WO2010131355A1 - Uninterruptible variable voltage device - Google Patents

Uninterruptible variable voltage device Download PDF

Info

Publication number
WO2010131355A1
WO2010131355A1 PCT/JP2009/059060 JP2009059060W WO2010131355A1 WO 2010131355 A1 WO2010131355 A1 WO 2010131355A1 JP 2009059060 W JP2009059060 W JP 2009059060W WO 2010131355 A1 WO2010131355 A1 WO 2010131355A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
current
load
main coil
intermediate tap
Prior art date
Application number
PCT/JP2009/059060
Other languages
French (fr)
Japanese (ja)
Inventor
和郎 河辺
Original Assignee
電光株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 電光株式会社 filed Critical 電光株式会社
Priority to CN2009801592691A priority Critical patent/CN102428421A/en
Priority to PCT/JP2009/059060 priority patent/WO2010131355A1/en
Publication of WO2010131355A1 publication Critical patent/WO2010131355A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P1/00Arrangements for starting electric motors or dynamo-electric converters
    • H02P1/16Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters
    • H02P1/26Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual polyphase induction motor
    • H02P1/28Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual polyphase induction motor by progressive increase of voltage applied to primary circuit of motor

Definitions

  • the present invention relates to an uninterruptible voltage variable device, and more particularly, a voltage drop due to start-up of a saddle type three-phase induction motor, energy saving control during light load operation, temperature adjustment of an electric heater furnace, and increase or decrease of load on a distribution line.
  • the present invention relates to an uninterruptible voltage variable device that can be used for correction, etc., and can vary the voltage continuously without interruption or in multiple stages without interruption.
  • the starting current when starting a vertical three-phase induction motor, the starting current has an excessive characteristic, and the electric heater furnace has a low resistance in a cold state, and an excessive current flows when the power is turned on.
  • the number of rotations of the induction motor increases, the flowing current decreases, and when the electric heater furnace or the like warms, the resistance increases and the current decreases.
  • there are demands such as temperature adjustment in electric heater furnaces and correction of voltage drop due to load increase and decrease in distribution lines.
  • a star delta starter for example, when starting a vertical three-phase induction motor, a star delta starter, a start compensator, a reactor starter, etc. are generally used. These starter determinations are determined in consideration of the motor rating, load type, start-up frequency, etc., but the start-up current is small, acceleration is smooth, and automatic control is possible. In consideration of other conditions, reactor starters are widely used.
  • the reactor starter has excellent performance as described above, it requires an expensive reactor short-circuit switch having the same performance as the power switch, and this reactor short-circuit switch generates a spark when starting or switching operation.
  • the contacts are severely damaged. Therefore, when the activation frequency is high, there is a drawback that the lifetime is remarkably short. In particular, this disadvantage becomes a very serious problem for a high-current high-voltage circuit.
  • This also applies to a load in which the current flowing with time changes, such as temperature adjustment of an electric heater furnace using high power, correction of a voltage drop due to increase / decrease of load on a distribution line, and the like.
  • Patent Document 1 a supplementary coasting wire having the number of amperes opposite to the number of amperes of the main circuit winding is applied to the same magnetic path as the magnetic circuit subjected to the main circuit winding.
  • the inrush current is suppressed by the self-reactance of the main circuit winding, and when the current becomes small, the circuit of the auxiliary conventional winding is closed, and the number of reverse amperes is used to limit the magnetic flux to be generated in the magnetic path by the main circuit winding.
  • An AC motor starter is shown.
  • the voltage can be stepped up at an appropriate timing without shutting off the power supply to the AC device. Therefore, the fluctuation range of the inrush current and torque generated at the time of the boosting is small. There is an advantage that the impact on the AC device can be reduced. However, since a current always flows through the reactor and Joule heating (resistance heating) is generated by this current, there is a problem that energy is consumed more than necessary.
  • the first reactor L1 and the magnetic flux generated in the primary winding T2 are canceled in the primary winding T2 by turning on the first switch SW2.
  • a circuit in which a second reactor L2 having a secondary winding T22 is connected in series, and a circuit in which a second switch SW4 is connected in parallel with the reactor series circuit is connected in series to the AC device 2.
  • the first switch SW2 is turned on to reduce the reactance of the first reactor L1 to be applied to the AC device 2 at a predetermined time after the low voltage application through the reactor series circuit to the AC device 2.
  • the second switch SW4 is turned on. In this way, by short-circuiting the reactor series circuit, applying the entire voltage and shifting to the operating state, the reactor series circuit is short-circuited in the operating state, so that it is possible to save energy in the reactor series circuit.
  • Patent Document 2 the circuit of Patent Document 2 is not suitable for starting a large-capacity motor because the reactor is directly short-circuited by a short-circuit switch. Therefore, in Patent Document 3, the primary winding connected to the power terminal of the motor, the power switch connected in series to the power supply side of the primary winding, and the secondary wound around the iron core common to the primary winding.
  • variable reactor circuit comprising a contactor and a tap selection device for selecting the electromagnetic contactor; a starter with a variable reactor circuit comprising: a primary winding having an intermediate tap connected to a power supply terminal of a motor; , A power switch and a ground switch provided on the power supply side and the ground side of the primary winding, a secondary winding wound around a common iron core with the primary winding, and “wrapped around a different iron core” in paragraph 0029
  • a variable reactor circuit comprising a contactor and a tap selection device for selecting the electromagnetic contactor; a starter with a variable reactor circuit comprising: a primary winding having an intermediate tap connected to a power supply terminal of a motor; , A power switch and a ground switch provided on the
  • the AC motor starter shown in Patent Document 1 has a problem that current constantly flows through the reactor, and Joule heating (resistance heating) is caused by this current to consume more energy than necessary.
  • the circuit of Patent Document 2 is not suitable for starting a large-capacity motor because the reactor is directly short-circuited by a short-circuit switch.
  • the present invention it is possible to change the voltage continuously without interruption or in multiple stages without interruption so as not to cause a problem that a spark is generated at the time of start-up or operation switching and damage of the contact occurs. Without losing energy or controlling the motor starting current, making it possible to start up a large-capacity motor, adjust the temperature of the electric heater furnace, correct the voltage drop by increasing or decreasing the load on the distribution line, etc. It is a problem to provide an uninterruptible voltage varying device that can also be used.
  • the uninterruptible voltage variable device is: An intermediate tap connected to a load driven by a three-phase power source, one end connected to one phase in the three-phase power source via the first switch, and the other end connected to the neutral of the three-phase power source
  • a main coil provided for each phase of the power source, and connected in parallel between the intermediate tap and the first switch in the main coil, and controls a current flowing to control a current flowing between the intermediate tap and the first switch.
  • a current control means for controlling, and a control circuit for controlling the current control means The control circuit controls the current control means in response to a current flowing through the load in a state where the first switch is closed, and controls a current flowing between an intermediate tap in the main coil and the first switch. It is characterized by being comprised.
  • the uninterruptible voltage variable device By configuring the uninterruptible voltage variable device in this way, if the current flowing between the intermediate tap in the main coil and the first switch is controlled by the current control means after the first switch is closed, the current is initially For example, 50% of the power supply voltage can be applied to the load by using a voltage drop corresponding to the reactor between the intermediate tap and the first switch in the main coil, with the current flowing through the control means being zero.
  • the current flowing through the load decreases, the current flowing through the current control means is gradually increased, the voltage drop between the intermediate tap in the main coil and the first switch is decreased, and finally the intermediate tap in the main coil and the first
  • the voltage drop between the switches can be, for example, about 80% of the power supply voltage or 100%.
  • the load and the power source are not cut off, and there is no problem that the contact is damaged due to the occurrence of a spark when starting or switching the operation. Also, if the resistance of the current control means can be reduced to zero, there will be no current flowing between the intermediate tap and the first switch in the main coil, and there will be no voltage drop. Can be driven and energy is not wasted.
  • the current control means is formed of a magnetic path independent of the main coil and connected in series, and a plurality of independent magnetic path reactors connected in parallel between the intermediate tap and the first switch in the main coil. And a second switch connected in parallel corresponding to each of the plurality of independent magnetic path reactors, and the control circuit is configured to convert the current flowing through the load with the first switch closed.
  • the second switch is sequentially closed, and the current flowing between the intermediate tap and the first switch in the main coil is controlled, so that the independent magnetic path reactor is sequentially turned to 0 by the second switch. Since resistance can be achieved, when the plurality of second switches are all closed, the intermediate tap and the first switch are brought into conduction by the second switch.
  • the current control means is a variable resistor whose resistance value is controlled by an actuator, and the control circuit controls the actuator in accordance with a current flowing through the load in a state where the first switch is closed.
  • the resistance value of the variable resistor is controlled to control the current flowing between the intermediate tap and the first switch in the main coil, or the current control means is a current control element, and the control circuit
  • the current control element is controlled in accordance with the current flowing through the load, and the current flowing between the intermediate tap and the first switch in the main coil is controlled. Therefore, the variable resistance can be changed from the maximum resistance to 0 resistance, and the current control elements such as triacs and thyristors are similarly changed from 0 to the maximum.
  • the current can be freely controlled up to the current, the current flowing between the intermediate tap in the main coil and the first switch can be freely controlled, and there is no problem that it becomes difficult to control the motor starting current, and the large capacity motor It is possible to provide an uninterruptible voltage variable device that can be used for various purposes, such as starting the power supply, adjusting the temperature of the electric heater furnace, and correcting the voltage drop due to the increase or decrease of the load on the distribution line.
  • the current control means has a third switch that is closed by the control circuit and connects the power source and the load with a voltage drop between the intermediate tap and the first switch in the main coil reduced.
  • the uninterruptible voltage variable device does not disconnect the load and the power source after the power is turned on, and if the current control means is set to 0 resistance, There is no current flowing between the switches, and there is no problem that sparks are generated at the time of start-up or operation switching, resulting in damage to the contacts, and energy is not wasted.
  • the current control means is formed of a magnetic path independent from the main coil, connected in series, and a plurality of independent magnetic path reactors connected in parallel between the intermediate tap and the first switch in the main coil, By configuring the second switch connected in parallel corresponding to each of the independent magnetic path reactors, if the second switch is sequentially closed according to the current flowing through the load, the independent magnetic path reactor is The resistance can be reduced to 0 with the switch. Therefore, if the intermediate tap and the first switch are brought into a non-resistance conduction state when all of the plurality of second switches are closed, as in the case of Patent Document 3, the mutual induction action with the primary winding is performed. Since a part of the current is canceled by the secondary winding, there is no problem that it becomes difficult to control the motor starting current, such as an increase in the excitation current of the primary winding.
  • the current control means is a sliding resistance whose resistance value is controlled by a pilot motor, or a current control element such as a triac or thyristor, so that the sliding resistance can vary from the maximum resistance to 0 resistance.
  • a current control element such as a thyristor can also freely control the current from 0 to the maximum current, so that it is difficult to control the motor start current without starting up a large-capacity motor, the electric heater furnace It is possible to provide an uninterruptible voltage variable device that can be used for various purposes such as temperature adjustment, correction of voltage drop caused by increase / decrease of load on the distribution line, and the like.
  • Example 1 It is a schematic block diagram of the control circuit of the three-phase induction motor provided with Example 1 in the uninterruptible voltage variable device according to the present invention. It is a schematic block diagram of the other structural example of Example 1 in the uninterruptible voltage variable apparatus which becomes this invention. It is a schematic block diagram of Example 2 in the uninterruptible voltage varying apparatus which becomes this invention. It is a schematic block diagram of the other structural example of Example 2 in the uninterruptible voltage variable apparatus which becomes this invention. It is a schematic block diagram of Example 3 in the uninterruptible voltage varying device according to the present invention. It is a schematic block diagram of the other structural example of Example 3 in the uninterruptible voltage variable apparatus which becomes this invention.
  • An uninterruptible voltage variable device is connected to a load driven by a three-phase power source, has an intermediate tap, one end is set to one phase in the three-phase power source via a first switch, and the other end is A main coil provided for each phase of the three-phase power supply by connecting to the neutral of the three-phase power supply directly or via a switch, and connected in parallel between the intermediate tap and the first switch in the main coil, A reactor circuit comprising: current control means for controlling current flowing to substantially control current between the intermediate tap and the first switch; and a control circuit for controlling current flow by controlling the current control means.
  • the current control means for example, a plurality of independent magnetic paths formed in a magnetic path independent from the main coil and connected in series, and connected in parallel between the intermediate tap and the first switch in the main coil.
  • the reactor and the second switch connected in parallel corresponding to each of the plurality of independent magnetic path reactors can change the voltage in multiple stages without instantaneous interruption (hereinafter, this configuration is referred to as the first switch).
  • Variable resistance for controlling the resistance value by an actuator such as a solenoid actuator, a servo motor, a pilot motor (hereinafter referred to as a second configuration), for example, a current control element such as a triac or a thyristor (hereinafter referred to as a configuration).
  • This configuration is referred to as a third configuration).
  • the control circuit closes the first switch when the switch is provided between the main coil and the neutral of the three-phase power supply, and closes the first switch when the switch is not provided. And a power supply to the load through a reactor between the first switch and the first switch.
  • the first configuration using the independent magnetic path reactor as the current control means by opening all the second switches, the reactor between the intermediate tap and the first switch in the main coil, and the parallel A voltage drop occurs due to the independent magnetic path reactor connected to, and the voltage with the voltage drop is applied to the load.
  • variable resistor In the case of the second configuration using a variable resistor, the variable resistor is set to the maximum resistance value, and in the case of the third configuration using a current control element such as a triac or thyristor, the current control element is set to a state in which no current flows. Similarly, the voltage dropped by the reactor between the intermediate tap and the first switch in the main coil can be supplied to the load.
  • the control circuit detects this, and the first configuration using an independent magnetic path reactor as the current control means In the case of, one of the second switches connected in parallel to the independent magnetic path reactor is closed. Then, since there is no single independent magnetic path reactor, the voltage supplied to the load increases accordingly.
  • the resistance value of the variable resistor is decreased or the value of the current flowing through the current control element is increased according to the current value detected by the control circuit. The voltage to be increased can be increased.
  • the second switch connected in parallel to the independent magnetic path reactor is sequentially closed, or the resistance value of the variable resistor is sequentially reduced to 0, the current value flowing through the current control element is sequentially maximized, and so on.
  • FIG. 1 is a schematic block diagram of a control circuit of a three-phase induction motor having Example 1 as the first configuration described in the outline in an uninterruptible voltage varying device according to the present invention.
  • reference numeral 10 denotes an uninterruptible voltage variable device according to the present invention.
  • Reference numerals 12 and 14 denote intermediate phase taps 16 connected to an induction motor 18 as a load, and one end of a three-phase power source via a first switch SW1.
  • 20 is a main coil provided for each phase of the three-phase power source, with the other end connected to the neutral 22 of the three-phase power source via the fourth switch SW4.
  • Reference numerals 24 1 and 24 2 are formed of magnetic paths independent of the main coil and connected in series, and a plurality of independent magnetic path reactors connected in parallel to the main coil 12, SW 2 1 and SW 2 1 are independent magnetic paths.
  • a second switch SW3 provided corresponding to the reactors 24 1 and 24 2 is a switch for directly connecting each phase of the three-phase power source 20 to the induction motor 18 as a load.
  • 26 is a control circuit that controls the uninterruptible voltage variable device
  • 28 is a current detector that detects the current flowing through the coil of the induction motor
  • 30 is a voltage detector that detects the voltage of the three-phase power source 20
  • 32 is induction. It is a rotation speed detector that detects the rotation speed of the motor 18.
  • each of the switches SW1 to SW4 may be constituted by a relay or a semiconductor switch.
  • the independent magnetic path reactors 24 1 and 24 2 connected in series and connected in parallel to the main coil 12 and the main coil 12, lowering the voltage of the three-phase power source 20, for example, about 50%, about 80% when the independent magnetic paths reactor 24 1 is short-circuited by closing the second switch SW2 1, second switch SW2 2 also when short-circuit is also independent magnetic path reactor 24 is closed, i.e. in the state in which the main coil 12 was also short-circuited, the main coil 12 as 100% of the voltage applied to the induction motor 18, independent magnetic paths reactor 24 1, to select the 24 value of 2.
  • the control circuit 26 first opens the second switch SW2 and the third switch SW3 (OFF state), and first, the neutral 22 of the three-phase power source 20 in the main coils 12, 14.
  • the fourth switch SW4 on the side is closed (ON), and then the first switch SW1 on the power supply 20 side is closed.
  • the induction motor 18 is started in a state in which a voltage of about 50% of the three-phase power source 20 is applied and the current is suppressed by the independent magnetic path reactors 24 1 and 24 2 connected in parallel with the main coil 12.
  • the control circuit 26 detects this with the rotational speed detector 32 and the current detector 28 to obtain a predetermined current.
  • the second switch SW2 1 Close. Then the short-circuited independently magnetic path reactor 24 1, the induction motor 18 from correspondingly reactor is reduced, 80% of the voltage of the voltage of three-phase power supply 20 as described above is applied.
  • the control circuit 26 detects this with the rotation speed detector 32 and the current detector 28, and determines the predetermined number. After a two current values, or induction time when the load of the motor 18 is known in advance that the second time period has elapsed also a predetermined, second switch SW2 2 Close. Then independent magnetic path reactor 24 2 are short-circuited, at the same time from the main coil 12 is also short-circuited, the voltage of the three-phase power supply 20 as described above to the induction motor 18 is directly (i.e. 100% of the voltage) applied.
  • control circuit 26 opens the fourth switch SW4 to disconnect between the main coil 14 and the neutral 22 of the three-phase power supply, and then closes the third switch SW3 and opens the first switch SW1. That is, the rated voltage is applied to the induction motor 18 by the three-phase power source 20, thereby operating the induction motor 18 at a rated operation.
  • the independent magnetic path reactors 24 1 and 24 2 connected in series and connected in parallel to the main coil 12 and the main coil 12 are used as induction motors.
  • 18 at the start of lowering the voltage of the three-phase power source 20, for example, about 50% to sequentially close is an independent magnetic path reactors 24 1, 24 2 of the second switch SW2 provided in parallel in correspondence to 1, SW2 2
  • the voltage can be increased sequentially without cutting off the load and the power source in accordance with the current flowing through the induction motor 18. Therefore, there is no problem that a spark is generated at the time of start-up or operation switching and the contact is damaged. If all the second switches SW2 are closed, the main coil 12 is also short-circuited, and the load can be driven with 100% of the power supply voltage, so that energy is not wasted.
  • FIG. 1 the case where the uninterruptible voltage varying device according to the present invention is used for the control circuit of the three-phase induction motor has been described.
  • the three-phase induction motor is driven at the rated voltage, it is continuously driven thereafter.
  • the third switch SW3 is connected directly to the three-phase power source 20.
  • the main coils 12, 14 and the independent magnetic path reactor 24 are removed from the load. Without being completely separated, the independent magnetic path reactors 24 1 and 24 2 can be re-introduced according to the situation so that the adjustment can be performed.
  • FIG. 2 is a schematic block diagram of another configuration example of the first embodiment, which is the first configuration of the uninterruptible voltage variable device according to the present invention configured according to such a concept.
  • FIG. 2 shows only a block for one phase in the uninterruptible voltage varying device according to the present invention, and the control circuit 26 in FIG. 1 is omitted.
  • Reference numeral 40 denotes a power connection end
  • reference numeral 42 denotes a load connection end.
  • Other configurations are the same as those in FIG.
  • the control circuit 26 closes the first switch SW1 on the power supply 40 side with the second switch SW2 opened (OFF state). Then, the independent magnetic path reactors 24 1 and 24 2 connected in parallel with the main coil 12 are applied to the load connection end 42 with a voltage of, for example, about 50% of a three-phase power source (not shown) to suppress the current. It is started in the state.
  • the electric heater furnace has a low resistance when it is cold, and when it is warmed, the resistance becomes high and the current decreases. Therefore, the control circuit (not shown) detects the current with a current detector (not shown) and determines it in advance. when turned current was, or when it even has elapsed predetermined time is when the load is known in advance, the second switch SW2 1 Close. Then the short-circuited independently magnetic path reactor 24 1, the load connection terminal 42 from correspondingly reactor is reduced, for example, 80% of the voltage of the voltage of three-phase power supply 20 is applied.
  • the independent magnetic path reactor 24 1 can also be used for energy saving control during light load operation, temperature adjustment of the electric heater furnace, and correction of voltage drop due to increase / decrease of load on the distribution line. , it can be allowed to be re-charged with 24 2, as adjustment is possible.
  • FIG. 3 is a schematic block diagram of the second embodiment, which is a second configuration of the uninterruptible voltage variable device according to the present invention
  • FIG. 4 is a schematic block diagram of another configuration example of the second embodiment.
  • 3 is a circuit corresponding to FIG. 1 of the first embodiment
  • FIG. 4 is also a circuit corresponding to FIG. 2.
  • FIG. 4 is a circuit used for energy saving control during light load operation, temperature adjustment of the electric heater furnace, correction of voltage drop due to increase or decrease of load on the distribution line, and the like.
  • the current control means described in the outline of the present invention is formed by a magnetic path independent from the main coil 12 and connected in series.
  • a plurality of independent magnetic path reactors 24 1 and 24 2 connected in parallel between the intermediate tap 16 and the first switch SW1, and a second connected in parallel corresponding to each of the plurality of independent magnetic path reactors. With the switch SW2, the voltage can be varied in multiple stages without interruption.
  • the resistance value can be changed by an actuator such as a solenoid actuator, a servo motor, or a pilot motor as the current control means described in the outline of the present invention.
  • the current is controlled by the variable resistor 46.
  • FIG. 2 only the block for one phase in the uninterruptible voltage variable device according to the present invention is shown.
  • the control circuit 26 is omitted.
  • 40 is a power connection end and 42 is a load connection end, which are the same as those in FIG. 2.
  • the third switch SW 3 in FIG. 1 is connected to the load connection end 42 from the power connection end 40.
  • FIG. 4 and FIG. 6 there is no wiring from the third switch SW3, the power connection terminal 40 to the connection terminal 42 to the load, and from the main coil 12 to the load via the intermediate tap 16.
  • the connection end 42 is provided. 3 and 5, the fourth switch SW4 in FIG. 1 is present, and the main coil 14 is connected to the neutral 22 of the three-phase power source via the fourth switch SW4. Then, the fourth switch SW3 does not exist, and the main coil 14 is directly connected to the neutral 22 of the three-phase power source.
  • a control circuit changes the resistance value of the variable resistor 46 by an actuator such as a solenoid actuator, a servo motor, or a pilot motor as described above.
  • the other operations are the same as those in the first embodiment shown in FIG. 1.
  • the control circuit 26 sets the variable resistor 46 to the maximum resistance.
  • the fourth switch SW4 on the neutral 22 side of the three-phase power supply 20 in the main coils 12 and 14 is closed (ON), and then the first switch SW1 on the power connection end 40 side is closed.
  • the load connection end 42 is activated in a state in which a voltage of, for example, about 50% of the three-phase power source is applied and the current is suppressed by the variable resistor 46 connected in parallel with the main coil 12.
  • a control circuit detects that the current has dropped by a current detector (not shown), and a solenoid actuator, servo motor, pilot motor, etc. that changes the resistance value of the variable resistor 46 according to the current value.
  • the actuator is driven, the resistance value of the variable resistor 46 is gradually decreased to increase the flowing current, and this is continued until the resistance value of the variable resistor 46 becomes zero. Therefore, a voltage corresponding to the voltage appears at the load connection end 42, and the load (not shown) is finally driven at the rated voltage without causing a large amount of current to flow.
  • control circuit opens the fourth switch SW4 in this state, disconnects between the main coil 14 and the neutral 22 of the three-phase power source, and then closes the third switch SW3 and turns on the first switch SW1. open. That is, a rated voltage is applied to the load by a three-phase power source, and thereby the load is rated.
  • FIG. 4 This is the same in the case of the schematic block diagram of another configuration example of the second embodiment, which is the second configuration of the uninterruptible voltage varying device according to the present invention shown in FIG.
  • a control circuit closes the first switch SW ⁇ b> 1 at the power connection terminal 40 with the variable resistor 46 as the maximum resistance. Then, for example, a voltage of about 50% of a three-phase power source (not shown) is applied to the load connection end 42 by the variable resistor 46 connected in parallel with the main coil 12 and the current is suppressed. .
  • a control circuit detects that the current is decreasing by a current detector (not shown), and the resistance value of the variable resistor 46 is gradually decreased so as to correspond to the current.
  • Controls actuators such as solenoid actuators, servo motors and pilot motors not shown.
  • the resistance value of the variable resistor 46 becomes 0, the corresponding power supply voltage appears at the load connection end 42. Therefore, the load (not shown) does not flow a large amount of current due to the voltage, and finally reaches the rated voltage. Driven.
  • the actuator such as a solenoid actuator, servo motor, pilot motor, etc. (not shown) is controlled and the resistance value of the variable resistor 46 is increased. Since the main coil 12 is also inserted into the circuit and the reactor is restored, the voltage at the load connection end 42 is lowered, and accordingly, the current flowing through the load (not shown) is also lowered. Therefore, for example, the temperature of an electric heater furnace or the like can be controlled according to the situation without disconnecting the load and the power source.
  • variable resistor 46 in the second embodiment is used as a current control element 48 such as a triac or thyristor. Is. Therefore, a control circuit (not shown) controls the current flowing by controlling these current control elements 48, and controls the voltage at the load connection end 42. Except for this point, the operation is the same as in the second embodiment. The description is omitted because it is exactly the same.
  • the current flowing through the main coil 12 can be continuously and freely controlled steplessly, without causing a problem that it is difficult to control the motor starting current. It is possible to provide an uninterruptible voltage variable device that can be used for various purposes such as starting a motor with a capacity, adjusting the temperature of an electric heater furnace, and correcting a voltage drop caused by an increase or decrease in load on a distribution line.
  • the uninterruptible voltage variable device does not cause a problem that a spark occurs at the time of start-up or operation switching and damage of the contact occurs.
  • the voltage can be varied at the same time, energy consumption is unnecessarily consumed, and it is difficult to control the motor start current, without starting up a large-capacity motor, adjusting the temperature of the electric heater furnace, and adjusting the load on the distribution line. It can also be used for correction of voltage drop due to increase / decrease, etc., and brings about a great effect.
  • the present invention solves various problems such as starting a large-capacity motor, adjusting the temperature of an electric heater furnace, and correcting a voltage drop due to an increase or decrease in load on a distribution line. It can be carried out continuously without interruption and in multiple stages without interruption.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor And Converter Starters (AREA)
  • Inverter Devices (AREA)

Abstract

Provided is an uninterruptible variable voltage device capable of varying voltage uninterruptibly and continuously or uninterruptibly in multistage by preventing spark from occurring upon startup or operation change and capable of, for example, correcting voltage drop due to the startup of a large capacity motor, the temperature adjustment of an electric heater furnace, and the increase and decrease of the load in a distribution line by preventing the situations such as wasteful energy consumption and the difficulty in the control of electric motor startup current.  A main coil comprises an intermediate tap connected to a load driven by a three-phase power supply and is provided for each phase of the three-phase power supply while having one terminal connected through a first switch to one phase of the three-phase power supply and the other terminal connected to the neutral of the three-phase power supply.  A current control means is connected in parallel between the intermediate tap of the mail coil and the first switch and controls the flowing current to control the current flowing between the intermediate tap and the first switch.  A control circuit controls the current control means.  Using the main coil, the current control means, and the control circuit, the current flowing between the intermediate tap and the first switch is controlled.

Description

無瞬断電圧可変装置Uninterruptible voltage variable device
 本発明は、無瞬断電圧可変装置に関わり、特に、籠型三相誘導電動機の始動、軽負荷運転時の省エネ制御、電熱ヒーター炉の温度調整、及び配電線路の負荷の増減による電圧降下の補正、等に用いることができる、無瞬断連続、または無瞬断多段に電圧を可変することが可能な無瞬断電圧可変装置に関するものである。 The present invention relates to an uninterruptible voltage variable device, and more particularly, a voltage drop due to start-up of a saddle type three-phase induction motor, energy saving control during light load operation, temperature adjustment of an electric heater furnace, and increase or decrease of load on a distribution line. The present invention relates to an uninterruptible voltage variable device that can be used for correction, etc., and can vary the voltage continuously without interruption or in multiple stages without interruption.
 例えば籠型三相誘導電動機の始動に当たっては、起動電流が過大な特性を有し、また、電熱ヒーター炉などは冷えた状態では抵抗が低く、電源投入時は過大な電流が流れる。しかし、誘導電動機は回転数が増えると流れる電流は減少し、また電熱ヒーター炉なども暖まると抵抗が高くなって電流が減少する。さらに、電熱ヒーター炉などでは温度調節、配電線路などでは負荷の増減による電圧降下の補正などの要望もある。 For example, when starting a vertical three-phase induction motor, the starting current has an excessive characteristic, and the electric heater furnace has a low resistance in a cold state, and an excessive current flows when the power is turned on. However, when the number of rotations of the induction motor increases, the flowing current decreases, and when the electric heater furnace or the like warms, the resistance increases and the current decreases. In addition, there are demands such as temperature adjustment in electric heater furnaces and correction of voltage drop due to load increase and decrease in distribution lines.
 そのため、例えば籠型三相誘導電動機の始動に当たっては、一般にはスター・デルタ起動器、起動補償器、リアクトル起動器等が使用されている。そしてこれらの起動器の撰定は、電動機の定格、負荷の種類、起動頻度等を考慮して決定されるものであるが、起動電流が小さいこと、加速が円滑なこと、自動制御が可能なこと、その他の条件を考慮し、リアクトル起動器が広く使用されている。 Therefore, for example, when starting a vertical three-phase induction motor, a star delta starter, a start compensator, a reactor starter, etc. are generally used. These starter determinations are determined in consideration of the motor rating, load type, start-up frequency, etc., but the start-up current is small, acceleration is smooth, and automatic control is possible. In consideration of other conditions, reactor starters are widely used.
 リアクトル起動器は、上記したように優れた性能を有する反面、電源スイッチと同性能をもつ高価なリアクトル短絡用スイッチを必要とし、しかもこのリアクトル短絡用スイッチは、起動或いは運転の切替に際してスパークが発生して接点の損傷が甚しい。従って、起動頻度の多い場合はその寿命が著しく短い欠点がある。特にこの欠点は、大電流高電圧回路用としては極めて重大な問題となる。またこういったことは、大電力を用いる電熱ヒーター炉の温度調整、配電線路の負荷の増減による電圧降下の補正、等、時間と共に流れる電流が変化する負荷においても同様である。 Although the reactor starter has excellent performance as described above, it requires an expensive reactor short-circuit switch having the same performance as the power switch, and this reactor short-circuit switch generates a spark when starting or switching operation. The contacts are severely damaged. Therefore, when the activation frequency is high, there is a drawback that the lifetime is remarkably short. In particular, this disadvantage becomes a very serious problem for a high-current high-voltage circuit. This also applies to a load in which the current flowing with time changes, such as temperature adjustment of an electric heater furnace using high power, correction of a voltage drop due to increase / decrease of load on a distribution line, and the like.
 そのため特許文献1には、主回路捲線を施した磁路と同一磁路に主回路捲線のアンペア回数とは逆アンペア回数を持つ補慣用捲線を施し、起動に際し、補慣用捲線の回路を開いて主回路捲線の自己リアクタンスにより突入電流を抑制し、電流が小さくなったときに補慣用捲線の回路を閉じ、その逆アンペア回数を利用して主回路捲線により磁路に発生すべき磁束を制限するようにした、交流電動機用起動器が示されている。 For this reason, in Patent Document 1, a supplementary coasting wire having the number of amperes opposite to the number of amperes of the main circuit winding is applied to the same magnetic path as the magnetic circuit subjected to the main circuit winding. The inrush current is suppressed by the self-reactance of the main circuit winding, and when the current becomes small, the circuit of the auxiliary conventional winding is closed, and the number of reverse amperes is used to limit the magnetic flux to be generated in the magnetic path by the main circuit winding. An AC motor starter is shown.
 この特許文献1に示された回路では、交流機器への電力供給を遮断することなく適切なタイミングで段階的に昇圧することができるので、その昇圧に際して発生する突入電流やトルクの変動幅が小さく、交流機器に与える衝撃を緩和することができる利点がある。しかしリアクトルには常時電流が流れ、この電流によってジュール発熱(抵抗発熱)するから、必要以上にエネルギーを消費するという問題がある。 In the circuit shown in Patent Document 1, the voltage can be stepped up at an appropriate timing without shutting off the power supply to the AC device. Therefore, the fluctuation range of the inrush current and torque generated at the time of the boosting is small. There is an advantage that the impact on the AC device can be reduced. However, since a current always flows through the reactor and Joule heating (resistance heating) is generated by this current, there is a problem that energy is consumed more than necessary.
 そのため特許文献2に示された交流機器用電圧調整装置では、一次巻線T2に、第1のリアクトルL1と、前記一次巻線T2で発生する磁束を第1のスイッチSW2を投入することで打ち消す、二次巻線T22を備えてなる第2のリアクトルL2とを直列に接続し、そのリアクトル直列回路と並列に第2のスイッチSW4を接続してなる回路を交流機器2に直列に接続する回路が提案されている。この回路では、交流機器2へのリアクトル直列回路を経て低電圧印加後の所定の時期に、第1のスイッチSW2を投入して前記第1のリアクトルL1のリアクタンスを低減して交流機器2に印加する電圧を一段高め、その後、前記第2のスイッチSW4を投入する。このようにしてリアクトル直列回路を短絡して全電圧を印加し、運転状態へ移行させることで、運転状態ではリアクトル直列回路を短絡するので、リアクトル直列回路の省エネが図れるとしている。 For this reason, in the voltage regulator for an AC device disclosed in Patent Document 2, the first reactor L1 and the magnetic flux generated in the primary winding T2 are canceled in the primary winding T2 by turning on the first switch SW2. A circuit in which a second reactor L2 having a secondary winding T22 is connected in series, and a circuit in which a second switch SW4 is connected in parallel with the reactor series circuit is connected in series to the AC device 2. Has been proposed. In this circuit, the first switch SW2 is turned on to reduce the reactance of the first reactor L1 to be applied to the AC device 2 at a predetermined time after the low voltage application through the reactor series circuit to the AC device 2. Then, the second switch SW4 is turned on. In this way, by short-circuiting the reactor series circuit, applying the entire voltage and shifting to the operating state, the reactor series circuit is short-circuited in the operating state, so that it is possible to save energy in the reactor series circuit.
 しかしながらこの特許文献2の回路においても、短絡スイッチによりリアクトルの直接短絡が行われるので大容量のモータの起動には適していない。そのため特許文献3には、モータの電源端子に接続される一次巻線と、一次巻線の電源側に直列に接続される電源スイッチと、一次巻線と共通の鉄芯に巻かれた二次巻線と、別異の鉄心に巻かれた複数の中間タップ付き三次巻線と、中間タップのそれぞれに設けられて三次巻線端部とを接続し、三次巻線の長さを変化させる電磁接触器と、その電磁接触器を選択するタップ選択装置とから成る可変リアクトル回路と、から成る可変リアクトル回路付始動器、又は、モータの電源端子に接続される中間タップを備えた一次巻線と、一次巻線の電源側及び接地側に設けられた電源スイッチ及び接地スイッチと、一次巻線と共通の鉄心に巻かれた二次巻線と、段落0029において「別異の鉄心に巻かれ」と記述され、請求項4では一次巻線、二次巻線と「共通の鉄芯に巻かれ」とされている中間タップ付き三次巻線と、三次巻線の長さを変化させる電磁接触器と、その電磁接触器を選択するタップ選択装置ととから成る可変リアクトル回路と、から成る可変リアクトル回路付始動器が示されている。 However, the circuit of Patent Document 2 is not suitable for starting a large-capacity motor because the reactor is directly short-circuited by a short-circuit switch. Therefore, in Patent Document 3, the primary winding connected to the power terminal of the motor, the power switch connected in series to the power supply side of the primary winding, and the secondary wound around the iron core common to the primary winding. An electromagnetic that changes the length of the tertiary winding by connecting the winding, the tertiary winding with a plurality of intermediate taps wound around different iron cores, and the end of the tertiary winding provided on each of the intermediate taps A variable reactor circuit comprising a contactor and a tap selection device for selecting the electromagnetic contactor; a starter with a variable reactor circuit comprising: a primary winding having an intermediate tap connected to a power supply terminal of a motor; , A power switch and a ground switch provided on the power supply side and the ground side of the primary winding, a secondary winding wound around a common iron core with the primary winding, and “wrapped around a different iron core” in paragraph 0029 In claim 4, the primary winding and the secondary A tertiary winding with an intermediate tap that is said to be “wound on a common iron core”, an electromagnetic contactor that changes the length of the tertiary winding, and a tap selection device that selects the electromagnetic contactor A variable reactor circuit and a starter with a variable reactor circuit are shown.
 この特許文献3の可変リアクトル回路付始動器では、モータの始動に際してタップ選択装置全ての電磁接触器をOFFし、電源スイッチを投入することで一次巻線のリアクタンスにより電圧が減圧され、起動電流が抑制される。そして始動後に回転数が上昇すると始動トルクが増加し、始動電流が低下するので、タップ選択装置で電磁接触器を順次ONしてゆき、二次巻線の電流を三次巻線のリアクタンスに見合った電流として、一次巻線のリアクタンスの一部を相殺することで見かけ上、リアクトルを順次減少させ、それによってモータに段階的に高くなる電圧を印加できるようにしている。 In the starter with a variable reactor circuit of Patent Document 3, when the motor is started, all the magnetic contactors of the tap selection device are turned off and the power switch is turned on to reduce the voltage by the reactance of the primary winding, and the starting current is reduced. It is suppressed. When the number of revolutions increases after starting, the starting torque increases and the starting current decreases. Therefore, the magnetic contactor is sequentially turned on by the tap selection device, and the secondary winding current matches the reactance of the tertiary winding. As a current, a part of the reactance of the primary winding is canceled out, so that the reactor is apparently decreased sequentially, so that a voltage that increases stepwise can be applied to the motor.
特公昭46-25045号公報Japanese Patent Publication No.46-25045 特開2005-202861号公報JP 2005-202861 A 特開2006-271060号公報JP 2006-271060 A
 しかしながら前記したように特許文献1に示された交流電動機用起動器は、リアクトルに常時電流が流れ、この電流によりジュール発熱(抵抗発熱)して必要以上にエネルギーを消費する、という問題があり、特許文献2の回路は、短絡スイッチによってリアクトルの直接的短絡が行われるため、大容量のモータの起動には適していない。 However, as described above, the AC motor starter shown in Patent Document 1 has a problem that current constantly flows through the reactor, and Joule heating (resistance heating) is caused by this current to consume more energy than necessary. The circuit of Patent Document 2 is not suitable for starting a large-capacity motor because the reactor is directly short-circuited by a short-circuit switch.
 また特許文献3に示された可変リアクトル回路付始動器は、特許文献1の場合と同様、一次巻線には常時電流が流れ、この電流によってジュール発熱(抵抗発熱)するから必要以上にエネルギーを消費するという問題がある。また、図5の回路においては58-1~3で示された電磁接触器のいずれかを、図6の回路においては69-1~3で示された電磁接触器のいずれかを投入した場合、可変リアクトル回路と一次巻線との相互誘導作用の一部を二次巻線でキャンセルすることになり、一次巻線の励磁電流の増加現象が発生して電動機始動電流のコントロールが困難になるという不具合が生じる。 In the starter with a variable reactor circuit shown in Patent Document 3, as in Patent Document 1, a current always flows through the primary winding, and Joule heat (resistance heat generation) is generated by this current, so energy is more than necessary. There is a problem of consumption. Further, when any of the magnetic contactors indicated by 58-1 to 3 in the circuit of FIG. 5 is inserted, and any of the electromagnetic contactors indicated by 69-1 to 3 in the circuit of FIG. In this case, a part of the mutual induction between the variable reactor circuit and the primary winding is canceled by the secondary winding, which increases the excitation current of the primary winding and makes it difficult to control the motor starting current. The problem that occurs.
 そのため本発明においては、起動或いは運転の切替に際してスパークが発生して接点の損傷が生じるといった問題を生じないよう、無瞬断連続、または無瞬断多段に電圧を可変できるようにすると共に、無駄にエネルギーを消費したり、電動機始動電流のコントロールが困難になるという不具合を生じることなく、大容量のモータの起動、電熱ヒーター炉の温度調整、配電線路の負荷の増減による電圧降下の補正、等にも用いることができる、無瞬断電圧可変装置を提供することが課題である。 Therefore, in the present invention, it is possible to change the voltage continuously without interruption or in multiple stages without interruption so as not to cause a problem that a spark is generated at the time of start-up or operation switching and damage of the contact occurs. Without losing energy or controlling the motor starting current, making it possible to start up a large-capacity motor, adjust the temperature of the electric heater furnace, correct the voltage drop by increasing or decreasing the load on the distribution line, etc. It is a problem to provide an uninterruptible voltage varying device that can also be used.
 上記課題を解決するため本発明になる無瞬断電圧可変装置は、
 三相電源により駆動される負荷に接続された中間タップを有し、一端を第1のスイッチを介して三相電源における一相に、他端を三相電源のニュートラルに接続して前記三相電源の相毎に設けられた主コイルと、該主コイルにおける前記中間タップと第1のスイッチ間に並列に接続され、流れる電流を制御して前記中間タップと第1のスイッチ間に流れる電流を制御する電流制御手段と、該電流制御手段を制御する制御回路とからなり、
 前記制御回路は、前記第1のスイッチを閉じた状態で前記負荷に流れる電流に対応させて前記電流制御手段を制御し、前記主コイルにおける中間タップと第1のスイッチ間に流れる電流を制御するよう構成されていることを特徴とする。
In order to solve the above problems, the uninterruptible voltage variable device according to the present invention is:
An intermediate tap connected to a load driven by a three-phase power source, one end connected to one phase in the three-phase power source via the first switch, and the other end connected to the neutral of the three-phase power source A main coil provided for each phase of the power source, and connected in parallel between the intermediate tap and the first switch in the main coil, and controls a current flowing to control a current flowing between the intermediate tap and the first switch. A current control means for controlling, and a control circuit for controlling the current control means,
The control circuit controls the current control means in response to a current flowing through the load in a state where the first switch is closed, and controls a current flowing between an intermediate tap in the main coil and the first switch. It is characterized by being comprised.
 このように無瞬断電圧可変装置を構成することで、第1のスイッチを閉じた後で電流制御手段により主コイルにおける中間タップと第1のスイッチ間に流れる電流を制御すれば、当初は電流制御手段に流れる電流を0とし、主コイルにおける中間タップと第1のスイッチ間のリアクトル分の電圧降下を利用して、例えば電源電圧の50%の電圧を負荷に印加することができる。そして、負荷に流れる電流が低下したら電流制御手段に流れる電流を徐々に増加させ、主コイルにおける中間タップと第1のスイッチ間の電圧降下を減少させ、最終的に主コイルにおける中間タップと第1のスイッチ間の電圧降下を例えば電源電圧の80%程度にしたり、100%にすることができる。 By configuring the uninterruptible voltage variable device in this way, if the current flowing between the intermediate tap in the main coil and the first switch is controlled by the current control means after the first switch is closed, the current is initially For example, 50% of the power supply voltage can be applied to the load by using a voltage drop corresponding to the reactor between the intermediate tap and the first switch in the main coil, with the current flowing through the control means being zero. When the current flowing through the load decreases, the current flowing through the current control means is gradually increased, the voltage drop between the intermediate tap in the main coil and the first switch is decreased, and finally the intermediate tap in the main coil and the first The voltage drop between the switches can be, for example, about 80% of the power supply voltage or 100%.
 従って本発明においては、負荷と電源が切断されることがなく、起動或いは運転の切替に際してスパークが発生して接点の損傷が生じるといった問題を生じない。また、電流制御手段の抵抗を0にできるようにすれば、主コイルにおける中間タップと第1のスイッチ間を流れる電流はなくなり、電圧降下がなくなるから、それだけでも電源電圧の100%の電圧で負荷を駆動でき、無駄にエネルギーを消費することもなくなる。 Therefore, in the present invention, the load and the power source are not cut off, and there is no problem that the contact is damaged due to the occurrence of a spark when starting or switching the operation. Also, if the resistance of the current control means can be reduced to zero, there will be no current flowing between the intermediate tap and the first switch in the main coil, and there will be no voltage drop. Can be driven and energy is not wasted.
 そして、前記電流制御手段は前記主コイルとは独立した磁路で形成されて直列に接続され、前記主コイルにおける前記中間タップと第1のスイッチ間に並列に接続された複数の独立磁路リアクトルと、該複数の独立磁路リアクトルのそれぞれに対応して並列に接続された第2のスイッチとからなり、前記制御回路は、前記第1のスイッチを閉じた状態で、前記負荷に流れる電流に対応させて前記第2のスイッチを順次閉じ、前記主コイルにおける中間タップと第1のスイッチ間に流れる電流を制御するよう構成されていることで、独立磁路リアクトルを第2のスイッチで順次0抵抗化できるから、複数の第2のスイッチをすべて閉じた段階で中間タップと第1のスイッチ間は第2のスイッチにより導通状態となる。そのため、前記特許文献3の場合のように、一次巻線との相互誘導作用の一部を二次巻線でキャンセルすることになり、一次巻線の励磁電流の増加現象など、電動機始動電流のコントロールが困難になるという不具合も生じない。 The current control means is formed of a magnetic path independent of the main coil and connected in series, and a plurality of independent magnetic path reactors connected in parallel between the intermediate tap and the first switch in the main coil. And a second switch connected in parallel corresponding to each of the plurality of independent magnetic path reactors, and the control circuit is configured to convert the current flowing through the load with the first switch closed. Correspondingly, the second switch is sequentially closed, and the current flowing between the intermediate tap and the first switch in the main coil is controlled, so that the independent magnetic path reactor is sequentially turned to 0 by the second switch. Since resistance can be achieved, when the plurality of second switches are all closed, the intermediate tap and the first switch are brought into conduction by the second switch. Therefore, as in the case of Patent Document 3, a part of the mutual induction action with the primary winding is canceled by the secondary winding, and the motor starting current such as an increase in the excitation current of the primary winding is reduced. There is no problem that control becomes difficult.
 さらに、前記電流制御手段はアクチュエータで抵抗値が制御される可変抵抗であり、前記制御回路は、前記第1のスイッチを閉じた状態で、前記負荷に流れる電流に対応させて前記アクチュエータを制御し、前記可変抵抗の抵抗値を制御して前記主コイルにおける中間タップと第1のスイッチ間に流れる電流を制御するよう構成されていたり、前記電流制御手段は電流制御素子であり、前記制御回路は、前記第1のスイッチを閉じた状態で、前記負荷に流れる電流に対応させて前記電流制御素子を制御し、前記主コイルにおける中間タップと第1のスイッチ間に流れる電流を制御するよう構成されていることで、可変抵抗は最大抵抗から0抵抗まで変化でき、また、例えばトライアック、サイリスタなどの電流制御素子も同様に0から最大電流まで自由に電流を制御できるから、主コイルにおける中間タップと第1のスイッチ間に流れる電流を自由に制御でき、電動機始動電流のコントロールが困難になるという不具合を生じることなく、大容量のモータの起動、電熱ヒーター炉の温度調整、配電線路の負荷の増減による電圧降下の補正、等、種々の用途に使用できる無瞬断電圧可変装置を提供することができる。 Further, the current control means is a variable resistor whose resistance value is controlled by an actuator, and the control circuit controls the actuator in accordance with a current flowing through the load in a state where the first switch is closed. , The resistance value of the variable resistor is controlled to control the current flowing between the intermediate tap and the first switch in the main coil, or the current control means is a current control element, and the control circuit In the state where the first switch is closed, the current control element is controlled in accordance with the current flowing through the load, and the current flowing between the intermediate tap and the first switch in the main coil is controlled. Therefore, the variable resistance can be changed from the maximum resistance to 0 resistance, and the current control elements such as triacs and thyristors are similarly changed from 0 to the maximum. Since the current can be freely controlled up to the current, the current flowing between the intermediate tap in the main coil and the first switch can be freely controlled, and there is no problem that it becomes difficult to control the motor starting current, and the large capacity motor It is possible to provide an uninterruptible voltage variable device that can be used for various purposes, such as starting the power supply, adjusting the temperature of the electric heater furnace, and correcting the voltage drop due to the increase or decrease of the load on the distribution line.
 なお、前記電流制御手段により前記主コイルにおける中間タップと第1のスイッチ間の電圧降下が少なくなった状態で、前記制御回路により閉じられて前記電源と負荷とを結ぶ第3のスイッチを有していることで、主コイルにおける中間タップと第1のスイッチ間を流れる電流を完全になくすことができ、無駄にエネルギーを消費することもなくなる。 The current control means has a third switch that is closed by the control circuit and connects the power source and the load with a voltage drop between the intermediate tap and the first switch in the main coil reduced. As a result, the current flowing between the intermediate tap and the first switch in the main coil can be completely eliminated, and energy is not wasted.
 以上記載のごとく本発明になる無瞬断電圧可変装置は、電源投入後は負荷と電源が切断されることがなく、また、電流制御手段を0抵抗にすれば、主コイルにおける中間タップと第1のスイッチ間を流れる電流はなくなり、起動或いは運転の切替に際してスパークが発生して接点の損傷が生じるといった問題を生じたり、無駄にエネルギーを消費することがない。 As described above, the uninterruptible voltage variable device according to the present invention does not disconnect the load and the power source after the power is turned on, and if the current control means is set to 0 resistance, There is no current flowing between the switches, and there is no problem that sparks are generated at the time of start-up or operation switching, resulting in damage to the contacts, and energy is not wasted.
 また、電流制御手段を主コイルとは独立した磁路で形成され、直列に接続されて、主コイルにおける前記中間タップと第1のスイッチ間に並列に接続された複数の独立磁路リアクトルと、この独立磁路リアクトルのそれぞれに対応して並列に接続された第2のスイッチとで構成することで、負荷に流れる電流に応じて第2のスイッチを順次閉じれば、独立磁路リアクトルを第2のスイッチで順次0抵抗化できる。従って、複数の第2のスイッチをすべて閉じた段階で中間タップと第1のスイッチ間を無抵抗の導通状態とすれば、前記特許文献3の場合のように、一次巻線との相互誘導作用の一部を二次巻線でキャンセルすることになって、一次巻線の励磁電流の増加現象など、電動機始動電流のコントロールが困難になるという不具合も生じない。 The current control means is formed of a magnetic path independent from the main coil, connected in series, and a plurality of independent magnetic path reactors connected in parallel between the intermediate tap and the first switch in the main coil, By configuring the second switch connected in parallel corresponding to each of the independent magnetic path reactors, if the second switch is sequentially closed according to the current flowing through the load, the independent magnetic path reactor is The resistance can be reduced to 0 with the switch. Therefore, if the intermediate tap and the first switch are brought into a non-resistance conduction state when all of the plurality of second switches are closed, as in the case of Patent Document 3, the mutual induction action with the primary winding is performed. Since a part of the current is canceled by the secondary winding, there is no problem that it becomes difficult to control the motor starting current, such as an increase in the excitation current of the primary winding.
 さらに電流制御手段を、パイロットモータで抵抗値が制御される摺動抵抗や、例えばトライアック、サイリスタなどの電流制御素子とすることで、摺動抵抗は最大抵抗から0抵抗まで変化でき、また、トライアック、サイリスタなどの電流制御素子も同様に0から最大電流まで自由に電流を制御できるから、電動機始動電流のコントロールが困難になるという不具合を生じることなく、大容量のモータの起動、電熱ヒーター炉の温度調整、配電線路の負荷の増減による電圧降下の補正、等、種々の用途に使用できる無瞬断電圧可変装置を提供することができる。 Furthermore, the current control means is a sliding resistance whose resistance value is controlled by a pilot motor, or a current control element such as a triac or thyristor, so that the sliding resistance can vary from the maximum resistance to 0 resistance. Similarly, a current control element such as a thyristor can also freely control the current from 0 to the maximum current, so that it is difficult to control the motor start current without starting up a large-capacity motor, the electric heater furnace It is possible to provide an uninterruptible voltage variable device that can be used for various purposes such as temperature adjustment, correction of voltage drop caused by increase / decrease of load on the distribution line, and the like.
本発明になる無瞬断電圧可変装置における実施例1を備えた三相誘導電動機の制御回路の概略ブロック図である。It is a schematic block diagram of the control circuit of the three-phase induction motor provided with Example 1 in the uninterruptible voltage variable device according to the present invention. 本発明になる無瞬断電圧可変装置における実施例1の他の構成例の概略ブロック図である。It is a schematic block diagram of the other structural example of Example 1 in the uninterruptible voltage variable apparatus which becomes this invention. 本発明になる無瞬断電圧可変装置における実施例2の概略ブロック図である。It is a schematic block diagram of Example 2 in the uninterruptible voltage varying apparatus which becomes this invention. 本発明になる無瞬断電圧可変装置における実施例2の他の構成例の概略ブロック図である。It is a schematic block diagram of the other structural example of Example 2 in the uninterruptible voltage variable apparatus which becomes this invention. 本発明になる無瞬断電圧可変装置における実施例3の概略ブロック図である。It is a schematic block diagram of Example 3 in the uninterruptible voltage varying device according to the present invention. 本発明になる無瞬断電圧可変装置における実施例3の他の構成例の概略ブロック図である。It is a schematic block diagram of the other structural example of Example 3 in the uninterruptible voltage variable apparatus which becomes this invention.
 以下、図面を参照して本発明の好適な実施例を例示的に詳しく説明する。但しこの実施例に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りはこの発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。 Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, but are merely illustrative examples. Absent.
 本発明になる無瞬断電圧可変装置は、三相電源により駆動される負荷に接続されて中間タップを有し、一端を第1のスイッチを介して三相電源における一相に、他端を直接、またはスイッチを介して三相電源のニュートラルに接続して前記三相電源の相毎に設けられた主コイルと、該主コイルにおける前記中間タップと第1のスイッチ間に並列に接続され、流れる電流を制御して実質的に前記中間タップと第1のスイッチ間の電流を制御する電流制御手段と、該電流制御手段を制御して流れる電流を制御する制御回路とからなる、リアクトル回路を用いた電圧可変装置である。 An uninterruptible voltage variable device according to the present invention is connected to a load driven by a three-phase power source, has an intermediate tap, one end is set to one phase in the three-phase power source via a first switch, and the other end is A main coil provided for each phase of the three-phase power supply by connecting to the neutral of the three-phase power supply directly or via a switch, and connected in parallel between the intermediate tap and the first switch in the main coil, A reactor circuit comprising: current control means for controlling current flowing to substantially control current between the intermediate tap and the first switch; and a control circuit for controlling current flow by controlling the current control means. The voltage variable device used.
 このうち電流制御手段としては、例えば前記主コイルとは独立した磁路で形成されて直列に接続され、主コイルにおける前記中間タップと第1のスイッチ間に並列に接続された複数の独立磁路リアクトルと、該複数の独立磁路リアクトルのそれぞれに対応して並列に接続された第2のスイッチとで、無瞬断で多段に電圧を可変できるようにしたり(以下、この構成を第1の構成と称する)、ソレノイドアクチュエータ、サーボモータ、パイロットモータなどのアクチュエータで抵抗値を制御する可変抵抗や(以下、この構成を第2の構成と称する)、例えばトライアック、サイリスタなどの電流制御素子(以下、この構成を第3の構成と称する)を用いる。 Among these, as the current control means, for example, a plurality of independent magnetic paths formed in a magnetic path independent from the main coil and connected in series, and connected in parallel between the intermediate tap and the first switch in the main coil. The reactor and the second switch connected in parallel corresponding to each of the plurality of independent magnetic path reactors can change the voltage in multiple stages without instantaneous interruption (hereinafter, this configuration is referred to as the first switch). Variable resistance for controlling the resistance value by an actuator such as a solenoid actuator, a servo motor, a pilot motor (hereinafter referred to as a second configuration), for example, a current control element such as a triac or a thyristor (hereinafter referred to as a configuration). This configuration is referred to as a third configuration).
 そして制御回路は、主コイルと三相電源のニュートラル間にスイッチが設けられている場合はそのスイッチを閉じた後に、設けられていない場合は直接第1のスイッチを閉じ、主コイルにおける前記中間タップと第1のスイッチ間のリアクトルを介して負荷に電源を供給する。このとき、電流制御手段として独立磁路リアクトルを用いた第1の構成の場合、第2のスイッチをすべて開いておくことで、主コイルにおける前記中間タップと第1のスイッチ間のリアクトル、及び並列に接続した独立磁路リアクトルとによる電圧降下が生じ、負荷にはその電圧降下した電圧が印加される。可変抵抗を用いた第2の構成の場合は可変抵抗を最大抵抗値にし、トライアック、サイリスタなどの電流制御素子を用いた第3の構成の場合は電流制御素子を電流が流れない状態にすれば、同様に主コイルにおける前記中間タップと第1のスイッチ間のリアクトルにより電圧降下した電圧を負荷に供給できる。 The control circuit closes the first switch when the switch is provided between the main coil and the neutral of the three-phase power supply, and closes the first switch when the switch is not provided. And a power supply to the load through a reactor between the first switch and the first switch. At this time, in the case of the first configuration using the independent magnetic path reactor as the current control means, by opening all the second switches, the reactor between the intermediate tap and the first switch in the main coil, and the parallel A voltage drop occurs due to the independent magnetic path reactor connected to, and the voltage with the voltage drop is applied to the load. In the case of the second configuration using a variable resistor, the variable resistor is set to the maximum resistance value, and in the case of the third configuration using a current control element such as a triac or thyristor, the current control element is set to a state in which no current flows. Similarly, the voltage dropped by the reactor between the intermediate tap and the first switch in the main coil can be supplied to the load.
 そして例えば負荷が誘導モータの場合、回転数が上昇すると始動トルクが増加して始動電流が低下するから、制御回路でそれを検出し、電流制御手段として独立磁路リアクトルを用いた第1の構成の場合、独立磁路リアクトルに並列に接続した第2のスイッチの1つを閉じる。すると、1つ分の独立磁路リアクトルがなくなるから、その分、負荷に供給する電圧が上昇する。また、第2や第3の構成の場合、制御回路が検出した電流値に応じ、可変抵抗の抵抗値を減少させたり、電流制御素子を流れる電流値を増加させることで、同様に負荷に供給する電圧を上昇させることができる。 For example, when the load is an induction motor, the starting torque increases and the starting current decreases when the rotational speed increases. Therefore, the control circuit detects this, and the first configuration using an independent magnetic path reactor as the current control means In the case of, one of the second switches connected in parallel to the independent magnetic path reactor is closed. Then, since there is no single independent magnetic path reactor, the voltage supplied to the load increases accordingly. In the case of the second or third configuration, the resistance value of the variable resistor is decreased or the value of the current flowing through the current control element is increased according to the current value detected by the control circuit. The voltage to be increased can be increased.
 こうした独立磁路リアクトルに並列に接続した第2のスイッチを順次閉じる、または可変抵抗の抵抗値を順次小さくして0にする、電流制御素子を流れる電流値を順次最大にする、などにより、段階的に、あるいは連続的に誘導モータに印加する電圧を増加させ、最終的に電源電圧100%を印加することで、誘導モータは始動時には低い電圧で電流が抑制された状態で起動され、回転数が上昇して電流が低下したら順次印加する電圧を上昇させてゆくことができる。従って、直接電源電圧を印加した場合に生じる大きな起動電流に対応した電源を用意する必要がない。また、負荷と電源が切断されることがないから、起動或いは運転の切替に際してスパークが発生して接点の損傷が生じるといった問題を生じない。さらに、電流制御手段の抵抗を0とすれば、電圧降下がなくなって無駄にエネルギーを消費することもなくなる。 The second switch connected in parallel to the independent magnetic path reactor is sequentially closed, or the resistance value of the variable resistor is sequentially reduced to 0, the current value flowing through the current control element is sequentially maximized, and so on. By increasing the voltage applied to the induction motor continuously or continuously, and finally applying the power supply voltage of 100%, the induction motor is started in a state where the current is suppressed at a low voltage at the start, and the rotation speed As the voltage increases and the current decreases, the applied voltage can be increased sequentially. Therefore, it is not necessary to prepare a power supply corresponding to a large starting current generated when a power supply voltage is directly applied. Further, since the load and the power source are not cut off, there is no problem that a spark is generated at the time of start-up or switching of operation and the contact is damaged. Furthermore, if the resistance of the current control means is set to 0, there is no voltage drop and energy is not wasted.
 図1は、本発明になる無瞬断電圧可変装置における前記概略で記した第1の構成たる、実施例1を備えた三相誘導電動機の制御回路の概略ブロック図である。この図1において10は本発明になる無瞬断電圧可変装置であり、12、14は中間タップ16が負荷としての誘導モータ18に接続され、一端を第1のスイッチSW1を介して三相電源20における一相に、他端を第4のスイッチSW4を介して三相電源のニュートラル22に接続され、三相電源の相毎に設けられた主コイルである。24、24は、主コイルとは独立した磁路で形成されて直列に接続され、主コイル12に並列に接続された複数の独立磁路リアクトル、SW2、SW2はこの独立磁路リアクトル24、24に対応して設けられた第2のスイッチ、SW3は三相電源20の各相を、直接、負荷としての誘導モータ18に接続するスイッチである。26は無瞬断電圧可変装置を制御する制御回路で、28は誘導モータ18のコイルに流れる電流を検出する電流検出器、30は三相電源20の電圧を検出する電圧検出器、32は誘導モータ18の回転数を検出する回転数検出器である。なお、この図1に示した実施例1の無瞬断電圧可変装置では、独立磁路リアクトル24と第2のスイッチSW2をそれぞれ2つずつ設けた場合を示したが、3つ以上設けても良いことは自明であり、その場合は誘導モータ18に印加する電圧をさらに細かく制御できる。また、SW1~SW4の各スイッチは、リレーや半導体スイッチで構成してもよい。 FIG. 1 is a schematic block diagram of a control circuit of a three-phase induction motor having Example 1 as the first configuration described in the outline in an uninterruptible voltage varying device according to the present invention. In FIG. 1, reference numeral 10 denotes an uninterruptible voltage variable device according to the present invention. Reference numerals 12 and 14 denote intermediate phase taps 16 connected to an induction motor 18 as a load, and one end of a three-phase power source via a first switch SW1. 20 is a main coil provided for each phase of the three-phase power source, with the other end connected to the neutral 22 of the three-phase power source via the fourth switch SW4. Reference numerals 24 1 and 24 2 are formed of magnetic paths independent of the main coil and connected in series, and a plurality of independent magnetic path reactors connected in parallel to the main coil 12, SW 2 1 and SW 2 1 are independent magnetic paths. A second switch SW3 provided corresponding to the reactors 24 1 and 24 2 is a switch for directly connecting each phase of the three-phase power source 20 to the induction motor 18 as a load. 26 is a control circuit that controls the uninterruptible voltage variable device, 28 is a current detector that detects the current flowing through the coil of the induction motor 18, 30 is a voltage detector that detects the voltage of the three- phase power source 20, and 32 is induction. It is a rotation speed detector that detects the rotation speed of the motor 18. In the uninterruptible voltage varying device according to the first embodiment shown in FIG. 1, the case where two independent magnetic path reactors 24 and two second switches SW2 are provided is shown. It is obvious that it is good, and in that case, the voltage applied to the induction motor 18 can be controlled more finely. Further, each of the switches SW1 to SW4 may be constituted by a relay or a semiconductor switch.
 このように構成した本発明になる無瞬断電圧可変装置の実施例1では、直列に接続して主コイル12に並列に接続した独立磁路リアクトル24、24と主コイル12とにより、三相電源20の電圧を例えば50%程度に降下させ、第2のスイッチSW2を閉じたことにより独立磁路リアクトル24が短絡されたときは80%程度に、第2のスイッチSW2も閉じて独立磁路リアクトル24も短絡されたとき、すなわち主コイル12も短絡された状態では、100%の電圧が誘導モータ18に印加されるように主コイル12、独立磁路リアクトル24、24の値を選択する。 In the first embodiment of the uninterruptible voltage varying device according to the present invention configured as described above, the independent magnetic path reactors 24 1 and 24 2 connected in series and connected in parallel to the main coil 12 and the main coil 12, lowering the voltage of the three-phase power source 20, for example, about 50%, about 80% when the independent magnetic paths reactor 24 1 is short-circuited by closing the second switch SW2 1, second switch SW2 2 also when short-circuit is also independent magnetic path reactor 24 is closed, i.e. in the state in which the main coil 12 was also short-circuited, the main coil 12 as 100% of the voltage applied to the induction motor 18, independent magnetic paths reactor 24 1, to select the 24 value of 2.
 そして、誘導モータ18を始動する際に制御回路26は、第2のスイッチSW2、第3のスイッチSW3を開いた状態(OFF状態)で、まず主コイル12、14における三相電源20のニュートラル22側の第4のスイッチSW4を閉じ(ON)、次いで電源20側の第1のスイッチSW1を閉じる。すると誘導モータ18には、主コイル12と並列に接続した独立磁路リアクトル24、24とにより、三相電源20の50%程度の電圧が印加されて電流が抑制された状態で起動される。 Then, when starting the induction motor 18, the control circuit 26 first opens the second switch SW2 and the third switch SW3 (OFF state), and first, the neutral 22 of the three-phase power source 20 in the main coils 12, 14. The fourth switch SW4 on the side is closed (ON), and then the first switch SW1 on the power supply 20 side is closed. Then, the induction motor 18 is started in a state in which a voltage of about 50% of the three-phase power source 20 is applied and the current is suppressed by the independent magnetic path reactors 24 1 and 24 2 connected in parallel with the main coil 12. The
 そして誘導モータ18は、回転数が上昇すると始動トルクが増加し、始動電流が低下するから、制御回路26はそれを回転数検出器32、電流検出器28で検出し、予め定めた電流になったら、または誘導モータ18の負荷が予めわかっている場合はこれも予め定めた時間経過したとき、第2のスイッチSW2を閉じる。すると独立磁路リアクトル24が短絡され、その分リアクトルが少なくなるから誘導モータ18には、前記したように三相電源20の電圧の80%の電圧が印加される。 When the rotational speed of the induction motor 18 increases, the starting torque increases and the starting current decreases. Therefore, the control circuit 26 detects this with the rotational speed detector 32 and the current detector 28 to obtain a predetermined current. when, or when the load of the induction motor 18 which also has passed predetermined time if known beforehand, the second switch SW2 1 Close. Then the short-circuited independently magnetic path reactor 24 1, the induction motor 18 from correspondingly reactor is reduced, 80% of the voltage of the voltage of three-phase power supply 20 as described above is applied.
 そのため誘導モータ18は加速され、トルクが上昇するが、それに伴って流れる電流が減少していくから、制御回路26はそれを回転数検出器32、電流検出器28で検出し、予め定めた第2の電流値になったら、または誘導モータ18の負荷が予めわかっている場合はこれも予め定めた第2の時間経過したとき、第2のスイッチSW2も閉じる。すると独立磁路リアクトル24が短絡され、同時に主コイル12も短絡されるから、誘導モータ18には前記したように三相電源20の電圧がそのまま(すなわち100%の電圧)印加される。 As a result, the induction motor 18 is accelerated and the torque increases, but the current flowing therewith decreases. Therefore, the control circuit 26 detects this with the rotation speed detector 32 and the current detector 28, and determines the predetermined number. After a two current values, or induction time when the load of the motor 18 is known in advance that the second time period has elapsed also a predetermined, second switch SW2 2 Close. Then independent magnetic path reactor 24 2 are short-circuited, at the same time from the main coil 12 is also short-circuited, the voltage of the three-phase power supply 20 as described above to the induction motor 18 is directly (i.e. 100% of the voltage) applied.
 そのため制御回路26は、第4のスイッチSW4を開いて主コイル14と三相電源のニュートラル22間を切断し、次いで第3のスイッチSW3を閉じて第1のスイッチSW1を開く。すなわち、誘導モータ18に三相電源20により定格電圧が印加されるようにし、それによって誘導モータ18を定格運転するわけである。 Therefore, the control circuit 26 opens the fourth switch SW4 to disconnect between the main coil 14 and the neutral 22 of the three-phase power supply, and then closes the third switch SW3 and opens the first switch SW1. That is, the rated voltage is applied to the induction motor 18 by the three-phase power source 20, thereby operating the induction motor 18 at a rated operation.
 このように本発明になる無瞬断電圧可変装置の実施例1では、直列に接続して主コイル12に並列に接続した独立磁路リアクトル24、24と主コイル12とにより、誘導モータ18の始動時には三相電源20の電圧を例えば50%程度に降下させ、独立磁路リアクトル24、24のそれぞれに対応して並列に設けた第2のスイッチSW2、SW2を順次閉じれば、誘導モータ18に流れる電流に対応させて負荷と電源を切断することなく、順次電圧を高くすることができる。従って、起動或いは運転の切替に際してスパークが発生して接点の損傷が生じるといった問題を生じない。また、第2のスイッチSW2を全て閉じれば主コイル12も短絡され、電源電圧の100%の電圧で負荷を駆動できて無駄にエネルギーを消費することもなくなる。 As described above, in the first embodiment of the uninterruptible voltage varying device according to the present invention, the independent magnetic path reactors 24 1 and 24 2 connected in series and connected in parallel to the main coil 12 and the main coil 12 are used as induction motors. 18 at the start of lowering the voltage of the three-phase power source 20, for example, about 50% to sequentially close is an independent magnetic path reactors 24 1, 24 2 of the second switch SW2 provided in parallel in correspondence to 1, SW2 2 For example, the voltage can be increased sequentially without cutting off the load and the power source in accordance with the current flowing through the induction motor 18. Therefore, there is no problem that a spark is generated at the time of start-up or operation switching and the contact is damaged. If all the second switches SW2 are closed, the main coil 12 is also short-circuited, and the load can be driven with 100% of the power supply voltage, so that energy is not wasted.
 なお、図1では、本発明になる無瞬断電圧可変装置を三相誘導電動機の制御回路に利用した場合を説明したが、三相誘導電動機では定格電圧で駆動すると、後は継続して駆動されることが多く、最終的に第3のスイッチSW3で直接三相電源20に接続するようにした。しかしながら、軽負荷運転時の省エネ制御、電熱ヒーター炉の温度調整、及び配電線路の負荷の増減による電圧降下の補正、等に利用する場合、主コイル12、14、独立磁路リアクトル24を負荷から完全に切り離さず、状況に応じて独立磁路リアクトル24、24を再投入できるようにして、調節が可能なようにすることもできる。 In FIG. 1, the case where the uninterruptible voltage varying device according to the present invention is used for the control circuit of the three-phase induction motor has been described. However, when the three-phase induction motor is driven at the rated voltage, it is continuously driven thereafter. In many cases, the third switch SW3 is connected directly to the three-phase power source 20. However, when it is used for energy saving control during light load operation, temperature adjustment of the electric heater furnace, correction of voltage drop due to increase or decrease of distribution line load, etc., the main coils 12, 14 and the independent magnetic path reactor 24 are removed from the load. Without being completely separated, the independent magnetic path reactors 24 1 and 24 2 can be re-introduced according to the situation so that the adjustment can be performed.
 図2は、このような考え方に従って構成した、本発明になる無瞬断電圧可変装置における第1の構成たる、実施例1の他の構成例の概略ブロック図である。この図2は、本発明になる無瞬断電圧可変装置における1相分のブロックのみを示し、図1における制御回路26は省略されている。40は電源接続端で、42は負荷接続端である。また、図1における第3のスイッチSW3、電源接続端40から負荷への接続端42への配線がなく、主コイル12からは中間タップ16を介して負荷への接続端42が設けられている。さらに、第4のスイッチSW4がなく、主コイル14は直接三相電源のニュートラル22に接続されている。その他の構成は図1と同様である。 FIG. 2 is a schematic block diagram of another configuration example of the first embodiment, which is the first configuration of the uninterruptible voltage variable device according to the present invention configured according to such a concept. FIG. 2 shows only a block for one phase in the uninterruptible voltage varying device according to the present invention, and the control circuit 26 in FIG. 1 is omitted. Reference numeral 40 denotes a power connection end, and reference numeral 42 denotes a load connection end. Further, there is no wiring from the third switch SW3 in FIG. 1 and the power connection terminal 40 to the connection terminal 42 to the load, and the connection terminal 42 to the load is provided from the main coil 12 via the intermediate tap 16. . Furthermore, there is no fourth switch SW4, and the main coil 14 is directly connected to the neutral 22 of the three-phase power source. Other configurations are the same as those in FIG.
 この図2の回路では、制御回路26は第2のスイッチSW2を開いた状態(OFF状態)で、電源40側の第1のスイッチSW1を閉じる。すると負荷接続端42には、主コイル12と並列に接続した独立磁路リアクトル24、24とにより、例えば図示していない三相電源の50%程度の電圧が印加されて電流が抑制された状態で起動される。 In the circuit of FIG. 2, the control circuit 26 closes the first switch SW1 on the power supply 40 side with the second switch SW2 opened (OFF state). Then, the independent magnetic path reactors 24 1 and 24 2 connected in parallel with the main coil 12 are applied to the load connection end 42 with a voltage of, for example, about 50% of a three-phase power source (not shown) to suppress the current. It is started in the state.
 電熱ヒーター炉などは冷えた状態では抵抗が低く、暖まると抵抗が高くなって電流が減少するから、図示していない制御回路はやはり図示していない電流検出器でその電流を検出し、予め定めた電流になったら、または負荷が予めわかっている場合はこれも予め定めた時間経過したとき、第2のスイッチSW2を閉じる。すると独立磁路リアクトル24が短絡され、その分リアクトルが少なくなるから負荷接続端42には、例えば三相電源20の電圧の80%の電圧が印加される。 The electric heater furnace has a low resistance when it is cold, and when it is warmed, the resistance becomes high and the current decreases. Therefore, the control circuit (not shown) detects the current with a current detector (not shown) and determines it in advance. when turned current was, or when it even has elapsed predetermined time is when the load is known in advance, the second switch SW2 1 Close. Then the short-circuited independently magnetic path reactor 24 1, the load connection terminal 42 from correspondingly reactor is reduced, for example, 80% of the voltage of the voltage of three-phase power supply 20 is applied.
 そのため図示していない負荷には高い電圧が印加され、電熱ヒーター炉などはさらに加熱されるが、それに伴って流れる電流が減少していくから、図示していない制御回路はその電流電流検出器28で検出し、予め定めた第2の電流値になったら、または負荷が予めわかっている場合はこれも予め定めた第2の時間経過したとき、第2のスイッチSW2も閉じる。すると独立磁路リアクトル24が短絡され、同時に主コイル12も短絡されるから、負荷接続端42には前記と同様、図示していない三相電源の電圧がそのまま(すなわち100%の電圧)印加される。 Therefore, a high voltage is applied to the load (not shown), and the electric heater furnace and the like are further heated. However, the current flowing therewith decreases, so the control circuit (not shown) has its current / current detector 28. in detecting, when turned to a second current value determined in advance, or when if the load is known in advance that the second time period has elapsed also a predetermined, second switch SW2 2 Close. Then the independent magnetic path reactor 24 2 short, at the same time because the main coil 12 is also short-circuited, as with said load connection terminal 42, the voltage of the three-phase power supply which is not shown as it is (i.e. 100% of the voltage) applied Is done.
 この状態で、例えば電熱ヒーター炉などに印加する電圧を低下させたい場合、第2のスイッチSW2を開く。すると独立磁路リアクトル24、主コイル12が回路に挿入され、リアクトルが復活するから、負荷接続端42の電圧は低下し、それに伴って図示していない負荷に流れる電流も低下する。従って、例えば電熱ヒーター炉などの温度を負荷と電源を切断することなく、状況に応じて制御することが可能となる。 In this state, for example when it is desired to lower the voltage applied like electric heater furnace, opening the second switch SW2 2. Then, since the independent magnetic path reactor 24 2 and the main coil 12 are inserted into the circuit and the reactor is restored, the voltage at the load connection end 42 is lowered, and the current flowing through the load (not shown) is also lowered accordingly. Therefore, for example, the temperature of an electric heater furnace or the like can be controlled according to the situation without disconnecting the load and the power source.
 このようにすることで、軽負荷運転時の省エネ制御、電熱ヒーター炉の温度調整、及び配電線路の負荷の増減による電圧降下の補正、等の場合も、状況に応じて独立磁路リアクトル24、24を再投入できるようにして、調節が可能なようにすることができる。 In this way, the independent magnetic path reactor 24 1 can also be used for energy saving control during light load operation, temperature adjustment of the electric heater furnace, and correction of voltage drop due to increase / decrease of load on the distribution line. , it can be allowed to be re-charged with 24 2, as adjustment is possible.
 図3は、本発明になる無瞬断電圧可変装置における第2の構成たる、実施例2の概略ブロック図であり、図4は同じく実施例2の他の構成例の概略ブロック図である。この図3は前記した実施例1の図1に、図4は同じく図2に対応した回路であり、図1、図2で説明したように、図3は誘導電動機などを始動した後、定格電圧運転する場合、図4はさらに軽負荷運転時の省エネ制御、電熱ヒーター炉の温度調整、及び配電線路の負荷の増減による電圧降下の補正、等の場合に用いる回路である。 FIG. 3 is a schematic block diagram of the second embodiment, which is a second configuration of the uninterruptible voltage variable device according to the present invention, and FIG. 4 is a schematic block diagram of another configuration example of the second embodiment. 3 is a circuit corresponding to FIG. 1 of the first embodiment and FIG. 4 is also a circuit corresponding to FIG. 2. As described in FIGS. 1 and 2, FIG. In the case of voltage operation, FIG. 4 is a circuit used for energy saving control during light load operation, temperature adjustment of the electric heater furnace, correction of voltage drop due to increase or decrease of load on the distribution line, and the like.
 図1、図2に示した実施例1においては、前記した本発明の概略で述べた電流制御手段として、主コイル12とは独立した磁路で形成されて直列に接続され、主コイル12における中間タップ16と第1のスイッチSW1間に並列に接続された複数の独立磁路リアクトル24、24と、該複数の独立磁路リアクトルのそれぞれに対応して並列に接続された第2のスイッチSW2とで、無瞬断で多段に電圧を可変できるようにしていた。 In the first embodiment shown in FIGS. 1 and 2, the current control means described in the outline of the present invention is formed by a magnetic path independent from the main coil 12 and connected in series. A plurality of independent magnetic path reactors 24 1 and 24 2 connected in parallel between the intermediate tap 16 and the first switch SW1, and a second connected in parallel corresponding to each of the plurality of independent magnetic path reactors. With the switch SW2, the voltage can be varied in multiple stages without interruption.
 これを無瞬断連続に行えるようにしたのが図3、図4に示した本発明の実施例2、及び後記する図5、図6に示す本発明の実施例3である。まず図3、図4に示した本発明の実施例2は、前記した本発明の概略で述べた電流制御手段として、例えばソレノイドアクチュエータ、サーボモータ、パイロットモータなどのアクチュエータで抵抗値を変化できるようにした、可変抵抗46で電流制御するものである。 The second embodiment of the present invention shown in FIG. 3 and FIG. 4 and the third embodiment of the present invention shown in FIG. 5 and FIG. First, in the second embodiment of the present invention shown in FIGS. 3 and 4, the resistance value can be changed by an actuator such as a solenoid actuator, a servo motor, or a pilot motor as the current control means described in the outline of the present invention. The current is controlled by the variable resistor 46.
 なお、以下の説明(図3、図4、図5、図6)では前記図2の場合と同様、本発明になる無瞬断電圧可変装置における1相分のブロックのみを示し、図1における制御回路26は省略した。40は電源接続端で、42は負荷接続端でこれらは図2と同じであり、図3、図5では図1における第3のスイッチSW3、電源接続端40から負荷への接続端42への配線が存在するが、図4、図6では第3のスイッチSW3、電源接続端40から負荷への接続端42への配線が存在せず、主コイル12からは中間タップ16を介して負荷への接続端42が設けられている。また、図3、図5では図1における第4のスイッチSW4が存在し、主コイル14は第4のスイッチSW4を介して三相電源のニュートラル22に接続されているが、図4、図6では第4のスイッチSW3が存在せず、主コイル14は直接三相電源のニュートラル22に接続されている In the following description (FIGS. 3, 4, 5, and 6), as in FIG. 2, only the block for one phase in the uninterruptible voltage variable device according to the present invention is shown. The control circuit 26 is omitted. 40 is a power connection end and 42 is a load connection end, which are the same as those in FIG. 2. In FIGS. 3 and 5, the third switch SW 3 in FIG. 1 is connected to the load connection end 42 from the power connection end 40. In FIG. 4 and FIG. 6, there is no wiring from the third switch SW3, the power connection terminal 40 to the connection terminal 42 to the load, and from the main coil 12 to the load via the intermediate tap 16. The connection end 42 is provided. 3 and 5, the fourth switch SW4 in FIG. 1 is present, and the main coil 14 is connected to the neutral 22 of the three-phase power source via the fourth switch SW4. Then, the fourth switch SW3 does not exist, and the main coil 14 is directly connected to the neutral 22 of the three-phase power source.
 まず図3に示した実施例2では、図示していない制御回路は、前記したように例えばソレノイドアクチュエータ、サーボモータ、パイロットモータなどのアクチュエータで可変抵抗46の抵抗値を変化させる。それ以外の動作は前記した図1の実施例1の場合と同様であり、例えば、負荷として図示していない誘導モータを始動する際には、制御回路26は可変抵抗46を最大抵抗となるようにして主コイル12、14における、三相電源20のニュートラル22側の第4のスイッチSW4を閉じ(ON)、次いで電源接続端40側の第1のスイッチSW1を閉じる。すると負荷接続端42には、主コイル12と並列に接続した可変抵抗46とにより、三相電源の例えば50%程度の電圧が印加されて電流が抑制された状態で起動される。 First, in the second embodiment shown in FIG. 3, a control circuit (not shown) changes the resistance value of the variable resistor 46 by an actuator such as a solenoid actuator, a servo motor, or a pilot motor as described above. The other operations are the same as those in the first embodiment shown in FIG. 1. For example, when starting an induction motor (not shown) as a load, the control circuit 26 sets the variable resistor 46 to the maximum resistance. Then, the fourth switch SW4 on the neutral 22 side of the three-phase power supply 20 in the main coils 12 and 14 is closed (ON), and then the first switch SW1 on the power connection end 40 side is closed. Then, the load connection end 42 is activated in a state in which a voltage of, for example, about 50% of the three-phase power source is applied and the current is suppressed by the variable resistor 46 connected in parallel with the main coil 12.
 そして電流が低下するのを図示していない制御回路が同じく図示していない電流検出器で検出し、その電流値にあわせ、可変抵抗46の抵抗値を変化させるソレノイドアクチュエータ、サーボモータ、パイロットモータなどのアクチュエータを駆動し、徐々に可変抵抗46の抵抗値を小さくして流れる電流を多くし、それを可変抵抗46の抵抗値が0となるまで続ける。従って、負荷接続端42にはそれに対応した電圧が現れ、図示していない負荷はその電圧によって多大な電流が流れたりすることなく最後に定格電圧で駆動される。 A control circuit (not shown) detects that the current has dropped by a current detector (not shown), and a solenoid actuator, servo motor, pilot motor, etc. that changes the resistance value of the variable resistor 46 according to the current value. The actuator is driven, the resistance value of the variable resistor 46 is gradually decreased to increase the flowing current, and this is continued until the resistance value of the variable resistor 46 becomes zero. Therefore, a voltage corresponding to the voltage appears at the load connection end 42, and the load (not shown) is finally driven at the rated voltage without causing a large amount of current to flow.
 そのため図示していない制御回路は、この状態で第4のスイッチSW4を開き、主コイル14と三相電源のニュートラル22間を切断し、次いで第3のスイッチSW3を閉じて第1のスイッチSW1を開く。すなわち、負荷に三相電源により定格電圧が印加されるようにし、それによって負荷を定格運転するわけである。 For this reason, the control circuit (not shown) opens the fourth switch SW4 in this state, disconnects between the main coil 14 and the neutral 22 of the three-phase power source, and then closes the third switch SW3 and turns on the first switch SW1. open. That is, a rated voltage is applied to the load by a three-phase power source, and thereby the load is rated.
 これは、図4に示した本発明になる無瞬断電圧可変装置における第2の構成たる、実施例2の他の構成例の概略ブロック図の場合も同様である。この図4の回路では、図示していない制御回路は可変抵抗46を最大抵抗として電源接続端40の第1のスイッチSW1を閉じる。すると負荷接続端42には、主コイル12と並列に接続した可変抵抗46とにより、例えば図示していない三相電源の50%程度の電圧が印加されて電流が抑制された状態で起動される。 This is the same in the case of the schematic block diagram of another configuration example of the second embodiment, which is the second configuration of the uninterruptible voltage varying device according to the present invention shown in FIG. In the circuit of FIG. 4, a control circuit (not shown) closes the first switch SW <b> 1 at the power connection terminal 40 with the variable resistor 46 as the maximum resistance. Then, for example, a voltage of about 50% of a three-phase power source (not shown) is applied to the load connection end 42 by the variable resistor 46 connected in parallel with the main coil 12 and the current is suppressed. .
 そして、電流が低下してゆくのを図示していない制御回路がやはり図示していない電流検出器で検出し、その電流に対応するよう可変抵抗46の抵抗値を徐々に低下させるように、図示していないソレノイドアクチュエータ、サーボモータ、パイロットモータなどのアクチュエータを制御する。そして可変抵抗46の抵抗値が0となると、負荷接続端42にはそれに対応した電源電圧が現れるから、図示していない負荷はその電圧によって多大な電流が流れたりすることなく最後に定格電圧で駆動される。 Then, a control circuit (not shown) detects that the current is decreasing by a current detector (not shown), and the resistance value of the variable resistor 46 is gradually decreased so as to correspond to the current. Controls actuators such as solenoid actuators, servo motors and pilot motors not shown. When the resistance value of the variable resistor 46 becomes 0, the corresponding power supply voltage appears at the load connection end 42. Therefore, the load (not shown) does not flow a large amount of current due to the voltage, and finally reaches the rated voltage. Driven.
 この状態で、例えば電熱ヒーター炉などに印加する電圧を低下させたい場合、図示していないソレノイドアクチュエータ、サーボモータ、パイロットモータなどのアクチュエータを制御し、可変抵抗46の抵抗値を増加させてやれば、主コイル12も回路に挿入され、リアクトルが復活するから、負荷接続端42の電圧は低下し、それに伴って図示していない負荷に流れる電流も低下する。従って、例えば電熱ヒーター炉などの温度を負荷と電源を切断することなく、状況に応じて制御することが可能となる。 In this state, for example, when it is desired to decrease the voltage applied to the electric heater furnace, the actuator such as a solenoid actuator, servo motor, pilot motor, etc. (not shown) is controlled and the resistance value of the variable resistor 46 is increased. Since the main coil 12 is also inserted into the circuit and the reactor is restored, the voltage at the load connection end 42 is lowered, and accordingly, the current flowing through the load (not shown) is also lowered. Therefore, for example, the temperature of an electric heater furnace or the like can be controlled according to the situation without disconnecting the load and the power source.
 これは図5、図6に示した本発明の実施例3の場合も同様であり、この実施例3は、実施例2における可変抵抗46を、例えばトライアック、サイリスタなどの電流制御素子48としたものである。従って、図示していない制御回路は、これら電流制御素子48を制御して流れる電流を制御し、負荷接続端42の電圧を制御するわけであり、その点をのぞけば動作は実施例2の場合と全く同様なので説明を省略する。 This is also the case with the third embodiment of the present invention shown in FIGS. 5 and 6. In this third embodiment, the variable resistor 46 in the second embodiment is used as a current control element 48 such as a triac or thyristor. Is. Therefore, a control circuit (not shown) controls the current flowing by controlling these current control elements 48, and controls the voltage at the load connection end 42. Except for this point, the operation is the same as in the second embodiment. The description is omitted because it is exactly the same.
 なお、これら実施例2、実施例3によれば、主コイル12に流れる電流を無段階に、連続的に自由に制御でき、電動機始動電流のコントロールが困難になるという不具合を生じることなく、大容量のモータの起動、電熱ヒーター炉の温度調整、配電線路の負荷の増減による電圧降下の補正、等、種々の用途に使用できる無瞬断電圧可変装置を提供することができる。 According to the second and third embodiments, the current flowing through the main coil 12 can be continuously and freely controlled steplessly, without causing a problem that it is difficult to control the motor starting current. It is possible to provide an uninterruptible voltage variable device that can be used for various purposes such as starting a motor with a capacity, adjusting the temperature of an electric heater furnace, and correcting a voltage drop caused by an increase or decrease in load on a distribution line.
 以上種々述べてきたように本発明の無瞬断電圧可変装置は、起動或いは運転の切替に際してスパークが発生して接点の損傷が生じるといった問題を生ぜず、無瞬断連続、または無瞬断多段に電圧を可変できると共に、無駄にエネルギーを消費したり、電動機始動電流のコントロールが困難になるという不具合を生じることなく、大容量のモータの起動、電熱ヒーター炉の温度調整、配電線路の負荷の増減による電圧降下の補正、等にも用いることができ、大きな効果をもたらすものである。 As described above, the uninterruptible voltage variable device according to the present invention does not cause a problem that a spark occurs at the time of start-up or operation switching and damage of the contact occurs. The voltage can be varied at the same time, energy consumption is unnecessarily consumed, and it is difficult to control the motor start current, without starting up a large-capacity motor, adjusting the temperature of the electric heater furnace, and adjusting the load on the distribution line. It can also be used for correction of voltage drop due to increase / decrease, etc., and brings about a great effect.
 本発明は、大容量のモータの起動、電熱ヒーター炉の温度調整、配電線路の負荷の増減による電圧降下の補正等を、種々の問題を解決しながら。無瞬断連続、無瞬断多段に実施することができる。 The present invention solves various problems such as starting a large-capacity motor, adjusting the temperature of an electric heater furnace, and correcting a voltage drop due to an increase or decrease in load on a distribution line. It can be carried out continuously without interruption and in multiple stages without interruption.
10 無瞬断電圧可変装置
12、14 主コイル
16 中間タップ
18 誘導モータ
20 三相電源
22 三相電源のニュートラル
24 独立磁路リアクトル
26 制御回路
28 電流検出器
30 電圧検出器
32 回転数検出器
40 電源接続端
42 負荷接続端
46 可変抵抗
48 電流制御素子
DESCRIPTION OF SYMBOLS 10 Uninterruptible voltage variable apparatus 12, 14 Main coil 16 Middle tap 18 Induction motor 20 Three-phase power supply 22 Neutral of three-phase power supply 24 Independent magnetic circuit reactor 26 Control circuit 28 Current detector 30 Voltage detector 32 Rotation speed detector 40 Power connection end 42 Load connection end 46 Variable resistor 48 Current control element

Claims (5)

  1.  三相電源により駆動される負荷に接続された中間タップを有し、一端を第1のスイッチを介して三相電源における一相に、他端を三相電源のニュートラルに接続して前記三相電源の相毎に設けられた主コイルと、
     該主コイルにおける前記中間タップと第1のスイッチ間に並列に接続され、流れる電流を制御して前記中間タップと第1のスイッチ間に流れる電流を制御する電流制御手段と、
     該電流制御手段を制御する制御回路とからなり、
     前記制御回路は、前記第1のスイッチを閉じた状態で、前記負荷に流れる電流に対応させて前記電流制御手段を制御し、前記主コイルにおける中間タップと第1のスイッチ間に流れる電流を制御するよう構成されていることを特徴とする無瞬断電圧可変装置。
    An intermediate tap connected to a load driven by a three-phase power source, one end connected to one phase in the three-phase power source via the first switch, and the other end connected to the neutral of the three-phase power source A main coil provided for each phase of the power supply;
    Current control means connected in parallel between the intermediate tap and the first switch in the main coil and controlling a current flowing to control a current flowing between the intermediate tap and the first switch;
    A control circuit for controlling the current control means,
    The control circuit controls the current control means in correspondence with the current flowing through the load in a state where the first switch is closed, and controls the current flowing between the intermediate tap and the first switch in the main coil. An uninterruptible voltage variable device, characterized in that the device is configured to perform.
  2.  前記電流制御手段は前記主コイルとは独立した磁路で形成されて直列に接続され、前記主コイルにおける前記中間タップと第1のスイッチ間に並列に接続された複数の独立磁路リアクトルと、
     該複数の独立磁路リアクトルのそれぞれに対応して並列に接続された第2のスイッチとからなり、
     前記制御回路は、前記第1のスイッチを閉じた状態で、前記負荷に流れる電流に対応させて前記第2のスイッチを順次閉じ、前記主コイルにおける中間タップと第1のスイッチ間に流れる電流を制御するよう構成されていることを特徴とする請求項1に記載した無瞬断電圧可変装置。
    The current control means is formed of a magnetic path independent of the main coil and connected in series, and a plurality of independent magnetic path reactors connected in parallel between the intermediate tap and the first switch in the main coil,
    A second switch connected in parallel corresponding to each of the plurality of independent magnetic path reactors,
    The control circuit sequentially closes the second switch in response to the current flowing through the load in a state where the first switch is closed, and generates a current flowing between the intermediate tap and the first switch in the main coil. The uninterruptible voltage varying device according to claim 1, which is configured to control.
  3.  前記電流制御手段はアクチュエータで抵抗値が制御される可変抵抗であり、
     前記制御回路は、前記第1のスイッチを閉じた状態で、前記負荷に流れる電流に対応させて前記アクチュエータを制御し、前記可変抵抗の抵抗値を制御して前記主コイルにおける中間タップと第1のスイッチ間に流れる電流を制御するよう構成されていることを特徴とする請求項1に記載した無瞬断電圧可変装置。
    The current control means is a variable resistance whose resistance value is controlled by an actuator,
    The control circuit controls the actuator in response to a current flowing through the load in a state in which the first switch is closed, and controls a resistance value of the variable resistor to control an intermediate tap and a first in the main coil. 2. The uninterruptible voltage varying device according to claim 1, wherein a current flowing between the switches is controlled.
  4.  前記電流制御手段は電流制御素子であり、
     前記制御回路は、前記第1のスイッチを閉じた状態で、前記負荷に流れる電流に対応させて前記電流制御素子を制御し、前記主コイルにおける中間タップと第1のスイッチ間に流れる電流を制御するよう構成されていることを特徴とする請求項1に記載した無瞬断電圧可変装置。
    The current control means is a current control element;
    The control circuit controls the current control element in response to a current flowing through the load in a state where the first switch is closed, and controls a current flowing between an intermediate tap in the main coil and the first switch. The uninterruptible voltage varying device according to claim 1, wherein the uninterruptible voltage varying device is configured.
  5.  前記電流制御手段により前記主コイルにおける中間タップと第1のスイッチ間に電流が流れなくなった状態で、前記制御回路により閉じられて前記電源と負荷とを結ぶ第3のスイッチを有していることを特徴とする請求項1乃至4のいずれかに記載した無瞬断電圧可変装置。 A third switch that is closed by the control circuit and connects the power source and the load in a state in which no current flows between the intermediate tap and the first switch in the main coil by the current control means; The uninterruptible voltage varying device according to any one of claims 1 to 4.
PCT/JP2009/059060 2009-05-15 2009-05-15 Uninterruptible variable voltage device WO2010131355A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2009801592691A CN102428421A (en) 2009-05-15 2009-05-15 Uninterruptible variable voltage device
PCT/JP2009/059060 WO2010131355A1 (en) 2009-05-15 2009-05-15 Uninterruptible variable voltage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/059060 WO2010131355A1 (en) 2009-05-15 2009-05-15 Uninterruptible variable voltage device

Publications (1)

Publication Number Publication Date
WO2010131355A1 true WO2010131355A1 (en) 2010-11-18

Family

ID=43084745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/059060 WO2010131355A1 (en) 2009-05-15 2009-05-15 Uninterruptible variable voltage device

Country Status (2)

Country Link
CN (1) CN102428421A (en)
WO (1) WO2010131355A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014064373A (en) * 2012-09-20 2014-04-10 Mitsubishi Electric Corp Drive control device and drive control method
CN104617820A (en) * 2015-02-25 2015-05-13 山东大学 Motor start saturation reactor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105163406A (en) * 2015-10-12 2015-12-16 珠海格力电器股份有限公司 Control method and system of electric heater
JP7136855B2 (en) * 2020-08-19 2022-09-13 矢崎総業株式会社 Power supply control device, power supply system, power supply control method, and program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61230244A (en) * 1985-04-05 1986-10-14 Hitachi Ltd Convergence correction device
JPH01150490U (en) * 1988-04-06 1989-10-18
JPH0935942A (en) * 1995-07-20 1997-02-07 Kokusai Electric Co Ltd Step variable inductor
JP2006271060A (en) * 2005-03-23 2006-10-05 Denko Kogyo Kk Starter with variable reactor circuit
JP2006318204A (en) * 2005-05-12 2006-11-24 Fuji Electric Device Technology Co Ltd Series regulator power source circuit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61230244A (en) * 1985-04-05 1986-10-14 Hitachi Ltd Convergence correction device
JPH01150490U (en) * 1988-04-06 1989-10-18
JPH0935942A (en) * 1995-07-20 1997-02-07 Kokusai Electric Co Ltd Step variable inductor
JP2006271060A (en) * 2005-03-23 2006-10-05 Denko Kogyo Kk Starter with variable reactor circuit
JP2006318204A (en) * 2005-05-12 2006-11-24 Fuji Electric Device Technology Co Ltd Series regulator power source circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014064373A (en) * 2012-09-20 2014-04-10 Mitsubishi Electric Corp Drive control device and drive control method
US9024564B2 (en) 2012-09-20 2015-05-05 Mitsubishi Electric Corporation Drive control device and drive control method
CN104617820A (en) * 2015-02-25 2015-05-13 山东大学 Motor start saturation reactor

Also Published As

Publication number Publication date
CN102428421A (en) 2012-04-25

Similar Documents

Publication Publication Date Title
WO2010131355A1 (en) Uninterruptible variable voltage device
JP2016046307A (en) Automatic voltage adjusting device
JP2006087292A (en) Single-phase induction motor
US8330302B2 (en) Device for the ignition and the start-up of silicon rods
JP4312826B1 (en) Transformer that automatically adjusts the voltage of the three-phase power supply
JP4999154B2 (en) Reduced voltage starting device
EP2044684B1 (en) Variable voltage supply system
US7633260B2 (en) Apparatus and method for starting and stopping an AC induction motor
US2299911A (en) Motor starting apparatus
JP6666295B2 (en) Thyristor type automatic voltage regulator
US8665924B2 (en) Electronic circuit and method of supplying electricity
KR100540264B1 (en) Power saver with power switching semiconductor
WO1997002518A1 (en) Voltage regulator
KR200392618Y1 (en) Electric power saver of saturable reactor using tap select method
JP2008043017A (en) Kondorfer starting device for electric motor
JP2010033144A (en) Voltage stabilizer
JP2008043018A (en) Starter of three-phase motor
JP7260356B2 (en) automatic voltage regulator
JP4425004B2 (en) Voltage regulator for AC equipment
RU2788078C1 (en) Phase converter with adjustable power
CN109921428B (en) Three-phase reactor excitation on-load voltage regulating system
JP2024019783A (en) Automatic voltage controller
CN109889103B (en) Self-adaptive voltage reduction soft starting device and control method thereof
KR100584247B1 (en) Automatic controller for voltage·surplus electricity without interruption of electric power
JP2006271060A (en) Starter with variable reactor circuit

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980159269.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09844628

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09844628

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP