thickness is 0. .02Ramuda, is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025λ or 0.03. 図73は、SiO膜の膜厚が0.50λ、第1のPt膜のPt膜厚合計に対する比が0.45、Al膜の膜厚が0.08λであり、Pt膜厚合計が0.02λ、0.025λまたは0.03λの場合のLiNbOのカット角とSV波比帯域との関係を示す図である。In FIG. 73, the SiO 2 film thickness is 0.50λ, the ratio of the first Pt film to the total Pt film thickness is 0.45, the Al film thickness is 0.08λ, and the total Pt film thickness is 0. .02Ramuda, is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025λ or 0.03. 図74は、SiO膜の膜厚が0.50λ、第1のPt膜のPt膜厚合計に対する比が0.45、Al膜の膜厚が0.10λであり、Pt膜厚合計が0.02λ、0.025λまたは0.03λの場合のLiNbOのカット角とSV波比帯域との関係を示す図である。In FIG. 74, the SiO 2 film thickness is 0.50λ, the ratio of the first Pt film to the total Pt film thickness is 0.45, the Al film thickness is 0.10λ, and the total Pt film thickness is 0. .02Ramuda, is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025λ or 0.03. 図75は、SiO膜の膜厚が0.50λ、第1のPt膜のPt膜厚合計に対する比が0.45、Al膜の膜厚が0.12λであり、Pt膜厚合計が0.02λ、0.025λまたは0.03λの場合のLiNbOのカット角とSV波比帯域との関係を示す図である。In FIG. 75, the SiO 2 film thickness is 0.50λ, the ratio of the first Pt film to the total Pt film thickness is 0.45, the Al film thickness is 0.12λ, and the total Pt film thickness is 0. .02Ramuda, is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025λ or 0.03. 図76は、SiO膜の膜厚が0.50λ、第1のPt膜のPt膜厚合計に対する比が0.50、Al膜の膜厚が0.08λであり、Pt膜厚合計が0.02λ、0.025λまたは0.03λの場合のLiNbOのカット角とSV波比帯域との関係を示す図である。In FIG. 76, the SiO 2 film thickness is 0.50λ, the ratio of the first Pt film to the total Pt film thickness is 0.50, the Al film thickness is 0.08λ, and the total Pt film thickness is 0. .02Ramuda, is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025λ or 0.03. 図77は、SiO膜の膜厚が0.50λ、第1のPt膜のPt膜厚合計に対する比が0.50、Al膜の膜厚が0.10λであり、Pt膜厚合計が0.02λ、0.025λまたは0.03λの場合のLiNbOのカット角とSV波比帯域との関係を示す図である。In FIG. 77, the SiO 2 film thickness is 0.50λ, the ratio of the first Pt film to the total Pt film thickness is 0.50, the Al film thickness is 0.10λ, and the total Pt film thickness is 0. .02Ramuda, is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025λ or 0.03. 図78は、SiO膜の膜厚が0.50λ、第1のPt膜のPt膜厚合計に対する比が0.50、Al膜の膜厚が0.12λであり、Pt膜厚合計が0.02λ、0.025λまたは0.03λの場合のLiNbOのカット角とSV波比帯域との関係を示す図である。In FIG. 78, the SiO 2 film thickness is 0.50λ, the ratio of the first Pt film to the total Pt film thickness is 0.50, the Al film thickness is 0.12λ, and the total Pt film thickness is 0. .02Ramuda, is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025λ or 0.03. 図79は、SiO膜の膜厚が0.50λ、第1のPt膜のPt膜厚合計に対する比が0.55、Al膜の膜厚が0.08λであり、Pt膜厚合計が0.02λ、0.025λまたは0.03λの場合のLiNbOのカット角とSV波比帯域との関係を示す図である。In FIG. 79, the SiO 2 film thickness is 0.50λ, the ratio of the first Pt film to the total Pt film thickness is 0.55, the Al film thickness is 0.08λ, and the total Pt film thickness is 0. .02Ramuda, is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025λ or 0.03. 図80は、SiO膜の膜厚が0.50λ、第1のPt膜のPt膜厚合計に対する比が0.55、Al膜の膜厚が0.10λであり、Pt膜厚合計が0.02λ、0.025λまたは0.03λの場合のLiNbOのカット角とSV波比帯域との関係を示す図である。In FIG. 80, the SiO 2 film thickness is 0.50λ, the ratio of the first Pt film to the total Pt film thickness is 0.55, the Al film thickness is 0.10λ, and the total Pt film thickness is 0. .02Ramuda, is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025λ or 0.03. 図81は、SiO膜の膜厚が0.50λ、第1のPt膜のPt膜厚合計に対する比が0.55、Al膜の膜厚が0.12λであり、Pt膜厚合計が0.02λ、0.025λまたは0.03λの場合のLiNbOのカット角とSV波比帯域との関係を示す図である。In FIG. 81, the SiO 2 film thickness is 0.50λ, the ratio of the first Pt film to the total Pt film thickness is 0.55, the Al film thickness is 0.12λ, and the total Pt film thickness is 0. .02Ramuda, is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025λ or 0.03. 図82は、SiO膜の膜厚が0.40λ、第1のPt膜のPt膜厚合計に対する比が0.75、Al膜の膜厚が0.06λであり、Pt膜厚合計が0.02λ、0.025λまたは0.03λの場合のLiNbOのカット角とSV波比帯域との関係を示す図である。In FIG. 82, the SiO 2 film thickness is 0.40λ, the ratio of the first Pt film to the total Pt film thickness is 0.75, the Al film thickness is 0.06λ, and the total Pt film thickness is 0. .02Ramuda, is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025λ or 0.03. 図83は、SiO膜の膜厚が0.40λ、第1のPt膜のPt膜厚合計に対する比が0.75、Al膜の膜厚が0.08λであり、Pt膜厚合計が0.02λ、0.025λまたは0.03λの場合のLiNbOのカット角とSV波比帯域との関係を示す図である。In FIG. 83, the SiO 2 film thickness is 0.40λ, the ratio of the first Pt film to the total Pt film thickness is 0.75, the Al film thickness is 0.08λ, and the total Pt film thickness is 0. .02Ramuda, is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025λ or 0.03. 図84は、SiO膜の膜厚が0.40λ、第1のPt膜のPt膜厚合計に対する比が0.75、Al膜の膜厚が0.10λであり、Pt膜厚合計が0.02λ、0.025λまたは0.03λの場合のLiNbOのカット角とSV波比帯域との関係を示す図である。In FIG. 84, the SiO 2 film thickness is 0.40λ, the ratio of the first Pt film to the total Pt film thickness is 0.75, the Al film thickness is 0.10λ, and the total Pt film thickness is 0. .02Ramuda, is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025λ or 0.03. 図85は、SiO膜の膜厚が0.40λ、第1のPt膜のPt膜厚合計に対する比が0.80、Al膜の膜厚が0.06λであり、Pt膜厚合計が0.02λ、0.025λまたは0.03λの場合のLiNbOのカット角とSV波比帯域との関係を示す図である。In FIG. 85, the SiO 2 film thickness is 0.40λ, the ratio of the first Pt film to the total Pt film thickness is 0.80, the Al film thickness is 0.06λ, and the total Pt film thickness is 0. .02Ramuda, is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025λ or 0.03. 図86は、SiO膜の膜厚が0.40λ、第1のPt膜のPt膜厚合計に対する比が0.80、Al膜の膜厚が0.08λであり、Pt膜厚合計が0.02λ、0.025λまたは0.03λの場合のLiNbOのカット角とSV波比帯域との関係を示す図である。In FIG. 86, the SiO 2 film thickness is 0.40λ, the ratio of the first Pt film to the total Pt film thickness is 0.80, the Al film thickness is 0.08λ, and the total Pt film thickness is 0. .02Ramuda, is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025λ or 0.03. 図87は、SiO膜の膜厚が0.40λ、第1のPt膜のPt膜厚合計に対する比が0.80、Al膜の膜厚が0.10λであり、Pt膜厚合計が0.02λ、0.025λまたは0.03λの場合のLiNbOのカット角とSV波比帯域との関係を示す図である。In FIG. 87, the SiO 2 film thickness is 0.40λ, the ratio of the first Pt film to the total Pt film thickness is 0.80, the Al film thickness is 0.10λ, and the total Pt film thickness is 0. .02Ramuda, is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025λ or 0.03. 図88は、SiO膜の膜厚が0.40λ、第1のPt膜のPt膜厚合計に対する比が0.85、Al膜の膜厚が0.06λであり、Pt膜厚合計が0.02λ、0.025λまたは0.03λの場合のLiNbOのカット角とSV波比帯域との関係を示す図である。In FIG. 88, the SiO 2 film thickness is 0.40λ, the ratio of the first Pt film to the total Pt film thickness is 0.85, the Al film thickness is 0.06λ, and the total Pt film thickness is 0. .02Ramuda, is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025λ or 0.03. 図89は、SiO膜の膜厚が0.40λ、第1のPt膜のPt膜厚合計に対する比が0.85、Al膜の膜厚が0.08λであり、Pt膜厚合計が0.02λ、0.025λまたは0.03λの場合のLiNbOのカット角とSV波比帯域との関係を示す図である。In FIG. 89, the SiO 2 film thickness is 0.40λ, the ratio of the first Pt film to the total Pt film thickness is 0.85, the Al film thickness is 0.08λ, and the total Pt film thickness is 0. .02Ramuda, is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025λ or 0.03. 図90は、SiO膜の膜厚が0.40λ、第1のPt膜のPt膜厚合計に対する比が0.85、Al膜の膜厚が0.10λであり、Pt膜厚合計が0.02λ、0.025λまたは0.03λの場合のLiNbOのカット角とSV波比帯域との関係を示す図である。In FIG. 90, the SiO 2 film thickness is 0.40λ, the ratio of the first Pt film to the total Pt film thickness is 0.85, the Al film thickness is 0.10λ, and the total Pt film thickness is 0. .02Ramuda, is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025λ or 0.03. 図91は、SiO膜の膜厚が0.45λ、第1のPt膜のPt膜厚合計に対する比が0.75、Al膜の膜厚が0.06λであり、Pt膜厚合計が0.02λ、0.025λまたは0.03λの場合のLiNbOのカット角とSV波比帯域との関係を示す図である。In FIG. 91, the SiO 2 film thickness is 0.45λ, the ratio of the first Pt film to the total Pt film thickness is 0.75, the Al film thickness is 0.06λ, and the total Pt film thickness is 0. .02Ramuda, is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025λ or 0.03. 図92は、SiO膜の膜厚が0.45λ、第1のPt膜のPt膜厚合計に対する比が0.75、Al膜の膜厚が0.08λであり、Pt膜厚合計が0.02λ、0.025λまたは0.03λの場合のLiNbOのカット角とSV波比帯域との関係を示す図である。In FIG. 92, the SiO 2 film thickness is 0.45λ, the ratio of the first Pt film to the total Pt film thickness is 0.75, the Al film thickness is 0.08λ, and the total Pt film thickness is 0. .02Ramuda, is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025λ or 0.03. 図93は、SiO膜の膜厚が0.45λ、第1のPt膜のPt膜厚合計に対する比が0.75、Al膜の膜厚が0.10λであり、Pt膜厚合計が0.02λ、0.025λまたは0.03λの場合のLiNbOのカット角とSV波比帯域との関係を示す図である。In FIG. 93, the SiO 2 film thickness is 0.45λ, the ratio of the first Pt film to the total Pt film thickness is 0.75, the Al film thickness is 0.10λ, and the total Pt film thickness is 0. .02Ramuda, is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025λ or 0.03. 図94は、SiO膜の膜厚が0.45λ、第1のPt膜のPt膜厚合計に対する比が0.80、Al膜の膜厚が0.06λであり、Pt膜厚合計が0.02λ、0.025λまたは0.03λの場合のLiNbOのカット角とSV波比帯域との関係を示す図である。In FIG. 94, the SiO 2 film thickness is 0.45λ, the ratio of the first Pt film to the total Pt film thickness is 0.80, the Al film thickness is 0.06λ, and the total Pt film thickness is 0. .02Ramuda, is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025λ or 0.03. 図95は、SiO膜の膜厚が0.45λ、第1のPt膜のPt膜厚合計に対する比が0.80、Al膜の膜厚が0.08λであり、Pt膜厚合計が0.02λ、0.025λまたは0.03λの場合のLiNbOのカット角とSV波比帯域との関係を示す図である。In FIG. 95, the SiO 2 film thickness is 0.45λ, the ratio of the first Pt film to the total Pt film thickness is 0.80, the Al film thickness is 0.08λ, and the total Pt film thickness is 0. .02Ramuda, is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025λ or 0.03. 図96は、SiO膜の膜厚が0.45λ、第1のPt膜のPt膜厚合計に対する比が0.80、Al膜の膜厚が0.10λであり、Pt膜厚合計が0.02λ、0.025λまたは0.03λの場合のLiNbOのカット角とSV波比帯域との関係を示す図である。In FIG. 96, the SiO 2 film thickness is 0.45λ, the ratio of the first Pt film to the total Pt film thickness is 0.80, the Al film thickness is 0.10λ, and the total Pt film thickness is 0. .02Ramuda, is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025λ or 0.03. 図97は、SiO膜の膜厚が0.45λ、第1のPt膜のPt膜厚合計に対する比が0.85、Al膜の膜厚が0.06λであり、Pt膜厚合計が0.02λ、0.025λまたは0.03λの場合のLiNbOのカット角とSV波比帯域との関係を示す図である。In FIG. 97, the SiO 2 film thickness is 0.45λ, the ratio of the first Pt film to the total Pt film thickness is 0.85, the Al film thickness is 0.06λ, and the total Pt film thickness is 0. .02Ramuda, is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025λ or 0.03. 図98は、SiO膜の膜厚が0.45λ、第1のPt膜のPt膜厚合計に対する比が0.85、Al膜の膜厚が0.08λであり、Pt膜厚合計が0.02λ、0.025λまたは0.03λの場合のLiNbOのカット角とSV波比帯域との関係を示す図である。In FIG. 98, the SiO 2 film thickness is 0.45λ, the ratio of the first Pt film to the total Pt film thickness is 0.85, the Al film thickness is 0.08λ, and the total Pt film thickness is 0. .02Ramuda, is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025λ or 0.03. 図99は、SiO膜の膜厚が0.45λ、第1のPt膜のPt膜厚合計に対する比が0.85、Al膜の膜厚が0.10λであり、Pt膜厚合計が0.02λ、0.025λまたは0.03λの場合のLiNbOのカット角とSV波比帯域との関係を示す図である。In FIG. 99, the SiO 2 film thickness is 0.45λ, the ratio of the first Pt film to the total Pt film thickness is 0.85, the Al film thickness is 0.10λ, and the total Pt film thickness is 0. .02Ramuda, is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025λ or 0.03. 図100は、SiO膜の膜厚が0.50λ、第1のPt膜のPt膜厚合計に対する比が0.75、Al膜の膜厚が0.06λであり、Pt膜厚合計が0.02λ、0.025λまたは0.03λの場合ののカット角とSV波比帯域との関係を示す図である。In FIG. 100, the SiO 2 film thickness is 0.50λ, the ratio of the first Pt film to the total Pt film thickness is 0.75, the Al film thickness is 0.06λ, and the total Pt film thickness is 0. It is a figure which shows the relationship between the cut angle in the case of 0.02λ, 0.025λ, or 0.03λ and the SV wave ratio band. 図101は、SiO膜の膜厚が0.50λ、第1のPt膜のPt膜厚合計に対する比が0.75、Al膜の膜厚が0.08λであり、Pt膜厚合計が0.02λ、0.025λまたは0.03λの場合のLiNbOのカット角とSV波比帯域との関係を示す図である。In FIG. 101, the SiO 2 film thickness is 0.50λ, the ratio of the first Pt film to the total Pt film thickness is 0.75, the Al film thickness is 0.08λ, and the total Pt film thickness is 0. .02Ramuda, is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025λ or 0.03. 図102は、SiO膜の膜厚が0.50λ、第1のPt膜のPt膜厚合計に対する比が0.75、Al膜の膜厚が0.10λであり、Pt膜厚合計が0.02λ、0.025λまたは0.03λの場合のLiNbOのカット角とSV波比帯域との関係を示す図である。In FIG. 102, the SiO 2 film thickness is 0.50λ, the ratio of the first Pt film to the total Pt film thickness is 0.75, the Al film thickness is 0.10λ, and the total Pt film thickness is 0. .02Ramuda, is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025λ or 0.03. 図103は、SiO膜の膜厚が0.50λ、第1のPt膜のPt膜厚合計に対する比が0.80、Al膜の膜厚が0.06λであり、Pt膜厚合計が0.02λ、0.025λまたは0.03λの場合のLiNbOのカット角とSV波比帯域との関係を示す図である。In FIG. 103, the SiO 2 film thickness is 0.50λ, the ratio of the first Pt film to the total Pt film thickness is 0.80, the Al film thickness is 0.06λ, and the total Pt film thickness is 0. .02Ramuda, is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025λ or 0.03. 図104は、SiO膜の膜厚が0.50λ、第1のPt膜のPt膜厚合計に対する比が0.80、Al膜の膜厚が0.08λであり、Pt膜厚合計が0.02λ、0.025λまたは0.03λの場合のLiNbOのカット角とSV波比帯域との関係を示す図である。In FIG. 104, the SiO 2 film thickness is 0.50λ, the ratio of the first Pt film to the total Pt film thickness is 0.80, the Al film thickness is 0.08λ, and the total Pt film thickness is 0. .02Ramuda, is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025λ or 0.03. 図105は、SiO膜の膜厚が0.50λ、第1のPt膜のPt膜厚合計に対する比が0.80、Al膜の膜厚が0.10λであり、Pt膜厚合計が0.02λ、0.025λまたは0.03λの場合のLiNbOのカット角とSV波比帯域との関係を示す図である。In FIG. 105, the SiO 2 film thickness is 0.50λ, the ratio of the first Pt film to the total Pt film thickness is 0.80, the Al film thickness is 0.10λ, and the total Pt film thickness is 0. .02Ramuda, is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025λ or 0.03. 図106は、SiO膜の膜厚が0.50λ、第1のPt膜のPt膜厚合計に対する比が0.85、Al膜の膜厚が0.06λであり、Pt膜厚合計が0.02λ、0.025λまたは0.03λの場合のLiNbOのカット角とSV波比帯域との関係を示す図である。In FIG. 106, the SiO 2 film thickness is 0.50λ, the ratio of the first Pt film to the total Pt film thickness is 0.85, the Al film thickness is 0.06λ, and the total Pt film thickness is 0. .02Ramuda, is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025λ or 0.03. 図107は、SiO膜の膜厚が0.50λ、第1のPt膜のPt膜厚合計に対する比が0.85、Al膜の膜厚が0.08λであり、Pt膜厚合計が0.02λ、0.025λまたは0.03λの場合のLiNbOのカット角とSV波比帯域との関係を示す図である。In FIG. 107, the SiO 2 film thickness is 0.50λ, the ratio of the first Pt film to the total Pt film thickness is 0.85, the Al film thickness is 0.08λ, and the total Pt film thickness is 0. .02Ramuda, is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025λ or 0.03. 図108は、SiO膜の膜厚が0.50λ、第1のPt膜のPt膜厚合計に対する比が0.85、Al膜の膜厚が0.10λであり、Pt膜厚合計が0.02λ、0.025λまたは0.03λの場合のLiNbOのカット角とSV波比帯域との関係を示す図である。FIG. 108 shows that the SiO 2 film thickness is 0.50λ, the ratio of the first Pt film to the total Pt film thickness is 0.85, the Al film thickness is 0.10λ, and the total Pt film thickness is 0. .02Ramuda, is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025λ or 0.03. 図109は、SiO膜の膜厚が0.30λ、第1のPt膜のPt膜厚合計に対する比が0.80、Al膜の膜厚が0.08λであり、Pt膜厚合計が0.02λ、0.025λまたは0.03λの場合のLiNbOのカット角とSV波比帯域との関係を示す図である。FIG. 109 shows that the SiO 2 film thickness is 0.30λ, the ratio of the first Pt film to the total Pt film thickness is 0.80, the Al film thickness is 0.08λ, and the total Pt film thickness is 0. .02Ramuda, is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025λ or 0.03. 図110は、SiO膜の膜厚が0.30λ、第1のPt膜のPt膜厚合計に対する比が0.80、Al膜の膜厚が0.10λであり、Pt膜厚合計が0.02λ、0.025λまたは0.03λの場合のLiNbOのカット角とSV波比帯域との関係を示す図である。In FIG. 110, the SiO 2 film thickness is 0.30λ, the ratio of the first Pt film to the total Pt film thickness is 0.80, the Al film thickness is 0.10λ, and the total Pt film thickness is 0. .02Ramuda, is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025λ or 0.03. 図111は、SiO膜の膜厚が0.30λ、第1のPt膜のPt膜厚合計に対する比が0.80、Al膜の膜厚が0.12λであり、Pt膜厚合計が0.02λ、0.025λまたは0.03λの場合のLiNbOのカット角とSV波比帯域との関係を示す図である。In FIG. 111, the SiO 2 film thickness is 0.30λ, the ratio of the first Pt film to the total Pt film thickness is 0.80, the Al film thickness is 0.12λ, and the total Pt film thickness is 0. .02Ramuda, is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025λ or 0.03. 図112は、SiO膜の膜厚が0.30λ、第1のPt膜のPt膜厚合計に対する比が0.85、Al膜の膜厚が0.08λであり、Pt膜厚合計が0.02λ、0.025λまたは0.03λの場合のLiNbOのカット角とSV波比帯域との関係を示す図である。In FIG. 112, the SiO 2 film thickness is 0.30λ, the ratio of the first Pt film to the total Pt film thickness is 0.85, the Al film thickness is 0.08λ, and the total Pt film thickness is 0. .02Ramuda, is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025λ or 0.03. 図113は、SiO膜の膜厚が0.30λ、第1のPt膜のPt膜厚合計に対する比が0.85、Al膜の膜厚が0.10λであり、Pt膜厚合計が0.02λ、0.025λまたは0.03λの場合のLiNbOのカット角とSV波比帯域との関係を示す図である。In FIG. 113, the SiO 2 film thickness is 0.30λ, the ratio of the first Pt film to the total Pt film thickness is 0.85, the Al film thickness is 0.10λ, and the total Pt film thickness is 0. .02Ramuda, is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025λ or 0.03. 図114は、SiO膜の膜厚が0.30λ、第1のPt膜のPt膜厚合計に対する比が0.85、Al膜の膜厚が0.12λであり、Pt膜厚合計が0.02λ、0.025λまたは0.03λの場合のLiNbOのカット角とSV波比帯域との関係を示す図である。In FIG. 114, the SiO 2 film thickness is 0.30λ, the ratio of the first Pt film to the total Pt film thickness is 0.85, the Al film thickness is 0.12λ, and the total Pt film thickness is 0. .02Ramuda, is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025λ or 0.03. 図115は、SiO膜の膜厚が0.30λ、第1のPt膜のPt膜厚合計に対する比が0.90、Al膜の膜厚が0.08λであり、Pt膜厚合計が0.02λ、0.025λまたは0.03λの場合のLiNbOのカット角とSV波比帯域との関係を示す図である。In FIG. 115, the SiO 2 film thickness is 0.30λ, the ratio of the first Pt film to the total Pt film thickness is 0.90, the Al film thickness is 0.08λ, and the total Pt film thickness is 0. .02Ramuda, is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025λ or 0.03. 図116は、SiO膜の膜厚が0.30λ、第1のPt膜のPt膜厚合計に対する比が0.90、Al膜の膜厚が0.10λであり、Pt膜厚合計が0.02λ、0.025λまたは0.03λの場合のLiNbOのカット角とSV波比帯域との関係を示す図である。In FIG. 116, the SiO 2 film thickness is 0.30λ, the ratio of the first Pt film to the total Pt film thickness is 0.90, the Al film thickness is 0.10λ, and the total Pt film thickness is 0. .02Ramuda, is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025λ or 0.03. 図117は、SiO膜の膜厚が0.30λ、第1のPt膜のPt膜厚合計に対する比が0.90、Al膜の膜厚が0.12λであり、Pt膜厚合計が0.02λ、0.025λまたは0.03λの場合のLiNbOのカット角とSV波比帯域との関係を示す図である。In FIG. 117, the SiO 2 film thickness is 0.30λ, the ratio of the first Pt film to the total Pt film thickness is 0.90, the Al film thickness is 0.12λ, and the total Pt film thickness is 0. .02Ramuda, is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025λ or 0.03. 図118は、SiO膜の膜厚が0.35λ、第1のPt膜のPt膜厚合計に対する比が0.80、Al膜の膜厚が0.08λであり、Pt膜厚合計が0.02λ、0.025λまたは0.03λの場合のLiNbOのカット角とSV波比帯域との関係を示す図である。In FIG. 118, the SiO 2 film thickness is 0.35λ, the ratio of the first Pt film to the total Pt film thickness is 0.80, the Al film thickness is 0.08λ, and the total Pt film thickness is 0. .02Ramuda, is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025λ or 0.03. 図119は、SiO膜の膜厚が0.35λ、第1のPt膜のPt膜厚合計に対する比が0.80、Al膜の膜厚が0.10λであり、Pt膜厚合計が0.02λ、0.025λまたは0.03λの場合のLiNbOのカット角とSV波比帯域との関係を示す図である。FIG. 119 shows that the SiO 2 film thickness is 0.35λ, the ratio of the first Pt film to the total Pt film thickness is 0.80, the Al film thickness is 0.10λ, and the total Pt film thickness is 0. .02Ramuda, is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025λ or 0.03. 図120は、SiO膜の膜厚が0.35λ、第1のPt膜のPt膜厚合計に対する比が0.80、Al膜の膜厚が0.12λであり、Pt膜厚合計が0.02λ、0.025λまたは0.03λの場合のLiNbOのカット角とSV波比帯域との関係を示す図である。In FIG. 120, the SiO 2 film thickness is 0.35λ, the ratio of the first Pt film to the total Pt film thickness is 0.80, the Al film thickness is 0.12λ, and the total Pt film thickness is 0. .02Ramuda, is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025λ or 0.03. 図121は、SiO膜の膜厚が0.35λ、第1のPt膜のPt膜厚合計に対する比が0.85、Al膜の膜厚が0.08λであり、Pt膜厚合計が0.02λ、0.025λまたは0.03λの場合のLiNbOのカット角とSV波比帯域との関係を示す図である。In FIG. 121, the SiO 2 film thickness is 0.35λ, the ratio of the first Pt film to the total Pt film thickness is 0.85, the Al film thickness is 0.08λ, and the total Pt film thickness is 0. .02Ramuda, is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025λ or 0.03. 図122は、SiO膜の膜厚が0.35λ、第1のPt膜のPt膜厚合計に対する比が0.85、Al膜の膜厚が0.10λであり、Pt膜厚合計が0.02λ、0.025λまたは0.03λの場合のLiNbOのカット角とSV波比帯域との関係を示す図である。In FIG. 122, the SiO 2 film thickness is 0.35λ, the ratio of the first Pt film to the total Pt film thickness is 0.85, the Al film thickness is 0.10λ, and the total Pt film thickness is 0. .02Ramuda, is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025λ or 0.03. 図123は、SiO膜の膜厚が0.35λ、第1のPt膜のPt膜厚合計に対する比が0.85、Al膜の膜厚が0.12λであり、Pt膜厚合計が0.02λ、0.025λまたは0.03λの場合のLiNbOのカット角とSV波比帯域との関係を示す図である。In FIG. 123, the SiO 2 film thickness is 0.35λ, the ratio of the first Pt film to the total Pt film thickness is 0.85, the Al film thickness is 0.12λ, and the total Pt film thickness is 0. .02Ramuda, is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025λ or 0.03. 図124は、SiO膜の膜厚が0.35λ、第1のPt膜のPt膜厚合計に対する比が0.90、Al膜の膜厚が0.08λであり、Pt膜厚合計が0.02λ、0.025λまたは0.03λの場合のLiNbOのカット角とSV波比帯域との関係を示す図である。In FIG. 124, the SiO 2 film thickness is 0.35λ, the ratio of the first Pt film to the total Pt film thickness is 0.90, the Al film thickness is 0.08λ, and the total Pt film thickness is 0. .02Ramuda, is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025λ or 0.03. 図125は、SiO膜の膜厚が0.35λ、第1のPt膜のPt膜厚合計に対する比が0.90、Al膜の膜厚が0.10λであり、Pt膜厚合計が0.02λ、0.025λまたは0.03λの場合のLiNbOのカット角とSV波比帯域との関係を示す図である。In FIG. 125, the SiO 2 film thickness is 0.35λ, the ratio of the first Pt film to the total Pt film thickness is 0.90, the Al film thickness is 0.10λ, and the total Pt film thickness is 0. .02Ramuda, is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025λ or 0.03. 図126は、SiO膜の膜厚が0.35λ、第1のPt膜のPt膜厚合計に対する比が0.90、Al膜の膜厚が0.12λであり、Pt膜厚合計が0.02λ、0.025λまたは0.03λの場合のLiNbOのカット角とSV波比帯域との関係を示す図である。In FIG. 126, the SiO 2 film thickness is 0.35λ, the ratio of the first Pt film to the total Pt film thickness is 0.90, the Al film thickness is 0.12λ, and the total Pt film thickness is 0. .02Ramuda, is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025λ or 0.03. 図127は、SiO膜の膜厚が0.40λ、第1のPt膜のPt膜厚合計に対する比が0.80、Al膜の膜厚が0.08λであり、Pt膜厚合計が0.02λ、0.025λまたは0.03λの場合のLiNbOのカット角とSV波比帯域との関係を示す図である。In FIG. 127, the SiO 2 film thickness is 0.40λ, the ratio of the first Pt film to the total Pt film thickness is 0.80, the Al film thickness is 0.08λ, and the total Pt film thickness is 0. .02Ramuda, is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025λ or 0.03. 図128は、SiO膜の膜厚が0.40λ、第1のPt膜のPt膜厚合計に対する比が0.80、Al膜の膜厚が0.10λであり、Pt膜厚合計が0.02λ、0.025λまたは0.03λの場合のLiNbOのカット角とSV波比帯域との関係を示す図である。In FIG. 128, the SiO 2 film thickness is 0.40λ, the ratio of the first Pt film to the total Pt film thickness is 0.80, the Al film thickness is 0.10λ, and the total Pt film thickness is 0. .02Ramuda, is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025λ or 0.03. 図129は、SiO膜の膜厚が0.40λ、第1のPt膜のPt膜厚合計に対する比が0.80、Al膜の膜厚が0.12λであり、Pt膜厚合計が0.02λ、0.025λまたは0.03λの場合のLiNbOのカット角とSV波比帯域との関係を示す図である。In FIG. 129, the SiO 2 film thickness is 0.40λ, the ratio of the first Pt film to the total Pt film thickness is 0.80, the Al film thickness is 0.12λ, and the total Pt film thickness is 0. .02Ramuda, is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025λ or 0.03. 図130は、SiO膜の膜厚が0.40λ、第1のPt膜のPt膜厚合計に対する比が0.85、Al膜の膜厚が0.08λであり、Pt膜厚合計が0.02λ、0.025λまたは0.03λの場合のLiNbOのカット角とSV波比帯域との関係を示す図である。In FIG. 130, the SiO 2 film thickness is 0.40λ, the ratio of the first Pt film to the total Pt film thickness is 0.85, the Al film thickness is 0.08λ, and the total Pt film thickness is 0. .02Ramuda, is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025λ or 0.03. 図131は、SiO膜の膜厚が0.40λ、第1のPt膜のPt膜厚合計に対する比が0.85、Al膜の膜厚が0.10λであり、Pt膜厚合計が0.02λ、0.025λまたは0.03λの場合のLiNbOのカット角とSV波比帯域との関係を示す図である。In FIG. 131, the SiO 2 film thickness is 0.40λ, the ratio of the first Pt film to the total Pt film thickness is 0.85, the Al film thickness is 0.10λ, and the total Pt film thickness is 0. .02Ramuda, is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025λ or 0.03. 図132は、SiO膜の膜厚が0.40λ、第1のPt膜のPt膜厚合計に対する比が0.85、Al膜の膜厚が0.12λであり、Pt膜厚合計が0.02λ、0.025λまたは0.03λの場合のLiNbOのカット角とSV波比帯域との関係を示す図である。In FIG. 132, the SiO 2 film thickness is 0.40λ, the ratio of the first Pt film to the total Pt film thickness is 0.85, the Al film thickness is 0.12λ, and the total Pt film thickness is 0. .02Ramuda, is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025λ or 0.03. 図133は、SiO膜の膜厚が0.40λ、第1のPt膜のPt膜厚合計に対する比が0.90、Al膜の膜厚が0.08λであり、Pt膜厚合計が0.02λ、0.025λまたは0.03λの場合のLiNbOのカット角とSV波比帯域との関係を示す図である。In FIG. 133, the SiO 2 film thickness is 0.40λ, the ratio of the first Pt film to the total Pt film thickness is 0.90, the Al film thickness is 0.08λ, and the total Pt film thickness is 0. .02Ramuda, is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025λ or 0.03. 図134は、SiO膜の膜厚が0.40λ、第1のPt膜のPt膜厚合計に対する比が0.90、Al膜の膜厚が0.10λであり、Pt膜厚合計が0.02λ、0.025λまたは0.03λの場合のLiNbOのカット角とSV波比帯域との関係を示す図である。In FIG. 134, the SiO 2 film thickness is 0.40λ, the ratio of the first Pt film to the total Pt film thickness is 0.90, the Al film thickness is 0.10λ, and the total Pt film thickness is 0. .02Ramuda, is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025λ or 0.03. 図135は、SiO膜の膜厚が0.40λ、第1のPt膜のPt膜厚合計に対する比が0.90、Al膜の膜厚が0.12λであり、Pt膜厚合計が0.02λ、0.025λまたは0.03λの場合のLiNbOのカット角とSV波比帯域との関係を示す図である。In FIG. 135, the SiO 2 film thickness is 0.40λ, the ratio of the first Pt film to the total Pt film thickness is 0.90, the Al film thickness is 0.12λ, and the total Pt film thickness is 0. .02Ramuda, is a diagram showing a relationship between a cut angle and SV wave ratio band of LiNbO 3 in the case of 0.025λ or 0.03. 図136は、本発明の第7の実施形態において、第4の電極層であるAl膜の膜厚と周波数温度係数TCFとの関係を示す図である。FIG. 136 is a diagram showing the relationship between the thickness of the Al film as the fourth electrode layer and the frequency temperature coefficient TCF in the seventh embodiment of the present invention.
 (第1の実施形態)
 以下、本発明を実施した好ましい形態の一例について、図1に示す弾性境界波装置1を例に挙げて説明する。なお、弾性境界波装置1の種類は特に限定されず、弾性境界波装置1は、例えば、弾性境界波共振子であってもよいし、弾性境界波フィルタ装置であってもよい。
(First embodiment)
Hereinafter, an example of a preferable embodiment in which the present invention is implemented will be described using the boundary acoustic wave device 1 shown in FIG. 1 as an example. In addition, the kind of boundary acoustic wave apparatus 1 is not specifically limited, The boundary acoustic wave apparatus 1 may be a boundary acoustic wave resonator, for example, and may be a boundary acoustic wave filter apparatus.
 図1に示すように、弾性境界波装置1は、第1の媒質11と、第2の媒質12と、第3の媒質13とを備えている。第1の媒質11は、圧電体からなる。第1の媒質11を構成する圧電体の種類は特に限定されない。第1の媒質11は、例えば、例えば、0°~37°回転YカットLiNbO基板などのLiNbO基板やLiTaO基板などにより構成することができる。 As shown in FIG. 1, the boundary acoustic wave device 1 includes a first medium 11, a second medium 12, and a third medium 13. The first medium 11 is made of a piezoelectric body. The type of the piezoelectric body that constitutes the first medium 11 is not particularly limited. The first medium 11 can be composed of, for example, a LiNbO 3 substrate such as a 0 ° to 37 ° rotated Y-cut LiNbO 3 substrate, a LiTaO 3 substrate, or the like.
 第1の媒質11の上には、第2の媒質12が形成されている。さらに、第2の媒質12の上には、第3の媒質13が形成されている。第2及び第3の媒質12,13のそれぞれは、誘電体からなる。第2及び第3の媒質12,13の形成材料は、第2の媒質12の音速が第1及び第3の媒質11,13の音速よりも遅くなるように選択されている。例えば、第2の媒質12をSiOなどの酸化ケイ素からなるものとし、第3の媒質13を、ケイ素、窒化ケイ素、酸窒化ケイ素、炭化ケイ素、酸化アルミニウム、窒化アルミニウム、ダイヤモンドライクカーボン(DLC)などからなるものとすることができる。このように、第2の媒質12を酸化ケイ素からなるものとした場合、周波数温度特性を改善することができる。また、第3の媒質13は、SiNなどの窒化ケイ素からなることがより好ましい。この場合、加工が容易となるためである。 A second medium 12 is formed on the first medium 11. Furthermore, a third medium 13 is formed on the second medium 12. Each of the second and third media 12 and 13 is made of a dielectric. The forming materials of the second and third media 12 and 13 are selected so that the sound speed of the second medium 12 is slower than the sound speed of the first and third media 11 and 13. For example, the second medium 12 is made of silicon oxide such as SiO 2 , and the third medium 13 is silicon, silicon nitride, silicon oxynitride, silicon carbide, aluminum oxide, aluminum nitride, diamond-like carbon (DLC). Or the like. As described above, when the second medium 12 is made of silicon oxide, the frequency temperature characteristics can be improved. The third medium 13 is more preferably made of silicon nitride such as SiN. In this case, it is because processing becomes easy.
 第2及び第3の媒質12,13の厚みは特に限定されない。例えば、第2の媒質12の厚みは、後述するIDT電極20において発生する弾性境界波の波長をλとした場合に、0.3λ~0.7λの範囲内にあることが好ましい。換言すれば、第2の媒質12の厚みをHとすれば、0.3<H/λ<0.7が満たされることが好ましい。一方、第3の媒質13の厚みは、第3の媒質13の表面における弾性波の変位量が実質的にゼロとなるような厚みであることが好ましい。具体的には、第3の媒質13の厚みは、例えば、0.6λ~2λの範囲内にあることが好ましい。同様に、第1の媒質11の厚みも、第1の媒質11の表面における弾性波の変位量が実質的にゼロとなるような厚みであることが好ましい。 The thickness of the second and third media 12 and 13 is not particularly limited. For example, the thickness of the second medium 12 is preferably in the range of 0.3λ to 0.7λ, where λ is the wavelength of the boundary acoustic wave generated in the IDT electrode 20 described later. In other words, if the thickness of the second medium 12 is H, it is preferable that 0.3 <H / λ <0.7 is satisfied. On the other hand, the thickness of the third medium 13 is preferably such that the amount of displacement of the elastic wave on the surface of the third medium 13 is substantially zero. Specifically, the thickness of the third medium 13 is preferably in the range of 0.6λ to 2λ, for example. Similarly, the thickness of the first medium 11 is also preferably such that the amount of elastic wave displacement on the surface of the first medium 11 is substantially zero.
 なお、第2及び第3の媒質12,13の形成方法は特に限定されず、例えば、スパッタ法、蒸着法、CVD法、スピンコート法、貼り合わせ法などを用いて第2及び第3の媒質12,13を形成することができる。 The method for forming the second and third media 12 and 13 is not particularly limited. For example, the second and third media can be formed using a sputtering method, a vapor deposition method, a CVD method, a spin coating method, a bonding method, or the like. 12, 13 can be formed.
 第1の媒質11と第2の媒質12との境界には、IDT電極20が形成されている。IDT電極20と、第1の媒質11との間には、例えば、Taなどの酸化タンタルからなる誘電体層14が形成されている。この誘電体層14を形成しておくことにより、耐サージ性を向上することができる。ただし、本発明において、誘電体層14は必須ではなく、IDT電極20が第1の媒質11の上に直接形成されていてもよい。 An IDT electrode 20 is formed at the boundary between the first medium 11 and the second medium 12. A dielectric layer 14 made of tantalum oxide such as Ta 2 O 5 is formed between the IDT electrode 20 and the first medium 11. By forming the dielectric layer 14, surge resistance can be improved. However, in the present invention, the dielectric layer 14 is not essential, and the IDT electrode 20 may be formed directly on the first medium 11.
 IDT電極20は、積層された少なくとも3つの電極層を有する。具体的には、IDT電極20は、第1の媒質11の上に形成されている第1の電極層21と、第1の電極層21の上に形成されている第2の電極層22と、第2の電極層22の上に形成されている第3の電極層23とを有する。これら第1~第3の電極層21~23のうち、上下の第1及び第3の電極層21,23は、比較的高い密度を有する。一方、第1及び第3の電極層21,23の間に位置する第2の電極層22は、第1及び第3の電極層21,23のそれぞれよりも密度が低い。 The IDT electrode 20 has at least three electrode layers stacked. Specifically, the IDT electrode 20 includes a first electrode layer 21 formed on the first medium 11, and a second electrode layer 22 formed on the first electrode layer 21. And a third electrode layer 23 formed on the second electrode layer 22. Of the first to third electrode layers 21 to 23, the upper and lower first and third electrode layers 21 and 23 have a relatively high density. On the other hand, the density of the second electrode layer 22 positioned between the first and third electrode layers 21 and 23 is lower than that of the first and third electrode layers 21 and 23, respectively.
 第1~第3の電極層21~23の形成材料は、第2の電極層22の密度が第1及び第3の電極層21,23の密度より低くなる限りにおいて特に限定されない。第1及び第3の電極層21,23のそれぞれは、例えば、Au,Pt,W,Ta,Ag及びCuからなる群から選ばれた金属またはAu,Pt,W,Ta,Ag及びCuからなる群から選ばれた一種以上の金属を主成分とする合金からなるものであってもよい。第2の電極層22は、Al,Ti,Mg,Cr,Fe,Ni,Ag及びCuからなる群から選ばれた金属またはAl,Ti,Mg,Cr,Fe,Ni,Ag及びCuからなる群から選ばれた一種以上の金属を主成分とする合金からなるものであってもよい。なかでも、例えば、第1及び第3の電極層21,23のそれぞれがPtまたはPtを主成分とする合金からなり、第2の電極層22がAlまたはAlを主成分とする合金からなることが好ましい。この場合、IDT電極20の低抵抗化と高信頼性とを両立させることができるからである。 The forming material of the first to third electrode layers 21 to 23 is not particularly limited as long as the density of the second electrode layer 22 is lower than the density of the first and third electrode layers 21 and 23. Each of the first and third electrode layers 21 and 23 is made of, for example, a metal selected from the group consisting of Au, Pt, W, Ta, Ag, and Cu, or Au, Pt, W, Ta, Ag, and Cu. You may consist of an alloy which has as a main component 1 or more types of metals chosen from the group. The second electrode layer 22 is a metal selected from the group consisting of Al, Ti, Mg, Cr, Fe, Ni, Ag and Cu, or a group consisting of Al, Ti, Mg, Cr, Fe, Ni, Ag and Cu. It may be made of an alloy containing as a main component one or more metals selected from Among these, for example, each of the first and third electrode layers 21 and 23 is made of Pt or an alloy containing Pt as a main component, and the second electrode layer 22 is made of Al or an alloy containing Al as a main component. Is preferred. In this case, it is possible to achieve both low resistance and high reliability of the IDT electrode 20.
 ところで、弾性境界波装置1の製造に際しては、第2の媒質12の厚みを調整した後に、第3の媒質13を形成することにより、周波数特性などの諸特性が調整される。この場合、第2の媒質12の形成時に、周波数特性がねらいの周波数特性から大きくずれていた場合には、第2の媒質12の厚みを大きく変更する必要がある。 Incidentally, when the boundary acoustic wave device 1 is manufactured, various characteristics such as frequency characteristics are adjusted by forming the third medium 13 after adjusting the thickness of the second medium 12. In this case, when the second medium 12 is formed, if the frequency characteristic deviates greatly from the intended frequency characteristic, it is necessary to largely change the thickness of the second medium 12.
 ここで、第2の媒質12の厚みは、通常、高次モードの音速と相関するため、第2の媒質12の厚みが変化すると、高次モードの音速も変化することとなる。高次モードの音速が変化すると、高次モードの第1及び第3の媒質11,13への漏洩しやすさも変化する。このため、高次モードスプリアスの大きさも変化する。具体的には、高次モードの音速が速くなると、高次モードが第1及び第3の媒質11,13に漏洩しやすくなり、高次モードスプリアスの大きさが小さくなる。一方、高次モードの音速が遅くなると、高次モードが第2の媒質に閉じこもって第1及び第3の媒質11,13に漏洩しにくくなり、高次モードスプリアスの大きさが大きくなる。従って、第2の媒質12の厚みを調整することにより周波数特性等を調整した場合、高次モードスプリアスの大きさが所望の大きさより大きくなり、得られる弾性境界波装置が不良となる場合がある。その結果、弾性境界波装置の歩留まりが低下する場合がある。 Here, since the thickness of the second medium 12 is generally correlated with the sound speed of the higher order mode, the sound speed of the higher order mode also changes when the thickness of the second medium 12 changes. When the sound speed in the higher order mode changes, the ease of leakage to the first and third media 11 and 13 in the higher order mode also changes. For this reason, the magnitude of higher order mode spurs also changes. Specifically, when the sound speed of the higher-order mode is increased, the higher-order mode is liable to leak to the first and third media 11 and 13, and the magnitude of the higher-order mode spurious is reduced. On the other hand, when the sound speed of the higher-order mode becomes slower, the higher-order mode is confined to the second medium and is less likely to leak into the first and third media 11 and 13, and the magnitude of the higher-order mode spurious increases. Therefore, when the frequency characteristic or the like is adjusted by adjusting the thickness of the second medium 12, the size of the higher-order mode spurious becomes larger than a desired size, and the obtained boundary acoustic wave device may be defective. . As a result, the yield of the boundary acoustic wave device may decrease.
 このような問題に鑑み、本発明者は、鋭意研究の結果、IDT電極20の膜構成を工夫することにより、第2の媒質12の厚みの変化に伴う高次モードの音速の変化を抑制できることを見出した。その結果、高次モードスプリアスの大きさを大きく変化させることなく、第2の媒質12の厚みを調整して周波数特性等の調整を行い得る本実施形態の弾性境界波装置を想到するに至った。以下、このことについて、具体例に基づいてより詳細に説明する。 In view of such a problem, as a result of earnest research, the present inventor can suppress the change in the sound speed of the higher-order mode accompanying the change in the thickness of the second medium 12 by devising the film configuration of the IDT electrode 20. I found. As a result, the boundary acoustic wave device of the present embodiment has been conceived in which the frequency characteristics and the like can be adjusted by adjusting the thickness of the second medium 12 without greatly changing the magnitude of the higher-order mode spurious. . Hereinafter, this will be described in more detail based on a specific example.
 まず、本発明者は、下記の設計パラメータの弾性境界波装置において、h3/(h1+h3)を種々変化させて第2の媒質12の厚みと高次モードの音速との関係を調べた。その結果を、図2~図6に示す。 First, the inventor examined the relationship between the thickness of the second medium 12 and the sound speed of the higher-order mode by changing h3 / (h1 + h3) variously in the boundary acoustic wave device having the following design parameters. The results are shown in FIGS.
 (図2~図6における設計パラメータ)
 第1の媒質11:20°YカットX伝搬LiNbO基板
 第2の媒質:SiO
 第3の媒質:SiN膜
 第3の媒質の厚み:1.0λ
 IDT電極20の電極指ピッチで定められる波長(λ):1.9μm
 第1及び第3の電極層21,23の材料:Pt
 第2の電極層22の材料:Al
 第1の電極層21の厚みと第3の電極層23の厚みとの合計(h1+h3):0.06λ
 第2の電極層22の厚み(h2):0.14λ
(Design parameters in FIGS. 2 to 6)
First medium 11: 20 ° Y-cut X-propagation LiNbO 3 substrate Second medium: SiO 2 film Third medium: SiN film Third medium thickness: 1.0λ
Wavelength (λ) determined by the electrode finger pitch of the IDT electrode 20: 1.9 μm
Material of the first and third electrode layers 21 and 23: Pt
Material of the second electrode layer 22: Al
Sum of the thickness of the first electrode layer 21 and the thickness of the third electrode layer 23 (h1 + h3): 0.06λ
Thickness (h2) of second electrode layer 22: 0.14λ
 図2は、h3/(h1+h3)が0.30のときの第2の媒質12の厚み(H)と高次モードの音速との関係を表すグラフである。 FIG. 2 is a graph showing the relationship between the thickness (H) of the second medium 12 and the sound speed of the higher order mode when h3 / (h1 + h3) is 0.30.
 図3は、h3/(h1+h3)が0.55のときの第2の媒質12の厚み(H)と高次モードの音速との関係を表すグラフである。 FIG. 3 is a graph showing the relationship between the thickness (H) of the second medium 12 and the sound speed of the higher-order mode when h3 / (h1 + h3) is 0.55.
 図4は、h3/(h1+h3)が0.70のときの第2の媒質12の厚み(H)と高次モードの音速との関係を表すグラフである。 FIG. 4 is a graph showing the relationship between the thickness (H) of the second medium 12 and the speed of sound in the higher mode when h3 / (h1 + h3) is 0.70.
 図5は、h3/(h1+h3)が0.90のときの第2の媒質12の厚み(H)と高次モードの音速との関係を表すグラフである。 FIG. 5 is a graph showing the relationship between the thickness (H) of the second medium 12 and the sound speed of the higher-order mode when h3 / (h1 + h3) is 0.90.
 図6は、h3/(h1+h3)が0.95のときの第2の媒質12の厚み(H)と高次モードの音速との関係を表すグラフである。 FIG. 6 is a graph showing the relationship between the thickness (H) of the second medium 12 and the sound speed of the higher-order mode when h3 / (h1 + h3) is 0.95.
 図2に示す結果から、h3/(h1+h3)が0.30と小さい場合は、第2の媒質12の厚み(H)の変化にともなって、高次モードの音速が大きく変化することが分かる。具体的には、第2の媒質12の厚み(H)が厚くなるに伴って、高次モードの音速が急激に低下することが分かる。この結果から、例えば、周波数特性等を調整するために、第2の媒質12の厚み(H)を薄くした場合には、高次モードスプリアスの大きさが小さくなるものの、第2の媒質12の厚み(H)を厚くした場合には、高次モードスプリアスの大きさが大きくなることが分かる。従って、h3/(h1+h3)が0.30と小さい場合は、周波数特性等の調整のために調整できる第2の媒質12の厚み(H)の範囲が狭く、場合によっては、周波数特性等が好適となるように調整できない場合がある。また、周波数特性等の調整のために第2の媒質12の厚み(H)を大きく調整した場合は、高次モードスプリアスの大きさが大きくなりすぎ、不良となる場合がある。従って、弾性境界波装置の歩留まりが低くなる。 2 that when h3 / (h1 + h3) is as small as 0.30, the sound speed of the higher-order mode greatly changes with the change in the thickness (H) of the second medium 12. Specifically, it can be seen that as the thickness (H) of the second medium 12 increases, the sound speed of the higher-order mode rapidly decreases. From this result, for example, when the thickness (H) of the second medium 12 is reduced in order to adjust the frequency characteristics and the like, the magnitude of the higher-order mode spurious is reduced, but the second medium 12 It can be seen that when the thickness (H) is increased, the magnitude of the higher-order mode spurious increases. Therefore, when h3 / (h1 + h3) is as small as 0.30, the range of the thickness (H) of the second medium 12 that can be adjusted for adjusting the frequency characteristics is narrow, and in some cases, the frequency characteristics are preferable. In some cases, the adjustment cannot be made. In addition, when the thickness (H) of the second medium 12 is adjusted to be large for adjusting the frequency characteristics and the like, the magnitude of the higher-order mode spurious becomes too large and may be defective. Therefore, the yield of the boundary acoustic wave device is lowered.
 それに対して、図3~図6に示す結果から、h3/(h1+h3)が大きい場合は、第2の媒質12の厚み(H)に対する高次モードの音速の依存性が低いことが分かる。また、h3/(h1+h3)が大きくなるにつれて、第2の媒質12の厚み(H)に対する高次モードの音速の依存性が低下することが分かる。具体的には、h3/(h1+h3)が0.55以下である場合には、第2の媒質12の厚み(H)に対する高次モードの音速の依存性が大きい。これに対して、h3/(h1+h3)を0.55より大きくすることによって、第2の媒質12の厚み(H)に対する高次モードの音速の依存性を十分に小さくできることが分かる。すなわち、h3/(h1+h3)を0.55より大きくした場合は、第2の媒質12の厚み(H)を変化に伴って高次モードの音速が変化することを効果的に抑制することができる。よって、h3/(h1+h3)を0.55より大きく0.95未満とすることにより、第2の媒質12の厚み(H)の変化に伴って高次モードスプリアスの大きさが変化することを効果的に抑制することができる。このため、0.55<h3/(h1+h3)<0.95とした場合は、第2の媒質12の厚み(H)を自由に変化させて周波数特性等の調整を行うことができる。よって、第2の媒質12の厚み(H)を大きく変化させた場合であっても、高次モードスプリアスの大きさが大きくなりすぎることを効果的に抑制することができる。従って、高い歩留まりで弾性境界波装置1を製造することができる。 On the other hand, it can be seen from the results shown in FIGS. 3 to 6 that when h3 / (h1 + h3) is large, the dependence of the sound velocity of the higher mode on the thickness (H) of the second medium 12 is low. It can also be seen that as h3 / (h1 + h3) increases, the dependence of the higher-order mode sound velocity on the thickness (H) of the second medium 12 decreases. Specifically, when h3 / (h1 + h3) is 0.55 or less, the dependence of the sound speed of the higher mode on the thickness (H) of the second medium 12 is large. On the other hand, it can be seen that by making h3 / (h1 + h3) larger than 0.55, the dependence of the sound velocity of the higher mode on the thickness (H) of the second medium 12 can be made sufficiently small. That is, when h3 / (h1 + h3) is greater than 0.55, it is possible to effectively suppress the change in the sound speed of the higher-order mode with the change in the thickness (H) of the second medium 12. . Therefore, by setting h3 / (h1 + h3) to be greater than 0.55 and less than 0.95, it is effective that the magnitude of the higher-order mode spurious changes with the change in the thickness (H) of the second medium 12. Can be suppressed. For this reason, when 0.55 <h3 / (h1 + h3) <0.95, the thickness (H) of the second medium 12 can be freely changed to adjust the frequency characteristics and the like. Therefore, even when the thickness (H) of the second medium 12 is largely changed, it is possible to effectively suppress the size of the high-order mode spurious from becoming too large. Therefore, the boundary acoustic wave device 1 can be manufactured with a high yield.
 また、h3/(h1+h3)を0.7より大きくした場合は、第2の媒質12の厚み(H)を変化に伴って高次モードの音速が変化することをさらに効果的に抑制できる。従って、0.7<h3/(h1+h3)<0.95とすることにより、より高い歩留まりで弾性境界波装置1を製造することができる。 In addition, when h3 / (h1 + h3) is set to be greater than 0.7, it is possible to more effectively suppress the change in the sound speed of the higher mode with the change in the thickness (H) of the second medium 12. Therefore, by setting 0.7 <h3 / (h1 + h3) <0.95, the boundary acoustic wave device 1 can be manufactured with a higher yield.
 さらに、図2~図6に示す結果から、h3/(h1+h3)を所定の範囲としつつ、第2の媒質12の厚み(H)を、0.3<H/λ<0.7とすることにより、第2の媒質12の厚み(H)の変化に伴って高次モードの音速が変化することを特に効果的に抑制できる。従って、第2の媒質12の厚み(H)は、0.3λ~0.7λであることが好ましい。 Further, from the results shown in FIGS. 2 to 6, the thickness (H) of the second medium 12 is set to 0.3 <H / λ <0.7 while h3 / (h1 + h3) is in a predetermined range. Thus, it is possible to particularly effectively suppress the change in the sound speed of the higher mode with the change in the thickness (H) of the second medium 12. Therefore, the thickness (H) of the second medium 12 is preferably 0.3λ to 0.7λ.
 次に、第2の電極層22の厚み(h2)が0.07λまたは0.20λである場合についても同様に、h3/(h1+h3)を種々変化させて第2の媒質12の厚み(H)と高次モードの音速との関係を調べた。その結果を、図7~図16に示す。また、第1及び第3の電極層21,23の厚みの合計(h1+h3)を0.04λとした場合についても同様に、h3/(h1+h3)を種々変化させて第2の媒質12の厚み(H)と高次モードの音速との関係を調べた。その結果を、図17~図21に示す。 Next, when the thickness (h2) of the second electrode layer 22 is 0.07λ or 0.20λ, similarly, the thickness (H) of the second medium 12 is changed by variously changing h3 / (h1 + h3). And the sound speed of higher order modes were investigated. The results are shown in FIGS. Similarly, when the total thickness (h1 + h3) of the first and third electrode layers 21 and 23 is set to 0.04λ, h3 / (h1 + h3) is variously changed to change the thickness of the second medium 12 ( The relationship between H) and higher-order mode sound speed was investigated. The results are shown in FIGS.
 図7は、第2の電極層22の厚み(h2)が0.07λであり、h3/(h1+h3)が0.30のときの第2の媒質12の厚み(H)と高次モードの音速との関係を表すグラフである。 FIG. 7 shows the thickness (H) of the second medium 12 and the sound speed of the higher-order mode when the thickness (h2) of the second electrode layer 22 is 0.07λ and h3 / (h1 + h3) is 0.30. It is a graph showing the relationship.
 図8は、第2の電極層22の厚み(h2)が0.07λであり、h3/(h1+h3)が0.55のときの第2の媒質12の厚み(H)と高次モードの音速との関係を表すグラフである。 FIG. 8 shows the thickness (H) of the second medium 12 and the sound speed of the higher-order mode when the thickness (h2) of the second electrode layer 22 is 0.07λ and h3 / (h1 + h3) is 0.55. It is a graph showing the relationship.
 図9は、第2の電極層22の厚み(h2)が0.07λであり、h3/(h1+h3)が0.70のときの第2の媒質12の厚み(H)と高次モードの音速との関係を表すグラフである。 FIG. 9 shows the thickness (H) of the second medium 12 and the sound speed of the higher-order mode when the thickness (h2) of the second electrode layer 22 is 0.07λ and h3 / (h1 + h3) is 0.70. It is a graph showing the relationship.
 図10は、第2の電極層22の厚み(h2)が0.07λであり、h3/(h1+h3)が0.90のときの第2の媒質12の厚み(H)と高次モードの音速との関係を表すグラフである。 FIG. 10 shows the thickness (H) of the second medium 12 and the sound speed of the higher-order mode when the thickness (h2) of the second electrode layer 22 is 0.07λ and h3 / (h1 + h3) is 0.90. It is a graph showing the relationship.
 図11は、第2の電極層22の厚み(h2)が0.07λであり、h3/(h1+h3)が0.95のときの第2の媒質12の厚み(H)と高次モードの音速との関係を表すグラフである。 FIG. 11 shows the thickness (H) of the second medium 12 and the sound speed of the higher-order mode when the thickness (h2) of the second electrode layer 22 is 0.07λ and h3 / (h1 + h3) is 0.95. It is a graph showing the relationship.
 図12は、第2の電極層22の厚み(h2)が0.20λであり、h3/(h1+h3)が0.30のときの第2の媒質12の厚み(H)と高次モードの音速との関係を表すグラフである。 FIG. 12 shows the thickness (H) of the second medium 12 and the sound speed of the higher-order mode when the thickness (h2) of the second electrode layer 22 is 0.20λ and h3 / (h1 + h3) is 0.30. It is a graph showing the relationship.
 図13は、第2の電極層22の厚み(h2)が0.20λであり、h3/(h1+h3)が0.55のときの第2の媒質12の厚み(H)と高次モードの音速との関係を表すグラフである。 FIG. 13 shows the thickness (H) of the second medium 12 and the sound speed of the higher-order mode when the thickness (h2) of the second electrode layer 22 is 0.20λ and h3 / (h1 + h3) is 0.55. It is a graph showing the relationship.
 図14は、第2の電極層22の厚み(h2)が0.20λであり、h3/(h1+h3)が0.70のときの第2の媒質12の厚み(H)と高次モードの音速との関係を表すグラフである。 FIG. 14 shows the thickness (H) of the second medium 12 and the sound speed of the higher-order mode when the thickness (h2) of the second electrode layer 22 is 0.20λ and h3 / (h1 + h3) is 0.70. It is a graph showing the relationship.
 図15は、第2の電極層22の厚み(h2)が0.20λであり、h3/(h1+h3)が0.90のときの第2の媒質12の厚み(H)と高次モードの音速との関係を表すグラフである。 FIG. 15 shows the thickness (H) of the second medium 12 and the sound speed of the higher-order mode when the thickness (h2) of the second electrode layer 22 is 0.20λ and h3 / (h1 + h3) is 0.90. It is a graph showing the relationship.
 図16は、第2の電極層22の厚み(h2)が0.20λであり、h3/(h1+h3)が0.95のときの第2の媒質12の厚み(H)と高次モードの音速との関係を表すグラフである。 FIG. 16 shows the thickness (H) of the second medium 12 and the sound speed of the higher-order mode when the thickness (h2) of the second electrode layer 22 is 0.20λ and h3 / (h1 + h3) is 0.95. It is a graph showing the relationship.
 図17は、第1及び第3の電極層21,23の厚みの合計(h1+h3)が0.04λ、第2の電極層22の厚み(h2)が0.14λであり、h3/(h1+h3)が0.30のときの第2の媒質12の厚み(H)と高次モードの音速との関係を表すグラフである。 FIG. 17 shows that the total thickness (h1 + h3) of the first and third electrode layers 21 and 23 is 0.04λ, the thickness (h2) of the second electrode layer 22 is 0.14λ, and h3 / (h1 + h3). 6 is a graph showing the relationship between the thickness (H) of the second medium 12 and the sound speed of a higher-order mode when is 0.30.
 図18は、第1及び第3の電極層21,23の厚みの合計(h1+h3)が0.04λ、第2の電極層22の厚み(h2)が0.14λであり、h3/(h1+h3)が0.55のときの第2の媒質12の厚み(H)と高次モードの音速との関係を表すグラフである。 In FIG. 18, the total thickness (h1 + h3) of the first and third electrode layers 21 and 23 is 0.04λ, the thickness (h2) of the second electrode layer 22 is 0.14λ, and h3 / (h1 + h3). 6 is a graph showing the relationship between the thickness (H) of the second medium 12 and the sound speed of a higher-order mode when is 0.55.
 図19は、第1及び第3の電極層21,23の厚みの合計(h1+h3)が0.04λ、第2の電極層22の厚み(h2)が0.14λであり、h3/(h1+h3)が0.70のときの第2の媒質12の厚み(H)と高次モードの音速との関係を表すグラフである。 In FIG. 19, the total thickness (h1 + h3) of the first and third electrode layers 21 and 23 is 0.04λ, the thickness (h2) of the second electrode layer 22 is 0.14λ, and h3 / (h1 + h3). 6 is a graph showing the relationship between the thickness (H) of the second medium 12 and the sound speed of the higher-order mode when is 0.70.
 図20は、第1及び第3の電極層21,23の厚みの合計(h1+h3)が0.04λ、第2の電極層22の厚み(h2)が0.14λであり、h3/(h1+h3)が0.90のときの第2の媒質12の厚み(H)と高次モードの音速との関係を表すグラフである。 In FIG. 20, the total thickness (h1 + h3) of the first and third electrode layers 21 and 23 is 0.04λ, the thickness (h2) of the second electrode layer 22 is 0.14λ, and h3 / (h1 + h3). 6 is a graph showing the relationship between the thickness (H) of the second medium 12 and the sound speed of a higher-order mode when is 0.90.
 図21は、第1及び第3の電極層21,23の厚み(h1+h3)の合計が0.04λ、第2の電極層22の厚み(h2)が0.14λであり、h3/(h1+h3)が0.95のときの第2の媒質12の厚み(H)と高次モードの音速との関係を表すグラフである。 FIG. 21 shows that the total thickness (h1 + h3) of the first and third electrode layers 21, 23 is 0.04λ, the thickness (h2) of the second electrode layer 22 is 0.14λ, and h3 / (h1 + h3). 6 is a graph showing the relationship between the thickness (H) of the second medium 12 and the sound speed of a higher-order mode when is 0.95.
 図2~図6に示す結果と共に、図7~図16に示す結果を参照する。その結果、第2の電極層22の厚み(h2)に関わらず、h3/(h1+h3)が大きくなるほど第2の媒質12の厚み(H)の変化に対する高次モードの音速の依存性が低くなることが分かる。また、h3/(h1+h3)を0.55~0.95、好ましくは0.7~0.95とすることにより、第2の媒質12の厚み(H)に関わらず、高次モードの音速を安定させることができる。従って、第2の媒質12の厚み(H)を調整したときに、高次モードスプリアスの大きさが大きくなりすぎることを効果的に抑制できることが分かる。 Refer to the results shown in FIGS. 7 to 16 together with the results shown in FIGS. As a result, regardless of the thickness (h2) of the second electrode layer 22, as h3 / (h1 + h3) increases, the dependency of the sound velocity of the higher mode on the change in the thickness (H) of the second medium 12 decreases. I understand that. Further, by setting h3 / (h1 + h3) to 0.55 to 0.95, preferably 0.7 to 0.95, the sound speed of the higher-order mode can be increased regardless of the thickness (H) of the second medium 12. It can be stabilized. Therefore, it can be seen that, when the thickness (H) of the second medium 12 is adjusted, it is possible to effectively suppress the size of the higher-order mode spurs from becoming too large.
 また、第2の電極層22の厚み(h2)に関わらず、h3/(h1+h3)を所定の範囲としつつ、第2の媒質12の厚み(H)を、0.3<H/λ<0.7とすることにより、第2の媒質12の厚み(H)を変化に伴って高次モードの音速が変化することを特に効果的に抑制できる。従って、第2の電極層22の厚みに関わらず、第2の媒質12の厚み(H)は、0.3λ~0.7λであることが好ましいことが分かる。 Regardless of the thickness (h2) of the second electrode layer 22, the thickness (H) of the second medium 12 is set to 0.3 <H / λ <0 while h3 / (h1 + h3) is within a predetermined range. .7, it is possible to particularly effectively suppress the change in the sound speed of the higher-order mode accompanying the change in the thickness (H) of the second medium 12. Therefore, it can be seen that the thickness (H) of the second medium 12 is preferably 0.3λ to 0.7λ regardless of the thickness of the second electrode layer 22.
 なお、第2の電極層22の厚み(h2)は、0.05λ~0.25λの範囲内にあることが好ましい。第2の電極層22の厚み(h2)が小さすぎると、高次モードスプリアスの大きさの第2の媒質12の厚み(H)に対する依存性を十分に低減できない場合がある。また、周波数温度特性が劣悪になる場合がある。一方、第2の電極層22の厚み(h2)が大きすぎると、電気機械結合係数が小さくなりすぎる場合や、IDT電極20の厚みが厚くなりすぎ、第3の媒質13の形状が劣悪になる場合がある。 It should be noted that the thickness (h2) of the second electrode layer 22 is preferably in the range of 0.05λ to 0.25λ. If the thickness (h2) of the second electrode layer 22 is too small, the dependency of the magnitude of higher-order mode spurious on the thickness (H) of the second medium 12 may not be sufficiently reduced. In addition, the frequency temperature characteristic may be deteriorated. On the other hand, if the thickness (h2) of the second electrode layer 22 is too large, the electromechanical coupling coefficient becomes too small, or the thickness of the IDT electrode 20 becomes too thick, and the shape of the third medium 13 becomes poor. There is a case.
 次に、第1~第3の電極層21~23の材質を種々変更して、第2の媒質12の厚み(H)と高次モードの音速との関係を調べた。その結果を、図22~図46に示す。なお、図22~図46において、第1及び第3の電極層21,23の厚みの合計(h1+h3)は0.06λであり、第2の電極層22の厚み(h2)は、0.14λである。 Next, the materials of the first to third electrode layers 21 to 23 were variously changed, and the relationship between the thickness (H) of the second medium 12 and the sound speed of the higher-order mode was examined. The results are shown in FIGS. 22 to 46, the total thickness (h1 + h3) of the first and third electrode layers 21 and 23 is 0.06λ, and the thickness (h2) of the second electrode layer 22 is 0.14λ. It is.
 図22~図26:第1の電極層21:Au/第2の電極層:Al/第3の電極層:Au
 図27~図31:第1の電極層21:W/第2の電極層:Al/第3の電極層:W
 図32~図36:第1の電極層21:Ta/第2の電極層:Al/第3の電極層:Ta
 図37~図41:第1の電極層21:Cu/第2の電極層:Al/第3の電極層:Cu 図42~図46:第1の電極層21:Pt/第2の電極層:Cu/第3の電極層:Pt
 図22,図27,図32,図37及び図42におけるh3/(h1+h3):0.30
 図23,図28,図33,図38及び図43におけるh3/(h1+h3):0.55
 図24,図29,図34,図39及び図44におけるh3/(h1+h3):0.70
 図25,図30,図35,図40及び図45におけるh3/(h1+h3):0.90
 図26,図31,図36,図41及び図46におけるh3/(h1+h3):0.95
22 to 26: first electrode layer 21: Au / second electrode layer: Al / third electrode layer: Au
27 to 31: first electrode layer 21: W / second electrode layer: Al / third electrode layer: W
32 to 36: first electrode layer 21: Ta / second electrode layer: Al / third electrode layer: Ta
37 to 41: First electrode layer 21: Cu / second electrode layer: Al / third electrode layer: Cu FIGS. 42 to 46: First electrode layer 21: Pt / second electrode layer : Cu / third electrode layer: Pt
H3 / (h1 + h3) in FIGS. 22, 27, 32, 37 and 42: 0.30
H3 / (h1 + h3) in FIGS. 23, 28, 33, 38 and 43: 0.55
H3 / (h1 + h3): 0.70 in FIGS. 24, 29, 34, 39 and 44
H3 / (h1 + h3) in FIG. 25, FIG. 30, FIG. 35, FIG. 40 and FIG.
H3 / (h1 + h3) in FIGS. 26, 31, 36, 41 and 46: 0.95
 図2~図6に示す結果と共に、図22~図46に示す結果を参照する。これらの結果より、第1~第3の電極層21,23の材質に関わらず、h3/(h1+h3)が大きくなるほど第2の媒質12の厚み(H)の変化に対する高次モードの音速の依存性が低くなることが分かる。また、h3/(h1+h3)を0.55~0.95、好ましくは0.7~0.95とすることにより、第1~第3の電極層21,23の材質に関わらず、高次モードの音速を安定させることができる。従って、第2の媒質12の厚み(H)を調整したときに、高次モードスプリアスの大きさが大きくなりすぎることを効果的に抑制できることが分かる。 Refer to the results shown in FIGS. 22 to 46 together with the results shown in FIGS. From these results, regardless of the material of the first to third electrode layers 21 and 23, the higher the h3 / (h1 + h3) is, the higher the mode speed depends on the change in the thickness (H) of the second medium 12. It turns out that property becomes low. Further, by setting h3 / (h1 + h3) to 0.55 to 0.95, preferably 0.7 to 0.95, a higher-order mode is achieved regardless of the material of the first to third electrode layers 21 and 23. The speed of sound can be stabilized. Therefore, it can be seen that, when the thickness (H) of the second medium 12 is adjusted, it is possible to effectively suppress the size of the higher-order mode spurs from becoming too large.
 また、第1~第3の電極層21,23の材質に関わらず、h3/(h1+h3)を所定の範囲としつつ、第2の媒質12の厚み(H)を、0.3<H/λ<0.7とすることにより、第2の媒質12の厚み(H)を変化に伴って高次モードの音速が変化することを特に効果的に抑制できる。従って、第1~第3の電極層21,23の材質に関わらず、第2の媒質12の厚み(H)は、0.3λ~0.7λであることが好ましいことが分かる。 Regardless of the material of the first to third electrode layers 21 and 23, the thickness (H) of the second medium 12 is set to 0.3 <H / λ while h3 / (h1 + h3) is within a predetermined range. By setting it to <0.7, it can suppress especially effectively that the sound speed of a higher mode changes with the thickness (H) of the 2nd medium 12 changing. Therefore, it is understood that the thickness (H) of the second medium 12 is preferably 0.3λ to 0.7λ regardless of the material of the first to third electrode layers 21 and 23.
 次に、第1の媒質11のカット角について検討した。図47は、37°YカットLiNbO基板を第1の媒質として用いた場合のインピーダンス(Z)特性を表すグラフである。図48は、37°YカットLiNbO基板を第1の媒質として用いた場合の位相特性を表すグラフである。図49は、0°YカットLiNbO基板を第1の媒質として用いた場合のインピーダンス(Z)特性を表すグラフである。図50は、0°YカットLiNbO基板を第1の媒質として用いた場合の位相特性を表すグラフである。 Next, the cut angle of the first medium 11 was examined. FIG. 47 is a graph showing impedance (Z) characteristics when a 37 ° Y-cut LiNbO 3 substrate is used as the first medium. FIG. 48 is a graph showing phase characteristics when a 37 ° Y-cut LiNbO 3 substrate is used as the first medium. FIG. 49 is a graph showing impedance (Z) characteristics when a 0 ° Y-cut LiNbO 3 substrate is used as the first medium. FIG. 50 is a graph showing phase characteristics when a 0 ° Y-cut LiNbO 3 substrate is used as the first medium.
 図47~図50に示す結果から、0°~37°回転YカットLiNbO基板を第1の媒質11として用いた場合には、SH波の高次モードに起因するスプリアスが生じやすいことが分かる。従って、本実施形態の技術は、0°~37°回転YカットLiNbO基板を第1の媒質11として用い、SH型の弾性境界波を用いる弾性境界波装置に特に有効であることが分かる。 From the results shown in FIG. 47 to FIG. 50, it is understood that when the 0 ° -37 ° rotated Y-cut LiNbO 3 substrate is used as the first medium 11, spurious due to the higher order mode of the SH wave is likely to occur. . Therefore, it can be seen that the technique of the present embodiment is particularly effective for a boundary acoustic wave device using an SH type boundary acoustic wave using a 0 ° to 37 ° rotated Y-cut LiNbO 3 substrate as the first medium 11.
 (第2の実施形態)
 図51は、第2の実施形態に係る弾性境界波装置の略図的断面図である。図51に示すように、本実施形態では、IDT電極20は、第1~第3の電極層21~23の上に形成されている第4の電極層24をさらに備えている。このように、第4の電極層24をさらに設けることにより、IDT電極20の抵抗をより低くすることができる。従って、弾性境界波装置の損失をより小さくすることができる。
(Second Embodiment)
FIG. 51 is a schematic cross-sectional view of a boundary acoustic wave device according to the second embodiment. As shown in FIG. 51, in this embodiment, the IDT electrode 20 further includes a fourth electrode layer 24 formed on the first to third electrode layers 21 to 23. Thus, by further providing the fourth electrode layer 24, the resistance of the IDT electrode 20 can be further reduced. Therefore, the loss of the boundary acoustic wave device can be further reduced.
 第4の電極層24は、電気抵抗の低い材料、より具体的には、第1~第3の電極層21~23の材料の電気抵抗以下の電気抵抗を有する材料により形成されていることが好ましい。例えば、第4の電極層24をAlまたはAlを主成分とする合金により形成することが好ましい。そうすることにより、IDT電極20の抵抗をさらに小さくでき、よって、弾性境界波装置の損失をさらに小さくすることができる。 The fourth electrode layer 24 is formed of a material having a low electrical resistance, more specifically, a material having an electrical resistance equal to or lower than that of the materials of the first to third electrode layers 21 to 23. preferable. For example, the fourth electrode layer 24 is preferably formed of Al or an alloy containing Al as a main component. By doing so, the resistance of the IDT electrode 20 can be further reduced, and therefore the loss of the boundary acoustic wave device can be further reduced.
 また、第4の電極層24をAlにより形成した場合、第2の媒質12を、SiOなどの酸化ケイ素からなるものとすることが好ましい。Alと酸化ケイ素とは、弾性定数及び密度のそれぞれが相互に近いため、第4の電極層24を追加しても、基本モードの音速や電気機械結合係数、高次モードの音速などのような音響的な特性が変化しにくい。このため、音響的な特性を変化させずに、IDT電極20の抵抗を効果的に低減できる。 Further, when the fourth electrode layer 24 is formed of Al, it is preferable that the second medium 12 is made of silicon oxide such as SiO 2 . Since Al and silicon oxide have elastic constants and densities close to each other, even if the fourth electrode layer 24 is added, the sound velocity of the fundamental mode, the electromechanical coupling coefficient, the sound velocity of the higher mode, etc. The acoustic characteristics are difficult to change. For this reason, the resistance of the IDT electrode 20 can be effectively reduced without changing the acoustic characteristics.
 (第3の実施形態)
 図52は、第3の実施形態に係る弾性境界波装置におけるIDT電極の略図的断面図である。図52に示すように、第1の媒質11と、第1の電極層21との間、第1~第3の電極層21~23間、及び第3の電極層23と第2の媒質12との間に密着性の向上や拡散の抑制を図るための層25a~25dをさらに設けてもよい。なお、層25a~25dのそれぞれは、例えば、Ti,Ni,Crなどの金属またはTi,Ni及びCrからなる群から選ばれた1種以上の金属を主成分とする合金などにより形成することができる。
(Third embodiment)
FIG. 52 is a schematic cross-sectional view of an IDT electrode in a boundary acoustic wave device according to a third embodiment. As shown in FIG. 52, between the first medium 11 and the first electrode layer 21, between the first to third electrode layers 21 to 23, and between the third electrode layer 23 and the second medium 12 Further, layers 25a to 25d for improving adhesion and suppressing diffusion may be further provided. Each of the layers 25a to 25d may be formed of, for example, a metal such as Ti, Ni, or Cr, or an alloy mainly composed of one or more metals selected from the group consisting of Ti, Ni, and Cr. it can.
 (第4の実施形態)
 図53は、第4の実施形態に係る弾性境界波装置におけるIDT電極の略図的断面図である。
(Fourth embodiment)
FIG. 53 is a schematic cross-sectional view of an IDT electrode in a boundary acoustic wave device according to a fourth embodiment.
 上記第1の実施形態では、第1~第3の電極層21~23のそれぞれが単一の電極層により形成されている場合について説明した。但し、本発明はこの構成に限定されない。例えば、第1~第3の電極層21~23の少なくともひとつが複数の層により構成されていてもよい。また、その場合において、電極層を構成する複数の層の間に他の層が介在していてもよい。すなわち、第1~第3の電極層21~23の少なくともひとつは、例えば、他の層により複数の層に分割されていてもよい。例えば、図53に示す例では、第2の電極層22が、TiやCuからなる層22a、22bにより3つの層に分割されている。 In the first embodiment, the case where each of the first to third electrode layers 21 to 23 is formed of a single electrode layer has been described. However, the present invention is not limited to this configuration. For example, at least one of the first to third electrode layers 21 to 23 may be composed of a plurality of layers. In that case, another layer may be interposed between a plurality of layers constituting the electrode layer. That is, at least one of the first to third electrode layers 21 to 23 may be divided into a plurality of layers by other layers, for example. For example, in the example shown in FIG. 53, the second electrode layer 22 is divided into three layers by layers 22a and 22b made of Ti or Cu.
 (第5の実施形態)
 図54は、第5の実施形態に係る弾性境界波装置の略図的断面図である。
(Fifth embodiment)
FIG. 54 is a schematic cross-sectional view of a boundary acoustic wave device according to a fifth embodiment.
 上記第1の実施形態では、第2の媒質12の表面が平坦である場合について説明したが、図54に示すように、第2の媒質12の表面は、IDT電極20の形状に即した形状とされていてもよい。同様に、第3の媒質13の表面もIDT電極20の形状に即した形状とされていてもよい。 In the first embodiment, the case where the surface of the second medium 12 is flat has been described. However, as shown in FIG. 54, the surface of the second medium 12 has a shape corresponding to the shape of the IDT electrode 20. It may be said. Similarly, the surface of the third medium 13 may be shaped according to the shape of the IDT electrode 20.
 (第6の実施形態)
 第6の実施形態は、第1の実施形態において、第1の媒質がLiNbO基板、第2の媒質がSiO膜であり、LiNbOのカット角、IDT電極における各金属膜の厚み、SiO膜の厚み等が特定の範囲とされている点で第1の実施形態と異なる。本実施形態では、ストンリー波の応答によるスプリアスを効果的に抑圧することができる。これを、具体的な実験例に基づき説明する。
(Sixth embodiment)
In the sixth embodiment, the first medium is a LiNbO 3 substrate, the second medium is a SiO 2 film, the cut angle of LiNbO 3 , the thickness of each metal film in the IDT electrode, and the SiO 2 film in the first embodiment. It differs from the first embodiment in that the thickness of the two films is in a specific range. In the present embodiment, spurious due to the response of the Stoneley wave can be effectively suppressed. This will be described based on a specific experimental example.
 結果を図55~図135に示す。なお、図55~図135は、以下の第1のグループ~第3のグループに分けて説明する。 The results are shown in FIGS. 55 to 135 are described in the following first group to third group.
 第1のグループ~第3のグループは、それぞれ、特定のフィルタに用いるのに適しているLiNbOのカット角、Pt膜厚合計(h1+h3)、上Pt膜厚/Pt膜厚合計(h3/(h1+h3))、Al膜の膜厚(h2)、及びSiO膜の膜厚(H)の各パラメータの中心値を決定した。第1のグループ~第3のグループは、この中心値のまわりのパラメータを有するグループである。グループごとに詳細を説明することとする。 The first group to the third group are LiNbO 3 cut angles, Pt film thickness total (h1 + h3), and upper Pt film thickness / Pt film thickness total (h3 / () suitable for use in a specific filter, respectively. h1 + h3)), the thickness of the Al film (h2), and the central value of each parameter of the SiO 2 film (H). The first group to the third group are groups having parameters around the center value. Details will be explained for each group.
 なお、本願におけるSV波比帯域は、SV波を主体とする境界波であるストンリー波の比帯域の意で用いている。ストンリー波の電気機械結合係数をKとすると、およそ比帯域=K/2の関係にある。 In addition, the SV wave specific band in this application is used in the meaning of the specific band of the Stoneley wave which is a boundary wave mainly composed of SV waves. When the electromechanical coefficient of the Stoneley wave and K, is in the approximate fractional bandwidth = K 2/2 relationship.
 (第1のグループ)
 図55~図81は、LiNbOのカット角25°、Pt膜厚合計2.42%(対波長比)、上Pt膜厚/Pt膜厚合計0.50、Al膜の膜厚9.2%(対波長比)、及びSiO膜の膜厚44.5%(対波長比)を中心とする、上記各パラメータとSV波比帯域との関係を示す図である。
(First group)
55 to 81, the cut angle of LiNbO 3 is 25 °, the total Pt film thickness is 2.42% (ratio to wavelength), the upper Pt film thickness / the total Pt film thickness is 0.50, and the Al film thickness is 9.2. % (versus wavelength ratio), and the center 44.5% the thickness of the SiO 2 film (versus wavelength ratio) is a diagram showing the relationship between the parameters and SV wave ratio band.
 より具体的には、図55~図63は、SiO膜の膜厚が0.40λの場合の結果を示す。ここで、図55~図57では、上Pt膜厚/Pt膜厚合計が0.45、図58~図60では0.50、図61~図63では0.55の場合の結果が示されている。そして、図55~図57では、Al膜の膜厚が、0.08λ、0.10λまたは0.12λとされており、図58~図60においても、Al膜の膜厚が0.08λ、0.10λまたは0.12λとされており、図61~図63においても、Al膜の膜厚が0.08λ、0.10λまたは0.12λとされている。 More specifically, FIGS. 55 to 63 show results when the thickness of the SiO 2 film is 0.40λ. 55 to 57 show the results when the upper Pt film thickness / Pt film thickness is 0.45, FIGS. 58 to 60 are 0.50, and FIGS. 61 to 63 are 0.55. ing. 55 to 57, the thickness of the Al film is 0.08λ, 0.10λ, or 0.12λ. Also in FIGS. 58 to 60, the thickness of the Al film is 0.08λ, The thickness of the Al film is 0.08λ, 0.10λ, or 0.12λ in FIGS. 61 to 63.
 そして、図55~図63においては、さらに、Pt膜厚合計を0.02λ、0.025λまたは0.03λに変化させた場合のLiNbOのカット角と、SV波比帯域との関係が示されている。 55 to 63 further show the relationship between the cut angle of LiNbO 3 and the SV wave ratio band when the total Pt film thickness is changed to 0.02λ, 0.025λ, or 0.03λ. Has been.
 なお、図55~図135において、図中のPt=0.02λのような「Pt=」で表される膜厚は、上記Pt膜厚合計を示すものとする。 In FIGS. 55 to 135, the film thickness represented by “Pt =” such as Pt = 0.02λ in the drawings represents the total Pt film thickness.
 図55~図63から明らかなように、LiNbOのカット角が25°近辺の場合、SV波比帯域が非常に小さくなり、極小値となることがわかる。カット角が25°から遠ざかるにつれ、いずれの場合においても、SV波比帯域が大きくなっていくことがわかる。 As is apparent from FIGS. 55 to 63, when the cut angle of LiNbO 3 is around 25 °, the SV wave ratio band becomes very small and becomes a minimum value. It can be seen that the SV wave ratio band increases in any case as the cut angle moves away from 25 °.
 図64~図72は、SiO膜の膜厚が0.45λの場合の結果を示す。ここで、図64~図66では、上Pt膜厚/Pt膜厚合計が0.45、図67~図69では0.50、図70~図72では0.55の場合の結果が示されている。そして、図64~図66では、Al膜の膜厚が、0.08λ、0.10λまたは0.12λとされており、図67~図69においても、Al膜の膜厚が0.08λ、0.10λまたは0.12λとされており、図70~図72においても、Al膜の膜厚が0.08λ、0.10λまたは0.12λとされている。 FIGS. 64 to 72 show the results when the thickness of the SiO 2 film is 0.45λ. Here, FIGS. 64 to 66 show the results when the upper Pt film thickness / Pt film thickness is 0.45, FIGS. 67 to 69 are 0.50, and FIGS. 70 to 72 are 0.55. ing. 64 to 66, the film thickness of the Al film is 0.08λ, 0.10λ, or 0.12λ. Also in FIGS. 67 to 69, the film thickness of the Al film is 0.08λ, The thickness of the Al film is 0.08λ, 0.10λ, or 0.12λ in FIGS. 70 to 72 as well.
 そして、図64~図72においては、さらに、Pt膜厚合計を変化させた場合のLiNbOのカット角と、SV波比帯域との関係が示されている。 64 to 72 further show the relationship between the cut angle of LiNbO 3 and the SV wave ratio band when the total Pt film thickness is changed.
 図64~図72から明らかなように、LiNbOのカット角が25°近辺の場合、SV波比帯域が非常に小さくなり、極小値となることがわかる。カット角が25°から遠ざかるにつれ、いずれの場合においても、SV波比帯域が大きくなっていくことがわかる。 As is apparent from FIGS. 64 to 72, when the cut angle of LiNbO 3 is around 25 °, the SV wave ratio band becomes very small and becomes a minimum value. It can be seen that the SV wave ratio band increases in any case as the cut angle moves away from 25 °.
 図73~図81は、SiO膜の膜厚が0.50λの場合の結果を示す。ここで、図73~図75では、上Pt膜厚/Pt膜厚合計が0.45、図76~図78では0.50、図79~図81では0.55の場合の結果が示されている。そして、図73~図75では、Al膜の膜厚が、0.08λ、0.10λまたは0.12λとされており、図76~図78においても、Al膜の膜厚が0.08λ、0.10λまたは0.12λとされており、図79~図81においても、Al膜の膜厚が0.08λ、0.10λまたは0.12λとされている。 73 to 81 show results when the thickness of the SiO 2 film is 0.50λ. Here, FIGS. 73 to 75 show the results when the upper Pt film thickness / Pt film thickness is 0.45, FIGS. 76 to 78 are 0.50, and FIGS. 79 to 81 are 0.55. ing. 73 to 75, the film thickness of the Al film is 0.08λ, 0.10λ, or 0.12λ. In FIGS. 76 to 78, the film thickness of the Al film is 0.08λ, The thickness of the Al film is 0.08λ, 0.10λ, or 0.12λ in FIGS. 79 to 81 as well.
 そして、図73~図81においては、さらに、Pt膜厚合計を変化させた場合のLiNbOのカット角と、SV波比帯域との関係が示されている。 73 to 81 further show the relationship between the cut angle of LiNbO 3 and the SV wave ratio band when the total Pt film thickness is changed.
 図73~図81から明らかなように、LiNbOのカット角が25°近辺の場合、SV波比帯域が非常に小さくなり、極小値となることがわかる。カット角が25°から遠ざかるにつれ、いずれの場合においても、SV波比帯域が大きくなっていくことがわかる。 As is apparent from FIGS. 73 to 81, when the cut angle of LiNbO 3 is around 25 °, the SV wave ratio band becomes very small and becomes a minimum value. It can be seen that the SV wave ratio band increases in any case as the cut angle moves away from 25 °.
 従って、図55~図81の結果をまとめると、0.55<h3/(h1+h3)<0.95である場合において、SV波比帯域が0.03%以下となる範囲、すなわちストンリー波によるスプリアスを抑圧し得る範囲は、下記の(a1)~(a27)のいずれかの組み合わせであることがわかる。 Therefore, the results shown in FIGS. 55 to 81 are summarized as follows. When 0.55 <h3 / (h1 + h3) <0.95, the range where the SV wave ratio band is 0.03% or less, that is, spurious due to the Stoneley wave. It can be seen that the range in which can be suppressed is any combination of the following (a1) to (a27).
 (a1)Pt膜厚合計が、0.0175λ~0.0225λ、上Pt膜厚/Pt膜厚合計が、0.525~0.55、Al膜厚が、0.07λ~0.09λ、SiO2膜厚が、0.375λ~0.425λのとき、LiNbO3のカット角が、21.5°~27°
 (a2)Pt膜厚合計が、0.0225λ~0.0275λ、上Pt膜厚/Pt膜厚合計が、0.525~0.55、Al膜厚が、0.07λ~0.09λ、SiO2膜厚が、0.375λ~0.425λのとき、LiNbO3のカット角が、23°~30.5°
 (a3)Pt膜厚合計が、0.0275λ~0.0325λ、上Pt膜厚/Pt膜厚合計が、0.525~0.55、Al膜厚が、0.07λ~0.09λ、SiO2膜厚が、0.375λ~0.425λのとき、LiNbO3のカット角が、23.5°~30°
 (a4)Pt膜厚合計が、0.0175λ~0.0225λ、上Pt膜厚/Pt膜厚合計が、0.525~0.55、Al膜厚が、0.09λ~0.11λ、SiO2膜厚が、0.375λ~0.425λのとき、LiNbO3のカット角が、21.5°~27.5°
 (a5)Pt膜厚合計が、0.0225λ~0.0275λ、上Pt膜厚/Pt膜厚合計が、0.525~0.55、Al膜厚が、0.09λ~0.11λ、SiO2膜厚が、0.375λ~0.425λのとき、LiNbO3のカット角が、23°~30°
 (a6)Pt膜厚合計が、0.0275λ~0.0325λ、上Pt膜厚/Pt膜厚合計が、0.525~0.55、Al膜厚が、0.09λ~0.11λ、SiO2膜厚が、0.375λ~0.425λのとき、LiNbO3のカット角が、23.5°~29.5°
 (a7)Pt膜厚合計が、0.0175λ~0.0225λ、上Pt膜厚/Pt膜厚合計が、0.525~0.55、Al膜厚が、0.11λ~0.13λ、SiO2膜厚が、0.375λ~0.425λのとき、LiNbO3のカット角が、21.5°~27.5°
 (a8)Pt膜厚合計が、0.0225λ~0.0275λ、上Pt膜厚/Pt膜厚合計が、0.525~0.55、Al膜厚が、0.11λ~0.13λ、SiO2膜厚が、0.375λ~0.425λのとき、LiNbO3のカット角が、23°~30°
 (a9)Pt膜厚合計が、0.0275λ~0.0325λ、上Pt膜厚/Pt膜厚合計が、0.525~0.55、Al膜厚が、0.11λ~0.13λ、SiO2膜厚が、0.375λ~0.425λのとき、LiNbO3のカット角が、23.5°~29°
 (a10)Pt膜厚合計が、0.0175λ~0.0225λ、上Pt膜厚/Pt膜厚合計が、0.525~0.55、Al膜厚が、0.07λ~0.09λ、SiO2膜厚が、0.425λ~0.475λのとき、LiNbO3のカット角が、23°~28.5°
 (a11)Pt膜厚合計が、0.0225λ~0.0275λ、上Pt膜厚/Pt膜厚合計が、0.525~0.55、Al膜厚が、0.07λ~0.09λ、SiO2膜厚が、0.425λ~0.475λのとき、LiNbO3のカット角が、24°~31°
 (a12)Pt膜厚合計が、0.0275λ~0.0325λ、上Pt膜厚/Pt膜厚合計が、0.525~0.55、Al膜厚が、0.07λ~0.09λ、SiO2膜厚が、0.425λ~0.475λのとき、LiNbO3のカット角が、23.5°~30°
 (a13)Pt膜厚合計が、0.0175λ~0.0225λ、上Pt膜厚/Pt膜厚合計が、0.525~0.55、Al膜厚が、0.09λ~0.11λ、SiO2膜厚が、0.425λ~0.475λのとき、LiNbO3のカット角が、23°~29°
 (a14)Pt膜厚合計が、0.0225λ~0.0275λ、上Pt膜厚/Pt膜厚合計が、0.525~0.55、Al膜厚が、0.09λ~0.11λ、SiO2膜厚が、0.425λ~0.475λのとき、LiNbO3のカット角が、23.5°~31°
 (a15)Pt膜厚合計が、0.0275λ~0.0325λ、上Pt膜厚/Pt膜厚合計が、0.525~0.55、Al膜厚が、0.09λ~0.11λ、SiO2膜厚が、0.425λ~0.475λのとき、LiNbO3のカット角が、23.5°~29°
 (a16)Pt膜厚合計が、0.0175λ~0.0225λ、上Pt膜厚/Pt膜厚合計が、0.525~0.55、Al膜厚が、0.11λ~0.13λ、SiO2膜厚が、0.425λ~0.475λのとき、LiNbO3のカット角が、23°~29.5°
 (a17)Pt膜厚合計が、0.0225λ~0.0275λ、上Pt膜厚/Pt膜厚合計が、0.525~0.55、Al膜厚が、0.11λ~0.13λ、SiO2膜厚が、0.425λ~0.475λのとき、LiNbO3のカット角が、23.5°~30.5°
 (a18)Pt膜厚合計が、0.0275λ~0.0325λ、上Pt膜厚/Pt膜厚合計が、0.525~0.55、Al膜厚が、0.11λ~0.13λ、SiO2膜厚が、0.425λ~0.475λのとき、LiNbO3のカット角が、23.5°~28.5°
 (a19)Pt膜厚合計が、0.0175λ~0.0225λ、上Pt膜厚/Pt膜厚合計が、0.525~0.55、Al膜厚が、0.07λ~0.09λ、SiO2膜厚が、0.475λ~0.525λのとき、LiNbO3のカット角が、24°~30°
 (a20)Pt膜厚合計が、0.0225λ~0.0275λ、上Pt膜厚/Pt膜厚合計が、0.525~0.55、Al膜厚が、0.07λ~0.09λ、SiO2膜厚が、0.475λ~0.525λのとき、LiNbO3のカット角が、24°~31.5°
 (a21)Pt膜厚合計が、0.0275λ~0.0325λ、上Pt膜厚/Pt膜厚合計が、0.525~0.55、Al膜厚が、0.07λ~0.09λ、SiO2膜厚が、0.475λ~0.525λのとき、LiNbO3のカット角が、23°~30°
 (a22)Pt膜厚合計が、0.0175λ~0.0225λ、上Pt膜厚/Pt膜厚合計が、0.525~0.55、Al膜厚が、0.09λ~0.11λ、SiO2膜厚が、0.475λ~0.525λのとき、LiNbO3のカット角が、24°~30.5°
 (a23)Pt膜厚合計が、0.0225λ~0.0275λ、上Pt膜厚/Pt膜厚合計が、0.525~0.55、Al膜厚が、0.09λ~0.11λ、SiO2膜厚が、0.475λ~0.525λのとき、LiNbO3のカット角が、24°~31°
 (a24)Pt膜厚合計が、0.0275λ~0.0325λ、上Pt膜厚/Pt膜厚合計が、0.525~0.55、Al膜厚が、0.09λ~0.11λ、SiO2膜厚が、0.475λ~0.525λのとき、LiNbO3のカット角が、23.5°~29°
 (a25)Pt膜厚合計が、0.0175λ~0.0225λ、上Pt膜厚/Pt膜厚合計が、0.525~0.55、Al膜厚が、0.11λ~0.13λ、SiO2膜厚が、0.475λ~0.525λのとき、LiNbO3のカット角が、23.5°~30.5°
 (a26)Pt膜厚合計が、0.0225λ~0.0275λ、上Pt膜厚/Pt膜厚合計が、0.525~0.55、Al膜厚が、0.11λ~0.13λ、SiO2膜厚が、0.475λ~0.525λのとき、LiNbO3のカット角が、23.5°~30.5°
 (a27)Pt膜厚合計が、0.0275λ~0.0325λ、上Pt膜厚/Pt膜厚合計が、0.525~0.55、Al膜厚が、0.11λ~0.13λ、SiO2膜厚が、0.475λ~0.525λのとき、LiNbO3のカット角が、23°~28°
(A1) Pt film thickness is 0.0175λ to 0.0225λ, upper Pt film thickness / Pt film thickness is 0.525 to 0.55, Al film thickness is 0.07λ to 0.09λ, and SiO 2 film thickness is 0.375λ to At 0.425λ, the cut angle of LiNbO 3 is 21.5 ° to 27 °
(A2) Pt film thickness is 0.0225λ to 0.0275λ, upper Pt film thickness / Pt film thickness is 0.525 to 0.55, Al film thickness is 0.07λ to 0.09λ, SiO 2 film thickness is 0.375λ to When 0.425λ, the cut angle of LiNbO 3 is 23 ° ~ 30.5 °
(A3) Total Pt film thickness is 0.0275λ to 0.0325λ, Upper Pt film thickness / Pt film thickness is 0.525 to 0.55, Al film thickness is 0.07λ to 0.09λ, SiO 2 film thickness is 0.375λ to When 0.425λ, the cut angle of LiNbO 3 is 23.5 ° -30 °
(A4) Pt film thickness is 0.0175λ to 0.0225λ, upper Pt film thickness / Pt film thickness is 0.525 to 0.55, Al film thickness is 0.09λ to 0.11λ, and SiO 2 film thickness is 0.375λ to When 0.425λ, the cut angle of LiNbO 3 is 21.5 ° to 27.5 °
(A5) The total Pt film thickness is 0.0225λ to 0.0275λ, the upper Pt film thickness / Pt film thickness is 0.525 to 0.55, the Al film thickness is 0.09λ to 0.11λ, and the SiO 2 film thickness is 0.375λ to When 0.425λ, the cut angle of LiNbO 3 is 23 ° -30 °
(A6) The total Pt film thickness is 0.0275λ to 0.0325λ, the upper Pt film thickness / Pt film thickness is 0.525 to 0.55, the Al film thickness is 0.09λ to 0.11λ, and the SiO 2 film thickness is 0.375λ to At 0.425λ, the cut angle of LiNbO 3 is 23.5 ° to 29.5 °
(A7) Pt film thickness is 0.0175λ to 0.0225λ, upper Pt film thickness / Pt film thickness is 0.525 to 0.55, Al film thickness is 0.11λ to 0.13λ, SiO 2 film thickness is 0.375λ to When 0.425λ, the cut angle of LiNbO 3 is 21.5 ° to 27.5 °
(A8) Pt film thickness is 0.0225λ to 0.0275λ, upper Pt film thickness / Pt film thickness is 0.525 to 0.55, Al film thickness is 0.11λ to 0.13λ, SiO 2 film thickness is 0.375λ to When 0.425λ, the cut angle of LiNbO 3 is 23 ° -30 °
(A9) The total Pt film thickness is 0.0275λ to 0.0325λ, the upper Pt film thickness / Pt film thickness is 0.525 to 0.55, the Al film thickness is 0.11λ to 0.13λ, and the SiO 2 film thickness is 0.375λ to When 0.425λ, the cut angle of LiNbO 3 is 23.5 ° to 29 °
(A10) Pt film thickness is 0.0175λ to 0.0225λ, upper Pt film thickness / Pt film thickness is 0.525 to 0.55, Al film thickness is 0.07λ to 0.09λ, and SiO 2 film thickness is 0.425λ to When 0.475λ, the cut angle of LiNbO 3 is 23 ° ~ 28.5 °
(A11) The total Pt film thickness is 0.0225λ to 0.0275λ, the upper Pt film thickness / Pt film thickness is 0.525 to 0.55, the Al film thickness is 0.07λ to 0.09λ, and the SiO 2 film thickness is 0.425λ to When 0.475λ, the cut angle of LiNbO 3 is 24 ° to 31 °
(A12) The total Pt film thickness is 0.0275λ to 0.0325λ, the upper Pt film thickness / Pt film thickness is 0.525 to 0.55, the Al film thickness is 0.07λ to 0.09λ, and the SiO 2 film thickness is 0.425λ to When 0.475λ, the cut angle of LiNbO 3 is 23.5 ° -30 °
(A13) Pt film thickness is 0.0175λ to 0.0225λ, upper Pt film thickness / Pt film thickness is 0.525 to 0.55, Al film thickness is 0.09λ to 0.11λ, and SiO 2 film thickness is 0.425λ to When 0.475λ, the cut angle of LiNbO 3 is 23 ° to 29 °
(A14) The total Pt film thickness is 0.0225λ to 0.0275λ, the upper Pt film thickness / Pt film thickness is 0.525 to 0.55, the Al film thickness is 0.09λ to 0.11λ, and the SiO 2 film thickness is 0.425λ to When 0.475λ, the cut angle of LiNbO 3 is 23.5 ° to 31 °
(A15) The total Pt film thickness is 0.0275λ to 0.0325λ, the upper Pt film thickness / Pt film thickness is 0.525 to 0.55, the Al film thickness is 0.09λ to 0.11λ, and the SiO 2 film thickness is 0.425λ to When 0.475λ, the cut angle of LiNbO 3 is 23.5 ° to 29 °
(A16) The total Pt film thickness is 0.0175λ to 0.0225λ, the upper Pt film thickness / Pt film thickness is 0.525 to 0.55, the Al film thickness is 0.11λ to 0.13λ, and the SiO 2 film thickness is 0.425λ to When 0.475λ, the cut angle of LiNbO 3 is 23 ° ~ 29.5 °
(A17) Pt film thickness is 0.0225λ to 0.0275λ, upper Pt film thickness / Pt film thickness is 0.525 to 0.55, Al film thickness is 0.11λ to 0.13λ, SiO 2 film thickness is 0.425λ to When 0.475λ, the cut angle of LiNbO 3 is 23.5 ° to 30.5 °
(A18) The total Pt film thickness is 0.0275λ to 0.0325λ, the upper Pt film thickness / Pt film thickness is 0.525 to 0.55, the Al film thickness is 0.11λ to 0.13λ, and the SiO 2 film thickness is 0.425λ to When 0.475λ, the cut angle of LiNbO 3 is 23.5 ° to 28.5 °
(A19) Pt film thickness is 0.0175λ to 0.0225λ, upper Pt film thickness / Pt film thickness is 0.525 to 0.55, Al film thickness is 0.07λ to 0.09λ, and SiO 2 film thickness is 0.475λ to At 0.525λ, the cut angle of LiNbO 3 is 24 ° -30 °
(A20) The total Pt film thickness is 0.0225λ to 0.0275λ, the upper Pt film thickness / Pt film thickness is 0.525 to 0.55, the Al film thickness is 0.07λ to 0.09λ, and the SiO 2 film thickness is 0.475λ to At 0.525λ, the cut angle of LiNbO 3 is 24 ° to 31.5 °
(A21) The total Pt film thickness is 0.0275λ to 0.0325λ, the upper Pt film thickness / Pt film thickness is 0.525 to 0.55, the Al film thickness is 0.07λ to 0.09λ, and the SiO 2 film thickness is 0.475λ to At 0.525λ, the cut angle of LiNbO 3 is 23 ° -30 °
(A22) Pt film thickness is 0.0175λ to 0.0225λ, upper Pt film thickness / Pt film thickness is 0.525 to 0.55, Al film thickness is 0.09λ to 0.11λ, and SiO 2 film thickness is 0.475λ to At 0.525λ, the cut angle of LiNbO 3 is 24 ° to 30.5 °
(A23) The total Pt film thickness is 0.0225λ to 0.0275λ, the upper Pt film thickness / Pt film thickness is 0.525 to 0.55, the Al film thickness is 0.09λ to 0.11λ, and the SiO 2 film thickness is 0.475λ to At 0.525λ, the cut angle of LiNbO 3 is 24 ° to 31 °
(A24) The total Pt film thickness is 0.0275λ to 0.0325λ, the upper Pt film thickness / Pt film thickness is 0.525 to 0.55, the Al film thickness is 0.09λ to 0.11λ, and the SiO 2 film thickness is 0.475λ to At 0.525λ, the cut angle of LiNbO 3 is 23.5 ° to 29 °
(A25) Pt film thickness is 0.0175λ to 0.0225λ, upper Pt film thickness / Pt film thickness is 0.525 to 0.55, Al film thickness is 0.11λ to 0.13λ, SiO 2 film thickness is 0.475λ to At 0.525λ, the cut angle of LiNbO 3 is 23.5 ° to 30.5 °
(A26) The total Pt film thickness is 0.0225λ to 0.0275λ, the upper Pt film thickness / Pt film thickness is 0.525 to 0.55, the Al film thickness is 0.11λ to 0.13λ, and the SiO 2 film thickness is 0.475λ to At 0.525λ, the cut angle of LiNbO 3 is 23.5 ° to 30.5 °
(A27) The total Pt film thickness is 0.0275λ to 0.0325λ, the upper Pt film thickness / Pt film thickness is 0.525 to 0.55, the Al film thickness is 0.11λ to 0.13λ, and the SiO 2 film thickness is 0.475λ to At 0.525λ, the cut angle of LiNbO 3 is 23 ° to 28 °
 (第2のグループ)
 図82~図108は、LiNbOのカット角25°、Pt膜厚合計2.72%(対波長比)、上Pt膜厚/Pt膜厚合計0.78、Al膜の膜厚7.9%(対波長比)、及びSiO膜の膜厚45.6%(対波長比)を中心とする、上記各パラメータとSV波比帯域との関係を示す図である。
(Second group)
82 to 108 show a cut angle of LiNbO 3 of 25 °, a total Pt film thickness of 2.72% (ratio to wavelength), an upper Pt film thickness / total Pt film thickness of 0.78, and an Al film thickness of 7.9. % (versus wavelength ratio), and the center 45.6% the thickness of the SiO 2 film (versus wavelength ratio) is a diagram showing the relationship between the parameters and SV wave ratio band.
 より具体的には、図82~図90は、SiO膜の膜厚が0.40λの場合の結果を示す。ここで、図82~図84では、上Pt膜厚/Pt膜厚合計が0.75、図85~図87では0.80、図88~図90では0.85の場合の結果が示されている。そして、図82~図84では、Al膜の膜厚が、0.06λ、0.08λまたは0.10λとされており、図85~図87においても、Al膜の膜厚が0.06λ、0.08λまたは0.10λとされており、図88~図90においても、Al膜の膜厚が0.06λ、0.08λまたは0.10λとされている。 More specifically, FIGS. 82 to 90 show results when the thickness of the SiO 2 film is 0.40λ. Here, FIGS. 82 to 84 show the results when the upper Pt film thickness / Pt film thickness is 0.75, FIGS. 85 to 87 are 0.80, and FIGS. 88 to 90 are 0.85. ing. 82 to 84, the film thickness of the Al film is 0.06λ, 0.08λ, or 0.10λ. In FIGS. 85 to 87, the film thickness of the Al film is 0.06λ, The thickness of the Al film is 0.06λ, 0.08λ, or 0.10λ in FIGS. 88 to 90.
 そして、図82~図90においては、さらに、Pt膜厚合計を0.02λ、0.025λまたは0.03λに変化させた場合のLiNbOのカット角と、SV波比帯域との関係が示されている。 82 to 90 further show the relationship between the cut angle of LiNbO 3 and the SV wave ratio band when the total Pt film thickness is changed to 0.02λ, 0.025λ, or 0.03λ. Has been.
 図82~図90から明らかなように、LiNbOのカット角が25°近辺の場合、SV波比帯域が非常に小さくなり、極小値となることがわかる。カット角が25°から遠ざかるにつれ、いずれの場合においても、SV波比帯域が大きくなっていくことがわかる。 As is apparent from FIGS. 82 to 90, when the cut angle of LiNbO 3 is around 25 °, the SV wave ratio band becomes very small and becomes a minimum value. It can be seen that the SV wave ratio band increases in any case as the cut angle moves away from 25 °.
 図91~図99は、SiO膜の膜厚が0.45λの場合の結果を示す。ここで、図91~図93では、上Pt膜厚/Pt膜厚合計が0.75、図94~図96では0.80、図97~図99では0.85の場合の結果が示されている。そして、図91~図93では、Al膜の膜厚が、0.06λ、0.08λまたは0.10λとされており、図94~図96においても、Al膜の膜厚が0.06λ、0.08λまたは0.10λとされており、図97~図99においても、Al膜の膜厚が0.06λ、0.08λまたは0.10λとされている。 91 to 99 show results when the thickness of the SiO 2 film is 0.45λ. Here, FIGS. 91 to 93 show the results when the upper Pt film thickness / Pt film thickness is 0.75, FIGS. 94 to 96 are 0.80, and FIGS. 97 to 99 are 0.85. ing. 91 to 93, the thickness of the Al film is 0.06λ, 0.08λ, or 0.10λ. In FIGS. 94 to 96, the thickness of the Al film is 0.06λ, The thickness of the Al film is 0.06λ, 0.08λ, or 0.10λ in FIGS. 97 to 99.
 そして、図91~図99においては、さらに、Pt膜厚合計を変化させた場合のLiNbOのカット角と、SV波比帯域との関係が示されている。 91 to 99 further show the relationship between the cut angle of LiNbO 3 and the SV wave ratio band when the total Pt film thickness is changed.
 図91~図99から明らかなように、LiNbOのカット角が25°近辺の場合、SV波比帯域が非常に小さくなり、極小値となることがわかる。カット角が25°から遠ざかるにつれ、いずれの場合においても、SV波比帯域が大きくなっていくことがわかる。 As is apparent from FIGS. 91 to 99, when the cut angle of LiNbO 3 is around 25 °, the SV wave ratio band becomes very small and becomes a minimum value. It can be seen that the SV wave ratio band increases in any case as the cut angle moves away from 25 °.
 図100~図108は、SiO膜の膜厚が0.50λの場合の結果を示す。ここで、図100~図102では、上Pt膜厚/Pt膜厚合計が0.75、図103~図105では0.80、図106~図108では0.85の場合の結果が示されている。そして、図100~図102では、Al膜の膜厚が、0.06λ、0.08λまたは0.10λとされており、図103~図105においても、Al膜の膜厚が0.06λ、0.08λまたは0.10λとされており、図106~図108においても、Al膜の膜厚が0.06λ、0.08λまたは0.10λとされている。 100 to 108 show the results when the thickness of the SiO 2 film is 0.50λ. Here, FIGS. 100 to 102 show the results when the upper Pt film thickness / Pt film thickness is 0.75, FIGS. 103 to 105 are 0.80, and FIGS. 106 to 108 are 0.85. ing. 100 to 102, the thickness of the Al film is 0.06λ, 0.08λ, or 0.10λ. In FIGS. 103 to 105, the thickness of the Al film is 0.06λ, The thickness of the Al film is 0.06λ, 0.08λ, or 0.10λ in FIGS. 106 to 108 as well.
 そして、図100~図108においては、さらに、Pt膜厚合計を変化させた場合のLiNbOのカット角と、SV波比帯域との関係が示されている。 100 to 108 further show the relationship between the cut angle of LiNbO 3 and the SV wave ratio band when the total Pt film thickness is changed.
 図100~図108から明らかなように、LiNbOのカット角が25°近辺の場合、SV波比帯域が非常に小さくなり、極小値となることがわかる。カット角が25°から遠ざかるにつれ、いずれの場合においても、SV波比帯域が大きくなっていくことがわかる。 As is apparent from FIGS. 100 to 108, when the cut angle of LiNbO 3 is around 25 °, the SV wave ratio band becomes very small and becomes a minimum value. It can be seen that the SV wave ratio band increases in any case as the cut angle moves away from 25 °.
 従って、図82~図108の結果をまとめると、0.55<h3/(h1+h3)<0.95である場合において、SV波比帯域が0.03%以下となる範囲、すなわちストンリー波によるスプリアスを抑圧し得る範囲は、下記の(c1)~(c81)のいずれかの組み合わせであることがわかる。 Therefore, the results of FIGS. 82 to 108 are summarized as follows. When 0.55 <h3 / (h1 + h3) <0.95, the range in which the SV wave ratio band is 0.03% or less, that is, spurious due to the Stoneley wave. It can be seen that the range in which can be suppressed is a combination of any of the following (c1) to (c81).
 (c1)Pt膜厚合計が、0.0175λ~0.0225λ、上Pt膜厚/Pt膜厚合計が、0.725~0.775、Al膜厚が、0.05λ~0.07λ、SiO2膜厚が、0.375λ~0.425λのとき、LiNbO3のカット角が、22°~28.5°
 (c2)Pt膜厚合計が、0.0225λ~0.0275λ、上Pt膜厚/Pt膜厚合計が、0.725~0.775、Al膜厚が、0.05λ~0.07λ、SiO2膜厚が、0.375λ~0.425λのとき、LiNbO3のカット角が、23.5°~30°
 (c3)Pt膜厚合計が、0.0275λ~0.0325λ、上Pt膜厚/Pt膜厚合計が、0.725~0.775、Al膜厚が、0.05λ~0.07λ、SiO2膜厚が、0.375λ~0.425λのとき、LiNbO3のカット角が、23.5°~28°
 (c4)Pt膜厚合計が、0.0175λ~0.0225λ、上Pt膜厚/Pt膜厚合計が、0.725~0.775、Al膜厚が、0.07λ~0.09λ、SiO2膜厚が、0.375λ~0.425λのとき、LiNbO3のカット角が、22.5°~29°
 (c5)Pt膜厚合計が、0.0225λ~0.0275λ、上Pt膜厚/Pt膜厚合計が、0.725~0.775、Al膜厚が、0.07λ~0.09λ、SiO2膜厚が、0.375λ~0.425λのとき、LiNbO3のカット角が、24°~29.5°
 (c6)Pt膜厚合計が、0.0275λ~0.0325λ、上Pt膜厚/Pt膜厚合計が、0.725~0.775、Al膜厚が、0.07λ~0.09λ、SiO2膜厚が、0.375λ~0.425λのとき、LiNbO3のカット角が、24.5°~26.5°
 (c7)Pt膜厚合計が、0.0175λ~0.0225λ、上Pt膜厚/Pt膜厚合計が、0.725~0.775、Al膜厚が、0.09λ~0.11λ、SiO2膜厚が、0.375λ~0.425λのとき、LiNbO3のカット角が、23°~29°
 (c8)Pt膜厚合計が、0.0225λ~0.0275λ、上Pt膜厚/Pt膜厚合計が、0.725~0.775、Al膜厚が、0.09λ~0.11λ、SiO2膜厚が、0.375λ~0.425λのとき、LiNbO3のカット角が、24.5°~29°
 (c9)Pt膜厚合計が、0.0275λ~0.0325λ、上Pt膜厚/Pt膜厚合計が、0.725~0.775、Al膜厚が、0.09λ~0.11λ、SiO2膜厚が、0.375λ~0.425λのとき、LiNbO3のカット角が、23.5°~26.5°
 (c10)Pt膜厚合計が、0.0175λ~0.0225λ、上Pt膜厚/Pt膜厚合計が、0.775~0.825、Al膜厚が、0.05λ~0.07λ、SiO2膜厚が、0.375λ~0.425λのとき、LiNbO3のカット角が、22.5°~28.5°
 (c11)Pt膜厚合計が、0.0225λ~0.0275λ、上Pt膜厚/Pt膜厚合計が、0.775~0.825、Al膜厚が、0.05λ~0.07λ、SiO2膜厚が、0.375λ~0.425λのとき、LiNbO3のカット角が、23.5°~30°
 (c12)Pt膜厚合計が、0.0275λ~0.0325λ、上Pt膜厚/Pt膜厚合計が、0.775~0.825、Al膜厚が、0.05λ~0.07λ、SiO2膜厚が、0.375λ~0.425λのとき、LiNbO3のカット角が、23.5°~27°
 (c13)Pt膜厚合計が、0.0175λ~0.0225λ、上Pt膜厚/Pt膜厚合計が、0.775~0.825、Al膜厚が、0.07λ~0.09λ、SiO2膜厚が、0.375λ~0.425λのとき、LiNbO3のカット角が、23°~29°
 (c14)Pt膜厚合計が、0.0225λ~0.0275λ、上Pt膜厚/Pt膜厚合計が、0.775~0.825、Al膜厚が、0.07λ~0.09λ、SiO2膜厚が、0.375λ~0.425λのとき、LiNbO3のカット角が、24°~29°
 (c15)Pt膜厚合計が、0.0275λ~0.0325λ、上Pt膜厚/Pt膜厚合計が、0.775~0.825、Al膜厚が、0.07λ~0.09λ、SiO2膜厚が、0.375λ~0.425λのとき、LiNbO3のカット角が、23.5°~26°
 (c16)Pt膜厚合計が、0.0175λ~0.0225λ、上Pt膜厚/Pt膜厚合計が、0.775~0.825、Al膜厚が、0.09λ~0.11λ、SiO2膜厚が、0.375λ~0.425λのとき、LiNbO3のカット角が、23°~29.5°
 (c17)Pt膜厚合計が、0.0225λ~0.0275λ、上Pt膜厚/Pt膜厚合計が、0.775~0.825、Al膜厚が、0.09λ~0.11λ、SiO2膜厚が、0.375λ~0.425λのとき、LiNbO3のカット角が、25°~28.5°
 (c18)Pt膜厚合計が、0.0275λ~0.0325λ、上Pt膜厚/Pt膜厚合計が、0.775~0.825、Al膜厚が、0.09λ~0.11λ、SiO2膜厚が、0.375λ~0.425λのとき、LiNbO3のカット角が、22°~26.5°
 (c19)Pt膜厚合計が、0.0175λ~0.0225λ、上Pt膜厚/Pt膜厚合計が、0.825~0.875、Al膜厚が、0.05λ~0.07λ、SiO2膜厚が、0.375λ~0.425λのとき、LiNbO3のカット角が、23°~29°
 (c20)Pt膜厚合計が、0.0225λ~0.0275λ、上Pt膜厚/Pt膜厚合計が、0.825~0.875、Al膜厚が、0.05λ~0.07λ、SiO2膜厚が、0.375λ~0.425λのとき、LiNbO3のカット角が、24°~29.5°
 (c21)Pt膜厚合計が、0.0275λ~0.0325λ、上Pt膜厚/Pt膜厚合計が、0.825~0.875、Al膜厚が、0.05λ~0.07λ、SiO2膜厚が、0.375λ~0.425λのとき、LiNbO3のカット角が、24°~26.5°
 (c22)Pt膜厚合計が、0.0175λ~0.0225λ、上Pt膜厚/Pt膜厚合計が、0.825~0.875、Al膜厚が、0.07λ~0.09λ、SiO2膜厚が、0.375λ~0.425λのとき、LiNbO3のカット角が、23°~29.5°
 (c23)Pt膜厚合計が、0.0225λ~0.0275λ、上Pt膜厚/Pt膜厚合計が、0.825~0.875、Al膜厚が、0.07λ~0.09λ、SiO2膜厚が、0.375λ~0.425λのとき、LiNbO3のカット角が、24.5°~28.5°
 (c24)Pt膜厚合計が、0.0275λ~0.0325λ、上Pt膜厚/Pt膜厚合計が、0.825~0.875、Al膜厚が、0.07λ~0.09λ、SiO2膜厚が、0.375λ~0.425λのとき、LiNbO3のカット角が、22.5°~26°
 (c25)Pt膜厚合計が、0.0175λ~0.0225λ、上Pt膜厚/Pt膜厚合計が、0.825~0.875、Al膜厚が、0.09λ~0.11λ、SiO2膜厚が、0.375λ~0.425λのとき、LiNbO3のカット角が、23.5°~29.5°
 (c26)Pt膜厚合計が、0.0225λ~0.0275λ、上Pt膜厚/Pt膜厚合計が、0.825~0.875、Al膜厚が、0.09λ~0.11λ、SiO2膜厚が、0.375λ~0.425λのとき、LiNbO3のカット角が、24.5°~27°
 (c27)Pt膜厚合計が、0.0275λ~0.0325λ、上Pt膜厚/Pt膜厚合計が、0.825~0.875、Al膜厚が、0.09λ~0.11λ、SiO2膜厚が、0.375λ~0.425λのとき、LiNbO3のカット角が、21°~27°
 (c28)Pt膜厚合計が、0.0175λ~0.0225λ、上Pt膜厚/Pt膜厚合計が、0.725~0.775、Al膜厚が、0.05λ~0.07λ、SiO2膜厚が、0.425λ~0.475λのとき、LiNbO3のカット角が、23.5°~30°
 (c29)Pt膜厚合計が、0.0225λ~0.0275λ、上Pt膜厚/Pt膜厚合計が、0.725~0.775、Al膜厚が、0.05λ~0.07λ、SiO2膜厚が、0.425λ~0.475λのとき、LiNbO3のカット角が、24°~30.5°
 (c30)Pt膜厚合計が、0.0275λ~0.0325λ、上Pt膜厚/Pt膜厚合計が、0.725~0.775、Al膜厚が、0.05λ~0.07λ、SiO2膜厚が、0.425λ~0.475λのとき、LiNbO3のカット角が、23.5°~28°
 (c31)Pt膜厚合計が、0.0175λ~0.0225λ、上Pt膜厚/Pt膜厚合計が、0.725~0.775、Al膜厚が、0.07λ~0.09λ、SiO2膜厚が、0.425λ~0.475λのとき、LiNbO3のカット角が、23.5°~30°
 (c32)Pt膜厚合計が、0.0225λ~0.0275λ、上Pt膜厚/Pt膜厚合計が、0.725~0.775、Al膜厚が、0.07λ~0.09λ、SiO2膜厚が、0.425λ~0.475λのとき、LiNbO3のカット角が、24°~29.5°
 (c33)Pt膜厚合計が、0.0275λ~0.0325λ、上Pt膜厚/Pt膜厚合計が、0.725~0.775、Al膜厚が、0.07λ~0.09λ、SiO2膜厚が、0.425λ~0.475λのとき、LiNbO3のカット角が、24°~25.5°
 (c34)Pt膜厚合計が、0.0175λ~0.0225λ、上Pt膜厚/Pt膜厚合計が、0.725~0.775、Al膜厚が、0.09λ~0.11λ、SiO2膜厚が、0.425λ~0.475λのとき、LiNbO3のカット角が、23.5°~30°
 (c35)Pt膜厚合計が、0.0225λ~0.0275λ、上Pt膜厚/Pt膜厚合計が、0.725~0.775、Al膜厚が、0.09λ~0.11λ、SiO2膜厚が、0.425λ~0.475λのとき、LiNbO3のカット角が、24°~28.5°
 (c36)Pt膜厚合計が、0.0275λ~0.0325λ、上Pt膜厚/Pt膜厚合計が、0.725~0.775、Al膜厚が、0.09λ~0.11λ、SiO2膜厚が、0.425λ~0.475λのとき、LiNbO3のカット角が、22°~26°
 (c37)Pt膜厚合計が、0.0175λ~0.0225λ、上Pt膜厚/Pt膜厚合計が、0.775~0.825、Al膜厚が、0.05λ~0.07λ、SiO2膜厚が、0.425λ~0.475λのとき、LiNbO3のカット角が、23.5°~30°
 (c38)Pt膜厚合計が、0.0225λ~0.0275λ、上Pt膜厚/Pt膜厚合計が、0.775~0.825、Al膜厚が、0.05λ~0.07λ、SiO2膜厚が、0.425λ~0.475λのとき、LiNbO3のカット角が、23.5°~30°
 (c39)Pt膜厚合計が、0.0275λ~0.0325λ、上Pt膜厚/Pt膜厚合計が、0.775~0.825、Al膜厚が、0.05λ~0.07λ、SiO2膜厚が、0.425λ~0.475λのとき、LiNbO3のカット角が、23.5°~27°
 (c40)Pt膜厚合計が、0.0175λ~0.0225λ、上Pt膜厚/Pt膜厚合計が、0.775~0.825、Al膜厚が、0.07λ~0.09λ、SiO2膜厚が、0.425λ~0.475λのとき、LiNbO3のカット角が、23.5°~30°
 (c41)Pt膜厚合計が、0.0225λ~0.0275λ、上Pt膜厚/Pt膜厚合計が、0.775~0.825、Al膜厚が、0.07λ~0.09λ、SiO2膜厚が、0.425λ~0.475λのとき、LiNbO3のカット角が、24°~29°
 (c42)Pt膜厚合計が、0.0275λ~0.0325λ、上Pt膜厚/Pt膜厚合計が、0.775~0.825、Al膜厚が、0.07λ~0.09λ、SiO2膜厚が、0.425λ~0.475λのとき、LiNbO3のカット角が、22.5°~25.5°
 (c43)Pt膜厚合計が、0.0175λ~0.0225λ、上Pt膜厚/Pt膜厚合計が、0.775~0.825、Al膜厚が、0.09λ~0.11λ、SiO2膜厚が、0.425λ~0.475λのとき、LiNbO3のカット角が、24°~30°
 (c44)Pt膜厚合計が、0.0225λ~0.0275λ、上Pt膜厚/Pt膜厚合計が、0.775~0.825、Al膜厚が、0.09λ~0.11λ、SiO2膜厚が、0.425λ~0.475λのとき、LiNbO3のカット角が、25°~27°
 (c45)Pt膜厚合計が、0.0275λ~0.0325λ、上Pt膜厚/Pt膜厚合計が、0.775~0.825、Al膜厚が、0.09λ~0.11λ、SiO2膜厚が、0.425λ~0.475λのとき、LiNbO3のカット角が、20.5°~26°
 (c46)Pt膜厚合計が、0.0175λ~0.0225λ、上Pt膜厚/Pt膜厚合計が、0.825~0.875、Al膜厚が、0.05λ~0.07λ、SiO2膜厚が、0.425λ~0.475λのとき、LiNbO3のカット角が、23.5°~30°
 (c47)Pt膜厚合計が、0.0225λ~0.0275λ、上Pt膜厚/Pt膜厚合計が、0.825~0.875、Al膜厚が、0.05λ~0.07λ、SiO2膜厚が、0.425λ~0.475λのとき、LiNbO3のカット角が、24°~29.5°
 (c48)Pt膜厚合計が、0.0275λ~0.0325λ、上Pt膜厚/Pt膜厚合計が、0.825~0.875、Al膜厚が、0.05λ~0.07λ、SiO2膜厚が、0.425λ~0.475λのとき、LiNbO3のカット角が、24°~25.5°
 (c49)Pt膜厚合計が、0.0175λ~0.0225λ、上Pt膜厚/Pt膜厚合計が、0.825~0.875、Al膜厚が、0.07λ~0.09λ、SiO2膜厚が、0.425λ~0.475λのとき、LiNbO3のカット角が、23.5°~30°
 (c50)Pt膜厚合計が、0.0225λ~0.0275λ、上Pt膜厚/Pt膜厚合計が、0.825~0.875、Al膜厚が、0.07λ~0.09λ、SiO2膜厚が、0.425λ~0.475λのとき、LiNbO3のカット角が、24.5°~28°
 (c51)Pt膜厚合計が、0.0275λ~0.0325λ、上Pt膜厚/Pt膜厚合計が、0.825~0.875、Al膜厚が、0.07λ~0.09λ、SiO2膜厚が、0.425λ~0.475λのとき、LiNbO3のカット角が、21°~25.5°
 (c52)Pt膜厚合計が、0.0175λ~0.0225λ、上Pt膜厚/Pt膜厚合計が、0.825~0.875、Al膜厚が、0.09λ~0.11λ、SiO2膜厚が、0.425λ~0.475λのとき、LiNbO3のカット角が、24°~30°
 (c53)Pt膜厚合計が、0.0225λ~0.0275λ、上Pt膜厚/Pt膜厚合計が、0.825~0.875、Al膜厚が、0.09λ~0.11λ、SiO2膜厚が、0.425λ~0.475λのとき、LiNbO3のカット角が、24°~26.5°
 (c54)Pt膜厚合計が、0.0275λ~0.0325λ、上Pt膜厚/Pt膜厚合計が、0.825~0.875、Al膜厚が、0.09λ~0.11λ、SiO2膜厚が、0.425λ~0.475λのとき、LiNbO3のカット角が、19.5°~25.5°
 (c55)Pt膜厚合計が、0.0175λ~0.0225λ、上Pt膜厚/Pt膜厚合計が、0.725~0.775、Al膜厚が、0.05λ~0.07λ、SiO2膜厚が、0.475λ~0.525λのとき、LiNbO3のカット角が、24°~31°
 (c56)Pt膜厚合計が、0.0225λ~0.0275λ、上Pt膜厚/Pt膜厚合計が、0.725~0.775、Al膜厚が、0.05λ~0.07λ、SiO2膜厚が、0.475λ~0.525λのとき、LiNbO3のカット角が、24°~31°
 (c57)Pt膜厚合計が、0.0275λ~0.0325λ、上Pt膜厚/Pt膜厚合計が、0.725~0.775、Al膜厚が、0.05λ~0.07λ、SiO2膜厚が、0.475λ~0.525λのとき、LiNbO3のカット角が、23°~27.5°
 (c58)Pt膜厚合計が、0.0175λ~0.0225λ、上Pt膜厚/Pt膜厚合計が、0.725~0.775、Al膜厚が、0.07λ~0.09λ、SiO2膜厚が、0.475λ~0.525λのとき、LiNbO3のカット角が、24°~3°
 (c59)Pt膜厚合計が、0.0225λ~0.0275λ、上Pt膜厚/Pt膜厚合計が、0.725~0.775、Al膜厚が、0.07λ~0.09λ、SiO2膜厚が、0.475λ~0.525λのとき、LiNbO3のカット角が、24°~29°
 (c60)Pt膜厚合計が、0.0275λ~0.0325λ、上Pt膜厚/Pt膜厚合計が、0.725~0.775、Al膜厚が、0.07λ~0.09λ、SiO2膜厚が、0.475λ~0.525λのとき、LiNbO3のカット角が、23°~26.5°
 (c61)Pt膜厚合計が、0.0175λ~0.0225λ、上Pt膜厚/Pt膜厚合計が、0.725~0.775、Al膜厚が、0.09λ~0.11λ、SiO2膜厚が、0.475λ~0.525λのとき、LiNbO3のカット角が、24°~30.5°
 (c62)Pt膜厚合計が、0.0225λ~0.0275λ、上Pt膜厚/Pt膜厚合計が、0.725~0.775、Al膜厚が、0.09λ~0.11λ、SiO2膜厚が、0.475λ~0.525λのとき、LiNbO3のカット角が、24°~27.5°
 (c63)Pt膜厚合計が、0.0275λ~0.0325λ、上Pt膜厚/Pt膜厚合計が、0.725~0.775、Al膜厚が、0.09λ~0.11λ、SiO2膜厚が、0.475λ~0.525λのとき、LiNbO3のカット角が、20.5°~25°
 (c64)Pt膜厚合計が、0.0175λ~0.0225λ、上Pt膜厚/Pt膜厚合計が、0.775~0.825、Al膜厚が、0.05λ~0.07λ、SiO2膜厚が、0.475λ~0.525λのとき、LiNbO3のカット角が、24°~31°
 (c65)Pt膜厚合計が、0.0225λ~0.0275λ、上Pt膜厚/Pt膜厚合計が、0.775~0.825、Al膜厚が、0.05λ~0.07λ、SiO2膜厚が、0.475λ~0.525λのとき、LiNbO3のカット角が、24°~30°
 (c66)Pt膜厚合計が、0.0275λ~0.0325λ、上Pt膜厚/Pt膜厚合計が、0.775~0.825、Al膜厚が、0.05λ~0.07λ、SiO2膜厚が、0.475λ~0.525λのとき、LiNbO3のカット角が、23°~26.5°
 (c67)Pt膜厚合計が、0.0175λ~0.0225λ、上Pt膜厚/Pt膜厚合計が、0.775~0.825、Al膜厚が、0.07λ~0.09λ、SiO2膜厚が、0.475λ~0.525λのとき、LiNbO3のカット角が、24°~31°
 (c68)Pt膜厚合計が、0.0225λ~0.0275λ、上Pt膜厚/Pt膜厚合計が、0.775~0.825、Al膜厚が、0.07λ~0.09λ、SiO2膜厚が、0.475λ~0.525λのとき、LiNbO3のカット角が、24°~28.5°
 (c69)Pt膜厚合計が、0.0275λ~0.0325λ、上Pt膜厚/Pt膜厚合計が、0.775~0.825、Al膜厚が、0.07λ~0.09λ、SiO2膜厚が、0.475λ~0.525λのとき、LiNbO3のカット角が、21.5°~25°
 (c70)Pt膜厚合計が、0.0175λ~0.0225λ、上Pt膜厚/Pt膜厚合計が、0.775~0.825、Al膜厚が、0.09λ~0.11λ、SiO2膜厚が、0.475λ~0.525λのとき、LiNbO3のカット角が、24°~30°
 (c71)Pt膜厚合計が、0.0225λ~0.0275λ、上Pt膜厚/Pt膜厚合計が、0.775~0.825、Al膜厚が、0.09λ~0.11λ、SiO2膜厚が、0.475λ~0.525λのとき、LiNbO3のカット角が、22°~26°
 (c72)Pt膜厚合計が、0.0275λ~0.0325λ、上Pt膜厚/Pt膜厚合計が、0.775~0.825、Al膜厚が、0.09λ~0.11λ、SiO2膜厚が、0.475λ~0.525λのとき、LiNbO3のカット角が、19°~25°
 (c73)Pt膜厚合計が、0.0175λ~0.0225λ、上Pt膜厚/Pt膜厚合計が、0.825~0.875、Al膜厚が、0.05λ~0.07λ、SiO2膜厚が、0.475λ~0.525λのとき、LiNbO3のカット角が、24°~31°
 (c74)Pt膜厚合計が、0.0225λ~0.0275λ、上Pt膜厚/Pt膜厚合計が、0.825~0.875、Al膜厚が、0.05λ~0.07λ、SiO2膜厚が、0.475λ~0.525λのとき、LiNbO3のカット角が、24°~29.5°
 (c75)Pt膜厚合計が、0.0275λ~0.0325λ、上Pt膜厚/Pt膜厚合計が、0.825~0.875、Al膜厚が、0.05λ~0.07λ、SiO2膜厚が、0.475λ~0.525λのとき、LiNbO3のカット角が、23.5°~26°
 (c76)Pt膜厚合計が、0.0175λ~0.0225λ、上Pt膜厚/Pt膜厚合計が、0.825~0.875、Al膜厚が、0.07λ~0.09λ、SiO2膜厚が、0.475λ~0.525λのとき、LiNbO3のカット角が、24°~30.5°
 (c77)Pt膜厚合計が、0.0225λ~0.0275λ、上Pt膜厚/Pt膜厚合計が、0.825~0.875、Al膜厚が、0.07λ~0.09λ、SiO2膜厚が、0.475λ~0.525λのとき、LiNbO3のカット角が、24°~27°
 (c78)Pt膜厚合計が、0.0275λ~0.0325λ、上Pt膜厚/Pt膜厚合計が、0.825~0.875、Al膜厚が、0.07λ~0.09λ、SiO2膜厚が、0.475λ~0.525λのとき、LiNbO3のカット角が、20°~25°
 (c79)Pt膜厚合計が、0.0175λ~0.0225λ、上Pt膜厚/Pt膜厚合計が、0.825~0.875、Al膜厚が、0.09λ~0.11λ、SiO2膜厚が、0.475λ~0.525λのとき、LiNbO3のカット角が、24.5°~30°
 (c80)Pt膜厚合計が、0.0225λ~0.0275λ、上Pt膜厚/Pt膜厚合計が、0.825~0.875、Al膜厚が、0.09λ~0.11λ、SiO2膜厚が、0.475λ~0.525λのとき、LiNbO3のカット角が、23°~26°
 (c81)Pt膜厚合計が、0.0275λ~0.0325λ、上Pt膜厚/Pt膜厚合計が、0.825~0.875、Al膜厚が、0.09λ~0.11λ、SiO2膜厚が、0.475λ~0.525λのとき、LiNbO3のカット角が、18°~24.5°
(C1) Pt film thickness is 0.0175λ to 0.0225λ, upper Pt film thickness / Pt film thickness is 0.725 to 0.775, Al film thickness is 0.05λ to 0.07λ, SiO 2 film thickness is 0.375λ to When 0.425λ, the cut angle of LiNbO 3 is 22 ° ~ 28.5 °
(C2) The total Pt film thickness is 0.0225λ to 0.0275λ, the upper Pt film thickness / Pt film thickness is 0.725 to 0.775, the Al film thickness is 0.05λ to 0.07λ, and the SiO 2 film thickness is 0.375λ to When 0.425λ, the cut angle of LiNbO 3 is 23.5 ° -30 °
(C3) The total Pt film thickness is 0.0275λ to 0.0325λ, the upper Pt film thickness / Pt film thickness is 0.725 to 0.775, the Al film thickness is 0.05λ to 0.07λ, and the SiO 2 film thickness is 0.375λ to When 0.425λ, the cut angle of LiNbO 3 is 23.5 ° -28 °
(C4) The total Pt film thickness is 0.0175λ to 0.0225λ, the upper Pt film thickness / Pt film thickness is 0.725 to 0.775, the Al film thickness is 0.07λ to 0.09λ, and the SiO 2 film thickness is 0.375λ to When 0.425λ, the cut angle of LiNbO 3 is 22.5 ° to 29 °
(C5) The total Pt film thickness is 0.0225λ to 0.0275λ, the upper Pt film thickness / Pt film thickness is 0.725 to 0.775, the Al film thickness is 0.07λ to 0.09λ, and the SiO 2 film thickness is 0.375λ to At 0.425λ, the cut angle of LiNbO 3 is 24 ° to 29.5 °
(C6) The total Pt film thickness is 0.0275λ to 0.0325λ, the upper Pt film thickness / Pt film thickness is 0.725 to 0.775, the Al film thickness is 0.07λ to 0.09λ, and the SiO 2 film thickness is 0.375λ to At 0.425λ, the cut angle of LiNbO 3 is 24.5 ° to 26.5 °
(C7) The total Pt film thickness is 0.0175λ to 0.0225λ, the upper Pt film thickness / Pt film thickness is 0.725 to 0.775, the Al film thickness is 0.09λ to 0.11λ, and the SiO 2 film thickness is 0.375λ to When 0.425λ, the cut angle of LiNbO 3 is 23 ° to 29 °
(C8) The total Pt film thickness is 0.0225λ to 0.0275λ, the upper Pt film thickness / Pt film thickness is 0.725 to 0.775, the Al film thickness is 0.09λ to 0.11λ, and the SiO 2 film thickness is 0.375λ to When 0.425λ, the cut angle of LiNbO 3 is 24.5 ° to 29 °
(C9) The total Pt film thickness is 0.0275λ to 0.0325λ, the upper Pt film thickness / Pt film thickness is 0.725 to 0.775, the Al film thickness is 0.09λ to 0.11λ, and the SiO 2 film thickness is 0.375λ to When 0.425λ, the cut angle of LiNbO 3 is 23.5 ° to 26.5 °
(C10) The total Pt film thickness is 0.0175λ to 0.0225λ, the upper Pt film thickness / Pt film thickness is 0.775 to 0.825, the Al film thickness is 0.05λ to 0.07λ, and the SiO 2 film thickness is 0.375λ to When 0.425λ, the cut angle of LiNbO 3 is 22.5 ° to 28.5 °
(C11) The total Pt film thickness is 0.0225λ to 0.0275λ, the upper Pt film thickness / Pt film thickness is 0.775 to 0.825, the Al film thickness is 0.05λ to 0.07λ, and the SiO 2 film thickness is 0.375λ to When 0.425λ, the cut angle of LiNbO 3 is 23.5 ° -30 °
(C12) The total Pt film thickness is 0.0275λ to 0.0325λ, the upper Pt film thickness / Pt film thickness is 0.775 to 0.825, the Al film thickness is 0.05λ to 0.07λ, and the SiO 2 film thickness is 0.375λ to When 0.425λ, the cut angle of LiNbO 3 is 23.5 ° -27 °
(C13) The total Pt film thickness is 0.0175λ to 0.0225λ, the upper Pt film thickness / Pt film thickness is 0.775 to 0.825, the Al film thickness is 0.07λ to 0.09λ, and the SiO 2 film thickness is 0.375λ to When 0.425λ, the cut angle of LiNbO 3 is 23 ° to 29 °
(C14) The total Pt film thickness is 0.0225λ to 0.0275λ, the upper Pt film thickness / Pt film thickness is 0.775 to 0.825, the Al film thickness is 0.07λ to 0.09λ, and the SiO 2 film thickness is 0.375λ to When 0.425λ, the cut angle of LiNbO 3 is 24 ° to 29 °
(C15) Pt film thickness is 0.0275λ to 0.0325λ, upper Pt film thickness / Pt film thickness is 0.775 to 0.825, Al film thickness is 0.07λ to 0.09λ, and SiO 2 film thickness is 0.375λ to When 0.425λ, the cut angle of LiNbO 3 is 23.5 ° -26 °
(C16) The total Pt film thickness is 0.0175λ to 0.0225λ, the upper Pt film thickness / Pt film thickness is 0.775 to 0.825, the Al film thickness is 0.09λ to 0.11λ, and the SiO 2 film thickness is 0.375λ to When 0.425λ, the cut angle of LiNbO 3 is 23 ° ~ 29.5 °
(C17) The total Pt film thickness is 0.0225λ to 0.0275λ, the upper Pt film thickness / Pt film thickness is 0.775 to 0.825, the Al film thickness is 0.09λ to 0.11λ, and the SiO 2 film thickness is 0.375λ to When 0.425λ, the cut angle of LiNbO 3 is 25 ° to 28.5 °
(C18) The total Pt film thickness is 0.0275λ to 0.0325λ, the upper Pt film thickness / Pt film thickness is 0.775 to 0.825, the Al film thickness is 0.09λ to 0.11λ, and the SiO 2 film thickness is 0.375λ to When 0.425λ, the cut angle of LiNbO 3 is 22 ° ~ 26.5 °
(C19) The total Pt film thickness is 0.0175λ to 0.0225λ, the upper Pt film thickness / Pt film thickness is 0.825 to 0.875, the Al film thickness is 0.05λ to 0.07λ, and the SiO 2 film thickness is 0.375λ to When 0.425λ, the cut angle of LiNbO 3 is 23 ° to 29 °
(C20) The total Pt film thickness is 0.0225λ to 0.0275λ, the upper Pt film thickness / Pt film thickness is 0.825 to 0.875, the Al film thickness is 0.05λ to 0.07λ, and the SiO 2 film thickness is 0.375λ to At 0.425λ, the cut angle of LiNbO 3 is 24 ° to 29.5 °
(C21) The total Pt film thickness is 0.0275λ to 0.0325λ, the upper Pt film thickness / Pt film thickness is 0.825 to 0.875, the Al film thickness is 0.05λ to 0.07λ, and the SiO 2 film thickness is 0.375λ to When 0.425λ, the cut angle of LiNbO 3 is 24 ° to 26.5 °
(C22) The total Pt film thickness is 0.0175λ to 0.0225λ, the upper Pt film thickness / Pt film thickness is 0.825 to 0.875, the Al film thickness is 0.07λ to 0.09λ, and the SiO 2 film thickness is 0.375λ to When 0.425λ, the cut angle of LiNbO 3 is 23 ° ~ 29.5 °
(C23) The total Pt film thickness is 0.0225λ to 0.0275λ, the upper Pt film thickness / Pt film thickness is 0.825 to 0.875, the Al film thickness is 0.07λ to 0.09λ, and the SiO 2 film thickness is 0.375λ to When 0.425λ, the cut angle of LiNbO 3 is 24.5 ° to 28.5 °
(C24) The total Pt film thickness is 0.0275λ to 0.0325λ, the upper Pt film thickness / Pt film thickness is 0.825 to 0.875, the Al film thickness is 0.07λ to 0.09λ, and the SiO 2 film thickness is 0.375λ to When 0.425λ, the cut angle of LiNbO 3 is 22.5 ° -26 °
(C25) The total Pt film thickness is 0.0175λ to 0.0225λ, the upper Pt film thickness / Pt film thickness is 0.825 to 0.875, the Al film thickness is 0.09λ to 0.11λ, and the SiO 2 film thickness is 0.375λ to At 0.425λ, the cut angle of LiNbO 3 is 23.5 ° to 29.5 °
(C26) The total Pt film thickness is 0.0225λ to 0.0275λ, the upper Pt film thickness / Pt film thickness is 0.825 to 0.875, the Al film thickness is 0.09λ to 0.11λ, and the SiO 2 film thickness is 0.375λ to When 0.425λ, the cut angle of LiNbO 3 is 24.5 ° -27 °
(C27) The total Pt film thickness is 0.0275λ to 0.0325λ, the upper Pt film thickness / Pt film thickness is 0.825 to 0.875, the Al film thickness is 0.09λ to 0.11λ, and the SiO 2 film thickness is 0.375λ to When 0.425λ, the cut angle of LiNbO 3 is 21 ° to 27 °
(C28) The total Pt film thickness is 0.0175λ to 0.0225λ, the upper Pt film thickness / Pt film thickness is 0.725 to 0.775, the Al film thickness is 0.05λ to 0.07λ, and the SiO 2 film thickness is 0.425λ to When 0.475λ, the cut angle of LiNbO 3 is 23.5 ° -30 °
(C29) The total Pt film thickness is 0.0225λ to 0.0275λ, the upper Pt film thickness / Pt film thickness is 0.725 to 0.775, the Al film thickness is 0.05λ to 0.07λ, and the SiO 2 film thickness is 0.425λ to When 0.475λ, the cut angle of LiNbO 3 is 24 ° to 30.5 °
(C30) The total Pt film thickness is 0.0275λ to 0.0325λ, the upper Pt film thickness / Pt film thickness is 0.725 to 0.775, the Al film thickness is 0.05λ to 0.07λ, and the SiO 2 film thickness is 0.425λ to When 0.475λ, the cut angle of LiNbO 3 is 23.5 ° -28 °
(C31) The total Pt film thickness is 0.0175λ to 0.0225λ, the upper Pt film thickness / Pt film thickness is 0.725 to 0.775, the Al film thickness is 0.07λ to 0.09λ, and the SiO 2 film thickness is 0.425λ to When 0.475λ, the cut angle of LiNbO 3 is 23.5 ° -30 °
(C32) The total Pt film thickness is 0.0225λ to 0.0275λ, the upper Pt film thickness / Pt film thickness is 0.725 to 0.775, the Al film thickness is 0.07λ to 0.09λ, and the SiO 2 film thickness is 0.425λ to When 0.475λ, the cut angle of LiNbO 3 is 24 ° to 29.5 °
(C33) Pt film thickness is 0.0275λ to 0.0325λ, upper Pt film thickness / Pt film thickness is 0.725 to 0.775, Al film thickness is 0.07λ to 0.09λ, and SiO 2 film thickness is 0.425λ to When 0.475λ, the cut angle of LiNbO 3 is 24 ° to 25.5 °
(C34) Pt film thickness is 0.0175λ to 0.0225λ, upper Pt film thickness / Pt film thickness is 0.725 to 0.775, Al film thickness is 0.09λ to 0.11λ, and SiO 2 film thickness is 0.425λ to When 0.475λ, the cut angle of LiNbO 3 is 23.5 ° -30 °
(C35) The total Pt film thickness is 0.0225λ to 0.0275λ, the upper Pt film thickness / Pt film thickness is 0.725 to 0.775, the Al film thickness is 0.09λ to 0.11λ, and the SiO 2 film thickness is 0.425λ to When 0.475λ, the cut angle of LiNbO 3 is 24 ° to 28.5 °
(C36) The total Pt film thickness is 0.0275λ to 0.0325λ, the upper Pt film thickness / Pt film thickness is 0.725 to 0.775, the Al film thickness is 0.09λ to 0.11λ, and the SiO 2 film thickness is 0.425λ to When 0.475λ, the cut angle of LiNbO 3 is 22 ° -26 °
(C37) Pt film thickness is 0.0175λ to 0.0225λ, upper Pt film thickness / Pt film thickness is 0.775 to 0.825, Al film thickness is 0.05λ to 0.07λ, and SiO 2 film thickness is 0.425λ to When 0.475λ, the cut angle of LiNbO 3 is 23.5 ° -30 °
(C38) The total Pt film thickness is 0.0225λ to 0.0275λ, the upper Pt film thickness / Pt film thickness is 0.775 to 0.825, the Al film thickness is 0.05λ to 0.07λ, and the SiO 2 film thickness is 0.425λ to When 0.475λ, the cut angle of LiNbO 3 is 23.5 ° -30 °
(C39) The total Pt film thickness is 0.0275λ to 0.0325λ, the upper Pt film thickness / Pt film thickness is 0.775 to 0.825, the Al film thickness is 0.05λ to 0.07λ, and the SiO 2 film thickness is 0.425λ to When 0.475λ, the cut angle of LiNbO 3 is 23.5 ° -27 °
(C40) The total Pt film thickness is 0.0175λ to 0.0225λ, the upper Pt film thickness / Pt film thickness is 0.775 to 0.825, the Al film thickness is 0.07λ to 0.09λ, and the SiO 2 film thickness is 0.425λ to When 0.475λ, the cut angle of LiNbO 3 is 23.5 ° -30 °
(C41) The total Pt film thickness is 0.0225λ to 0.0275λ, the upper Pt film thickness / Pt film thickness is 0.775 to 0.825, the Al film thickness is 0.07λ to 0.09λ, and the SiO 2 film thickness is 0.425λ to When 0.475λ, the cut angle of LiNbO 3 is 24 ° to 29 °
(C42) The total Pt film thickness is 0.0275λ to 0.0325λ, the upper Pt film thickness / Pt film thickness is 0.775 to 0.825, the Al film thickness is 0.07λ to 0.09λ, and the SiO 2 film thickness is 0.425λ to When 0.475λ, the cut angle of LiNbO 3 is 22.5 ° to 25.5 °
(C43) The total Pt film thickness is 0.0175λ to 0.0225λ, the upper Pt film thickness / Pt film thickness is 0.775 to 0.825, the Al film thickness is 0.09λ to 0.11λ, and the SiO 2 film thickness is 0.425λ to When 0.475λ, the cut angle of LiNbO 3 is 24 ° -30 °
(C44) The total Pt film thickness is 0.0225λ to 0.0275λ, the upper Pt film thickness / Pt film thickness is 0.775 to 0.825, the Al film thickness is 0.09λ to 0.11λ, and the SiO 2 film thickness is 0.425λ to When 0.475λ, the cut angle of LiNbO 3 is 25 ° to 27 °
(C45) The total Pt film thickness is 0.0275λ to 0.0325λ, the upper Pt film thickness / Pt film thickness is 0.775 to 0.825, the Al film thickness is 0.09λ to 0.11λ, and the SiO 2 film thickness is 0.425λ to When 0.475λ, the cut angle of LiNbO 3 is 20.5 ° -26 °
(C46) Pt film thickness is 0.0175λ to 0.0225λ, upper Pt film thickness / Pt film thickness is 0.825 to 0.875, Al film thickness is 0.05λ to 0.07λ, SiO 2 film thickness is 0.425λ to When 0.475λ, the cut angle of LiNbO 3 is 23.5 ° -30 °
(C47) The total Pt film thickness is 0.0225λ to 0.0275λ, the upper Pt film thickness / Pt film thickness is 0.825 to 0.875, the Al film thickness is 0.05λ to 0.07λ, and the SiO 2 film thickness is 0.425λ to When 0.475λ, the cut angle of LiNbO 3 is 24 ° to 29.5 °
(C48) The total Pt film thickness is 0.0275λ to 0.0325λ, the upper Pt film thickness / Pt film thickness is 0.825 to 0.875, the Al film thickness is 0.05λ to 0.07λ, and the SiO 2 film thickness is 0.425λ to When 0.475λ, the cut angle of LiNbO 3 is 24 ° to 25.5 °
(C49) The total Pt film thickness is 0.0175λ to 0.0225λ, the upper Pt film thickness / Pt film thickness is 0.825 to 0.875, the Al film thickness is 0.07λ to 0.09λ, and the SiO 2 film thickness is 0.425λ to When 0.475λ, the cut angle of LiNbO 3 is 23.5 ° -30 °
(C50) The total Pt film thickness is 0.0225λ to 0.0275λ, the upper Pt film thickness / Pt film thickness is 0.825 to 0.875, the Al film thickness is 0.07λ to 0.09λ, and the SiO 2 film thickness is 0.425λ to When 0.475λ, the cut angle of LiNbO 3 is 24.5 ° -28 °
(C51) The total Pt film thickness is 0.0275λ to 0.0325λ, the upper Pt film thickness / Pt film thickness is 0.825 to 0.875, the Al film thickness is 0.07λ to 0.09λ, and the SiO 2 film thickness is 0.425λ to When 0.475λ, the cut angle of LiNbO 3 is 21 ° -25.5 °
(C52) Pt film thickness is 0.0175λ to 0.0225λ, upper Pt film thickness / Pt film thickness is 0.825 to 0.875, Al film thickness is 0.09λ to 0.11λ, and SiO 2 film thickness is 0.425λ to When 0.475λ, the cut angle of LiNbO 3 is 24 ° -30 °
(C53) The total Pt film thickness is 0.0225λ to 0.0275λ, the upper Pt film thickness / Pt film thickness is 0.825 to 0.875, the Al film thickness is 0.09λ to 0.11λ, and the SiO 2 film thickness is 0.425λ to When 0.475λ, the cut angle of LiNbO 3 is 24 ° to 26.5 °
(C54) The total Pt film thickness is 0.0275λ to 0.0325λ, the upper Pt film thickness / Pt film thickness is 0.825 to 0.875, the Al film thickness is 0.09λ to 0.11λ, and the SiO 2 film thickness is 0.425λ to When 0.475λ, the cut angle of LiNbO 3 is 19.5 ° -25.5 °
(C55) The total Pt film thickness is 0.0175λ to 0.0225λ, the upper Pt film thickness / Pt film thickness is 0.725 to 0.775, the Al film thickness is 0.05λ to 0.07λ, and the SiO 2 film thickness is 0.475λ to At 0.525λ, the cut angle of LiNbO 3 is 24 ° to 31 °
(C56) Pt film thickness is 0.0225λ to 0.0275λ, upper Pt film thickness / Pt film thickness is 0.725 to 0.775, Al film thickness is 0.05λ to 0.07λ, SiO 2 film thickness is 0.475λ to At 0.525λ, the cut angle of LiNbO 3 is 24 ° to 31 °
(C57) The total Pt film thickness is 0.0275λ to 0.0325λ, the upper Pt film thickness / Pt film thickness is 0.725 to 0.775, the Al film thickness is 0.05λ to 0.07λ, and the SiO 2 film thickness is 0.475λ to At 0.525λ, the cut angle of LiNbO 3 is 23 ° to 27.5 °
(C58) Pt film thickness is 0.0175λ to 0.0225λ, upper Pt film thickness / Pt film thickness is 0.725 to 0.775, Al film thickness is 0.07λ to 0.09λ, and SiO 2 film thickness is 0.475λ to At 0.525λ, the cut angle of LiNbO 3 is 24 ° to 3 °
(C59) The total Pt film thickness is 0.0225λ to 0.0275λ, the upper Pt film thickness / Pt film thickness is 0.725 to 0.775, the Al film thickness is 0.07λ to 0.09λ, and the SiO 2 film thickness is 0.475λ to At 0.525λ, the cut angle of LiNbO 3 is 24 ° to 29 °
(C60) Total Pt film thickness is 0.0275λ to 0.0325λ, Upper Pt film thickness / Pt film thickness is 0.725 to 0.775, Al film thickness is 0.07λ to 0.09λ, SiO 2 film thickness is 0.475λ to At 0.525λ, the cut angle of LiNbO 3 is 23 ° to 26.5 °
(C61) The total Pt film thickness is 0.0175λ to 0.0225λ, the upper Pt film thickness / Pt film thickness is 0.725 to 0.775, the Al film thickness is 0.09λ to 0.11λ, and the SiO 2 film thickness is 0.475λ to At 0.525λ, the cut angle of LiNbO 3 is 24 ° to 30.5 °
(C62) The total Pt film thickness is 0.0225λ to 0.0275λ, the upper Pt film thickness / Pt film thickness is 0.725 to 0.775, the Al film thickness is 0.09λ to 0.11λ, and the SiO 2 film thickness is 0.475λ to At 0.525λ, the cut angle of LiNbO 3 is 24 ° to 27.5 °
(C63) The total Pt film thickness is 0.0275λ to 0.0325λ, the upper Pt film thickness / Pt film thickness is 0.725 to 0.775, the Al film thickness is 0.09λ to 0.11λ, and the SiO 2 film thickness is 0.475λ to When 0.525λ, the cut angle of LiNbO 3 is 20.5 ° -25 °
(C64) Pt film thickness is 0.0175λ to 0.0225λ, upper Pt film thickness / Pt film thickness is 0.775 to 0.825, Al film thickness is 0.05λ to 0.07λ, SiO 2 film thickness is 0.475λ to At 0.525λ, the cut angle of LiNbO 3 is 24 ° to 31 °
(C65) The total Pt film thickness is 0.0225λ to 0.0275λ, the upper Pt film thickness / Pt film thickness is 0.775 to 0.825, the Al film thickness is 0.05λ to 0.07λ, and the SiO 2 film thickness is 0.475λ to At 0.525λ, the cut angle of LiNbO 3 is 24 ° -30 °
(C66) The total Pt film thickness is 0.0275λ to 0.0325λ, the upper Pt film thickness / Pt film thickness is 0.775 to 0.825, the Al film thickness is 0.05λ to 0.07λ, and the SiO 2 film thickness is 0.475λ to At 0.525λ, the cut angle of LiNbO 3 is 23 ° to 26.5 °
(C67) The total Pt film thickness is 0.0175λ to 0.0225λ, the upper Pt film thickness / Pt film thickness is 0.775 to 0.825, the Al film thickness is 0.07λ to 0.09λ, and the SiO 2 film thickness is 0.475λ to At 0.525λ, the cut angle of LiNbO 3 is 24 ° to 31 °
(C68) The total Pt film thickness is 0.0225λ to 0.0275λ, the upper Pt film thickness / Pt film thickness is 0.775 to 0.825, the Al film thickness is 0.07λ to 0.09λ, and the SiO 2 film thickness is 0.475λ to At 0.525λ, the cut angle of LiNbO 3 is 24 ° to 28.5 °
(C69) Pt film thickness is 0.0275λ to 0.0325λ, upper Pt film thickness / Pt film thickness is 0.775 to 0.825, Al film thickness is 0.07λ to 0.09λ, SiO 2 film thickness is 0.475λ to At 0.525λ, the cut angle of LiNbO 3 is 21.5 ° to 25 °
(C70) Pt film thickness is 0.0175λ to 0.0225λ, upper Pt film thickness / Pt film thickness is 0.775 to 0.825, Al film thickness is 0.09λ to 0.11λ, and SiO 2 film thickness is 0.475λ to At 0.525λ, the cut angle of LiNbO 3 is 24 ° -30 °
(C71) The total Pt film thickness is 0.0225λ to 0.0275λ, the upper Pt film thickness / Pt film thickness is 0.775 to 0.825, the Al film thickness is 0.09λ to 0.11λ, and the SiO 2 film thickness is 0.475λ to At 0.525λ, the cut angle of LiNbO 3 is 22 ° to 26 °
(C72) The total Pt film thickness is 0.0275λ to 0.0325λ, the upper Pt film thickness / Pt film thickness is 0.775 to 0.825, the Al film thickness is 0.09λ to 0.11λ, and the SiO 2 film thickness is 0.475λ to At 0.525λ, the cut angle of LiNbO 3 is 19 ° to 25 °
(C73) The total Pt film thickness is 0.0175λ to 0.0225λ, the upper Pt film thickness / Pt film thickness is 0.825 to 0.875, the Al film thickness is 0.05λ to 0.07λ, and the SiO 2 film thickness is 0.475λ to At 0.525λ, the cut angle of LiNbO 3 is 24 ° to 31 °
(C74) The total Pt film thickness is 0.0225λ to 0.0275λ, the upper Pt film thickness / Pt film thickness is 0.825 to 0.875, the Al film thickness is 0.05λ to 0.07λ, and the SiO 2 film thickness is 0.475λ to At 0.525λ, the cut angle of LiNbO 3 is 24 ° to 29.5 °
(C75) The total Pt film thickness is 0.0275λ to 0.0325λ, the upper Pt film thickness / Pt film thickness is 0.825 to 0.875, the Al film thickness is 0.05λ to 0.07λ, and the SiO 2 film thickness is 0.475λ to At 0.525λ, the cut angle of LiNbO 3 is 23.5 ° -26 °
(C76) The total Pt film thickness is 0.0175λ to 0.0225λ, the upper Pt film thickness / Pt film thickness is 0.825 to 0.875, the Al film thickness is 0.07λ to 0.09λ, and the SiO 2 film thickness is 0.475λ to At 0.525λ, the cut angle of LiNbO 3 is 24 ° to 30.5 °
(C77) The total Pt film thickness is 0.0225λ to 0.0275λ, the upper Pt film thickness / Pt film thickness is 0.825 to 0.875, the Al film thickness is 0.07λ to 0.09λ, and the SiO 2 film thickness is 0.475λ to At 0.525λ, the cut angle of LiNbO 3 is 24 ° to 27 °
(C78) The total Pt film thickness is 0.0275λ to 0.0325λ, the upper Pt film thickness / Pt film thickness is 0.825 to 0.875, the Al film thickness is 0.07λ to 0.09λ, and the SiO 2 film thickness is 0.475λ to At 0.525λ, the cut angle of LiNbO 3 is 20 ° to 25 °
(C79) The total Pt film thickness is 0.0175λ to 0.0225λ, the upper Pt film thickness / Pt film thickness is 0.825 to 0.875, the Al film thickness is 0.09λ to 0.11λ, and the SiO 2 film thickness is 0.475λ to At 0.525λ, the cut angle of LiNbO 3 is 24.5 ° -30 °
(C80) The total Pt film thickness is 0.0225λ to 0.0275λ, the upper Pt film thickness / Pt film thickness is 0.825 to 0.875, the Al film thickness is 0.09λ to 0.11λ, and the SiO 2 film thickness is 0.475λ to At 0.525λ, the cut angle of LiNbO 3 is 23 ° to 26 °
(C81) The total Pt film thickness is 0.0275λ to 0.0325λ, the upper Pt film thickness / Pt film thickness is 0.825 to 0.875, the Al film thickness is 0.09λ to 0.11λ, and the SiO 2 film thickness is 0.475λ to At 0.525λ, the cut angle of LiNbO 3 is 18 ° to 24.5 °
 (第3のグループ)
 図109~図135は、LiNbOのカット角25°、Pt膜厚合計2.53%(対波長比)、上Pt膜厚/Pt膜厚合計0.86、Al膜の膜厚9.0%(対波長比)、及びSiO膜の膜厚36.3%(対波長比)を中心とする、上記各パラメータとSV波比帯域との関係を示す図である。
(Third group)
109 to 135 show a cut angle of LiNbO 3 of 25 °, a total Pt film thickness of 2.53% (vs. wavelength ratio), an upper Pt film thickness / total Pt film thickness of 0.86, and an Al film thickness of 9.0. % (versus wavelength ratio), and the center 36.3% the thickness of the SiO 2 film (versus wavelength ratio) is a diagram showing the relationship between the parameters and SV wave ratio band.
 より具体的には、図109~図117は、SiO膜の膜厚が0.30λの場合の結果を示す。ここで、図109~図111では、上Pt膜厚/Pt膜厚合計が0.80、図112~図114では0.85、図115~図117では0.90の場合の結果が示されている。そして、図109~図111では、Al膜の膜厚が、0.08λ、0.10λまたは0.12λとされており、図112~図114においても、Al膜の膜厚が0.08λ、0.10λまたは0.12λとされており、図115~図117においても、Al膜の膜厚が0.08λ、0.10λまたは0.12λとされている。 More specifically, FIGS. 109 to 117 show results when the thickness of the SiO 2 film is 0.30λ. Here, FIGS. 109 to 111 show the results when the upper Pt film thickness / Pt film thickness is 0.80, FIGS. 112 to 114 are 0.85, and FIGS. 115 to 117 are 0.90. ing. 109 to 111, the thickness of the Al film is 0.08λ, 0.10λ, or 0.12λ. Also in FIGS. 112 to 114, the thickness of the Al film is 0.08λ, The thickness of the Al film is 0.08λ, 0.10λ, or 0.12λ in FIGS. 115 to 117 as well.
 そして、図109~図117においては、さらに、Pt膜厚合計を0.02λ、0.025λまたは0.03λに変化させた場合のLiNbOのカット角と、SV波比帯域との関係が示されている。 109 to 117 further show the relationship between the cut angle of LiNbO 3 and the SV wave ratio band when the total Pt film thickness is changed to 0.02λ, 0.025λ, or 0.03λ. Has been.
 図109~図117から明らかなように、LiNbOのカット角が25°近辺の場合、SV波比帯域が非常に小さくなり、極小値となることがわかる。カット角が25°から遠ざかるにつれ、いずれの場合においても、SV波比帯域が大きくなっていくことがわかる。 As is apparent from FIGS. 109 to 117, when the cut angle of LiNbO 3 is around 25 °, the SV wave ratio band becomes very small and becomes a minimum value. It can be seen that the SV wave ratio band increases in any case as the cut angle moves away from 25 °.
 図118~図126は、SiO膜の膜厚は0.35λの場合の結果を示す。ここで、図118~図120では、上Pt膜厚/Pt膜厚合計が0.80、図121~図123では0.85、図124~図126では0.90の場合の結果が示されている。そして、図118~図120では、Al膜の膜厚が、0.08λ、0.10λまたは0.12λとされており、図121~図123においても、Al膜の膜厚が0.08λ、0.10λまたは0.12λとされており、図124~図126においても、Al膜の膜厚が0.08λ、0.10λまたは0.12λとされている。 Figure 118 through Figure 126, the thickness of the SiO 2 film shows the results when the 0.35Ramuda. Here, FIGS. 118 to 120 show the results when the upper Pt film thickness / Pt film thickness is 0.80, FIGS. 121 to 123 are 0.85, and FIGS. 124 to 126 are 0.90. ing. 118 to 120, the thickness of the Al film is 0.08λ, 0.10λ, or 0.12λ. In FIGS. 121 to 123, the thickness of the Al film is 0.08λ, The thickness of the Al film is 0.08λ, 0.10λ, or 0.12λ in FIGS. 124 to 126 as well.
 そして、図118~図126においては、さらに、Pt膜厚合計を変化させた場合のLiNbOのカット角と、SV波比帯域との関係が示されている。 118 to 126 further show the relationship between the cut angle of LiNbO 3 and the SV wave ratio band when the total Pt film thickness is changed.
 図118~図126から明らかなように、LiNbOのカット角が25°近辺の場合、SV波比帯域が非常に小さくなり、極小値となることがわかる。カット角が25°から遠ざかるにつれ、いずれの場合においても、SV波比帯域が大きくなっていくことがわかる。 As is apparent from FIGS. 118 to 126, it can be seen that when the cut angle of LiNbO 3 is around 25 °, the SV wave ratio band becomes very small and becomes a minimum value. It can be seen that the SV wave ratio band increases in any case as the cut angle moves away from 25 °.
 図127~図135は、SiO膜の膜厚が0.40λの場合の結果を示す。ここで、図127~図129では、上Pt膜厚/Pt膜厚合計が0.80、図130~図132では0.85、図133~図135では0.90の場合の結果が示されている。そして、図127~図129では、Al膜の膜厚が、0.08λ、0.10λまたは0.12λとされており、図130~図132においても、Al膜の膜厚が0.08λ、0.10λまたは0.12λとされており、図133~図135においても、Al膜の膜厚が0.08λ、0.10λまたは0.12λとされている。 127 to 135 show the results when the thickness of the SiO 2 film is 0.40λ. 127 to 129 show the results when the upper Pt film thickness / Pt film thickness is 0.80, FIGS. 130 to 132 are 0.85, and FIGS. 133 to 135 are 0.90. ing. 127 to 129, the film thickness of the Al film is 0.08λ, 0.10λ, or 0.12λ. In FIGS. 130 to 132, the film thickness of the Al film is 0.08λ, The thickness of the Al film is 0.08λ, 0.10λ, or 0.12λ in FIGS. 133 to 135 as well.
 そして、図127~図135においては、さらに、Pt膜厚合計を変化させた場合のLiNbOのカット角と、SV波比帯域との関係が示されている。 127 to 135 further show the relationship between the cut angle of LiNbO 3 and the SV wave ratio band when the total Pt film thickness is changed.
 図127~図135から明らかなように、LiNbOのカット角が25°近辺の場合、SV波比帯域が非常に小さくなり、極小値となることがわかる。カット角が25°から遠ざかるにつれ、いずれの場合においても、SV波比帯域が大きくなっていくことがわかる。 As is apparent from FIGS. 127 to 135, when the cut angle of LiNbO 3 is around 25 °, the SV wave ratio band becomes very small and becomes a minimum value. It can be seen that the SV wave ratio band increases in any case as the cut angle moves away from 25 °.
 従って、図109~図135の結果をまとめると、0.55<h3/(h1+h3)<0.95である場合において、SV波比帯域が0.03%以下となる範囲、すなわちストンリー波によるスプリアスを抑圧し得る範囲は、下記の(d1)~(d81)のいずれかの組み合わせであることがわかる。 Therefore, the results shown in FIGS. 109 to 135 are summarized as follows. When 0.55 <h3 / (h1 + h3) <0.95, the range in which the SV wave ratio band is 0.03% or less, that is, spurious due to the Stoneley wave. It can be seen that the range in which can be suppressed is a combination of any of the following (d1) to (d81).
 (d1)Pt膜厚合計が、0.0175λ~0.0225λ、上Pt膜厚/Pt膜厚合計が、0.775~0.825、Al膜厚が、0.07λ~0.09λ、SiO2膜厚が、0.275λ~0.325λのとき、LiNbO3のカット角が、19.5°~25°
 (d2)Pt膜厚合計が、0.0225λ~0.0275λ、上Pt膜厚/Pt膜厚合計が、0.775~0.825、Al膜厚が、0.07λ~0.09λ、SiO2膜厚が、0.275λ~0.325λのとき、LiNbO3のカット角が、23.5°~29.5°
 (d3)Pt膜厚合計が、0.0275λ~0.0325λ、上Pt膜厚/Pt膜厚合計が、0.775~0.825、Al膜厚が、0.07λ~0.09λ、SiO2膜厚が、0.275λ~0.325λのとき、LiNbO3のカット角が、25.5°~28.5°
 (d4)Pt膜厚合計が、0.0175λ~0.0225λ、上Pt膜厚/Pt膜厚合計が、0.775~0.825、Al膜厚が、0.09λ~0.11λ、SiO2膜厚が、0.275λ~0.325λのとき、LiNbO3のカット角が、19°~25°
 (d5)Pt膜厚合計が、0.0225λ~0.0275λ、上Pt膜厚/Pt膜厚合計が、0.775~0.825、Al膜厚が、0.09λ~0.11λ、SiO2膜厚が、0.275λ~0.325λのとき、LiNbO3のカット角が、23.5°~29.5°
 (d6)Pt膜厚合計が、0.0275λ~0.0325λ、上Pt膜厚/Pt膜厚合計が、0.775~0.825、Al膜厚が、0.09λ~0.11λ、SiO2膜厚が、0.275λ~0.325λのとき、LiNbO3のカット角が、25.5°~28°
 (d7)Pt膜厚合計が、0.0175λ~0.0225λ、上Pt膜厚/Pt膜厚合計が、0.775~0.825、Al膜厚が、0.11λ~0.13λ、SiO2膜厚が、0.275λ~0.325λのとき、LiNbO3のカット角が、18.5°~24°
 (d8)Pt膜厚合計が、0.0225λ~0.0275λ、上Pt膜厚/Pt膜厚合計が、0.775~0.825、Al膜厚が、0.11λ~0.13λ、SiO2膜厚が、0.275λ~0.325λのとき、LiNbO3のカット角が、23.5°~29.5°
 (d9)Pt膜厚合計が、0.0275λ~0.0325λ、上Pt膜厚/Pt膜厚合計が、0.775~0.825、Al膜厚が、0.11λ~0.13λ、SiO2膜厚が、0.275λ~0.325λのとき、LiNbO3のカット角が、27°~29°
 (d10)Pt膜厚合計が、0.0175λ~0.0225λ、上Pt膜厚/Pt膜厚合計が、0.825~0.875、Al膜厚が、0.07λ~0.09λ、SiO2膜厚が、0.275λ~0.325λのとき、LiNbO3のカット角が、20°~26°
 (d11)Pt膜厚合計が、0.0225λ~0.0275λ、上Pt膜厚/Pt膜厚合計が、0.825~0.875、Al膜厚が、0.07λ~0.09λ、SiO2膜厚が、0.275λ~0.325λのとき、LiNbO3のカット角が、24°~29.5°
 (d12)Pt膜厚合計が、0.0275λ~0.0325λ、上Pt膜厚/Pt膜厚合計が、0.825~0.875、Al膜厚が、0.07λ~0.09λ、SiO2膜厚が、0.275λ~0.325λのとき、LiNbO3のカット角が、25°~27.5°
 (d13)Pt膜厚合計が、0.0175λ~0.0225λ、上Pt膜厚/Pt膜厚合計が、0.825~0.875、Al膜厚が、0.09λ~0.11λ、SiO2膜厚が、0.275λ~0.325λのとき、LiNbO3のカット角が、20°~26°
 (d14)Pt膜厚合計が、0.0225λ~0.0275λ、上Pt膜厚/Pt膜厚合計が、0.825~0.875、Al膜厚が、0.09λ~0.11λ、SiO2膜厚が、0.275λ~0.325λのとき、LiNbO3のカット角が、24.5°~30°
 (d15)Pt膜厚合計が、0.0275λ~0.0325λ、上Pt膜厚/Pt膜厚合計が、0.825~0.875、Al膜厚が、0.09λ~0.11λ、SiO2膜厚が、0.275λ~0.325λのとき、LiNbO3のカット角が、26°~29.5°
 (d16)Pt膜厚合計が、0.0175λ~0.0225λ、上Pt膜厚/Pt膜厚合計が、0.825~0.875、Al膜厚が、0.11λ~0.13λ、SiO2膜厚が、0.275λ~0.325λのとき、LiNbO3のカット角が、19.5°~25.5°
 (d17)Pt膜厚合計が、0.0225λ~0.0275λ、上Pt膜厚/Pt膜厚合計が、0.825~0.875、Al膜厚が、0.11λ~0.13λ、SiO2膜厚が、0.275λ~0.325λのとき、LiNbO3のカット角が、25°~30°
 (d18)Pt膜厚合計が、0.0275λ~0.0325λ、上Pt膜厚/Pt膜厚合計が、0.825~0.875、Al膜厚が、0.11λ~0.13λ、SiO2膜厚が、0.275λ~0.325λのとき、LiNbO3のカット角が、26°~31°
 (d19)Pt膜厚合計が、0.0175λ~0.0225λ、上Pt膜厚/Pt膜厚合計が、0.875~0.925、Al膜厚が、0.07λ~0.09λ、SiO2膜厚が、0.275λ~0.325λのとき、LiNbO3のカット角が、20.5°~21.5°
 (d20)Pt膜厚合計が、0.0225λ~0.0275λ、上Pt膜厚/Pt膜厚合計が、0.875~0.925、Al膜厚が、0.07λ~0.09λ、SiO2膜厚が、0.275λ~0.325λのとき、LiNbO3のカット角が、25°~30°
 (d21)Pt膜厚合計が、0.0275λ~0.0325λ、上Pt膜厚/Pt膜厚合計が、0.875~0.925、Al膜厚が、0.07λ~0.09λ、SiO2膜厚が、0.275λ~0.325λのとき、LiNbO3のカット角が、25.5°~29°
 (d22)Pt膜厚合計が、0.0175λ~0.0225λ、上Pt膜厚/Pt膜厚合計が、0.875~0.925、Al膜厚が、0.09λ~0.11λ、SiO2膜厚が、0.275λ~0.325λのとき、LiNbO3のカット角が、21°~27°
 (d23)Pt膜厚合計が、0.0225λ~0.0275λ、上Pt膜厚/Pt膜厚合計が、0.875~0.925、Al膜厚が、0.09λ~0.11λ、SiO2膜厚が、0.275λ~0.325λのとき、LiNbO3のカット角が、26°~30°
 (d24)Pt膜厚合計が、0.0275λ~0.0325λ、上Pt膜厚/Pt膜厚合計が、0.875~0.925、Al膜厚が、0.09λ~0.11λ、SiO2膜厚が、0.275λ~0.325λのとき、LiNbO3のカット角が、25°~30.5°
 (d25)Pt膜厚合計が、0.0175λ~0.0225λ、上Pt膜厚/Pt膜厚合計が、0.875~0.925、Al膜厚が、0.11λ~0.13λ、SiO2膜厚が、0.275λ~0.325λのとき、LiNbO3のカット角が、21°~26.5°
 (d26)Pt膜厚合計が、0.0225λ~0.0275λ、上Pt膜厚/Pt膜厚合計が、0.875~0.925、Al膜厚が、0.11λ~0.13λ、SiO2膜厚が、0.275λ~0.325λのとき、LiNbO3のカット角が、26.5°~30°
 (d27)Pt膜厚合計が、0.0275λ~0.0325λ、上Pt膜厚/Pt膜厚合計が、0.875~0.925、Al膜厚が、0.11λ~0.13λ、SiO2膜厚が、0.275λ~0.325λのとき、LiNbO3のカット角が、25.5°~32°
 (d28)Pt膜厚合計が、0.0175λ~0.0225λ、上Pt膜厚/Pt膜厚合計が、0.775~0.825、Al膜厚が、0.07λ~0.09λ、SiO2膜厚が、0.325λ~0.375λのとき、LiNbO3のカット角が、21.5°~28°
 (d29)Pt膜厚合計が、0.0225λ~0.0275λ、上Pt膜厚/Pt膜厚合計が、0.775~0.825、Al膜厚が、0.07λ~0.09λ、SiO2膜厚が、0.325λ~0.375λのとき、LiNbO3のカット角が、24°~29.5°
 (d30)Pt膜厚合計が、0.0275λ~0.0325λ、上Pt膜厚/Pt膜厚合計が、0.775~0.825、Al膜厚が、0.07λ~0.09λ、SiO2膜厚が、0.325λ~0.375λのとき、LiNbO3のカット角が、25.5°~26.5°
 (d31)Pt膜厚合計が、0.0175λ~0.0225λ、上Pt膜厚/Pt膜厚合計が、0.775~0.825、Al膜厚が、0.09λ~0.11λ、SiO2膜厚が、0.325λ~0.375λのとき、LiNbO3のカット角が、21.5°~28°
 (d32)Pt膜厚合計が、0.0225λ~0.0275λ、上Pt膜厚/Pt膜厚合計が、0.775~0.825、Al膜厚が、0.09λ~0.11λ、SiO2膜厚が、0.325λ~0.375λのとき、LiNbO3のカット角が、24.5°~29.5°
 (d33)Pt膜厚合計が、0.0275λ~0.0325λ、上Pt膜厚/Pt膜厚合計が、0.775~0.825、Al膜厚が、0.09λ~0.11λ、SiO2膜厚が、0.325λ~0.375λのとき、LiNbO3のカット角が、24°~28°
 (d34)Pt膜厚合計が、0.0175λ~0.0225λ、上Pt膜厚/Pt膜厚合計が、0.775~0.825、Al膜厚が、0.11λ~0.13λ、SiO2膜厚が、0.325λ~0.375λのとき、LiNbO3のカット角が、22°~28°
 (d35)Pt膜厚合計が、0.0225λ~0.0275λ、上Pt膜厚/Pt膜厚合計が、0.775~0.825、Al膜厚が、0.11λ~0.13λ、SiO2膜厚が、0.325λ~0.375λのとき、LiNbO3のカット角が、25.5°~29°
 (d36)Pt膜厚合計が、0.0275λ~0.0325λ、上Pt膜厚/Pt膜厚合計が、0.775~0.825、Al膜厚が、0.11λ~0.13λ、SiO2膜厚が、0.325λ~0.375λのとき、LiNbO3のカット角が、23.5°~28.5°
 (d37)Pt膜厚合計が、0.0175λ~0.0225λ、上Pt膜厚/Pt膜厚合計が、0.825~0.875、Al膜厚が、0.07λ~0.09λ、SiO2膜厚が、0.325λ~0.375λのとき、LiNbO3のカット角が、22°~28.5°
 (d38)Pt膜厚合計が、0.0225λ~0.0275λ、上Pt膜厚/Pt膜厚合計が、0.825~0.875、Al膜厚が、0.07λ~0.09λ、SiO2膜厚が、0.325λ~0.375λのとき、LiNbO3のカット角が、24.5°~29.5°
 (d39)Pt膜厚合計が、0.0275λ~0.0325λ、上Pt膜厚/Pt膜厚合計が、0.825~0.875、Al膜厚が、0.07λ~0.09λ、SiO2膜厚が、0.325λ~0.375λのとき、LiNbO3のカット角が、24°~27°
 (d40)Pt膜厚合計が、0.0175λ~0.0225λ、上Pt膜厚/Pt膜厚合計が、0.825~0.875、Al膜厚が、0.09λ~0.11λ、SiO2膜厚が、0.325λ~0.375λのとき、LiNbO3のカット角が、22.5°~28.5°
 (d41)Pt膜厚合計が、0.0225λ~0.0275λ、上Pt膜厚/Pt膜厚合計が、0.825~0.875、Al膜厚が、0.09λ~0.11λ、SiO2膜厚が、0.325λ~0.375λのとき、LiNbO3のカット角が、25°~29°
 (d42)Pt膜厚合計が、0.0275λ~0.0325λ、上Pt膜厚/Pt膜厚合計が、0.825~0.875、Al膜厚が、0.09λ~0.11λ、SiO2膜厚が、0.325λ~0.375λのとき、LiNbO3のカット角が、23°~28.5°
 (d43)Pt膜厚合計が、0.0175λ~0.0225λ、上Pt膜厚/Pt膜厚合計が、0.825~0.875、Al膜厚が、0.11λ~0.13λ、SiO2膜厚が、0.325λ~0.375λのとき、LiNbO3のカット角が、23°~29°
 (d44)Pt膜厚合計が、0.0225λ~0.0275λ、上Pt膜厚/Pt膜厚合計が、0.825~0.875、Al膜厚が、0.11λ~0.13λ、SiO2膜厚が、0.325λ~0.375λのとき、LiNbO3のカット角が、25°~28°
 (d45)Pt膜厚合計が、0.0275λ~0.0325λ、上Pt膜厚/Pt膜厚合計が、0.825~0.875、Al膜厚が、0.11λ~0.13λ、SiO2膜厚が、0.325λ~0.375λのとき、LiNbO3のカット角が、23°~29.5°
 (d46)Pt膜厚合計が、0.0175λ~0.0225λ、上Pt膜厚/Pt膜厚合計が、0.875~0.925、Al膜厚が、0.07λ~0.09λ、SiO2膜厚が、0.325λ~0.375λのとき、LiNbO3のカット角が、22.5°~29°
 (d47)Pt膜厚合計が、0.0225λ~0.0275λ、上Pt膜厚/Pt膜厚合計が、0.875~0.925、Al膜厚が、0.07λ~0.09λ、SiO2膜厚が、0.325λ~0.375λのとき、LiNbO3のカット角が、25°~29°
 (d48)Pt膜厚合計が、0.0275λ~0.0325λ、上Pt膜厚/Pt膜厚合計が、0.875~0.925、Al膜厚が、0.07λ~0.09λ、SiO2膜厚が、0.325λ~0.375λのとき、LiNbO3のカット角が、23°~28°
 (d49)Pt膜厚合計が、0.0175λ~0.0225λ、上Pt膜厚/Pt膜厚合計が、0.875~0.925、Al膜厚が、0.09λ~0.11λ、SiO2膜厚が、0.325λ~0.375λのとき、LiNbO3のカット角が、23.5°~29°
 (d50)Pt膜厚合計が、0.0225λ~0.0275λ、上Pt膜厚/Pt膜厚合計が、0.875~0.925、Al膜厚が、0.09λ~0.11λ、SiO2膜厚が、0.325λ~0.375λのとき、LiNbO3のカット角が、25°~28°
 (d51)Pt膜厚合計が、0.0275λ~0.0325λ、上Pt膜厚/Pt膜厚合計が、0.875~0.925、Al膜厚が、0.09λ~0.11λ、SiO2膜厚が、0.325λ~0.375λのとき、LiNbO3のカット角が、22°~28.5°
 (d52)Pt膜厚合計が、0.0175λ~0.0225λ、上Pt膜厚/Pt膜厚合計が、0.875~0.925、Al膜厚が、0.11λ~0.13λ、SiO2膜厚が、0.325λ~0.375λのとき、LiNbO3のカット角が、24°~29.5°
 (d53)Pt膜厚合計が、0.0225λ~0.0275λ、上Pt膜厚/Pt膜厚合計が、0.875~0.925、Al膜厚が、0.11λ~0.13λ、SiO2膜厚が、0.325λ~0.375λのとき、LiNbO3のカット角が、26°~30°
 (d54)Pt膜厚合計が、0.0275λ~0.0325λ、上Pt膜厚/Pt膜厚合計が、0.875~0.925、Al膜厚が、0.11λ~0.13λ、SiO2膜厚が、0.325λ~0.375λのとき、LiNbO3のカット角が、22°~30°
 (d55)Pt膜厚合計が、0.0175λ~0.0225λ、上Pt膜厚/Pt膜厚合計が、0.775~0.825、Al膜厚が、0.07λ~0.09λ、SiO2膜厚が、0.375λ~0.425λのとき、LiNbO3のカット角が、22.5°~29°
 (d56)Pt膜厚合計が、0.0225λ~0.0275λ、上Pt膜厚/Pt膜厚合計が、0.775~0.825、Al膜厚が、0.07λ~0.09λ、SiO2膜厚が、0.375λ~0.425λのとき、LiNbO3のカット角が、24°~29°
 (d57)Pt膜厚合計が、0.0275λ~0.0325λ、上Pt膜厚/Pt膜厚合計が、0.775~0.825、Al膜厚が、0.07λ~0.09λ、SiO2膜厚が、0.375λ~0.425λのとき、LiNbO3のカット角が、23.5°~26°
 (d58)Pt膜厚合計が、0.0175λ~0.0225λ、上Pt膜厚/Pt膜厚合計が、0.775~0.825、Al膜厚が、0.09λ~0.11λ、SiO2膜厚が、0.375λ~0.425λのとき、LiNbO3のカット角が、23°~29.5°
 (d59)Pt膜厚合計が、0.0225λ~0.0275λ、上Pt膜厚/Pt膜厚合計が、0.775~0.825、Al膜厚が、0.09λ~0.11λ、SiO2膜厚が、0.375λ~0.425λのとき、LiNbO3のカット角が、25°~28.5°
 (d60)Pt膜厚合計が、0.0275λ~0.0325λ、上Pt膜厚/Pt膜厚合計が、0.775~0.825、Al膜厚が、0.09λ~0.11λ、SiO2膜厚が、0.375λ~0.425λのとき、LiNbO3のカット角が、22°~27°
 (d61)Pt膜厚合計が、0.0175λ~0.0225λ、上Pt膜厚/Pt膜厚合計が、0.775~0.825、Al膜厚が、0.11λ~0.13λ、SiO2膜厚が、0.375λ~0.425λのとき、LiNbO3のカット角が、23.5°~29.5°
 (d62)Pt膜厚合計が、0.0225λ~0.0275λ、上Pt膜厚/Pt膜厚合計が、0.775~0.825、Al膜厚が、0.11λ~0.13λ、SiO2膜厚が、0.375λ~0.425λのとき、LiNbO3のカット角が、25°~28°
 (d63)Pt膜厚合計が、0.0275λ~0.0325λ、上Pt膜厚/Pt膜厚合計が、0.775~0.825、Al膜厚が、0.11λ~0.13λ、SiO2膜厚が、0.375λ~0.425λのとき、LiNbO3のカット角が、21°~27.5°
 (d64)Pt膜厚合計が、0.0175λ~0.0225λ、上Pt膜厚/Pt膜厚合計が、0.825~0.875、Al膜厚が、0.07λ~0.09λ、SiO2膜厚が、0.375λ~0.425λのとき、LiNbO3のカット角が、23°~29.5°
 (d65)Pt膜厚合計が、0.0225λ~0.0275λ、上Pt膜厚/Pt膜厚合計が、0.825~0.875、Al膜厚が、0.07λ~0.09λ、SiO2膜厚が、0.375λ~0.425λのとき、LiNbO3のカット角が、24.5°~28.5°
 (d66)Pt膜厚合計が、0.0275λ~0.0325λ、上Pt膜厚/Pt膜厚合計が、0.825~0.875、Al膜厚が、0.07λ~0.09λ、SiO2膜厚が、0.375λ~0.425λのとき、LiNbO3のカット角が、22.5°~26.5°
 (d67)Pt膜厚合計が、0.0175λ~0.0225λ、上Pt膜厚/Pt膜厚合計が、0.825~0.875、Al膜厚が、0.09λ~0.11λ、SiO2膜厚が、0.375λ~0.425λのとき、LiNbO3のカット角が、23.5°~29.5°
 (d68)Pt膜厚合計が、0.0225λ~0.0275λ、上Pt膜厚/Pt膜厚合計が、0.825~0.875、Al膜厚が、0.09λ~0.11λ、SiO2膜厚が、0.375λ~0.425λのとき、LiNbO3のカット角が、24.5°~28.5°
 (d69)Pt膜厚合計が、0.0275λ~0.0325λ、上Pt膜厚/Pt膜厚合計が、0.825~0.875、Al膜厚が、0.09λ~0.11λ、SiO2膜厚が、0.375λ~0.425λのとき、LiNbO3のカット角が、21°~27°
 (d70)Pt膜厚合計が、0.0175λ~0.0225λ、上Pt膜厚/Pt膜厚合計が、0.825~0.875、Al膜厚が、0.11λ~0.13λ、SiO2膜厚が、0.375λ~0.425λのとき、LiNbO3のカット角が、24°~30°
 (d71)Pt膜厚合計が、0.0225λ~0.0275λ、上Pt膜厚/Pt膜厚合計が、0.825~0.875、Al膜厚が、0.11λ~0.13λ、SiO2膜厚が、0.375λ~0.425λのとき、LiNbO3のカット角が、24°~28°
 (d72)Pt膜厚合計が、0.0275λ~0.0325λ、上Pt膜厚/Pt膜厚合計が、0.825~0.875、Al膜厚が、0.11λ~0.13λ、SiO2膜厚が、0.375λ~0.425λのとき、LiNbO3のカット角が、20°~27.5°
 (d73)Pt膜厚合計が、0.0175λ~0.0225λ、上Pt膜厚/Pt膜厚合計が、0.875~0.925、Al膜厚が、0.07λ~0.09λ、SiO2膜厚が、0.375λ~0.425λのとき、LiNbO3のカット角が、23.5°~29.5°
 (d74)Pt膜厚合計が、0.0225λ~0.0275λ、上Pt膜厚/Pt膜厚合計が、0.875~0.925、Al膜厚が、0.07λ~0.09λ、SiO2膜厚が、0.375λ~0.425λのとき、LiNbO3のカット角が、25°~28°
 (d75)Pt膜厚合計が、0.0275λ~0.0325λ、上Pt膜厚/Pt膜厚合計が、0.875~0.925、Al膜厚が、0.07λ~0.09λ、SiO2膜厚が、0.375λ~0.425λのとき、LiNbO3のカット角が、21.5°~26.5°
 (d76)Pt膜厚合計が、0.0175λ~0.0225λ、上Pt膜厚/Pt膜厚合計が、0.875~0.925、Al膜厚が、0.09λ~0.11λ、SiO2膜厚が、0.375λ~0.425λのとき、LiNbO3のカット角が、24°~29.5°
 (d77)Pt膜厚合計が、0.0225λ~0.0275λ、上Pt膜厚/Pt膜厚合計が、0.875~0.925、Al膜厚が、0.09λ~0.11λ、SiO2膜厚が、0.375λ~0.425λのとき、LiNbO3のカット角が、24.5°~28°
 (d78)Pt膜厚合計が、0.0275λ~0.0325λ、上Pt膜厚/Pt膜厚合計が、0.875~0.925、Al膜厚が、0.09λ~0.11λ、SiO2膜厚が、0.375λ~0.425λのとき、LiNbO3のカット角が、20°~27°
 (d79)Pt膜厚合計が、0.0175λ~0.0225λ、上Pt膜厚/Pt膜厚合計が、0.875~0.925、Al膜厚が、0.11λ~0.13λ、SiO2膜厚が、0.375λ~0.425λのとき、LiNbO3のカット角が、25°~29.5°
 (d80)Pt膜厚合計が、0.0225λ~0.0275λ、上Pt膜厚/Pt膜厚合計が、0.875~0.925、Al膜厚が、0.11λ~0.13λ、SiO2膜厚が、0.375λ~0.425λのとき、LiNbO3のカット角が、23.5°~29°
 (d81)Pt膜厚合計が、0.0275λ~0.0325λ、上Pt膜厚/Pt膜厚合計が、0.875~0.925、Al膜厚が、0.11λ~0.13λ、SiO2膜厚が、0.375λ~0.425λのとき、LiNbO3のカット角が、19°~27.5°
(D1) Pt film thickness is 0.0175λ to 0.0225λ, upper Pt film thickness / Pt film thickness is 0.775 to 0.825, Al film thickness is 0.07λ to 0.09λ, SiO 2 film thickness is 0.275λ to When 0.325λ, the cut angle of LiNbO 3 is 19.5 ° -25 °
(D2) The total Pt film thickness is 0.0225λ to 0.0275λ, the upper Pt film thickness / Pt film thickness is 0.775 to 0.825, the Al film thickness is 0.07λ to 0.09λ, and the SiO 2 film thickness is 0.275λ to When 0.325λ, the cut angle of LiNbO 3 is 23.5 ° to 29.5 °
(D3) The total Pt film thickness is 0.0275λ to 0.0325λ, the upper Pt film thickness / Pt film thickness is 0.775 to 0.825, the Al film thickness is 0.07λ to 0.09λ, and the SiO 2 film thickness is 0.275λ to When 0.325λ, the cut angle of LiNbO 3 is 25.5 ° to 28.5 °
(D4) The total Pt film thickness is 0.0175λ to 0.0225λ, the upper Pt film thickness / Pt film thickness is 0.775 to 0.825, the Al film thickness is 0.09λ to 0.11λ, and the SiO 2 film thickness is 0.275λ to When 0.325λ, the cut angle of LiNbO 3 is 19 ° to 25 °
(D5) The total Pt film thickness is 0.0225λ to 0.0275λ, the upper Pt film thickness / Pt film thickness is 0.775 to 0.825, the Al film thickness is 0.09λ to 0.11λ, and the SiO 2 film thickness is 0.275λ to When 0.325λ, the cut angle of LiNbO 3 is 23.5 ° to 29.5 °
(D6) The total Pt film thickness is 0.0275λ to 0.0325λ, the upper Pt film thickness / Pt film thickness is 0.775 to 0.825, the Al film thickness is 0.09λ to 0.11λ, and the SiO 2 film thickness is 0.275λ to When 0.325λ, the cut angle of LiNbO 3 is 25.5 ° -28 °
(D7) The total Pt film thickness is 0.0175λ to 0.0225λ, the upper Pt film thickness / Pt film thickness is 0.775 to 0.825, the Al film thickness is 0.11λ to 0.13λ, and the SiO 2 film thickness is 0.275λ to When 0.325λ, the cut angle of LiNbO 3 is 18.5 ° -24 °
(D8) The total Pt film thickness is 0.0225λ to 0.0275λ, the upper Pt film thickness / Pt film thickness is 0.775 to 0.825, the Al film thickness is 0.11λ to 0.13λ, and the SiO 2 film thickness is 0.275λ to When 0.325λ, the cut angle of LiNbO 3 is 23.5 ° to 29.5 °
(D9) The total Pt film thickness is 0.0275λ to 0.0325λ, the upper Pt film thickness / Pt film thickness is 0.775 to 0.825, the Al film thickness is 0.11λ to 0.13λ, and the SiO 2 film thickness is 0.275λ to When 0.325λ, the cut angle of LiNbO 3 is 27 ° to 29 °
(D10) The total Pt film thickness is 0.0175λ to 0.0225λ, the upper Pt film thickness / Pt film thickness is 0.825 to 0.875, the Al film thickness is 0.07λ to 0.09λ, and the SiO 2 film thickness is 0.275λ to When 0.325λ, the cut angle of LiNbO 3 is 20 ° to 26 °
(D11) The total Pt film thickness is 0.0225λ to 0.0275λ, the upper Pt film thickness / Pt film thickness is 0.825 to 0.875, the Al film thickness is 0.07λ to 0.09λ, and the SiO 2 film thickness is 0.275λ to When 0.325λ, the cut angle of LiNbO 3 is 24 ° to 29.5 °
(D12) The total Pt film thickness is 0.0275λ to 0.0325λ, the upper Pt film thickness / Pt film thickness is 0.825 to 0.875, the Al film thickness is 0.07λ to 0.09λ, and the SiO 2 film thickness is 0.275λ to When 0.325λ, the cut angle of LiNbO 3 is 25 ° to 27.5 °
(D13) The total Pt film thickness is 0.0175λ to 0.0225λ, the upper Pt film thickness / Pt film thickness is 0.825 to 0.875, the Al film thickness is 0.09λ to 0.11λ, and the SiO 2 film thickness is 0.275λ to When 0.325λ, the cut angle of LiNbO 3 is 20 ° to 26 °
(D14) The total Pt film thickness is 0.0225λ to 0.0275λ, the upper Pt film thickness / Pt film thickness is 0.825 to 0.875, the Al film thickness is 0.09λ to 0.11λ, and the SiO 2 film thickness is 0.275λ to When 0.325λ, the cut angle of LiNbO 3 is 24.5 ° -30 °
(D15) The total Pt film thickness is 0.0275λ to 0.0325λ, the upper Pt film thickness / Pt film thickness is 0.825 to 0.875, the Al film thickness is 0.09λ to 0.11λ, and the SiO 2 film thickness is 0.275λ to When 0.325λ, the cut angle of LiNbO 3 is 26 ° to 29.5 °
(D16) The total Pt film thickness is 0.0175λ to 0.0225λ, the upper Pt film thickness / Pt film thickness is 0.825 to 0.875, the Al film thickness is 0.11λ to 0.13λ, and the SiO 2 film thickness is 0.275λ to When 0.325λ, the cut angle of LiNbO 3 is 19.5 ° -25.5 °
(D17) The total Pt film thickness is 0.0225λ to 0.0275λ, the upper Pt film thickness / Pt film thickness is 0.825 to 0.875, the Al film thickness is 0.11λ to 0.13λ, and the SiO 2 film thickness is 0.275λ to When 0.325λ, the cut angle of LiNbO 3 is 25 ° -30 °
(D18) The total Pt film thickness is 0.0275λ to 0.0325λ, the upper Pt film thickness / Pt film thickness is 0.825 to 0.875, the Al film thickness is 0.11λ to 0.13λ, and the SiO 2 film thickness is 0.275λ to When 0.325λ, the cut angle of LiNbO 3 is 26 ° to 31 °
(D19) The total Pt film thickness is 0.0175λ to 0.0225λ, the upper Pt film thickness / Pt film thickness is 0.875 to 0.925, the Al film thickness is 0.07λ to 0.09λ, and the SiO 2 film thickness is 0.275λ to When 0.325λ, the cut angle of LiNbO 3 is 20.5 ° to 21.5 °
(D20) The total Pt film thickness is 0.0225λ to 0.0275λ, the upper Pt film thickness / Pt film thickness is 0.875 to 0.925, the Al film thickness is 0.07λ to 0.09λ, and the SiO 2 film thickness is 0.275λ to When 0.325λ, the cut angle of LiNbO 3 is 25 ° -30 °
(D21) The total Pt film thickness is 0.0275λ to 0.0325λ, the upper Pt film thickness / Pt film thickness is 0.875 to 0.925, the Al film thickness is 0.07λ to 0.09λ, and the SiO 2 film thickness is 0.275λ to When 0.325λ, the cut angle of LiNbO 3 is 25.5 ° to 29 °
(D22) The total Pt film thickness is 0.0175λ to 0.0225λ, the upper Pt film thickness / Pt film thickness is 0.875 to 0.925, the Al film thickness is 0.09λ to 0.11λ, and the SiO 2 film thickness is 0.275λ to When 0.325λ, the cut angle of LiNbO 3 is 21 ° to 27 °
(D23) The total Pt film thickness is 0.0225λ to 0.0275λ, the upper Pt film thickness / Pt film thickness is 0.875 to 0.925, the Al film thickness is 0.09λ to 0.11λ, and the SiO 2 film thickness is 0.275λ to When 0.325λ, the cut angle of LiNbO 3 is 26 ° -30 °
(D24) The total Pt film thickness is 0.0275λ to 0.0325λ, the upper Pt film thickness / Pt film thickness is 0.875 to 0.925, the Al film thickness is 0.09λ to 0.11λ, and the SiO 2 film thickness is 0.275λ to When 0.325λ, the cut angle of LiNbO 3 is 25 ° to 30.5 °
(D25) Pt film thickness is 0.0175λ to 0.0225λ, upper Pt film thickness / Pt film thickness is 0.875 to 0.925, Al film thickness is 0.11λ to 0.13λ, SiO 2 film thickness is 0.275λ to When 0.325λ, the cut angle of LiNbO 3 is 21 ° to 26.5 °
(D26) The total Pt film thickness is 0.0225λ to 0.0275λ, the upper Pt film thickness / Pt film thickness is 0.875 to 0.925, the Al film thickness is 0.11λ to 0.13λ, and the SiO 2 film thickness is 0.275λ to When 0.325λ, the cut angle of LiNbO 3 is 26.5 ° -30 °
(D27) The total Pt film thickness is 0.0275λ to 0.0325λ, the upper Pt film thickness / Pt film thickness is 0.875 to 0.925, the Al film thickness is 0.11λ to 0.13λ, and the SiO 2 film thickness is 0.275λ to When 0.325λ, the cut angle of LiNbO 3 is 25.5 ° to 32 °
(D28) The total Pt film thickness is 0.0175λ to 0.0225λ, the upper Pt film thickness / Pt film thickness is 0.775 to 0.825, the Al film thickness is 0.07λ to 0.09λ, and the SiO 2 film thickness is 0.325λ to When 0.375λ, the cut angle of LiNbO 3 is 21.5 ° -28 °
(D29) The total Pt film thickness is 0.0225λ to 0.0275λ, the upper Pt film thickness / Pt film thickness is 0.775 to 0.825, the Al film thickness is 0.07λ to 0.09λ, and the SiO 2 film thickness is 0.325λ to When 0.375λ, the cut angle of LiNbO 3 is 24 ° to 29.5 °
(D30) The total Pt film thickness is 0.0275λ to 0.0325λ, the upper Pt film thickness / Pt film thickness is 0.775 to 0.825, the Al film thickness is 0.07λ to 0.09λ, and the SiO 2 film thickness is 0.325λ to When 0.375λ, the cut angle of LiNbO 3 is 25.5 ° to 26.5 °
(D31) Pt film thickness is 0.0175λ to 0.0225λ, upper Pt film thickness / Pt film thickness is 0.775 to 0.825, Al film thickness is 0.09λ to 0.11λ, and SiO 2 film thickness is 0.325λ to When 0.375λ, the cut angle of LiNbO 3 is 21.5 ° -28 °
(D32) The total Pt film thickness is 0.0225λ to 0.0275λ, the upper Pt film thickness / Pt film thickness is 0.775 to 0.825, the Al film thickness is 0.09λ to 0.11λ, and the SiO 2 film thickness is 0.325λ to When 0.375λ, the cut angle of LiNbO 3 is 24.5 ° to 29.5 °
(D33) The total Pt film thickness is 0.0275λ to 0.0325λ, the upper Pt film thickness / Pt film thickness is 0.775 to 0.825, the Al film thickness is 0.09λ to 0.11λ, and the SiO 2 film thickness is 0.325λ to When 0.375λ, the cut angle of LiNbO 3 is 24 ° to 28 °
(D34) The total Pt film thickness is 0.0175λ to 0.0225λ, the upper Pt film thickness / Pt film thickness is 0.775 to 0.825, the Al film thickness is 0.11λ to 0.13λ, and the SiO 2 film thickness is 0.325λ to When 0.375λ, the cut angle of LiNbO 3 is 22 ° -28 °
(D35) The total Pt film thickness is 0.0225λ to 0.0275λ, the upper Pt film thickness / Pt film thickness is 0.775 to 0.825, the Al film thickness is 0.11λ to 0.13λ, and the SiO 2 film thickness is 0.325λ to When 0.375λ, the cut angle of LiNbO 3 is 25.5 ° to 29 °
(D36) The total Pt film thickness is 0.0275λ to 0.0325λ, the upper Pt film thickness / Pt film thickness is 0.775 to 0.825, the Al film thickness is 0.11λ to 0.13λ, and the SiO 2 film thickness is 0.325λ to When 0.375λ, the cut angle of LiNbO 3 is 23.5 ° to 28.5 °
(D37) The total Pt film thickness is 0.0175λ to 0.0225λ, the upper Pt film thickness / Pt film thickness is 0.825 to 0.875, the Al film thickness is 0.07λ to 0.09λ, and the SiO 2 film thickness is 0.325λ to When 0.375λ, the cut angle of LiNbO 3 is 22 ° ~ 28.5 °
(D38) The total Pt film thickness is 0.0225λ to 0.0275λ, the upper Pt film thickness / Pt film thickness is 0.825 to 0.875, the Al film thickness is 0.07λ to 0.09λ, and the SiO 2 film thickness is 0.325λ to When 0.375λ, the cut angle of LiNbO 3 is 24.5 ° to 29.5 °
(D39) The total Pt film thickness is 0.0275λ to 0.0325λ, the upper Pt film thickness / Pt film thickness is 0.825 to 0.875, the Al film thickness is 0.07λ to 0.09λ, and the SiO 2 film thickness is 0.325λ to When 0.375λ, the cut angle of LiNbO 3 is 24 ° to 27 °
(D40) The total Pt film thickness is 0.0175λ to 0.0225λ, the upper Pt film thickness / Pt film thickness is 0.825 to 0.875, the Al film thickness is 0.09λ to 0.11λ, and the SiO 2 film thickness is 0.325λ to When 0.375λ, the cut angle of LiNbO 3 is 22.5 ° to 28.5 °
(D41) The total Pt film thickness is 0.0225λ to 0.0275λ, the upper Pt film thickness / Pt film thickness is 0.825 to 0.875, the Al film thickness is 0.09λ to 0.11λ, and the SiO 2 film thickness is 0.325λ to When 0.375λ, the cut angle of LiNbO 3 is 25 ° to 29 °
(D42) The total Pt film thickness is 0.0275λ to 0.0325λ, the upper Pt film thickness / Pt film thickness is 0.825 to 0.875, the Al film thickness is 0.09λ to 0.11λ, and the SiO 2 film thickness is 0.325λ to When 0.375λ, the cut angle of LiNbO 3 is 23 ° ~ 28.5 °
(D43) The total Pt film thickness is 0.0175λ to 0.0225λ, the upper Pt film thickness / Pt film thickness is 0.825 to 0.875, the Al film thickness is 0.11λ to 0.13λ, and the SiO 2 film thickness is 0.325λ to When 0.375λ, the cut angle of LiNbO 3 is 23 ° to 29 °
(D44) The total Pt film thickness is 0.0225λ to 0.0275λ, the upper Pt film thickness / Pt film thickness is 0.825 to 0.875, the Al film thickness is 0.11λ to 0.13λ, and the SiO 2 film thickness is 0.325λ to When 0.375λ, the cut angle of LiNbO 3 is 25 ° to 28 °
(D45) The total Pt film thickness is 0.0275λ to 0.0325λ, the upper Pt film thickness / Pt film thickness is 0.825 to 0.875, the Al film thickness is 0.11λ to 0.13λ, and the SiO 2 film thickness is 0.325λ to When 0.375λ, the cut angle of LiNbO 3 is 23 ° ~ 29.5 °
(D46) The total Pt film thickness is 0.0175λ to 0.0225λ, the upper Pt film thickness / Pt film thickness is 0.875 to 0.925, the Al film thickness is 0.07λ to 0.09λ, and the SiO 2 film thickness is 0.325λ to When 0.375λ, the cut angle of LiNbO 3 is 22.5 ° to 29 °
(D47) The total Pt film thickness is 0.0225λ to 0.0275λ, the upper Pt film thickness / Pt film thickness is 0.875 to 0.925, the Al film thickness is 0.07λ to 0.09λ, and the SiO 2 film thickness is 0.325λ to When 0.375λ, the cut angle of LiNbO 3 is 25 ° to 29 °
(D48) The total Pt film thickness is 0.0275λ to 0.0325λ, the upper Pt film thickness / Pt film thickness is 0.875 to 0.925, the Al film thickness is 0.07λ to 0.09λ, and the SiO 2 film thickness is 0.325λ to When 0.375λ, the cut angle of LiNbO 3 is 23 ° to 28 °
(D49) The total Pt film thickness is 0.0175λ to 0.0225λ, the upper Pt film thickness / Pt film thickness is 0.875 to 0.925, the Al film thickness is 0.09λ to 0.11λ, and the SiO 2 film thickness is 0.325λ to When 0.375λ, the cut angle of LiNbO 3 is 23.5 ° to 29 °
(D50) The total Pt film thickness is 0.0225λ to 0.0275λ, the upper Pt film thickness / Pt film thickness is 0.875 to 0.925, the Al film thickness is 0.09λ to 0.11λ, and the SiO 2 film thickness is 0.325λ to When 0.375λ, the cut angle of LiNbO 3 is 25 ° to 28 °
(D51) The total Pt film thickness is 0.0275λ to 0.0325λ, the upper Pt film thickness / Pt film thickness is 0.875 to 0.925, the Al film thickness is 0.09λ to 0.11λ, and the SiO 2 film thickness is 0.325λ to When 0.375λ, the cut angle of LiNbO 3 is 22 ° ~ 28.5 °
(D52) The total Pt film thickness is 0.0175λ to 0.0225λ, the upper Pt film thickness / Pt film thickness is 0.875 to 0.925, the Al film thickness is 0.11λ to 0.13λ, and the SiO 2 film thickness is 0.325λ to When 0.375λ, the cut angle of LiNbO 3 is 24 ° to 29.5 °
(D53) Pt film thickness is 0.0225λ to 0.0275λ, upper Pt film thickness / Pt film thickness is 0.875 to 0.925, Al film thickness is 0.11λ to 0.13λ, SiO 2 film thickness is 0.325λ to When 0.375λ, the cut angle of LiNbO 3 is 26 ° -30 °
(D54) The total Pt film thickness is 0.0275λ to 0.0325λ, the upper Pt film thickness / Pt film thickness is 0.875 to 0.925, the Al film thickness is 0.11λ to 0.13λ, and the SiO 2 film thickness is 0.325λ to When 0.375λ, the cut angle of LiNbO 3 is 22 ° -30 °
(D55) The total Pt film thickness is 0.0175λ to 0.0225λ, the upper Pt film thickness / Pt film thickness is 0.775 to 0.825, the Al film thickness is 0.07λ to 0.09λ, and the SiO 2 film thickness is 0.375λ to When 0.425λ, the cut angle of LiNbO 3 is 22.5 ° to 29 °
(D56) The total Pt film thickness is 0.0225λ to 0.0275λ, the upper Pt film thickness / Pt film thickness is 0.775 to 0.825, the Al film thickness is 0.07λ to 0.09λ, and the SiO 2 film thickness is 0.375λ to When 0.425λ, the cut angle of LiNbO 3 is 24 ° to 29 °
(D57) The total Pt film thickness is 0.0275λ to 0.0325λ, the upper Pt film thickness / Pt film thickness is 0.775 to 0.825, the Al film thickness is 0.07λ to 0.09λ, and the SiO 2 film thickness is 0.375λ to When 0.425λ, the cut angle of LiNbO 3 is 23.5 ° -26 °
(D58) Pt film thickness is 0.0175λ to 0.0225λ, upper Pt film thickness / Pt film thickness is 0.775 to 0.825, Al film thickness is 0.09λ to 0.11λ, and SiO 2 film thickness is 0.375λ to When 0.425λ, the cut angle of LiNbO 3 is 23 ° ~ 29.5 °
(D59) The total Pt film thickness is 0.0225λ to 0.0275λ, the upper Pt film thickness / Pt film thickness is 0.775 to 0.825, the Al film thickness is 0.09λ to 0.11λ, and the SiO 2 film thickness is 0.375λ to When 0.425λ, the cut angle of LiNbO 3 is 25 ° to 28.5 °
(D60) The total Pt film thickness is 0.0275λ to 0.0325λ, the upper Pt film thickness / Pt film thickness is 0.775 to 0.825, the Al film thickness is 0.09λ to 0.11λ, and the SiO 2 film thickness is 0.375λ to When 0.425λ, the cut angle of LiNbO 3 is 22 ° -27 °
(D61) The total Pt film thickness is 0.0175λ to 0.0225λ, the upper Pt film thickness / Pt film thickness is 0.775 to 0.825, the Al film thickness is 0.11λ to 0.13λ, and the SiO 2 film thickness is 0.375λ to At 0.425λ, the cut angle of LiNbO 3 is 23.5 ° to 29.5 °
(D62) The total Pt film thickness is 0.0225λ to 0.0275λ, the upper Pt film thickness / Pt film thickness is 0.775 to 0.825, the Al film thickness is 0.11λ to 0.13λ, and the SiO 2 film thickness is 0.375λ to When 0.425λ, the cut angle of LiNbO 3 is 25 ° to 28 °
(D63) The total Pt film thickness is 0.0275λ to 0.0325λ, the upper Pt film thickness / Pt film thickness is 0.775 to 0.825, the Al film thickness is 0.11λ to 0.13λ, and the SiO 2 film thickness is 0.375λ to When 0.425λ, the cut angle of LiNbO 3 is 21 ° ~ 27.5 °
(D64) The total Pt film thickness is 0.0175λ to 0.0225λ, the upper Pt film thickness / Pt film thickness is 0.825 to 0.875, the Al film thickness is 0.07λ to 0.09λ, and the SiO 2 film thickness is 0.375λ to When 0.425λ, the cut angle of LiNbO 3 is 23 ° ~ 29.5 °
(D65) The total Pt film thickness is 0.0225λ to 0.0275λ, the upper Pt film thickness / Pt film thickness is 0.825 to 0.875, the Al film thickness is 0.07λ to 0.09λ, and the SiO 2 film thickness is 0.375λ to When 0.425λ, the cut angle of LiNbO 3 is 24.5 ° to 28.5 °
(D66) The total Pt film thickness is 0.0275λ to 0.0325λ, the upper Pt film thickness / Pt film thickness is 0.825 to 0.875, the Al film thickness is 0.07λ to 0.09λ, and the SiO 2 film thickness is 0.375λ to When 0.425λ, the cut angle of LiNbO 3 is 22.5 ° to 26.5 °
(D67) Pt film thickness is 0.0175λ to 0.0225λ, upper Pt film thickness / Pt film thickness is 0.825 to 0.875, Al film thickness is 0.09λ to 0.11λ, and SiO 2 film thickness is 0.375λ to At 0.425λ, the cut angle of LiNbO 3 is 23.5 ° to 29.5 °
(D68) The total Pt film thickness is 0.0225λ to 0.0275λ, the upper Pt film thickness / Pt film thickness is 0.825 to 0.875, the Al film thickness is 0.09λ to 0.11λ, and the SiO 2 film thickness is 0.375λ to When 0.425λ, the cut angle of LiNbO 3 is 24.5 ° to 28.5 °
(D69) The total Pt film thickness is 0.0275λ to 0.0325λ, the upper Pt film thickness / Pt film thickness is 0.825 to 0.875, the Al film thickness is 0.09λ to 0.11λ, and the SiO 2 film thickness is 0.375λ to When 0.425λ, the cut angle of LiNbO 3 is 21 ° to 27 °
(D70) The total Pt film thickness is 0.0175λ to 0.0225λ, the upper Pt film thickness / Pt film thickness is 0.825 to 0.875, the Al film thickness is 0.11λ to 0.13λ, and the SiO 2 film thickness is 0.375λ to When 0.425λ, the cut angle of LiNbO 3 is 24 ° -30 °
(D71) The total Pt film thickness is 0.0225λ to 0.0275λ, the upper Pt film thickness / Pt film thickness is 0.825 to 0.875, the Al film thickness is 0.11λ to 0.13λ, and the SiO 2 film thickness is 0.375λ to At 0.425λ, the cut angle of LiNbO 3 is 24 ° to 28 °
(D72) The total Pt film thickness is 0.0275λ to 0.0325λ, the upper Pt film thickness / Pt film thickness is 0.825 to 0.875, the Al film thickness is 0.11λ to 0.13λ, and the SiO 2 film thickness is 0.375λ to When 0.425λ, the cut angle of LiNbO 3 is 20 ° to 27.5 °
(D73) The total Pt film thickness is 0.0175λ to 0.0225λ, the upper Pt film thickness / Pt film thickness is 0.875 to 0.925, the Al film thickness is 0.07λ to 0.09λ, and the SiO 2 film thickness is 0.375λ to At 0.425λ, the cut angle of LiNbO 3 is 23.5 ° to 29.5 °
(D74) The total Pt film thickness is 0.0225λ to 0.0275λ, the upper Pt film thickness / Pt film thickness is 0.875 to 0.925, the Al film thickness is 0.07λ to 0.09λ, and the SiO 2 film thickness is 0.375λ to When 0.425λ, the cut angle of LiNbO 3 is 25 ° to 28 °
(D75) The total Pt film thickness is 0.0275λ to 0.0325λ, the upper Pt film thickness / Pt film thickness is 0.875 to 0.925, the Al film thickness is 0.07λ to 0.09λ, and the SiO 2 film thickness is 0.375λ to When 0.425λ, the cut angle of LiNbO 3 is 21.5 ° to 26.5 °
(D76) The total Pt film thickness is 0.0175λ to 0.0225λ, the upper Pt film thickness / Pt film thickness is 0.875 to 0.925, the Al film thickness is 0.09λ to 0.11λ, and the SiO 2 film thickness is 0.375λ to At 0.425λ, the cut angle of LiNbO 3 is 24 ° to 29.5 °
(D77) The total Pt film thickness is 0.0225λ to 0.0275λ, the upper Pt film thickness / Pt film thickness is 0.875 to 0.925, the Al film thickness is 0.09λ to 0.11λ, and the SiO 2 film thickness is 0.375λ to When 0.425λ, the cut angle of LiNbO 3 is 24.5 ° to 28 °
(D78) The total Pt film thickness is 0.0275λ to 0.0325λ, the upper Pt film thickness / Pt film thickness is 0.875 to 0.925, the Al film thickness is 0.09λ to 0.11λ, and the SiO 2 film thickness is 0.375λ to When 0.425λ, the cut angle of LiNbO 3 is 20 ° to 27 °
(D79) The total Pt film thickness is 0.0175λ to 0.0225λ, the upper Pt film thickness / Pt film thickness is 0.875 to 0.925, the Al film thickness is 0.11λ to 0.13λ, and the SiO 2 film thickness is 0.375λ to When 0.425λ, the cut angle of LiNbO 3 is 25 ° to 29.5 °
(D80) The total Pt film thickness is 0.0225λ to 0.0275λ, the upper Pt film thickness / Pt film thickness is 0.875 to 0.925, the Al film thickness is 0.11λ to 0.13λ, and the SiO 2 film thickness is 0.375λ to When 0.425λ, the cut angle of LiNbO 3 is 23.5 ° to 29 °
(D81) The total Pt film thickness is 0.0275λ to 0.0325λ, the upper Pt film thickness / Pt film thickness is 0.875 to 0.925, the Al film thickness is 0.11λ to 0.13λ, and the SiO 2 film thickness is 0.375λ to When 0.425λ, the cut angle of LiNbO 3 is 19 ° ~ 27.5 °
 (第7の実施形態)
 第7の実施形態は、第2の実施形態と同様に、第1~第3の電極層21~23の上に第4の電極層24が形成されている点で、上記第6の実施形態と異なる。
(Seventh embodiment)
As in the second embodiment, the seventh embodiment is similar to the sixth embodiment in that a fourth electrode layer 24 is formed on the first to third electrode layers 21 to 23. And different.
 図136は、第7の実施形態において、第4の電極層24であるAl膜の膜厚を変化させた場合の周波数温度係数TCFの変化を示す図である。SiOは正の周波数温度係数TCFを有する。LiNbOは負の周波数温度係数を有する。LiNbO基板にSiOを積層した弾性境界波装置の周波数温度係数TCFは、SiO膜とLiNbO基板の中間の負の値を示している。図136から明らかなように、第4の電極層24であるAl膜の膜厚を大きくしていくと、周波数温度係数TCFの絶対値が大きくなる傾向がわかる。SiOなどの一部がAlに置き換わることにより、周波数温度係数TCFの絶対値は大きくなっている。なお、図136の結果は、カット角24°回転YカットのLiNbO基板上に、Pt膜厚合計0.03λ、上Pt膜のPt膜厚合計に対する比=1、Al膜の膜厚=0.10λ、SiO膜の膜厚=0.50λ、SiN膜の膜厚=1.7λとした場合の結果を示す。 FIG. 136 is a diagram showing a change in the frequency temperature coefficient TCF when the thickness of the Al film that is the fourth electrode layer 24 is changed in the seventh embodiment. SiO 2 has a positive frequency temperature coefficient TCF. LiNbO 3 has a negative frequency temperature coefficient. LiNbO 3 frequency temperature coefficient TCF of the boundary acoustic wave device formed by laminating a SiO 2 substrate indicates the negative value of the intermediate of SiO 2 film and the LiNbO 3 substrate. As is apparent from FIG. 136, it can be seen that the absolute value of the frequency temperature coefficient TCF tends to increase as the thickness of the Al film as the fourth electrode layer 24 increases. When a part of SiO 2 or the like is replaced with Al, the absolute value of the frequency temperature coefficient TCF is increased. 136 shows that the Pt film thickness is 0.03λ, the ratio of the upper Pt film to the total Pt film thickness = 1, and the film thickness of the Al film = 0 on the LiNbO 3 substrate with a cut angle of 24 ° and a Y cut. shown .10λ, SiO 2 film having a thickness = 0.50λ, results in the case of a film thickness = 1.7Ramuda of the SiN film.
 図136に示すように、第4の電極層24であるAl膜の厚みを厚くしていくと、周波数温度係数TCFが若干劣化することがわかる。例えば、第4の電極層24であるAl膜の膜厚が0.1λの場合、周波数温度係数TCFが第4の電極層24であるAl膜を形成しなかった場合に比べて約2ppm/℃劣化していることがわかる。もっとも、表現を代えると、第4の電極層24であるAl膜の膜厚が0.1λ以下であれば、周波数温度係数TCFの劣化は2ppm/℃以内とすることができる。従って、周波数温度係数TCFをさほど劣化させることなく、電気機械結合係数などの他の特性を高め、さらにストンリー波スプリアスを効果的に抑圧し得ることがわかる。よって、より好ましくは、第4の電極層24であるAl膜の膜厚は、0.1λ以下とすることが望ましい。 As shown in FIG. 136, it can be seen that the frequency temperature coefficient TCF slightly deteriorates as the thickness of the Al film as the fourth electrode layer 24 is increased. For example, when the film thickness of the Al film as the fourth electrode layer 24 is 0.1λ, the frequency temperature coefficient TCF is about 2 ppm / ° C. compared to the case where the Al film as the fourth electrode layer 24 is not formed. It turns out that it has deteriorated. However, in other words, if the thickness of the Al film as the fourth electrode layer 24 is 0.1λ or less, the deterioration of the frequency temperature coefficient TCF can be within 2 ppm / ° C. Therefore, it can be seen that other characteristics such as the electromechanical coupling coefficient can be enhanced and Stoneley wave spurious can be effectively suppressed without significantly degrading the frequency temperature coefficient TCF. Therefore, more preferably, the thickness of the Al film that is the fourth electrode layer 24 is set to 0.1λ or less.
 また、第6の実施形態において、IDT電極20と、第1の媒質11との間に、例えば、Taなどの酸化タンタルからなる誘電体層14が形成されていてもよい。 In the sixth embodiment, a dielectric layer 14 made of tantalum oxide such as Ta 2 O 5 may be formed between the IDT electrode 20 and the first medium 11.
 誘電体層14の厚みは、耐サージ性を高める上では、ある程度厚い方が望ましいが、誘電体層14の厚みが厚すぎると、電気機械結合係数が低下するおそれがある。従って、誘電体層14の厚みは、0.03λ以下程度とすることが好ましい。また、誘電体層14の誘電率が大きいほど電気機械結合係数の低下は抑えられる。従って、誘電体層14としては、誘電率の高い材料が望ましい。 The thickness of the dielectric layer 14 is desirably thick to some extent in order to improve surge resistance, but if the thickness of the dielectric layer 14 is too thick, the electromechanical coupling coefficient may be reduced. Therefore, the thickness of the dielectric layer 14 is preferably about 0.03λ or less. In addition, a decrease in the electromechanical coupling coefficient is suppressed as the dielectric constant of the dielectric layer 14 is increased. Therefore, a material having a high dielectric constant is desirable for the dielectric layer 14.
 このような耐サージ性を高めるための誘電体層14を構成する材料としては、酸化タンタルに限らず、誘電率が10程度以上の様々な誘電体材料を用いることができる。すなわち、好ましくは、誘電体層14は、このような誘電率を有する、酸化タンタル、酸化チタン、酸化アルミニウムからなる群から選択された1種の誘電体材料により形成することが望ましい。特に好ましくは、誘電率が高く、絶縁抵抗が高められるため、酸化タンタルを用いることが望ましい。 The material constituting the dielectric layer 14 for improving the surge resistance is not limited to tantalum oxide, and various dielectric materials having a dielectric constant of about 10 or more can be used. That is, preferably, the dielectric layer 14 is formed of one kind of dielectric material selected from the group consisting of tantalum oxide, titanium oxide, and aluminum oxide having such a dielectric constant. It is particularly preferable to use tantalum oxide because of its high dielectric constant and high insulation resistance.
 第4の電極層24であるAl膜を最上部に積層する構造においても、第4の電極層24であるAl膜の下面側にTi膜やNiCr膜を積層し、金属の拡散を防止したり、金属膜間の密着性を高めたりしてもよい。なお、これらの他の金属膜の厚みは、電気的特性に影響を与えないためには、さほど厚くないことが好ましく、例えば20nm以下程度のごく薄い厚みとすることが望ましい。 Even in the structure in which the Al film as the fourth electrode layer 24 is laminated on the top, a Ti film or NiCr film is laminated on the lower surface side of the Al film as the fourth electrode layer 24 to prevent metal diffusion. The adhesion between the metal films may be increased. Note that the thickness of these other metal films is preferably not so large as not to affect the electrical characteristics, and is preferably as thin as, for example, about 20 nm or less.
 さらに、積層金属膜内において、Al膜は複数のAl膜に分割されていてもよい。例えば、Al膜自体が複数のAl膜を積層した構造を有していてもよい。 Furthermore, in the laminated metal film, the Al film may be divided into a plurality of Al films. For example, the Al film itself may have a structure in which a plurality of Al films are stacked.
 また、Al膜及びPt膜は、AlやPtを主体とする合金により形成されていてもよい。 Further, the Al film and the Pt film may be formed of an alloy mainly composed of Al or Pt.
1…弾性境界波装置
11…第1の媒質
12…第2の媒質
13…第3の媒質
14…誘電体層
20…IDT電極
21…第1の電極層
22…第2の電極層
23…第3の電極層
24…第4の電極層
22a、22b、25a~25d…層
DESCRIPTION OF SYMBOLS 1 ... Elastic boundary wave apparatus 11 ... 1st medium 12 ... 2nd medium 13 ... 3rd medium 14 ... Dielectric layer 20 ... IDT electrode 21 ... 1st electrode layer 22 ... 2nd electrode layer 23 ... 1st 3 electrode layer 24 ... 4th electrode layer 22a, 22b, 25a-25d ... layer

Claims (15)

  1.  圧電体からなる第1の媒質と、
     前記第1の媒質の上に形成されており、誘電体からなる第2の媒質と、
     前記第2の媒質の上に形成されており、誘電体からなる第3の媒質と、
     前記第1の媒質と、前記第2の媒質との境界に形成されているIDT電極とを備え、
     前記第2の媒質の音速が、前記第1及び第3の媒質の音速よりも遅い弾性境界波装置であって、
     前記IDT電極は、前記第1の媒質の上に形成されている第1の電極層と、前記第1の電極層の上に形成されている第2の電極層と、前記第2の電極層の上に形成されている第3の電極層とを有し、
     前記第2の電極層の密度は、前記第1及び第3の電極層の密度よりも低く、
     前記第1の電極層の厚みをh1、前記第3の電極層の厚みをh3としたときに、0.55<h3/(h1+h3)<0.95を満たす、弾性境界波装置。
    A first medium made of a piezoelectric body;
    A second medium formed on the first medium and made of a dielectric;
    A third medium formed on the second medium and made of a dielectric;
    An IDT electrode formed at a boundary between the first medium and the second medium;
    A boundary acoustic wave device in which the sound speed of the second medium is slower than the sound speed of the first and third media,
    The IDT electrode includes a first electrode layer formed on the first medium, a second electrode layer formed on the first electrode layer, and the second electrode layer. A third electrode layer formed on the substrate,
    The density of the second electrode layer is lower than the density of the first and third electrode layers,
    A boundary acoustic wave device satisfying 0.55 <h3 / (h1 + h3) <0.95, where h1 is the thickness of the first electrode layer and h3 is the thickness of the third electrode layer.
  2.  0.70<h3/(h1+h3)<0.95を満たす、請求項1に記載の弾性境界波装置。 The boundary acoustic wave device according to claim 1, wherein 0.70 <h3 / (h1 + h3) <0.95 is satisfied.
  3.  前記第2の電極層の厚みをh2、前記IDT電極のピッチで定められる弾性境界波の波長をλとしたときに、0.05<h2/λ<0.25を満たす、請求項1または2に記載の弾性境界波装置。 The thickness of the second electrode layer is h2, and the boundary acoustic wave wavelength determined by the pitch of the IDT electrode is λ, and 0.05 <h2 / λ <0.25 is satisfied. A boundary acoustic wave device according to claim 1.
  4.  前記第2の媒質の厚みをH、前記IDT電極のピッチで定められる弾性境界波の波長をλとしたときに、0.3<H/λ<0.7を満たす、請求項1~3のいずれか一項に記載の弾性境界波装置。 4. The relationship of 0.3 <H / λ <0.7 is satisfied, where H is the thickness of the second medium, and λ is the wavelength of the boundary acoustic wave defined by the pitch of the IDT electrodes. The boundary acoustic wave apparatus as described in any one of Claims.
  5.  前記第1及び第3の電極層のそれぞれが、Au,Pt,W,Ta,Ag及びCuからなる群から選ばれた金属またはAu,Pt,W,Ta,Ag及びCuからなる群から選ばれた一種以上の金属を主成分とする合金からなる、請求項1~4のいずれか一項に記載の弾性境界波装置。 Each of the first and third electrode layers is selected from a metal selected from the group consisting of Au, Pt, W, Ta, Ag and Cu or from a group consisting of Au, Pt, W, Ta, Ag and Cu. The boundary acoustic wave device according to any one of claims 1 to 4, wherein the boundary acoustic wave device is made of an alloy mainly composed of one or more metals.
  6.  前記第2の電極層が、Al,Ti,Mg,Cr,Fe,Ni,Ag及びCuからなる群から選ばれた金属またはAl,Ti,Mg,Cr,Fe,Ni,Ag及びCuからなる群から選ばれた一種以上の金属を主成分とする合金からなる、請求項1~5のいずれか一項に記載の弾性境界波装置。 The second electrode layer is a metal selected from the group consisting of Al, Ti, Mg, Cr, Fe, Ni, Ag and Cu, or a group consisting of Al, Ti, Mg, Cr, Fe, Ni, Ag and Cu. 6. The boundary acoustic wave device according to claim 1, wherein the boundary acoustic wave device is made of an alloy mainly composed of one or more metals selected from the group consisting of:
  7.  前記第1及び第3の電極層のそれぞれがPtまたはPtを主成分とする合金からなり、前記第2の電極層がAlまたはAlを主成分とする合金からなる、請求項1~6のいずれか一項に記載の弾性境界波装置。 Each of the first and third electrode layers is made of Pt or an alloy containing Pt as a main component, and the second electrode layer is made of Al or an alloy containing Al as a main component. A boundary acoustic wave device according to claim 1.
  8.  前記第2の媒質が酸化ケイ素からなる、請求項1~7のいずれか一項に記載の弾性境界波装置。 The boundary acoustic wave device according to any one of claims 1 to 7, wherein the second medium is made of silicon oxide.
  9.  前記第1の媒質がLiNbOからなる、請求項1~8のいずれか一項に記載の弾性境界波装置。 The boundary acoustic wave device according to any one of claims 1 to 8, wherein the first medium is made of LiNbO 3 .
  10.  前記第1の媒質が、0°~37°回転YカットLiNbO基板からなり、SH型の弾性境界波を用いる、請求項1~9のいずれか一項に記載の弾性境界波装置。 10. The boundary acoustic wave device according to claim 1, wherein the first medium is made of a 0 ° -37 ° rotated Y-cut LiNbO 3 substrate and uses an SH type boundary acoustic wave.
  11.  前記第3の媒質が、ケイ素、窒化ケイ素、炭化ケイ素、酸化アルミニウムまたは窒化アルミニウムからなる、請求項1~10のいずれか一項に記載の弾性境界波装置。 The boundary acoustic wave device according to any one of claims 1 to 10, wherein the third medium is made of silicon, silicon nitride, silicon carbide, aluminum oxide, or aluminum nitride.
  12.  前記第3の媒質が窒化ケイ素からなる、請求項1~11のいずれか一項に記載の弾性境界波装置。 The boundary acoustic wave device according to any one of claims 1 to 11, wherein the third medium is made of silicon nitride.
  13.  前記第1の媒質と前記IDT電極との間に形成されている誘電体層をさらに備える、請求項1~12のいずれか一項に記載の弾性境界波装置。 The boundary acoustic wave device according to any one of Claims 1 to 12, further comprising a dielectric layer formed between the first medium and the IDT electrode.
  14.  前記第1の媒質がLiNbO基板からなり、
     前記第1及び第3の電極層のそれぞれがPtからなり、前記第2の電極層がAlからなり、
     前記第2の媒質がSiO膜からなり、
     (h1+h3)、h3/(h1+h3)、h2、H、及び前記LiNbO基板のカット角が、下記の第1~第3のグループのいずれかの組み合わせとされている、請求項1に記載の弾性境界波装置。
     (第1のグループ)
     (a1)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.55~0.575、h2が、0.07λ~0.09λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、21.5°~27°
     (a2)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.55~0.575、h2が、0.07λ~0.09λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、23°~30.5°
     (a3)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.55~0.575、h2が、0.07λ~0.09λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、23.5°~30°
     (a4)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.55~0.575、h2が、0.09λ~0.11λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、21.5°~27.5°
     (a5)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.55~0.575、h2が、0.09λ~0.11λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、23°~30°
     (a6)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.55~0.575、h2が、0.09λ~0.11λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、23.5°~29.5°
     (a7)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.55~0.575、h2が、0.11λ~0.13λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、21.5°~27.5°
     (a8)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.55~0.575、h2が、0.11λ~0.13λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、23°~30°
     (a9)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.55~0.575、h2が、0.11λ~0.13λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、23.5°~29°
     (a10)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.55~0.575、h2が、0.07λ~0.09λ、Hが、0.425λ~0.475λのとき、LiNbO3のカット角が、23°~28.5°
     (a11)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.55~0.575、h2が、0.07λ~0.09λ、Hが、0.425λ~0.475λのとき、LiNbO3のカット角が、24°~31°
     (a12)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.55~0.575、h2が、0.07λ~0.09λ、Hが、0.425λ~0.475λのとき、LiNbO3のカット角が、23.5°~30°
     (a13)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.55~0.575、h2が、0.09λ~0.11λ、Hが、0.425λ~0.475λのとき、LiNbO3のカット角が、23°~29°
     (a14)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.55~0.575、h2が、0.09λ~0.11λ、Hが、0.425λ~0.475λのとき、LiNbO3のカット角が、23.5°~31°
     (a15)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.55~0.575、h2が、0.09λ~0.11λ、Hが、0.425λ~0.475λのとき、LiNbO3のカット角が、23.5°~29°
     (a16)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.55~0.575、h2が、0.11λ~0.13λ、Hが、0.425λ~0.475λのとき、LiNbO3のカット角が、23°~29.5°
     (a17)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.55~0.575、h2が、0.11λ~0.13λ、Hが、0.425λ~0.475λのとき、LiNbO3のカット角が、23.5°~30.5°
     (a18)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.55~0.575、h2が、0.11λ~0.13λ、Hが、0.425λ~0.475λのとき、LiNbO3のカット角が、23.5°~28.5°
     (a19)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.55~0.575、h2が、0.07λ~0.09λ、Hが、0.475λ~0.525λのとき、LiNbO3のカット角が、24°~30°
     (a20)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.55~0.575、h2が、0.07λ~0.09λ、Hが、0.475λ~0.525λのとき、LiNbO3のカット角が、24°~31.5°
     (a21)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.55~0.575、h2が、0.07λ~0.09λ、Hが、0.475λ~0.525λのとき、LiNbO3のカット角が、23°~30°
     (a22)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.55~0.575、h2が、0.09λ~0.11λ、Hが、0.475λ~0.525λのとき、LiNbO3のカット角が、24°~30.5°
     (a23)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.55~0.575、h2が、0.09λ~0.11λ、Hが、0.475λ~0.525λのとき、LiNbO3のカット角が、24°~31°
     (a24)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.55~0.575、h2が、0.09λ~0.11λ、Hが、0.475λ~0.525λのとき、LiNbO3のカット角が、23.5°~29°
     (a25)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.55~0.575、h2が、0.11λ~0.13λ、Hが、0.475λ~0.525λのとき、LiNbO3のカット角が、23.5°~30.5°
     (a26)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.55~0.575、h2が、0.11λ~0.13λ、Hが、0.475λ~0.525λのとき、LiNbO3のカット角が、23.5°~30.5°
     (a27)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.55~0.575、h2が、0.11λ~0.13λ、Hが、0.475λ~0.525λのとき、LiNbO3のカット角が、23°~28°
     (第2のグループ)
     (c1)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.725~0.775、h2が、0.05λ~0.07λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、22°~28.5°
     (c2)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.725~0.775、h2が、0.05λ~0.07λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、23.5°~30°
     (c3)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.725~0.775、h2が、0.05λ~0.07λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、23.5°~28°
     (c4)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.725~0.775、h2が、0.07λ~0.09λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、22.5°~29°
     (c5)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.725~0.775、h2が、0.07λ~0.09λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、24°~29.5°
     (c6)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.725~0.775、h2が、0.07λ~0.09λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、24.5°~26.5°
     (c7)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.725~0.775、h2が、0.09λ~0.11λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、23°~29°
     (c8)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.725~0.775、h2が、0.09λ~0.11λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、24.5°~29°
     (c9)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.725~0.775、h2が、0.09λ~0.11λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、23.5°~26.5°
     (c10)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.775~0.825、h2が、0.05λ~0.07λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、22.5°~28.5°
     (c11)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.775~0.825、h2が、0.05λ~0.07λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、23.5°~30°
     (c12)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.775~0.825、h2が、0.05λ~0.07λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、23.5°~27°
     (c13)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.775~0.825、h2が、0.07λ~0.09λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、23°~29°
     (c14)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.775~0.825、h2が、0.07λ~0.09λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、24°~29°
     (c15)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.775~0.825、h2が、0.07λ~0.09λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、23.5°~26°
     (c16)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.775~0.825、h2が、0.09λ~0.11λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、23°~29.5°
     (c17)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.775~0.825、h2が、0.09λ~0.11λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、25°~28.5°
     (c18)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.775~0.825、h2が、0.09λ~0.11λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、22°~26.5°
     (c19)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.825~0.875、h2が、0.05λ~0.07λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、23°~29°
     (c20)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.825~0.875、h2が、0.05λ~0.07λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、24°~29.5°
     (c21)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.825~0.875、h2が、0.05λ~0.07λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、24°~26.5°
     (c22)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.825~0.875、h2が、0.07λ~0.09λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、23°~29.5°
     (c23)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.825~0.875、h2が、0.07λ~0.09λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、24.5°~28.5°
     (c24)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.825~0.875、h2が、0.07λ~0.09λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、22.5°~26°
     (c25)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.825~0.875、h2が、0.09λ~0.11λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、23.5°~29.5°
     (c26)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.825~0.875、h2が、0.09λ~0.11λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、24.5°~27°
     (c27)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.825~0.875、h2が、0.09λ~0.11λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、21°~27°
     (c28)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.725~0.775、h2が、0.05λ~0.07λ、Hが、0.425λ~0.475λのとき、LiNbO3のカット角が、23.5°~30°
     (c29)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.725~0.775、h2が、0.05λ~0.07λ、Hが、0.425λ~0.475λのとき、LiNbO3のカット角が、24°~30.5°
     (c30)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.725~0.775、h2が、0.05λ~0.07λ、Hが、0.425λ~0.475λのとき、LiNbO3のカット角が、23.5°~28°
     (c31)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.725~0.775、h2が、0.07λ~0.09λ、Hが、0.425λ~0.475λのとき、LiNbO3のカット角が、23.5°~30°
     (c32)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.725~0.775、h2が、0.07λ~0.09λ、Hが、0.425λ~0.475λのとき、LiNbO3のカット角が、24°~29.5°
     (c33)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.725~0.775、h2が、0.07λ~0.09λ、Hが、0.425λ~0.475λのとき、LiNbO3のカット角が、24°~25.5°
     (c34)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.725~0.775、h2が、0.09λ~0.11λ、Hが、0.425λ~0.475λのとき、LiNbO3のカット角が、23.5°~30°
     (c35)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.725~0.775、h2が、0.09λ~0.11λ、Hが、0.425λ~0.475λのとき、LiNbO3のカット角が、24°~28.5°
     (c36)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.725~0.775、h2が、0.09λ~0.11λ、Hが、0.425λ~0.475λのとき、LiNbO3のカット角が、22°~26°
     (c37)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.775~0.825、h2が、0.05λ~0.07λ、Hが、0.425λ~0.475λのとき、LiNbO3のカット角が、23.5°~30°
     (c38)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.775~0.825、h2が、0.05λ~0.07λ、Hが、0.425λ~0.475λのとき、LiNbO3のカット角が、23.5°~30°
     (c39)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.775~0.825、h2が、0.05λ~0.07λ、Hが、0.425λ~0.475λのとき、LiNbO3のカット角が、23.5°~27°
     (c40)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.775~0.825、h2が、0.07λ~0.09λ、Hが、0.425λ~0.475λのとき、LiNbO3のカット角が、23.5°~30°
     (c41)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.775~0.825、h2が、0.07λ~0.09λ、Hが、0.425λ~0.475λのとき、LiNbO3のカット角が、24°~29°
     (c42)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.775~0.825、h2が、0.07λ~0.09λ、Hが、0.425λ~0.475λのとき、LiNbO3のカット角が、22.5°~25.5°
     (c43)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.775~0.825、h2が、0.09λ~0.11λ、Hが、0.425λ~0.475λのとき、LiNbO3のカット角が、24°~30°
     (c44)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.775~0.825、h2が、0.09λ~0.11λ、Hが、0.425λ~0.475λのとき、LiNbO3のカット角が、25°~27°
     (c45)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.775~0.825、h2が、0.09λ~0.11λ、Hが、0.425λ~0.475λのとき、LiNbO3のカット角が、20.5°~26°
     (c46)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.825~0.875、h2が、0.05λ~0.07λ、Hが、0.425λ~0.475λのとき、LiNbO3のカット角が、23.5°~30°
     (c47)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.825~0.875、h2が、0.05λ~0.07λ、Hが、0.425λ~0.475λのとき、LiNbO3のカット角が、24°~29.5°
     (c48)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.825~0.875、h2が、0.05λ~0.07λ、Hが、0.425λ~0.475λのとき、LiNbO3のカット角が、24°~25.5°
     (c49)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.825~0.875、h2が、0.07λ~0.09λ、Hが、0.425λ~0.475λのとき、LiNbO3のカット角が、23.5°~30°
     (c50)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.825~0.875、h2が、0.07λ~0.09λ、Hが、0.425λ~0.475λのとき、LiNbO3のカット角が、24.5°~28°
     (c51)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.825~0.875、h2が、0.07λ~0.09λ、Hが、0.425λ~0.475λのとき、LiNbO3のカット角が、21°~25.5°
     (c52)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.825~0.875、h2が、0.09λ~0.11λ、Hが、0.425λ~0.475λのとき、LiNbO3のカット角が、24°~30°
     (c53)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.825~0.875、h2が、0.09λ~0.11λ、Hが、0.425λ~0.475λのとき、LiNbO3のカット角が、24°~26.5°
     (c54)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.825~0.875、h2が、0.09λ~0.11λ、Hが、0.425λ~0.475λのとき、LiNbO3のカット角が、19.5°~25.5°
     (c55)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.725~0.775、h2が、0.05λ~0.07λ、Hが、0.475λ~0.525λのとき、LiNbO3のカット角が、24°~31°
     (c56)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.725~0.775、h2が、0.05λ~0.07λ、Hが、0.475λ~0.525λのとき、LiNbO3のカット角が、24°~31°
     (c57)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.725~0.775、h2が、0.05λ~0.07λ、Hが、0.475λ~0.525λのとき、LiNbO3のカット角が、23°~27.5°
     (c58)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.725~0.775、h2が、0.07λ~0.09λ、Hが、0.475λ~0.525λのとき、LiNbO3のカット角が、24°~3°
     (c59)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.725~0.775、h2が、0.07λ~0.09λ、Hが、0.475λ~0.525λのとき、LiNbO3のカット角が、24°~29°
     (c60)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.725~0.775、h2が、0.07λ~0.09λ、Hが、0.475λ~0.525λのとき、LiNbO3のカット角が、23°~26.5°
     (c61)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.725~0.775、h2が、0.09λ~0.11λ、Hが、0.475λ~0.525λのとき、LiNbO3のカット角が、24°~30.5°
     (c62)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.725~0.775、h2が、0.09λ~0.11λ、Hが、0.475λ~0.525λのとき、LiNbO3のカット角が、24°~27.5°
     (c63)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.725~0.775、h2が、0.09λ~0.11λ、Hが、0.475λ~0.525λのとき、LiNbO3のカット角が、20.5°~25°
     (c64)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.775~0.825、h2が、0.05λ~0.07λ、Hが、0.475λ~0.525λのとき、LiNbO3のカット角が、24°~31°
     (c65)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.775~0.825、h2が、0.05λ~0.07λ、Hが、0.475λ~0.525λのとき、LiNbO3のカット角が、24°~30°
     (c66)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.775~0.825、h2が、0.05λ~0.07λ、Hが、0.475λ~0.525λのとき、LiNbO3のカット角が、23°~26.5°
     (c67)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.775~0.825、h2が、0.07λ~0.09λ、Hが、0.475λ~0.525λのとき、LiNbO3のカット角が、24°~31°
     (c68)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.775~0.825、h2が、0.07λ~0.09λ、Hが、0.475λ~0.525λのとき、LiNbO3のカット角が、24°~28.5°
     (c69)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.775~0.825、h2が、0.07λ~0.09λ、Hが、0.475λ~0.525λのとき、LiNbO3のカット角が、21.5°~25°
     (c70)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.775~0.825、h2が、0.09λ~0.11λ、Hが、0.475λ~0.525λのとき、LiNbO3のカット角が、24°~30°
     (c71)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.775~0.825、h2が、0.09λ~0.11λ、Hが、0.475λ~0.525λのとき、LiNbO3のカット角が、22°~26°
     (c72)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.775~0.825、h2が、0.09λ~0.11λ、Hが、0.475λ~0.525λのとき、LiNbO3のカット角が、19°~25°
     (c73)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.825~0.875、h2が、0.05λ~0.07λ、Hが、0.475λ~0.525λのとき、LiNbO3のカット角が、24°~31°
     (c74)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.825~0.875、h2が、0.05λ~0.07λ、Hが、0.475λ~0.525λのとき、LiNbO3のカット角が、24°~29.5°
     (c75)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.825~0.875、h2が、0.05λ~0.07λ、Hが、0.475λ~0.525λのとき、LiNbO3のカット角が、23.5°~26°
     (c76)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.825~0.875、h2が、0.07λ~0.09λ、Hが、0.475λ~0.525λのとき、LiNbO3のカット角が、24°~30.5°
     (c77)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.825~0.875、h2が、0.07λ~0.09λ、Hが、0.475λ~0.525λのとき、LiNbO3のカット角が、24°~27°
     (c78)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.825~0.875、h2が、0.07λ~0.09λ、Hが、0.475λ~0.525λのとき、LiNbO3のカット角が、20°~25°
     (c79)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.825~0.875、h2が、0.09λ~0.11λ、Hが、0.475λ~0.525λのとき、LiNbO3のカット角が、24.5°~30°
     (c80)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.825~0.875、h2が、0.09λ~0.11λ、Hが、0.475λ~0.525λのとき、LiNbO3のカット角が、23°~26°
     (c81)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.825~0.875、h2が、0.09λ~0.11λ、Hが、0.475λ~0.525λのとき、LiNbO3のカット角が、18°~24.5°
     (第3のグループ)
     (d1)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.775~0.825、h2が、0.07λ~0.09λ、Hが、0.275λ~0.325λのとき、LiNbO3のカット角が、19.5°~25°
     (d2)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.775~0.825、h2が、0.07λ~0.09λ、Hが、0.275λ~0.325λのとき、LiNbO3のカット角が、23.5°~29.5°
     (d3)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.775~0.825、h2が、0.07λ~0.09λ、Hが、0.275λ~0.325λのとき、LiNbO3のカット角が、25.5°~28.5°
     (d4)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.775~0.825、h2が、0.09λ~0.11λ、Hが、0.275λ~0.325λのとき、LiNbO3のカット角が、19°~25°
     (d5)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.775~0.825、h2が、0.09λ~0.11λ、Hが、0.275λ~0.325λのとき、LiNbO3のカット角が、23.5°~29.5°
     (d6)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.775~0.825、h2が、0.09λ~0.11λ、Hが、0.275λ~0.325λのとき、LiNbO3のカット角が、25.5°~28°
     (d7)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.775~0.825、h2が、0.11λ~0.13λ、Hが、0.275λ~0.325λのとき、LiNbO3のカット角が、18.5°~24°
     (d8)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.775~0.825、h2が、0.11λ~0.13λ、Hが、0.275λ~0.325λのとき、LiNbO3のカット角が、23.5°~29.5°
     (d9)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.775~0.825、h2が、0.11λ~0.13λ、Hが、0.275λ~0.325λのとき、LiNbO3のカット角が、27°~29°
     (d10)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.825~0.875、h2が、0.07λ~0.09λ、Hが、0.275λ~0.325λのとき、LiNbO3のカット角が、20°~26°
     (d11)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.825~0.875、h2が、0.07λ~0.09λ、Hが、0.275λ~0.325λのとき、LiNbO3のカット角が、24°~29.5°
     (d12)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.825~0.875、h2が、0.07λ~0.09λ、Hが、0.275λ~0.325λのとき、LiNbO3のカット角が、25°~27.5°
     (d13)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.825~0.875、h2が、0.09λ~0.11λ、Hが、0.275λ~0.325λのとき、LiNbO3のカット角が、20°~26°
     (d14)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.825~0.875、h2が、0.09λ~0.11λ、Hが、0.275λ~0.325λのとき、LiNbO3のカット角が、24.5°~30°
     (d15)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.825~0.875、h2が、0.09λ~0.11λ、Hが、0.275λ~0.325λのとき、LiNbO3のカット角が、26°~29.5°
     (d16)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.825~0.875、h2が、0.11λ~0.13λ、Hが、0.275λ~0.325λのとき、LiNbO3のカット角が、19.5°~25.5°
     (d17)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.825~0.875、h2が、0.11λ~0.13λ、Hが、0.275λ~0.325λのとき、LiNbO3のカット角が、25°~30°
     (d18)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.825~0.875、h2が、0.11λ~0.13λ、Hが、0.275λ~0.325λのとき、LiNbO3のカット角が、26°~31°
     (d19)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.875~0.925、h2が、0.07λ~0.09λ、Hが、0.275λ~0.325λのとき、LiNbO3のカット角が、20.5°~21.5°
     (d20)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.875~0.925、h2が、0.07λ~0.09λ、Hが、0.275λ~0.325λのとき、LiNbO3のカット角が、25°~30°
     (d21)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.875~0.925、h2が、0.07λ~0.09λ、Hが、0.275λ~0.325λのとき、LiNbO3のカット角が、25.5°~29°
     (d22)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.875~0.925、h2が、0.09λ~0.11λ、Hが、0.275λ~0.325λのとき、LiNbO3のカット角が、21°~27°
     (d23)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.875~0.925、h2が、0.09λ~0.11λ、Hが、0.275λ~0.325λのとき、LiNbO3のカット角が、26°~30°
     (d24)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.875~0.925、h2が、0.09λ~0.11λ、Hが、0.275λ~0.325λのとき、LiNbO3のカット角が、25°~30.5°
     (d25)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.875~0.925、h2が、0.11λ~0.13λ、Hが、0.275λ~0.325λのとき、LiNbO3のカット角が、21°~26.5°
     (d26)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.875~0.925、h2が、0.11λ~0.13λ、Hが、0.275λ~0.325λのとき、LiNbO3のカット角が、26.5°~30°
     (d27)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.875~0.925、h2が、0.11λ~0.13λ、Hが、0.275λ~0.325λのとき、LiNbO3のカット角が、25.5°~32°
     (d28)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.775~0.825、h2が、0.07λ~0.09λ、Hが、0.325λ~0.375λのとき、LiNbO3のカット角が、21.5°~28°
     (d29)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.775~0.825、h2が、0.07λ~0.09λ、Hが、0.325λ~0.375λのとき、LiNbO3のカット角が、24°~29.5°
     (d30)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.775~0.825、h2が、0.07λ~0.09λ、Hが、0.325λ~0.375λのとき、LiNbO3のカット角が、25.5°~26.5°
     (d31)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.775~0.825、h2が、0.09λ~0.11λ、Hが、0.325λ~0.375λのとき、LiNbO3のカット角が、21.5°~28°
     (d32)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.775~0.825、h2が、0.09λ~0.11λ、Hが、0.325λ~0.375λのとき、LiNbO3のカット角が、24.5°~29.5°
     (d33)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.775~0.825、h2が、0.09λ~0.11λ、Hが、0.325λ~0.375λのとき、LiNbO3のカット角が、24°~28°
     (d34)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.775~0.825、h2が、0.11λ~0.13λ、Hが、0.325λ~0.375λのとき、LiNbO3のカット角が、22°~28°
     (d35)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.775~0.825、h2が、0.11λ~0.13λ、Hが、0.325λ~0.375λのとき、LiNbO3のカット角が、25.5°~29°
     (d36)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.775~0.825、h2が、0.11λ~0.13λ、Hが、0.325λ~0.375λのとき、LiNbO3のカット角が、23.5°~28.5°
     (d37)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.825~0.875、h2が、0.07λ~0.09λ、Hが、0.325λ~0.375λのとき、LiNbO3のカット角が、22°~28.5°
     (d38)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.825~0.875、h2が、0.07λ~0.09λ、Hが、0.325λ~0.375λのとき、LiNbO3のカット角が、24.5°~29.5°
     (d39)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.825~0.875、h2が、0.07λ~0.09λ、Hが、0.325λ~0.375λのとき、LiNbO3のカット角が、24°~27°
     (d40)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.825~0.875、h2が、0.09λ~0.11λ、Hが、0.325λ~0.375λのとき、LiNbO3のカット角が、22.5°~28.5°
     (d41)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.825~0.875、h2が、0.09λ~0.11λ、Hが、0.325λ~0.375λのとき、LiNbO3のカット角が、25°~29°
     (d42)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.825~0.875、h2が、0.09λ~0.11λ、Hが、0.325λ~0.375λのとき、LiNbO3のカット角が、23°~28.5°
     (d43)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.825~0.875、h2が、0.11λ~0.13λ、Hが、0.325λ~0.375λのとき、LiNbO3のカット角が、23°~29°
     (d44)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.825~0.875、h2が、0.11λ~0.13λ、Hが、0.325λ~0.375λのとき、LiNbO3のカット角が、25°~28°
     (d45)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.825~0.875、h2が、0.11λ~0.13λ、Hが、0.325λ~0.375λのとき、LiNbO3のカット角が、23°~29.5°
     (d46)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.875~0.925、h2が、0.07λ~0.09λ、Hが、0.325λ~0.375λのとき、LiNbO3のカット角が、22.5°~29°
     (d47)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.875~0.925、h2が、0.07λ~0.09λ、Hが、0.325λ~0.375λのとき、LiNbO3のカット角が、25°~29°
     (d48)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.875~0.925、h2が、0.07λ~0.09λ、Hが、0.325λ~0.375λのとき、LiNbO3のカット角が、23°~28°
     (d49)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.875~0.925、h2が、0.09λ~0.11λ、Hが、0.325λ~0.375λのとき、LiNbO3のカット角が、23.5°~29°
     (d50)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.875~0.925、h2が、0.09λ~0.11λ、Hが、0.325λ~0.375λのとき、LiNbO3のカット角が、25°~28°
     (d51)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.875~0.925、h2が、0.09λ~0.11λ、Hが、0.325λ~0.375λのとき、LiNbO3のカット角が、22°~28.5°
     (d52)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.875~0.925、h2が、0.11λ~0.13λ、Hが、0.325λ~0.375λのとき、LiNbO3のカット角が、24°~29.5°
     (d53)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.875~0.925、h2が、0.11λ~0.13λ、Hが、0.325λ~0.375λのとき、LiNbO3のカット角が、26°~30°
     (d54)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.875~0.925、h2が、0.11λ~0.13λ、Hが、0.325λ~0.375λのとき、LiNbO3のカット角が、22°~30°
     (d55)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.775~0.825、h2が、0.07λ~0.09λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、22.5°~29°
     (d56)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.775~0.825、h2が、0.07λ~0.09λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、24°~29°
     (d57)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.775~0.825、h2が、0.07λ~0.09λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、23.5°~26°
     (d58)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.775~0.825、h2が、0.09λ~0.11λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、23°~29.5°
     (d59)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.775~0.825、h2が、0.09λ~0.11λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、25°~28.5°
     (d60)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.775~0.825、h2が、0.09λ~0.11λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、22°~27°
     (d61)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.775~0.825、h2が、0.11λ~0.13λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、23.5°~29.5°
     (d62)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.775~0.825、h2が、0.11λ~0.13λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、25°~28°
     (d63)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.775~0.825、h2が、0.11λ~0.13λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、21°~27.5°
     (d64)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.825~0.875、h2が、0.07λ~0.09λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、23°~29.5°
     (d65)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.825~0.875、h2が、0.07λ~0.09λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、24.5°~28.5°
     (d66)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.825~0.875、h2が、0.07λ~0.09λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、22.5°~26.5°
     (d67)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.825~0.875、h2が、0.09λ~0.11λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、23.5°~29.5°
     (d68)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.825~0.875、h2が、0.09λ~0.11λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、24.5°~28.5°
     (d69)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.825~0.875、h2が、0.09λ~0.11λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、21°~27°
     (d70)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.825~0.875、h2が、0.11λ~0.13λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、24°~30°
     (d71)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.825~0.875、h2が、0.11λ~0.13λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、24°~28°
     (d72)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.825~0.875、h2が、0.11λ~0.13λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、20°~27.5°
     (d73)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.875~0.925、h2が、0.07λ~0.09λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、23.5°~29.5°
     (d74)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.875~0.925、h2が、0.07λ~0.09λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、25°~28°
     (d75)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.875~0.925、h2が、0.07λ~0.09λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、21.5°~26.5°
     (d76)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.875~0.925、h2が、0.09λ~0.11λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、24°~29.5°
     (d77)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.875~0.925、h2が、0.09λ~0.11λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、24.5°~28°
     (d78)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.875~0.925、h2が、0.09λ~0.11λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、20°~27°
     (d79)h1+h3が、0.0175λ~0.0225λ、h3/(h1+h3)が、0.875~0.925、h2が、0.11λ~0.13λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、25°~29.5°
     (d80)h1+h3が、0.0225λ~0.0275λ、h3/(h1+h3)が、0.875~0.925、h2が、0.11λ~0.13λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、23.5°~29°
     (d81)h1+h3が、0.0275λ~0.0325λ、h3/(h1+h3)が、0.875~0.925、h2が、0.11λ~0.13λ、Hが、0.375λ~0.425λのとき、LiNbO3のカット角が、19°~27.5°
    The first medium comprises a LiNbO 3 substrate;
    Each of the first and third electrode layers is made of Pt, the second electrode layer is made of Al,
    The second medium is made of a SiO 2 film;
    The elasticity according to claim 1, wherein the cut angles of (h1 + h3), h3 / (h1 + h3), h2, H, and the LiNbO 3 substrate are any combination of the following first to third groups. Boundary wave device.
    (First group)
    (A1) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.55 to 0.575, h2 is 0.07λ to 0.09λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 21.5 ° ~ 27 °
    (A2) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.55 to 0.575, h2 is 0.07λ to 0.09λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 23 ° ~ 30.5 °
    (A3) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.55 to 0.575, h2 is 0.07λ to 0.09λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 23.5 ° -30 °
    (A4) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.55 to 0.575, h2 is 0.09λ to 0.11λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 21.5 ° ~ 27.5 °
    (A5) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.55 to 0.575, h2 is 0.09λ to 0.11λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 23 ° -30 °
    (A6) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.55 to 0.575, h2 is 0.09λ to 0.11λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 23.5 ° ~ 29.5 °
    (A7) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.55 to 0.575, h2 is 0.11λ to 0.13λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 21.5 ° ~ 27.5 °
    (A8) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.55 to 0.575, h2 is 0.11λ to 0.13λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 23 ° -30 °
    (A9) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.55 to 0.575, h2 is 0.11λ to 0.13λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 23.5 ° -29 °
    (A10) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.55 to 0.575, h2 is 0.07λ to 0.09λ, and H is 0.425λ to 0.475λ, LiNbO 3 Cut angle is 23 ° ~ 28.5 °
    (A11) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.55 to 0.575, h2 is 0.07λ to 0.09λ, and H is 0.425λ to 0.475λ, LiNbO 3 Cut angle is 24 ° ~ 31 °
    (A12) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.55 to 0.575, h2 is 0.07λ to 0.09λ, and H is 0.425λ to 0.475λ, LiNbO 3 Cut angle is 23.5 ° -30 °
    (A13) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.55 to 0.575, h2 is 0.09λ to 0.11λ, and H is 0.425λ to 0.475λ, LiNbO 3 Cut angle is 23 ° ~ 29 °
    (A14) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.55 to 0.575, h2 is 0.09λ to 0.11λ, and H is 0.425λ to 0.475λ, LiNbO 3 Cut angle is 23.5 ° -31 °
    (A15) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.55 to 0.575, h2 is 0.09λ to 0.11λ, and H is 0.425λ to 0.475λ, LiNbO 3 Cut angle is 23.5 ° -29 °
    (A16) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.55 to 0.575, h2 is 0.11λ to 0.13λ, and H is 0.425λ to 0.475λ, LiNbO 3 Cut angle is 23 ° ~ 29.5 °
    (A17) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.55 to 0.575, h2 is 0.11λ to 0.13λ, and H is 0.425λ to 0.475λ, LiNbO 3 Cut angle is 23.5 ° ~ 30.5 °
    (A18) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.55 to 0.575, h2 is 0.11λ to 0.13λ, and H is 0.425λ to 0.475λ, LiNbO 3 Cut angle is 23.5 ° ~ 28.5 °
    (A19) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.55 to 0.575, h2 is 0.07λ to 0.09λ, and H is 0.475λ to 0.525λ, LiNbO 3 Cut angle is 24 ° -30 °
    (A20) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.55 to 0.575, h2 is 0.07λ to 0.09λ, and H is 0.475λ to 0.525λ, LiNbO 3 Cut angle is 24 ° ~ 31.5 °
    (A21) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.55 to 0.575, h2 is 0.07λ to 0.09λ, and H is 0.475λ to 0.525λ, LiNbO 3 Cut angle is 23 ° -30 °
    (A22) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.55 to 0.575, h2 is 0.09λ to 0.11λ, and H is 0.475λ to 0.525λ, LiNbO 3 Cut angle is 24 ° ~ 30.5 °
    (A23) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.55 to 0.575, h2 is 0.09λ to 0.11λ, and H is 0.475λ to 0.525λ, LiNbO 3 Cut angle is 24 ° ~ 31 °
    (A24) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.55 to 0.575, h2 is 0.09λ to 0.11λ, and H is 0.475λ to 0.525λ, LiNbO 3 Cut angle is 23.5 ° -29 °
    (A25) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.55 to 0.575, h2 is 0.11λ to 0.13λ, and H is 0.475λ to 0.525λ, LiNbO 3 Cut angle is 23.5 ° ~ 30.5 °
    (A26) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.55 to 0.575, h2 is 0.11λ to 0.13λ, and H is 0.475λ to 0.525λ, LiNbO 3 Cut angle is 23.5 ° ~ 30.5 °
    (A27) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.55 to 0.575, h2 is 0.11λ to 0.13λ, and H is 0.475λ to 0.525λ, LiNbO 3 Cut angle is 23 ° ~ 28 °
    (Second group)
    (C1) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.725 to 0.775, h2 is 0.05λ to 0.07λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 22 ° ~ 28.5 °
    (C2) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.725 to 0.775, h2 is 0.05λ to 0.07λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 23.5 ° -30 °
    (C3) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.725 to 0.775, h2 is 0.05λ to 0.07λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 23.5 ° -28 °
    (C4) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.725 to 0.775, h2 is 0.07λ to 0.09λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 22.5 ° -29 °
    (C5) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.725 to 0.775, h2 is 0.07λ to 0.09λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 24 ° ~ 29.5 °
    (C6) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.725 to 0.775, h2 is 0.07λ to 0.09λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 24.5 ° ~ 26.5 °
    (C7) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.725 to 0.775, h2 is 0.09λ to 0.11λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 23 ° ~ 29 °
    (C8) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.725 to 0.775, h2 is 0.09λ to 0.11λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 24.5 ° -29 °
    (C9) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.725 to 0.775, h2 is 0.09λ to 0.11λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 23.5 ° ~ 26.5 °
    (C10) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.05λ to 0.07λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 22.5 ° ~ 28.5 °
    (C11) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.05λ to 0.07λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 23.5 ° -30 °
    (C12) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.05λ to 0.07λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 23.5 ° -27 °
    (C13) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.07λ to 0.09λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 23 ° ~ 29 °
    (C14) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.07λ to 0.09λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 24 ° ~ 29 °
    (C15) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.07λ to 0.09λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 23.5 ° -26 °
    (C16) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.09λ to 0.11λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 23 ° ~ 29.5 °
    (C17) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.09λ to 0.11λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 25 ° ~ 28.5 °
    (C18) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.09λ to 0.11λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 22 ° ~ 26.5 °
    (C19) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.05λ to 0.07λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 23 ° ~ 29 °
    (C20) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.05λ to 0.07λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 24 ° ~ 29.5 °
    (C21) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.05λ to 0.07λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 24 ° ~ 26.5 °
    (C22) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.07λ to 0.09λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 23 ° ~ 29.5 °
    (C23) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.07λ to 0.09λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 24.5 ° ~ 28.5 °
    (C24) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.07λ to 0.09λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 22.5 ° -26 °
    (C25) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.09λ to 0.11λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 23.5 ° ~ 29.5 °
    (C26) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.09λ to 0.11λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 24.5 ° -27 °
    (C27) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.09λ to 0.11λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 21 ° ~ 27 °
    (C28) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.725 to 0.775, h2 is 0.05λ to 0.07λ, and H is 0.425λ to 0.475λ, LiNbO 3 Cut angle is 23.5 ° -30 °
    (C29) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.725 to 0.775, h2 is 0.05λ to 0.07λ, and H is 0.425λ to 0.475λ, LiNbO 3 Cut angle is 24 ° ~ 30.5 °
    (C30) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.725 to 0.775, h2 is 0.05λ to 0.07λ, and H is 0.425λ to 0.475λ, LiNbO 3 Cut angle is 23.5 ° -28 °
    (C31) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.725 to 0.775, h2 is 0.07λ to 0.09λ, and H is 0.425λ to 0.475λ, LiNbO 3 Cut angle is 23.5 ° -30 °
    (C32) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.725 to 0.775, h2 is 0.07λ to 0.09λ, and H is 0.425λ to 0.475λ, LiNbO 3 Cut angle is 24 ° ~ 29.5 °
    (C33) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.725 to 0.775, h2 is 0.07λ to 0.09λ, and H is 0.425λ to 0.475λ, LiNbO 3 Cut angle is 24 ° ~ 25.5 °
    (C34) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.725 to 0.775, h2 is 0.09λ to 0.11λ, and H is 0.425λ to 0.475λ, LiNbO 3 Cut angle is 23.5 ° -30 °
    (C35) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.725 to 0.775, h2 is 0.09λ to 0.11λ, and H is 0.425λ to 0.475λ, LiNbO 3 Cut angle is 24 ° ~ 28.5 °
    (C36) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.725 to 0.775, h2 is 0.09λ to 0.11λ, and H is 0.425λ to 0.475λ, LiNbO 3 Cut angle is 22 ° ~ 26 °
    (C37) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.05λ to 0.07λ, and H is 0.425λ to 0.475λ, LiNbO 3 Cut angle is 23.5 ° -30 °
    (C38) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.05λ to 0.07λ, and H is 0.425λ to 0.475λ, LiNbO 3 Cut angle is 23.5 ° -30 °
    (C39) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.05λ to 0.07λ, and H is 0.425λ to 0.475λ, LiNbO 3 Cut angle is 23.5 ° -27 °
    (C40) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.07λ to 0.09λ, and H is 0.425λ to 0.475λ, LiNbO 3 Cut angle is 23.5 ° -30 °
    (C41) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.07λ to 0.09λ, and H is 0.425λ to 0.475λ, LiNbO 3 Cut angle is 24 ° ~ 29 °
    (C42) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.07λ to 0.09λ, and H is 0.425λ to 0.475λ, LiNbO 3 Cut angle is 22.5 ° ~ 25.5 °
    (C43) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.09λ to 0.11λ, and H is 0.425λ to 0.475λ, LiNbO 3 Cut angle is 24 ° -30 °
    (C44) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.09λ to 0.11λ, and H is 0.425λ to 0.475λ, LiNbO 3 Cut angle is 25 ° ~ 27 °
    (C45) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.09λ to 0.11λ, and H is 0.425λ to 0.475λ, LiNbO 3 Cut angle is 20.5 ° -26 °
    (C46) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.05λ to 0.07λ, and H is 0.425λ to 0.475λ, LiNbO 3 Cut angle is 23.5 ° -30 °
    (C47) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.05λ to 0.07λ, and H is 0.425λ to 0.475λ, LiNbO 3 Cut angle is 24 ° ~ 29.5 °
    (C48) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.05λ to 0.07λ, and H is 0.425λ to 0.475λ, LiNbO 3 Cut angle is 24 ° ~ 25.5 °
    (C49) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.07λ to 0.09λ, and H is 0.425λ to 0.475λ, LiNbO 3 Cut angle is 23.5 ° -30 °
    (C50) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.07λ to 0.09λ, and H is 0.425λ to 0.475λ, LiNbO 3 Cut angle is 24.5 ° -28 °
    (C51) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.07λ to 0.09λ, and H is 0.425λ to 0.475λ, LiNbO 3 Cut angle is 21 ° ~ 25.5 °
    (C52) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.09λ to 0.11λ, and H is 0.425λ to 0.475λ, LiNbO 3 Cut angle is 24 ° -30 °
    (C53) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.09λ to 0.11λ, and H is 0.425λ to 0.475λ, LiNbO 3 Cut angle is 24 ° ~ 26.5 °
    (C54) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.09λ to 0.11λ, and H is 0.425λ to 0.475λ, LiNbO 3 Cut angle is 19.5 ° ~ 25.5 °
    (C55) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.725 to 0.775, h2 is 0.05λ to 0.07λ, and H is 0.475λ to 0.525λ, LiNbO 3 Cut angle is 24 ° ~ 31 °
    (C56) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.725 to 0.775, h2 is 0.05λ to 0.07λ, and H is 0.475λ to 0.525λ, LiNbO 3 Cut angle is 24 ° ~ 31 °
    (C57) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.725 to 0.775, h2 is 0.05λ to 0.07λ, and H is 0.475λ to 0.525λ, LiNbO 3 Cut angle is 23 ° -27.5 °
    (C58) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.725 to 0.775, h2 is 0.07λ to 0.09λ, and H is 0.475λ to 0.525λ, LiNbO 3 Cut angle is 24 ° ~ 3 °
    (C59) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.725 to 0.775, h2 is 0.07λ to 0.09λ, and H is 0.475λ to 0.525λ, LiNbO 3 Cut angle is 24 ° ~ 29 °
    (C60) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.725 to 0.775, h2 is 0.07λ to 0.09λ, and H is 0.475λ to 0.525λ, LiNbO 3 Cut angle is 23 ° ~ 26.5 °
    (C61) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.725 to 0.775, h2 is 0.09λ to 0.11λ, and H is 0.475λ to 0.525λ, LiNbO 3 Cut angle is 24 ° ~ 30.5 °
    (C62) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.725 to 0.775, h2 is 0.09λ to 0.11λ, and H is 0.475λ to 0.525λ, LiNbO 3 Cut angle is 24 ° ~ 27.5 °
    (C63) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.725 to 0.775, h2 is 0.09λ to 0.11λ, and H is 0.475λ to 0.525λ, LiNbO 3 Cut angle is 20.5 ° -25 °
    (C64) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.05λ to 0.07λ, and H is 0.475λ to 0.525λ, LiNbO 3 Cut angle is 24 ° ~ 31 °
    (C65) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.05λ to 0.07λ, and H is 0.475λ to 0.525λ, LiNbO 3 Cut angle is 24 ° -30 °
    (C66) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.05λ to 0.07λ, and H is 0.475λ to 0.525λ, LiNbO 3 Cut angle is 23 ° ~ 26.5 °
    (C67) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.07λ to 0.09λ, and H is 0.475λ to 0.525λ, LiNbO 3 Cut angle is 24 ° ~ 31 °
    (C68) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.07λ to 0.09λ, and H is 0.475λ to 0.525λ, LiNbO 3 Cut angle is 24 ° ~ 28.5 °
    (C69) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.07λ to 0.09λ, and H is 0.475λ to 0.525λ, LiNbO 3 Cut angle is 21.5 ° -25 °
    (C70) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.09λ to 0.11λ, and H is 0.475λ to 0.525λ, LiNbO 3 Cut angle is 24 ° -30 °
    (C71) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.09λ to 0.11λ, and H is 0.475λ to 0.525λ, LiNbO 3 Cut angle is 22 ° ~ 26 °
    (C72) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.09λ to 0.11λ, and H is 0.475λ to 0.525λ, LiNbO 3 Cut angle is 19 ° ~ 25 °
    (C73) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.05λ to 0.07λ, and H is 0.475λ to 0.525λ, LiNbO 3 Cut angle is 24 ° ~ 31 °
    (C74) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.05λ to 0.07λ, and H is 0.475λ to 0.525λ, LiNbO 3 Cut angle is 24 ° ~ 29.5 °
    (C75) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.05λ to 0.07λ, and H is 0.475λ to 0.525λ, LiNbO 3 Cut angle is 23.5 ° -26 °
    (C76) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.07λ to 0.09λ, and H is 0.475λ to 0.525λ, LiNbO 3 Cut angle is 24 ° ~ 30.5 °
    (C77) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.07λ to 0.09λ, and H is 0.475λ to 0.525λ, LiNbO 3 Cut angle is 24 ° ~ 27 °
    (C78) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.07λ to 0.09λ, and H is 0.475λ to 0.525λ, LiNbO 3 Cut angle is 20 ° ~ 25 °
    (C79) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.09λ to 0.11λ, and H is 0.475λ to 0.525λ, LiNbO 3 Cut angle is 24.5 ° -30 °
    (C80) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.09λ to 0.11λ, and H is 0.475λ to 0.525λ, LiNbO 3 Cut angle is 23 ° ~ 26 °
    (C81) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.09λ to 0.11λ, and H is 0.475λ to 0.525λ, LiNbO 3 Cut angle is 18 ° ~ 24.5 °
    (Third group)
    (D1) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.07λ to 0.09λ, and H is 0.275λ to 0.325λ, LiNbO 3 Cutting angle is 19.5 ° -25 °
    (D2) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.07λ to 0.09λ, and H is 0.275λ to 0.325λ, LiNbO 3 Cut angle is 23.5 ° ~ 29.5 °
    (D3) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.07λ to 0.09λ, and H is 0.275λ to 0.325λ, LiNbO 3 Cut angle is 25.5 ° ~ 28.5 °
    (D4) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.09λ to 0.11λ, and H is 0.275λ to 0.325λ, LiNbO 3 Cut angle is 19 ° ~ 25 °
    (D5) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.09λ to 0.11λ, and H is 0.275λ to 0.325λ, LiNbO 3 Cut angle is 23.5 ° ~ 29.5 °
    (D6) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.09λ to 0.11λ, and H is 0.275λ to 0.325λ, LiNbO 3 Cut angle is 25.5 ° -28 °
    (D7) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.11λ to 0.13λ, and H is 0.275λ to 0.325λ, LiNbO 3 Cut angle is 18.5 ° -24 °
    (D8) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.11λ to 0.13λ, and H is 0.275λ to 0.325λ, LiNbO 3 Cut angle is 23.5 ° ~ 29.5 °
    (D9) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.11λ to 0.13λ, and H is 0.275λ to 0.325λ, LiNbO 3 Cut angle is 27 ° ~ 29 °
    (D10) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.07λ to 0.09λ, and H is 0.275λ to 0.325λ, LiNbO 3 Cut angle is 20 ° ~ 26 °
    (D11) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.07λ to 0.09λ, and H is 0.275λ to 0.325λ, LiNbO 3 Cut angle is 24 ° ~ 29.5 °
    (D12) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.07λ to 0.09λ, and H is 0.275λ to 0.325λ, LiNbO 3 Cut angle is 25 ° ~ 27.5 °
    (D13) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.09λ to 0.11λ, and H is 0.275λ to 0.325λ, LiNbO 3 Cut angle is 20 ° ~ 26 °
    (D14) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.09λ to 0.11λ, and H is 0.275λ to 0.325λ, LiNbO 3 Cut angle is 24.5 ° -30 °
    (D15) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.09λ to 0.11λ, and H is 0.275λ to 0.325λ, LiNbO 3 Cut angle is 26 ° ~ 29.5 °
    (D16) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.11λ to 0.13λ, and H is 0.275λ to 0.325λ, LiNbO 3 Cut angle is 19.5 ° ~ 25.5 °
    (D17) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.11λ to 0.13λ, and H is 0.275λ to 0.325λ, LiNbO 3 Cut angle is 25 ° -30 °
    (D18) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.11λ to 0.13λ, and H is 0.275λ to 0.325λ, LiNbO 3 Cut angle is 26 ° ~ 31 °
    (D19) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.875 to 0.925, h2 is 0.07λ to 0.09λ, and H is 0.275λ to 0.325λ, LiNbO 3 Cut angle is 20.5 ° ~ 21.5 °
    (D20) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.875 to 0.925, h2 is 0.07λ to 0.09λ, and H is 0.275λ to 0.325λ, LiNbO 3 Cut angle is 25 ° -30 °
    (D21) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.875 to 0.925, h2 is 0.07λ to 0.09λ, and H is 0.275λ to 0.325λ, LiNbO 3 Cut angle is 25.5 ° -29 °
    (D22) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.875 to 0.925, h2 is 0.09λ to 0.11λ, and H is 0.275λ to 0.325λ, LiNbO 3 Cut angle is 21 ° ~ 27 °
    (D23) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.875 to 0.925, h2 is 0.09λ to 0.11λ, and H is 0.275λ to 0.325λ, LiNbO 3 Cut angle is 26 ° -30 °
    (D24) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.875 to 0.925, h2 is 0.09λ to 0.11λ, and H is 0.275λ to 0.325λ, LiNbO 3 Cut angle is 25 ° ~ 30.5 °
    (D25) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.875 to 0.925, h2 is 0.11λ to 0.13λ, and H is 0.275λ to 0.325λ, LiNbO 3 Cut angle is 21 ° ~ 26.5 °
    (D26) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.875 to 0.925, h2 is 0.11λ to 0.13λ, and H is 0.275λ to 0.325λ, LiNbO 3 Cut angle is 26.5 ° -30 °
    (D27) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.875 to 0.925, h2 is 0.11λ to 0.13λ, and H is 0.275λ to 0.325λ, LiNbO 3 Cut angle is 25.5 ° ~ 32 °
    (D28) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.07λ to 0.09λ, and H is 0.325λ to 0.375λ, LiNbO 3 Cut angle is 21.5 ° -28 °
    (D29) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.07λ to 0.09λ, and H is 0.325λ to 0.375λ, LiNbO 3 Cut angle is 24 ° ~ 29.5 °
    (D30) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.07λ to 0.09λ, and H is 0.325λ to 0.375λ, LiNbO 3 Cut angle is 25.5 ° ~ 26.5 °
    (D31) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.09λ to 0.11λ, and H is 0.325λ to 0.375λ, LiNbO 3 Cut angle is 21.5 ° -28 °
    (D32) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.09λ to 0.11λ, and H is 0.325λ to 0.375λ, LiNbO 3 Cut angle is 24.5 ° ~ 29.5 °
    (D33) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.09λ to 0.11λ, and H is 0.325λ to 0.375λ, LiNbO 3 Cut angle is 24 ° ~ 28 °
    (D34) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.11λ to 0.13λ, and H is 0.325λ to 0.375λ, LiNbO 3 Cut angle is 22 ° -28 °
    (D35) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.11λ to 0.13λ, and H is 0.325λ to 0.375λ, LiNbO 3 Cut angle is 25.5 ° -29 °
    (D36) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.11λ to 0.13λ, and H is 0.325λ to 0.375λ, LiNbO 3 Cut angle is 23.5 ° ~ 28.5 °
    (D37) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.07λ to 0.09λ, and H is 0.325λ to 0.375λ, LiNbO 3 Cut angle is 22 ° ~ 28.5 °
    (D38) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.07λ to 0.09λ, and H is 0.325λ to 0.375λ, LiNbO 3 Cut angle is 24.5 ° ~ 29.5 °
    (D39) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.07λ to 0.09λ, and H is 0.325λ to 0.375λ, LiNbO 3 Cut angle is 24 ° ~ 27 °
    (D40) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.09λ to 0.11λ, and H is 0.325λ to 0.375λ, LiNbO 3 Cut angle is 22.5 ° ~ 28.5 °
    (D41) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.09λ to 0.11λ, and H is 0.325λ to 0.375λ, LiNbO 3 Cut angle is 25 ° ~ 29 °
    (D42) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.09λ to 0.11λ, and H is 0.325λ to 0.375λ, LiNbO 3 Cut angle is 23 ° ~ 28.5 °
    (D43) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.11λ to 0.13λ, and H is 0.325λ to 0.375λ, LiNbO 3 Cut angle is 23 ° ~ 29 °
    (D44) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.11λ to 0.13λ, and H is 0.325λ to 0.375λ, LiNbO 3 Cut angle is 25 ° to 28 °
    (D45) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.11λ to 0.13λ, and H is 0.325λ to 0.375λ, LiNbO 3 Cut angle is 23 ° ~ 29.5 °
    (D46) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.875 to 0.925, h2 is 0.07λ to 0.09λ, and H is 0.325λ to 0.375λ, LiNbO 3 Cut angle is 22.5 ° -29 °
    (D47) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.875 to 0.925, h2 is 0.07λ to 0.09λ, and H is 0.325λ to 0.375λ, LiNbO 3 Cut angle is 25 ° ~ 29 °
    (D48) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.875 to 0.925, h2 is 0.07λ to 0.09λ, and H is 0.325λ to 0.375λ, LiNbO 3 Cut angle is 23 ° ~ 28 °
    (D49) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.875 to 0.925, h2 is 0.09λ to 0.11λ, and H is 0.325λ to 0.375λ, LiNbO 3 Cut angle is 23.5 ° -29 °
    (D50) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.875 to 0.925, h2 is 0.09λ to 0.11λ, and H is 0.325λ to 0.375λ, LiNbO 3 Cut angle is 25 ° to 28 °
    (D51) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.875 to 0.925, h2 is 0.09λ to 0.11λ, and H is 0.325λ to 0.375λ, LiNbO 3 Cut angle is 22 ° ~ 28.5 °
    (D52) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.875 to 0.925, h2 is 0.11λ to 0.13λ, and H is 0.325λ to 0.375λ, LiNbO 3 Cut angle is 24 ° ~ 29.5 °
    (D53) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.875 to 0.925, h2 is 0.11λ to 0.13λ, and H is 0.325λ to 0.375λ, LiNbO 3 Cut angle is 26 ° -30 °
    (D54) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.875 to 0.925, h2 is 0.11λ to 0.13λ, and H is 0.325λ to 0.375λ, LiNbO 3 Cut angle is 22 ° -30 °
    (D55) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.07λ to 0.09λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 22.5 ° -29 °
    (D56) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.07λ to 0.09λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 24 ° ~ 29 °
    (D57) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.07λ to 0.09λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 23.5 ° -26 °
    (D58) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.09λ to 0.11λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 23 ° ~ 29.5 °
    (D59) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.09λ to 0.11λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 25 ° ~ 28.5 °
    (D60) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.09λ to 0.11λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 22 ° ~ 27 °
    (D61) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.11λ to 0.13λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 23.5 ° ~ 29.5 °
    (D62) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.11λ to 0.13λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 25 ° to 28 °
    (D63) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.775 to 0.825, h2 is 0.11λ to 0.13λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 21 ° ~ 27.5 °
    (D64) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.07λ to 0.09λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 23 ° ~ 29.5 °
    (D65) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.07λ to 0.09λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 24.5 ° ~ 28.5 °
    (D66) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.07λ to 0.09λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 22.5 ° ~ 26.5 °
    (D67) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.09λ to 0.11λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 23.5 ° ~ 29.5 °
    (D68) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.09λ to 0.11λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 24.5 ° ~ 28.5 °
    (D69) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.09λ to 0.11λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 21 ° ~ 27 °
    (D70) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.11λ to 0.13λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 24 ° -30 °
    (D71) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.11λ to 0.13λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 24 ° ~ 28 °
    (D72) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.825 to 0.875, h2 is 0.11λ to 0.13λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 20 ° ~ 27.5 °
    (D73) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.875 to 0.925, h2 is 0.07λ to 0.09λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 23.5 ° ~ 29.5 °
    (D74) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.875 to 0.925, h2 is 0.07λ to 0.09λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 25 ° to 28 °
    (D75) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.875 to 0.925, h2 is 0.07λ to 0.09λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 21.5 ° ~ 26.5 °
    (D76) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.875 to 0.925, h2 is 0.09λ to 0.11λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 24 ° ~ 29.5 °
    (D77) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.875 to 0.925, h2 is 0.09λ to 0.11λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 24.5 ° -28 °
    (D78) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.875 to 0.925, h2 is 0.09λ to 0.11λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 20 ° ~ 27 °
    (D79) When h1 + h3 is 0.0175λ to 0.0225λ, h3 / (h1 + h3) is 0.875 to 0.925, h2 is 0.11λ to 0.13λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 25 ° ~ 29.5 °
    (D80) When h1 + h3 is 0.0225λ to 0.0275λ, h3 / (h1 + h3) is 0.875 to 0.925, h2 is 0.11λ to 0.13λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 23.5 ° -29 °
    (D81) When h1 + h3 is 0.0275λ to 0.0325λ, h3 / (h1 + h3) is 0.875 to 0.925, h2 is 0.11λ to 0.13λ, and H is 0.375λ to 0.425λ, LiNbO 3 Cut angle is 19 ° ~ 27.5 °
  15.  請求項1~14のいずれか一項に記載の弾性境界波装置の製造方法であって、
     前記第2の媒質の厚みを調整することにより周波数特性を調整した後に前記第3の媒質を形成する、弾性境界波装置の製造方法。
    A method for manufacturing a boundary acoustic wave device according to any one of claims 1 to 14,
    A method for manufacturing a boundary acoustic wave device, wherein the third medium is formed after adjusting the frequency characteristics by adjusting the thickness of the second medium.
PCT/JP2010/058183 2009-05-15 2010-05-14 Boundary acoustic wave device and method for manufacturing same WO2010131736A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011513384A JP5136689B2 (en) 2009-05-15 2010-05-14 Boundary acoustic wave device and manufacturing method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009118377 2009-05-15
JP2009-118377 2009-05-15
JP2009226520 2009-09-30
JP2009-226520 2009-09-30

Publications (1)

Publication Number Publication Date
WO2010131736A1 true WO2010131736A1 (en) 2010-11-18

Family

ID=43085109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/058183 WO2010131736A1 (en) 2009-05-15 2010-05-14 Boundary acoustic wave device and method for manufacturing same

Country Status (2)

Country Link
JP (1) JP5136689B2 (en)
WO (1) WO2010131736A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6922931B2 (en) * 2016-12-05 2021-08-18 株式会社村田製作所 Surface acoustic wave device, high frequency front end circuit and communication device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005093949A1 (en) * 2004-03-29 2005-10-06 Murata Manufacturing Co., Ltd. Boundary acoustic wave device manufacturing method and boundary acoustic wave device
WO2006114930A1 (en) * 2005-04-25 2006-11-02 Murata Manufacturing Co., Ltd. Boundary acoustic wave device
JP2008067289A (en) * 2006-09-11 2008-03-21 Fujitsu Media Device Kk Surface acoustic wave device and filter
WO2008108215A1 (en) * 2007-03-06 2008-09-12 Murata Manufacturing Co., Ltd. Elastic boundary wave device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005093949A1 (en) * 2004-03-29 2005-10-06 Murata Manufacturing Co., Ltd. Boundary acoustic wave device manufacturing method and boundary acoustic wave device
WO2006114930A1 (en) * 2005-04-25 2006-11-02 Murata Manufacturing Co., Ltd. Boundary acoustic wave device
JP2008067289A (en) * 2006-09-11 2008-03-21 Fujitsu Media Device Kk Surface acoustic wave device and filter
WO2008108215A1 (en) * 2007-03-06 2008-09-12 Murata Manufacturing Co., Ltd. Elastic boundary wave device

Also Published As

Publication number Publication date
JPWO2010131736A1 (en) 2012-11-08
JP5136689B2 (en) 2013-02-06

Similar Documents

Publication Publication Date Title
JP5910763B2 (en) Elastic wave device
JP5850137B2 (en) Elastic wave device and manufacturing method thereof
US7569972B2 (en) Surface acoustic wave device
JP2004112748A (en) Surface acoustic wave apparatus and manufacturing method therefor
US7876020B2 (en) Boundary acoustic wave device including idt electrodes including a plurality of conductive layers with different densities
JP4715922B2 (en) Boundary acoustic wave device
JP2004254291A (en) Acoustic surface wave device
WO2011132443A1 (en) Surface acoustic wave device and manufacturing method of same
JPWO2011158445A1 (en) Elastic wave element
WO2016047255A1 (en) Elastic wave device
JP2010193429A (en) Acoustic wave device
WO2006126327A1 (en) Boundary acoustic wave device
CN108141198B (en) Elastic wave device
WO2020204045A1 (en) High-order mode surface acoustic wave device
WO2018095311A1 (en) Surface acoustic wave device
JPWO2010116783A1 (en) Elastic wave device
JP5110091B2 (en) Surface acoustic wave device
JP5321678B2 (en) Surface acoustic wave device
JP5136689B2 (en) Boundary acoustic wave device and manufacturing method thereof
JP2006254507A (en) Surface acoustic wave device and manufacturing method therefor
JP5136690B2 (en) Boundary acoustic wave device
JP5299521B2 (en) Boundary acoustic wave device
JP2012169760A (en) Surface acoustic wave device
WO2021172032A1 (en) Acoustic wave device
JP2012129735A (en) Surface acoustic wave device and magnetic sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10774993

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011513384

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10774993

Country of ref document: EP

Kind code of ref document: A1