WO2010131347A1 - Pipe joint structure - Google Patents

Pipe joint structure Download PDF

Info

Publication number
WO2010131347A1
WO2010131347A1 PCT/JP2009/058971 JP2009058971W WO2010131347A1 WO 2010131347 A1 WO2010131347 A1 WO 2010131347A1 JP 2009058971 W JP2009058971 W JP 2009058971W WO 2010131347 A1 WO2010131347 A1 WO 2010131347A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
adhesive
connection structure
ring
tapered
Prior art date
Application number
PCT/JP2009/058971
Other languages
French (fr)
Japanese (ja)
Inventor
一三 小林
Original Assignee
Kobayashi Kazumi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobayashi Kazumi filed Critical Kobayashi Kazumi
Priority to PCT/JP2009/058971 priority Critical patent/WO2010131347A1/en
Publication of WO2010131347A1 publication Critical patent/WO2010131347A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L13/00Non-disconnectible pipe-joints, e.g. soldered, adhesive or caulked joints
    • F16L13/10Adhesive or cemented joints
    • F16L13/103Adhesive joints
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L13/00Non-disconnectible pipe-joints, e.g. soldered, adhesive or caulked joints
    • F16L13/10Adhesive or cemented joints
    • F16L13/11Adhesive or cemented joints using materials which fill the space between parts of a joint before hardening

Definitions

  • the present invention relates to a pipe connection structure in which a plurality of pipes are connected by an adhesive, and a pipe connection method implemented in the connection structure.
  • connection of metal pipes For connection of metal pipes, fusion welding, liquid phase diffusion connection, etc., or connection using a flange are known.
  • Patent Document 1 discloses a scarf connection related to the connection of dissimilar metals.
  • the scarf connection is a connection method in which the free edge stress specificity is lost and the connection area is expanded.
  • the scarf connection in Patent Document 1 is intended for brazing, diffusion bonding, and welding plates.
  • Patent Document 2 discloses a technique for connecting a steel pipe having a groove formed by an inclined surface using a liquid phase diffusion connection. An inclined surface is formed on each of the steel pipes to be connected. An alloy having an eutectic composition with a low melting point is interposed between them, and the alloy is melted by pressing and heating.
  • Non-Patent Document 1 describes a spliced pipe-type connection of a metal pipe using an adhesive, and when using a straight-side tubular connection, a clearance from the fitting pipe into which the adhesive is poured is set to 0. 0. It is described that the range of 13 mm to 0.15 mm is effective.
  • the present inventor disclosed a connection structure of a metal tube by an adhesive as PCT / JP2008 / 071489 (Japanese Patent Application No. 2007-337449).
  • This shows a technique of connecting a metal tube with an adhesive by extrapolating a tapered sleeve to the metal tube.
  • the gap distance between the metal tube filled with the adhesive and the sleeve affects the bonding strength, it is necessary to preliminarily process the outer shape of the metal tube in order to control this. have. This is due to the fact that the diameter tolerance of the JIS standard is larger than the control value of the distance between the gaps.
  • the inventor cuts the end face of the metal tube into a taper shape, which is easier than the perfect circle processing. Therefore, paying attention to the structure when the cross-sectional shape is a scarf shape, the connection technique using an adhesive is used. investigated.
  • An adhesive made of a resin cannot change the composition of the connection interface, and is a connection technique that involves a change in the metal-side interface using liquid phase diffusion or the like according to Patent Document 1 or welding.
  • Non-Patent Document 1 shows the concept of jointed pipe connection of metal pipes using an adhesive. However, if stress concentration occurs at the connection interface, the adhesive force of the adhesive cannot be exhibited.
  • the film thickness is as thin as possible, and it is preferable to apply it uniformly to the adhesive surface in the range of 0.05 mm to 0.3 mm, for example.
  • the present inventor examined a shape in which stress is uniformly dispersed when connecting with an adhesive, and a structure capable of stably connecting a joint using a scarf shape.
  • one tube having a conical tapered surface whose end portion is reduced in diameter toward the front side and the other tube having a funnel-shaped tapered surface whose end portion is reduced in diameter toward the back side The tapered surfaces are connected to each other by an adhesive, the inclined angles of the tapered surfaces are equal and within a range of 3 to 8 degrees, and are on the tapered surface and within the pipe.
  • the shape of the tube is uniformly distributed at the taper surface interface, and the adhesive strength per unit area of the adhesive is used to determine the shape of the tube.
  • a connection technique capable of providing connection strength can be provided.
  • the adhesive connection is such that the non-influential base material location of the tube is cut before the connection location by the adhesive. Is also possible.
  • FIG. 5 is a cross-sectional view showing a connection structure using a joint pipe 13.
  • FIG. It is sectional drawing which showed the connection structure using other joint pipes.
  • FIG. 5 is a cross-sectional view showing an example in which a ring groove 4b is provided on the inner peripheral side of the tapered surface 4a of the metal tube 4. It is a figure which shows the connection structure of the joints 41 and 42 provided with the metal pipe 1 and the flange part 41d.
  • 3 is a cross-sectional view showing a connection structure using a joint pipe 50.
  • FIG. 5 is a cross-sectional view showing a connection structure using a joint pipe 52.
  • Fig. 1 shows the end shapes of the metal tubes 1 and 2 used for the verification. The same material is used for these metal tubes 1 and 2.
  • the end of the metal tube 1 has a conical tapered surface 1a concentric with the center line c of the metal tube 1 and reduced in diameter toward the end toward the end cut off perpendicular to the center line c. Is formed.
  • a funnel whose diameter is reduced toward the inner side at the inner peripheral surface of the end portion that is concentric with the center line c of the metal tube 1 and cut off perpendicularly to the center line c.
  • a tapered surface 2a is formed.
  • the inclination angles of the taper surface 1a and the taper surface 2a are the same angle ⁇ in relation to the center line c.
  • the adhesive is applied to the taper surface 1a (or the taper surface 2a), and the metal tube 1 and the metal tube 2 are arranged in a single line in parallel and connected with the center line c aligned.
  • the distance between the taper surface 1a and the taper surface 2a is maintained at a size within a range of 0.05 mm to 0.3 mm on all the opposing surfaces of the taper surface 1a and the taper surface 2a to cure the adhesive.
  • the metal pipes 1 and 2 those having higher hardness than the steel pipes of STPT410Sch160 and 20A that are actually used are used so that the steel pipe portion in the adhesive connection range does not break even in the tensile strength (load) test. .
  • the gap is 0.15 mm.
  • an epoxy structural adhesive for example, a product “Scotch-WeldXA7416” manufactured by Sumitomo 3M
  • the taper angle was 5 degrees.
  • a tensile strength (load) test was performed. As a result, the connection portion was broken at 141 KN. This is a value larger than the minimum value 92KN of the yield strength (load) of the steel pipes of STPT410Sch160, 20A.
  • the stress distribution can be treated equally in any place of the taper surface 1a and the taper surface 2a.
  • the fact that the stress can be equalized means that the strength at which the metal tubes 1 and 2 are connected can be predicted based on the adhesive strength per unit adhesive area of the adhesive.
  • FIG. 2B is a diagram showing the results of measuring the breaking strength (load) when the size and taper angle of the metal tube are changed.
  • the horizontal axis shows the standardized strength in terms of adhesion area, breaking strength (load), and adhesion area of 3000 mm 2 .
  • the reason for changing the size of the metal tube is to confirm whether the relationship between the bonding area and the strength (load) is proportional.
  • the size of the metal tube was 20A, 25A, and 32A, it was observed that the adhesive strength per unit area would be the same if the taper angle was the same. Therefore, if the taper angle is the same, it can be said that the strength is proportional to the adhesion area.
  • the adhesive strength ⁇ per unit area of the adhesive is derived from the following equation (1) when the area of the tapered surface 1a (or the tapered surface 2a) is S.
  • the adhesive strength K obtained by this equation is the connection strength of the metal tube when the stress distribution rate with respect to the tensile force applied to the metal tube is equal to the area S.
  • the adhesive strength K is larger than the breaking strength (load) of the metal tubes 1 and 2 themselves, it is possible to obtain a connection in which the metal tube side breaks rather than the bonded portion with respect to the tensile load.
  • the thickness of the metal tube varies depending on the diameter of the tube (10A, 125A, 500A, 1000A, etc.), but by setting the inclination angle ⁇ within 8 degrees, the connection strength is higher than the yield point or fracture strength of the metal tube itself. A sufficient area S can be set to be large.
  • FIG. 2C shows the relationship between the adhesive layer thickness t and the adhesive strength ⁇ of the adhesive 4.
  • the horizontal axis indicates the adhesive layer thickness t
  • the vertical axis indicates the breaking strength (load) of the adhesive.
  • the breaking strength (load) decreases in the range where the layer thickness t of the adhesive is larger than 0.3 mm. Therefore, the distance between the taper surface 1a and the taper surface 2a is preferably kept so that the adhesive layer thickness t is 0.3 mm or less.
  • a conical tapered surface 3a is formed on a metal tube 3 of STPT410Sch160, 20A, and a funnel-shaped tapered surface 4a is formed on a metal tube 4 of STPT410Sch160, 20A by a lathe.
  • the inclination angle ⁇ of the tapered surfaces 3a and 4a is the same as that in the previous embodiment.
  • the tapered surface 3a of the metal tube 3 has a bank portion 21 that rises in a ring shape from the tapered surface 3a.
  • the bank portion 21 has a ring-shaped protrusion 21a on the inner peripheral side and a protrusion 21b on the outer peripheral side from the inner and outer peripheral positions of the tapered surface 3a.
  • the protrusions 21a and 21b have a height d in the range of 0.05 mm to 0.3 mm from the tapered surface 3a.
  • the protrusions 21 a and 21 b are portions left uncut when the tapered surface 3 a is ground on the metal tube 3. When this abuts on the tapered surface 4a, the inter-surface distance between the tapered surfaces 3a and 4a is maintained within a range of 0.05 mm to 0.3 mm.
  • a through hole e is formed from the outer peripheral surface to the tapered surface 4a in the thick portion where the funnel-shaped tapered surface 4a is formed.
  • a female screw is formed on the inner peripheral surface side of the through hole e.
  • a plurality of through holes e may be formed at equal angular intervals in the metal tube 4 having the tapered surface 4a as shown in FIG. 3A.
  • the center lines c are aligned, and the respective metal tubes 3 and 4 are supported by a support tool. Thereafter, either or both of the metal tubes 3 and 4 are moved on the center line c, and the tapered surface 3a and the tapered surface 4a are brought into contact with each other (FIG. 3C). Next, the metal tube 3 and the metal tube 4 are pressed with the pressure F1. Under this state, the adhesive 6 is press-fitted into the through hole e with a pressure F2 that is smaller per unit area than the pressure F1. The reason why the pressure is smaller than the pressure F1 is to prevent the adhesive from getting over the protrusion 21a and leaking inside the metal tubes 3 and 4.
  • the adhesive 6 hardens in a raised state, peels off as a foreign substance, and may be mixed into the fluid flowing in the tube. This can be avoided by the protrusion 21a. Moreover, the adhesive agent 6 will be in the state from which the outer peripheral side protrusion 21b was completely interrupted
  • the screw 5 seals the through hole e, and is inserted into the through hole e so that the adhesive 6 is not exposed to the atmosphere.
  • thermosetting adhesive 6 is used, but a room temperature curing adhesive may be used depending on the environment of the piping site.
  • connection structure When a tensile strength (load) test was performed on the metal tube connection structure thus produced, the adhesive interface was broken at 116 KN.
  • the metal tube used in the test has the same shape as STPT410Sch160, 20A and has a higher tensile strength (load).
  • 29KN 141KN-116KN
  • the adhesive area in the connection structure of FIG. 1 is a 3116Mm 2, a in FIG. 3 2770mm 2.
  • the connection structure in FIG. 1 is 134 KN.
  • FIG. 4 shows an example of connection using a straight sleeve 7 made of a short pipe in addition to the connection structure of FIG. In this embodiment, the screw 5 is not used.
  • the sleeve 7 is externally fitted in a state of straddling the outer peripheral surface of the metal tube 3 and the outer peripheral surface of the metal tube 4 by a distance equal to both sides from the connection portion on the outer periphery of the metal tube.
  • the length of the sleeve 7 is a length obtained by securing the length of the sleeve on both sides around the dividing point Z on the outer periphery of the metal tubes 3 and 4 and further extending by 10 mm. The length may be the same on both sides around the dividing point Z. Further, the length of the sleeve may be secured and further extended.
  • the sleeve 7 covers the adhesive 6 sandwiched between the tapered surface 3a and the tapered surface 4a so as not to be exposed to the atmosphere side.
  • the adhesive 8 is filled between the inner peripheral surface of the sleeve 7 and the outer peripheral surfaces of the metal tubes 3 and 4.
  • the adhesive 8 may be the same as the adhesive 6 or may be another type.
  • the sleeve 7 is provided with a through hole f into which the adhesive 8 is press-fitted. After the sleeve 7 is fitted on the metal tubes 3 and 4, the adhesive 8 is press-fitted through the through-hole f. The position of the through hole f is the central portion of the sleeve 7.
  • the adhesive 6 filled in the interval between the tapered surface 3a and the tapered surface 4a is not directly exposed to rainwater or ultraviolet rays of sunlight due to the presence of the sleeve 7 and the adhesive 8. For this reason, the adhesive agent 6 which is resin becomes difficult to deteriorate and maintains its adhesive function over a long period of time. Further, the inner peripheral surface of the sleeve 7 and the outer peripheral surfaces of the metal tubes 3 and 4 are connected by the adhesive 8, and the connection force of the metal tubes 3 and 4 is increased.
  • FIG. 4B is an example of the sleeve 9 obtained by deforming the sleeve 7.
  • the sleeve 9 has a cylindrical shape similar to the sleeve 7, but the outer peripheral surface of the sleeve 9 is a tapered surface that gradually increases in diameter from each end toward the center. The other points are the same as the case of the straight sleeve 7 shown in FIG. 4A.
  • connection structure of this modified example since the outer peripheral surface of the sleeve 7 is a tapered surface continuous from the outer peripheral surfaces of the metal tubes 3 and 4, discontinuity in the shape change of the outer peripheral surface of the entire connection structure is alleviated, and the connection Stress concentration is improved when an external force in the direction of the center line is applied to the structure.
  • the adhesive interface was broken at 197 KN.
  • the sleeves 7 and 9 are made of the same material as the metal tubes 3 and 4.
  • FIG. 5 is a cross-sectional view of another connection structure example in which the bank portion 21 is deformed.
  • the bank portion 21 of the present embodiment has protrusions 21a and 21b in linear contact with the tapered surface 4a at the inner peripheral side position and the outer peripheral side position of the tapered surface 3a of the metal tube 3. .
  • the other points are the same as those of the connection structure shown in FIG. 3, and in FIG. 5A, the same parts as those already described are denoted by the same reference numerals.
  • FIG. 5B shows a surface 21c where the protrusion 21a of the bank portion 21 abuts against the tapered surface 4a. Compared with the case where the protrusions 21a and 21b are linearly contacted as shown in FIG. 5A, the effect of suppressing leakage of the adhesive into the metal tube can be expected.
  • the protrusions 21a and 21b shown in FIGS. 5A and 5B are provided on the tapered surface of the metal tube on either side.
  • the protrusion 21a on the inner peripheral side protrudes from the tapered surface 4a of the metal tube 4. Also good. (For example, FIG. 5C).
  • the protruding portion 21 a at the outer peripheral side position may protrude from the tapered surface 4 a of the metal tube 4.
  • it is good also as a protrusion which protrudes from the metal pipes 3 and 4 from the both sides of the taper surfaces 3a and 4a, and is mutually abutted for example, FIG. 5D).
  • the protrusions 21a and 21b are provided on the conical tapered surface 3a side.
  • the range of the tapered surfaces 3a and 4a separated by the protrusions is 0.05 to 0.3 mm, which is fine.
  • the adhesive 6 hardened in the gap between the tapered surfaces 3a and 4a is exposed to the outside at the outer peripheral portion of the metal tube, it may be hidden by attaching the sleeve 7 or 9 shown in FIG.
  • FIG. 6 is a cross-sectional view showing an embodiment of another metal pipe connection structure.
  • Tapered surfaces 11a and 12a and protrusions 21a and 21b similar to the taper 3a of the previous embodiment are formed at the ends of the same-diameter metal tubes 11 and 12 of the present embodiment.
  • a joint pipe 13 made of the same material as the metal pipes 11 and 12 is fitted over the tapered surfaces 11a and 12a of the metal pipes 11 and 12.
  • the joint pipe 13 has a tapered surface whose outer peripheral surfaces 13a and 13c gradually increase in diameter from both ends toward the center.
  • the inner peripheral surfaces 13b and 13d are tapered surfaces whose diameter gradually decreases toward the center.
  • the through-hole g which presses in an adhesive agent is provided so that it may each penetrate from the outer peripheral surfaces 13a and 13c to the inner peripheral surfaces 13b and 13d.
  • FIG. 7 is a view showing another joint pipe 14 having a structure replacing the protrusion 21a.
  • the joint tube 14 has the same shape as the joint tube 13 on the outer peripheral side, but is provided with a sealing annular protrusion 14e on the inner peripheral side.
  • the sealing annular protrusion 14e is formed in a cylindrical shape on the inner peripheral side of the central position of the joint pipe 14 in the length direction.
  • the sealing annular protrusion 14e exists between the tapered surfaces 14b and 14d formed at both ends of the joint pipe 14, and extends from the tapered surfaces 14b and 14d perpendicularly to the center line c, thereby forming the tapered surfaces 14b and 14b.
  • annular end surfaces 14f and 14g having an angle larger than the angle 14d and an inner peripheral surface 14h having the same inner peripheral diameter as that of the metal tubes 16 and 17.
  • a ring groove 14i into which the O-ring 18 is fitted is formed concentrically at a position near the center of the width of each annular end face 14f, 14g.
  • the metal tubes 16 and 17 having the same diameter have annular end surfaces 16b and 17b formed at the tips of the tapered surfaces 16a and 17a, respectively, and face each other in parallel with the annular end surfaces 14f and 14g of the joint tube 14.
  • the annular end surfaces 14f and 14g are longer in the diameter direction of the center line c than the annular end surfaces 16b and 17b.
  • the O-ring 18 fitted in the ring grooves 14i of the annular end faces 14f, 14g is sealed from the internal space of the metal tubes 16, 17 in a liquid-tight manner.
  • the other configuration is the same as that of the connection structure shown in FIG. 6, and the formation of the connection structure of this modification may be performed in accordance with the above description.
  • the joint pipes 13 and 14 are made of the same material as the metal pipes 11, 12, 16 and 17 to be connected.
  • the sealing annular protrusion 14e of the joint pipe 14 corresponds to a structure in which the protrusion 21a protrudes from the funnel-shaped tapered surface 4a of the metal pipe 4 shown in FIG. 5C, while the annular end faces 16b and 17b are formed.
  • 5C corresponds to the structure in which the tapered surface on the inner peripheral side of the tapered surface 3a of the metal tube 3 is omitted, and it can be interpreted that the metal tube 4 is shortened to have the same shape at both end portions. The difference is that in FIG.
  • the protrusion 21a of the metal tube 4 controls the thickness of the adhesive 6 by the height at which it abuts against the tapered surface 3a of the metal tube 3, whereas FIG.
  • the thickness of the adhesive 6 is controlled by the difference in contact length between the annular end surfaces 16b and 17b of the tapered surface 3a and the annular end surfaces 14f and 14g of the sealing annular protrusion 14e.
  • the sealing annular protrusion 14e protrudes from the funnel-shaped tapered surface and is not easy to manufacture on the piping construction site, but can be easily manufactured as a connection part in the factory.
  • FIG. 8 is a cross-sectional view showing a connection structure by a joint 20 including a metal tube portion 20c and a flange portion 20a having a large outer diameter of the metal tube portion 20c.
  • the metal pipe portion 20c of the joint 20 is obtained by shortening the metal pipe 4 of the previous embodiment and providing a flange portion 20a at the end opposite to the end to be bonded.
  • Bolt holes 20b are provided at equiangular intervals in the flange 20a.
  • FIG. 9 is a cross-sectional view showing an embodiment of another metal pipe connection structure using the joint pipe 23.
  • taper surfaces 31a and 32a similar to the taper 3a of the previous embodiment are formed at the ends of the same-diameter metal tubes 31 and 32 of the present embodiment.
  • the metal tubes 31 and 32 are further connected to the surfaces 31b and 32b perpendicular to the center line C at the tips of the tapered surfaces 31a and 32a, respectively. 31b and 32b contact each other.
  • the joint pipe 23 made of the same material as the metal pipes 31 and 32 is fitted over the tapered surfaces 31a and 32a of the metal pipes 31 and 32.
  • the joint pipe 23 has tapered surfaces whose inner peripheral surfaces 23b and 23d gradually decrease in diameter toward the center, and the outer peripheral surface 23e is flush with the outer peripheral surfaces of the metal tubes 31 and 32. Is formed.
  • ring-shaped protrusions 23a and 23c are provided on the outer peripheral side, respectively.
  • a ring-shaped leg portion 23f is provided at the center where the inner peripheral surfaces 23b and 23d intersect.
  • the through-hole g which presses in an adhesive agent is each provided so that it may penetrate from the outer peripheral surface 23e to the inner peripheral surfaces 23b and 23d. The adhesive is filled in the secured space by the protrusions 23a and 23c and the leg 23d.
  • the metal pipes 31 and 32 are quenched in the range where the tapered surfaces 31a and 32a exist. It was confirmed that when a tensile load was applied in a state where no quenching was performed, the metal pipes 31 and 32 that were bonded and connected had a phenomenon that the diameter contracted at the bonded site. When the diameter is reduced, the shape of the tapered surfaces 31a and 32a is changed, and the adhesive structure cannot be maintained, and the adhesive connection portion is broken. By quenching in the range where the tapered surfaces 31a and 32a of the metal tubes 31 and 32 are present, the adhesion structure is maintained, and the adhesion strength expressed by the equation (1) is maintained.
  • FIG. 9B shows an embodiment of a connection structure using the joint pipe 35.
  • the difference from the joint tube 23 is that ring-shaped protrusions 23a and 23c are not provided on the inner peripheral surfaces 35b and 35d, which are tapered surfaces whose diameter gradually decreases toward the center portion, unlike the joint tube 23.
  • the other structures are the same.
  • FIG. 9C is an example in which a straight sleeve 7 is further applied to the connection structure shown in FIG. 9A.
  • the sleeve 7 as in this example or the sleeve tube 9 shown above is used. can do.
  • the tips of the tapered surfaces 31a and 32a of the metal tubes 31 and 32 have surfaces 31b and 32b perpendicular to the center line C, respectively. Since the shape change from 32a to the surfaces 31b and 32b is large, the stress concentrates and triggers the fracture. Therefore, it is preferable that this surface is not bonded or has a weak adhesive force even when bonded. In such a state, for example, a surface treatment that makes it difficult to adhere is performed.
  • the angle of the tapered surface of each joint tube and the center line C of the tapered surface of each metal tube is the same.
  • FIG. 10 is a cross-sectional view showing an example of another connection structure of the metal pipes 31 and 32 using the joint pipe 37.
  • a sealing annular protrusion 37e such as the sealing annular protrusion 14e of the joint pipe 14 of FIG. 7 is provided on the inner peripheral side of the joint pipe 37.
  • the sealing annular protrusion 37e is formed in a cylindrical shape on the inner peripheral side of the central position of the joint pipe 37 in the length direction.
  • the sealing annular protrusion 37e is present between the tapered surfaces 37b and 37d formed so that the diameter gradually decreases toward the center at both ends of the joint pipe 37, and from the tapered surfaces 37b and 37d.
  • An outer surface is formed by annular end surfaces 37f and 37g extending perpendicularly to the center line c, and an inner peripheral surface 37h having the same inner peripheral diameter as that of the metal tubes 31 and 32.
  • a ring groove 37i into which the O-ring 38 is fitted is formed concentrically at a position near the center of the width of each annular end face 37f, 37g.
  • the joint pipe 37 is made of the same material as the metal pipes 31 and 32.
  • the outer peripheral surface 37j of the joint tube 37 is formed on a surface that is flush with the outer peripheral surfaces of the metal tubes 31 and 32.
  • ring-shaped protrusions 37a and 37c are provided on the outer peripheral side, respectively.
  • the through-hole g which presses in an adhesive agent is each provided so that it may penetrate from the outer peripheral surface 37j to the inner peripheral surfaces 37b and 37d. The adhesive is filled in the secured space by the protrusions 37a and 37c and the sealing annular protrusion 37e.
  • FIG. 10B shows an embodiment of a connection structure using the joint pipe 39.
  • the difference from the joint pipe 37 is that ring-shaped protrusions 37a and 37c are not provided on the inner peripheral surfaces 39b and 39d, which are tapered surfaces whose diameter gradually decreases toward the center, unlike the joint pipe 37.
  • the structure is the same including other materials.
  • FIG. 10C is an example in which a straight sleeve 7 is further applied to the connection structure shown in FIG. 10A.
  • the sleeve 7 as in this example or the sleeve tube 9 of FIG. 4B is used. be able to.
  • the angle of the tapered surface of each joint tube and the center line C of the tapered surface of each metal tube is the same.
  • FIG. 11 shows an example in which a ring groove 4b is provided on the inner peripheral side of the tapered surface 4a of the metal tube 4 of FIG. Other configurations are the same.
  • the O-ring 40 is inserted into the ring groove 4b.
  • the ring groove 4b may be provided on the metal tube 3 side, but requires a precision in processing because it is a thin portion.
  • the ring groove 4b may also be provided on the outer peripheral side (the side indicated by 4c in the figure) of the metal tube 4 (or 3). When provided in the metal tube 3, it is within the range of the protrusion 21b.
  • FIG. 11C is an example in which one or a plurality of grooves h are provided from the tapered surface 3a to the outer peripheral side of the metal tube 3 with respect to the protrusion 21b on the metal tube 3 side.
  • the grooves h are provided in a radial shape, and the protrusions 21b have the grooves h, so that the gap between the tapered surfaces 3a and 4a is maintained more accurately than that of FIG. It is possible to vent air when filling from e and to overflow excess adhesive from the groove h.
  • the O-ring may or may not be used on the inner week side.
  • one or a plurality of grooves that reach the outer peripheral surface from the tapered surface 3a side are provided by digging the surface of the tapered surface 4a that is in contact with the protruding portion 21b instead of the protruding portion 21b radially toward the outer periphery. May be.
  • the metal tubes 3, 4, 11, 12, 16, 17 and the joint 20 or the joints 41 and 42 to be described below may be subjected to quenching similarly to the metal tubes 31 and 32.
  • FIG. 12 shows an example of joints 41 and 42 obtained by changing the embodiment of the joint 20 having the metal pipe part and the flange part shown in FIG.
  • the joint 41 has a groove 41c that accommodates the O-ring 43 with respect to the surfaces that face each other and connect, whereas the joint 42 is different only in that it does not have this.
  • the structure of is the same. Therefore, only the joint 41 will be described.
  • the joint 41 is used to connect the metal tube 1 of FIG. 1 having no protrusion on the tapered surface.
  • the joint 41 has a flange portion 41d in which through holes 41g used for using bolts 44 and nuts 45 are provided at equal angular intervals.
  • FIG. 12A shows a side cross-section
  • FIG. 12B shows the joint 41 as viewed from the X direction.
  • one or a plurality of grooves h extending from the funnel-shaped tapered surface 41 e to the outer peripheral side of the joint 41 are provided with respect to the protrusion 41 b on the outer peripheral side.
  • the grooves h are provided in a radial shape, and the protrusions 41b have the grooves h, so that the gap between the tapered surface 41e and the tapered surface 1a of the metal tube 1 is maintained with high accuracy, and the adhesive 6 is penetrated.
  • the protrusion 41a on the inner peripheral side is provided with a groove 41f into which the O-ring 46 is inserted.
  • the straight sleeve 7 (or sleeve 9) composed of the short pipe shown in FIG. 4 is fitted over the outer peripheral surface of the joint 42 and the outer peripheral surface of the metal tube 1.
  • a state where the adhesive 8 is adhered is shown.
  • the sleeve 7 (or the sleeve 9) may be used for connection between the joint 42 and the metal tube 1.
  • the groove 41 is provided in the protrusion 41b.
  • the surface of the taper surface 1a that contacts the protrusion 41b on the metal tube 1 side is digged radially toward the outer periphery, thereby forming the taper surface 1a.
  • One or a plurality of grooves that reach the outer peripheral surface from the side may be provided.
  • FIG. 13 shows another embodiment of the joint pipe of FIG.
  • the tapered surfaces 14b and 14d formed at both ends do not have protrusions, but in the joint pipe 50 of the present embodiment, the tapered surfaces of the metal pipes 16 and 17 on the outer peripheral side. And a protrusion 50a that comes into contact with.
  • the sealing annular protrusion 50e on the inner peripheral side is between the tapered surfaces 50b and 50d formed at both ends of the joint pipe 50 in the same manner as the sealing annular protrusion 14e of the joint pipe 14.
  • the annular end surfaces 50f and 50g that extend perpendicularly to the center line c from the tapered surfaces 50b and 50d and have an angle larger than the angle of the tapered surfaces 50b and 50d, and the inner peripheral diameters of the metal tubes 16 and 17
  • the outer surface is formed by the same inner peripheral surface 50h.
  • a ring groove 50i into which the O-ring 18 is fitted is formed concentrically at a position near the center of the width of each annular end face 50f, 50g.
  • the protrusion 50a is provided with one or a plurality of grooves in a radial pattern from the funnel-shaped tapered surfaces 50b and 50d to the outer peripheral side of the joint pipe 50 in the same manner as in the embodiment of FIG.
  • FIG. 14 shows another joint pipe 51.
  • the difference from the joint pipe 50 in FIG. 13 is that the outer peripheral surface has tapered surfaces 51 j and 51 k that increase the pipe diameter toward the center of the joint pipe 51.
  • Other configurations are the same as those of the joint pipe 50 of FIG.
  • FIG. 15 shows still another joint pipe 52.
  • the difference from the joint pipe 50 in FIG. 13 is that the joint pipe 52 does not have the inner circumferential annular protrusion 50e seen in the joint pipe 50. Tapered surfaces 52b and 52d formed at both ends of the joint pipe 52 reach the inner periphery. A ring groove 52i is provided concentrically at a position on the inner peripheral side, and the O-ring 18 is fitted therein.
  • the metal pipe to be connected is the metal pipe 3 having the protrusion 21a only on the inner peripheral side as shown in FIG. 11, and the O-ring 18 is sandwiched between the protrusion 21a and the through hole g. Prevents the adhesive press-fitted from leaking into the metal tube 3.
  • the present invention can be applied in the same manner as the metal pipe.
  • the resin cage there is an adhesive that melts and bonds the material of the adhesive surface of the resin tube, and in this case, it is difficult to twist the gap interval.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Non-Disconnectible Joints And Screw-Threaded Joints (AREA)

Abstract

A joint structure which stably achieves high connection strength in bonding of metal pipes by an adhesive agent. Circular conical-shaped and funnel-shaped tapered surfaces (3a, 4a) are respectively formed at ends of metal pipes (3, 4), and the tapered surface (3a) is coaxially fitted in the tapered surface (4a).  The tilt angle ? of the tapered surfaces (3a, 4a) is set within the range from three to eight degrees.  A projection (21a) projects from the tapered surface (3a).  The distance between the tapered surfaces (3a, 4a) is set within the range from 0.05 mm to 0.3 mm, and an adhesive agent (6) is placed in the gap between the tapered surfaces.

Description

[規則37.2に基づきISAが決定した発明の名称] 管の接続構造[Name of invention determined by ISA based on Rule 37.2] Pipe connection structure
 本発明は、複数本の管を接着剤により接続する管の接続構造、及び、この接続構造において実施される管の接続方法に関する。 The present invention relates to a pipe connection structure in which a plurality of pipes are connected by an adhesive, and a pipe connection method implemented in the connection structure.
 金属管の連結に関しては、溶融溶接、液相拡散接続等或いはフランジを用いた接続が知られている。 For connection of metal pipes, fusion welding, liquid phase diffusion connection, etc., or connection using a flange are known.
 特許文献1には、異種金属の接続に関するスカーフ接続について開示している。スカーフ接続は自由縁応力特異性が消失し、かつ接続面積拡大させる接続方式である。特許文献1におけるスカーフ接続は、板同士をロウ付け、拡散結合、溶接するものを対象として示されている。また、特許文献2には、傾斜面で形成した開先を有する鋼管について液相拡散接続を用いて接続をする技術が開示されており、接続する鋼管の夫々に傾斜面を形成し、これらの間に融点の低い共晶組成を有する合金を介在させ加圧・加熱することにより該合金を溶融させている。 Patent Document 1 discloses a scarf connection related to the connection of dissimilar metals. The scarf connection is a connection method in which the free edge stress specificity is lost and the connection area is expanded. The scarf connection in Patent Document 1 is intended for brazing, diffusion bonding, and welding plates. Patent Document 2 discloses a technique for connecting a steel pipe having a groove formed by an inclined surface using a liquid phase diffusion connection. An inclined surface is formed on each of the steel pipes to be connected. An alloy having an eutectic composition with a low melting point is interposed between them, and the alloy is melted by pressing and heating.
 また、非特許文献1には、接着剤を用いた金属管のそぎ継ぎ管形接続が記載され、またストレートサイド管状接続を利用する場合には、接着剤を流し込むはめ管との隙間を0.13mm~0.15mmの範囲内が効果的であることが記載されている。 Non-Patent Document 1 describes a spliced pipe-type connection of a metal pipe using an adhesive, and when using a straight-side tubular connection, a clearance from the fitting pipe into which the adhesive is poured is set to 0. 0. It is described that the range of 13 mm to 0.15 mm is effective.
特開2004-255388号公報JP 2004-255388 A 特開平9-317959号公報JP-A-9-317959
 本発明者は、PCT/JP2008/071489(特願2007-337449号)として、接着剤による金属管の接続構造について開示した。これは、テーパー状のスリーブを金属管に外挿して接着剤にて金属管を接続する技術を示したものである。ここにおいて、接着剤が充填される金属管とスリーブとの間の隙間距離が接着の強度に影響するため、これを制御するために予め金属管の外形を真円状に加工しておく必要性を有している。これは、JIS規格の径の許容差が、隙間間距離の制御値よりも大きいことに起因する。 The present inventor disclosed a connection structure of a metal tube by an adhesive as PCT / JP2008 / 071489 (Japanese Patent Application No. 2007-337449). This shows a technique of connecting a metal tube with an adhesive by extrapolating a tapered sleeve to the metal tube. Here, since the gap distance between the metal tube filled with the adhesive and the sleeve affects the bonding strength, it is necessary to preliminarily process the outer shape of the metal tube in order to control this. have. This is due to the fact that the diameter tolerance of the JIS standard is larger than the control value of the distance between the gaps.
 本発明者は、金属管の端面をテーパー状に切削する方が、真円加工に比べて容易であることから、断面形状をスカーフ形状とした場合の構造に着目し、接着剤による接続技術を検討した。樹脂を材料とする接着剤は接続界面の組成を変化させることはできず、特許文献1による溶接等や、特許文献2による液相拡散を利用した金属側界面の変化を伴う接続技術である。また、非特許文献1は、接着剤による金属管のそぎ継ぎ管形接続の概念を示しているが、接続界面に応力集中が起こると接着剤の持つ接着力が発揮できない。一方、接着剤による接着強度を発現させるためには、その膜厚は可能な限り薄く、例えば0.05mm~0.3mmの範囲で均一に接着面に塗布するのが良い。しかしながら、このような膜厚を現場での作業で常に安定して実現することは困難である。本発明者は、接着剤による接続を行った場合に応力が均一に分散する形状を検討するとともに、スカーフ形状を利用した継手について安定的に接続できる構造について検討した。 The inventor cuts the end face of the metal tube into a taper shape, which is easier than the perfect circle processing. Therefore, paying attention to the structure when the cross-sectional shape is a scarf shape, the connection technique using an adhesive is used. investigated. An adhesive made of a resin cannot change the composition of the connection interface, and is a connection technique that involves a change in the metal-side interface using liquid phase diffusion or the like according to Patent Document 1 or welding. Non-Patent Document 1 shows the concept of jointed pipe connection of metal pipes using an adhesive. However, if stress concentration occurs at the connection interface, the adhesive force of the adhesive cannot be exhibited. On the other hand, in order to develop the adhesive strength by the adhesive, the film thickness is as thin as possible, and it is preferable to apply it uniformly to the adhesive surface in the range of 0.05 mm to 0.3 mm, for example. However, it is difficult to always realize such a film thickness stably in the field work. The present inventor examined a shape in which stress is uniformly dispersed when connecting with an adhesive, and a structure capable of stably connecting a joint using a scarf shape.
 上記目的を達成するため、 端部が先側へ向け縮径した円錐状のテーパー面を持つ一方の管と、端部が奥側へ向け縮径したロート状のテーパー面を持つ他方の管と、前記テーパー面同士が接着剤により接続された接続構造であって、前記テーパー面同士の傾斜角が等しく、かつ3度~8度の範囲内であり、前記テーパー面上であって管の内周側に同心円状に0.05mm~0.3mmの高さ範囲でリング状に突出し正対するテーパー面に対して当接する内周側突部と、前記ロート状のテーパー面を持つ管の外周から当該テーパー面に貫通する接着剤の圧入孔とが設けられることを特徴とする。 In order to achieve the above object, one tube having a conical tapered surface whose end portion is reduced in diameter toward the front side and the other tube having a funnel-shaped tapered surface whose end portion is reduced in diameter toward the back side The tapered surfaces are connected to each other by an adhesive, the inclined angles of the tapered surfaces are equal and within a range of 3 to 8 degrees, and are on the tapered surface and within the pipe. From an outer periphery of a tube having an inner peripheral side projecting portion protruding concentrically on the circumferential side in a ring shape in a height range of 0.05 mm to 0.3 mm and coming into contact with a taper surface facing the opposite surface, and the funnel-shaped taper surface An adhesive press-fitting hole penetrating the tapered surface is provided.
 本願発明によれば、テーパー面を接着剤により接着した場合、管の引張力が、テーパー面界面に均一に分散する形状を突き止め、接着剤の単位面積当たりの接着強度を利用して、管の接続強度とすることができる接続技術を提供することができる。また、この接続を安定的に配管現場にて作業できる構造を提供することを可能とした。本願発明によれば、管の中心線方向へ向かう過大な引張力が作用したとき、管の接続非影響母材箇所が接着剤による接続箇所よりも先に切断するものとなるような接着剤接続も可能となる。 According to the present invention, when the taper surface is bonded by an adhesive, the shape of the tube is uniformly distributed at the taper surface interface, and the adhesive strength per unit area of the adhesive is used to determine the shape of the tube. A connection technique capable of providing connection strength can be provided. In addition, it is possible to provide a structure that can stably perform this connection on the piping site. According to the present invention, when an excessive tensile force is applied in the direction of the center line of the tube, the adhesive connection is such that the non-influential base material location of the tube is cut before the connection location by the adhesive. Is also possible.
金属管1、2の端部形状を示す図である。It is a figure which shows the edge part shape of the metal pipes 1 and 2. FIG. 接着剤の接着状況を示す図である。It is a figure which shows the adhesion condition of an adhesive agent. 金属管3、4の接続構造を示す断面図である。It is sectional drawing which shows the connection structure of the metal pipes 3 and 4. FIG. 短管からなるスリーブ7、9を利用した接続例を示す図である。It is a figure which shows the example of a connection using the sleeves 7 and 9 which consist of a short tube. 金属管の他の接続構造を示す図である。It is a figure which shows the other connection structure of a metal pipe. ジョイント管13を用いた接続構造を示した断面図である。5 is a cross-sectional view showing a connection structure using a joint pipe 13. FIG. 他のジョイント管14を用いた接続構造を示した断面図である。It is sectional drawing which showed the connection structure using other joint pipes. 金属管3とフランジ部20aを備えた継ぎ手20の接続構造を示す断面図である。It is sectional drawing which shows the connection structure of the joint 20 provided with the metal pipe 3 and the flange part 20a. ジョイント管23、35を用いた接続構造を示した断面図である。It is sectional drawing which showed the connection structure using the joint pipes 23 and 35. FIG. ジョイント管37、39を用いた接続構造を示した断面図である。It is sectional drawing which showed the connection structure using the joint pipes 37 and 39. FIG. 金属管4に対して、そのテーパー面4aの内周側にリング溝4bを設けた例を示す断面図である。5 is a cross-sectional view showing an example in which a ring groove 4b is provided on the inner peripheral side of the tapered surface 4a of the metal tube 4. 金属管1とフランジ部41dを備えた継ぎ手41、42の接続構造を示す図である。It is a figure which shows the connection structure of the joints 41 and 42 provided with the metal pipe 1 and the flange part 41d. ジョイント管50を用いた接続構造を示した断面図である。3 is a cross-sectional view showing a connection structure using a joint pipe 50. FIG. ジョイント管51を用いた接続構造を示した断面図である。It is sectional drawing which showed the connection structure using the joint pipe | tube 51. FIG. ジョイント管52を用いた接続構造を示した断面図である。5 is a cross-sectional view showing a connection structure using a joint pipe 52. FIG.
 1、2、3、4、11、12、16、17 金属管
 6、8 接着剤
 7、9 スリーブ
 13、14、50、51、52 ジョイント管
 20、41、42 継ぎ手
 21 堤部
 21a、21b 突部
1, 2, 3, 4, 11, 12, 16, 17 Metal pipe 6, 8 Adhesive 7, 9 Sleeve 13, 14, 50, 51, 52 Joint pipe 20, 41, 42 Joint 21 Embankment 21a, 21b Projection Part
 端面同士を接着剤により接着して左右から引き剥がしを行うと、形状変化の大きい自由端に応力が集中する傾向がある。 When the end surfaces are bonded to each other with an adhesive and peeled off from the left and right, the stress tends to concentrate on the free end having a large shape change.
 図1に、検証に使用した金属管1、2の端部形状を示す。こられの金属管1、2には、同一材料を使用している。金属管1の端部には、金属管1の中心線cと同芯状に中心線cに対して垂直に切り落とされた端部に向けて先側へ向け縮径した円錐状のテーパー面1aが形成されている。また、金属管2の端部には、金属管1の中心線cと同芯状に中心線cに対して垂直に切り落とされた端部の内周面を奥側へ向け縮径されたロート状のテーパー面2aが形成されている。テーパー面1a、テーパー面2aの傾斜角は中心線cとの関係において同一の角度θである。 Fig. 1 shows the end shapes of the metal tubes 1 and 2 used for the verification. The same material is used for these metal tubes 1 and 2. The end of the metal tube 1 has a conical tapered surface 1a concentric with the center line c of the metal tube 1 and reduced in diameter toward the end toward the end cut off perpendicular to the center line c. Is formed. Further, at the end portion of the metal tube 2, a funnel whose diameter is reduced toward the inner side at the inner peripheral surface of the end portion that is concentric with the center line c of the metal tube 1 and cut off perpendicularly to the center line c. A tapered surface 2a is formed. The inclination angles of the taper surface 1a and the taper surface 2a are the same angle θ in relation to the center line c.
 テーパー面1a(或いはテーパー面2a)に接着剤を塗布して、金属管1と金属管2を一線状平行に配置して中心線cを合わせた状態のまま接続する。テーパー面1aとテーパー面2aとの間の間隔は、テーパー面1aとテーパー面2aの全ての対向面において0.05mm~0.3mmの範囲内の大きさに保持して接着剤を硬化させる。 The adhesive is applied to the taper surface 1a (or the taper surface 2a), and the metal tube 1 and the metal tube 2 are arranged in a single line in parallel and connected with the center line c aligned. The distance between the taper surface 1a and the taper surface 2a is maintained at a size within a range of 0.05 mm to 0.3 mm on all the opposing surfaces of the taper surface 1a and the taper surface 2a to cure the adhesive.
 金属管1、2としては、引張強度(荷重)試験においても接着接続範囲の鋼管部分での破壊が生じないように、実際に利用されているSTPT410Sch160、20Aの鋼管より硬度の高いものを使用した。隙間は、0.15mmである。接着剤としては、エポキシ系構造用接着剤(例えば、住友スリーエム社製の商品「Scotch-WeldXA7416」)を使用した。テーパー角度は、5度とした。接着剤が硬化したのち、引張強度(荷重)試験を行ったところ、141KNで接続部分の破壊が起こった。これは、STPT410Sch160、20Aの鋼管の降伏強度(荷重)の最低値92KNよりも大きい値である。図2Aは、破壊した接着面を示している。接着剤自体の破壊は見られず、接着界面からの接着剤の剥離が観察されたが、その剥離位置は接着面において不規則であり、テーパー面の内外周の境界位置において特に破壊が進んだ様子は見られなかった。尚、STPT410Sch160、20A規格の引張強度(荷重)の最低値は154KNである。 As the metal pipes 1 and 2, those having higher hardness than the steel pipes of STPT410Sch160 and 20A that are actually used are used so that the steel pipe portion in the adhesive connection range does not break even in the tensile strength (load) test. . The gap is 0.15 mm. As the adhesive, an epoxy structural adhesive (for example, a product “Scotch-WeldXA7416” manufactured by Sumitomo 3M) was used. The taper angle was 5 degrees. After the adhesive was cured, a tensile strength (load) test was performed. As a result, the connection portion was broken at 141 KN. This is a value larger than the minimum value 92KN of the yield strength (load) of the steel pipes of STPT410Sch160, 20A. FIG. 2A shows the broken adhesive surface. The adhesive itself was not broken, and peeling of the adhesive from the bonding interface was observed, but the peeling position was irregular on the bonding surface, and the breakage proceeded particularly at the boundary position of the inner and outer circumferences of the tapered surface. The situation was not seen. The minimum value of the tensile strength (load) of STPT410Sch160, 20A standard is 154KN.
 上記検証によれば、テーパー面を形成して接着することで、テーパー面1a、テーパー面2aのいずれの場所においても応力の分布は均等として扱える。 According to the above verification, by forming and adhering the taper surface, the stress distribution can be treated equally in any place of the taper surface 1a and the taper surface 2a.
 応力の均等化が図れると言う事は、接着剤の単位接着面積当りの接着強度を元に、金属管1、2が接続する強度を予想できると言うことである。 The fact that the stress can be equalized means that the strength at which the metal tubes 1 and 2 are connected can be predicted based on the adhesive strength per unit adhesive area of the adhesive.
 図2Bは、金属管のサイズ及びテーパー角度を変更した場合の破断強度(荷重)を測定した結果を示す図である。横軸に、接着面積、破断強度(荷重)、接着面積3000mmに換算し標準化した強度を示す。金属管のサイズを変更したのは、接着面積と強度(荷重)との関係が比例関係にあるかを確認するためである。金属管のサイズを20A、25A、32Aとした場合、同じテーパー角度であれば、単位面積当たりの接着強度も同様なものとなることが観測された。従って、テーパー角度が同じであれば、強度は接着面積に比例することが言える。一方、テーパー角度8度、5度と変更すると、接着面積を3000mm換算とした場合、20Aの場合、8度では145KN、5度では134KNとなり、テーパー角度を大きくした場合の方が、単位面積当たりの強度は増加する傾向がある。これは、25A、32Aでも同様の傾向を示している。この結果から、8度以上のテーパー角度を有する場合、ある一定範囲までは応力の分布を均等として扱える角度があると推察される。しかしながら、テーパー角度を大きくするということは、接着面積の減少となるため、金属管接続に要求される強度が得られず、実用に付すことができない。 FIG. 2B is a diagram showing the results of measuring the breaking strength (load) when the size and taper angle of the metal tube are changed. The horizontal axis shows the standardized strength in terms of adhesion area, breaking strength (load), and adhesion area of 3000 mm 2 . The reason for changing the size of the metal tube is to confirm whether the relationship between the bonding area and the strength (load) is proportional. When the size of the metal tube was 20A, 25A, and 32A, it was observed that the adhesive strength per unit area would be the same if the taper angle was the same. Therefore, if the taper angle is the same, it can be said that the strength is proportional to the adhesion area. On the other hand, when the taper angle is changed to 8 degrees and 5 degrees, when the adhesive area is converted to 3000 mm 2 , in the case of 20A, it is 145 KN at 8 degrees and 134 KN at 5 degrees, and the unit area is larger when the taper angle is increased. The hit strength tends to increase. This shows the same tendency at 25A and 32A. From this result, when it has a taper angle of 8 degrees or more, it is inferred that there is an angle that can treat the stress distribution as uniform up to a certain range. However, increasing the taper angle results in a decrease in the bonding area, so that the strength required for the metal pipe connection cannot be obtained and cannot be put to practical use.
 一方、接着剤の単位面積当たりの接着強度τは、テーパー面1a(或いは、テーパー面2a)の面積をSとした時、接着剤による接着強度Kは次の(1)式から導かれる。 On the other hand, the adhesive strength τ per unit area of the adhesive is derived from the following equation (1) when the area of the tapered surface 1a (or the tapered surface 2a) is S.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 この式で求められる接着強度Kは、金属管の加えられる引張り力に対する応力分布率は面積Sに対して均等である場合に、金属管の接続強度となる。 The adhesive strength K obtained by this equation is the connection strength of the metal tube when the stress distribution rate with respect to the tensile force applied to the metal tube is equal to the area S.
 接着強度Kを金属管1、2自体の破断強度(荷重)よりも大きな値になるように設定することにより、引張負荷に対して接着部分ではなく金属管側が破断する接続を得ることができる。 By setting the adhesive strength K to be larger than the breaking strength (load) of the metal tubes 1 and 2 themselves, it is possible to obtain a connection in which the metal tube side breaks rather than the bonded portion with respect to the tensile load.
 金属管の肉厚は、管の口径(10A、125A、500A、1000A等)により異なるが、傾斜角θを8度以内に定めることにより、接続強度を金属管自体の降伏点或いは破壊強度よりも大きくなるように十分な面積Sとすることができる。 The thickness of the metal tube varies depending on the diameter of the tube (10A, 125A, 500A, 1000A, etc.), but by setting the inclination angle θ within 8 degrees, the connection strength is higher than the yield point or fracture strength of the metal tube itself. A sufficient area S can be set to be large.
 図2Cは、接着剤の層厚tと、接着剤4の接着強度τとの関係を示している。横軸が接着剤の層厚tを示し、縦軸が接着剤の破断強度(荷重)を示している。図2Cから理解されるように、接着剤の層厚tが0.3mmを超えて大きくなった範囲では、破断強度(荷重)は低下する。したがって、テーパー面1a、テーパー面2aの間隔は接着剤の層厚tを0.3mm以下とするように保つのが良い。 FIG. 2C shows the relationship between the adhesive layer thickness t and the adhesive strength τ of the adhesive 4. The horizontal axis indicates the adhesive layer thickness t, and the vertical axis indicates the breaking strength (load) of the adhesive. As understood from FIG. 2C, the breaking strength (load) decreases in the range where the layer thickness t of the adhesive is larger than 0.3 mm. Therefore, the distance between the taper surface 1a and the taper surface 2a is preferably kept so that the adhesive layer thickness t is 0.3 mm or less.
 以下、現場における設置作業において、安定的に所望の接着剤膜厚を実現させるテーパー面の形状について説明する。 Hereinafter, the shape of the tapered surface that stably realizes a desired adhesive film thickness in the installation work in the field will be described.
 炭素鋼、ステンレス鋼又はジュラルミンを母材とした同径の2本の金属管の接続構造の形成手順を説明する。 A procedure for forming a connection structure of two metal pipes having the same diameter using carbon steel, stainless steel or duralumin as a base material will be described.
 図3において、STPT410Sch160、20Aの金属管3に円錐状のテーパー面3aを、そして同じくSTPT410Sch160、20Aの金属管4にロート状のテーパー面4aを旋盤で形成する。テーパー面3a、4aの傾斜角θは先の実施例と同じ角度である。金属管3のテーパー面3aには、テーパー面3aからリング状に立ち上がった堤部21を有している。堤部21はテーパー面3aの内外周位置からリング状の夫々内周側の突部21aと外周側の突部21bとを有している。突部21a、21bはテーパー面3aから、0.05mm~0.3mmの範囲の高さdを有している。突部21a、21bは金属管3にテーパー面3aを研削する際に、切削し残した部分である。これがテーパー面4aに当接することにより、テーパー面3a、4a間の面間距離を0.05mm~0.3mmの範囲内に保持する。金属管4側には、ロート状のテーパー面4aが形成されたその肉厚部に外周面からテーパー面4aへかけて透孔eを形成する。透孔eの内周面側には雌ネジが形成される。透孔eはテーパー面4aを有する金属管4に図3Aに示すように等角度間隔で複数個を形成しても良い。 In FIG. 3, a conical tapered surface 3a is formed on a metal tube 3 of STPT410Sch160, 20A, and a funnel-shaped tapered surface 4a is formed on a metal tube 4 of STPT410Sch160, 20A by a lathe. The inclination angle θ of the tapered surfaces 3a and 4a is the same as that in the previous embodiment. The tapered surface 3a of the metal tube 3 has a bank portion 21 that rises in a ring shape from the tapered surface 3a. The bank portion 21 has a ring-shaped protrusion 21a on the inner peripheral side and a protrusion 21b on the outer peripheral side from the inner and outer peripheral positions of the tapered surface 3a. The protrusions 21a and 21b have a height d in the range of 0.05 mm to 0.3 mm from the tapered surface 3a. The protrusions 21 a and 21 b are portions left uncut when the tapered surface 3 a is ground on the metal tube 3. When this abuts on the tapered surface 4a, the inter-surface distance between the tapered surfaces 3a and 4a is maintained within a range of 0.05 mm to 0.3 mm. On the metal tube 4 side, a through hole e is formed from the outer peripheral surface to the tapered surface 4a in the thick portion where the funnel-shaped tapered surface 4a is formed. A female screw is formed on the inner peripheral surface side of the through hole e. A plurality of through holes e may be formed at equal angular intervals in the metal tube 4 having the tapered surface 4a as shown in FIG. 3A.
 図3Bに示すように、中心線cをあわせ、それぞれの金属管3、4を支持具で支持する。この後、金属管3、4の何れか又は双方を中心線c上で移動させ、テーパー面3aとテーパー面4aとを突き合わせる(図3C)。
次に、金属管3と金属管4とを圧力F1で押し付ける。この状態下で、圧力F1よりも単位面積当たりにおいて小さい圧力F2で、接着剤6を透孔eに圧入する。圧力F1よりも小さい圧力としたのは、接着剤が突部21aを乗り越えて、金属管3、4の内側に漏れ出すことを防止するためである。金属管3、4内に漏れ出すと、接着剤6は盛上った状態で硬化し異物として剥離して、管内を流れる流体に混入する恐れがある。突部21aにより、これを回避することができる。また、外周側の突部21bにより、接着剤6は直接的に外界の雨水や太陽光から完全に遮断された状態となる。ネジ5は、透孔eを封止するものであり、接着剤6が大気中に暴露しないために透孔eへ挿入される。
As shown in FIG. 3B, the center lines c are aligned, and the respective metal tubes 3 and 4 are supported by a support tool. Thereafter, either or both of the metal tubes 3 and 4 are moved on the center line c, and the tapered surface 3a and the tapered surface 4a are brought into contact with each other (FIG. 3C).
Next, the metal tube 3 and the metal tube 4 are pressed with the pressure F1. Under this state, the adhesive 6 is press-fitted into the through hole e with a pressure F2 that is smaller per unit area than the pressure F1. The reason why the pressure is smaller than the pressure F1 is to prevent the adhesive from getting over the protrusion 21a and leaking inside the metal tubes 3 and 4. If it leaks into the metal tubes 3 and 4, the adhesive 6 hardens in a raised state, peels off as a foreign substance, and may be mixed into the fluid flowing in the tube. This can be avoided by the protrusion 21a. Moreover, the adhesive agent 6 will be in the state from which the outer peripheral side protrusion 21b was completely interrupted | blocked directly from the external rain water and sunlight. The screw 5 seals the through hole e, and is inserted into the through hole e so that the adhesive 6 is not exposed to the atmosphere.
 この後、テーパー面3a、接着剤6及びテーパー面4aの周辺に加熱マットなどの加熱具を巻き付け、接着剤6を140℃程度に加熱し保持し硬化する。この例では、熱硬化型の接着剤6を使用したが、配管現場の環境によっては常温硬化型の接着剤を使用してもよい。 Thereafter, a heating tool such as a heating mat is wound around the tapered surface 3a, the adhesive 6 and the tapered surface 4a, and the adhesive 6 is heated to about 140 ° C. and held and cured. In this example, the thermosetting adhesive 6 is used, but a room temperature curing adhesive may be used depending on the environment of the piping site.
 このようにして作製された金属管の接続構造に対して、引張強度(荷重)試験を実施したところ、116KNにおいて接着剤界面が破断した。尚、試験で使用した金属管はSTPT410Sch160、20Aと同形でかつ引張強度(荷重)を高めている。図1の接続構造と比較すると、29KN(141KN-116KN)の相違がある、これは、図3の接続構造の場合は、突部21a、21bの部分においては接着されておらず、接着面が減少していることに起因している。尚、図1の接続構造における接着面積は3116mmであり、図3では2770mmである。接着面積3000mmで換算して強度を比較すると、図1の接続構造の場合134KNとなる。図3の接続構造の換算値126KNと比較すると、8KNだけ減少している。この減少分が、テーパー面の均一性が失われたことによる強度低下分と考えられる。尚、接着剤界面が破断した116KNは、STPT410Sch160、20Aの降伏強度(荷重)の最低値を上回るものとなっている。 When a tensile strength (load) test was performed on the metal tube connection structure thus produced, the adhesive interface was broken at 116 KN. The metal tube used in the test has the same shape as STPT410Sch160, 20A and has a higher tensile strength (load). Compared with the connection structure of FIG. 1, there is a difference of 29KN (141KN-116KN). In the case of the connection structure of FIG. This is due to the decrease. The adhesive area in the connection structure of FIG. 1 is a 3116Mm 2, a in FIG. 3 2770mm 2. When the strength is compared in terms of an adhesion area of 3000 mm 2 , the connection structure in FIG. 1 is 134 KN. Compared with the converted value 126KN of the connection structure of FIG. 3, it is reduced by 8KN. This decrease is considered to be a decrease in strength due to the loss of uniformity of the tapered surface. Note that 116KN where the adhesive interface is broken exceeds the minimum value of the yield strength (load) of STPT410Sch160, 20A.
 図3の接続構造にさらに、短管からなるストレート形のスリーブ7を利用した接続の例を図4示す。尚、本実施例においては、ネジ5は使用しない。図4Aにおいて、スリーブ7は、金属管外周の接続箇所から両側に等しい距離だけ、金属管3の外周面と金属管4の外周面とに跨いだ状態で外嵌される。スリーブ7の長さは、金属管3と4の外周における分割点Zを中心として両側に夫々スリーブの長さを確保しさらに10mmずつ伸ばした長さである。分割点Zを中心に両側に同様の長さとするが良い。また、スリーブの長さを確保した上で更に伸ばしても構わない。スリーブ7により、テーパー面3a及びテーパー面4aで挟まれた接着剤6が大気側に露出しないように覆われる。 FIG. 4 shows an example of connection using a straight sleeve 7 made of a short pipe in addition to the connection structure of FIG. In this embodiment, the screw 5 is not used. In FIG. 4A, the sleeve 7 is externally fitted in a state of straddling the outer peripheral surface of the metal tube 3 and the outer peripheral surface of the metal tube 4 by a distance equal to both sides from the connection portion on the outer periphery of the metal tube. The length of the sleeve 7 is a length obtained by securing the length of the sleeve on both sides around the dividing point Z on the outer periphery of the metal tubes 3 and 4 and further extending by 10 mm. The length may be the same on both sides around the dividing point Z. Further, the length of the sleeve may be secured and further extended. The sleeve 7 covers the adhesive 6 sandwiched between the tapered surface 3a and the tapered surface 4a so as not to be exposed to the atmosphere side.
 スリーブ7の内周面と金属管3、4の外周面との間には接着剤8が満たされている。この接着剤8は接着剤6と同じものでも他種のものでも良い。スリーブ7には、接着剤8を圧入する透孔fが設けられており、スリーブ7を金属管3、4に外嵌したのち、透孔fを介して接着剤8を圧入する。透孔fの位置は、スリーブ7の中央部である。 The adhesive 8 is filled between the inner peripheral surface of the sleeve 7 and the outer peripheral surfaces of the metal tubes 3 and 4. The adhesive 8 may be the same as the adhesive 6 or may be another type. The sleeve 7 is provided with a through hole f into which the adhesive 8 is press-fitted. After the sleeve 7 is fitted on the metal tubes 3 and 4, the adhesive 8 is press-fitted through the through-hole f. The position of the through hole f is the central portion of the sleeve 7.
 この実施例の接続構造では、テーパー面3aとテーパー面4aとの間隔内に満たされた接着剤6はスリーブ7や接着剤8の存在により、雨水や、太陽光の紫外線に直接に曝されない。このため、樹脂である接着剤6は劣化し難くなり、長期に亘ってその接着機能を維持する。またスリーブ7の内周面と金属管3、4の外周面とが接着剤8で接続され、金属管3、4の接続力を増大させる。 In the connection structure of this embodiment, the adhesive 6 filled in the interval between the tapered surface 3a and the tapered surface 4a is not directly exposed to rainwater or ultraviolet rays of sunlight due to the presence of the sleeve 7 and the adhesive 8. For this reason, the adhesive agent 6 which is resin becomes difficult to deteriorate and maintains its adhesive function over a long period of time. Further, the inner peripheral surface of the sleeve 7 and the outer peripheral surfaces of the metal tubes 3 and 4 are connected by the adhesive 8, and the connection force of the metal tubes 3 and 4 is increased.
 このようにして作製された金属管の接続構造に対して、上記と同様に引張強度(荷重)試験を実施したところ194KNにおいて接着剤界面が破断した。これは、STPT410Sch160、20Aの規格となっている引張強度(破壊荷重)の最低値を上回るものとなっている。 When the tensile strength (load) test was performed on the metal tube connection structure thus prepared in the same manner as described above, the adhesive interface was broken at 194 KN. This exceeds the minimum value of the tensile strength (breaking load) which is the standard of STPT410Sch160, 20A.
 図4Bは、スリーブ7を変形したスリーブ9の例である。スリーブ9はスリーブ7と同様の円筒形ではあるが、スリーブ9の外周面は、各端部から中央に向け漸次に径を拡大径するテーパー面となっている。その他の点については図4Aに示すストレート形のスリーブ7の場合と変わりない。 FIG. 4B is an example of the sleeve 9 obtained by deforming the sleeve 7. The sleeve 9 has a cylindrical shape similar to the sleeve 7, but the outer peripheral surface of the sleeve 9 is a tapered surface that gradually increases in diameter from each end toward the center. The other points are the same as the case of the straight sleeve 7 shown in FIG. 4A.
 この変形例の接続構造では、スリーブ7の外周面が金属管3、4の外周面から連続したテーパー面となるため接続構造全体の外周面の形状変化の不連続性が緩和されて、該接続構造にこれの中心線方向の外力が付与されたときの応力集中が改善される。このようにして作製された金属管の接続構造に対して、上記と同様に、引張強度(荷重)試験を実施したところ197KNにおいて接着剤界面が破断した。尚、スリーブ7,9は、金属管3、4と同一の材料である。 In the connection structure of this modified example, since the outer peripheral surface of the sleeve 7 is a tapered surface continuous from the outer peripheral surfaces of the metal tubes 3 and 4, discontinuity in the shape change of the outer peripheral surface of the entire connection structure is alleviated, and the connection Stress concentration is improved when an external force in the direction of the center line is applied to the structure. When the tensile strength (load) test was performed on the metal tube connection structure thus produced in the same manner as described above, the adhesive interface was broken at 197 KN. The sleeves 7 and 9 are made of the same material as the metal tubes 3 and 4.
 図5は堤部21を変形した他の接続構造例の断面図である。図5Aにおいて、本実施例の堤部21は、金属管3のテーパー面3aの内周側位置および外周側位置に、テーパー面4aと線状に接触する突部21a、bを有している。その他の点は図3に示す接続構造の場合と同一であり、図5Aにおいて、他の既述と同一部位には同一符号を付してある。 FIG. 5 is a cross-sectional view of another connection structure example in which the bank portion 21 is deformed. In FIG. 5A, the bank portion 21 of the present embodiment has protrusions 21a and 21b in linear contact with the tapered surface 4a at the inner peripheral side position and the outer peripheral side position of the tapered surface 3a of the metal tube 3. . The other points are the same as those of the connection structure shown in FIG. 3, and in FIG. 5A, the same parts as those already described are denoted by the same reference numerals.
 図5Bは、堤部21の突部21aがテーパー面4aに当接する箇所を面21cとしたものである。図5Aのように突部21a、bが線状に当接する場合と比べて、金属管内への接着剤の漏れ出し抑止効果が期待できる。 FIG. 5B shows a surface 21c where the protrusion 21a of the bank portion 21 abuts against the tapered surface 4a. Compared with the case where the protrusions 21a and 21b are linearly contacted as shown in FIG. 5A, the effect of suppressing leakage of the adhesive into the metal tube can be expected.
 上記図5A、5Bに示した突部21a、21bは、いずれか一方側の金属管のテーパー面に設けたが、内周側位置の突部21aは金属管4のテーパー面4aから突出させても良い。(例えば、図5C)。外周側位置の突部21aも同様に、金属管4のテーパー面4aから突出させても良い。また、金属管3、4から夫々テーパー面3a、4aの両側から突出して互いに突き合わせられる突部としても良い(例えば、図5D)。但し、加工の容易さからすれば、円錐状のテーパー面3a側に突部21a、21bを設けたほうが良い。いずれにしても、突部により離間されるテーパー面3a、4aの範囲は、0.05~0.3mmであって、微細なものである。また、テーパー面3a、4aの隙間内で硬化した接着剤6は、金属管の外周部において外界に露出するため、図4に示したスリーブ7又は9を装着してこれを隠しても良い。 The protrusions 21a and 21b shown in FIGS. 5A and 5B are provided on the tapered surface of the metal tube on either side. However, the protrusion 21a on the inner peripheral side protrudes from the tapered surface 4a of the metal tube 4. Also good. (For example, FIG. 5C). Similarly, the protruding portion 21 a at the outer peripheral side position may protrude from the tapered surface 4 a of the metal tube 4. Moreover, it is good also as a protrusion which protrudes from the metal pipes 3 and 4 from the both sides of the taper surfaces 3a and 4a, and is mutually abutted (for example, FIG. 5D). However, from the viewpoint of ease of processing, it is better to provide the protrusions 21a and 21b on the conical tapered surface 3a side. In any case, the range of the tapered surfaces 3a and 4a separated by the protrusions is 0.05 to 0.3 mm, which is fine. Further, since the adhesive 6 hardened in the gap between the tapered surfaces 3a and 4a is exposed to the outside at the outer peripheral portion of the metal tube, it may be hidden by attaching the sleeve 7 or 9 shown in FIG.
 図6は他の金属管の接続構造の実施例を示す断面図である。本実施例の同径の金属管11、12の端部には先の実施例のテーパー3aと同様なテーパー面11a、12a及び突部21a、21bが形成されている。金属管11、12と同材料のジョイント管13が、金属管11、12のテーパー面11a、12aに跨って外嵌される。ジョイント管13は、外周面13a、13cが両端から中央部に向けて漸次に径が拡大するテーパー面になっている。また、その内周面13b、13dも同様に中央部に向けて漸次に径が縮小するテーパー面となっている。また、接着剤を圧入する透孔gが、外周面13a、13cから内周面13b、13dに夫々貫通するように設けられる。 FIG. 6 is a cross-sectional view showing an embodiment of another metal pipe connection structure. Tapered surfaces 11a and 12a and protrusions 21a and 21b similar to the taper 3a of the previous embodiment are formed at the ends of the same- diameter metal tubes 11 and 12 of the present embodiment. A joint pipe 13 made of the same material as the metal pipes 11 and 12 is fitted over the tapered surfaces 11a and 12a of the metal pipes 11 and 12. The joint pipe 13 has a tapered surface whose outer peripheral surfaces 13a and 13c gradually increase in diameter from both ends toward the center. Similarly, the inner peripheral surfaces 13b and 13d are tapered surfaces whose diameter gradually decreases toward the center. Moreover, the through-hole g which presses in an adhesive agent is provided so that it may each penetrate from the outer peripheral surfaces 13a and 13c to the inner peripheral surfaces 13b and 13d.
 図7は、突部21aに代わる構造を持つ他のジョイント管14を示す図である。ジョイント管14は、外周側はジョイント管13と同様な形状を有しているが、内周側には封止用環状突部14eが設けられている。この封止用環状突部14eは、ジョイント管14の長さ中央位置の内周側を円筒状に形成されたものである。封止用環状突部14eはジョイント管14の両端部に形成されたテーパー面14b、14dの間に存在しており、テーパー面14b、14dから中心線cに垂直に延びることによりテーパー面14b、14dの角度よりも大きい角度とした環状端面14f、14gと、金属管16、17の内周径と同じ内周面14hとで外表面を形成されている。各環状端面14f、14gの巾中央寄り位置にはOリング18の嵌入されるリング溝14iが同芯状に形成されている。 FIG. 7 is a view showing another joint pipe 14 having a structure replacing the protrusion 21a. The joint tube 14 has the same shape as the joint tube 13 on the outer peripheral side, but is provided with a sealing annular protrusion 14e on the inner peripheral side. The sealing annular protrusion 14e is formed in a cylindrical shape on the inner peripheral side of the central position of the joint pipe 14 in the length direction. The sealing annular protrusion 14e exists between the tapered surfaces 14b and 14d formed at both ends of the joint pipe 14, and extends from the tapered surfaces 14b and 14d perpendicularly to the center line c, thereby forming the tapered surfaces 14b and 14b. An outer surface is formed by annular end surfaces 14f and 14g having an angle larger than the angle 14d and an inner peripheral surface 14h having the same inner peripheral diameter as that of the metal tubes 16 and 17. A ring groove 14i into which the O-ring 18 is fitted is formed concentrically at a position near the center of the width of each annular end face 14f, 14g.
 一方、同径の金属管16、17は、それぞれのテーパー面16a、17aの先端に、環状端面16b、17bが形成され、ジョイント管14の環状端面14f、14gと平行状態で正対する。環状端面14f、14gの方が環状端面16b、17bよりも中心線cの直径方向の長さが長い。環状端面14f、14gのリング溝14i内に嵌合されたOリング18により金属管16、17の内部空間から液密状に封止した状態としている。その他の構成は図6に示す接続構造の場合と変わりないものであり、この変形例の接続構造の形成も既述したところに準じて行えばよい。ジョイント管13、14は接続する金属管11、12、16、17と同一材料である。図7中、既述の部位と実質的同一部位には同一の符号が付してある。ジョイント管14の封止用環状突部14eは、図5Cに示す金属管4のロート状のテーパー面4aから突部21aを突出させた構造に相当しており、一方、環状端面16b、17bは、図5Cに示す金属管3のテーパー面3aの内周側のテーパー面が欠落した構造に対応し、かつ金属管4を短かくして両側端部の形状を同じとしたものと解釈できる。相違点は、図5Cにおいては金属管4の突部21aが、金属管3のテーパー面3aに当接する高さで、接着剤6の厚さを制御するものであるのに対して、図7の例では、テーパー面3aの環状端面16b、17bと封止用環状突部14eの環状端面14f、14gの当接長さの相違により、接着剤6の厚さを制御している点にある。封止用環状突部14eはロート状のテーパー面から突出するものであり配管施工現場での作製は容易ではないが、工場においては接続部品として容易に製造できる。 On the other hand, the metal tubes 16 and 17 having the same diameter have annular end surfaces 16b and 17b formed at the tips of the tapered surfaces 16a and 17a, respectively, and face each other in parallel with the annular end surfaces 14f and 14g of the joint tube 14. The annular end surfaces 14f and 14g are longer in the diameter direction of the center line c than the annular end surfaces 16b and 17b. The O-ring 18 fitted in the ring grooves 14i of the annular end faces 14f, 14g is sealed from the internal space of the metal tubes 16, 17 in a liquid-tight manner. The other configuration is the same as that of the connection structure shown in FIG. 6, and the formation of the connection structure of this modification may be performed in accordance with the above description. The joint pipes 13 and 14 are made of the same material as the metal pipes 11, 12, 16 and 17 to be connected. In FIG. 7, substantially the same parts as those already described are denoted by the same reference numerals. The sealing annular protrusion 14e of the joint pipe 14 corresponds to a structure in which the protrusion 21a protrudes from the funnel-shaped tapered surface 4a of the metal pipe 4 shown in FIG. 5C, while the annular end faces 16b and 17b are formed. 5C corresponds to the structure in which the tapered surface on the inner peripheral side of the tapered surface 3a of the metal tube 3 is omitted, and it can be interpreted that the metal tube 4 is shortened to have the same shape at both end portions. The difference is that in FIG. 5C, the protrusion 21a of the metal tube 4 controls the thickness of the adhesive 6 by the height at which it abuts against the tapered surface 3a of the metal tube 3, whereas FIG. In this example, the thickness of the adhesive 6 is controlled by the difference in contact length between the annular end surfaces 16b and 17b of the tapered surface 3a and the annular end surfaces 14f and 14g of the sealing annular protrusion 14e. . The sealing annular protrusion 14e protrudes from the funnel-shaped tapered surface and is not easy to manufacture on the piping construction site, but can be easily manufactured as a connection part in the factory.
 図8は金属管部20cと、金属管部20cの外径りも大きい外径のフランジ部20aとを備えた継ぎ手20による接続構造を示す断面図である。 FIG. 8 is a cross-sectional view showing a connection structure by a joint 20 including a metal tube portion 20c and a flange portion 20a having a large outer diameter of the metal tube portion 20c.
 継ぎ手20の金属管部20cは、先の実施例の金属管4を短くして、接着する端部の反対側の端部にフランジ部20aを設けたものと解釈できる。フランジ20aには、ボルト孔20bが等角度間隔で設けられている。 It can be interpreted that the metal pipe portion 20c of the joint 20 is obtained by shortening the metal pipe 4 of the previous embodiment and providing a flange portion 20a at the end opposite to the end to be bonded. Bolt holes 20b are provided at equiangular intervals in the flange 20a.
 図9は、ジョイント管23を利用した他の金属管の接続構造の実施例を示す断面図である。図9Aにおいて、本実施例の同径の金属管31、32の端部には先の実施例のテーパー3aと同様なテーパー面31a、32aが形成されている。金属管31、32は、さらに、テーパー面31a、32aの先端が、中心線Cに対して垂直な面31b、32bに夫々接続しており、金属管31、32が付き合わされた際に、面31b、32b同士が当接し合う。金属管31、32と同材料のジョイント管23は、金属管31、32のテーパー面31a、32aに跨って外嵌される。ジョイント管23は、その内周面23b、23dが中央部に向けて漸次に径が縮小するテーパー面となっており、外周面23eが金属管31、32の外周面と面一となる面に形成されている。内周面23b、23dには、夫々リング状の突部23a、23cが外周側に設けられている。一方、内周面23b、23dが交わる中央部には、リング状の脚部23fが設けられている。また、接着剤を圧入する透孔gが、外周面23eから内周面23b、23dに貫通するよう夫々設けられる。接着剤は、突部23a、23cおよび脚部23dにより、確保された空間に充填される。 FIG. 9 is a cross-sectional view showing an embodiment of another metal pipe connection structure using the joint pipe 23. In FIG. 9A, taper surfaces 31a and 32a similar to the taper 3a of the previous embodiment are formed at the ends of the same- diameter metal tubes 31 and 32 of the present embodiment. The metal tubes 31 and 32 are further connected to the surfaces 31b and 32b perpendicular to the center line C at the tips of the tapered surfaces 31a and 32a, respectively. 31b and 32b contact each other. The joint pipe 23 made of the same material as the metal pipes 31 and 32 is fitted over the tapered surfaces 31a and 32a of the metal pipes 31 and 32. The joint pipe 23 has tapered surfaces whose inner peripheral surfaces 23b and 23d gradually decrease in diameter toward the center, and the outer peripheral surface 23e is flush with the outer peripheral surfaces of the metal tubes 31 and 32. Is formed. On the inner peripheral surfaces 23b and 23d, ring-shaped protrusions 23a and 23c are provided on the outer peripheral side, respectively. On the other hand, a ring-shaped leg portion 23f is provided at the center where the inner peripheral surfaces 23b and 23d intersect. Moreover, the through-hole g which presses in an adhesive agent is each provided so that it may penetrate from the outer peripheral surface 23e to the inner peripheral surfaces 23b and 23d. The adhesive is filled in the secured space by the protrusions 23a and 23c and the leg 23d.
 金属管31、32は、テーパー面31a、32aが存在する範囲に焼入れ加工がされる。焼入れ加工を行わない状態で引っ張り荷重が加えられたとき、接着接続された金属管31、32は、接着部位において径が収縮する現象が生じることが認められた。縮径が生じると、テーパー面31a、32aの形状変化となり、接着構造が維持できず接着接続部分で破断する。金属管31、32のテーパー面31a、32aが存在する範囲に焼入れ加工することにより、接着構造が維持され、(1)式で示した接着強度が維持される。 The metal pipes 31 and 32 are quenched in the range where the tapered surfaces 31a and 32a exist. It was confirmed that when a tensile load was applied in a state where no quenching was performed, the metal pipes 31 and 32 that were bonded and connected had a phenomenon that the diameter contracted at the bonded site. When the diameter is reduced, the shape of the tapered surfaces 31a and 32a is changed, and the adhesive structure cannot be maintained, and the adhesive connection portion is broken. By quenching in the range where the tapered surfaces 31a and 32a of the metal tubes 31 and 32 are present, the adhesion structure is maintained, and the adhesion strength expressed by the equation (1) is maintained.
 図9Bは、ジョイント管35を利用した接続構造の実施例を示す。ジョイント管23との相違は、中央部に向けて漸次に径が縮小するテーパー面である内周面35b、35dにジョイント管23のようにリング状の突部23a、23cが設けられていないことであり、その他の構造は同じである。 FIG. 9B shows an embodiment of a connection structure using the joint pipe 35. The difference from the joint tube 23 is that ring-shaped protrusions 23a and 23c are not provided on the inner peripheral surfaces 35b and 35d, which are tapered surfaces whose diameter gradually decreases toward the center portion, unlike the joint tube 23. The other structures are the same.
 図9Cは、図9Aに示した接続構造に対して、さらにストレート形のスリーブ7を適用した例である。ジョイント管23や35のように、外周面を金属管31、32の外周面と面一となる面に形成することにより、本例のようなスリーブ7、或いは先に示したスリーブ管9を利用することができる。 FIG. 9C is an example in which a straight sleeve 7 is further applied to the connection structure shown in FIG. 9A. By forming the outer peripheral surface to be flush with the outer peripheral surfaces of the metal tubes 31 and 32, such as the joint tubes 23 and 35, the sleeve 7 as in this example or the sleeve tube 9 shown above is used. can do.
 なお、金属管31、32のテーパー面31a、32aの先端が、中心線Cに対して垂直な面31b、32bを夫々有しているが、この部分が強く接着されると、テーパー面31a、32aから面31b、32bへの形状変化が大きいため、応力が集中して破断のトリガーとなる。従って、この面は接着されない又は、接着されても接着力が弱い状態とするのが良い。そのような状態として、例えば、接着しにくくする表面処理を行う。 Note that the tips of the tapered surfaces 31a and 32a of the metal tubes 31 and 32 have surfaces 31b and 32b perpendicular to the center line C, respectively. Since the shape change from 32a to the surfaces 31b and 32b is large, the stress concentrates and triggers the fracture. Therefore, it is preferable that this surface is not bonded or has a weak adhesive force even when bonded. In such a state, for example, a surface treatment that makes it difficult to adhere is performed.
 各ジョイント管のテーパー面や、各金属管のテーパー面のその中心線Cに対する角度は同一である。 The angle of the tapered surface of each joint tube and the center line C of the tapered surface of each metal tube is the same.
 図10は、ジョイント管37を利用した金属管31、32の他の接続構造の実施例を示す断面図である。図10Aにおいて、ジョイント管37の内周側には図7のジョイント管14の封止用環状突部14eのような封止用環状突部37eが設けられている。この封止用環状突部37eは、ジョイント管37の長さ中央位置の内周側を円筒状に形成されたものである。封止用環状突部37eはジョイント管37の両端部に中央部に向けて漸次に径が縮小するように形成されたテーパー面37b、37dの間に存在しており、テーパー面37b、37dから中心線cに垂直に延びた環状端面37f、37gと、金属管31、32の内周径と同じ内周面37hとで外表面を形成されている。各環状端面37f、37gの巾中央寄り位置にはOリング38が嵌入されるリング溝37iが同芯状に形成されている。ジョイント管37は金属管31、32と同材料である。 FIG. 10 is a cross-sectional view showing an example of another connection structure of the metal pipes 31 and 32 using the joint pipe 37. 10A, a sealing annular protrusion 37e such as the sealing annular protrusion 14e of the joint pipe 14 of FIG. 7 is provided on the inner peripheral side of the joint pipe 37. In FIG. The sealing annular protrusion 37e is formed in a cylindrical shape on the inner peripheral side of the central position of the joint pipe 37 in the length direction. The sealing annular protrusion 37e is present between the tapered surfaces 37b and 37d formed so that the diameter gradually decreases toward the center at both ends of the joint pipe 37, and from the tapered surfaces 37b and 37d. An outer surface is formed by annular end surfaces 37f and 37g extending perpendicularly to the center line c, and an inner peripheral surface 37h having the same inner peripheral diameter as that of the metal tubes 31 and 32. A ring groove 37i into which the O-ring 38 is fitted is formed concentrically at a position near the center of the width of each annular end face 37f, 37g. The joint pipe 37 is made of the same material as the metal pipes 31 and 32.
 金属管31、32が付き合わされた際に、面31b、32bは、夫々環状端面37f、37gと当接し合う。ジョイント管37の外周面37jは、金属管31、32の外周面と面一となる面に形成されている。ジョイント管37の内周面37b、37dには、夫々リング状の突部37a、37cが外周側に設けられている。また、接着剤を圧入する透孔gが、外周面37jから内周面37b、37dに貫通するよう夫々設けられる。接着剤は、突部37a、37cおよび封止用環状突部37eにより、確保された空間に充填される。 When the metal tubes 31 and 32 are brought together, the surfaces 31b and 32b come into contact with the annular end surfaces 37f and 37g, respectively. The outer peripheral surface 37j of the joint tube 37 is formed on a surface that is flush with the outer peripheral surfaces of the metal tubes 31 and 32. On the inner peripheral surfaces 37b and 37d of the joint pipe 37, ring-shaped protrusions 37a and 37c are provided on the outer peripheral side, respectively. Moreover, the through-hole g which presses in an adhesive agent is each provided so that it may penetrate from the outer peripheral surface 37j to the inner peripheral surfaces 37b and 37d. The adhesive is filled in the secured space by the protrusions 37a and 37c and the sealing annular protrusion 37e.
 図10Bは、ジョイント管39を利用した接続構造の実施例を示す。ジョイント管37との相違は、中央部に向けて漸次に径が縮小するテーパー面である内周面39b、39dにジョイント管37のようにリング状の突部37a、37cが設けられていないことであり、その他材質を含め構造は同じである。 FIG. 10B shows an embodiment of a connection structure using the joint pipe 39. The difference from the joint pipe 37 is that ring-shaped protrusions 37a and 37c are not provided on the inner peripheral surfaces 39b and 39d, which are tapered surfaces whose diameter gradually decreases toward the center, unlike the joint pipe 37. The structure is the same including other materials.
 図10Cは、図10Aに示した接続構造に対して、さらにストレート形のスリーブ7を適用した例である。ジョイント管37や39のように、外周面を金属管31、32の外周面と面一となる面に形成することにより、本例のようなスリーブ7、或いは図4Bのスリーブ管9を利用することができる。 FIG. 10C is an example in which a straight sleeve 7 is further applied to the connection structure shown in FIG. 10A. By forming the outer peripheral surface to be flush with the outer peripheral surfaces of the metal tubes 31 and 32, such as the joint tubes 37 and 39, the sleeve 7 as in this example or the sleeve tube 9 of FIG. 4B is used. be able to.
 各ジョイント管のテーパー面や、各金属管のテーパー面のその中心線Cに対する角度は同一である。 The angle of the tapered surface of each joint tube and the center line C of the tapered surface of each metal tube is the same.
 図11は、図3の金属管4に対して、そのテーパー面4aの内周側にリング溝4bを設けた例である。他の構成は同様である。図11Aにおいて、金属管3と4を付き合わせる際に、Oリング40をリング溝4bに挿入する。このリング溝4bは、金属管3側に設けてもよいが、肉薄部となるために加工に精度を必要とする。また、リング溝4bは、金属管4(または3)の外周側(図中4cで示す側)にも設けてもよい。金属管3に設ける場合は、突部21bの範囲内である。 FIG. 11 shows an example in which a ring groove 4b is provided on the inner peripheral side of the tapered surface 4a of the metal tube 4 of FIG. Other configurations are the same. In FIG. 11A, when attaching the metal tubes 3 and 4, the O-ring 40 is inserted into the ring groove 4b. The ring groove 4b may be provided on the metal tube 3 side, but requires a precision in processing because it is a thin portion. The ring groove 4b may also be provided on the outer peripheral side (the side indicated by 4c in the figure) of the metal tube 4 (or 3). When provided in the metal tube 3, it is within the range of the protrusion 21b.
 図11Bに示した例は、図3の金属管3側の突部21bを削り取ったものである。このような構造とすることにより、充填される接着剤は、金属管3、4の外周側に溢れることになる。 In the example shown in FIG. 11B, the protrusion 21b on the metal tube 3 side in FIG. 3 is scraped off. With such a structure, the adhesive to be filled overflows on the outer peripheral side of the metal tubes 3 and 4.
 図11Cは、金属管3側の突部21bに対して、テーパー面3aから金属管3の外周側に通じた溝hを1又は複数条設けた例である。溝hは放射線状に設けられており、突部21bがこの溝hを有することにより、テーパー面3aと4aとの間隔を図11Bのものより精度よく保った上で、接着剤6を貫通孔eから充填する際の空気抜き、および余分な接着剤を溝hからあふれ出させることができる。この場合において、内週側にOリングを利用してもしなくても良い。また、突部21bではなく、突部21bと接触するテーパー面4aの表面を、外周に向けて放射線状に掘ることにより、テーパー面3a側から外周面に到達する1又は複数条の溝を設けても良い。 FIG. 11C is an example in which one or a plurality of grooves h are provided from the tapered surface 3a to the outer peripheral side of the metal tube 3 with respect to the protrusion 21b on the metal tube 3 side. The grooves h are provided in a radial shape, and the protrusions 21b have the grooves h, so that the gap between the tapered surfaces 3a and 4a is maintained more accurately than that of FIG. It is possible to vent air when filling from e and to overflow excess adhesive from the groove h. In this case, the O-ring may or may not be used on the inner week side. Also, one or a plurality of grooves that reach the outer peripheral surface from the tapered surface 3a side are provided by digging the surface of the tapered surface 4a that is in contact with the protruding portion 21b instead of the protruding portion 21b radially toward the outer periphery. May be.
 上記実施例おいて、金属管3,4、11,12、16、17及び継ぎ手20或いは次に述べる継ぎ手41、42は、金属管31、32と同様に焼入れ加工を施しても良い。 In the above embodiment, the metal tubes 3, 4, 11, 12, 16, 17 and the joint 20 or the joints 41 and 42 to be described below may be subjected to quenching similarly to the metal tubes 31 and 32.
 図12は、図8に示した金属管部とフランジ部を備えた継ぎ手20の実施例に対して、変更を加えた継ぎ手41、42の例を示す。継ぎ手41は、互いが向き合って接続する面に対して、Oリング43を収容する溝41cを有しているのに対して、継ぎ手42はこれを有さない点で相違するのみであって他の構造は同一である。従って、継ぎ手41についてのみ説明する。 FIG. 12 shows an example of joints 41 and 42 obtained by changing the embodiment of the joint 20 having the metal pipe part and the flange part shown in FIG. The joint 41 has a groove 41c that accommodates the O-ring 43 with respect to the surfaces that face each other and connect, whereas the joint 42 is different only in that it does not have this. The structure of is the same. Therefore, only the joint 41 will be described.
 継ぎ手41は、テーパー面に突部を有さない図1の金属管1を接続するために用いられる。継ぎ手41は、ボルト44、ナット45の使用に用いられる貫通孔41gが等角度間隔に設けられたフランジ部41dを有している。図12Aは側面断面を示し、図12BはX方向から見た継ぎ手41を示している。継ぎ手41が金属管1と接続する端部は、外周側の突部41bに対して、ロート状のテーパー面41eから継ぎ手41の外周側に通じた溝hを1又は複数条設けられている。溝hは放射線状に設けられており、突部41bがこの溝hを有することにより、テーパー面41eと金属管1のテーパー面1aとの間隔を精度よく保った上で、接着剤6を貫通孔eから充填する際の空気抜き、および余分な接着剤を溝hからあふれ出させることができる。また、内周側の突部41aには、Oリング46を挿入する溝41fが設けられている。 The joint 41 is used to connect the metal tube 1 of FIG. 1 having no protrusion on the tapered surface. The joint 41 has a flange portion 41d in which through holes 41g used for using bolts 44 and nuts 45 are provided at equal angular intervals. FIG. 12A shows a side cross-section, and FIG. 12B shows the joint 41 as viewed from the X direction. At the end where the joint 41 is connected to the metal tube 1, one or a plurality of grooves h extending from the funnel-shaped tapered surface 41 e to the outer peripheral side of the joint 41 are provided with respect to the protrusion 41 b on the outer peripheral side. The grooves h are provided in a radial shape, and the protrusions 41b have the grooves h, so that the gap between the tapered surface 41e and the tapered surface 1a of the metal tube 1 is maintained with high accuracy, and the adhesive 6 is penetrated. When the air is filled from the hole e, air can be removed, and excess adhesive can overflow from the groove h. The protrusion 41a on the inner peripheral side is provided with a groove 41f into which the O-ring 46 is inserted.
 図12の左側の接続構造においては、図4で示した短管からなるストレート形のスリーブ7(或いはスリーブ9)を継ぎ手42の外周面と金属管1の外周面とに跨いだ状態で外嵌し、接着剤8により接着した状態を示している。スリーブ7(或いはスリーブ9)は、継ぎ手42と金属管1との接続に用いても良い。 In the connection structure on the left side of FIG. 12, the straight sleeve 7 (or sleeve 9) composed of the short pipe shown in FIG. 4 is fitted over the outer peripheral surface of the joint 42 and the outer peripheral surface of the metal tube 1. In addition, a state where the adhesive 8 is adhered is shown. The sleeve 7 (or the sleeve 9) may be used for connection between the joint 42 and the metal tube 1.
 図12の実施例では、突部41bに溝hを設けたが、金属管1側の突部41bと接触するテーパー面1aの表面を、外周に向けて放射線状に掘ることにより、テーパー面1a側から外周面に到達する1又は複数条の溝を設けても良い。 In the embodiment of FIG. 12, the groove 41 is provided in the protrusion 41b. However, the surface of the taper surface 1a that contacts the protrusion 41b on the metal tube 1 side is digged radially toward the outer periphery, thereby forming the taper surface 1a. One or a plurality of grooves that reach the outer peripheral surface from the side may be provided.
 図13に、図7のジョイント管の他の実施例を示す。図7のジョイント管14では両端部に形成されたテーパー面14b、14dには、突部を有していないが、本実施例のジョイント管50においては外周側に金属管16、17のテーパー面と当接する突部50aを有している。他の構成については、内周側の封止用環状突部50eは、ジョイント管14の封止用環状突部14eと同様にジョイント管50の両端部に形成されたテーパー面50b、50dの間に存在しており、テーパー面50b、50dから中心線cに垂直に延びることによりテーパー面50b、50dの角度よりも大きい角度とした環状端面50f、50gと、金属管16、17の内周径と同じ内周面50hとで外表面を形成されている。各環状端面50f、50gの巾中央寄り位置にはOリング18の嵌入されるリング溝50iが同芯状に形成されている。また、突部50aには、図12の実施例と同様にロート状のテーパー面50b、dからジョイント管50の外周側に通じた溝hを1又は複数条、放射線状に設けられている。 FIG. 13 shows another embodiment of the joint pipe of FIG. In the joint pipe 14 of FIG. 7, the tapered surfaces 14b and 14d formed at both ends do not have protrusions, but in the joint pipe 50 of the present embodiment, the tapered surfaces of the metal pipes 16 and 17 on the outer peripheral side. And a protrusion 50a that comes into contact with. As for the other configuration, the sealing annular protrusion 50e on the inner peripheral side is between the tapered surfaces 50b and 50d formed at both ends of the joint pipe 50 in the same manner as the sealing annular protrusion 14e of the joint pipe 14. The annular end surfaces 50f and 50g that extend perpendicularly to the center line c from the tapered surfaces 50b and 50d and have an angle larger than the angle of the tapered surfaces 50b and 50d, and the inner peripheral diameters of the metal tubes 16 and 17 The outer surface is formed by the same inner peripheral surface 50h. A ring groove 50i into which the O-ring 18 is fitted is formed concentrically at a position near the center of the width of each annular end face 50f, 50g. In addition, the protrusion 50a is provided with one or a plurality of grooves in a radial pattern from the funnel-shaped tapered surfaces 50b and 50d to the outer peripheral side of the joint pipe 50 in the same manner as in the embodiment of FIG.
 図14に、他のジョイント管51を示す。図13のジョイント管50との相違は、外周面がジョイント管51の中心に向かって管径を増大するテーパー面51j、51kを有していることである。他の構成は図13のジョイント管50と同様である。 FIG. 14 shows another joint pipe 51. The difference from the joint pipe 50 in FIG. 13 is that the outer peripheral surface has tapered surfaces 51 j and 51 k that increase the pipe diameter toward the center of the joint pipe 51. Other configurations are the same as those of the joint pipe 50 of FIG.
 図15にさらに他のジョイント管52を示す。図13のジョイント管50との相違は、ジョイント管52は、ジョイント管50に見られた内周側の封止用環状突部50eを有していないことである。ジョイント管52の両端部に形成されたテーパー面52b、52dは、内周にまで到達している。内周側の位置には、リング溝52iが同芯状に設けられており、Oリング18の嵌入される。一方、接続する金属管は、図11に示したような内周側にのみ突部21aを有する金属管3であり、この突部21aとの間に、Oリング18が挟まれ、透孔gから圧入される接着剤が、金属管3内部に漏れ出すことを防止する。 FIG. 15 shows still another joint pipe 52. The difference from the joint pipe 50 in FIG. 13 is that the joint pipe 52 does not have the inner circumferential annular protrusion 50e seen in the joint pipe 50. Tapered surfaces 52b and 52d formed at both ends of the joint pipe 52 reach the inner periphery. A ring groove 52i is provided concentrically at a position on the inner peripheral side, and the O-ring 18 is fitted therein. On the other hand, the metal pipe to be connected is the metal pipe 3 having the protrusion 21a only on the inner peripheral side as shown in FIG. 11, and the O-ring 18 is sandwiched between the protrusion 21a and the through hole g. Prevents the adhesive press-fitted from leaking into the metal tube 3.
 図13、図15のジョイント管を利用した場合は、図4に示したスリーブ8、9を使用することができる。 13 and 15 can be used, the sleeves 8 and 9 shown in FIG. 4 can be used.
 尚、樹脂管においては、金属管とは異なり隙間精度を金属管の如く制御することは困難であるが、隙間間隔を狭く制御すれば金属管と同様に本発明を適用できる。ただし、樹脂菅においては、樹脂管の接着面の材料を溶かして接着する接着剤が存在しており、この場合には隙間間隔を制御するのは撚り困難となる。 In the resin pipe, unlike the metal pipe, it is difficult to control the gap accuracy like the metal pipe. However, if the gap interval is controlled to be narrow, the present invention can be applied in the same manner as the metal pipe. However, in the resin cage, there is an adhesive that melts and bonds the material of the adhesive surface of the resin tube, and in this case, it is difficult to twist the gap interval.

Claims (13)

  1.  端部が先側へ向け縮径した円錐状のテーパー面を持つ管と、端部が奥側へ向け縮径したロート状のテーパー面を持つ管と、前記テーパー面同士が接着剤により接続された接続構造であって、前記テーパー面同士の傾斜角が等しく、かつ3度~8度の範囲内であり、前記テーパー面上であって管の内周側に同心円状に0.05mm~0.3mmの高さ範囲でリング状に突出し正対するテーパー面に対して当接する内周側突部と、前記ロート状のテーパー面を持つ管の外周から当該テーパー面に貫通する接着剤の圧入孔とが設けられることを特徴とする管の接続構造。 A pipe having a conical taper surface whose end is reduced in diameter toward the front side, a pipe having a funnel-shaped taper surface whose end is reduced in diameter toward the back side, and the taper surfaces are connected by an adhesive. The tapered surfaces have the same inclination angle and are in the range of 3 to 8 degrees, and are concentrically arranged on the inner peripheral side of the tube on the tapered surface from 0.05 mm to 0 mm. An inner peripheral side protrusion that protrudes in a ring shape within a height range of 3 mm and abuts against the taper surface that directly faces, and an adhesive press-fitting hole that penetrates the taper surface from the outer periphery of the tube having the funnel-shaped taper surface And a pipe connection structure characterized by that.
  2.  請求項1記載の管の接続構造において、前記円錐状のテーパー面を持つ管側に前記リング状突部が設けられることを特徴とする管の接続構造。 2. The pipe connection structure according to claim 1, wherein the ring-shaped protrusion is provided on a pipe side having the conical tapered surface.
  3.  請求項1記載の管の接続構造において、前記円錐状のテーパー面上であって前記管の外周側に前記円錐状のテーパー面からリング状に突出し前記正対するテーパー面に当接する外周側突部が設けられることを特徴とする管の接続構造。 2. The pipe connection structure according to claim 1, wherein the protrusion is on the conical taper surface and protrudes in a ring shape from the conical taper surface toward the outer peripheral side of the tube and abuts against the taper surface facing the conical taper surface. A pipe connection structure characterized in that is provided.
  4.  請求項1記載の管の接続構造において、前記管同士が付き合わされた位置を中心とした両側の範囲に外嵌された円筒状のスリーブと、前記スリーブと前記管の外周面との間に充填された接着剤とを有することを特徴とする管の接続構造。 2. The pipe connection structure according to claim 1, wherein a cylindrical sleeve that is externally fitted in a range on both sides centering on a position where the pipes are attached to each other, and a space between the sleeve and the outer peripheral surface of the pipe are filled. A connecting structure for a tube, characterized by comprising a bonded adhesive.
  5.  請求項4記載の管の接続構造において、前記スリーブの外周から内周に貫通する接着剤の圧入孔が開口していることを特徴とする管の接続構造。 5. The pipe connection structure according to claim 4, wherein an adhesive press-fitting hole penetrating from the outer periphery to the inner periphery of the sleeve is opened.
  6.  請求項3記載の管の接続構造において、前記外周側突部あるいは,当該外周側突部が対面するテーパー面に対して、放射線状の溝が設けられていることを特徴とする管の接続構造。 4. The pipe connection structure according to claim 3, wherein a radial groove is provided on the outer peripheral side protruding portion or a tapered surface facing the outer peripheral side protruding portion. .
  7.  請求項1記載の管の接続構造において、前記管同士が当接し合う内周側位置であって、いずれかの管側にはリング状溝が設けられており、当該リング状溝に挿入されるOリングを有することを特徴とする管の接続構造。 2. The pipe connection structure according to claim 1, wherein the pipe is in an inner peripheral side where the pipes come into contact with each other, and a ring-like groove is provided on any one of the pipes, and is inserted into the ring-like groove. A pipe connection structure comprising an O-ring.
  8. 請求項1記載の管の接続構造において、管の先端部は焼入れ加工されていることを特徴とする管の接続構造。 2. The pipe connection structure according to claim 1, wherein a distal end portion of the pipe is quenched.
  9. 請求項1記載の管の接続構造において、何れかの1つの前記管は、他の前記管と接着される端部の反対側の端部にフランジ部を有することを特徴とする管の接続構造。 2. The tube connection structure according to claim 1, wherein any one of the tubes has a flange portion at an end opposite to an end bonded to the other tube. .
  10. 請求項9記載の管の接続構造において、前記2つの管を跨いだ状態で外嵌され、両管の外周面に接着剤により接着されたスリーブを有することを特徴とする管の接続構造。 10. The pipe connection structure according to claim 9, further comprising a sleeve that is externally fitted in a state of straddling the two pipes and is bonded to an outer peripheral surface of both pipes with an adhesive.
  11. 請求項7記載の管の接続構造において、一方の前記管はロート状のテーパー面を両端部に設けられており、かつ内周側位置には前記リング状溝が設けられており、当該リング状溝に挿入されるOリングを有して別の他の管と接続するジョイント管であることを特徴とする管の接続構造。 8. The pipe connection structure according to claim 7, wherein one of the pipes is provided with a funnel-shaped tapered surface at both ends, and the ring-shaped groove is provided at an inner peripheral side position. A pipe connection structure characterized by being a joint pipe having an O-ring inserted into a groove and connected to another pipe.
  12. 請求項11記載の管の接続構造において、前記ジョイント管と他の管を跨いだ状態で外嵌され、両管の外周面に接着剤により接着されたスリーブを有することを特徴とする管の接続構造。 12. The pipe connection structure according to claim 11, further comprising: a sleeve that is externally fitted in a state of straddling the joint pipe and another pipe, and has a sleeve bonded to the outer peripheral surface of both pipes by an adhesive. Construction.
  13.  端部が先側へ向け縮径した円錐状のテーパー面を持つ管と、端部が奥側へ向け縮径したロート状のテーパー面を持つ管と、前記テーパー面同士が接着剤により接続された接続構造であって、前記テーパー面同士の傾斜角が等しく、かつ3度~8度の範囲内であり、さらに、前記円錐状及びロート状のテーパー面から夫々垂直の環状端面が当該テーパー面から連続して内周側に設けられており、かつ一方の環状端面にはOリングが嵌入されるリング溝が設けられており、前記ロート状のテーパー面に連続する環状端面の方が円錐状のテーパー面に連続する環状端面よりも長いことにより前記環状端面同士がOリングを介して前記テーパー面同士を0.05mm~0.3mmの高さ範囲で正対させ、さらに前記ロート状のテーパー面を持つ管の外周から当該テーパー面に貫通する接着剤の圧入孔が設けられていることを特徴とする管の接続構造。 A pipe having a conical taper surface whose end is reduced in diameter toward the front side, a pipe having a funnel-shaped taper surface whose end is reduced in diameter toward the back side, and the taper surfaces are connected by an adhesive. The tapered surfaces have equal inclination angles and are in the range of 3 to 8 degrees, and each of the conical and funnel-shaped tapered surfaces has an annular end surface perpendicular to the tapered surface. Is provided on the inner circumferential side continuously, and a ring groove into which an O-ring is fitted is provided on one annular end surface, and the annular end surface continuing to the funnel-shaped tapered surface is conical. The ring-shaped end faces are opposed to each other in a height range of 0.05 mm to 0.3 mm via an O-ring, and the funnel-shaped taper. Pipe with face Connection structure of the tube, characterized in that the press-fit hole of the adhesive penetrating from the peripheral to the tapered surface is provided.
PCT/JP2009/058971 2009-05-14 2009-05-14 Pipe joint structure WO2010131347A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/058971 WO2010131347A1 (en) 2009-05-14 2009-05-14 Pipe joint structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/058971 WO2010131347A1 (en) 2009-05-14 2009-05-14 Pipe joint structure

Publications (1)

Publication Number Publication Date
WO2010131347A1 true WO2010131347A1 (en) 2010-11-18

Family

ID=43084737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/058971 WO2010131347A1 (en) 2009-05-14 2009-05-14 Pipe joint structure

Country Status (1)

Country Link
WO (1) WO2010131347A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102734573A (en) * 2011-04-07 2012-10-17 上海市电力公司 Waterproof structure for pipe-jacking method tunnel union joint

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS519667Y1 (en) * 1970-01-07 1976-03-15
JPS53103223A (en) * 1977-02-21 1978-09-08 Usm Corp Method for connecting two neighboring surfaces to proper pipe joint element
JPS53149217U (en) * 1977-04-28 1978-11-24
JPH01113689U (en) * 1988-01-25 1989-07-31
JPH0542876U (en) * 1991-11-13 1993-06-11 株式会社トヨツクス Hose connection structure
JPH10220659A (en) * 1997-02-06 1998-08-21 Mitsubishi Kagaku Sanshi Corp Sleeve to be arranged in wall through hole, and concrete wall

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS519667Y1 (en) * 1970-01-07 1976-03-15
JPS53103223A (en) * 1977-02-21 1978-09-08 Usm Corp Method for connecting two neighboring surfaces to proper pipe joint element
JPS53149217U (en) * 1977-04-28 1978-11-24
JPH01113689U (en) * 1988-01-25 1989-07-31
JPH0542876U (en) * 1991-11-13 1993-06-11 株式会社トヨツクス Hose connection structure
JPH10220659A (en) * 1997-02-06 1998-08-21 Mitsubishi Kagaku Sanshi Corp Sleeve to be arranged in wall through hole, and concrete wall

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102734573A (en) * 2011-04-07 2012-10-17 上海市电力公司 Waterproof structure for pipe-jacking method tunnel union joint

Similar Documents

Publication Publication Date Title
JP5291336B2 (en) Method and structure for joining metal members
JP5180949B2 (en) Pipe connection structure
JP5646653B2 (en) Pressure piping connection structure
KR101146603B1 (en) Flange coupling, and metal pipe joining structure
KR100255315B1 (en) Sealing and bonding process to join component together
KR20000048303A (en) apparatus and method for jointing a plurality of steel members using shear rings
WO2014030819A1 (en) Method for manufacturing long-neck flange
WO2010131347A1 (en) Pipe joint structure
US11273517B2 (en) Rotary friction welding
JP4920560B2 (en) High-strength bolt friction joint structure and method for forming a metal sprayed layer in high-strength bolt friction joint structure
JP2018200084A (en) Connecting method of piping
JP6743005B2 (en) Fluid conduit element and method for manufacturing a fluid conduit element
JP2001289774A (en) Evaluation method for adhesive and bonding method
CN108027096A (en) The connection method of pressure pipe and the production method of pressure pipe with flange
CN101799095A (en) Method for connecting resin-based composite material tube and metal material
JP5846072B2 (en) Welded joint for high-strength steel pipe, manufacturing method for welded joint for high-strength steel pipe, joining method for high-strength steel pipe, and joining structure for high-strength steel pipe
JP2014009761A (en) Flanged tube body
JP3650486B2 (en) Liquid phase diffusion joint structure of metal pipe
JP2004332338A (en) Reinforced structure of concrete member having opening and reinforcing method
EP3298268B1 (en) Blade root insert and method of manufacture
Barton et al. Mechanical behaviour of adhesively bonded polyethylene tapping tees
JPH106036A (en) Tube welding method by liquid phase diffusion welding
JP2018111128A (en) Rotary friction welding
JP2018066229A (en) Joint of steel plates
JPH0747670Y2 (en) Flexible Tube

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09844620

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09844620

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP