WO2010131586A1 - Blast furnace blower - Google Patents

Blast furnace blower Download PDF

Info

Publication number
WO2010131586A1
WO2010131586A1 PCT/JP2010/057664 JP2010057664W WO2010131586A1 WO 2010131586 A1 WO2010131586 A1 WO 2010131586A1 JP 2010057664 W JP2010057664 W JP 2010057664W WO 2010131586 A1 WO2010131586 A1 WO 2010131586A1
Authority
WO
WIPO (PCT)
Prior art keywords
blast furnace
oxygen
enriched air
furnace blower
oxidation
Prior art date
Application number
PCT/JP2010/057664
Other languages
French (fr)
Japanese (ja)
Inventor
修二 石原
修一郎 小野
幸光 沢井
Original Assignee
三井造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井造船株式会社 filed Critical 三井造船株式会社
Publication of WO2010131586A1 publication Critical patent/WO2010131586A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/02Selection of particular materials
    • F04D29/023Selection of particular materials especially adapted for elastic fluid pumps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/16Tuyéres
    • C21B7/163Blowpipe assembly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/321Rotors specially for elastic fluids for axial flow pumps for axial flow compressors
    • F04D29/324Blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/10Details, accessories, or equipment peculiar to furnaces of these types
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D7/00Forming, maintaining, or circulating atmospheres in heating chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/17Alloys
    • F05D2300/171Steel alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/20Oxide or non-oxide ceramics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/611Coating

Definitions

  • the present invention relates to a blast furnace blower that blows oxygen-enriched air to a blast furnace, and more particularly to a structure of an axial compressor used as such a blast furnace blower.
  • the air blown into the blast furnace has been conventionally produced by supplying oxygen from the oxygen compressor to the air discharged from the blast furnace blower.
  • oxygen is supplied to the air discharged from the blast furnace blower, it is necessary to increase the pressure of oxygen discharged from the oxygen compressor above the discharge pressure of the blast furnace blower. It required a lot of effort.
  • oxygen is supplied from the air separation device to the air sucked into the blast furnace blower, and the oxygen-enriched air is compressed in the blast furnace blower and blown from the discharge side to the blast furnace. The method is taken.
  • the blast furnace blower is oxygen-enriched by moving blades provided in a rotor rotating in the casing and stationary blades provided in the casing in order to blow oxygen-enriched air to the blast furnace. It is necessary to compress the air. However, when air with an oxygen enrichment rate exceeding 5% is compressed in a blast furnace blower, it is said that an ignition phenomenon may occur, and air with an oxygen enrichment rate exceeding 5% can be blown into the blast furnace. There wasn't. For this reason, a blast furnace blower that safely supplies air having an oxygen enrichment rate exceeding 5% to the blast furnace is required.
  • Patent Document 1 it has been proposed to supply an oxygen enrichment rate exceeding 5% to the blast furnace by providing oxygen supply lines on both the suction side and the discharge side of the blast furnace blower.
  • FIG. 3 shows the results of measuring the hardness when a low alloy steel member is exposed to an atmosphere of 400 ° C. and an oxygen concentration of 21% to 50% for 100 hours.
  • the inside of the low-alloy steel member marked with a circle in the figure
  • the surface portion of the low-alloy steel member marked with a diamond in the figure
  • the present invention has been made to solve such conventional problems, and suppresses the oxidation of the low alloy steel member used in the oxygen-enriched air, thereby suppressing the strength reduction associated therewith.
  • An object of the present invention is to provide a blast furnace blower.
  • the present invention provides: A blast furnace blower that sucks oxygen-enriched air and blows it into a blast furnace, A low alloy steel member used in the oxygen-enriched air; and an oxidation / ignition suppression layer made of at least one of non-ferrous metal and ceramics formed on a surface of the low alloy steel member.
  • a blast furnace blower characterized by the above is provided.
  • a plurality of rotor blades are fixed in the circumferential direction of the rotary shaft member and have a rotor that rotates.
  • the oxidation / ignition suppression layer is preferably formed on the surface of the rotating shaft member exposed in the oxygen-enriched air.
  • the oxidation of the low alloy steel member used in the oxygen-enriched air can be suppressed, and the strength reduction associated therewith can be suppressed.
  • FIG. 1 It is a partially broken perspective sectional view showing composition of a blast furnace blower concerning one embodiment of the present invention. It is a fragmentary sectional view showing the structure of the rotor shown in FIG. It is a figure of an example which shows the intensity
  • FIG. 1 shows a configuration of a blast furnace blower 10 according to an embodiment of the present invention.
  • the blast furnace blower 10 is an axial flow compressor that sucks oxygen-enriched air and blows it into the blast furnace, and the casing 12 in which oxygen-enriched air flows and the casing 12 is rotatably provided. And a rotor 14.
  • the casing 12 includes a casing body 16 having a cylindrical shape, and a plurality of stationary blades 18 fixed on the inner peripheral surface of the casing body 16.
  • the casing body 16 has an inner peripheral surface that is reduced in diameter in the axial direction, and oxygen-enriched air flows through the inside (in the direction of the arrow x).
  • the stationary blades 18 have a cross-sectional shape similar to that of an airplane wing, and a plurality of stationary blades 18 are arranged on the inner peripheral surface of the casing body 16 over the entire circumference. 16 is fixed toward the central axis.
  • a plurality of stationary blades 18 fixed along the circumferential direction are arranged in a plurality of stages in the axial direction of the casing body 16.
  • the material of the casing body 16 and the stationary blade 18 is not particularly limited as long as it has strength that can withstand stress due to air resistance and has heat resistance.
  • the casing body 16 is made of carbon steel, Stainless steel is used for the stationary blade 18.
  • the rotor 14 includes a rotating shaft member 20 that is rotatably provided in the casing 12, and a plurality of moving blades 22 fixed to the rotating shaft member 20.
  • the rotary shaft member 20 is a low alloy steel member made of low alloy steel, has a cylindrical shape that expands in the axial direction, and extends on the central axis of the casing body 16 in the casing 12. It is rotated around its own axis by driving means (not shown).
  • the moving blade 22 has a cross-sectional shape similar to that of an airplane wing, and a plurality of moving blades 22 are arranged on the outer peripheral surface of the rotary shaft member 20 over the entire circumference, and each moving blade 22 is radially arranged at a constant interval. It is fixed.
  • a plurality of moving blades 22 fixed along the circumferential direction are arranged in a plurality of stages in the axial direction of the rotary shaft member 20.
  • the arrangement of the plurality of rotor blades 22 in the axial direction of the rotating shaft member 20 and the arrangement of the plurality of stationary blades 18 in the axial direction of the casing body 16 are alternately arranged in a number of stages, and oxygen-enriched air Is continuously compressed and flows in the downstream direction.
  • the shapes and directions of the plurality of stationary blades 18 and the plurality of moving blades 22 are not particularly limited as long as oxygen-enriched air can flow downstream.
  • the raw material of the moving blade 22 will not be specifically limited if it has the intensity
  • an oxidation / ignition suppression layer 24 is formed on the surface of the rotary shaft member 20.
  • the oxidation / ignition suppression layer 24 is made of at least one of a non-ferrous metal and a ceramic, and blocks the rotating shaft member 20 from oxygen-enriched air to suppress oxidation and at the same time with other members (the stationary blade 18 and the like). Suppresses sparks caused by contact.
  • the oxidation / ignition suppression layer 24 is not particularly limited as long as it is made of at least one of non-ferrous metals and ceramics and has heat resistance by suppressing oxidation and ignition, and a commercially available coating material is used. Can do.
  • nonferrous metal aluminum, tungsten, lead, zinc, gold, silver, copper, nickel, cobalt etc. can be utilized, for example.
  • ceramics for example, silica, alumina, zirconia, silicon carbide and the like can be used.
  • the rotating shaft member 20 rotates in the circumferential direction of the casing body 16, and accordingly, the plurality of moving blades 22 arranged in the axial direction of the rotating shaft member 20 also rotate.
  • An air flow is formed between the casing 12 and the rotor 14 in the blast furnace blower 10 (in the direction of the arrow x).
  • air enriched with oxygen introduced from an air separation device (not shown) is drawn from the air suction port 26 of the casing body 16 and is lifted by the moving blade 22 fixed to the rotary shaft member 20.
  • the stationary blade 18 fixed to the casing body 16 While being repeatedly compressed and rectified by the stationary blade 18 fixed to the casing body 16 (turned in the inflow angle direction of the rear moving blade 22), it is continuously compressed and flows in the downstream direction.
  • the rotary shaft member 20 which is a low alloy steel member, has an oxidation / ignition suppression layer 24 made of at least one of non-ferrous metal and ceramics formed on the surface thereof.
  • the oxidation / ignition suppression layer 24 can block oxygen and suppress the oxidation of the rotating shaft member 20.
  • the rotating shaft member 20 is a member that rotates with the rotor blades 22 and is thus in a state where stress due to centrifugal force is always applied to the coupling portion, and is susceptible to the reduction in surface strength due to oxidation. Further, by preventing oxidation of the rotary shaft member 20 on the surface by the oxidation / ignition suppression layer 24, it is possible to prevent the spread of the strength from decreasing.
  • the respective members are installed close to each other. There is a risk of ignition in an oxygen atmosphere.
  • the oxidation / ignition suppression layer 24 reduces the generation of sparks and frictional heat due to contact between the rotary shaft member 20 and other members, ignition can be suppressed.
  • the oxygen-enriched air is continuously compressed and flows downstream, and is blown from the air outlet 28 of the casing body 16 to the blast furnace.
  • the oxidation / ignition suppression layer 24 made of at least one of non-ferrous metal and ceramics on the surface of the rotary shaft member 20 which is a low alloy steel member, a decrease in strength due to oxidation is suppressed. be able to. Further, the oxidation / ignition suppression layer 24 can suppress the ignition accompanying the contact between the rotary shaft member 20 and another member, and the operation of the blast furnace blower in a high oxygen atmosphere can be performed safely.
  • the low alloy steel member is not limited to the rotary shaft member 20, and it is preferable to form an oxidation / ignition suppression layer on the surface of any other member using low alloy steel.
  • the oxidation / ignition suppression layer 24 may include a lubricant composed of a hexagonal layered crystal structure in addition to components composed of non-ferrous metals and ceramics.
  • a lubricant composed of a hexagonal layered crystal structure in addition to components composed of non-ferrous metals and ceramics.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Blast Furnaces (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Provided is a blast furnace blower in which a low alloy steel member exposed to oxygen-enriched air is prevented from being oxidized and the resultant strength reduction is prevented. An oxidization/firing prevention layer (24) consisting of at least one of a non-ferrous metal and a ceramics is formed on the surface of a low alloy steel rotating shaft member (20) constituting a rotor used in oxygen-enriched air.

Description

高炉送風機Blast furnace blower
 本発明は、酸素富化された空気を高炉に送風する高炉送風機に係り、特にこのような高炉送風機として使用される軸流圧縮機の構造に関するものである。 The present invention relates to a blast furnace blower that blows oxygen-enriched air to a blast furnace, and more particularly to a structure of an axial compressor used as such a blast furnace blower.
 高炉に送風される空気は、従来、高炉送風機から吐出される空気に酸素圧縮機から酸素を供給することで作製されていた。しかし、高炉送風機から吐出される空気に酸素を供給すると、高炉送風機の吐出圧力以上に酸素圧縮機から吐出する酸素の圧力を上げる必要があり、エネルギー量の増加とともに安全性に関わるメンテナンスに対して大きな労力を必要としていた。現在、このような問題点を解決するために、高炉送風機が吸入する空気に空気分離装置より酸素を供給し、酸素富化された空気を高炉送風機内で圧縮して吐出側から高炉に送風する方法が採られている。 The air blown into the blast furnace has been conventionally produced by supplying oxygen from the oxygen compressor to the air discharged from the blast furnace blower. However, when oxygen is supplied to the air discharged from the blast furnace blower, it is necessary to increase the pressure of oxygen discharged from the oxygen compressor above the discharge pressure of the blast furnace blower. It required a lot of effort. Currently, in order to solve such problems, oxygen is supplied from the air separation device to the air sucked into the blast furnace blower, and the oxygen-enriched air is compressed in the blast furnace blower and blown from the discharge side to the blast furnace. The method is taken.
 ここで、高炉送風機は、酸素富化された空気を高炉に送風するために、ケーシング内で回転するロータに設けられた動翼と、ケーシング内に設けられた静翼とにより、酸素富化された空気を圧縮する必要がある。しかし、酸素富化率が5%を超える空気を高炉送風機内で圧縮すると、発火現象が生じるおそれがあるとされており、酸素富化率が5%を超える空気を高炉に送風することができなかった。このため、酸素富化率が5%を超える空気を安全に高炉に供給する高炉送風機が要求されている。 Here, the blast furnace blower is oxygen-enriched by moving blades provided in a rotor rotating in the casing and stationary blades provided in the casing in order to blow oxygen-enriched air to the blast furnace. It is necessary to compress the air. However, when air with an oxygen enrichment rate exceeding 5% is compressed in a blast furnace blower, it is said that an ignition phenomenon may occur, and air with an oxygen enrichment rate exceeding 5% can be blown into the blast furnace. There wasn't. For this reason, a blast furnace blower that safely supplies air having an oxygen enrichment rate exceeding 5% to the blast furnace is required.
 ここで、従来、高炉送風機の吸入側と吐出側の両方に酸素供給ラインを備えることで、酸素富化率が5%を超える空気を高炉に供給することが提案されている(特許文献1)。 Here, conventionally, it has been proposed to supply an oxygen enrichment rate exceeding 5% to the blast furnace by providing oxygen supply lines on both the suction side and the discharge side of the blast furnace blower (Patent Document 1). .
特開2006-283093号公報JP 2006-283093 A
 しかしながら、高炉送風機の吐出側に高圧酸素が要求されていることに変わりはなく、これを改善するために高炉送風機の吸入側の酸素富化率を高めると、高炉送風機内に使用される鋼製部材、特に低合金鋼製部材は酸素富化された空気に暴露されて強度の低下を引き起こすおそれがある。図3に、低合金鋼製部材を400度で酸素濃度21%~50%の雰囲気下に100時間暴露した時の硬さを測定した結果を示した。この図から明らかなように、低合金鋼製部材の内部(図中、○印)は強度に目立った変化がないものの、低合金鋼製部材の表面部(図中、◆印)は酸素濃度に応じてその強度が大きく低下する傾向があることから、低合金鋼製部材の強度低下を防ぐために酸素濃度の影響を低減することが重要であることがわかる。 However, high pressure oxygen is still required on the discharge side of the blast furnace blower. To improve this, if the oxygen enrichment rate on the suction side of the blast furnace blower is increased, the steel made in the blast furnace blower is used. Members, particularly low alloy steel members, can be exposed to oxygen-enriched air and cause a reduction in strength. FIG. 3 shows the results of measuring the hardness when a low alloy steel member is exposed to an atmosphere of 400 ° C. and an oxygen concentration of 21% to 50% for 100 hours. As is clear from this figure, the inside of the low-alloy steel member (marked with a circle in the figure) has no noticeable change in strength, but the surface portion of the low-alloy steel member (marked with a diamond in the figure) has an oxygen concentration. Therefore, it can be seen that it is important to reduce the influence of the oxygen concentration in order to prevent the strength of the low alloy steel member from being lowered.
 この発明は、このような従来の問題点を解消するためになされたもので、酸素富化された空気中で使用される低合金鋼製部材の酸化を抑制し、これに伴う強度低下を抑制した高炉送風機を提供することを目的とする。 The present invention has been made to solve such conventional problems, and suppresses the oxidation of the low alloy steel member used in the oxygen-enriched air, thereby suppressing the strength reduction associated therewith. An object of the present invention is to provide a blast furnace blower.
 上記目的を達成するために、本発明は、
 酸素富化した空気を吸入して高炉に送風する高炉送風機であって、
 前記酸素富化した空気中で使用される低合金鋼製部材と、前記低合金鋼製部材の表面上に形成された非鉄金属およびセラミックスのうち少なくとも1つから成る酸化・発火抑制層とを有することを特徴とする高炉送風機を提供するものである。
In order to achieve the above object, the present invention provides:
A blast furnace blower that sucks oxygen-enriched air and blows it into a blast furnace,
A low alloy steel member used in the oxygen-enriched air; and an oxidation / ignition suppression layer made of at least one of non-ferrous metal and ceramics formed on a surface of the low alloy steel member. A blast furnace blower characterized by the above is provided.
 さらに、前記酸素富化した空気が流れるケーシング内において、複数の動翼が回転軸部材の周方向に固定されて回転するロータを有し、
 前記酸化・発火抑制層は、前記酸素富化した空気中に露出する前記回転軸部材の表面上に形成されることが好ましい。
Further, in the casing through which the oxygen-enriched air flows, a plurality of rotor blades are fixed in the circumferential direction of the rotary shaft member and have a rotor that rotates.
The oxidation / ignition suppression layer is preferably formed on the surface of the rotating shaft member exposed in the oxygen-enriched air.
 本発明によれば、酸素富化された空気中で使用される低合金鋼製部材の酸化を抑制し、これに伴う強度低下を抑制することができる。 According to the present invention, the oxidation of the low alloy steel member used in the oxygen-enriched air can be suppressed, and the strength reduction associated therewith can be suppressed.
本発明の一実施形態に係る高炉送風機の構成を表す一部破断斜視断面図である。It is a partially broken perspective sectional view showing composition of a blast furnace blower concerning one embodiment of the present invention. 図1に示すロータの構成を表す部分断面図である。It is a fragmentary sectional view showing the structure of the rotor shown in FIG. 従来における高炉送風機の低合金鋼製部材の酸化による強度変化を示す一例の図である。It is a figure of an example which shows the intensity | strength change by the oxidation of the low alloy steel member of the conventional blast furnace blower.
 以下に、添付の図面に示す好適な実施形態に基づいて、この発明を詳細に説明する。 Hereinafter, the present invention will be described in detail based on preferred embodiments shown in the accompanying drawings.
 図1は、本発明の一実施形態に係る高炉送風機10の構成を示す。高炉送風機10は、酸素富化した空気を吸入して高炉に送風する軸流圧縮機であって、内部を酸素富化した空気が流れるケーシング12と、ケーシング12の内部に回転可能に設けられたロータ14とを有している。 FIG. 1 shows a configuration of a blast furnace blower 10 according to an embodiment of the present invention. The blast furnace blower 10 is an axial flow compressor that sucks oxygen-enriched air and blows it into the blast furnace, and the casing 12 in which oxygen-enriched air flows and the casing 12 is rotatably provided. And a rotor 14.
 ケーシング12は、筒状の形状を有するケーシング本体16と、ケーシング本体16の内周面上に固定された複数の静翼18とを有する。
 ケーシング本体16は、軸方向に向かって縮径される内周面を有しており、その内部を酸素富化された空気が流れる(矢印x方向)ものである。静翼18は、飛行機の翼と同様の断面形状を有し、複数の静翼18がケーシング本体16の内周面上に全周にわたって配置されており、各静翼18は一定間隔でケーシング本体16の中心軸に向かって固定されている。このような周方向に沿って固定された複数の静翼18がケーシング本体16の軸方向に複数段配列されている。
 なお、ケーシング本体16と静翼18の素材は、空気抵抗による応力に耐え得る強度を有し、耐熱性を有するものであれば特に限定されず、例えばケーシング本体16には炭素鋼が用いられ、静翼18にはステンレス鋼が用いられる。
The casing 12 includes a casing body 16 having a cylindrical shape, and a plurality of stationary blades 18 fixed on the inner peripheral surface of the casing body 16.
The casing body 16 has an inner peripheral surface that is reduced in diameter in the axial direction, and oxygen-enriched air flows through the inside (in the direction of the arrow x). The stationary blades 18 have a cross-sectional shape similar to that of an airplane wing, and a plurality of stationary blades 18 are arranged on the inner peripheral surface of the casing body 16 over the entire circumference. 16 is fixed toward the central axis. A plurality of stationary blades 18 fixed along the circumferential direction are arranged in a plurality of stages in the axial direction of the casing body 16.
The material of the casing body 16 and the stationary blade 18 is not particularly limited as long as it has strength that can withstand stress due to air resistance and has heat resistance. For example, the casing body 16 is made of carbon steel, Stainless steel is used for the stationary blade 18.
 ロータ14は、ケーシング12内において回転可能に設けられた回転軸部材20と、回転軸部材20に固定された複数の動翼22とを有する。
 回転軸部材20は、低合金鋼で製作された低合金鋼製部材であり、軸方向に向かって拡径する円柱状の形状を有し、ケーシング12内においてケーシング本体16の中心軸上に延在し、図示しない駆動手段により自らの軸周りに回転する。
 動翼22は、飛行機の翼と同様の断面形状を有し、複数の動翼22が回転軸部材20の外周面上に全周にわたって配置されており、各動翼22は一定間隔で放射状に固定されている。このような周方向に沿って固定された複数の動翼22が回転軸部材20の軸方向に複数段配列されている。複数の動翼22の回転軸部材20の軸方向への配列と複数の静翼18のケーシング本体16の軸方向への配列は、交互に何段も並べられており、酸素富化された空気を連続的に圧縮して下流方向へ流すように構成されている。
 なお、複数の静翼18および複数の動翼22の形状および向きは、酸素富化された空気を下流方向へ流すことができれば特に限定されない。また、動翼22の素材は、空気抵抗による応力に耐え得る強度を有し、耐熱性を有するものであれば特に限定されず、例えばステンレス鋼が用いられる。
The rotor 14 includes a rotating shaft member 20 that is rotatably provided in the casing 12, and a plurality of moving blades 22 fixed to the rotating shaft member 20.
The rotary shaft member 20 is a low alloy steel member made of low alloy steel, has a cylindrical shape that expands in the axial direction, and extends on the central axis of the casing body 16 in the casing 12. It is rotated around its own axis by driving means (not shown).
The moving blade 22 has a cross-sectional shape similar to that of an airplane wing, and a plurality of moving blades 22 are arranged on the outer peripheral surface of the rotary shaft member 20 over the entire circumference, and each moving blade 22 is radially arranged at a constant interval. It is fixed. A plurality of moving blades 22 fixed along the circumferential direction are arranged in a plurality of stages in the axial direction of the rotary shaft member 20. The arrangement of the plurality of rotor blades 22 in the axial direction of the rotating shaft member 20 and the arrangement of the plurality of stationary blades 18 in the axial direction of the casing body 16 are alternately arranged in a number of stages, and oxygen-enriched air Is continuously compressed and flows in the downstream direction.
The shapes and directions of the plurality of stationary blades 18 and the plurality of moving blades 22 are not particularly limited as long as oxygen-enriched air can flow downstream. Moreover, the raw material of the moving blade 22 will not be specifically limited if it has the intensity | strength which can endure the stress by air resistance, and has heat resistance, For example, stainless steel is used.
 図2の断面図(空気の流れに直交する方向からの断面図)に示すように、回転軸部材20の表面上に酸化・発火抑制層24が形成されている。酸化・発火抑制層24は、非鉄金属およびセラミックスのうち少なくとも1つから成り、回転軸部材20を酸素富化された空気から遮断して酸化を抑制すると同時に他の部材(静翼18等)との接触による火花も抑制する。
 ここで、酸化・発火抑制層24は、非鉄金属およびセラミックスのうち少なくとも1つから成り、酸化および発火を抑制して耐熱性を有するものであれば特に限定されず、市販の皮膜材を用いることができる。なお、非鉄金属としては、例えばアルミニウム、タングステン、鉛、亜鉛、金、銀、銅、ニッケル、コバルトなどが利用できる。また、セラミックスとしては、例えばシリカ、アルミナ、ジルコニア、炭化ケイ素などが利用できる。
As shown in the cross-sectional view of FIG. 2 (cross-sectional view from a direction orthogonal to the air flow), an oxidation / ignition suppression layer 24 is formed on the surface of the rotary shaft member 20. The oxidation / ignition suppression layer 24 is made of at least one of a non-ferrous metal and a ceramic, and blocks the rotating shaft member 20 from oxygen-enriched air to suppress oxidation and at the same time with other members (the stationary blade 18 and the like). Suppresses sparks caused by contact.
Here, the oxidation / ignition suppression layer 24 is not particularly limited as long as it is made of at least one of non-ferrous metals and ceramics and has heat resistance by suppressing oxidation and ignition, and a commercially available coating material is used. Can do. In addition, as a nonferrous metal, aluminum, tungsten, lead, zinc, gold, silver, copper, nickel, cobalt etc. can be utilized, for example. Further, as ceramics, for example, silica, alumina, zirconia, silicon carbide and the like can be used.
 次に、高炉送風機10を用いて行われる、酸素富化された空気を高炉に送風する時の動作を説明する。 Next, the operation when the oxygen-enriched air blown to the blast furnace using the blast furnace blower 10 will be described.
 まず、高炉への送風が開始されると、回転軸部材20がケーシング本体16の周方向に回転し、それに伴い回転軸部材20の軸方向に配列された複数の動翼22も回転することで、高炉送風機10内のケーシング12とロータ14との間に空気の流れが形成される(矢印x方向)。
 この状態で、図示しない空気分離装置より導かれた酸素により酸素を富化された空気が、ケーシング本体16の空気吸入口26から吸入され、回転軸部材20に固定された動翼22の揚力による圧縮とケーシング本体16に固定された静翼18による整流(後方の動翼22の流入角度方向に転向)とを繰り返しながら連続的に圧縮されて下流方向へと流れていく。
First, when the ventilation to the blast furnace is started, the rotating shaft member 20 rotates in the circumferential direction of the casing body 16, and accordingly, the plurality of moving blades 22 arranged in the axial direction of the rotating shaft member 20 also rotate. An air flow is formed between the casing 12 and the rotor 14 in the blast furnace blower 10 (in the direction of the arrow x).
In this state, air enriched with oxygen introduced from an air separation device (not shown) is drawn from the air suction port 26 of the casing body 16 and is lifted by the moving blade 22 fixed to the rotary shaft member 20. While being repeatedly compressed and rectified by the stationary blade 18 fixed to the casing body 16 (turned in the inflow angle direction of the rear moving blade 22), it is continuously compressed and flows in the downstream direction.
 ここで、低合金鋼製部材である回転軸部材20には、その表面上に非鉄金属およびセラミックスのうち少なくとも1つから成る酸化・発火抑制層24が形成されている。これにより、高酸素雰囲気下においても酸化・発火抑制層24が酸素を遮断し、回転軸部材20の酸化を抑制することができる。特に、回転軸部材20は、動翼22を伴って回転しているため遠心力による応力が常に結合部に印加される状態にあり、酸化による表面強度の低下の影響を受けやすい部材であるが、酸化・発火抑制層24により回転軸部材20の酸化を表面で防ぐことで強度の低下の広がりを防ぐことができる。 Here, the rotary shaft member 20, which is a low alloy steel member, has an oxidation / ignition suppression layer 24 made of at least one of non-ferrous metal and ceramics formed on the surface thereof. Thereby, even in a high oxygen atmosphere, the oxidation / ignition suppression layer 24 can block oxygen and suppress the oxidation of the rotating shaft member 20. In particular, the rotating shaft member 20 is a member that rotates with the rotor blades 22 and is thus in a state where stress due to centrifugal force is always applied to the coupling portion, and is susceptible to the reduction in surface strength due to oxidation. Further, by preventing oxidation of the rotary shaft member 20 on the surface by the oxidation / ignition suppression layer 24, it is possible to prevent the spread of the strength from decreasing.
 高炉送風機10内では、酸素富化された空気を連続的に圧縮する必要があるため、それぞれの部材が互いに接近して設置されており、何らかの不具合により接近した部材の接触により火花が生じ、高酸素雰囲気下では発火するおそれがある。ところが、酸化・発火抑制層24が、回転軸部材20と他の部材との接触による火花の発生や摩擦熱を低減するので、発火を抑制することができる。 In the blast furnace blower 10, since it is necessary to continuously compress the oxygen-enriched air, the respective members are installed close to each other. There is a risk of ignition in an oxygen atmosphere. However, since the oxidation / ignition suppression layer 24 reduces the generation of sparks and frictional heat due to contact between the rotary shaft member 20 and other members, ignition can be suppressed.
 酸素富化された空気は、連続的に圧縮されて下流方向へ流れていき、ケーシング本体16の空気排出口28から高炉へ送風される。 The oxygen-enriched air is continuously compressed and flows downstream, and is blown from the air outlet 28 of the casing body 16 to the blast furnace.
 このように、低合金鋼製部材である回転軸部材20の表面に非鉄金属およびセラミックスのうち少なくとも1つから成る酸化・発火抑制層24を形成することで、酸化に伴う強度の低下を抑制することができる。また、酸化・発火抑制層24により、回転軸部材20と他の部材との接触に伴う発火を抑制することができ、高酸素雰囲気下における高炉送風機の運転を安全に行うことができる。 Thus, by forming the oxidation / ignition suppression layer 24 made of at least one of non-ferrous metal and ceramics on the surface of the rotary shaft member 20 which is a low alloy steel member, a decrease in strength due to oxidation is suppressed. be able to. Further, the oxidation / ignition suppression layer 24 can suppress the ignition accompanying the contact between the rotary shaft member 20 and another member, and the operation of the blast furnace blower in a high oxygen atmosphere can be performed safely.
 なお、低合金鋼製部材は、回転軸部材20に限定されず、その他の部材においても低合金鋼を用いたものがあればその表面上に酸化・発火抑制層を形成することが好ましい。 Note that the low alloy steel member is not limited to the rotary shaft member 20, and it is preferable to form an oxidation / ignition suppression layer on the surface of any other member using low alloy steel.
 また、酸化・発火抑制層24には、非鉄金属およびセラミックスから成る成分に加え、六方晶系の層状結晶構造から成る潤滑材を含んでもよい。これにより、回転軸部材20と他の鋼製部材との接触による発火を抑制すると共に、摩擦に伴う発熱を低減することができ、酸素濃度の高い環境であっても安全に高炉への送風を行うことができる。なお、六方晶系の層状結晶構造から成る潤滑材とは、例えば二硫化モリブデンや六方晶窒化ホウ素などが利用できる。 Further, the oxidation / ignition suppression layer 24 may include a lubricant composed of a hexagonal layered crystal structure in addition to components composed of non-ferrous metals and ceramics. Thereby, while suppressing the ignition by contact with the rotating shaft member 20 and another steel member, the heat_generation | fever accompanying friction can be reduced, and even in an environment with a high oxygen concentration, the ventilation to a blast furnace can be carried out safely. It can be carried out. For example, molybdenum disulfide or hexagonal boron nitride can be used as the lubricant having a hexagonal layered crystal structure.
10 高炉送風機
12 ケーシング
14 ロータ
16 ケーシング本体
18 静翼
20 回転軸部材
22 動翼
24 酸化・発火抑制層
26 空気吸入口
28 空気排出口
DESCRIPTION OF SYMBOLS 10 Blast furnace blower 12 Casing 14 Rotor 16 Casing main body 18 Stator blade 20 Rotating shaft member 22 Rotor blade 24 Oxidation / ignition suppression layer 26 Air inlet 28 Air outlet

Claims (2)

  1.  酸素富化した空気を吸入して高炉に送風する高炉送風機であって、
     前記酸素富化した空気中で使用される低合金鋼製部材と、前記低合金鋼製部材の表面上に形成された非鉄金属およびセラミックスのうち少なくとも1つから成る酸化・発火抑制層とを有することを特徴とする高炉送風機。
    A blast furnace blower that sucks oxygen-enriched air and blows it into a blast furnace,
    A low alloy steel member used in the oxygen-enriched air; and an oxidation / ignition suppression layer made of at least one of non-ferrous metal and ceramics formed on a surface of the low alloy steel member. A blast furnace blower characterized by that.
  2.  さらに、前記酸素富化した空気が流れるケーシング内において、複数の動翼が回転軸部材の周方向に固定されて回転するロータを有し、
     前記酸化・発火抑制層は、前記酸素富化した空気中に露出する前記回転軸部材の表面上に形成されることを特徴とする請求項1に記載の高炉送風機。
    Further, in the casing through which the oxygen-enriched air flows, a plurality of rotor blades are fixed in the circumferential direction of the rotary shaft member and have a rotor that rotates.
    The blast furnace blower according to claim 1, wherein the oxidation / ignition suppression layer is formed on a surface of the rotary shaft member exposed in the oxygen-enriched air.
PCT/JP2010/057664 2009-05-15 2010-04-30 Blast furnace blower WO2010131586A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009118770A JP4654304B2 (en) 2009-05-15 2009-05-15 Blast furnace blower
JP2009-118770 2009-05-15

Publications (1)

Publication Number Publication Date
WO2010131586A1 true WO2010131586A1 (en) 2010-11-18

Family

ID=43084959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/057664 WO2010131586A1 (en) 2009-05-15 2010-04-30 Blast furnace blower

Country Status (2)

Country Link
JP (1) JP4654304B2 (en)
WO (1) WO2010131586A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06317277A (en) * 1993-05-08 1994-11-15 Ishikawajima Harima Heavy Ind Co Ltd Lysholm type compressor
JP2006283093A (en) * 2005-03-31 2006-10-19 Jfe Steel Kk Oxygen-enriching facility for blasting into blast furnace
JP2008128198A (en) * 2006-11-24 2008-06-05 Ihi Corp Rotor blade of compressor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02119996U (en) * 1989-03-16 1990-09-27

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06317277A (en) * 1993-05-08 1994-11-15 Ishikawajima Harima Heavy Ind Co Ltd Lysholm type compressor
JP2006283093A (en) * 2005-03-31 2006-10-19 Jfe Steel Kk Oxygen-enriching facility for blasting into blast furnace
JP2008128198A (en) * 2006-11-24 2008-06-05 Ihi Corp Rotor blade of compressor

Also Published As

Publication number Publication date
JP4654304B2 (en) 2011-03-16
JP2010265514A (en) 2010-11-25

Similar Documents

Publication Publication Date Title
US10065243B2 (en) Aluminum based abradable material with reduced metal transfer to blades
CN1982675B (en) Variable stator vane assembly and bushing thereof
ES2559932T3 (en) Air intake with inertial filter in the tandem rotor of a compressor
US5951243A (en) Rotor bearing system for molten metal pumps
JP2006281783A (en) Layered structure
EP2123916A2 (en) Compressor housing
US11149744B2 (en) Turbine engine seal for high erosion environment
US20200024974A1 (en) Environmental barrier multi-phase abradable coating
JP4654304B2 (en) Blast furnace blower
JP5445143B2 (en) Turbo molecular pump
JP4486652B2 (en) Impeller for gas compressor and gas compressor provided with the same
JP2013040587A (en) Centrifugal compressor
AU2008248900B2 (en) Stirring member for abrasive media
CN106574632B (en) Entrance is oriented to guide vane system
JP4654305B2 (en) Blast furnace blower
JP2009221984A (en) Centrifugal compressor
JP5949429B2 (en) Molten metal cleaning equipment
JP2010077831A (en) Formation method for fire-retardant coating in parts for oxygen compressor, and oxygen compressor
EP1950154A1 (en) Rotary valve assembly
JP2016061223A (en) Turbo rotary machine
JP2005002880A (en) Stationary blade segment of gas turbine engine, and gas turbine engine
JP2001041248A (en) Rolling bearing for fan motor
JP2007508489A (en) Method for adapting turbo engine and stator and rotor of turbo engine
JPH0233780B2 (en) YOJUKINZOKUNOFUJUNBUTSUJOKYOYOKAITENNOZURU
JP5828392B2 (en) Roll for hot metal plating bath

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10774844

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10774844

Country of ref document: EP

Kind code of ref document: A1