WO2010131443A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
WO2010131443A1
WO2010131443A1 PCT/JP2010/003125 JP2010003125W WO2010131443A1 WO 2010131443 A1 WO2010131443 A1 WO 2010131443A1 JP 2010003125 W JP2010003125 W JP 2010003125W WO 2010131443 A1 WO2010131443 A1 WO 2010131443A1
Authority
WO
WIPO (PCT)
Prior art keywords
control parameter
parameter table
outside air
control
day
Prior art date
Application number
PCT/JP2010/003125
Other languages
French (fr)
Japanese (ja)
Inventor
増田欣之
橋本哲
西野淳
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2010131443A1 publication Critical patent/WO2010131443A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • F24F11/58Remote control using Internet communication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • F24F2110/12Temperature of the outside air

Definitions

  • the present invention relates to an air conditioning control system.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-74943
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-74943
  • the midwinter day of early winter may feel cooler than the midwinter day of midwinter where the body gets used to full-scale cold. possible. For this reason, there is a problem that even if the same air conditioning is performed for the same temperature, there is a possibility that a difference in perceived comfort may appear.
  • the subject of this invention is providing the air-conditioning control system which controls an air-conditioning driving
  • the air conditioning control system includes a plurality of control parameter tables, a control parameter table selection unit, and a control parameter update unit.
  • the outside air information is associated with the control parameters of the air conditioner.
  • the control parameter table selection unit calculates the average value of the outside air information in the past predetermined period and obtains the outside air information on the current day, and determines the difference between the average value of the outside air information in the past predetermined period and the outside air information on the day. Is calculated. Thereafter, the control parameter table selection unit selects a control parameter table from the plurality of control parameter tables based on the difference between the average value of the outside air information in the past predetermined period and the outside air information on the current day.
  • the control parameter update unit updates the value of the currently used control parameter based on the control parameter table selected by the control parameter table selection unit and the outside air information of the day. For example, if the outside air temperature, which has remained normal during the past predetermined period, suddenly drops on the same day, the outside air temperature may be the same, but it may be felt cold.
  • This air conditioning control system includes a plurality of control parameter tables in which outside air information and air conditioner control parameters are associated with each other.
  • the control parameter table selection unit calculates a difference between the average value of the outside air information in the past predetermined period and the outside air information on the current day, and selects a control parameter table from the plurality of control parameter tables based on the difference. .
  • control parameter update unit updates the value of the control parameter currently used based on the control parameter table selected by the control parameter selection unit and the outside air information on that day.
  • the air conditioner is controlled by one or more control parameters. For this reason, improvement in comfort can be expected by fine air-conditioning control that reflects changes and magnitudes of outside air information.
  • the outside air information specifically assumes, for example, an outside air discomfort index.
  • the outside air discomfort index is closely related to the outside air temperature, and is calculated based on the outside air temperature and other weather information.
  • the outside air temperature here is simply the temperature of the outside air.
  • the outside air information and the outside air temperature do not always coincide with each other, and are basically different information.
  • An air conditioning control system is the air conditioning control system according to the first aspect, wherein the control parameter table selection unit selects one control parameter table from a plurality of control parameter tables.
  • the control parameter table selecting unit selects one control parameter table from the plurality of control parameter tables, and the control parameter updating unit is based on the selected control parameter table and the outside air information on the day. To update the value of the control parameter.
  • control of the air conditioner is executed. For this reason, improvement in comfort can be expected by simple and fine air-conditioning control that reflects changes and magnitudes of outside air information.
  • An air conditioning control system is the air conditioning control system according to the second aspect of the present invention, wherein the first control parameter table as the control parameter table and the second control parameter table have an outside air discomfort index as outside air information, Common control parameters are associated with each other.
  • the control parameter table selection unit selects the first control parameter table or the second control based on the magnitude relationship between the difference between the average value of the outside air information in the past predetermined period and the outside air information on the current day and the predetermined threshold value. Select the parameter table.
  • the air conditioning control system includes a first control parameter table and a second control parameter table as control parameter tables. In the first control parameter table and the second control parameter table, an outside air discomfort index as outside air information and a common control parameter are associated with each other.
  • the control parameter table selection unit selects the first control parameter table or the second control based on the magnitude relationship between the difference between the average value of the outside air information in the past predetermined period and the outside air information on the current day and the predetermined threshold value. Select the parameter table. For this reason, improvement in comfort can be expected by air-conditioning control that reflects a change in the outside air information on the day with respect to outside air information in a predetermined period in the past.
  • An air conditioning control system is the air conditioning control system according to the first aspect, wherein the control parameter table selection unit selects a plurality of control parameter tables having different control parameters from the plurality of control parameter tables.
  • the air conditioning control system according to the fourth aspect of the present invention further includes a control parameter table valid / invalid switching unit.
  • the control parameter table valid / invalid switching unit executes valid / invalid switching control of a plurality of control parameter tables having different control parameters selected by the control parameter table selecting unit.
  • the control parameter updating unit updates the value of the control parameter based on the control parameter table validated by the control parameter table valid / invalid switching unit and the outside air information of the day.
  • the control parameter table valid / invalid switching unit executes switching control of control parameter tables having different control parameters, thereby realizing air conditioning control utilizing the characteristics of each control parameter. For example, a midwinter day in early winter may feel colder in terms of experience, even if the cold is at the same outside air temperature as a full winter day in midwinter. Therefore, in the early winter, the air conditioning effect is relatively weak, but the control parameter table having the control parameter for executing the air conditioning control with reduced power consumption is enabled, and in the mid winter, the control for executing the control that further enhances the air conditioning effect. Enable control parameter table with parameters. And air-conditioning control is performed based on this effective control parameter table and the outside air information of the day. For this reason, improvement in comfort level and further energy saving effect can be expected by fine air-conditioning control reflecting changes and magnitudes of outside air information.
  • An air conditioning control system is the air conditioning control system according to the fourth aspect of the present invention, wherein the plurality of control parameter tables include an outside air discomfort index, third control parameter, and fourth control parameter as outside air information.
  • the control parameter table selection unit performs the third control from a plurality of control parameter tables that associate the outside air discomfort index and the third control parameter based on the difference between the average value of the outside air information in the past predetermined period and the outside air information on the current day. Select the parameter table.
  • the control parameter table selection unit selects the fourth control parameter table from a plurality of control parameter tables that associate the outside air discomfort index with the fourth control parameter.
  • the control parameter table valid / invalid switching unit executes valid / invalid switching control of the third control parameter table or the fourth control parameter table according to the season or outside air information. For this reason, for example, it is possible to switch to a control parameter table having control parameters for executing control with a greater air conditioning effect in the cold season in winter and in the hot season in summer. On the other hand, for example, in the early winter when the cold is generally relatively mild in winter and in the early summer before the full-scale heat comes even in summer, the air conditioning control is relatively weak, but the power consumption is reduced. It is possible to switch to a control parameter table having control parameters for executing. And air-conditioning control is performed based on this effective control parameter table and the outside air information of the day. For this reason, improvement in comfort level and further energy saving effect can be expected by fine air-conditioning control reflecting changes and magnitudes of outside air information.
  • An air conditioning control system includes a control parameter table, a control parameter table generation unit, a timed control parameter table, and a control parameter update unit.
  • the outside air information is associated with the control parameters of the air conditioner.
  • the control parameter table generation unit generates a timed control parameter table having new contents based on the control parameter table.
  • the control parameter updating unit updates the value of the currently used control parameter based on the timed control parameter table and the outside air information of the day. For this reason, improvement in comfort can be expected by fine air-conditioning control that reflects changes in outdoor air information on the day.
  • An air conditioning control system is the air conditioning control system according to the sixth aspect of the present invention, wherein the control parameter table generating unit calculates the average value of the outside air information for a predetermined period in the past and obtains the outside air information for the day. Execute. Further, the control parameter table generation unit calculates a difference between the average value of the outside air information in the past predetermined period and the outside air information on the current day, and then generates a timed control parameter table from the control parameter table based on the difference. . For this reason, improvement in comfort can be expected by air-conditioning control that reflects a change in the outside air information on the day with respect to outside air information in a predetermined period in the past.
  • An air conditioning system is the air conditioning control system according to the sixth aspect of the present invention, wherein the control parameter table generating unit generates a plurality of timed control parameter tables having different control parameters based on the control parameter table.
  • the air conditioning system according to the eighth aspect of the present invention further includes a control parameter table valid / invalid switching unit.
  • the control parameter table valid / invalid switching unit executes valid / invalid switching control of a plurality of timed control parameter tables having different control parameters.
  • the control parameter update unit updates the value of the control parameter based on the control parameter table validated by the control parameter table valid / invalid switching unit and the outside air information of the day.
  • control parameter table generation unit generates a plurality of timed control parameter tables having different control parameters. Further, the control parameter table valid / invalid switching unit executes valid / invalid switching control of a plurality of timed control parameter tables having different control parameters. As a result, air conditioning control utilizing characteristics of different control parameters becomes possible. For this reason, improvement in comfort level and further energy saving effect can be expected by fine air-conditioning control reflecting changes and magnitudes of outside air information.
  • An air conditioning control system is the air conditioning control system according to the eighth aspect of the present invention, wherein the control parameter table generating unit is configured to determine the average value of the outside air information in the past predetermined period and the outside air of the day based on the control parameter table.
  • a fifth timed control parameter table is generated based on the difference from the information.
  • the outside air discomfort index as outside air information is associated with the fifth control parameter as a control parameter.
  • the control parameter table generation unit generates a sixth timed control parameter table that associates the outdoor air discomfort index with the sixth control parameter as the control parameter.
  • the control parameter table valid / invalid switching unit executes valid / invalid switching control of the fifth timed control parameter table and the sixth timed control parameter table according to the season and outside air information.
  • control parameter table generation unit generates a plurality of timed control parameter tables with different control parameters reflecting the transition of outside air information. Further, the control parameter table valid / invalid switching unit executes valid / invalid switching control of a plurality of timed control parameter tables having different control parameters. As a result, air conditioning control utilizing characteristics of different control parameters becomes possible. For this reason, improvement in comfort and further energy saving effect can be expected by fine air conditioning control that reflects changes and magnitudes of outside air information.
  • improvement in comfort can be expected by fine air conditioning control that reflects changes and magnitudes of outside air information.
  • improvement in comfort can be expected by simple and fine air conditioning control that reflects changes and magnitudes of outside air information.
  • the comfort level can be improved by the air conditioning control that reflects the change in the outside air information on the day with respect to the outside air information in the past predetermined period.
  • improvement in comfort and further energy saving effect can be expected by fine air conditioning control reflecting changes and magnitudes of outside air information.
  • improvement in comfort can be expected by fine air conditioning control that reflects changes in the outside air information on the day.
  • an improvement in comfort can be expected by air conditioning control that reflects changes in the outside air information on the day relative to outside air information for a predetermined period in the past.
  • improvement in comfort and further energy saving effect can be expected by fine air conditioning control reflecting changes and magnitudes of outside air information.
  • System configuration diagram of an air conditioning control system according to the first embodiment A diagram showing the passage of time of outside air temperature Diagram showing the relationship between discomfort index and bodily sensation Flowchart showing process flow of control parameter table selection unit Flowchart showing the flow of processing of the control parameter update unit Flowchart showing the process flow of the control parameter table selection unit in Modification A of the first embodiment Flow chart showing the flow of processing of the control parameter table selection unit in Modification B of the first embodiment Flowchart showing the processing flow of the control parameter table valid / invalid switching unit in Modification B of the first embodiment Flow chart showing the flow of processing of the control parameter table generator in the second embodiment Diagram showing the relationship between outside air temperature and outside air discomfort index System configuration diagram of an air conditioning control system according to the second embodiment
  • the air conditioning control system 1 performs a heating operation in winter.
  • the air conditioner 9a performs a heating operation in winter.
  • the cooling operation is performed in summer.
  • a midwinter day in early winter may be felt colder than a midwinter day in midwinter. This may be because the body has not yet adapted to the full-scale cold in early winter.
  • the temperature that has been around the normal level may suddenly drop. Even in such a case, it may be felt cold in terms of experience. In this way, there may be a slight difference between the actual temperature and the sensory temperature.
  • the air conditioning control system according to the present invention is intended to realize an improvement in comfort and an energy saving effect in consideration of such a situation.
  • FIG. 3 is one example showing the relationship between the outdoor air discomfort index and the body sensation.
  • the outside air discomfort index is an index that can be converted from the outside air temperature and humidity, and is closely related to the outside air temperature.
  • the outside air temperature here is simply the outside air temperature, and the outside air discomfort index and the outside air temperature are basically different information.
  • the term “outside air temperature” is used, which means the temperature of the outside air, for example, in relation to air conditioning technology. You can think of it as a synonym. Accordingly, in the description of the present invention, “air temperature” as a general weather term may be used in addition to “outside air temperature”, but this may be considered to have the same meaning as “outside air temperature”. Absent.
  • the air conditioning control system 1 acquires weather information via a network 6 from a weather information distribution source 5 that distributes weather information, such as a weather information site, and the weather information distribution source 5.
  • the remote management device 7 that generates the operation information of the air conditioner 9 a based on the acquired weather information, the building 9 in which the air conditioner 9 a is installed, and the air conditioner supplied from the remote management device 7 via the network 6.
  • a local control device 8 for controlling the air conditioner 9a of the building 9 via the network 6 based on the operation information of the machine 9a.
  • the remote management device 7 acquires weather information from the weather information distribution source 5 via the network 6. And the driving
  • the operation information of the air conditioner 9 a generated by the remote management device 7 is transmitted to the local control device 8 via the network 6.
  • the local control device 8 is connected to the air conditioner 9 a installed in the building 9 through the network 6. And based on the driving
  • the remote management device 7 includes a control parameter table 10, a control parameter table selection unit 20, a control parameter update unit 30, a control unit 40, a storage unit 45, and a communication unit 50, as shown in FIG. Is provided.
  • the control parameter table 10 is a table in which an outside air discomfort index is associated with a control parameter of the air conditioner 9a (hereinafter simply referred to as a control parameter).
  • the control parameter table 10 includes control parameter tables 10AS, 10AW, 10BS, and 10BW (see Tables 1 to 4 described later).
  • the control parameter tables 10AS, 10AW, 10BS, and 10BW are stored in the storage unit 45 described later.
  • the control parameter tables 10AS and 10BS are for summer.
  • the control parameter tables 10AW and 10BW are for winter.
  • the summer control parameter tables 10AS and 10BS are used when the air conditioner is operated in the cooling operation mode.
  • the winter control parameter tables 10AW and 10BW are used when the air conditioner is operated in the heating operation mode.
  • the control parameter table selection unit 20 selects either the control parameter table 10AS or 10BS, 10AW, Alternatively, either 10 BW is determined.
  • the outside air temperature is used as the outside air information. Note that the outside air temperature on that day may be an actual measurement value.
  • the control parameter update unit 30 updates the value of the control parameter based on the control parameter table 10AS, 10AW, or 10BS, 10BW selected by the control parameter table selection unit 20.
  • the control unit 40 performs data management including input / output management such as processing and storage of various data acquired from the outside, such as the outside air temperature transmitted from the local control device 8 described later, and processing of various data transmitted to the outside.
  • Various information processing such as processing and data flow control is executed.
  • the control unit 40 is physically mainly composed of a central processing unit 41, a RAM 42 as a main storage device, a ROM 43, and the like.
  • the central processing unit 41 is mainly composed of a CPU, and executes basic information processing such as data calculation and control.
  • the constituent elements of the control unit 40 are communicatively connected to each other and exchange various information and data. Also, functional units that play a central role such as the control parameter table selection unit 20 and the control parameter update unit 30 appear in the control unit 40 by executing the control program.
  • the storage unit 45 is a hard disk (HDD), and stores a control parameter table 10, various data including past outside air temperature, various programs, and the like.
  • the communication unit 50 cooperates with the control unit 40 to realize various communication functions such as transmission / reception of information in the system and transmission / reception of data with the outside. For example, the predicted value of the outside air temperature on the day and the outside air discomfort index on the day are acquired from the weather information distribution source 5.
  • each part of the control parameter table 10, the control parameter table selection unit 20, and the control parameter update unit 30 which is a central part will be described.
  • Control Parameter Table 10 is a table in which the outside air discomfort index is associated with the control parameters of the air conditioner 9a, and includes four control parameter tables 10AS, 10AW, 10BS, and 10BW.
  • the control parameter tables 10AS and 10BS are for summer.
  • the control parameter tables 10AW and 10BW are for winter.
  • Tables 1 to 4 show examples of winter control parameter tables 10AW and 10BW and summer control parameter tables 10AS and 10BS, respectively.
  • the intermittent operation stop time ratio is adopted.
  • the intermittent operation is intended to save energy by intermittently operating and stopping the air conditioner 9a.
  • the stop time ratio is the ratio of the time during which the heating operation or the cooling operation of the air conditioner 9a is stopped (the time in the thermo OFF state) to the total operation time of the air conditioner 9a.
  • the stop time ratio is 20%, for example, if the total operation time is 10 minutes, it means that the air conditioner 9a is operated with the thermo OFF for 2 minutes and the remaining 8 minutes are operated with the thermo ON. In the operation with the thermo OFF, the compressor is stopped and only blowing is performed.
  • the stop time ratio of intermittent operation is simply expressed as a stop time ratio.
  • an outside air discomfort index is adopted as outside air information.
  • the outside air discomfort index is an index determined by the outside air temperature and humidity.
  • FIG. 3 shows the relationship between the outdoor air discomfort index and the temperature of experience. It can be said that the outdoor air discomfort index 60 to 70 is the most comfortable environment. The discomfort increases as the discomfort index falls outside the range of 60 to 70, which is the most comfortable environment. The side where the outside air discomfort index is lower than 60 to 70 is the low temperature side, and the side where the outside air discomfort index is higher than 60 to 70 is the high temperature side.
  • the heating operation mode that is, the case where the winter control parameter tables 10AW and 10BW are applied will be described. Details of the cooling operation mode are omitted.
  • the control parameter tables 10AW and 10AS in Tables 1 and 3 are used in normal climatic conditions where climate change such as temperature is not severe.
  • the control parameter tables 10BW and 10BS in Tables 2 and 4 have a climatic condition suddenly when, for example, the temperature has changed at an ordinary temperature, but the temperature has suddenly decreased one day. It is used when the discomfort level increases due to the change.
  • control parameter tables 10BS and 10BW are more effective than the control parameter tables 10AS and 10AW with respect to the value of the same control parameter (stop time ratio).
  • stop time ratio A comfortable outdoor air discomfort index is associated. In other words, this means that the stop time ratio is associated with the same outside air discomfort index so that the stop time ratio is shortened and the air conditioning of the air conditioner 9a is strengthened.
  • FIG. 2 is a diagram illustrating an example of the transition of the outside air temperature.
  • FIG. 2 shows a case where the outside air temperature, which has been changing in the same degree for the past week or so, suddenly decreases.
  • the control parameter table selection unit 20 first calculates the average value ⁇ past of the outside air temperature for the past one week.
  • the outside air temperature for the past one week is the outside air temperature in the building 9 acquired by the remote management device 7 via the local control device 8 and is stored in the storage unit 45.
  • the control parameter table selection unit 20 selects either the control parameter table 10AW or 10BW based on the relationship between ⁇ calculated in this way and the predetermined threshold value ⁇ 0.
  • the control parameter table selection unit 20 determines that the following conditional expression 1 is obtained by ⁇ calculated as described above and the predetermined threshold ⁇ 0. When it is satisfied, the control parameter table 10AW is selected. Conditional expression 1: ⁇ ⁇ 0 On the other hand, when the conditional expression 1 is not satisfied, the control parameter table 10BW is selected.
  • the operation mode of the air conditioner 9a is the heating operation mode and in the case of the cooling operation mode, the magnitude symbols of the conditional expressions are reversed, but in principle, both are the same.
  • the case of the heating operation mode is described.
  • the predetermined threshold value ⁇ 0 can be set by the user inputting, for example, 3 ° C., 5 ° C., 7 ° C. or the like.
  • control Parameter Update Unit 30 acquires the outdoor air discomfort index for the day from the weather information distribution source 5 via the communication unit 50. Next, the control parameter update unit 30 collates the control parameter table 10AW or 10BW selected by the control parameter table selection unit 20 with the acquired outside air discomfort index. Then, the corresponding stop time ratio is set as the stop time ratio (control parameter) of the day. Update of the value of the control parameter by the control parameter update unit 30 is executed once a day at 6 am every morning. For example, in the case of the control parameter table 10AW of Table 1, if the outside air discomfort index is 40, the stop time ratio is 10%.
  • the local control device 8 receives the operation information of the air conditioner 9a generated by the remote management device 7 via the network 6, and is installed in the building 9 based on the operation information. The air conditioning of the air conditioner 9a is controlled. Further, the local control device 8 sends various information such as the set temperature of the air conditioner 9a installed in the building 9, the indoor temperature of the building 9, and the past outside air temperature to the remote management device 7 via the network. Send.
  • step S ⁇ b> 1 the control parameter table selection unit 20 acquires the predicted value ⁇ now of the outside air temperature of the day from the weather information distribution source 5 through the communication unit 50 and writes it in the RAM 42. Then, it moves to step S2. The acquisition of the predicted value is set to be executed every morning at 6:00.
  • step S3 the difference ⁇ between the average value ⁇ past of the outside air temperature in the past one week calculated in step S2 and the predicted value ⁇ now of the outside air temperature on the current day satisfies the above-described conditional expression 1 in step S3. Determine whether or not.
  • Conditional expression 1 ⁇ ⁇ 0 If the conditional expression 1 is satisfied, the process moves to step S4. If not, the process moves to step S5. In step S4, the control parameter table selection unit 20 selects the control parameter table 10AW and moves to step S6. In step S5, the control parameter table selection unit 20 selects the control parameter table 10BW and moves to step S6. In step S6, control parameter table determination end processing is performed.
  • step S6 Process Flow of Control Parameter Update Unit
  • FIG. 5 is a flowchart showing a processing flow of the control parameter update unit 30.
  • step S ⁇ b> 21 the control parameter update unit 30 acquires the predicted value of the outdoor air discomfort index for the day from the weather information distribution source 5 via the communication unit 50. Then, the acquired outdoor air discomfort index is written in the RAM 42. Thereafter, the process proceeds to step S22.
  • step S22 the control parameter update unit 30 reads the control parameter table 10AW or 10BW selected by the control parameter table selection unit 20 into the RAM 42 in the process of the control parameter table selection unit 20 in (1). Thereafter, the process proceeds to step S23.
  • step S23 the control parameter update unit 30 initializes the counter Cnt with 1, and moves to step S24.
  • step S24 the control parameter update unit 30 writes the information on the Cnt line of the control parameter table 10AW or 10BW read into the RAM 42 in step S22 into the RAM 42. Thereafter, the process proceeds to step S25.
  • step S25 the control parameter update unit 30 determines whether or not the predicted value ⁇ now of the outdoor air discomfort index for the day satisfies the condition representing the range of the outdoor air discomfort index in the first column of the Cnt row of the control parameter table 10AW or 10BW. Determine.
  • the predicted value ⁇ now of the outdoor air discomfort index on that day is obtained by the control parameter update unit 30 in step S21 and written in the RAM 42.
  • the Cnt line of the control parameter table 10AW or 10BW is the one written by the control parameter update unit 30 in the RAM 42 in step S24. If the condition is satisfied as a result of the determination, the process moves to step S26. If the condition is not satisfied as a result of the determination, the process moves to step S27.
  • step S26 the control parameter update unit 30 writes the information (control parameter, that is, the stop time ratio) in the second column of the Cnt row of the control parameter table 10AW or 10BW written in the RAM 42 in step S24 to the new control. Set as a parameter value. Thereafter, the process proceeds to an end process of step S28.
  • control parameter that is, the stop time ratio
  • step S27 the value of the counter Cnt is incremented by 1. Thereafter, the process proceeds to step S24.
  • step S28 a control parameter update end process is executed, and the process of the control parameter update unit 30 ends.
  • the control parameter table 10AW is used in normal climatic conditions where climate change such as outside air temperature is not severe.
  • the control parameter table 10BW is used, for example, when the outside air temperature, which has been changing as normal, drops rapidly. In the winter season, when the outside air temperature changes abruptly, even if the outside air temperature is the same, there may be a difference in the cold feel.
  • the control parameter table 10BW is compared with the control parameter table 10AW in order to improve the comfort level even if the objective outside air discomfort index is the same.
  • a more comfortable index is associated with the same control parameter (stop time ratio) value.
  • stop time ratio is associated with the same outside air discomfort index so that the stop time ratio is shortened and the air conditioning of the air conditioner 9a is further strengthened. For this reason, even when the outside air temperature, which has been in a normal state in winter, suddenly decreases, an improvement in comfort can be expected by air-conditioning control that takes into consideration the temperature of sensation.
  • the air conditioning control system 1 the average value ⁇ past of the outside air temperature in the past predetermined period (one week) is calculated, and the difference from the outside air temperature ⁇ now of the day is calculated. For this reason, the past fine fluctuations in the outside air temperature are absorbed, and the tendency of a large change in the outside air temperature is reflected in the air conditioning, so that the comfort level can be further improved.
  • the control parameter value of the air conditioner 9a is updated based on the control parameter table 10AW or 10BW selected by the control parameter table selection unit 20 and the outdoor air discomfort index on that day. Since the outside air discomfort index is calculated based on the outside air temperature, humidity, and the like, it can be considered that it constantly fluctuates even during the day.
  • the outdoor air discomfort index on that day is a predicted value acquired from the weather information distribution source 5. Due to recent developments in weather forecasting technology, the accuracy of predicted temperature values has been dramatically improved, and reliability has been improved. For this reason, there is a possibility that air-conditioning control can be executed without being affected by minute fluctuations in the outdoor air discomfort index during the day, and an improvement in comfort and an energy saving effect can be expected.
  • the air-conditioning control system 1 has two control parameter tables 10AW and 10BW as the control parameter table 10 only for the winter season, and the control parameter table selection unit 20 selects one of them. I chose.
  • the number of control parameter tables 10 is not limited to two.
  • the control parameter table 10 includes three control parameter tables 10 and the control parameter table selection unit 20 selects one control parameter table 10 from the three control parameter tables 10. Good.
  • Modification A of the first embodiment includes three summer control parameter tables 10AAS, 10ABS, 10ACS, and winter control parameter tables 10AAW, 10ABW, 10ACW in which an outdoor air discomfort index is associated with one type of control parameter. For example, it can be applied to the following cases.
  • a slightly warm day in midwinter may feel warmer than a warmer day in early winter. When it feels warm in terms of experience, it is conceivable that heating can be slightly reduced to improve the energy saving effect.
  • the normal control parameter table 10AA on the day of a normal temperature, the normal control parameter table 10AA.
  • the control parameter table 10AB in which the discomfort index and the control parameter are associated with each other. When the user feels somewhat warm, the outside air is uncomfortable so that air conditioning is performed weakly (that is, power consumption is suppressed).
  • the control parameter table 10AC in which the index and the control parameter are associated with each other, an energy saving effect can be expected in addition to an improvement in the comfort level.
  • the remote management device 7 of Modification A includes a control parameter table 10, a control parameter table selection unit 20, a control parameter update unit 30, a control unit 40, a storage unit 45, and a communication unit 50.
  • a control parameter table 10 a control parameter table selection unit 20, a control parameter update unit 30, a control unit 40, a storage unit 45, and a communication unit 50.
  • each part of the control parameter table 10, the control parameter table selection unit 20, and the control parameter update unit 30, which is a central part in Modification A will be described.
  • the modified example A includes three summer control parameter tables 10AAS, 10ABS, 10ACS, and three winter control parameter tables 10AAW, 10ABW, 10ACW in which the outdoor air discomfort index is associated with one type of control parameter. Yes.
  • control parameter tables 10AAS, 10ABS, 10ACS, 10AAW, 10ABW, 10ACW are stored in the storage unit 45.
  • control parameter tables 10AAW, 10ABW, 10ACW for the case where the air conditioner is operated in the heating operation mode, that is, the winter season will be described.
  • the control parameter table selection unit 20 controls the control parameter based on the difference between the average value of the outside air temperature in the past predetermined period (the past one week) and the predicted value of the outside air temperature on that day.
  • One of the tables 10AAW, 10ABW, or 10ACW is selected. Note that the outside air temperature on that day may be an actual measurement value.
  • the control parameter table selection unit 20 calculates the average value ⁇ 1past of the outside air temperature for the past one week via the local control device 8 and the communication unit 50.
  • the outside air temperature for the past one week is the outside air temperature in the building 9 acquired by the remote management device 7 via the local control device 8 and is stored in the storage unit 45.
  • the control parameter table 10AAW is used in a normal climate.
  • the control parameter table 10ABW is used, for example, when the outside air temperature, which has been changing as normal in winter, suddenly drops from around the day (when the degree of discomfort is high).
  • the control parameter table 10ACW is also used in the winter when the outside air temperature rises from around the day (when the degree of discomfort is low in terms of experience).
  • the operation mode of the air conditioner 9a is the heating operation mode and the case of the cooling operation mode, for example, the size symbols of the selected conditional expressions are reversed. The case of the operation mode will be described.
  • the control parameter table selection unit 20 compares ⁇ 1 calculated as described above with two predetermined threshold values ⁇ 11 and ⁇ 12. As a result of the comparison, if the following conditional expression 2 is satisfied, the control parameter table 10AAW is selected.
  • the predetermined two threshold values ⁇ 11 and ⁇ 12 can be input and set by the user.
  • Conditional expression 2 ⁇ 11 ⁇ 1 ⁇ 12
  • the control parameter table ABW is selected.
  • Conditional expression 3 ⁇ 1 ⁇ ⁇ 12
  • the control parameter table ACW is selected.
  • A-3 Control Parameter Update Unit
  • the control parameter update unit 30 updates the value of the control parameter based on the control parameter table 10AAW, ABW, or ACW selected by the control parameter table selection unit 20. Since the control unit 40, the storage unit 45, and the communication unit 50 are the same as those in the first embodiment, description thereof is omitted here. [Operation of Modification A] Here, the operation of Modification A will be described. Since the operation of the control parameter update unit 30 is the same as that in the first embodiment, description thereof is omitted here, and only the control parameter table selection unit 20 is described.
  • FIG. 6 is a flowchart showing the flow of processing in the control parameter table selection unit 20 of Modification A.
  • step S ⁇ b> 31 the control parameter table selection unit 20 acquires the predicted value ⁇ ⁇ b> 1 now of the outdoor temperature of the day from the weather information distribution source 5 via the communication unit 50 and writes it in the RAM 42. Thereafter, the process proceeds to step S32.
  • Modification A the acquisition of the predicted value ⁇ 1now is set to be executed every morning at 6:00.
  • step S33 the control parameter table selection unit 20 determines whether or not the difference ⁇ 1 between the average value ⁇ 1past of the outside air temperature in the past week and the predicted value ⁇ 1now of the outside air temperature on the day satisfies the following conditional expression 2.
  • the average value ⁇ 1past of the outside air temperature for the past one week is calculated by the control parameter table selection unit 20 in step S32.
  • ⁇ 11 and ⁇ 12 are predetermined threshold values.
  • Conditional expression 2 ⁇ 11 ⁇ 1 ⁇ 12 If conditional expression 2 is satisfied, the process moves to step S34, and if not, the process moves to step S35.
  • step S34 the control parameter table selection unit 20 selects the control parameter table 10AAW and writes it to the RAM 42. Thereafter, the process proceeds to step S38.
  • step S35 whether or not the difference ⁇ 1 between the average value ⁇ 1past of the outside temperature for the past one week calculated in step S32 and the predicted value ⁇ 1now of the outside temperature on that day satisfies the conditional expression 3 in step S35. Determine if. Conditional expression 3: ⁇ 1 ⁇ ⁇ 12 If conditional expression 3 is satisfied, the process moves to step S36, and if not, the process moves to step S37.
  • step S 36 the control parameter table selection unit 20 selects the control parameter table 10 ABW and writes it in the RAM 42. Thereafter, the process proceeds to step S38.
  • step S37 the control parameter table selection unit 20 selects the control parameter table 10ACW and writes it in the RAM. Thereafter, the process proceeds to step S38.
  • step S38 an end process for determining the control parameter table is performed.
  • the control parameter table selection unit 20 selects the control parameter table 10ABW.
  • the outdoor air discomfort index and the control parameters are associated with each other so that air conditioning is executed more strongly than in the control parameter table 10AAW.
  • the control parameter table selection unit 20 selects the control parameter table 10ACW.
  • control parameter table 10ACW the outdoor air discomfort index and the control parameter are associated with each other so that the air conditioning is performed weaker (that is, the power consumption is suppressed) as compared with the control parameter table 10AAW. For this reason, in addition to the improvement in comfort, an energy saving effect can be expected.
  • the control parameter table 10 has one type of control parameter for the air conditioner 9a.
  • the control parameter table 10 may have a plurality of control parameters for the air conditioner 9a.
  • the case where the operation mode of the air conditioner 9a is the heating operation mode will be described. The same applies in principle when the operation mode of the air conditioner 9a is the cooling operation mode, and the control direction is simply reversed. For this reason, the description in the case where the operation mode of the air conditioner 9a is the cooling operation mode is omitted here.
  • the capacity limiting rate is adopted as the second control parameter.
  • the capacity restriction is intended to save energy by restricting the capacity of the air conditioner 9a.
  • the capacity limit rate is a ratio of the capacity limit. For example, assuming that the normal capacity of the air conditioner 9a is 100 at the maximum, the capacity in this state is 80 at the maximum if the capacity limit rate is 80%.
  • the method of performing air conditioning control by stopping the heating operation or cooling operation of the air conditioner 9a (referred to as a control method based on the stop time ratio) is more comfortable than the method of controlling the air conditioner 9a at the capacity limit rate.
  • the power consumption is reduced as a result although the degree is somewhat low.
  • the air conditioner 9a is operated in the heating operation mode in winter, for example, if a method as described below is adopted, a further energy saving effect can be expected.
  • the air conditioning control is executed only by controlling the stop time ratio.
  • the comfort level is slightly low, but the power consumption can be suppressed.
  • the air conditioning control is executed with both the stop time ratio and the capacity limit ratio enabled.
  • February which is generally the coldest in winter, air conditioning control is executed only by controlling the capacity limit rate.
  • control parameter tables 10B1S, 10B2S, 10B1W, and 10B2W in total, two for summer and two for winter, each of which is associated with an outside air discomfort index and a capacity restriction rate.
  • the control parameter tables 10A1S, 10A2S, 10B1S, and 10B2S are for summer.
  • the control parameter tables 10A1W, 10A2W, 10B1W, and 10B2W are for winter.
  • the modification B further includes a control parameter table valid / invalid switching unit 25 that validates or invalidates some or all of the plurality of control parameter tables 10 selected by the control parameter table selection unit 20.
  • a control parameter table valid / invalid switching unit 25 that validates or invalidates some or all of the plurality of control parameter tables 10 selected by the control parameter table selection unit 20.
  • both the two control parameter tables 10A1W or 10A2W and 10B1W or 10B2W may be valid, but conversely, both may be invalid.
  • each component of the modified example B will be described.
  • the remote management device 7 will be described, and the weather information distribution source 5, the network 6, and the local control device 8 are exactly the same as those in the first embodiment, and thus description thereof is omitted.
  • the functions of the control parameter table selection unit 20 and the control parameter update unit 30 are the same as those in the first embodiment.
  • the control parameter table selection unit 20 calculates the average value ⁇ 2past of the outside air temperature for the past one week via the local control device 8 and the communication unit 50.
  • control parameter table selection unit 20 selects either the control parameter table 10A1W or 10A2W based on the relationship between ⁇ 2 calculated in this way and the predetermined threshold value ⁇ 2. Similarly, one of the control parameter tables 10B1W or 10B2W is selected. Tables 11 to 14 show examples of winter control parameter tables 10A1W, 10A2W, 10B1W, and 10B2W, respectively.
  • the case for the winter season that is, the heating operation mode will be described
  • the description for the summer season that is, the cooling operation mode will be omitted.
  • the control parameter table selection unit 20 compares ⁇ 2 calculated as described above with a predetermined threshold value ⁇ 2. As a result of the comparison, when the following conditional expression 4 is satisfied, the control parameter tables 10A1W and 10B1W are selected. Conditional expression 4: ⁇ 2 ⁇ 2 On the other hand, when the conditional expression 4 is not satisfied, the control parameter tables 10A2W and 10B2W are selected.
  • the operation mode of the air conditioner 9a is the heating operation mode and the case of the cooling operation mode
  • the magnitude symbols of the selected conditional expressions are reversed, but both are the same, and the processing in one operation mode is the same. From this flow, it is easy to derive the procedure of the processing flow in the other operation mode. For this reason, here, the case of the heating operation mode will be described, and the description of the case of the cooling operation mode will be omitted.
  • control parameter table valid / invalid switching unit 25 validates or invalidates part or all of the control parameter table 10A1W selected by the control parameter table selection unit 20 based on the season. To. When the air conditioner 9a is in the cooling operation mode, two control parameter tables 10A1W or 10A2W in which the outdoor air discomfort index and the stop time ratio are associated with each other are effective in the early winter, and the external air discomfort index and the capacity restriction rate are associated with each other. The two control parameter tables 10B1W or 10B2W are invalid.
  • control parameter table valid / invalid switching unit 25 determines whether the control parameter table is valid or invalid based on the season. However, the control parameter table valid / invalid switching unit 25 determines the control parameter based on other conditions such as the outside air temperature. The validity or invalidity of the table 10 may be determined.
  • B-3 Control Parameter Update Unit Since the control parameter update unit 30 is exactly the same as that in the first embodiment, description thereof is omitted here. [Operation of Modification B] Here, the operation of Modification B will be described with reference to a flowchart.
  • FIG. 7 is a flowchart showing the flow of processing in the control parameter table selection unit 20 in Modification B. The processing of this part is almost the same as in the first embodiment. In FIG. 7, the part of “10” is omitted in the reference numerals of the control parameter table 10A1W and the like for the sake of space.
  • step S ⁇ b> 41 the control parameter table selection unit 20 acquires a predicted value of the outside air temperature of the day from the weather information distribution source 5 via the communication unit 50 and writes it in the RAM 42. Thereafter, the process proceeds to step S42.
  • the acquisition of the predicted value is set to be executed every morning at 6:00.
  • step S42 the control parameter table selection unit 20 calculates the average value ⁇ 2past of the outside air temperature for the past one week via the local control device 8 and the communication unit 50.
  • the outside air temperature for the past one week is the outside air temperature in the building 9 acquired by the remote management device 7 via the local control device 8 and is stored in the storage unit 45.
  • step S43 whether or not the difference ⁇ 2 between the average value ⁇ 2past of the outside temperature for the past one week calculated in step S42 and the predicted value ⁇ 2now of the outside temperature of the day satisfies the conditional expression 4 in step S43. Determine if.
  • ⁇ 2 is a predetermined threshold value.
  • Conditional expression 4 ⁇ 2 ⁇ 2 If the conditional expression 4 is satisfied, the process moves to step S44, and if not, the process moves to step S45.
  • step S44 the control parameter table selection unit 20 selects the control parameter tables 10A1W and 10B1W and writes them in the RAM. Thereafter, the process proceeds to an end process of step S46.
  • step S45 the control parameter table selection unit 20 selects the control parameter tables 10A2W and 10B2W and writes them in the RAM. Thereafter, the process proceeds to an end process of step S46.
  • step S46 control parameter table determination end processing is performed.
  • B-2 Control Parameter Table Valid / Invalid Switching Unit
  • FIG. 8 is a flowchart showing the flow of processing in the control parameter table valid / invalid switching unit 25.
  • the part of “10” is omitted in the reference numerals of the control parameter table 10A1W and the like for the sake of space.
  • step S51 the control parameter table valid / invalid switching unit 25 writes the date of the day in the RAM.
  • step S52 the control parameter table valid / invalid switching unit 25 determines whether the date of the current day written in the RAM 42 in step S51 is December. If it is December, the process proceeds to step S54. If it is not December, the process proceeds to step S53.
  • step S53 the control parameter table valid / invalid switching unit 25 determines whether the current date written in the RAM 42 in step S51 is January. If it is January, the process proceeds to step S55. If it is not January, the process proceeds to step S56.
  • step S54 the control parameter table valid / invalid switching unit 25 validates the control parameter table 10A1W or 10A2W and invalidates the control parameter table 10B1W or 10B2W.
  • step S55 the control parameter table valid / invalid switching unit 25 validates both the control parameter table 10A1W or 10A2W and the control parameter table 10B1W or 10B2W.
  • step S56 the control parameter table valid / invalid switching unit 25 invalidates the control parameter table 10A1W or 10A2W and validates the control parameter table 10B1W or 10B2W.
  • step S57 the process of the control parameter table valid / invalid switching unit 25 ends.
  • (B-3) Control Parameter Update Unit The control parameter update unit 30 executes control parameter update based on the control parameter table 10A1W and the like switched by the control parameter table valid / invalid switching unit 25. Since the operation is exactly the same as in the first embodiment, description thereof is omitted.
  • [Features of Modification B] In general, the method of controlling the air conditioning by stopping the heating operation or the cooling operation of the air conditioner 9a is slightly less comfortable than the method of controlling the air conditioner 9a with the capacity restriction rate, but it consumes as a result. Power can be reduced. In the modified example B, air conditioning control is executed only in the control of the stop time ratio in December in the early winter.
  • Modification C In the air-conditioning control system according to the first embodiment, the intermittent operation stop time ratio is adopted as the control parameter, but a capacity restriction rate may be adopted instead. Also in this case, an improvement in comfort and an energy saving effect can be expected.
  • Modification D In the modified example B, the control parameter table selection unit 20 selects one of the control parameter tables 10A1W and 10A2W having the same control parameter, and the control parameter tables 10B1W and 10B2W having the same control parameter. Either one was selected. However, for example, the control parameter table selection unit 20 may select one control parameter table 10C1 or the like from three or more control parameter tables 10C1 or the like having the same control parameter.
  • control parameter table selection unit 20 includes a plurality of control parameter tables 10C1, 10D1, 10E1, and the like that associate each control parameter with an outdoor air discomfort index for three or more types of control parameters.
  • One control parameter table 10C1, 10D1, 10E1, etc. may be selected from a plurality of control parameter tables 10C1, 10D1, 10E1, etc. having control parameters.
  • the time for changing the control parameter is 6 o'clock in the early morning, but it is not necessary to be limited to this time, and may be changed a plurality of times a day.
  • the control parameter table may be reread based on the difference between the actual measured value of the outside air temperature at every hour and the average value of the outside air temperature at the same time in the past predetermined period. It should be noted that the time at which the actual measured value of the outside air temperature on the day is acquired and the time to be measured in order to calculate the average value of the outside air temperature in the past predetermined period must be the same time.
  • the outside air temperature of the day uses the predicted value acquired from the weather information distribution source 5 via the network 6, but actually measured the outside air temperature of the day. It may be a value. Even in this case, a sudden change in the outside air temperature can be captured and used for selection of the control parameter table 10.
  • the measurement time of the daily outside air temperature is set to a fixed time. In the same day, for example, measured values in the early morning, when the lowest temperature is measured, and measured values in the time zone, where the highest temperature is measured, are handled in the same way. This is because there is no meaning.
  • the remote management device 7 includes the control unit 40 that processes the weather information acquired from the weather information distribution source 5 and generates the operation information of the air conditioner 9a. .
  • the local control device 8 receives the operation information of the air conditioner 9a transmitted from the control unit 40 provided in the remote management device 7. And the local control apparatus 8 controlled the air conditioner 9a installed in the building 9 based on the operation information of this air conditioner 9a.
  • the control unit 40 and the storage unit 45 may be provided in the local control device 8. Even in such a configuration, using the actual measurement value installed in the same place as the building 9 as the outside air temperature on the day, the degree of comfort is achieved by fine air conditioning control that reflects changes in the outside air temperature and outside air information.
  • the control parameter table selection unit 20 controls the cooling (summer) control parameter tables 10AS and 10BS based on the operation mode of the air conditioner 9a, or the heating (winter) control.
  • the parameter table 10AW or 10BW was selected, but it was selected based on the date of the day (for example, for cooling from May to September and for heating from October to April), outside temperature, etc. May be.
  • the control parameter table 10 is preset in the system. However, the control parameter table 10 may be automatically generated.
  • the air conditioning control system 2 includes a control parameter table generation unit 120 that automatically generates a timed control parameter table 115 based on the control parameter table 110.
  • the air conditioning control system 2 according to the second embodiment will be described with reference to the drawings. A description will be given assuming that the air conditioner 9a is performing a heating operation in winter. The same is true in principle when the cooling operation is performed in summer. Therefore, a detailed description of the cooling operation is omitted.
  • the air conditioning control system 2 according to the second embodiment selects an appropriate control parameter table from a plurality of control parameter tables 10 included in the system in advance.
  • the control parameter table selection unit 20 is not provided.
  • control parameter table generation unit 120 that generates a new timed control parameter table 115 from a control parameter table 110 included in the system in advance.
  • the control parameter table generation unit 120 generates a timed control parameter table 115 every day at a predetermined time (6 o'clock in the morning), and the previously generated timed control parameter table 115 disappears at this timing and is newly generated.
  • the timed control parameter table 115 is replaced.
  • the control parameter update unit 130 updates the value of the control parameter based on the timed control parameter table 115 and the outside air discomfort index.
  • the air conditioning control system 2 collects weather information from the weather information distribution source 5 and the weather information distribution source 5 via the network 6, and the air conditioner 9 a Based on the operation information of the remote management device 7 for generating the operation information, the building 9 in which the air conditioner 9a is installed, and the air conditioner 9a supplied from the remote management device 7 via the network 6, the network 6 is used. And a local control device 8 for controlling the air conditioner 9a of the building 9.
  • the remote management device 7 includes a control parameter table 110, a timed control parameter table 115, a control parameter table generation unit 120, a control parameter update unit 130, a control unit 40, a storage unit 45, and a communication unit. 50.
  • the control parameter table 110 is a table in which the outside air discomfort index is associated with the control parameters of the air conditioner 9a. Since the control parameter table 110 is the same as the control parameter table 10 in the second embodiment, a detailed description thereof is omitted here.
  • the control parameter table 110 is stored in the storage unit 45.
  • the control parameter table generating unit 120 Based on the difference between the average value of the outside air temperature in the past predetermined period (one week) and the predicted value of the outside air temperature on the current day, the control parameter table generating unit 120 performs the control parameter table at a predetermined time (6 am every morning). From 110, a timed control parameter table 115 is generated. This time-limited control parameter 115 has a limited expiration date in which it functions effectively. The generated timed control parameter table 115 is valid until the control parameter table generating unit 120 generates a new timed control parameter table 115 at the next timing. The old timed control parameter table 115 disappears when the new timed control parameter table 115 is generated at the next timing, and is replaced with the newly generated timed control parameter table 115.
  • the control parameter update unit 130 updates the value of the currently used control parameter based on the timed control parameter table 115 generated by the control parameter table generation unit 120.
  • the control parameter table 110, the control parameter update unit 120, the storage unit 45, the communication unit 50, and the control unit 40 are the same as those in the air conditioning control system 1 according to the first embodiment. Since it is the same as a corresponding component, description is abbreviate
  • the control parameter table generation unit 120 which is a central part, will be mainly described.
  • the new timed control parameter table 115 is generated by correcting the value of the outside air discomfort index in the control parameter table 110 by a value obtained by multiplying the value of ⁇ 3 by the correction coefficient ⁇ .
  • the control parameter table 110 and the time-limited control parameter table 115 newly generated based on the control parameter table 110 are for winter and summer, that is, for heating operation mode and cooling operation mode. However, only winter use will be described here. Tables 15 and 16 show examples of the control parameter table 110 and the timed control parameter table 115 applied in winter, that is, in the heating operation mode, respectively.
  • a method for generating the timed control parameter table 115 will be described with reference to these tables.
  • ⁇ 3 is + 3.75 ° C., that is, the outside air temperature ⁇ 3now on the current day is 3.75 ° C. lower than the average value of the outside air temperature ⁇ 3past in the past predetermined period (one week).
  • the value of the outdoor air discomfort index in the first column of each row of the control parameter table 110 is corrected by adding + 3.75 ° C. ⁇ ⁇ (0.8).
  • ⁇ 3 is ⁇ 3.75 ° C., that is, the outside air temperature ⁇ 3now of the day has increased by 3.75 ° C.
  • the value of the outdoor air discomfort index in the first column of each row of the control parameter table 110 is added by ⁇ 3.75 ° C. ⁇ ⁇ (0.8), that is, 3.75 ° C. ⁇ ⁇ (0.8) is subtracted. To correct it.
  • ⁇ 3 is ⁇ 3.75 ° C., that is, the outside air temperature of the day has increased by 3.75 ° C. compared to the average value of the outside air temperature in the past predetermined period.
  • the value of the outdoor air discomfort index in the first column of each row of the control parameter table 110 is corrected by adding ⁇ 3.75 ° C. ⁇ ⁇ (0.8).
  • ⁇ 3 is + 3.75 ° C., that is, the outside air temperature on the current day is 3.75 ° C. lower than the average value of the outside air temperature in the past predetermined period.
  • the value of the outdoor air discomfort index in the first column of each row of the control parameter table 110 is corrected by adding + 3.75 ° C. ⁇ ⁇ (0.8).
  • the timed control parameter table 115 in Table 16 and Table 18 shows the case where ⁇ 3 is + 3.75 ° C. in winter and the case where ⁇ 3 is ⁇ 3.75 ° C. in summer. Compared to the average value of the outdoor temperature in the past predetermined period in the winter, the outdoor temperature of the day falls by 3.75 ° C. In comparison with the average value of the outdoor temperature in the past predetermined period in the summer, This is a case where the outside air temperature on that day has increased by 3.75 ° C.
  • FIG. 9 is a flowchart showing the flow of processing in the control parameter table generation unit 120.
  • the control parameter table generation unit 120 acquires the operation mode of the air conditioner 9 a via the local control device 8 and the communication unit 50 and writes it in the RAM 42. Thereafter, the process proceeds to step S62.
  • the control parameter table generating unit 120 acquires the predicted value ⁇ ⁇ b> 3 now of the outside air temperature of the day from the weather information distribution source 5 via the communication unit 50 and writes it in the RAM 42. Thereafter, the process proceeds to step S63.
  • the acquisition of the predicted value is set to be executed every morning at 6:00.
  • the correction value C is calculated and the result is written in the RAM 42.
  • Conditional expression 5: C ⁇ 3 ⁇ 0.8 Thereafter, the process proceeds to step S65.
  • step S65 it is determined whether the operation mode of the air conditioner 9a written in the RAM 42 in step S61 is the heating operation mode. If it is in the heating operation mode, the process moves to step S66. If it is not in the heating operation mode, the process moves to step S67.
  • step S66 the numerical range of the first column of each row of the control parameter table 110 is corrected by adding the value of the correction value C calculated in step S64. After the correction is completed for all the rows of the control parameter table 110, the process proceeds to step S69.
  • step 67 it is determined whether the operation mode of the air conditioner 9a written in the RAM 42 in step S61 is the cooling operation mode.
  • step S68 the numerical value range in the first column of each row of the control parameter table 110 is added with a value obtained by multiplying the value of the correction value C calculated in step S64 by -1 (a value obtained by reversing the sign). to correct. After the correction is completed for all the rows of the control parameter table 110, the process proceeds to step S69.
  • step S69 a timed control parameter table generation end process is executed.
  • the effect of the air conditioning control in the air conditioning control system 2 according to the second embodiment is the same as in the case of the first embodiment.
  • the control parameter table 110 previously provided and a predetermined period in the past.
  • the air conditioning control is performed based on the timed control parameter table 115 generated by the control parameter table generation unit 120 and the outdoor air discomfort index of the day. Execute.
  • the generated timed control parameter table 115 is valid until a new timed control parameter table 115 is generated at the next timing. At this timing, the new timed control parameter table 115 is replaced with the old timed control parameter table 115.
  • the table is not saved. For this reason, it is not necessary to save a large number of control parameter tables 110, and the capacity of the storage unit 45 can be saved.
  • the air conditioning control system is capable of changing the control parameter of the air conditioner 9a in consideration of the sensible temperature based on the average value of the outside air temperature in the past predetermined period and the outside air temperature of the day. Have For this reason, it is beneficial for improving the comfort level and the energy saving effect.
  • Control parameter table (control parameter table) , First control parameter table, second control parameter table, third control parameter table, fourth control parameter table) 20, 120 Control parameter table selection unit 25, 125 Control parameter table valid / invalid switching unit 30, 130 Control parameter update unit 110 Control parameter table 115, 115A, 115B Timed control parameter table (timed control parameter table, fifth timed formula) Control parameter table, 6th timed control parameter table)

Abstract

Provided is an air conditioning control system which performs an air conditioning control while taking a sensible temperature into account. The air conditioning control system is comprised of a control parameter table (10), a control parameter table selecting portion (20), and a control parameter updating portion (30). The control parameter table selecting portion (20) selects the control parameter table (10) on the basis of the difference between the average value of the outside air temperature during a certain period of time in the past and the outside air temperature of the day. Further, the control parameter updating portion updates the control parameter on the basis of the selected control parameter table and the outside air information of the day. Thus, the air conditioning control is performed.

Description

空気調和機Air conditioner
 本発明は、空調制御システムに関する。 The present invention relates to an air conditioning control system.
 例えば特許文献1(特開2003-74943)に示すような、気象会社や気象情報サイト等から、外気情報を取得し、その外気情報を利用して空調制御を実行するような空調制御システムが、従来技術として知られている。 For example, an air conditioning control system that acquires outside air information from a weather company, a weather information site, or the like as shown in Patent Document 1 (Japanese Patent Laid-Open No. 2003-74943) and executes air conditioning control using the outside air information, Known as prior art.
 しかし、例えば、初冬の真冬日と真冬の真冬日とでは、初冬の真冬日の方が、本格的な寒さに体が慣れた真冬の真冬日と比較して、体感的により寒く感じられる場合もあり得る。このため、同じ気温に対して同じ空調を実行しても、体感的な快適性に差が出てくる可能性があるという問題点があった。
 本発明の課題は、空調運転を制御して快適性を向上させる空調制御システムを提供することにある。
However, for example, in the midwinter day of early winter and the midwinter day of midwinter, the midwinter day of early winter may feel cooler than the midwinter day of midwinter where the body gets used to full-scale cold. possible. For this reason, there is a problem that even if the same air conditioning is performed for the same temperature, there is a possibility that a difference in perceived comfort may appear.
The subject of this invention is providing the air-conditioning control system which controls an air-conditioning driving | operation and improves comfort.
 第1発明に係る空調制御システムは、複数の制御パラメータテーブルと制御パラメータテーブル選択部と制御パラメータ更新部とを備える。制御パラメータテーブルで、外気情報と空調機の制御パラメータとが対応づけられている。制御パラメータテーブル選択部は、過去の所定期間の外気情報の平均値の算出と、当日の外気情報の取得とを実行し、過去の所定期間の外気情報の平均値と当日の外気情報との差を算出する。その後、制御パラメータテーブル選択部は、過去の所定期間の外気情報の平均値と当日の外気情報との差に基づいて、複数の制御パラメータテーブルから制御パラメータテーブルを選択する。制御パラメータ更新部は、制御パラメータテーブル選択部が選択した制御パラメータテーブルと、当日の外気情報とに基づいて、現在用いている制御パラメータの値を更新する。
 例えば、過去の所定期間中は、平年並みで推移していた外気温度が、当日になって急に低下した場合には、外気温度は同じでも、体感的には寒く感じることがある。この空調制御システムは、外気情報と空調機の制御パラメータとが対応づけられた複数の制御パラメータテーブルを備える。そして、制御パラメータテーブル選択部は、過去の所定期間の外気情報の平均値と、当日の外気情報との差を算出し、この差に基づいて、複数の制御パラメータテーブルから制御パラメータテーブルを選択する。さらに、制御パラメータ更新部は、制御パラメータ選択部が選択した制御パラメータテーブルと、当日の外気情報とに基づいて、現在用いている制御パラメータの値を更新する。その結果、1つまたは複数の制御パラメータによる空調機の制御が実行される。このため、外気情報の変化や大小を反映した、細かな空調制御により、快適度の向上が期待できる。
 なお、外気情報とは、具体的には、例えば、外気不快指数等を想定している。外気不快指数は、外気温度と密接に関連していて、外気温度その他の気象情報に基づいて算出される。ここでいう外気温度とは、単なる外気の温度である。外気情報と外気温度とは一致するとは限らず、基本的に別の情報である。
The air conditioning control system according to the first invention includes a plurality of control parameter tables, a control parameter table selection unit, and a control parameter update unit. In the control parameter table, the outside air information is associated with the control parameters of the air conditioner. The control parameter table selection unit calculates the average value of the outside air information in the past predetermined period and obtains the outside air information on the current day, and determines the difference between the average value of the outside air information in the past predetermined period and the outside air information on the day. Is calculated. Thereafter, the control parameter table selection unit selects a control parameter table from the plurality of control parameter tables based on the difference between the average value of the outside air information in the past predetermined period and the outside air information on the current day. The control parameter update unit updates the value of the currently used control parameter based on the control parameter table selected by the control parameter table selection unit and the outside air information of the day.
For example, if the outside air temperature, which has remained normal during the past predetermined period, suddenly drops on the same day, the outside air temperature may be the same, but it may be felt cold. This air conditioning control system includes a plurality of control parameter tables in which outside air information and air conditioner control parameters are associated with each other. The control parameter table selection unit calculates a difference between the average value of the outside air information in the past predetermined period and the outside air information on the current day, and selects a control parameter table from the plurality of control parameter tables based on the difference. . Furthermore, the control parameter update unit updates the value of the control parameter currently used based on the control parameter table selected by the control parameter selection unit and the outside air information on that day. As a result, the air conditioner is controlled by one or more control parameters. For this reason, improvement in comfort can be expected by fine air-conditioning control that reflects changes and magnitudes of outside air information.
Note that the outside air information specifically assumes, for example, an outside air discomfort index. The outside air discomfort index is closely related to the outside air temperature, and is calculated based on the outside air temperature and other weather information. The outside air temperature here is simply the temperature of the outside air. The outside air information and the outside air temperature do not always coincide with each other, and are basically different information.
 第2発明に係る空調制御システムは、第1発明に係る空調制御システムであって、制御パラメータテーブル選択部は、複数の制御パラメータテーブルから、1つの制御パラメータテーブルを選択する。
 この空調制御システムでは、制御パラメータテーブル選択部が、複数の制御パラメータテーブルから、1つの制御パラメータテーブルを選択し、制御パラメータ更新部が、その選択された制御パラメータテーブルと当日の外気情報とに基づいて制御パラメータの値を更新する。その結果、空調機の制御が実行される。このため、外気情報の変化や大小を反映した、簡易的で細かな空調制御により、快適度の向上が期待できる。
An air conditioning control system according to a second aspect is the air conditioning control system according to the first aspect, wherein the control parameter table selection unit selects one control parameter table from a plurality of control parameter tables.
In this air conditioning control system, the control parameter table selecting unit selects one control parameter table from the plurality of control parameter tables, and the control parameter updating unit is based on the selected control parameter table and the outside air information on the day. To update the value of the control parameter. As a result, control of the air conditioner is executed. For this reason, improvement in comfort can be expected by simple and fine air-conditioning control that reflects changes and magnitudes of outside air information.
 第3発明に係る空調制御システムは、第2発明に係る空調制御システムであって、制御パラメータテーブルとしての第1制御パラメータテーブル、及び第2制御パラメータテーブルで、外気情報としての外気不快指数と、共通の制御パラメータとが対応づけられている。そして、制御パラメータテーブル選択部は、過去の所定期間の外気情報の平均値と当日の外気情報との差と、既定の閾値との大小関係に基づいて、第1制御パラメータテーブル、または第2制御パラメータテーブルを選択する。
 この空調制御システムでは、制御パラメータテーブルとして、第1制御パラメータテーブルと第2制御パラメータテーブルとを備える。第1制御パラメータテーブル、及び第2制御パラメータテーブルで、外気情報としての外気不快指数と、共通の制御パラメータとが対応づけられている。そして、制御パラメータテーブル選択部は、過去の所定期間の外気情報の平均値と当日の外気情報との差と、既定の閾値との大小関係に基づいて、第1制御パラメータテーブル、または第2制御パラメータテーブルを選択する。このため、過去の所定期間の外気情報に対する当日の外気情報の変化を反映させた空調制御により、快適度の向上が期待できる。
An air conditioning control system according to a third aspect of the present invention is the air conditioning control system according to the second aspect of the present invention, wherein the first control parameter table as the control parameter table and the second control parameter table have an outside air discomfort index as outside air information, Common control parameters are associated with each other. The control parameter table selection unit then selects the first control parameter table or the second control based on the magnitude relationship between the difference between the average value of the outside air information in the past predetermined period and the outside air information on the current day and the predetermined threshold value. Select the parameter table.
The air conditioning control system includes a first control parameter table and a second control parameter table as control parameter tables. In the first control parameter table and the second control parameter table, an outside air discomfort index as outside air information and a common control parameter are associated with each other. The control parameter table selection unit then selects the first control parameter table or the second control based on the magnitude relationship between the difference between the average value of the outside air information in the past predetermined period and the outside air information on the current day and the predetermined threshold value. Select the parameter table. For this reason, improvement in comfort can be expected by air-conditioning control that reflects a change in the outside air information on the day with respect to outside air information in a predetermined period in the past.
 第4発明に係る空調制御システムは、第1発明に係る空調制御システムであって、制御パラメータテーブル選択部は、複数の制御パラメータテーブルから、制御パラメータの異なる複数の制御パラメータテーブルを選択する。そして、第4発明に係る空調制御システムは、制御パラメータテーブル有効無効切替部をさらに備える。この制御パラメータテーブル有効無効切替部は、制御パラメータテーブル選択部が選択した、制御パラメータの異なる複数の制御パラメータテーブルの有効、無効の切り替え制御を実行する。制御パラメータ更新部は、制御パラメータテーブル有効無効切替部が有効とした制御パラメータテーブルと、当日の外気情報とに基づいて、制御パラメータの値を更新する。
 この空調制御システムでは、制御パラメータテーブル有効無効切替部が、異なる制御パラメータを有する制御パラメータテーブルの切り替え制御を実行することにより、それぞれの制御パラメータの特性を生かした、空調制御が実現できる。例えば、初冬の真冬日は、寒さが本格的な真冬の真冬日と比較して、同じ外気温度であったとしても、体感的にはより寒く感じることがある。そこで、初冬では、空調効果は比較的弱いが、消費電力を抑えた空調制御を実行する制御パラメータを有する制御パラメータテーブルを有効にし、真冬では、より空調効果を強くするような制御を実行する制御パラメータを有する制御パラメータテーブルを有効にする。そして、この有効な制御パラメータテーブルと、当日の外気情報とに基づいて空調制御を実行する。このため、外気情報の変化や大小を反映した、細かな空調制御により、快適度の向上や、さらには省エネルギー効果も期待できる。
An air conditioning control system according to a fourth aspect is the air conditioning control system according to the first aspect, wherein the control parameter table selection unit selects a plurality of control parameter tables having different control parameters from the plurality of control parameter tables. The air conditioning control system according to the fourth aspect of the present invention further includes a control parameter table valid / invalid switching unit. The control parameter table valid / invalid switching unit executes valid / invalid switching control of a plurality of control parameter tables having different control parameters selected by the control parameter table selecting unit. The control parameter updating unit updates the value of the control parameter based on the control parameter table validated by the control parameter table valid / invalid switching unit and the outside air information of the day.
In this air conditioning control system, the control parameter table valid / invalid switching unit executes switching control of control parameter tables having different control parameters, thereby realizing air conditioning control utilizing the characteristics of each control parameter. For example, a midwinter day in early winter may feel colder in terms of experience, even if the cold is at the same outside air temperature as a full winter day in midwinter. Therefore, in the early winter, the air conditioning effect is relatively weak, but the control parameter table having the control parameter for executing the air conditioning control with reduced power consumption is enabled, and in the mid winter, the control for executing the control that further enhances the air conditioning effect. Enable control parameter table with parameters. And air-conditioning control is performed based on this effective control parameter table and the outside air information of the day. For this reason, improvement in comfort level and further energy saving effect can be expected by fine air-conditioning control reflecting changes and magnitudes of outside air information.
 第5発明に係る空調制御システムは、第4発明に係る空調制御システムであって、複数の制御パラメータテーブルは、外気情報としての外気不快指数、第3制御パラメータ、及び第4制御パラメータを有する。制御パラメータテーブル選択部は、過去の所定期間の外気情報の平均値と当日の外気情報との差に基づいて、外気不快指数と第3制御パラメータとを対応づける複数の制御パラメータテーブルから第3制御パラメータテーブルを選択する。また、制御パラメータテーブル選択部は、外気不快指数と第4制御パラメータとを対応づける複数の制御パラメータテーブルから第4制御パラメータテーブルを選択する。制御パラメータテーブル有効無効切替部は、季節、または外気情報に応じて、第3制御パラメータテーブル、または第4制御パラメータテーブルの有効無効の切り替え制御を実行する。
 このため、例えば、冬季でも特に寒い時期や、夏季でも特に暑い時期には、より空調効果の大きな制御を実行する制御パラメータを有する制御パラメータテーブルに切り替えることができる。また逆に、例えば、冬季でも一般に寒さが比較的緩やかな初冬や、夏季でも、本格的な暑さが訪れる前の初夏等には、空調効果は比較的弱いが、消費電力を抑えた空調制御を実行する制御パラメータを有する制御パラメータテーブルに切り替えることができる。そして、この有効な制御パラメータテーブルと、当日の外気情報とに基づいて空調制御を実行する。このため、外気情報の変化や大小を反映した、細かな空調制御により、快適度の向上や、さらには省エネルギー効果も期待できる。
An air conditioning control system according to a fifth aspect of the present invention is the air conditioning control system according to the fourth aspect of the present invention, wherein the plurality of control parameter tables include an outside air discomfort index, third control parameter, and fourth control parameter as outside air information. The control parameter table selection unit performs the third control from a plurality of control parameter tables that associate the outside air discomfort index and the third control parameter based on the difference between the average value of the outside air information in the past predetermined period and the outside air information on the current day. Select the parameter table. The control parameter table selection unit selects the fourth control parameter table from a plurality of control parameter tables that associate the outside air discomfort index with the fourth control parameter. The control parameter table valid / invalid switching unit executes valid / invalid switching control of the third control parameter table or the fourth control parameter table according to the season or outside air information.
For this reason, for example, it is possible to switch to a control parameter table having control parameters for executing control with a greater air conditioning effect in the cold season in winter and in the hot season in summer. On the other hand, for example, in the early winter when the cold is generally relatively mild in winter and in the early summer before the full-scale heat comes even in summer, the air conditioning control is relatively weak, but the power consumption is reduced. It is possible to switch to a control parameter table having control parameters for executing. And air-conditioning control is performed based on this effective control parameter table and the outside air information of the day. For this reason, improvement in comfort level and further energy saving effect can be expected by fine air-conditioning control reflecting changes and magnitudes of outside air information.
 第6発明に係る空調制御システムは、制御パラメータテーブルと制御パラメータテーブル生成部と時限式制御パラメータテーブルと制御パラメータ更新部とを備える。制御パラメータテーブルで、外気情報と空調機の制御パラメータとが対応づけられる。制御パラメータテーブル生成部は、制御パラメータテーブルを基に、新しい内容の時限式制御パラメータテーブルを生成する。制御パラメータ更新部は、時限式制御パラメータテーブルと、当日の外気情報とに基づいて、現在用いている制御パラメータの値を更新する。
 このため、当日の外気情報の変化を反映した、細かな空調制御により、快適度の向上が期待できる。
An air conditioning control system according to a sixth aspect of the present invention includes a control parameter table, a control parameter table generation unit, a timed control parameter table, and a control parameter update unit. In the control parameter table, the outside air information is associated with the control parameters of the air conditioner. The control parameter table generation unit generates a timed control parameter table having new contents based on the control parameter table. The control parameter updating unit updates the value of the currently used control parameter based on the timed control parameter table and the outside air information of the day.
For this reason, improvement in comfort can be expected by fine air-conditioning control that reflects changes in outdoor air information on the day.
 第7発明に係る空調制御システムは、第6発明に係る空調制御システムであって、制御パラメータテーブル生成部が、過去の所定期間の外気情報の平均値の算出と、当日の外気情報との取得を実行する。さらに、制御パラメータテーブル生成部は、過去の所定期間の外気情報の平均値と当日の外気情報との差を算出した後、この差に基づいて、制御パラメータテーブルから時限式制御パラメータテーブルを生成する。
 このため、過去の所定期間の外気情報に対する当日の外気情報の変化を反映させた空調制御により、快適度の向上が期待できる。
An air conditioning control system according to a seventh aspect of the present invention is the air conditioning control system according to the sixth aspect of the present invention, wherein the control parameter table generating unit calculates the average value of the outside air information for a predetermined period in the past and obtains the outside air information for the day. Execute. Further, the control parameter table generation unit calculates a difference between the average value of the outside air information in the past predetermined period and the outside air information on the current day, and then generates a timed control parameter table from the control parameter table based on the difference. .
For this reason, improvement in comfort can be expected by air-conditioning control that reflects a change in the outside air information on the day with respect to outside air information in a predetermined period in the past.
 第8発明に係る空調システムは、第6発明に係る空調制御システムであって、制御パラメータテーブル生成部は、制御パラメータテーブルを基に、制御パラメータの異なる複数の時限式制御パラメータテーブルを生成する。そして、第8発明に係る空調システムは、制御パラメータテーブル有効無効切替部をさらに備える。制御パラメータテーブル有効無効切替部は、制御パラメータの異なる複数の時限式制御パラメータテーブルの有効、無効の切り替え制御を実行する。そして、制御パラメータ更新部が、制御パラメータテーブル有効無効切替部が有効とした制御パラメータテーブルと、当日の外気情報とに基づいて、制御パラメータの値を更新する。
 この空調制御システムでは、制御パラメータテーブル生成部が、制御パラメータの異なる複数の時限式制御パラメータテーブルを生成する。さらに、制御パラメータテーブル有効無効切替部は、制御パラメータの異なる複数の時限式制御パラメータテーブルの有効、無効の切り替え制御を実行する。この結果、異なる制御パラメータの特性を生かした空調制御が可能となる。このため、外気情報の変化や大小を反映した、細かな空調制御により、快適度の向上や、さらには省エネルギー効果も期待できる。
An air conditioning system according to an eighth aspect of the present invention is the air conditioning control system according to the sixth aspect of the present invention, wherein the control parameter table generating unit generates a plurality of timed control parameter tables having different control parameters based on the control parameter table. The air conditioning system according to the eighth aspect of the present invention further includes a control parameter table valid / invalid switching unit. The control parameter table valid / invalid switching unit executes valid / invalid switching control of a plurality of timed control parameter tables having different control parameters. Then, the control parameter update unit updates the value of the control parameter based on the control parameter table validated by the control parameter table valid / invalid switching unit and the outside air information of the day.
In this air conditioning control system, the control parameter table generation unit generates a plurality of timed control parameter tables having different control parameters. Further, the control parameter table valid / invalid switching unit executes valid / invalid switching control of a plurality of timed control parameter tables having different control parameters. As a result, air conditioning control utilizing characteristics of different control parameters becomes possible. For this reason, improvement in comfort level and further energy saving effect can be expected by fine air-conditioning control reflecting changes and magnitudes of outside air information.
 第9発明に係る空調制御システムは、第8発明に係る空調制御システムであって、制御パラメータテーブル生成部は、制御パラメータテーブルを基に、過去の所定期間の外気情報の平均値と当日の外気情報との差に基づいて、第5時限式制御パラメータテーブルを生成する。この第5時限式制御パラメータテーブルでは、外気情報としての外気不快指数と制御パラメータとしての第5制御パラメータとが対応づけられる。同様に、制御パラメータテーブル生成部は、外気不快指数と、制御パラメータとしての第6制御パラメータとを対応づける、第6時限式制御パラメータテーブルを生成する。制御パラメータテーブル有効無効切替部は、季節、及び外気情報に応じて、第5時限式制御パラメータテーブル、及び第6時限式制御パラメータテーブルの有効、無効の切り替え制御を実行する。 An air conditioning control system according to a ninth aspect of the present invention is the air conditioning control system according to the eighth aspect of the present invention, wherein the control parameter table generating unit is configured to determine the average value of the outside air information in the past predetermined period and the outside air of the day based on the control parameter table. A fifth timed control parameter table is generated based on the difference from the information. In the fifth timed control parameter table, the outside air discomfort index as outside air information is associated with the fifth control parameter as a control parameter. Similarly, the control parameter table generation unit generates a sixth timed control parameter table that associates the outdoor air discomfort index with the sixth control parameter as the control parameter. The control parameter table valid / invalid switching unit executes valid / invalid switching control of the fifth timed control parameter table and the sixth timed control parameter table according to the season and outside air information.
 この空調制御システムでは、制御パラメータテーブル生成部が、外気情報の推移を反映させた、制御パラメータの異なる複数の時限式制御パラメータテーブルを生成する。さらに、制御パラメータテーブル有効無効切替部は、制御パラメータの異なる複数の時限式制御パラメータテーブルの有効、無効の切り替え制御を実行する。この結果、異なる制御パラメータの特性を生かした空調制御が可能となる。このため、外気情報の変化や大小を反映した、細かな空調制御により、快適度の向上や、さらには省エネルギー効果も期待できる。 In this air conditioning control system, the control parameter table generation unit generates a plurality of timed control parameter tables with different control parameters reflecting the transition of outside air information. Further, the control parameter table valid / invalid switching unit executes valid / invalid switching control of a plurality of timed control parameter tables having different control parameters. As a result, air conditioning control utilizing characteristics of different control parameters becomes possible. For this reason, improvement in comfort and further energy saving effect can be expected by fine air conditioning control that reflects changes and magnitudes of outside air information.
 第1発明に係る空調制御システムでは、外気情報の変化や大小を反映した、細かな空調制御により、快適度の向上が期待できる。
 第2発明に係る空調制御システムでは、外気情報の変化や大小を反映した、簡易的で細かな空調制御により、快適度の向上が期待できる。
 第3発明に係る空調制御システムでは、過去の所定期間の外気情報に対する当日の外気情報の変化を反映させた空調制御により、快適度の向上が期待できる。
 第4発明と第5発明に係る空調制御システムでは、外気情報の変化や大小を反映した、細かな空調制御により、快適度の向上や、さらには省エネルギー効果も期待できる。
 第6発明に係る空調制御システムでは、当日の外気情報の変化を反映した、細かな空調制御により、快適度の向上が期待できる。
In the air conditioning control system according to the first aspect of the present invention, improvement in comfort can be expected by fine air conditioning control that reflects changes and magnitudes of outside air information.
In the air conditioning control system according to the second aspect of the invention, improvement in comfort can be expected by simple and fine air conditioning control that reflects changes and magnitudes of outside air information.
In the air conditioning control system according to the third aspect of the invention, the comfort level can be improved by the air conditioning control that reflects the change in the outside air information on the day with respect to the outside air information in the past predetermined period.
In the air conditioning control system according to the fourth and fifth inventions, improvement in comfort and further energy saving effect can be expected by fine air conditioning control reflecting changes and magnitudes of outside air information.
In the air conditioning control system according to the sixth aspect of the invention, improvement in comfort can be expected by fine air conditioning control that reflects changes in the outside air information on the day.
 第7発明に係る空調制御システムでは、過去の所定期間の外気情報に対する当日の外気情報の変化を反映させた空調制御により、快適度の向上が期待できる。
 第8発明と第9発明に係る空調制御システムでは、外気情報の変化や大小を反映した、細かな空調制御により、快適度の向上や、さらには省エネルギー効果も期待できる。
In the air conditioning control system according to the seventh aspect of the invention, an improvement in comfort can be expected by air conditioning control that reflects changes in the outside air information on the day relative to outside air information for a predetermined period in the past.
In the air conditioning control system according to the eighth and ninth inventions, improvement in comfort and further energy saving effect can be expected by fine air conditioning control reflecting changes and magnitudes of outside air information.
第1実施形態に係る空調制御システムのシステム構成図System configuration diagram of an air conditioning control system according to the first embodiment 外気温度の時間経過を表す図A diagram showing the passage of time of outside air temperature 不快指数と体感との関係を示す図Diagram showing the relationship between discomfort index and bodily sensation 制御パラメータテーブル選択部の処理の流れを示すフローチャートFlowchart showing process flow of control parameter table selection unit 制御パラメータ更新部の処理の流れを示すフローチャートFlowchart showing the flow of processing of the control parameter update unit 第1実施形態の変形例Aにおける制御パラメータテーブル選択部の処理の流     れを示すフローチャートFlowchart showing the process flow of the control parameter table selection unit in Modification A of the first embodiment 第1実施形態の変形例Bにおける制御パラメータテーブル選択部の処理の流     れを示すフローチャートFlow chart showing the flow of processing of the control parameter table selection unit in Modification B of the first embodiment 第1実施形態の変形例Bにおける制御パラメータテーブル有効無効切替部の     処理の流れを示すフローチャートFlowchart showing the processing flow of the control parameter table valid / invalid switching unit in Modification B of the first embodiment 第2実施形態における制御パラメータテーブル生成部の処理の流れを示すフ     ローチャートFlow chart showing the flow of processing of the control parameter table generator in the second embodiment 外気温度と外気不快指数との関係を示す図Diagram showing the relationship between outside air temperature and outside air discomfort index 第2実施形態に係る空調制御システムのシステム構成図System configuration diagram of an air conditioning control system according to the second embodiment
〔第1実施形態〕
 ここでは、本発明の第1実施形態に係る空調制御システム1について、図面を参照しながら説明する。まず、空調機9aが、冬季に暖房運転を行っている状況を仮定して説明する。夏季に冷房運転を行っている場合も、原理的には同様である。
 例えば、気温が同じであっても、初冬の真冬日は、真冬の真冬日と比較して体感的には寒く感じられることがある。これは、初冬ではまだ本格的な寒さに体が順応していないからとも考えられる。
 また、平年並みに推移していた気温が、急に低下する場合がある。このような場合も体感的には寒く感じられることがある。
 このように、実際の気温と体感温度との間には、幾分ずれが存在する場合がある。本発明に係る空調制御システムは、このような状況を考慮に入れ、快適度の向上や省エネルギー効果を実現することを目的としている。
[First Embodiment]
Here, the air conditioning control system 1 according to the first embodiment of the present invention will be described with reference to the drawings. First, a description will be given assuming that the air conditioner 9a performs a heating operation in winter. The same is true in principle when the cooling operation is performed in summer.
For example, even if the temperature is the same, a midwinter day in early winter may be felt colder than a midwinter day in midwinter. This may be because the body has not yet adapted to the full-scale cold in early winter.
In addition, the temperature that has been around the normal level may suddenly drop. Even in such a case, it may be felt cold in terms of experience.
In this way, there may be a slight difference between the actual temperature and the sensory temperature. The air conditioning control system according to the present invention is intended to realize an improvement in comfort and an energy saving effect in consideration of such a situation.
 図3は、外気不快指数と体感との関係を示す一つの例である。外気不快指数は、外気温度と湿度とから換算できる指数であり、外気温度と密接に関係する。しかしここでいう外気温度とは、単なる外気の温度であり、外気不快指数と外気温度とは、基本的に別の情報である。
 なお、本発明において、「外気温度」という用語を使用するが、これは例えば空調技術関連において、外気の温度を意味するが、少なくとも本発明の説明においては、一般的な気象用語である気温と同義語であると考えて差し支えない。従って、本発明の説明でも、「外気温度」に加えて、一般的な気象用語としての「気温」を使用することがあるが、これは、「外気温度」と同じ意味であると考えて差し支えない。
〔第1実施形態に係る空調制御システム1の構成要素〕
 (全体の構成)
 空調制御システム1は、図1に示されるように、気象情報サイトのような、気象情報を配信する気象情報配信源5と、気象情報配信源5から、ネットワーク6を介して気象情報を取得するとともに、取得した気象情報に基づいて空調機9aの運転情報を生成する遠隔管理装置7と、空調機9aが設置された建造物9と、遠隔管理装置7からネットワーク6を介して供給される空調機9aの運転情報に基づき、ネットワーク6を介して建造物9の空調機9aを制御するローカル制御装置8とを備える。
FIG. 3 is one example showing the relationship between the outdoor air discomfort index and the body sensation. The outside air discomfort index is an index that can be converted from the outside air temperature and humidity, and is closely related to the outside air temperature. However, the outside air temperature here is simply the outside air temperature, and the outside air discomfort index and the outside air temperature are basically different information.
In the present invention, the term “outside air temperature” is used, which means the temperature of the outside air, for example, in relation to air conditioning technology. You can think of it as a synonym. Accordingly, in the description of the present invention, “air temperature” as a general weather term may be used in addition to “outside air temperature”, but this may be considered to have the same meaning as “outside air temperature”. Absent.
[Components of the air-conditioning control system 1 according to the first embodiment]
(Overall configuration)
As shown in FIG. 1, the air conditioning control system 1 acquires weather information via a network 6 from a weather information distribution source 5 that distributes weather information, such as a weather information site, and the weather information distribution source 5. At the same time, the remote management device 7 that generates the operation information of the air conditioner 9 a based on the acquired weather information, the building 9 in which the air conditioner 9 a is installed, and the air conditioner supplied from the remote management device 7 via the network 6. And a local control device 8 for controlling the air conditioner 9a of the building 9 via the network 6 based on the operation information of the machine 9a.
 遠隔管理装置7は、気象情報配信源5から、ネットワーク6を介して、気象情報を取得する。そして、取得した気象情報に基づいて空調機9aの運転情報を生成する。なお、空調機9aの運転情報とは、具体的には、後述する空調機9aの制御パラメータを指す。遠隔管理装置7によって生成された、空調機9aの運転情報は、ネットワーク6を介して、ローカル制御装置8に送信される。ローカル制御装置8は、建造物9に設置されている空調機9aとネットワーク6で接続されている。そして、遠隔管理装置7から、ネットワーク6を介して取得した、空調機9aの運転情報に基づいて、建造物9に設置されている空調機9aの運転を制御する。以降、遠隔管理装置7を中心に、詳細を説明する。
 (1)遠隔管理装置
 遠隔管理装置7は、図1に示されるように、制御パラメータテーブル10、制御パラメータテーブル選択部20、制御パラメータ更新部30、制御部40、記憶部45、及び通信部50を備える。制御パラメータテーブル10は、外気不快指数と空調機9aの制御パラメータ(以降、単に制御パラメータということがある)とを対応させたテーブルである。制御パラメータテーブル10として、制御パラメータテーブル10AS、10AW、10BS、10BW(後述の表1~表4参照)を有する。なお、制御パラメータテーブル10AS、10AW、10BS、10BWは、後述の記憶部45に記憶されている。制御パラメータテーブル10AS、10BSは夏季用である。また、制御パラメータテーブル10AW、10BWは冬季用である。夏季用制御パラメータテーブル10AS、10BSは、空調機が冷房運転モードで運転されているときに使用する。また、冬季用制御パラメータテーブル10AW、10BWは、空調機が暖房運転モードで運転されているときに使用する。
The remote management device 7 acquires weather information from the weather information distribution source 5 via the network 6. And the driving | operation information of the air conditioner 9a is produced | generated based on the acquired weather information. Note that the operation information of the air conditioner 9a specifically refers to control parameters of the air conditioner 9a described later. The operation information of the air conditioner 9 a generated by the remote management device 7 is transmitted to the local control device 8 via the network 6. The local control device 8 is connected to the air conditioner 9 a installed in the building 9 through the network 6. And based on the driving | operation information of the air conditioner 9a acquired from the remote management apparatus 7 via the network 6, the operation | movement of the air conditioner 9a installed in the building 9 is controlled. Hereinafter, the details will be described focusing on the remote management device 7.
(1) Remote Management Device The remote management device 7 includes a control parameter table 10, a control parameter table selection unit 20, a control parameter update unit 30, a control unit 40, a storage unit 45, and a communication unit 50, as shown in FIG. Is provided. The control parameter table 10 is a table in which an outside air discomfort index is associated with a control parameter of the air conditioner 9a (hereinafter simply referred to as a control parameter). The control parameter table 10 includes control parameter tables 10AS, 10AW, 10BS, and 10BW (see Tables 1 to 4 described later). The control parameter tables 10AS, 10AW, 10BS, and 10BW are stored in the storage unit 45 described later. The control parameter tables 10AS and 10BS are for summer. The control parameter tables 10AW and 10BW are for winter. The summer control parameter tables 10AS and 10BS are used when the air conditioner is operated in the cooling operation mode. The winter control parameter tables 10AW and 10BW are used when the air conditioner is operated in the heating operation mode.
 制御パラメータテーブル選択部20は、過去の所定期間(1週間)の外気温度の平均値と当日の外気温度の予測値との差に基づいて、制御パラメータテーブル10AS、または10BSのいずれか、10AW、または10BWのいずれかを決定する。本実施形態では、外気情報として外気温度を用いている。なお、当日の外気温度は、実測値であってもよい。
 制御パラメータ更新部30は、制御パラメータテーブル選択部20が選択した制御パラメータテーブル10AS、10AW、または10BS、10BWに基づいて、制御パラメータの値を更新する。
 制御部40は、後述のローカル制御装置8から送信された外気温度等の、外部から取得した各種データの処理や保存、外部に送信する各種データの処理等の入出力管理をはじめとする、データ処理やデータフロー制御等の様々な情報処理を実行する。制御部40は、物理的には主に、中央処理部41、主記憶装置であるRAM42、ROM43等から構成される。中央処理部41は主にCPUから構成され、データの演算、制御等の基本的な情報処理を実行する。制御部40の各構成要素は、互いに通信接続され、各種情報やデータのやり取りを実行する。また、制御パラメータテーブル選択部20、制御パラメータ更新部30等の、中心的な役割を果たす機能部は、制御プログラムの実行によって、制御部40内に現れる。
Based on the difference between the average value of the outside air temperature in the past predetermined period (one week) and the predicted value of the outside air temperature on the current day, the control parameter table selection unit 20 selects either the control parameter table 10AS or 10BS, 10AW, Alternatively, either 10 BW is determined. In the present embodiment, the outside air temperature is used as the outside air information. Note that the outside air temperature on that day may be an actual measurement value.
The control parameter update unit 30 updates the value of the control parameter based on the control parameter table 10AS, 10AW, or 10BS, 10BW selected by the control parameter table selection unit 20.
The control unit 40 performs data management including input / output management such as processing and storage of various data acquired from the outside, such as the outside air temperature transmitted from the local control device 8 described later, and processing of various data transmitted to the outside. Various information processing such as processing and data flow control is executed. The control unit 40 is physically mainly composed of a central processing unit 41, a RAM 42 as a main storage device, a ROM 43, and the like. The central processing unit 41 is mainly composed of a CPU, and executes basic information processing such as data calculation and control. The constituent elements of the control unit 40 are communicatively connected to each other and exchange various information and data. Also, functional units that play a central role such as the control parameter table selection unit 20 and the control parameter update unit 30 appear in the control unit 40 by executing the control program.
 記憶部45は、ハードディスク(HDD)であって、制御パラメータテーブル10、過去の外気温度をはじめとする各種データ、各種プログラム等が記憶されている。
 通信部50は、制御部40と協働して、システム内の情報の送受信や、外部とのデータの送受信等、様々な通信機能を実現する。例えば、当日の外気温度の予測値や、当日の外気不快指数を、気象情報配信源5から取得したりする。以降、中心的な部分である、制御パラメータテーブル10、制御パラメータテーブル選択部20、及び制御パラメータ更新部30の各部分について説明する。
 (遠隔管理装置の各部分の構成)
 (1-1)制御パラメータテーブル
 制御パラメータテーブル10は、外気不快指数と空調機9aの制御パラメータとを対応付けたテーブルであって、4つの制御パラメータテーブル10AS、10AW、10BS、10BWを有する。制御パラメータテーブル10AS、10BSは夏季用である。また、制御パラメータテーブル10AW、10BWは冬季用である。表1~表4にそれぞれ、冬季用の制御パラメータテーブル10AW、10BW、夏季用の制御パラメータテーブル10AS、10BSの例を示す。制御パラメータとしては、間欠運転の停止時間割合を採用している。
The storage unit 45 is a hard disk (HDD), and stores a control parameter table 10, various data including past outside air temperature, various programs, and the like.
The communication unit 50 cooperates with the control unit 40 to realize various communication functions such as transmission / reception of information in the system and transmission / reception of data with the outside. For example, the predicted value of the outside air temperature on the day and the outside air discomfort index on the day are acquired from the weather information distribution source 5. Hereinafter, each part of the control parameter table 10, the control parameter table selection unit 20, and the control parameter update unit 30 which is a central part will be described.
(Configuration of each part of the remote management device)
(1-1) Control Parameter Table The control parameter table 10 is a table in which the outside air discomfort index is associated with the control parameters of the air conditioner 9a, and includes four control parameter tables 10AS, 10AW, 10BS, and 10BW. The control parameter tables 10AS and 10BS are for summer. The control parameter tables 10AW and 10BW are for winter. Tables 1 to 4 show examples of winter control parameter tables 10AW and 10BW and summer control parameter tables 10AS and 10BS, respectively. As a control parameter, the intermittent operation stop time ratio is adopted.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000004
 
Figure JPOXMLDOC01-appb-T000004
 
 間欠運転とは、空調機9aの運転と停止とを断続的に行って省エネルギー化を図るものである。停止時間割合とは、空調機9aの全運転時間に対する、空調機9aの暖房運転、または冷房運転が停止している時間(サーモOFFの状態の時間)の割合である。停止時間割合が20%といった場合、例えば、全運転時間を10分とすると、2分まで空調機9aをサーモOFFで運転し、残りの8分をサーモONで運転させることを意味する。サーモOFFでの運転では、圧縮機が停止し、送風のみが行われる。以降、説明の簡略化のため、間欠運転の停止時間割合を単に停止時間割合と表現する。
 また、ここでは、外気情報として、外気不快指数を採用している。外気不快指数とは、外気温度と湿度とによって定まる指数である。図3に、外気不快指数と体感温度との関係を示す。外気不快指数60~70が最も快適な環境であるといえる。この最も快適な環境である不快指数60~70の範囲から外れるに従って不快度が増してくる。外気不快指数が60~70よりも低い側は低温側であり、外気不快指数が60~70よりも高い側は高温側である。
The intermittent operation is intended to save energy by intermittently operating and stopping the air conditioner 9a. The stop time ratio is the ratio of the time during which the heating operation or the cooling operation of the air conditioner 9a is stopped (the time in the thermo OFF state) to the total operation time of the air conditioner 9a. When the stop time ratio is 20%, for example, if the total operation time is 10 minutes, it means that the air conditioner 9a is operated with the thermo OFF for 2 minutes and the remaining 8 minutes are operated with the thermo ON. In the operation with the thermo OFF, the compressor is stopped and only blowing is performed. Hereinafter, for simplification of description, the stop time ratio of intermittent operation is simply expressed as a stop time ratio.
Here, an outside air discomfort index is adopted as outside air information. The outside air discomfort index is an index determined by the outside air temperature and humidity. FIG. 3 shows the relationship between the outdoor air discomfort index and the temperature of experience. It can be said that the outdoor air discomfort index 60 to 70 is the most comfortable environment. The discomfort increases as the discomfort index falls outside the range of 60 to 70, which is the most comfortable environment. The side where the outside air discomfort index is lower than 60 to 70 is the low temperature side, and the side where the outside air discomfort index is higher than 60 to 70 is the high temperature side.
 暖房運転モードの場合も冷房運転モードの場合も原理的には同様であるので、以降の説明においては、専ら暖房運転モード、つまり、冬季用の制御パラメータテーブル10AW、10BWが適用される場合について説明し、冷房運転モードの場合の詳細は省略する。
 表1、及び表3の制御パラメータテーブル10AW、10ASは、気温等の気候変動が激しくない、通常の気候条件のときに用いられる。これに対して、表2、及び表4の制御パラメータテーブル10BW、10BSは、例えば、平年並みの気温で推移していたのが、ある日、急激に気温が低下した場合など、気候条件が急激に変化して不快度が増した場合に用いられる。このような気象条件の場合に、快適度を向上させるため、制御パラメータテーブル10BS、10BWでは、制御パラメータテーブル10AS、10AWと比較して、同じ制御パラメータ(停止時間割合)の値に対して、より快適な外気不快指数が対応づけられている。このことは、逆に言えば、同じ外気不快指数に対して、より停止時間割合を短くして空調機9aの空調を強めるように、停止時間割合が対応づけられていることを意味する。
Since both the heating operation mode and the cooling operation mode are the same in principle, in the following description, the heating operation mode, that is, the case where the winter control parameter tables 10AW and 10BW are applied will be described. Details of the cooling operation mode are omitted.
The control parameter tables 10AW and 10AS in Tables 1 and 3 are used in normal climatic conditions where climate change such as temperature is not severe. On the other hand, the control parameter tables 10BW and 10BS in Tables 2 and 4 have a climatic condition suddenly when, for example, the temperature has changed at an ordinary temperature, but the temperature has suddenly decreased one day. It is used when the discomfort level increases due to the change. In the case of such weather conditions, in order to improve the comfort level, the control parameter tables 10BS and 10BW are more effective than the control parameter tables 10AS and 10AW with respect to the value of the same control parameter (stop time ratio). A comfortable outdoor air discomfort index is associated. In other words, this means that the stop time ratio is associated with the same outside air discomfort index so that the stop time ratio is shortened and the air conditioning of the air conditioner 9a is strengthened.
 (1-2)制御パラメータテーブル選択部
 図2は、外気温度の推移の例を示す図である。この図2では、過去1週間程度、同じような程度で推移していた外気温度が、急に低下した場合が示されている。空調制御システム1では、制御パラメータテーブル選択部20がまず、過去1週間の外気温度の平均値θpastを算出する。この過去1週間の外気温度とは、遠隔管理装置7が、ローカル制御装置8を介して取得した、建造物9における外気温度であり、記憶部45に保存されている。また、制御パラメータテーブル選択部20は、毎日定時刻に(毎朝6時)に気象情報配信源5より、当日の外気温度の予測値θnowを、通信部50を介して取得する。そして、制御パラメータテーブル選択部20は、過去1週間の外気温度の平均値θpastと、当日の外気温度の予測値θnowとの差Δθ(=θnow-θpast)を算出する。
(1-2) Control Parameter Table Selection Unit FIG. 2 is a diagram illustrating an example of the transition of the outside air temperature. FIG. 2 shows a case where the outside air temperature, which has been changing in the same degree for the past week or so, suddenly decreases. In the air conditioning control system 1, the control parameter table selection unit 20 first calculates the average value θpast of the outside air temperature for the past one week. The outside air temperature for the past one week is the outside air temperature in the building 9 acquired by the remote management device 7 via the local control device 8 and is stored in the storage unit 45. In addition, the control parameter table selection unit 20 acquires the predicted value θnow of the outside air temperature of the day from the weather information distribution source 5 via the communication unit 50 at a fixed time every day (6 am every morning). Then, the control parameter table selection unit 20 calculates a difference Δθ (= θnow−θpast) between the average value θpast of the outside air temperature for the past one week and the predicted value θnow of the outside air temperature on that day.
 次に、制御パラメータテーブル選択部20は、このようにして算出されたΔθと、既定の閾値θ0との関係に基づいて、制御パラメータテーブル10AW、または10BWのうちのいずれかを選択する。なお、以降、冬季用の制御パラメータテーブル10AW,10BWについてのみ説明する。具体的には、空調機9aを暖房運転モードで運転している場合、制御パラメータテーブル選択部20は、上記のように算出されたΔθと、既定の閾値θ0とが、次の条件式1を満たすときは、制御パラメータテーブル10AWを選択する。
 条件式1: Δθ<θ0
 一方、条件式1を満たさないときは、制御パラメータテーブル10BWを選択する。
 なお、空調機9aの運転モードが暖房運転モードの場合と、冷房運転モードの場合とでは、条件式の大小記号が逆になるが、原理的には、どちらも同様であるので、ここでは、暖房運転モードの場合について説明している。なお、既定の閾値θ0は、例えば、3℃、5℃、7℃等、ユーザが入力して設定することができる。
Next, the control parameter table selection unit 20 selects either the control parameter table 10AW or 10BW based on the relationship between Δθ calculated in this way and the predetermined threshold value θ0. Hereinafter, only the winter control parameter tables 10AW and 10BW will be described. Specifically, when the air conditioner 9a is operated in the heating operation mode, the control parameter table selection unit 20 determines that the following conditional expression 1 is obtained by Δθ calculated as described above and the predetermined threshold θ0. When it is satisfied, the control parameter table 10AW is selected.
Conditional expression 1: Δθ <θ0
On the other hand, when the conditional expression 1 is not satisfied, the control parameter table 10BW is selected.
In addition, in the case where the operation mode of the air conditioner 9a is the heating operation mode and in the case of the cooling operation mode, the magnitude symbols of the conditional expressions are reversed, but in principle, both are the same. The case of the heating operation mode is described. Note that the predetermined threshold value θ0 can be set by the user inputting, for example, 3 ° C., 5 ° C., 7 ° C. or the like.
 (1-3)制御パラメータ更新部
 制御パラメータ更新部30は、通信部50を介して、気象情報配信源5から当日の外気不快指数を取得する。次に、制御パラメータ更新部30は、制御パラメータテーブル選択部20が選択した制御パラメータテーブル10AW、または10BWと、取得した外気不快指数とを照合する。そして、対応する停止時間割合を、当日の停止時間割合(制御パラメータ)として設定する。制御パラメータ更新部30による、制御パラメータの値の更新が、毎日1回、毎朝6時に実行される。例えば、表1の制御パラメータテーブル10AWの場合、外気不快指数が40ならば、停止時間割合は、10%である。
 (2)ローカル制御装置
 ローカル制御装置8は、ネットワーク6を介して、遠隔管理装置7で生成された空調機9aの運転情報を受信し、その運転情報に基づいて、建造物9に設置されている空調機9aの空調を制御する。また、ローカル制御装置8は、建造物9に設置されている空調機9aの設定温度や建造物9の室内温度、過去の外気温度等の各種情報を、ネットワークを介して、遠隔管理装置7に送信する。
(1-3) Control Parameter Update Unit The control parameter update unit 30 acquires the outdoor air discomfort index for the day from the weather information distribution source 5 via the communication unit 50. Next, the control parameter update unit 30 collates the control parameter table 10AW or 10BW selected by the control parameter table selection unit 20 with the acquired outside air discomfort index. Then, the corresponding stop time ratio is set as the stop time ratio (control parameter) of the day. Update of the value of the control parameter by the control parameter update unit 30 is executed once a day at 6 am every morning. For example, in the case of the control parameter table 10AW of Table 1, if the outside air discomfort index is 40, the stop time ratio is 10%.
(2) Local control device The local control device 8 receives the operation information of the air conditioner 9a generated by the remote management device 7 via the network 6, and is installed in the building 9 based on the operation information. The air conditioning of the air conditioner 9a is controlled. Further, the local control device 8 sends various information such as the set temperature of the air conditioner 9a installed in the building 9, the indoor temperature of the building 9, and the past outside air temperature to the remote management device 7 via the network. Send.
 (3)ネットワーク
 空調制御システム1では、気象情報配信源5と遠隔管理装置7とローカル制御装置8とは、インターネット等を介して通信接続されている。また、ローカル制御装置8と建造物9とは、LAN(ローカルエリアネットワーク)を介して通信接続されている。
〔空調制御システムの動作〕
 ここでは、空調制御システム1の動作について説明する。
(1)制御パラメータテーブル選択部における処理の流れ
 ここでは、制御パラメータテーブル選択部20における処理の流れについて、フローチャートを用いながら説明する。図4は、制御パラメータテーブル選択部20における処理の流れを示すフローチャートである。
(3) Network In the air conditioning control system 1, the meteorological information distribution source 5, the remote management device 7, and the local control device 8 are communicatively connected via the Internet or the like. The local control device 8 and the building 9 are communicatively connected via a LAN (local area network).
[Operation of air conditioning control system]
Here, the operation of the air conditioning control system 1 will be described.
(1) Process Flow in Control Parameter Table Selection Unit Here, the process flow in the control parameter table selection unit 20 will be described using a flowchart. FIG. 4 is a flowchart showing the flow of processing in the control parameter table selection unit 20.
 ステップS1では、制御パラメータテーブル選択部20が、通信部50を介して、気象情報配信源5から、当日の外気温度の予測値θnowを取得し、RAM42に書き込む。その後、ステップS2に移動する。なお、この予測値の取得は毎朝6時に実行されるように設定されている。
 ステップS2では、制御パラメータテーブル選択部20が、ローカル制御装置8、及び通信部50を介して、過去1週間の外気温度の平均値θpastを算出する。さらに、制御パラメータテーブル選択部20は、ステップS1で取得した当日の外気温度の予測値θnowと過去1週間の外気温度の平均値θpastとの差Δθ(=θnow-θpast)を算出する。その後、ステップS3に移動する。
 ステップS3では、制御パラメータテーブル選択部20が、ステップS2で算出した、過去1週間の外気温度の平均値θpastと当日の外気温度の予測値θnowとの差Δθが、上述の条件式1を満たすかどうかを判定する。
In step S <b> 1, the control parameter table selection unit 20 acquires the predicted value θnow of the outside air temperature of the day from the weather information distribution source 5 through the communication unit 50 and writes it in the RAM 42. Then, it moves to step S2. The acquisition of the predicted value is set to be executed every morning at 6:00.
In step S <b> 2, the control parameter table selection unit 20 calculates the average value θpast of the outside air temperature for the past one week via the local control device 8 and the communication unit 50. Further, the control parameter table selection unit 20 calculates a difference Δθ (= θnow−θpast) between the predicted value of the outside air temperature on the current day acquired in step S1 and the average value θpast of the outside air temperature for the past one week. Then, it moves to step S3.
In step S3, the difference Δθ between the average value θpast of the outside air temperature in the past one week calculated in step S2 and the predicted value θnow of the outside air temperature on the current day satisfies the above-described conditional expression 1 in step S3. Determine whether or not.
 条件式1: Δθ<θ0
 条件式1を満たす場合は、ステップS4に移動し、満たさない場合は、ステップS5に移動する。
 ステップS4では、制御パラメータテーブル選択部20が、制御パラメータテーブル10AWを選択し、ステップS6に移動する。
 ステップS5では、制御パラメータテーブル選択部20が、制御パラメータテーブル10BWを選択し、ステップS6に移動する。
 ステップS6では、制御パラメータテーブル決定の終了処理を行う。
 (2)制御パラメータ更新部の処理の流れ
 ここでは、制御パラメータ更新部30の処理の流れについて、フローチャートを用いながら説明する。図5は、制御パラメータ更新部30の処理の流れを示すフローチャートである。
Conditional expression 1: Δθ <θ0
If the conditional expression 1 is satisfied, the process moves to step S4. If not, the process moves to step S5.
In step S4, the control parameter table selection unit 20 selects the control parameter table 10AW and moves to step S6.
In step S5, the control parameter table selection unit 20 selects the control parameter table 10BW and moves to step S6.
In step S6, control parameter table determination end processing is performed.
(2) Process Flow of Control Parameter Update Unit Here, the process flow of the control parameter update unit 30 will be described using a flowchart. FIG. 5 is a flowchart showing a processing flow of the control parameter update unit 30.
 ステップS21では、制御パラメータ更新部30が、通信部50を介して、気象情報配信源5から、当日の外気不快指数の予測値を取得する。そして、取得した当日の外気不快指数をRAM42に書き込む。その後ステップS22に移行する。
 ステップS22では、(1)の制御パラメータテーブル選択部20の処理において、制御パラメータテーブル選択部20が選択した制御パラメータテーブル10AW、または10BWを、制御パラメータ更新部30が、RAM42に読み込む。その後、ステップS23に移動する。
 ステップS23では、制御パラメータ更新部30が、カウンタCntを1で初期化し、ステップS24に移動する。
 ステップS24では、制御パラメータ更新部30が、ステップS22でRAM42に読み込んだ制御パラメータテーブル10AW、または10BWのCnt行目の情報をRAM42に書き込む。その後、ステップS25に移動する。
In step S <b> 21, the control parameter update unit 30 acquires the predicted value of the outdoor air discomfort index for the day from the weather information distribution source 5 via the communication unit 50. Then, the acquired outdoor air discomfort index is written in the RAM 42. Thereafter, the process proceeds to step S22.
In step S22, the control parameter update unit 30 reads the control parameter table 10AW or 10BW selected by the control parameter table selection unit 20 into the RAM 42 in the process of the control parameter table selection unit 20 in (1). Thereafter, the process proceeds to step S23.
In step S23, the control parameter update unit 30 initializes the counter Cnt with 1, and moves to step S24.
In step S24, the control parameter update unit 30 writes the information on the Cnt line of the control parameter table 10AW or 10BW read into the RAM 42 in step S22 into the RAM 42. Thereafter, the process proceeds to step S25.
 ステップS25では、制御パラメータ更新部30が、当日の外気不快指数の予測値θnowが、制御パラメータテーブル10AW、または10BWのCnt行の第1列目の外気不快指数の範囲を表す条件を満たすかどうかを判定する。当日の外気不快指数の予測値θnowは、制御パラメータ更新部30が、ステップS21で取得し、RAM42に書き込んだものである。また、制御パラメータテーブル10AW、または10BWのCnt行は、制御パラメータ更新部30が、ステップS24でRAM42に書き込んだものである。判定の結果、条件を満たすときには、ステップS26に移動する。判定の結果、条件を満たさないときには、ステップS27に移動する。
 ステップS26では、制御パラメータ更新部30が、ステップS24でRAM42に書き込んだ、制御パラメータテーブル10AW、または10BWのCnt行目の第2列目の情報(制御パラメータ、つまり停止時間割合)を、新しい制御パラメータの値として設定する。その後、ステップS28の終了処理に移動する。
In step S25, the control parameter update unit 30 determines whether or not the predicted value θnow of the outdoor air discomfort index for the day satisfies the condition representing the range of the outdoor air discomfort index in the first column of the Cnt row of the control parameter table 10AW or 10BW. Determine. The predicted value θnow of the outdoor air discomfort index on that day is obtained by the control parameter update unit 30 in step S21 and written in the RAM 42. The Cnt line of the control parameter table 10AW or 10BW is the one written by the control parameter update unit 30 in the RAM 42 in step S24. If the condition is satisfied as a result of the determination, the process moves to step S26. If the condition is not satisfied as a result of the determination, the process moves to step S27.
In step S26, the control parameter update unit 30 writes the information (control parameter, that is, the stop time ratio) in the second column of the Cnt row of the control parameter table 10AW or 10BW written in the RAM 42 in step S24 to the new control. Set as a parameter value. Thereafter, the process proceeds to an end process of step S28.
 ステップS27では、カウンタCntの値を1だけ加算する。その後、ステップS24に移動する。
 ステップS28では、制御パラメータ更新の終了処理を実行し、制御パラメータ更新部30の処理を終了する。
〔空調制御システムの特徴〕
 (1)
 制御パラメータテーブル10AWは、外気温度等の気候変動が激しくない、通常の気候条件のときに用いられる。これに対して、制御パラメータテーブル10BWは、例えば、平年並みに推移していた外気温度が、急激に低下した場合に用いられる。冬季において、急激に外気温度が変化した場合、外気温度が同じでも、体感的に感じる寒さには違いがあることもあり得る。空調制御システム1では、このような場合を想定して、客観的な外気不快指数が同じであっても、快適度をより向上させるため、制御パラメータテーブル10BWでは、制御パラメータテーブル10AWと比較して、同じ制御パラメータ(停止時間割合)の値に対して、より快適な指数が対応づけられている。このことは、逆に言えば、同じ外気不快指数に対して、より停止時間割合を短くして空調機9aの空調をより強めるように、停止時間割合が対応づけられていることを意味する。このため、冬季において、平年並みに推移していた外気温度が、急激に低下した場合などでも、体感温度等も考慮に入れた空調制御により、快適度の向上を期待できる。
In step S27, the value of the counter Cnt is incremented by 1. Thereafter, the process proceeds to step S24.
In step S28, a control parameter update end process is executed, and the process of the control parameter update unit 30 ends.
[Characteristics of air conditioning control system]
(1)
The control parameter table 10AW is used in normal climatic conditions where climate change such as outside air temperature is not severe. On the other hand, the control parameter table 10BW is used, for example, when the outside air temperature, which has been changing as normal, drops rapidly. In the winter season, when the outside air temperature changes abruptly, even if the outside air temperature is the same, there may be a difference in the cold feel. In the air conditioning control system 1, assuming such a case, the control parameter table 10BW is compared with the control parameter table 10AW in order to improve the comfort level even if the objective outside air discomfort index is the same. A more comfortable index is associated with the same control parameter (stop time ratio) value. In other words, this means that the stop time ratio is associated with the same outside air discomfort index so that the stop time ratio is shortened and the air conditioning of the air conditioner 9a is further strengthened. For this reason, even when the outside air temperature, which has been in a normal state in winter, suddenly decreases, an improvement in comfort can be expected by air-conditioning control that takes into consideration the temperature of sensation.
 (2)
 空調制御システム1では、過去の所定期間(1週間)での外気温度の平均値θpastを算出して、当日の外気温度θnowとの差を算出する。このため、過去の細かな外気温度の変動が吸収され、外気温度の大きな変化の傾向を空調に反映させて、より快適度を向上させ得る。
 (3)
 空調制御システム1では、制御パラメータテーブル選択部20が選択した制御パラメータテーブル10AW、または10BWと、当日の外気不快指数とに基づいて、空調機9aの制御パラメータの値の更新を実行する。外気不快指数は、外気温度や湿度等に基づいて算出されるため、1日のうちでも常に変動していることが考えられる。一方、当日の外気不快指数は、気象情報配信源5から取得する予測値である。最近の気象予報技術の発達により、気温の予測値等の精度は飛躍的に改善されており、信頼性が向上している。このため、1日の中での外気不快指数の細かな変動にあまり影響されることなく、空調制御を実行できる可能性があり、快適度の向上や、省エネルギー効果が期待できる。
〔第1実施形態の変形例〕
 以上、本発明の第1実施形態について説明したが、本発明は第1実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲において、種々の変更が可能である。
(2)
In the air conditioning control system 1, the average value θpast of the outside air temperature in the past predetermined period (one week) is calculated, and the difference from the outside air temperature θnow of the day is calculated. For this reason, the past fine fluctuations in the outside air temperature are absorbed, and the tendency of a large change in the outside air temperature is reflected in the air conditioning, so that the comfort level can be further improved.
(3)
In the air conditioning control system 1, the control parameter value of the air conditioner 9a is updated based on the control parameter table 10AW or 10BW selected by the control parameter table selection unit 20 and the outdoor air discomfort index on that day. Since the outside air discomfort index is calculated based on the outside air temperature, humidity, and the like, it can be considered that it constantly fluctuates even during the day. On the other hand, the outdoor air discomfort index on that day is a predicted value acquired from the weather information distribution source 5. Due to recent developments in weather forecasting technology, the accuracy of predicted temperature values has been dramatically improved, and reliability has been improved. For this reason, there is a possibility that air-conditioning control can be executed without being affected by minute fluctuations in the outdoor air discomfort index during the day, and an improvement in comfort and an energy saving effect can be expected.
[Modification of First Embodiment]
Although the first embodiment of the present invention has been described above, the present invention is not limited to the first embodiment, and various modifications can be made without departing from the scope of the invention.
 (変形例A)
 第1実施形態に係る空調制御システム1は、制御パラメータテーブル10として、冬季用に限れば、2つの制御パラメータテーブル10AW、及び10BWを有しており、制御パラメータテーブル選択部20が、そのうちのいずれかを選択した。しかし、制御パラメータテーブル10は2つに限らず、例えば3つの制御パラメータテーブル10を有していて、制御パラメータテーブル選択部20が、その中から1つの制御パラメータテーブル10を選択するようにしてもよい。第1実施形態の変形例Aは、外気不快指数と1種類の制御パラメータとを対応づけた3つの夏季用の制御パラメータテーブル10AAS、10ABS、10ACS、冬季用の制御パラメータテーブル10AAW、10ABW、10ACWを有していて、例えば次のような場合に応用できる。
(Modification A)
The air-conditioning control system 1 according to the first embodiment has two control parameter tables 10AW and 10BW as the control parameter table 10 only for the winter season, and the control parameter table selection unit 20 selects one of them. I chose. However, the number of control parameter tables 10 is not limited to two. For example, the control parameter table 10 includes three control parameter tables 10 and the control parameter table selection unit 20 selects one control parameter table 10 from the three control parameter tables 10. Good. Modification A of the first embodiment includes three summer control parameter tables 10AAS, 10ABS, 10ACS, and winter control parameter tables 10AAW, 10ABW, 10ACW in which an outdoor air discomfort index is associated with one type of control parameter. For example, it can be applied to the following cases.
 真冬の少し暖かい日は、初冬の同程度の気温の日よりも体感的に暖かく感じる場合がある。体感的に暖かく感じる場合には、暖房を少し弱めて省エネルギー効果を向上させ得ることが考えられる。実施例1の変形例Aに係る空調制御システム1では、通常の気温の日には、通常の制御パラメータテーブル10AA、体感的に寒く感じる場合には、空調が強めに実行されるように、外気不快指数と制御パラメータとが対応づけられている制御パラメータテーブル10AB、体感的に幾分暖かく感じる場合には、空調が弱めに(つまり消費電力が抑えられるように)実行されるように、外気不快指数と制御パラメータとが対応づけられている制御パラメータテーブル10ACを選択することで、快適度の向上に加えて省エネルギー効果も期待できる。
〔変形例Aの構成要素〕
 ここでは、変形例Aの構成要素について説明する。変形例Aの遠隔管理装置7のみについて説明する。気象情報配信源5、ネットワーク6、ローカル制御装置8、建造物9に関しては、第1実施形態と全く同様である。また、第1実施形態と重複する部分の説明の詳細も省略する。
A slightly warm day in midwinter may feel warmer than a warmer day in early winter. When it feels warm in terms of experience, it is conceivable that heating can be slightly reduced to improve the energy saving effect. In the air conditioning control system 1 according to the modified example A of the first embodiment, on the day of a normal temperature, the normal control parameter table 10AA. The control parameter table 10AB in which the discomfort index and the control parameter are associated with each other. When the user feels somewhat warm, the outside air is uncomfortable so that air conditioning is performed weakly (that is, power consumption is suppressed). By selecting the control parameter table 10AC in which the index and the control parameter are associated with each other, an energy saving effect can be expected in addition to an improvement in the comfort level.
[Components of Modification A]
Here, the components of Modification A will be described. Only the remote management device 7 of Modification A will be described. The weather information distribution source 5, the network 6, the local control device 8, and the building 9 are exactly the same as in the first embodiment. Details of the description overlapping with the first embodiment are also omitted.
 (遠隔管理装置の全体の構成)
 変形例Aの遠隔管理装置7は、制御パラメータテーブル10、制御パラメータテーブル選択部20、制御パラメータ更新部30、制御部40、記憶部45、及び通信部50を備える。
 (遠隔管理装置の各部分の構成)
 以降、変形例Aにおいて中心的な部分である、制御パラメータテーブル10、制御パラメータテーブル選択部20、及び制御パラメータ更新部30の各部分について説明する。
 (A-1)制御パラメータテーブル10
 変形例Aは、外気不快指数と1種類の制御パラメータとを対応づけた3つの夏季用の制御パラメータテーブル10AAS、10ABS、10ACS、3つの冬季用の制御パラメータテーブル10AAW、10ABW、10ACWを有している。これらの制御パラメータテーブル10AAS、10ABS、10ACS、10AAW、10ABW、10ACWは、記憶部45に記憶されている。以降、空調機が暖房運転モードで運転されている場合、つまり、冬季用の制御パラメータテーブル10AAW、10ABW、10ACWについてのみ説明する。
(Overall configuration of remote management device)
The remote management device 7 of Modification A includes a control parameter table 10, a control parameter table selection unit 20, a control parameter update unit 30, a control unit 40, a storage unit 45, and a communication unit 50.
(Configuration of each part of the remote management device)
Hereinafter, each part of the control parameter table 10, the control parameter table selection unit 20, and the control parameter update unit 30, which is a central part in Modification A, will be described.
(A-1) Control parameter table 10
The modified example A includes three summer control parameter tables 10AAS, 10ABS, 10ACS, and three winter control parameter tables 10AAW, 10ABW, 10ACW in which the outdoor air discomfort index is associated with one type of control parameter. Yes. These control parameter tables 10AAS, 10ABS, 10ACS, 10AAW, 10ABW, 10ACW are stored in the storage unit 45. Hereinafter, only the control parameter tables 10AAW, 10ABW, 10ACW for the case where the air conditioner is operated in the heating operation mode, that is, the winter season will be described.
 (A-2)制御パラメータテーブル選択部
 制御パラメータテーブル選択部20は、過去の所定期間(過去1週間)の外気温度の平均値と当日の外気温度の予測値との差に基づいて、制御パラメータテーブル10AAW、10ABW、または10ACWのいずれかを選択する。なお、当日の外気温度は、実測値であってもよい。
 制御パラメータテーブル選択部20は、ローカル制御装置8、及び通信部50を介して、過去1週間の外気温度の平均値θ1pastを算出する。この過去1週間の外気温度とは、遠隔管理装置7が、ローカル制御装置8を介して取得した、建造物9における外気温度であり、記憶部45に保存されている。また、制御パラメータテーブル選択部20は、毎朝6時に気象情報配信源5より、当日の外気温度の予測値θ1nowを、通信部50を介して取得する。そして、過去1週間の外気温度の平均値θ1pastと、当日の外気温度の予測値θ1nowとの差Δθ1(=θ1past-θ1now)を算出する。次に、制御パラメータテーブル選択部20は、このように算出されたΔθ1を、既定の2つの閾値θ11とθ12と比較する。そして、この比較の結果に基づいて、制御パラメータテーブル10AAW、10ABW、または10ACWのうちのいずれかを選択する。以降、このことを説明する。表5から表7にそれぞれ、冬季用の制御パラメータテーブル10AAW、10ABW、10ACWの例を示す。
(A-2) Control Parameter Table Selection Unit The control parameter table selection unit 20 controls the control parameter based on the difference between the average value of the outside air temperature in the past predetermined period (the past one week) and the predicted value of the outside air temperature on that day. One of the tables 10AAW, 10ABW, or 10ACW is selected. Note that the outside air temperature on that day may be an actual measurement value.
The control parameter table selection unit 20 calculates the average value θ1past of the outside air temperature for the past one week via the local control device 8 and the communication unit 50. The outside air temperature for the past one week is the outside air temperature in the building 9 acquired by the remote management device 7 via the local control device 8 and is stored in the storage unit 45. In addition, the control parameter table selection unit 20 acquires the predicted value θ1now of the outside air temperature of the day from the weather information distribution source 5 through the communication unit 50 at 6:00 every morning. Then, a difference Δθ1 (= θ1past−θ1now) between the average value θ1past of the outside air temperature in the past one week and the predicted value θ1now of the outside air temperature on the day is calculated. Next, the control parameter table selection unit 20 compares Δθ1 calculated in this way with two predetermined threshold values θ11 and θ12. Based on the result of the comparison, one of the control parameter tables 10AAW, 10ABW, or 10ACW is selected. Hereinafter, this will be described. Tables 5 to 7 show examples of winter control parameter tables 10AAW, 10ABW, and 10ACW, respectively.
Figure JPOXMLDOC01-appb-T000005
 
Figure JPOXMLDOC01-appb-T000005
 
Figure JPOXMLDOC01-appb-T000006
 
Figure JPOXMLDOC01-appb-T000006
 
Figure JPOXMLDOC01-appb-T000007
 
Figure JPOXMLDOC01-appb-T000007
 
 制御パラメータテーブル10AAWは、通常の気候の場合に用いられる。制御パラメータテーブル10ABWは、例えば、冬季において、平年並みで推移していた外気温度が当日あたりから急激に下がった場合(体感的に不快度が高い場合)に用いられる。制御パラメータテーブル10ACWは逆に、同じく冬季において、当日あたりから外気温度が上昇した場合(体感的に不快度が低い場合)に用いられるである。
 空調機9aの運転モードが暖房運転モードの場合と、冷房運転モードの場合とでは、例えば選択の条件式の大小記号等が逆となるが、原理的には同様であるので、ここでは、暖房運転モードの場合について説明する。空調機9aが暖房運転モードで稼動している場合、制御パラメータテーブル選択部20は、上記のように算出されたΔθ1と、既定の2つの閾値θ11,θ12とを比較する。比較の結果、次の条件式2を満たす場合は、制御パラメータテーブル10AAWを選択する。なお、既定の2つの閾値θ11,θ12は、ユーザが入力して設定することができる。
The control parameter table 10AAW is used in a normal climate. The control parameter table 10ABW is used, for example, when the outside air temperature, which has been changing as normal in winter, suddenly drops from around the day (when the degree of discomfort is high). Conversely, the control parameter table 10ACW is also used in the winter when the outside air temperature rises from around the day (when the degree of discomfort is low in terms of experience).
In the case where the operation mode of the air conditioner 9a is the heating operation mode and the case of the cooling operation mode, for example, the size symbols of the selected conditional expressions are reversed. The case of the operation mode will be described. When the air conditioner 9a is operating in the heating operation mode, the control parameter table selection unit 20 compares Δθ1 calculated as described above with two predetermined threshold values θ11 and θ12. As a result of the comparison, if the following conditional expression 2 is satisfied, the control parameter table 10AAW is selected. The predetermined two threshold values θ11 and θ12 can be input and set by the user.
 条件式2: θ11<Δθ1<θ12
次の条件式3を満たす場合は、制御パラメータテーブルABWを選択する。
 条件式3: Δθ1≧θ12
上記以外の場合は、制御パラメータテーブルACWを選択する。
 (A-3)制御パラメータ更新部
 制御パラメータ更新部30は、制御パラメータテーブル選択部20が選択した制御パラメータテーブル10AAW、ABW、またはACWに基づいて、制御パラメータの値を更新する。
 制御部40、記憶部45、通信部50については、第1実施形態の場合と同様であるので、ここでは説明を省略する。
〔変形例Aの動作〕
 ここでは、変形例Aの動作について説明する。制御パラメータ更新部30の動作については、第1実施形態の場合と同様であるので、ここでは説明を省略し、制御パラメータテーブル選択部20についてのみ説明する。
Conditional expression 2: θ11 <Δθ1 <θ12
When the following conditional expression 3 is satisfied, the control parameter table ABW is selected.
Conditional expression 3: Δθ1 ≧ θ12
In cases other than the above, the control parameter table ACW is selected.
(A-3) Control Parameter Update Unit The control parameter update unit 30 updates the value of the control parameter based on the control parameter table 10AAW, ABW, or ACW selected by the control parameter table selection unit 20.
Since the control unit 40, the storage unit 45, and the communication unit 50 are the same as those in the first embodiment, description thereof is omitted here.
[Operation of Modification A]
Here, the operation of Modification A will be described. Since the operation of the control parameter update unit 30 is the same as that in the first embodiment, description thereof is omitted here, and only the control parameter table selection unit 20 is described.
 (A-1)制御パラメータテーブル選択部における処理の流れ
 ここでは、制御パラメータテーブル選択部20における処理の流れについて、フローチャートを用いながら説明する。図6は、変形例Aの制御パラメータテーブル選択部20における処理の流れを示すフローチャートである。
 ステップS31では、制御パラメータテーブル選択部20が、通信部50を介して、気象情報配信源5から、当日の外気温度の予測値θ1nowを取得し、RAM42に書き込む。その後、ステップS32に移動する。なお、変形例Aでは、この予測値θ1nowの取得は毎朝6時に実行されるように設定されている。
 ステップS32では、制御パラメータテーブル選択部20が、ローカル制御装置8、及び通信部50を介して、過去1週間の外気温度の平均値θ1pastを算出する。さらに、制御パラメータテーブル選択部20は、過去1週間の外気温度の平均値θ1pastと、ステップS1で取得した当日の外気温度の予測値θ1nowとの差Δ1θ(=θ1past-θ1now)を算出する。その後、ステップS33に移動する。
(A-1) Process Flow in Control Parameter Table Selection Unit Here, the process flow in the control parameter table selection unit 20 will be described using a flowchart. FIG. 6 is a flowchart showing the flow of processing in the control parameter table selection unit 20 of Modification A.
In step S <b> 31, the control parameter table selection unit 20 acquires the predicted value θ <b> 1 now of the outdoor temperature of the day from the weather information distribution source 5 via the communication unit 50 and writes it in the RAM 42. Thereafter, the process proceeds to step S32. In Modification A, the acquisition of the predicted value θ1now is set to be executed every morning at 6:00.
In step S32, the control parameter table selection unit 20 calculates an average value θ1past of the outside air temperature for the past one week via the local control device 8 and the communication unit 50. Further, the control parameter table selection unit 20 calculates a difference Δ1θ (= θ1past−θ1now) between the average value θ1past of the outside air temperature in the past one week and the predicted value θ1now of the outside air temperature of the day acquired in step S1. Then, it moves to step S33.
 ステップS33では、制御パラメータテーブル選択部20が、過去1週間の外気温度の平均値θ1pastと当日の外気温度の予測値θ1nowとの差Δθ1が、以下の条件式2を満たすかどうかを判定する。過去1週間の外気温度の平均値θ1pastは、ステップS32で、制御パラメータテーブル選択部20が算出したものである。ここで、θ11、及びθ12は、既定の閾値である。
 条件式2: θ11<Δθ1<θ12
条件式2を満たす場合は、ステップS34に移動し、満たさない場合はステップS35に移動する。
 ステップS34では、制御パラメータテーブル選択部20が、制御パラメータテーブル10AAWを選択し、RAM42に書き込む。その後、ステップS38に移動する。
In step S33, the control parameter table selection unit 20 determines whether or not the difference Δθ1 between the average value θ1past of the outside air temperature in the past week and the predicted value θ1now of the outside air temperature on the day satisfies the following conditional expression 2. The average value θ1past of the outside air temperature for the past one week is calculated by the control parameter table selection unit 20 in step S32. Here, θ11 and θ12 are predetermined threshold values.
Conditional expression 2: θ11 <Δθ1 <θ12
If conditional expression 2 is satisfied, the process moves to step S34, and if not, the process moves to step S35.
In step S34, the control parameter table selection unit 20 selects the control parameter table 10AAW and writes it to the RAM 42. Thereafter, the process proceeds to step S38.
 ステップS35では、制御パラメータテーブル選択部20が、ステップS32で算出した過去1週間の外気温度の平均値θ1pastと当日の外気温度の予測値θ1nowとの差Δθ1が、上記の条件式3を満たすかどうかを判定する。
 条件式3: Δθ1≧θ12
条件式3を満たす場合は、ステップS36に移動し、満たさない場合はステップS37に移動する。
 ステップS36では、制御パラメータテーブル選択部20が、制御パラメータテーブル10ABWを選択し、RAM42に書き込む。その後、ステップS38に移動する。
 ステップS37では、制御パラメータテーブル選択部20が、制御パラメータテーブル10ACWを選択し、RAM42に書き込む。その後、ステップS38に移動する。
In step S35, whether or not the difference Δθ1 between the average value θ1past of the outside temperature for the past one week calculated in step S32 and the predicted value θ1now of the outside temperature on that day satisfies the conditional expression 3 in step S35. Determine if.
Conditional expression 3: Δθ1 ≧ θ12
If conditional expression 3 is satisfied, the process moves to step S36, and if not, the process moves to step S37.
In step S 36, the control parameter table selection unit 20 selects the control parameter table 10 ABW and writes it in the RAM 42. Thereafter, the process proceeds to step S38.
In step S37, the control parameter table selection unit 20 selects the control parameter table 10ACW and writes it in the RAM. Thereafter, the process proceeds to step S38.
 ステップS38では、制御パラメータテーブル決定の終了処理を行う。
 〔変形例Aの特徴〕
 例えば、冬季において、空調機9aが暖房運転モードで運転されている場合、急激に外気温度が低下した場合には、制御パラメータテーブル選択部20により、制御パラメータテーブル10ABWが選択される。この制御パラメータテーブル10ABWでは、制御パラメータテーブル10AAWと比較して、空調が強めに実行されるように、外気不快指数と制御パラメータとが対応づけられている。一方、例えば、真冬の最も寒い時期に、比較的暖かい日が続く場合等には、制御パラメータテーブル選択部20により、制御パラメータテーブル10ACWが選択される。この制御パラメータテーブル10ACWでは、制御パラメータテーブル10AAWと比較して、空調が弱めに(つまり消費電力が抑えられるように)実行されるように、外気不快指数と制御パラメータとが対応づけられている。このため、快適度の向上に加えて省エネルギー効果も期待できる。
In step S38, an end process for determining the control parameter table is performed.
[Features of Modification A]
For example, in the winter season, when the air conditioner 9a is operated in the heating operation mode and the outside air temperature rapidly decreases, the control parameter table selection unit 20 selects the control parameter table 10ABW. In this control parameter table 10ABW, the outdoor air discomfort index and the control parameters are associated with each other so that air conditioning is executed more strongly than in the control parameter table 10AAW. On the other hand, for example, when a relatively warm day continues in the coldest time of midwinter, the control parameter table selection unit 20 selects the control parameter table 10ACW. In this control parameter table 10ACW, the outdoor air discomfort index and the control parameter are associated with each other so that the air conditioning is performed weaker (that is, the power consumption is suppressed) as compared with the control parameter table 10AAW. For this reason, in addition to the improvement in comfort, an energy saving effect can be expected.
 (変形例B)
 第1実施形態に係る空調制御システム1では、制御パラメータテーブル10が有する、空調機9aの制御パラメータは1種類であった。しかし、制御パラメータテーブル10が有する、空調機9aの制御パラメータは、複数であってもよい。
 なお、ここでは、空調機9aの運転モードが暖房運転モードである場合について説明する。空調機9aの運転モードが冷房運転モードある場合も原理的には同様であり、単に制御の方向が逆になるだけである。このため、ここでは、空調機9aの運転モードが冷房運転モードである場合の説明は省略する。
 変形例Bでは、2つめの制御パラメータとして、能力制限率を採用している。能力制限とは、空調機9aのキャパシティーを制限することで省エネルギー化を図るものである。能力制限率とは、この能力制限の割合である。例えば、空調機9aの通常のキャパシティーを仮に最大100とした場合、能力制限率を80%にすると、この状態でのキャパシティーは、最大でも80となる。
(Modification B)
In the air conditioning control system 1 according to the first embodiment, the control parameter table 10 has one type of control parameter for the air conditioner 9a. However, the control parameter table 10 may have a plurality of control parameters for the air conditioner 9a.
Here, the case where the operation mode of the air conditioner 9a is the heating operation mode will be described. The same applies in principle when the operation mode of the air conditioner 9a is the cooling operation mode, and the control direction is simply reversed. For this reason, the description in the case where the operation mode of the air conditioner 9a is the cooling operation mode is omitted here.
In the modified example B, the capacity limiting rate is adopted as the second control parameter. The capacity restriction is intended to save energy by restricting the capacity of the air conditioner 9a. The capacity limit rate is a ratio of the capacity limit. For example, assuming that the normal capacity of the air conditioner 9a is 100 at the maximum, the capacity in this state is 80 at the maximum if the capacity limit rate is 80%.
 一般に、空調機9aの暖房運転、または冷房運転を停止することで空調制御を行う方法(停止時間割合による制御方法という)は、空調機9aを能力制限率で制御する方法と比較して、快適度はやや低いが、結果として消費電力は抑えられる。このため、冬季に空調機9aを暖房運転モードで運転する場合、例えば、次に述べるような方法を採用すれば、さらなる省エネルギー効果が期待できる。
 初冬の12月は、一般に、外気温度が、1月や2月と比較して幾分高い傾向がある。このため、停止時間割合の制御のみで空調制御を実行する。このような方法を採用することで、快適度はやや低いが消費電力が抑えられる。次第に寒さが厳しくなってくる1月には、停止時間割合と能力制限率との両方の制御を有効にして空調制御を実行する。そして、一般に冬季で最も寒いとされる2月には、能力制限率の制御のみで空調制御を実行する。
In general, the method of performing air conditioning control by stopping the heating operation or cooling operation of the air conditioner 9a (referred to as a control method based on the stop time ratio) is more comfortable than the method of controlling the air conditioner 9a at the capacity limit rate. The power consumption is reduced as a result although the degree is somewhat low. For this reason, when the air conditioner 9a is operated in the heating operation mode in winter, for example, if a method as described below is adopted, a further energy saving effect can be expected.
In early winter, December, the outside air temperature generally tends to be somewhat higher than in January or February. For this reason, the air conditioning control is executed only by controlling the stop time ratio. By adopting such a method, the comfort level is slightly low, but the power consumption can be suppressed. In January, when cold weather becomes increasingly severe, the air conditioning control is executed with both the stop time ratio and the capacity limit ratio enabled. Then, in February, which is generally the coldest in winter, air conditioning control is executed only by controlling the capacity limit rate.
 ただし、このような寒さの傾向は、あくまで目安であり、他のより精密な方法、例えば、季節のみでなく、外気温度等も考慮に入れた方法を採用することもでき、またその方が望ましい。しかしここでは、説明を単純化するために、上述の方法による制御について説明する。以降、変形例Bについて説明する。
 変形例Bでは、外気不快指数と停止時間割合とが対応づけられた、夏季用と冬季用それぞれ2つずつ、合計4つの制御パラメータテーブル10A1S、10A2S、10A1W、10A2Wを有する。また、外気不快指数と能力制限率とが対応づけられた夏季用と冬季用それぞれ2つずつ、合計4つの制御パラメータテーブル10B1S、10B2S、10B1W、10B2Wを有する。制御パラメータテーブル10A1S、10A2S、10B1S、10B2Sは夏季用である。また、制御パラメータテーブル10A1W、10A2W、10B1W、10B2Wは、冬季用である。
However, such a tendency of cold is only a guideline, and other more precise methods, for example, a method that takes into account not only the season but also the outside air temperature etc. can be adopted, and it is desirable. . However, here, in order to simplify the description, the control by the above-described method will be described. Hereinafter, Modification B will be described.
In the modified example B, there are four control parameter tables 10A1S, 10A2S, 10A1W, and 10A2W in total, two for summer and two for winter, in which the outdoor air discomfort index is associated with the stop time ratio. In addition, there are two control parameter tables 10B1S, 10B2S, 10B1W, and 10B2W in total, two for summer and two for winter, each of which is associated with an outside air discomfort index and a capacity restriction rate. The control parameter tables 10A1S, 10A2S, 10B1S, and 10B2S are for summer. The control parameter tables 10A1W, 10A2W, 10B1W, and 10B2W are for winter.
 変形例Bでは、さらに、制御パラメータテーブル選択部20が選択した、複数の制御パラメータテーブル10の一部または全てを有効にしたり無効にしたりする、制御パラメータテーブル有効無効切替部25を有する。なお、変形例Bでは、例えば、2つの制御パラメータテーブル10A1W、または10A2Wと、10B1W、または10B2Wとの両方が有効になる場合があるが、逆に、両方が無効になることがあってもよい。
 以下、変形例Bの各構成要素について説明する。なお、ここでも、遠隔管理装置7についてのみ説明し、気象情報配信源5、ネットワーク6、ローカル制御装置8に関しては、第1実施形態と全く同様であるので、説明を省略する。また、制御パラメータテーブル選択部20と制御パラメータ更新部30については、機能としては第1実施形態の場合と同様である。
The modification B further includes a control parameter table valid / invalid switching unit 25 that validates or invalidates some or all of the plurality of control parameter tables 10 selected by the control parameter table selection unit 20. In the modification B, for example, both the two control parameter tables 10A1W or 10A2W and 10B1W or 10B2W may be valid, but conversely, both may be invalid. .
Hereinafter, each component of the modified example B will be described. Here, only the remote management device 7 will be described, and the weather information distribution source 5, the network 6, and the local control device 8 are exactly the same as those in the first embodiment, and thus description thereof is omitted. Further, the functions of the control parameter table selection unit 20 and the control parameter update unit 30 are the same as those in the first embodiment.
 (B-1)制御パラメータテーブル選択部
 制御パラメータテーブル選択部20は、ローカル制御装置8、及び通信部50を介して過去1週間の外気温度の平均値θ2pastを算出する。また、毎日定時刻に(毎朝6時)に気象情報配信源5より、当日の外気温度の予測値θ2nowを、通信部50を介して取得する。そして、過去1週間の外気温度の平均値θ2pastと、当日の外気温度の予測値θ2nowとの差Δθ2(=θ2past-θ2now)を算出する。次に、制御パラメータテーブル選択部20は、このようにして算出されたΔθ2と、既定の閾値θ2との関係に基づいて、制御パラメータテーブル10A1Wまたは10A2Wのうちのいずれか一方を選択する。また、同様に、制御パラメータテーブル10B1Wまたは10B2Wのうちのいずれか一方を選択する。表11から表14にそれぞれ、冬季用の制御パラメータテーブル10A1W、10A2W、10B1W、10B2Wの例を示す。以降、冬季用、つまり暖房運転モードの場合について説明し、夏季用、つまり冷房運転モードの場合の説明は省略する。
(B-1) Control Parameter Table Selection Unit The control parameter table selection unit 20 calculates the average value θ2past of the outside air temperature for the past one week via the local control device 8 and the communication unit 50. In addition, the predicted value θ2now of the outside air temperature of the day is acquired from the weather information distribution source 5 through the communication unit 50 at a fixed time every day (6 am every morning). Then, the difference Δθ2 (= θ2past−θ2now) between the average value θ2past of the outside air temperature in the past one week and the predicted value θ2now of the outside air temperature on the day is calculated. Next, the control parameter table selection unit 20 selects either the control parameter table 10A1W or 10A2W based on the relationship between Δθ2 calculated in this way and the predetermined threshold value θ2. Similarly, one of the control parameter tables 10B1W or 10B2W is selected. Tables 11 to 14 show examples of winter control parameter tables 10A1W, 10A2W, 10B1W, and 10B2W, respectively. Hereinafter, the case for the winter season, that is, the heating operation mode will be described, and the description for the summer season, that is, the cooling operation mode will be omitted.
Figure JPOXMLDOC01-appb-T000008
 
Figure JPOXMLDOC01-appb-T000008
 
Figure JPOXMLDOC01-appb-T000009
 
Figure JPOXMLDOC01-appb-T000009
 
Figure JPOXMLDOC01-appb-T000010
 
Figure JPOXMLDOC01-appb-T000010
 
Figure JPOXMLDOC01-appb-T000011
 
Figure JPOXMLDOC01-appb-T000011
 
 空調機9aを暖房運転モードで運転している場合、制御パラメータテーブル選択部20は、上記のように算出されたΔθ2と、既定の閾値θ2とを比較する。比較の結果、次の条件式4を満たすときは、制御パラメータテーブル10A1W、及び10B1Wを選択する。
 条件式4: Δθ2<θ2
 一方、条件式4を満たさないときは、制御パラメータテーブル10A2W、及び10B2Wを選択する。
 なお、空調機9aの運転モードが暖房運転モードの場合と、冷房運転モードの場合とでは、選択の条件式の大小記号等が逆になるが、どちらも同様であり、一方の運転モードにおける処理の流れから、もう一方の運転モードにおける処理の流れの手順を導出することは容易である。このため、ここでは、暖房運転モードの場合について説明し、冷房運転モードの場合の説明は省略する。
When the air conditioner 9a is operated in the heating operation mode, the control parameter table selection unit 20 compares Δθ2 calculated as described above with a predetermined threshold value θ2. As a result of the comparison, when the following conditional expression 4 is satisfied, the control parameter tables 10A1W and 10B1W are selected.
Conditional expression 4: Δθ2 <θ2
On the other hand, when the conditional expression 4 is not satisfied, the control parameter tables 10A2W and 10B2W are selected.
In addition, the case where the operation mode of the air conditioner 9a is the heating operation mode and the case of the cooling operation mode, the magnitude symbols of the selected conditional expressions are reversed, but both are the same, and the processing in one operation mode is the same. From this flow, it is easy to derive the procedure of the processing flow in the other operation mode. For this reason, here, the case of the heating operation mode will be described, and the description of the case of the cooling operation mode will be omitted.
 (B-2)制御パラメータテーブル有効無効切替部
 制御パラメータテーブル有効無効切替部25は、季節に基づいて、制御パラメータテーブル選択部20が選択した制御パラメータテーブル10A1W等の一部または全てを有効または無効にする。空調機9aが冷房運転モードの場合、初冬では、外気不快指数と停止時間割合とが対応づけられた2つの制御パラメータテーブル10A1W、または10A2Wが有効となり、外気不快指数と能力制限率とが対応づけられた2つの制御パラメータテーブル10B1W、または10B2Wは無効となる。一方、真冬では、外気不快指数と能力制限率とが対応づけられた2つの制御パラメータテーブル10B1W、または10B2Wが有効となり、外気不快指数と停止時間割合とが対応づけられた2つの制御パラメータテーブル10A1W、または10A2Wは無効となる。
(B-2) Control Parameter Table Valid / Invalid Switching Unit The control parameter table valid / invalid switching unit 25 validates or invalidates part or all of the control parameter table 10A1W selected by the control parameter table selection unit 20 based on the season. To. When the air conditioner 9a is in the cooling operation mode, two control parameter tables 10A1W or 10A2W in which the outdoor air discomfort index and the stop time ratio are associated with each other are effective in the early winter, and the external air discomfort index and the capacity restriction rate are associated with each other. The two control parameter tables 10B1W or 10B2W are invalid. On the other hand, in mid-winter, the two control parameter tables 10B1W or 10B2W in which the outdoor air discomfort index and the capacity restriction rate are associated are valid, and the two control parameter tables 10A1W in which the outdoor air discomfort index and the stop time ratio are associated with each other. Or 10A2W becomes invalid.
 なお、変形例Bでは、制御パラメータテーブル有効無効切替部25は、季節に基づいて、制御パラメータテーブルの有効または無効を決定したが、それ以外の条件、例えば、外気温度等に基づいて、制御パラメータテーブル10の有効または無効を決定してもよい。
 (B-3)制御パラメータ更新部
 制御パラメータ更新部30については、第1実施形態と全く同様であるため、ここでは、説明を省略する。
 〔変形例Bの動作〕
 ここでは、変形例Bの動作について、フローチャートを参照しながら説明する。図7は、変形例Bにおける、制御パラメータテーブル選択部20における処理の流れを示すフローチャートである。この部分の処理は、第1実施形態とほとんど同様である。なお、図7では、スペースの都合上、制御パラメータテーブル10A1W等の符号において、「10」の部分を省略した。
In the modified example B, the control parameter table valid / invalid switching unit 25 determines whether the control parameter table is valid or invalid based on the season. However, the control parameter table valid / invalid switching unit 25 determines the control parameter based on other conditions such as the outside air temperature. The validity or invalidity of the table 10 may be determined.
(B-3) Control Parameter Update Unit Since the control parameter update unit 30 is exactly the same as that in the first embodiment, description thereof is omitted here.
[Operation of Modification B]
Here, the operation of Modification B will be described with reference to a flowchart. FIG. 7 is a flowchart showing the flow of processing in the control parameter table selection unit 20 in Modification B. The processing of this part is almost the same as in the first embodiment. In FIG. 7, the part of “10” is omitted in the reference numerals of the control parameter table 10A1W and the like for the sake of space.
 (B-1)制御パラメータテーブル選択部20
 ステップS41では、制御パラメータテーブル選択部20が、通信部50を介して、気象情報配信源5から、当日の外気温度の予測値を取得し、RAM42に書き込む。その後、ステップS42に移動する。なお、この予測値の取得は毎朝6時に実行されるように設定されている。
 ステップS42では、制御パラメータテーブル選択部20が、ローカル制御装置8、及び通信部50を介して、過去1週間の外気温度の平均値θ2pastを算出する。この過去1週間の外気温度とは、遠隔管理装置7が、ローカル制御装置8を介して取得した、建造物9における外気温度であり、記憶部45に保存されている。さらに、制御パラメータテーブル選択部20は、過去1週間の外気温度の平均値θ2pastと、ステップS41で取得した当日の外気温度の予測値θ2nowとの差Δθ2(=θ2past-θ2now)を算出する。その後、ステップS43に移動する。
(B-1) Control parameter table selection unit 20
In step S <b> 41, the control parameter table selection unit 20 acquires a predicted value of the outside air temperature of the day from the weather information distribution source 5 via the communication unit 50 and writes it in the RAM 42. Thereafter, the process proceeds to step S42. The acquisition of the predicted value is set to be executed every morning at 6:00.
In step S42, the control parameter table selection unit 20 calculates the average value θ2past of the outside air temperature for the past one week via the local control device 8 and the communication unit 50. The outside air temperature for the past one week is the outside air temperature in the building 9 acquired by the remote management device 7 via the local control device 8 and is stored in the storage unit 45. Further, the control parameter table selection unit 20 calculates a difference Δθ2 (= θ2past−θ2now) between the average value θ2past of the outside air temperature in the past one week and the predicted value θ2now of the outside air temperature on the day acquired in step S41. Thereafter, the process proceeds to step S43.
 ステップS43では、制御パラメータテーブル選択部20が、ステップS42で算出した過去1週間の外気温度の平均値θ2pastと当日の外気温度の予測値θ2nowとの差Δθ2が、上記の条件式4を満たすかどうかを判定する。ここで、θ2は、既定の閾値である。
 条件式4:Δθ2<θ2
条件式4を満たす場合は、ステップS44に移動し、満たさない場合はステップS45に移動する。
 ステップS44では、制御パラメータテーブル選択部20が、制御パラメータテーブル10A1W、及び10B1Wを選択し、RAM42に書き込む。その後、ステップS46の終了処理に移動する。
 ステップS45では、制御パラメータテーブル選択部20が、制御パラメータテーブル10A2W、及び10B2Wを選択し、RAM42に書き込む。その後、ステップS46の終了処理に移動する。
In step S43, whether or not the difference Δθ2 between the average value θ2past of the outside temperature for the past one week calculated in step S42 and the predicted value θ2now of the outside temperature of the day satisfies the conditional expression 4 in step S43. Determine if. Here, θ2 is a predetermined threshold value.
Conditional expression 4: Δθ2 <θ2
If the conditional expression 4 is satisfied, the process moves to step S44, and if not, the process moves to step S45.
In step S44, the control parameter table selection unit 20 selects the control parameter tables 10A1W and 10B1W and writes them in the RAM. Thereafter, the process proceeds to an end process of step S46.
In step S45, the control parameter table selection unit 20 selects the control parameter tables 10A2W and 10B2W and writes them in the RAM. Thereafter, the process proceeds to an end process of step S46.
 ステップS46では、制御パラメータテーブル決定の終了処理を行う。
 (B-2)制御パラメータテーブル有効無効切替部
 次に、変形例2における制御パラメータテーブル有効無効切替部25の動作について、フローチャートを参照しながら説明する。図8は、制御パラメータテーブル有効無効切替部25における処理の流れを示すフローチャートである。なお、図8では、スペースの都合上、制御パラメータテーブル10A1W等の符号において、「10」の部分を省略した。
 ステップS51では、制御パラメータテーブル有効無効切替部25が、当日の年月日をRAM42に書き込む。
 ステップS52では、制御パラメータテーブル有効無効切替部25が、ステップS51でRAM42に書き込まれた当日の年月日が12月かどうか判定する。12月であった場合は、ステップS54に、12月でなかった場合は、ステップS53に移動する。
In step S46, control parameter table determination end processing is performed.
(B-2) Control Parameter Table Valid / Invalid Switching Unit Next, the operation of the control parameter table valid / invalid switching unit 25 in Modification 2 will be described with reference to a flowchart. FIG. 8 is a flowchart showing the flow of processing in the control parameter table valid / invalid switching unit 25. In FIG. 8, the part of “10” is omitted in the reference numerals of the control parameter table 10A1W and the like for the sake of space.
In step S51, the control parameter table valid / invalid switching unit 25 writes the date of the day in the RAM.
In step S52, the control parameter table valid / invalid switching unit 25 determines whether the date of the current day written in the RAM 42 in step S51 is December. If it is December, the process proceeds to step S54. If it is not December, the process proceeds to step S53.
 ステップS53では、制御パラメータテーブル有効無効切替部25が、ステップS51でRAM42に書き込まれた当日の年月日が1月かどうかを判定する。1月であった場合は、ステップS55に、1月でなかった場合はステップS56に移動する。
 ステップS54では、制御パラメータテーブル有効無効切替部25が、制御パラメータテーブル10A1W、または10A2Wを有効にし、制御パラメータテーブル10B1W、または10B2Wを無効にする。
 ステップS55では、制御パラメータテーブル有効無効切替部25が、制御パラメータテーブル10A1W、または10A2Wと制御パラメータテーブル10B1W、または10B2Wをともに有効にする。
 ステップS56では、制御パラメータテーブル有効無効切替部25が、制御パラメータテーブル10A1W、または10A2Wを無効にし、制御パラメータテーブル10B1W、または10B2Wを有効にする。
In step S53, the control parameter table valid / invalid switching unit 25 determines whether the current date written in the RAM 42 in step S51 is January. If it is January, the process proceeds to step S55. If it is not January, the process proceeds to step S56.
In step S54, the control parameter table valid / invalid switching unit 25 validates the control parameter table 10A1W or 10A2W and invalidates the control parameter table 10B1W or 10B2W.
In step S55, the control parameter table valid / invalid switching unit 25 validates both the control parameter table 10A1W or 10A2W and the control parameter table 10B1W or 10B2W.
In step S56, the control parameter table valid / invalid switching unit 25 invalidates the control parameter table 10A1W or 10A2W and validates the control parameter table 10B1W or 10B2W.
 ステップS57では、制御パラメータテーブル有効無効切替部25の処理を終了する。
 (B-3)制御パラメータ更新部
 制御パラメータ更新部30は、制御パラメータテーブル有効無効切替部25によって切り替えられた制御パラメータテーブル10A1W等に基づいて、制御パラメータの更新を実行する。動作は、第1実施形態の場合と全く同様であるため、説明は省略する。
〔変形例Bの特徴〕
 一般に、空調機9aの暖房運転、または冷房運転を停止することで空調制御を行う方法は、空調機9aを能力制限率で制御する方法と比較して、快適度はやや低いが、結果として消費電力は抑えられる。
 変形例Bでは、初冬の12月には、停止時間割合の制御のみで空調制御を実行する。次第に寒さが厳しくなってくる1月には、停止時間割合と能力制限率との両方の制御を有効にして空調制御を実行する。そして、一般に冬季で最も寒いとされる2月には、能力制限率の制御のみで空調制御を実行する。このため、さらなる省エネルギー効果が期待できる。
In step S57, the process of the control parameter table valid / invalid switching unit 25 ends.
(B-3) Control Parameter Update Unit The control parameter update unit 30 executes control parameter update based on the control parameter table 10A1W and the like switched by the control parameter table valid / invalid switching unit 25. Since the operation is exactly the same as in the first embodiment, description thereof is omitted.
[Features of Modification B]
In general, the method of controlling the air conditioning by stopping the heating operation or the cooling operation of the air conditioner 9a is slightly less comfortable than the method of controlling the air conditioner 9a with the capacity restriction rate, but it consumes as a result. Power can be reduced.
In the modified example B, air conditioning control is executed only in the control of the stop time ratio in December in the early winter. In January, when cold weather becomes increasingly severe, the air conditioning control is executed with both the stop time ratio and the capacity limit ratio enabled. Then, in February, which is generally the coldest in winter, air conditioning control is executed only by controlling the capacity limit rate. For this reason, further energy saving effect can be expected.
 (変形例C)
 第1実施形態に係る空調制御システムでは、制御パラメータとして、間欠運転の停止時間割合を採用したが、代わりに、能力制限率を採用してもよい。この場合も、快適度の向上や、省エネルギー効果が期待できる。
 (変形例D)
 変形例Bでは、制御パラメータテーブル選択部20が、同一の制御パラメータを有する制御パラメータテーブル10A1Wと10A2Wのうちからいずれか一方を、また、同一の制御パラメータを有する制御パラメータテーブル10B1Wと10B2Wのうちからいずれか一方を選択した。しかし、例えば、同一の制御パラメータを有する3つ以上の制御パラメータテーブル10C1等から、制御パラメータテーブル選択部20が1つの制御パラメータテーブル10C1等を選択するようにしてもよい。また、3種類以上の制御パラメータに対して、それぞれの制御パラメータと外気不快指数を対応づける複数の制御パラメータテーブル10C1、10D1、10E1等を有していて、制御パラメータテーブル選択部20が、同一の制御パラメータを有する複数の制御パラメータテーブル10C1、10D1、10E1等の中からそれぞれ1つの制御パラメータテーブル10C1、10D1、10E1等を選択するようにしてもよい。
(Modification C)
In the air-conditioning control system according to the first embodiment, the intermittent operation stop time ratio is adopted as the control parameter, but a capacity restriction rate may be adopted instead. Also in this case, an improvement in comfort and an energy saving effect can be expected.
(Modification D)
In the modified example B, the control parameter table selection unit 20 selects one of the control parameter tables 10A1W and 10A2W having the same control parameter, and the control parameter tables 10B1W and 10B2W having the same control parameter. Either one was selected. However, for example, the control parameter table selection unit 20 may select one control parameter table 10C1 or the like from three or more control parameter tables 10C1 or the like having the same control parameter. In addition, the control parameter table selection unit 20 includes a plurality of control parameter tables 10C1, 10D1, 10E1, and the like that associate each control parameter with an outdoor air discomfort index for three or more types of control parameters. One control parameter table 10C1, 10D1, 10E1, etc. may be selected from a plurality of control parameter tables 10C1, 10D1, 10E1, etc. having control parameters.
 (変形例E)
 第1実施形態に係る空調制御システム1では、制御パラメータを変更する時刻を早朝6時としたが、この時刻に限る必要はなく、また、一日に複数回変更してもよい。例えば、毎正時の外気温度の実測値と、過去の所定期間の同時刻の外気温度の平均値との差に基づいて、制御パラメータテーブルを読み込み直してもよい。ここで注意することは、当日の外気温度の実測値を取得する時刻と、過去の所定期間の外気温度の平均値を算出するために測定する時刻は、同時刻でなければならない。これは、一日のうちで、例えば、早朝と正午とでは、外気温度が全くことなるため、正しい比較ができないからである。
 (変形例F)
 第1実施形態に係る空調制御システム1では、当日の外気温度は、気象情報配信源5から、ネットワーク6を介して取得した予測値を用いたが、当日の外気温度を実際に測定した、実測値であってもよい。このようにした場合でも、急激な外気温度の変化を捉え、制御パラメータテーブル10の選択に役立てることができる。ただし、毎日の外気温度の測定時刻は定時刻であるようにする。一日のうちで、例えば最低気温が測定されるような早朝での実測値と、最高気温が測定されるような時間帯での実測値とを同様に扱ったのでは気温の変動を捉えることにおいて意味がないからである。
(Modification E)
In the air-conditioning control system 1 according to the first embodiment, the time for changing the control parameter is 6 o'clock in the early morning, but it is not necessary to be limited to this time, and may be changed a plurality of times a day. For example, the control parameter table may be reread based on the difference between the actual measured value of the outside air temperature at every hour and the average value of the outside air temperature at the same time in the past predetermined period. It should be noted that the time at which the actual measured value of the outside air temperature on the day is acquired and the time to be measured in order to calculate the average value of the outside air temperature in the past predetermined period must be the same time. This is because, for example, in the early morning and noon, the outside air temperature is completely different, so that a correct comparison cannot be made.
(Modification F)
In the air-conditioning control system 1 according to the first embodiment, the outside air temperature of the day uses the predicted value acquired from the weather information distribution source 5 via the network 6, but actually measured the outside air temperature of the day. It may be a value. Even in this case, a sudden change in the outside air temperature can be captured and used for selection of the control parameter table 10. However, the measurement time of the daily outside air temperature is set to a fixed time. In the same day, for example, measured values in the early morning, when the lowest temperature is measured, and measured values in the time zone, where the highest temperature is measured, are handled in the same way. This is because there is no meaning.
 (変形例G)
 第1実施形態に係る空調制御システム1では、気象情報配信源5から取得した気象情報の処理等や、空調機9aの運転情報を生成する制御部40は、遠隔管理装置7に設けられていた。遠隔管理装置7に設けられた制御部40から送信された、空調機9aの運転情報をローカル制御装置8が受信する。そして、ローカル制御装置8は、この空調機9aの運転情報に基づいて、建造物9に設置された空調機9aを制御した。しかし、この制御部40や記憶部45を、ローカル制御装置8に設けてもよい。このような構成にした場合も、当日の外気温度として、建造物9と同じ場所に設置されている実測値を用い、外気温度の変化や外気情報を反映した、細かな空調制御により、快適度の向上が期待できる。
 (変形例H)
 第1実施形態に係る空調制御システム1では、制御パラメータテーブル選択部20は、空調機9aの運転モードを元に冷房用(夏季用)制御パラメータテーブル10AS、10BSか、暖房用(冬季用)制御パラメータテーブル10AW、10BWかを選択するとしたが、当日の月日(例えば5月から9月は冷房用を選択し、10月から4月は暖房用を選択する)や外気温度等を元に選択してもよい。
〔第2実施形態〕
 本発明の第1実施形態に係る空調制御システム1では、制御パラメータテーブル10が、システムに予め設定されていたが、この制御パラメータテーブル10を自動生成するようにしてもよい。
(Modification G)
In the air conditioning control system 1 according to the first embodiment, the remote management device 7 includes the control unit 40 that processes the weather information acquired from the weather information distribution source 5 and generates the operation information of the air conditioner 9a. . The local control device 8 receives the operation information of the air conditioner 9a transmitted from the control unit 40 provided in the remote management device 7. And the local control apparatus 8 controlled the air conditioner 9a installed in the building 9 based on the operation information of this air conditioner 9a. However, the control unit 40 and the storage unit 45 may be provided in the local control device 8. Even in such a configuration, using the actual measurement value installed in the same place as the building 9 as the outside air temperature on the day, the degree of comfort is achieved by fine air conditioning control that reflects changes in the outside air temperature and outside air information. Improvement can be expected.
(Modification H)
In the air conditioning control system 1 according to the first embodiment, the control parameter table selection unit 20 controls the cooling (summer) control parameter tables 10AS and 10BS based on the operation mode of the air conditioner 9a, or the heating (winter) control. The parameter table 10AW or 10BW was selected, but it was selected based on the date of the day (for example, for cooling from May to September and for heating from October to April), outside temperature, etc. May be.
[Second Embodiment]
In the air conditioning control system 1 according to the first embodiment of the present invention, the control parameter table 10 is preset in the system. However, the control parameter table 10 may be automatically generated.
 本発明の第2実施形態に係る空調制御システム2では、制御パラメータテーブル110を基にして、時限式制御パラメータテーブル115を自動生成する、制御パラメータテーブル生成部120を備える。
 ここでは、第2実施形態に係る空調制御システム2について、図面を参照しながら説明する。空調機9aが、冬季に暖房運転を行っている状況を仮定して説明する。夏季に冷房運転を行っている場合も、原理的には同様である。従って、冷房運転の場合の詳細な説明は、省略する。
 第2実施形態に係る空調制御システム2は、第1実施形態に係る空調制御システム1の場合のように、予めシステムが有する複数の制御パラメータテーブル10の中から適切な制御パラメータテーブルを選択する、制御パラメータテーブル選択部20を備えていない。その代わりに、予めシステムが有する制御パラメータテーブル110から、新しい時限式制御パラメータテーブル115を生成する、制御パラメータテーブル生成部120を備えるのが特徴である。制御パラメータテーブル生成部120は、毎日、所定の時刻(毎朝6時)に時限式制御パラメータテーブル115を生成し、以前に生成された時限式制御パラメータテーブル115は、このタイミングで消滅し、新しく生成された時限式制御パラメータテーブル115と置き換わる。そして、制御パラメータ更新部130は、この時限式制御パラメータテーブル115と、外気不快指数とに基づいて、制御パラメータの値を更新する。
〔第2実施形態に係る空調制御システムの構成要素〕
 (全体の構成)
 第2実施形態に係る空調制御システム2は、図11に示されるように、気象情報配信源5と、気象情報配信源5から、ネットワーク6を介して気象情報を収集するとともに、空調機9aの運転情報を生成する遠隔管理装置7と、空調機9aが設置された建造物9と、遠隔管理装置7からネットワーク6を介して供給される空調機9aの運転情報に基づき、ネットワーク6を介して建造物9の空調機9aを制御するローカル制御装置8とを備える。
The air conditioning control system 2 according to the second embodiment of the present invention includes a control parameter table generation unit 120 that automatically generates a timed control parameter table 115 based on the control parameter table 110.
Here, the air conditioning control system 2 according to the second embodiment will be described with reference to the drawings. A description will be given assuming that the air conditioner 9a is performing a heating operation in winter. The same is true in principle when the cooling operation is performed in summer. Therefore, a detailed description of the cooling operation is omitted.
As in the case of the air conditioning control system 1 according to the first embodiment, the air conditioning control system 2 according to the second embodiment selects an appropriate control parameter table from a plurality of control parameter tables 10 included in the system in advance. The control parameter table selection unit 20 is not provided. Instead, it is characterized by including a control parameter table generation unit 120 that generates a new timed control parameter table 115 from a control parameter table 110 included in the system in advance. The control parameter table generation unit 120 generates a timed control parameter table 115 every day at a predetermined time (6 o'clock in the morning), and the previously generated timed control parameter table 115 disappears at this timing and is newly generated. The timed control parameter table 115 is replaced. Then, the control parameter update unit 130 updates the value of the control parameter based on the timed control parameter table 115 and the outside air discomfort index.
[Components of the air conditioning control system according to the second embodiment]
(Overall configuration)
As shown in FIG. 11, the air conditioning control system 2 according to the second embodiment collects weather information from the weather information distribution source 5 and the weather information distribution source 5 via the network 6, and the air conditioner 9 a Based on the operation information of the remote management device 7 for generating the operation information, the building 9 in which the air conditioner 9a is installed, and the air conditioner 9a supplied from the remote management device 7 via the network 6, the network 6 is used. And a local control device 8 for controlling the air conditioner 9a of the building 9.
 以降、遠隔管理装置7のみについて説明する。
 (1-1)遠隔管理装置
 遠隔管理装置7は、制御パラメータテーブル110、時限式制御パラメータテーブル115、制御パラメータテーブル生成部120、制御パラメータ更新部130、制御部40、記憶部45、及び通信部50を備える。制御パラメータテーブル110は、外気不快指数と空調機9aの制御パラメータとを対応させたテーブルである。制御パラメータテーブル110は、第2実施形態における制御パラメータテーブル10と同様であるため、詳細な説明はここでは省略する。なお、制御パラメータテーブル110は、記憶部45に記憶されている。
 制御パラメータテーブル生成部120は、過去の所定期間(1週間)の外気温度の平均値と当日の外気温度の予測値との差に基づいて、所定の時刻(毎朝6時)に、制御パラメータテーブル110から、時限式制御パラメータテーブル115を生成する。この時限式制御パラメータ115は、それが有効に機能する有効期限が限られている。生成された時限式制御パラメータテーブル115は、制御パラメータテーブル生成部120が次のタイミングで、新たな時限式制御パラメータテーブル115を生成するまでの間、有効である。そして、古い時限式制御パラメータテーブル115は、新たな時限式制御パラメータテーブル115が次のタイミングで生成されたとき、消滅し、その新たに生成された時限式制御パラメータテーブル115と置き換わる。
Hereinafter, only the remote management device 7 will be described.
(1-1) Remote Management Device The remote management device 7 includes a control parameter table 110, a timed control parameter table 115, a control parameter table generation unit 120, a control parameter update unit 130, a control unit 40, a storage unit 45, and a communication unit. 50. The control parameter table 110 is a table in which the outside air discomfort index is associated with the control parameters of the air conditioner 9a. Since the control parameter table 110 is the same as the control parameter table 10 in the second embodiment, a detailed description thereof is omitted here. The control parameter table 110 is stored in the storage unit 45.
Based on the difference between the average value of the outside air temperature in the past predetermined period (one week) and the predicted value of the outside air temperature on the current day, the control parameter table generating unit 120 performs the control parameter table at a predetermined time (6 am every morning). From 110, a timed control parameter table 115 is generated. This time-limited control parameter 115 has a limited expiration date in which it functions effectively. The generated timed control parameter table 115 is valid until the control parameter table generating unit 120 generates a new timed control parameter table 115 at the next timing. The old timed control parameter table 115 disappears when the new timed control parameter table 115 is generated at the next timing, and is replaced with the newly generated timed control parameter table 115.
 制御パラメータ更新部130は、制御パラメータテーブル生成部120が生成した時限式制御パラメータテーブル115に基づいて、現在用いている制御パラメータの値を更新する。
 なお、第2実施形態に係る空調制御システム2では、制御パラメータテーブル110、制御パラメータ更新部120、記憶部45、通信部50、制御部40は、第1実施形態に係る空調制御システム1の、対応する構成要素と同様であるため、ここでは、説明を省略する。
 以降、中心的な部分である、制御パラメータテーブル生成部120を中心に説明する。
(1-1)制御パラメータテーブル生成部
 制御パラメータテーブル生成部120は、過去の所定期間(1週間)の外気温度の平均値θ3pastと当日の外気温度の予測値θ3nowとの差Δθ3(=θ3past-θ3now)に基づいて、所定の時刻(毎朝6時)に、制御パラメータテーブル110から、時限式制御パラメータテーブル115を生成する。この時限式制御パラメータテーブル115は、それが有効に機能する有効期限が限られている。
The control parameter update unit 130 updates the value of the currently used control parameter based on the timed control parameter table 115 generated by the control parameter table generation unit 120.
In the air conditioning control system 2 according to the second embodiment, the control parameter table 110, the control parameter update unit 120, the storage unit 45, the communication unit 50, and the control unit 40 are the same as those in the air conditioning control system 1 according to the first embodiment. Since it is the same as a corresponding component, description is abbreviate | omitted here.
Hereinafter, the control parameter table generation unit 120, which is a central part, will be mainly described.
(1-1) Control Parameter Table Generation Unit The control parameter table generation unit 120 determines the difference Δθ3 (= θ3past−) between the average value θ3past of the outside air temperature in the past predetermined period (one week) and the predicted value θ3now of the outside air temperature of the day. Based on θ3now), a timed control parameter table 115 is generated from the control parameter table 110 at a predetermined time (6 o'clock every morning). The time-limited control parameter table 115 has a limited expiration date in which it functions effectively.
 上記Δθ3の値に補正係数αを掛けた値により、制御パラメータテーブル110の外気不快指数の値に補正を加えることで、新しい時限式制御パラメータテーブル115を生成する。図10は、外気温度と外気不快指数との関係を示すグラフである。このグラフが示すように、外気温度が5℃変化すると、外気不快指数は約4変化する。このため、αには例えば、4/5=0.8を用いる。このことを、例を挙げて説明する。制御パラメータテーブル110と、この制御パラメータテーブル110を基にして新たに生成された、時限式制御パラメータテーブル115には、冬季用と夏季用、つまり、暖房運転モード用と冷房運転モード用とがあるが、ここでは、冬季用のみについて説明する。表15と表16にそれぞれ、冬季用、つまり暖房運転モードで適用される制御パラメータテーブル110、時限式制御パラメータテーブル115の例を示す。 The new timed control parameter table 115 is generated by correcting the value of the outside air discomfort index in the control parameter table 110 by a value obtained by multiplying the value of Δθ3 by the correction coefficient α. FIG. 10 is a graph showing the relationship between the outside air temperature and the outside air discomfort index. As shown in this graph, when the outside air temperature changes by 5 ° C., the outside air discomfort index changes by about 4. Therefore, for example, 4/5 = 0.8 is used as α. This will be described with an example. The control parameter table 110 and the time-limited control parameter table 115 newly generated based on the control parameter table 110 are for winter and summer, that is, for heating operation mode and cooling operation mode. However, only winter use will be described here. Tables 15 and 16 show examples of the control parameter table 110 and the timed control parameter table 115 applied in winter, that is, in the heating operation mode, respectively.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
これらの表も参照しながら、時限式制御パラメータテーブル115を生成する方法について説明する。
 冬季の場合、Δθ3が+3.75℃、つまり、過去の所定期間(1週間)の外気温度の平均値θ3pastと比較して、当日の外気温度θ3nowが3.75℃下がったとする。このとき、制御パラメータテーブル110の各行の第1列目の外気不快指数の値を、+3.75℃×α(0.8)を加算することで補正する。一方、Δθ3が-3.75℃、つまり、過去の所定期間(1週間)の外気温度の平均値θ3pastと比較して、当日の外気温度θ3nowが3.75℃上がったとする。このとき、制御パラメータテーブル110の各行の第1列目の外気不快指数の値を、-3.75℃×α(0.8)を加算することで、つまり3.75℃×α(0.8)を減算することで補正する。
A method for generating the timed control parameter table 115 will be described with reference to these tables.
In the winter season, it is assumed that Δθ3 is + 3.75 ° C., that is, the outside air temperature θ3now on the current day is 3.75 ° C. lower than the average value of the outside air temperature θ3past in the past predetermined period (one week). At this time, the value of the outdoor air discomfort index in the first column of each row of the control parameter table 110 is corrected by adding + 3.75 ° C. × α (0.8). On the other hand, it is assumed that Δθ3 is −3.75 ° C., that is, the outside air temperature θ3now of the day has increased by 3.75 ° C. compared with the average value θ3past of the outside air temperature in the past predetermined period (one week). At this time, the value of the outdoor air discomfort index in the first column of each row of the control parameter table 110 is added by −3.75 ° C. × α (0.8), that is, 3.75 ° C. × α (0.8) is subtracted. To correct it.
 夏季の場合、Δθ3が-3.75℃、つまり、過去の所定期間の外気温度の平均値と比較して、当日の外気温度が3.75℃上がったとする。このとき、制御パラメータテーブル110の各行の第1列目の外気不快指数の値を、-3.75℃×α(0.8)を加算することで補正する。一方、Δθ3が+3.75℃、つまり、過去の所定期間の外気温度の平均値と比較して、当日の外気温度が3.75℃下がったとする。このとき、制御パラメータテーブル110の各行の第1列目の外気不快指数の値を、+3.75℃×α(0.8)を加算することで補正する。
 表16と表18の時限式制御パラメータテーブル115は、それぞれ、冬季における、上記のΔθ3が+3.75℃の場合と、夏季におけるΔθ3が-3.75℃の場合とを示したものである。これは、冬季において、過去の所定期間の外気温度の平均値と比較して、当日の外気温度が3.75℃下がり、夏季において、過去の所定期間の外気温度の平均値と比較して、当日の外気温度が3.75℃上がった場合である。この場合、冬季では、制御パラメータテーブルの外気不快指数の項目の1行目の「~39」は、「~42」と補正される。一方、夏季では、1行目の「80~」は、「77~」と補正される。つまり、同じ制御パラメータ(停止時間割合)の値に対して、より快適な指数が対応づけられるように補正されている。このことは、逆に言えば、同じ外気不快指数に対して、より停止時間割合を短くして空調機9aの空調をより強めるように、停止時間割合が対応づけられていることを意味する。これは、第1実施形態の空調制御システム1において、体感的に不快な場合に選択される、制御パラメータテーブルBに相当する時限式制御パラメータテーブル115が生成されたことになる。
〔第2実施形態の動作〕
 制御パラメータテーブル110の構成と制御パラメータ更新部130の動作については、第1実施形態の場合と同様であるため、詳細な説明は省略し、ここでは主に制御パラメータテーブル生成部120の動作について説明する。
In the summer season, it is assumed that Δθ3 is −3.75 ° C., that is, the outside air temperature of the day has increased by 3.75 ° C. compared to the average value of the outside air temperature in the past predetermined period. At this time, the value of the outdoor air discomfort index in the first column of each row of the control parameter table 110 is corrected by adding −3.75 ° C. × α (0.8). On the other hand, it is assumed that Δθ3 is + 3.75 ° C., that is, the outside air temperature on the current day is 3.75 ° C. lower than the average value of the outside air temperature in the past predetermined period. At this time, the value of the outdoor air discomfort index in the first column of each row of the control parameter table 110 is corrected by adding + 3.75 ° C. × α (0.8).
The timed control parameter table 115 in Table 16 and Table 18 shows the case where Δθ3 is + 3.75 ° C. in winter and the case where Δθ3 is −3.75 ° C. in summer. Compared to the average value of the outdoor temperature in the past predetermined period in the winter, the outdoor temperature of the day falls by 3.75 ° C. In comparison with the average value of the outdoor temperature in the past predetermined period in the summer, This is a case where the outside air temperature on that day has increased by 3.75 ° C. In this case, in winter, “˜39” on the first line of the item of the outdoor air discomfort index in the control parameter table is corrected to “˜42”. On the other hand, in the summer, “80-” in the first row is corrected to “77-”. That is, correction is performed so that a more comfortable index is associated with the value of the same control parameter (stop time ratio). In other words, this means that the stop time ratio is associated with the same outside air discomfort index so that the stop time ratio is shortened and the air conditioning of the air conditioner 9a is further strengthened. This means that in the air conditioning control system 1 of the first embodiment, the timed control parameter table 115 corresponding to the control parameter table B, which is selected when it is uncomfortable, is generated.
[Operation of Second Embodiment]
Since the configuration of the control parameter table 110 and the operation of the control parameter update unit 130 are the same as those in the first embodiment, detailed description thereof is omitted, and here, the operation of the control parameter table generation unit 120 will be mainly described. To do.
 (1)制御パラメータテーブル生成部の動作
 図9は、制御パラメータテーブル生成部120における処理の流れを示すフローチャートである。
 ステップS61では、制御パラメータテーブル生成部120が、ローカル制御装置8、及び通信部50を介して、空調機9aの運転モードを取得し、RAM42に書き込む。その後、ステップS62に移動する。
 ステップS62では、制御パラメータテーブル生成部120が、通信部50を介して、気象情報配信源5から、当日の外気温度の予測値θ3nowを取得し、RAM42に書き込む。その後、ステップS63に移動する。なお、この予測値の取得は毎朝6時に実行されるように設定されている。
(1) Operation of Control Parameter Table Generation Unit FIG. 9 is a flowchart showing the flow of processing in the control parameter table generation unit 120.
In step S <b> 61, the control parameter table generation unit 120 acquires the operation mode of the air conditioner 9 a via the local control device 8 and the communication unit 50 and writes it in the RAM 42. Thereafter, the process proceeds to step S62.
In step S <b> 62, the control parameter table generating unit 120 acquires the predicted value θ <b> 3 now of the outside air temperature of the day from the weather information distribution source 5 via the communication unit 50 and writes it in the RAM 42. Thereafter, the process proceeds to step S63. The acquisition of the predicted value is set to be executed every morning at 6:00.
 ステップS63では、制御パラメータテーブル生成部120が、ローカル制御装置8、及び通信部50を介して、過去1週間の外気温度の平均値θ3pastを算出する。さらに、ステップS61で取得した当日の外気温度の予測値θ3nowを、過去1週間の外気温度の平均値θ3pastから減算し、差Δθ3(=θ3past-θ3now)を算出する。その後、ステップS64に移動する。
 ステップS64では、ステップS63で算出した過去1週間の外気温度の平均値θ3pastと当日の外気温度の予測値θ3nowとの差Δθ3(=θ3past-θ3now)を、次の条件式5に代入して、補正値Cを算出し、その結果をRAM42に書き込む。
 条件式5: C=Δθ3×0.8
その後、ステップS65に移動する。
In step S63, the control parameter table generation unit 120 calculates the average value θ3past of the outside air temperature for the past one week via the local control device 8 and the communication unit 50. Furthermore, the predicted value θ3now of the outside air temperature of the day acquired in step S61 is subtracted from the average value θ3past of the outside air temperature for the past one week, and a difference Δθ3 (= θ3past−θ3now) is calculated. Thereafter, the process proceeds to step S64.
In step S64, the difference Δθ3 (= θ3past−θ3now) between the average value θ3past of the outside air temperature in the past one week calculated in step S63 and the predicted value θ3now of the outside air temperature on the day is substituted into the following conditional expression 5: The correction value C is calculated and the result is written in the RAM 42.
Conditional expression 5: C = Δθ3 × 0.8
Thereafter, the process proceeds to step S65.
 ステップS65では、ステップS61でRAM42に書き込んだ空調機9aの運転モードが、暖房運転モードであるかを判定する。暖房運転モードの場合は、ステップS66に移動し、暖房運転モードでない場合は、ステップS67に移動する。
 ステップS66では、制御パラメータテーブル110の各行の第1列目の数値範囲を、ステップS64で算出した補正値Cの値を加算することで補正する。制御パラメータテーブル110の全ての行について、補正が完了した後、ステップS69に移動する。
 ステップ67では、ステップS61でRAM42に書き込んだ空調機9aの運転モードが、冷房運転モードであるかを判定する。冷房運転モードの場合は、ステップS68に移動し、そうでない場合は、ステップS69に移動する。
 ステップS68では、制御パラメータテーブル110の各行の第1列目の数値範囲を、ステップS64で算出した補正値Cの値に-1を掛けた値(符号を反対にした値)を加算することで補正する。制御パラメータテーブル110の全ての行について、補正が完了した後、ステップS69に移動する。
In step S65, it is determined whether the operation mode of the air conditioner 9a written in the RAM 42 in step S61 is the heating operation mode. If it is in the heating operation mode, the process moves to step S66. If it is not in the heating operation mode, the process moves to step S67.
In step S66, the numerical range of the first column of each row of the control parameter table 110 is corrected by adding the value of the correction value C calculated in step S64. After the correction is completed for all the rows of the control parameter table 110, the process proceeds to step S69.
In step 67, it is determined whether the operation mode of the air conditioner 9a written in the RAM 42 in step S61 is the cooling operation mode. If it is in the cooling operation mode, the process moves to step S68, and if not, the process moves to step S69.
In step S68, the numerical value range in the first column of each row of the control parameter table 110 is added with a value obtained by multiplying the value of the correction value C calculated in step S64 by -1 (a value obtained by reversing the sign). to correct. After the correction is completed for all the rows of the control parameter table 110, the process proceeds to step S69.
 ステップS69では、時限式制御パラメータテーブル生成の終了処理を実行する。
 〔第2実施形態の特徴〕
 (1)
 第2実施形態に係る空調制御システム2における空調制御の効果は、第1実施形態の場合と同様であるが、第2実施形態では、予め有している制御パラメータテーブル110と、過去の所定期間(1週間)における外気温度の平均値θ3pastと、当日の外気温度θ3nowとの差Δθ3(=θ3past-θ3now)に基づいて、制御パラメータテーブル生成部120が、新たに時限式制御パラメータテーブル115を生成する。このため、実際の外気温度の推移を細かく反映させた空調制御を実行でき、より快適度や省エネルギー効果を向上させ得る。
In step S69, a timed control parameter table generation end process is executed.
[Features of Second Embodiment]
(1)
The effect of the air conditioning control in the air conditioning control system 2 according to the second embodiment is the same as in the case of the first embodiment. However, in the second embodiment, the control parameter table 110 previously provided and a predetermined period in the past. Based on the difference Δθ3 (= θ3past−θ3now) between the average value θ3past of the outside air temperature in (one week) and the outside air temperature θ3now of the day, the control parameter table generation unit 120 newly generates a timed control parameter table 115 To do. For this reason, it is possible to execute air conditioning control that finely reflects the transition of the actual outside air temperature, and to improve the comfort level and the energy saving effect.
 (2)
 第2実施形態に係る空調制御システム2では、制御パラメータテーブル110を基に、制御パラメータテーブル生成部120が生成した、時限式制御パラメータテーブル115と、当日の外気不快指数とに基づいて、空調制御を実行する。そして、生成された時限式制御パラメータテーブル115が有効なのは、次のタイミングに新たな時限式制御パラメータテーブル115が生成されるまでで、このタイミングで、新たな時限式制御パラメータテーブル115と置き換わり、古いテーブルは保存されない。このため、制御パラメータテーブル110を多数保存する必要がなく、記憶部45の容量の節約の効果がある。
 〔第2実施形態の変形例〕
 以上、本発明の第2実施形態について説明したが、本発明は第2実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲において、種々の変更が可能である。例えば、第1実施形態の変形例Aから変形例Gで示したのと同様の変形例が、第2実施形態でも考えられる。ここでは、それらの詳細な説明は省略する。
(2)
In the air conditioning control system 2 according to the second embodiment, based on the control parameter table 110, the air conditioning control is performed based on the timed control parameter table 115 generated by the control parameter table generation unit 120 and the outdoor air discomfort index of the day. Execute. The generated timed control parameter table 115 is valid until a new timed control parameter table 115 is generated at the next timing. At this timing, the new timed control parameter table 115 is replaced with the old timed control parameter table 115. The table is not saved. For this reason, it is not necessary to save a large number of control parameter tables 110, and the capacity of the storage unit 45 can be saved.
[Modification of Second Embodiment]
The second embodiment of the present invention has been described above, but the present invention is not limited to the second embodiment, and various modifications can be made without departing from the scope of the invention. For example, modifications similar to those shown in Modification A to Modification G of the first embodiment are also conceivable in the second embodiment. Here, detailed description thereof is omitted.
 本発明に係る空調制御システムは、過去の所定期間の外気温度の平均値と、当日の外気温度とに基づき、体感温度をも考慮して空調機9aの制御パラメータを変更することができるという特徴を有する。このため、快適度や省エネルギー効果の向上に有益である。 The air conditioning control system according to the present invention is capable of changing the control parameter of the air conditioner 9a in consideration of the sensible temperature based on the average value of the outside air temperature in the past predetermined period and the outside air temperature of the day. Have For this reason, it is beneficial for improving the comfort level and the energy saving effect.
10、10AS、10BS、10AW、10BW、10AAS、10ABS、10ACS、10AAW、10ABW、10ACW、10A1S、10A2S、10A1W、10A2W、10B1S、10B2S、10B1W、10B2W、10C1、10D1、10E1 制御パラメータテーブル(制御パラメータテーブル、第1制御パラメータテーブル、第2制御パラメータテーブル、第3制御パラメータテーブル、第4制御パラメータテーブル)
20、120 制御パラメータテーブル選択部
25、125 制御パラメータテーブル有効無効切替部
30、130 制御パラメータ更新部
110 制御パラメータテーブル
115、115A、115B 時限式制御パラメータテーブル(時限式制御パラメータテーブル、第5時限式制御パラメータテーブル、第6時限式制御パラメータテーブル)
10, 10AS, 10BS, 10AW, 10BW, 10AAS, 10ABS, 10ACS, 10AAW, 10ABW, 10ACW, 10A1S, 10A2S, 10A1W, 10A2W, 10B1S, 10B2S, 10B1W, 10B2W, 10C1, 10D1, 10E1 Control parameter table (control parameter table) , First control parameter table, second control parameter table, third control parameter table, fourth control parameter table)
20, 120 Control parameter table selection unit 25, 125 Control parameter table valid / invalid switching unit 30, 130 Control parameter update unit 110 Control parameter table 115, 115A, 115B Timed control parameter table (timed control parameter table, fifth timed formula) Control parameter table, 6th timed control parameter table)
特開2003-74943号公報Japanese Patent Laid-Open No. 2003-74943

Claims (9)

  1.  外気情報と空調機の制御パラメータとが対応づけられた複数の制御パラメータテーブル(10)と、
     過去の所定期間の外気情報の平均値の算出と、当日の外気情報の取得とを実行し、前記過去の所定期間の外気情報の平均値と前記当日の外気情報との差を算出した後、前記過去の所定期間の外気情報の平均値と前記当日の外気情報との差に基づいて、複数の前記制御パラメータテーブルから前記制御パラメータテーブルを選択する制御パラメータテーブル選択部(20)と、
     前記制御パラメータテーブル選択部が選択した前記制御パラメータテーブルと、前記当日の外気情報とに基づいて、現在用いている前記制御パラメータの値を更新する制御パラメータ更新部(30)と、
    を備える、空調制御システム(1)。
    A plurality of control parameter tables (10) in which the outside air information and the control parameters of the air conditioner are associated;
    After calculating the average value of outside air information for a predetermined period in the past and obtaining outside air information for the day, and calculating the difference between the average value of outside air information for the past predetermined period and the outside air information for the day, A control parameter table selection unit (20) for selecting the control parameter table from a plurality of the control parameter tables based on the difference between the average value of the outside air information in the past predetermined period and the outside air information of the day;
    A control parameter update unit (30) for updating the value of the control parameter currently used based on the control parameter table selected by the control parameter table selection unit and the outside air information of the day;
    An air conditioning control system (1) comprising:
  2.  前記制御パラメータテーブル選択部は、複数の前記制御パラメータテーブルから、1つの前記制御パラメータテーブルを選択する、
    請求項1に記載の空調制御システム(1)。
    The control parameter table selection unit selects one control parameter table from a plurality of the control parameter tables.
    The air conditioning control system (1) according to claim 1.
  3.  前記制御パラメータテーブルとしての第1制御パラメータテーブル、及び第2制御パラメータテーブルで、前記外気情報としての外気不快指数と、共通の前記制御パラメータとが対応づけられ、
     前記制御パラメータテーブル選択部は、前記過去の所定期間の外気情報の平均値と前記当日の外気情報との差と、既定の閾値との大小関係に基づいて、前記第1制御パラメータテーブル、または前記第2制御パラメータテーブルを選択する、
    請求項2に記載の空調制御システム(1)。
    In the first control parameter table and the second control parameter table as the control parameter table, the outside air discomfort index as the outside air information is associated with the common control parameter,
    The control parameter table selection unit, based on the magnitude relationship between the difference between the average value of the outside air information in the past predetermined period and the outside air information on the day, and a predetermined threshold value, Selecting the second control parameter table;
    The air conditioning control system (1) according to claim 2.
  4.  前記制御パラメータテーブル選択部は、複数の前記制御パラメータテーブルから、前記制御パラメータの異なる複数の前記制御パラメータテーブルを選択し、
     前記制御パラメータテーブル選択部が選択した、前記制御パラメータの異なる複数の前記制御パラメータテーブルの有効、無効の切り替え制御を実行する、制御パラメータテーブル有効無効切替部をさらに備え、
     前記制御パラメータ更新部は、前記制御パラメータテーブル有効無効切替部が有効とした前記制御パラメータテーブルと、当日の前記外気情報とに基づいて、前記制御パラメータの値を更新する、
    請求項1に記載の空調制御システム(1)。
    The control parameter table selection unit selects a plurality of control parameter tables having different control parameters from the plurality of control parameter tables,
    A control parameter table valid / invalid switching unit that executes the switching control of the plurality of control parameter tables having different control parameters selected by the control parameter table selection unit.
    The control parameter update unit updates the value of the control parameter based on the control parameter table validated by the control parameter table valid / invalid switching unit and the outside air information on the day,
    The air conditioning control system (1) according to claim 1.
  5.  複数の前記制御パラメータテーブルは、前記外気情報としての外気不快指数、第3制御パラメータ、及び第4制御パラメータを有し、
     前記制御パラメータテーブル選択部は、前記過去の所定期間の外気情報の平均値と前記当日の外気情報との差に基づいて、前記外気不快指数と前記第3制御パラメータとを対応づける複数の前記制御パラメータテーブルから第3制御パラメータテーブルを、前記外気不快指数と前記第4制御パラメータとを対応づける複数の前記制御パラメータテーブルから第4制御パラメータテーブルを選択し、
     前記制御パラメータテーブル有効無効切替部は、季節、または前記外気情報に応じて、前記第3制御パラメータテーブル、及び前記第4制御パラメータテーブルの有効無効の切り替え制御を実行する、
    請求項4に記載の空調制御システム(1)。
    The plurality of control parameter tables include an outside air discomfort index as the outside air information, a third control parameter, and a fourth control parameter,
    The control parameter table selection unit is configured to associate the outside air discomfort index with the third control parameter based on a difference between an average value of the outside air information in the past predetermined period and the outside air information on the day. Selecting a third control parameter table from a parameter table, selecting a fourth control parameter table from a plurality of the control parameter tables associating the outside air discomfort index and the fourth control parameter;
    The control parameter table valid / invalid switching unit executes valid / invalid switching control of the third control parameter table and the fourth control parameter table according to the season or the outside air information.
    The air conditioning control system (1) according to claim 4.
  6.  外気情報と空調機の制御パラメータとが対応づけられた制御パラメータテーブル(110)と、
     前記制御パラメータテーブルを基に新しい内容の時限式制御パラメータテーブルを生成する、制御パラメータテーブル生成部(120)と、
     前記時限式制御パラメータテーブルと、当日の外気情報とに基づいて、現在用いている前記制御パラメータの値を更新する制御パラメータ更新部(130)と、
    を備える、空調制御システム(2)。
    A control parameter table (110) in which the outside air information is associated with the control parameters of the air conditioner;
    A control parameter table generation unit (120) for generating a timed control parameter table having new contents based on the control parameter table;
    A control parameter update unit (130) that updates the value of the control parameter currently used based on the timed control parameter table and the outside air information of the day;
    An air conditioning control system (2) comprising:
  7.  前記制御パラメータテーブル生成部は、過去の所定期間の外気情報の平均値の算出と、当日の外気情報との取得を実行し、前記過去の所定期間の外気情報の平均値と前記当日の外気情報との差を算出した後、前記過去の所定期間の外気情報の平均値と前記当日の外気情報との差に基づいて前記制御パラメータテーブルから前記時限式制御パラメータテーブルを生成する、
    請求項6に記載の空調制御システム(2)。
    The control parameter table generation unit executes calculation of an average value of outside air information in a predetermined period in the past and acquisition of outside air information on the day, and average value of outside air information in the past predetermined period and outside air information on the day And calculating the timed control parameter table from the control parameter table based on the difference between the average value of the outside air information in the past predetermined period and the outside air information of the day,
    The air conditioning control system (2) according to claim 6.
  8.  前記制御パラメータテーブル生成部は、前記制御パラメータテーブルを基に、前記制御パラメータの異なる複数の前記時限式制御パラメータテーブルを生成し、
     前記制御パラメータの異なる複数の前記時限式制御パラメータテーブルの有効、無効の切り替え制御を実行する、制御パラメータテーブル有効無効切替部をさらに備え、
     前記制御パラメータ更新部は、前記制御パラメータテーブル有効無効切替部が有効とした前記制御パラメータテーブルと、当日の前記外気情報とに基づいて、前記制御パラメータの値を更新する、
    請求項6に記載の空調制御システム(2)。
    The control parameter table generating unit generates a plurality of the timed control parameter tables having different control parameters based on the control parameter table,
    A control parameter table valid / invalid switching unit is further provided to execute a valid / invalid switching control of the plurality of timed control parameter tables having different control parameters,
    The control parameter update unit updates the value of the control parameter based on the control parameter table validated by the control parameter table valid / invalid switching unit and the outside air information on the day,
    The air conditioning control system (2) according to claim 6.
  9.  前記制御パラメータテーブル生成部は、前記過去の所定期間の外気情報の平均値と前記当日の外気情報との差に基づいて、前記外気情報としての外気不快指数と前記制御パラメータとしての第5制御パラメータとを有する第5時限式制御パラメータテーブル、及び前記外気不快指数と前記制御パラメータとしての第6制御パラメータとを有する第6時限式制御パラメータテーブルを生成し、
     前記制御パラメータテーブル有効無効切替部は、季節、または前記外気情報に応じて、前記第5時限式制御パラメータテーブル、及び第6時限式制御パラメータテーブルの有効、無効の切り替え制御を実行する、
    請求項8に記載の空調制御システム(2)。
    The control parameter table generation unit, based on the difference between the average value of the outside air information in the past predetermined period and the outside air information on the day, the outside air discomfort index as the outside air information and the fifth control parameter as the control parameter And a sixth timed control parameter table having the outside air discomfort index and a sixth control parameter as the control parameter,
    The control parameter table valid / invalid switching unit executes valid / invalid switching control of the fifth timed control parameter table and the sixth timed control parameter table according to the season or the outside air information.
    The air conditioning control system (2) according to claim 8.
PCT/JP2010/003125 2009-05-12 2010-05-07 Air conditioner WO2010131443A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009115730A JP5434247B2 (en) 2009-05-12 2009-05-12 Air conditioner
JP2009-115730 2009-05-12

Publications (1)

Publication Number Publication Date
WO2010131443A1 true WO2010131443A1 (en) 2010-11-18

Family

ID=43084828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/003125 WO2010131443A1 (en) 2009-05-12 2010-05-07 Air conditioner

Country Status (2)

Country Link
JP (1) JP5434247B2 (en)
WO (1) WO2010131443A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103216910A (en) * 2013-04-02 2013-07-24 广东美的制冷设备有限公司 Energy saving control method and energy saving control device of variable-frequency air conditioner
AU2014382358B2 (en) * 2014-02-13 2017-02-16 Mitsubishi Electric Corporation Air conditioner and control program
CN112460750A (en) * 2019-09-09 2021-03-09 夏普株式会社 Server, air conditioner control system, control method and storage medium

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6599679B2 (en) * 2015-07-29 2019-10-30 株式会社ガスター Program air conditioner
JP7431536B2 (en) * 2019-09-10 2024-02-15 シャープ株式会社 Air conditioners and servers
JP2023125380A (en) * 2022-02-28 2023-09-07 パナソニックIpマネジメント株式会社 Management system, management method for air conditioner and program

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03247938A (en) * 1990-02-23 1991-11-06 Sharp Corp Air-conditioner
JPH04350441A (en) * 1991-01-29 1992-12-04 Toshiba Ave Corp Air conditioner
JPH06221648A (en) * 1993-01-28 1994-08-12 Matsushita Electric Ind Co Ltd Controller and control method of air conditioner
JPH07280327A (en) * 1994-04-12 1995-10-27 Toshiba Corp Air conditioner
JP2004116820A (en) * 2002-09-25 2004-04-15 Daikin Ind Ltd Operation control equipment
JP2006250530A (en) * 2006-06-22 2006-09-21 Daikin Ind Ltd Control method of air conditioner

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03247938A (en) * 1990-02-23 1991-11-06 Sharp Corp Air-conditioner
JPH04350441A (en) * 1991-01-29 1992-12-04 Toshiba Ave Corp Air conditioner
JPH06221648A (en) * 1993-01-28 1994-08-12 Matsushita Electric Ind Co Ltd Controller and control method of air conditioner
JPH07280327A (en) * 1994-04-12 1995-10-27 Toshiba Corp Air conditioner
JP2004116820A (en) * 2002-09-25 2004-04-15 Daikin Ind Ltd Operation control equipment
JP2006250530A (en) * 2006-06-22 2006-09-21 Daikin Ind Ltd Control method of air conditioner

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103216910A (en) * 2013-04-02 2013-07-24 广东美的制冷设备有限公司 Energy saving control method and energy saving control device of variable-frequency air conditioner
AU2014382358B2 (en) * 2014-02-13 2017-02-16 Mitsubishi Electric Corporation Air conditioner and control program
US10126008B2 (en) 2014-02-13 2018-11-13 Mitsubishi Electric Corporation Air conditioner and control program
CN112460750A (en) * 2019-09-09 2021-03-09 夏普株式会社 Server, air conditioner control system, control method and storage medium
JP2021042885A (en) * 2019-09-09 2021-03-18 シャープ株式会社 Server, air conditioning control system, control method and control program
CN112460750B (en) * 2019-09-09 2023-09-19 夏普株式会社 Server, air conditioner control system, control method and storage medium

Also Published As

Publication number Publication date
JP2010266090A (en) 2010-11-25
JP5434247B2 (en) 2014-03-05

Similar Documents

Publication Publication Date Title
JP5434247B2 (en) Air conditioner
JP5025834B2 (en) Operation planning method, operation planning device, operation method of heat pump hot water supply system, and operation method of heat pump hot water supply heating system
US20180313567A1 (en) System, method and apparatus for use of dynamically variable compressor delay in thermostat to reduce energy consumption
JP6133774B2 (en) System and method for establishing on-site control of an air conditioning load during a direct load control event
JP4960736B2 (en) Air conditioning control system and server
JP2007285579A (en) Air conditioning control device
JP5789740B2 (en) Energy management equipment
JP5899482B2 (en) Heating device control method and control device
CN104566774A (en) Control method for air conditioner
JP2004116820A (en) Operation control equipment
CN109668267A (en) Control method, device and the apparatus of air conditioning of the apparatus of air conditioning
JP6389599B2 (en) Operation plan creation device and operation plan creation method
JP6817588B2 (en) A server that executes the optimum on / off time calculation process for the air conditioner, and an optimum on / off time calculation processing system.
JP2007120889A (en) Air conditioning control device
CN111306733B (en) Air conditioner temperature control method and device and air conditioner
Xiong et al. A demand response method for an active thermal energy storage air-conditioning system using improved transactive control: On-site experiments
CN109668265A (en) Control method, device and the apparatus of air conditioning of the apparatus of air conditioning
JP2015064155A (en) Setting temperature relaxing device and method
CN110986315B (en) Indoor temperature dynamic regulation and control method based on centralized air-conditioning system
US20080178622A1 (en) Demand control system and method for multi-type air conditioner
Platt et al. Optimal supervisory HVAC control: experiences in Australia
JP5845551B1 (en) Control method of air conditioner in winter
JP5357501B2 (en) Environmental control system
CN109724221A (en) Control method, device and the apparatus of air conditioning of the apparatus of air conditioning
JP6979606B2 (en) Air conditioner control device, air conditioner control method, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10774702

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10774702

Country of ref document: EP

Kind code of ref document: A1