WO2010131319A1 - Method for manufacturing stator, and stator - Google Patents

Method for manufacturing stator, and stator Download PDF

Info

Publication number
WO2010131319A1
WO2010131319A1 PCT/JP2009/058751 JP2009058751W WO2010131319A1 WO 2010131319 A1 WO2010131319 A1 WO 2010131319A1 JP 2009058751 W JP2009058751 W JP 2009058751W WO 2010131319 A1 WO2010131319 A1 WO 2010131319A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulator
coil
stator
edgewise coil
manufacturing
Prior art date
Application number
PCT/JP2009/058751
Other languages
French (fr)
Japanese (ja)
Inventor
三元 井ノ口
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP2010540979A priority Critical patent/JP5093362B2/en
Priority to PCT/JP2009/058751 priority patent/WO2010131319A1/en
Publication of WO2010131319A1 publication Critical patent/WO2010131319A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/12Impregnating, heating or drying of windings, stators, rotors or machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/52Fastening salient pole windings or connections thereto
    • H02K3/521Fastening salient pole windings or connections thereto applicable to stators only
    • H02K3/522Fastening salient pole windings or connections thereto applicable to stators only for generally annular cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2203/00Specific aspects not provided for in the other groups of this subclass relating to the windings
    • H02K2203/12Machines characterised by the bobbins for supporting the windings

Definitions

  • the present invention relates to a stator manufacturing method for manufacturing a stator having a split stator including a split core, an insulator, and a concentrated winding coil.
  • the present applicants have proposed a method of manufacturing a split stator in Patent Documents 1 and 2. That is, an insulator having a thickness of 0.2 to 0.3 mm is formed on the tooth portion of the split core. Next, an edgewise coil is mounted on the insulator. Resin molding is performed by inserting the split core on which the edgewise coil is mounted via the insulator. Thereby, a split stator can be manufactured. According to this manufacturing method, since the resin mold enters the gap between the edgewise coils, a stator excellent in heat dissipation can be manufactured.
  • Patent Documents 1 and 2 have the following problems. (1) When an edgewise coil is mounted on an insulator, a gap is formed between the insulator and the edgewise coil. Since this gap is small, when resin molding is performed, the resin cannot enter and an air layer is formed. When used as a stator, heat is generated in the edgewise coil. The generated heat is released to the core through the insulator. However, if an air layer exists between the insulator and the edgewise coil, there is a problem that the efficiency of heat transfer is significantly deteriorated. (2) Further, since the resin is heated and cooled to mold the insulator, the heated energy is discarded as it is, and there is a problem that it cannot contribute to energy saving and carbon dioxide reduction.
  • the present invention is for solving the above-described problems, and can efficiently dissipate heat generated in the coil to the stator core, and can effectively use the heat energy necessary to mold the insulator.
  • An object of the present invention is to provide a stator manufacturing method that can be used.
  • a stator manufacturing method has the following configuration.
  • (1) In a stator manufacturing method for manufacturing a stator having a split stator including a split core, an insulator, and a concentrated winding coil, a molding step for forming the insulator by inserting the concentrated winding coil, and the insulator While the formed concentrated winding coil is kept at a predetermined temperature or more, it is attached to the teeth portion of the split core and cooled, whereby a shrink fitting process for shrink fitting the concentrated winding coil formed with the insulator into the teeth portion, Have.
  • the insulator is formed only at a location where the coil faces the split core.
  • the insulator is formed to cover the entire circumference of the coil.
  • a gap is formed between the outer peripheral surface of the insulator and the insulator outer peripheral surface of the split core adjacent to the split core.
  • the concentrated winding coil is an edgewise coil, and a positioning mechanism that positions the edgewise coil in a molding die It is preferable to have.
  • the positioning mechanism is a convex portion formed by inserting an edgewise coil in advance.
  • the stator is manufactured by any one of the stator manufacturing methods described in (1) to (6).
  • stator manufacturing method for manufacturing a stator having a split stator including a split core, an insulator, and a concentrated winding coil
  • the insulator is molded by inserting the coil into the cavity, the insulator and the coil are heated to a temperature of 150 ° C. or higher.
  • the coil with the insulator formed on the inner peripheral surface or the like is still at a predetermined temperature (for example, 150 ° C.) or more, that is, immediately after the insulator is formed, it is attached to the tooth portion of the split core, and the split core is used as cold metal. Since the insulator and the coil are cooled, the insulator and the coil are cooled and contracted, so that the insulator and the coil are shrink-fitted to the teeth portion of the split core. Thereby, the clearance gap (existence of an air layer) between an insulator and a teeth part can be almost eliminated. In addition, since the heat energy used to form the insulator can be used as it is in the shrink-fitting process of the insulator and the coil, it can contribute to energy saving and carbon dioxide reduction.
  • a predetermined temperature for example, 150 ° C.
  • the insulator is formed only at a location where the coil faces the split core, the insulator is formed into a coil, and the remaining heat immediately after the molding Thus, the coil can be shrink-fitted into the split core.
  • the insulator is formed so as to cover the entire circumference of the coil. Therefore, the insulator includes an insulator and a resin mold of Patent Document 1. Therefore, the resin molding step can be omitted and the production efficiency can be improved.
  • a gap is formed between the outer peripheral surface of the insulator and the outer peripheral surface of the insulator of the split core adjacent to the split core.
  • the concentrated winding coil is an edgewise coil, and has a positioning mechanism for positioning the edgewise coil in a molding die.
  • the insulator can be formed with a predetermined thickness on the inner peripheral surface of the edgewise coil.
  • the insulator formed on the inner peripheral surface of the edgewise coil has a thickness of about 0.2 to 0.3 mm. This is because sufficient insulation can be secured with such a thickness, and by reducing the thickness, the efficiency of heat transfer from the coil to the core is increased. However, the thickness of the insulator needs to be surely ensured to be 0.2 mm, and therefore a positioning mechanism is required.
  • the positioning mechanism is a convex portion formed by inserting an edgewise coil in advance, the edgewise coil is inserted.
  • a convex portion can be formed at a necessary portion of the edgewise coil.
  • the edgewise coil in which the convex portion is formed is inserted into the insulator molding die, the convex portion comes into contact with the inner surface of the die and is positioned.
  • the thickness of the insulator formed on the inner peripheral surface of the edgewise coil can be made constant.
  • the convex portion is formed of the same material as the insulator, the convex portion also constitutes a part of the insulator.
  • FIG. 1 it is a figure which shows the state which inserted the edgewise coil.
  • FIG. 2 it is a figure which shows the state which closed the upper mold
  • FIG. 3 it is a figure which shows the state which inject
  • FIG. 3 it is a figure which shows the relationship between the edgewise coil immediately after shape
  • FIG. 11 It is a perspective view of a stator assembly. It is a figure which shows the edgewise coil in which the positioning convex part of 2nd Example was formed. It is sectional drawing explaining the method to shape
  • FIG. 7 is a perspective view of the edgewise coil 11.
  • the edgewise coil 11 has a rectangular cross section with a thickness of 1 to 2 mm and a width of 8 to 10 mm, and a conductive wire having an enamel layer formed on the outer periphery is wound into a rectangular shape, and the length of the short side of the rectangle is sequentially changed.
  • the entire cross section is formed into a trapezoidal shape. Terminal portions 11 a and 11 b protrude from the edgewise coil 11.
  • Terminal portions 11 a and 11 b protrude from the edgewise coil 11.
  • a cavity 14 is constituted by a lower mold 12 that is a fixed mold and an upper mold 13 that is a movable mold.
  • the edgewise coil 11 is inserted into the cavity 14.
  • the terminal portions 11 a and 11 b of the edgewise coil 11 shown in FIG. 7 are sandwiched by stepped portions formed on the upper and lower molds 12 and 13 and protrude out of the cavity 14. Yes.
  • the lower mold 12 is formed with an injection port 12 a for injecting the resin F.
  • FIG. 2 when the edgewise coil 11 is inserted into the lower mold 12, the inner surface 14 a of the cavity 14 comes into contact with the outer peripheral surface 11 c of the edgewise coil 11. Is positioned. In this state, the upper mold 13 is lowered to a position where it comes into contact with the lower mold 12. The state is shown in FIG. As shown in FIG. 3, a cavity space 14 b for forming the insulator 15 exists on the inner peripheral surface of the edgewise coil 11. Further, a cavity space 14 c exists on the upper end surface of the edgewise coil 11. A cavity space 14 d exists on the lower end face of the edgewise coil 11. A cavity 14 is configured by the cavity spaces 14b, 14c, and 14d. The injection port 12a communicates with the cavity space 14d through the distribution flow path 12b.
  • FIG. 4 shows a state in which the resin F for molding the insulator 15 is injected.
  • the resin is a thermoplastic resin and is heated to 150 ° C. or more and melted.
  • the insulator 15 includes a cylindrical portion 15a, a core side portion 15b formed at one end of the cylindrical portion 15a on the divided core main body side, and a teeth tip side portion 15c formed at the other end side of the cylindrical portion 15a.
  • the cylindrical portion 15 a is a portion that covers the cylindrical inner surface of the edgewise coil 11.
  • the core side part 15b is a part facing the core main body inner peripheral surface 16b which is an inner peripheral surface other than the teeth part 16a of the split core 16 shown in FIG.
  • the teeth tip side portion 15 c is for holding the edgewise coil 11.
  • FIG. 5 shows a coil assembly 17 in a state where the edgewise coil 11 is inserted and the insulator 15 is formed.
  • segmentation core 16 is comprised from the laminated steel plate, and is iron. The linear expansion coefficient of iron is 12 * 10 ⁇ 6 .
  • the edgewise coil 11 is made of copper, and the insulator is made of resin. The linear expansion coefficient of copper and insulator resin is 17 * 10 ⁇ 6 .
  • the coil assembly 17 is inserted to the base of the tooth portion 16a of the split core 16, that is, to the position where the outer surface of the core side portion 15b of the insulator 15 is in contact with the core body inner peripheral surface 16b of the split core 16.
  • shrink fitting with a tightening margin of 0.013 mm is performed.
  • the state at room temperature is shown in FIG.
  • the insulator 15 and the edgewise coil 11 are shrink-fitted into the tooth portion 16a, thereby eliminating an air layer existing between the inner peripheral surface of the cylindrical portion 15a of the insulator 15 and the outer peripheral surface of the tooth portion 16a.
  • the outer side of the edgewise coil 11 is resin-molded to complete the split stator, 18 split stators are arranged in an annular shape, and the shrink fit ring 19 is shrink fit.
  • the stator assembly 20 is completed.
  • a stator is completed by attaching a bus bar to the stator assembly 20 and wiring and connecting the terminals of the three phases.
  • a stator having a split stator including the split core 16, the insulator 15, and the edgewise coil 11 that is a concentrated winding coil In the stator manufacturing method to be manufactured, the edgewise coil 11 is inserted and the insulator 15 is molded, and the edgewise coil 11 on which the insulator 15 is molded has a predetermined temperature (150 ° C. in this embodiment) or higher.
  • the edgewise coil has a shrink fitting process in which the edgewise coil 11 in which the insulator 15 is molded is shrink-fitted into the teeth portion 16a by being mounted on the teeth portion 16a of the split core 16 and being cooled. 11 is inserted into the cavity 14 and the insulator 15 is molded.
  • Shureta 15 and the coil 11 are heated to a temperature of at least 0.99 ° C..
  • the edgewise coil 11 with the insulator 15 formed on the inner peripheral surface or the like is mounted on the tooth portion 16a of the split core 16 in a state where the temperature is still higher than a predetermined temperature (150 ° C. in this embodiment), that is, immediately after the insulator is formed. Then, the insulator 15 and the edgewise coil 11 are cooled by using the split core 16 as a cold gold. Therefore, since the insulator 15 and the edgewise coil 11 are cooled and contracted, the insulator 15 and the edgewise coil 11 are Then, it is shrink-fitted into the teeth portion 16a of the split core 16.
  • the clearance gap (presence of an air layer) between the insulator 15 and the teeth part 16a can be almost eliminated. And the thermal radiation characteristic of a stator can be improved. Further, since the heat energy used for forming the insulator 15 can be used as it is in the shrink-fitting process of the insulator 15 and the edgewise coil 11, it can contribute to energy saving and carbon dioxide reduction. Further, since the insulator 15 is formed only at a position where the edgewise coil 11 is opposed to the split core 16, the insulator 15 is formed into the edgewise coil 11, and the edgewise coil is formed by the residual heat immediately after the molding. 11 can be shrink-fitted to the split core 16.
  • FIG. 9 shows a state in which four positioning convex portions 21 are formed on the outer periphery of the edgewise coil 11 before the main forming.
  • FIG. 10 shows a method for forming the product in the state shown in FIG.
  • FIG. 10 shows a cross-sectional view of a lower mold 22 that is a fixed mold in which the edgewise coil 11 is inserted, and an upper mold 23 that is a movable mold.
  • the cross section shows a lower mold 22 and an upper mold 23 corresponding to the AA cross section in FIG.
  • a flow path 24 through which resin passes is formed in the lower mold 22.
  • the flow path 24 is connected to a nozzle 25 for supplying resin.
  • FIG. 9 shows a state where the resin is injected and the positioning convex portions 21 are formed at four locations. As a result, the one shown in FIG. 9 is obtained. This is a preliminary process before the main molding.
  • FIG. 11 shows a state in which the edgewise coil 11 formed with the positioning convex portion 21 shown in FIG. 9 is inserted into the cavity 28 of the lower mold 26 which is a fixed mold, and the upper mold 27 which is a movable mold is closed. Indicates. A resin flow path 33 is formed in the lower mold 26.
  • the edgewise coil 11 is positioned with four positioning convex portions 21 in contact with the inner peripheral surface of the cavity 28 of the lower mold 26.
  • the edgewise coil 11 is in contact with the lower die 26 and the upper die 27 only through the four positioning convex portions 21, and the other portions are in a state of floating in the cavity 28.
  • a cavity 28 a is formed on the upper surface side of the edgewise coil 11 in the drawing, a cavity 28 b is formed on the left side, a cavity 28 c is formed on the lower side, and a cavity is formed on the right side except for the positioning convex portion 21. 28d is formed.
  • FIG. 12 shows a state where the resin F is injected and the insulator 29 is molded.
  • the flow path 33 is connected to a nozzle 36 for injecting the resin F.
  • the edgewise coil 11 is covered with an insulator 29 around the entire circumference. Since the positioning convex portion 21 and the resin injected in FIG. 12 are the same resin, the positioning convex portion 21 also constitutes the insulator 29 together with the newly injected resin F.
  • the insulator 29 according to the present embodiment includes the insulator 15 according to the first embodiment and a resin mold.
  • the resin F is a thermoplastic resin and is heated to 150 ° C. or more and melted.
  • FIG. 13 shows a coil assembly 30 in a state where the edgewise coil 11 is inserted and the insulator 29 is formed.
  • segmentation core 16 is comprised from the laminated steel plate, and is iron. The linear expansion coefficient of iron is 12 * 10 ⁇ 6 .
  • the edgewise coil 11 is made of copper, and the insulator is made of resin. The linear expansion coefficient of copper and insulator resin is 17 * 10 ⁇ 6 .
  • the coil assembly 30 is inserted to the base of the tooth portion 16a of the split core 16, that is, to the position where the outer surface of the core side portion 29b of the insulator 29 is in contact with the core body inner peripheral surface 16b of the split core 16.
  • shrink fitting with a tightening margin of 0.013 mm is performed.
  • FIG. 14 shows the state at room temperature.
  • the insulator 29 and the edgewise coil 11 are shrink-fitted to the tooth portion 16a, thereby eliminating an air layer existing between the inner peripheral surface of the tubular portion 29a of the insulator 29 and the outer peripheral surface of the tooth portion 16a.
  • the stator assembly 20 is completed by arranging 18 split stators in the state of FIG. 14 in an annular shape and shrink-fitting the shrink-fitting ring 19.
  • a stator is completed by attaching a bus bar to the stator assembly 20 and wiring and connecting the terminals of the three phases.
  • the insulator 29 is formed so as to cover the entire circumference of the edgewise coil 11. Since the insulator and the resin mold of Document 1 are integrally formed, the resin molding step can be omitted and the production efficiency can be increased. Moreover, since it has the positioning mechanism which positions the edgewise coil 11 in a shaping die, the insulator 29 can be shape
  • the thickness of the insulator 29 needs to be surely ensured by 0.2 mm, and thus a positioning mechanism is required.
  • the positioning mechanism is the positioning convex portion 21 formed by inserting the edgewise coil 11 in advance
  • the edgewise coil can be obtained by inserting the edgewise coil 11 and performing preliminary molding.
  • the positioning convex part 21 can be formed in 11 necessary places.
  • the edgewise coil 11 on which the positioning convex portion 21 is formed is inserted into the lower mold 26 that is an insulator molding die
  • the positioning convex portion 21 comes into contact with the inner surface of the lower mold 26 and is positioned.
  • the thickness of the insulator 29 formed on the inner peripheral surface of the edgewise coil 11 can be made constant.
  • the positioning convex portion 21 is formed of the same material as the insulator 29, the positioning convex portion 21 also constitutes a part of the insulator 29.
  • FIG. 15 shows the shape of the insulator 34 of the third embodiment.
  • the edgewise coil 11 and the insulator 34 attached to the adjacent split core 16 are shown in cross section.
  • a gap S is formed between the outer surfaces of adjacent insulators 34.
  • 18 gaps S are formed between 18 divided stators.
  • cooling oil may be applied to the stator in order to cool the stator. In that case, since the clearance S exists, the cooling oil flows through the clearance S, and the edgewise coil 11 can be efficiently cooled.
  • the positioning mechanism of the edgewise coil 11 is performed by forming the positioning convex portion 21 by preforming.
  • the positioning mechanism is provided with a sliding member protruding into the cavity by the biasing means. You may go by providing.
  • the edgewise coil 11 is positioned in the cavity at the tip of the sliding member.
  • the thickness of the insulator 15 formed on the inner peripheral surface of the edgewise coil 11 can be made constant.
  • the sliding member is retracted into the mold to form an insulator having a predetermined thickness. it can.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)

Abstract

Provided is a method for manufacturing a stator wherein heat generated in a coil can be radiated efficiently to a stator core, and thermal energy required for molding an insulator can be used effectively.  A method for manufacturing a stator having a split stator equipped with a split core (16), an insulator (15), and an edgewise coil (11) of a concentrated winding coil comprises a molding step of molding the insulator (15) by inserting the edgewise coil (11), and a shrink fitting step of shrink fitting the edgewise coil (11), in which the insulator (15) is molded, to a tooth portion (16a) of the split core (16) by attaching the edgewise coil (11), in which the insulator (15) is molded, to a tooth portion (16a) of the split core (16), while keeping the edgewise coil (11) at a predetermined temperature (at 150°C in the embodiment) or more and then cooling the edgewise coil (11).

Description

固定子製造方法、及び固定子Stator manufacturing method and stator
 この発明は、分割コアと、インシュレータと、集中巻きコイルとを備える分割固定子を有する固定子を製造する固定子製造方法に関するものである。 The present invention relates to a stator manufacturing method for manufacturing a stator having a split stator including a split core, an insulator, and a concentrated winding coil.
 本出願人は、特許文献1及び2において、分割固定子の製造方法を提案している。すなわち、分割コアのティース部に0.2~0.3mm厚さのインシュレータを成形する。次に、インシュレータの上にエッジワイズコイルを装着する。エッジワイズコイルがインシュレータを介して装着された分割コアをインサートして、樹脂モールドを行う。これにより、分割固定子が製造できる。
 この製造方法によれば、樹脂モールドがエッジワイズコイルの隙間に進入するため、熱放熱に優れた固定子を製造することができる。
The present applicants have proposed a method of manufacturing a split stator in Patent Documents 1 and 2. That is, an insulator having a thickness of 0.2 to 0.3 mm is formed on the tooth portion of the split core. Next, an edgewise coil is mounted on the insulator. Resin molding is performed by inserting the split core on which the edgewise coil is mounted via the insulator. Thereby, a split stator can be manufactured.
According to this manufacturing method, since the resin mold enters the gap between the edgewise coils, a stator excellent in heat dissipation can be manufactured.
特開2009-072055号公報JP 2009-072055 A 特開2008-160938号公報JP 2008-160938 A
 しかしながら、特許文献1及び2の技術には、次のような問題があった。
(1)インシュレータにエッジワイズコイルを装着したときに、インシュレータとエッジワイズコイルとの間に隙間が形成されてしまう。この隙間は、小さいため、樹脂モールドしたときに、樹脂が進入できず、空気層が形成されてしまう。固定子として使用するときに、エッジワイズコイルにおいて発熱が生じる。発生した熱は、インシュレータを介してコアに逃がされるのであるが、インシュレータとエッジワイズコイルとの間に空気層が存在すると、熱伝達の効率が著しく劣化する問題がある。
(2)また、インシュレータを成形するために樹脂を加熱し、冷却しているため、加熱したエネルギをそのまま捨てることとなり、省エネ、二酸化炭素削減に貢献することができない問題がある。
However, the techniques of Patent Documents 1 and 2 have the following problems.
(1) When an edgewise coil is mounted on an insulator, a gap is formed between the insulator and the edgewise coil. Since this gap is small, when resin molding is performed, the resin cannot enter and an air layer is formed. When used as a stator, heat is generated in the edgewise coil. The generated heat is released to the core through the insulator. However, if an air layer exists between the insulator and the edgewise coil, there is a problem that the efficiency of heat transfer is significantly deteriorated.
(2) Further, since the resin is heated and cooled to mold the insulator, the heated energy is discarded as it is, and there is a problem that it cannot contribute to energy saving and carbon dioxide reduction.
 この発明は上記問題点を解決するためのものであって、コイルで発生する熱を効率よく固定子コアに放熱することができ、かつ、インシュレータを成形するのに必要な熱エネルギを有効に使用できる固定子製造方法を提供することを目的とする。 The present invention is for solving the above-described problems, and can efficiently dissipate heat generated in the coil to the stator core, and can effectively use the heat energy necessary to mold the insulator. An object of the present invention is to provide a stator manufacturing method that can be used.
 上記目的を達成するために、本発明の一態様における固定子製造方法は、次の構成を有している。
(1)分割コアと、インシュレータと、集中巻きコイルとを備える分割固定子を有する固定子を製造する固定子製造方法において、集中巻きコイルをインサートして、インシュレータを成形する成形工程と、インシュレータが成形された集中巻きコイルを、所定温度以上に保ったまま、分割コアのティース部に装着し、冷却することにより、インシュレータが成形された集中巻きコイルをティース部に焼き嵌めする焼き嵌め工程を、有する。
(2)(1)に記載する固定子製造方法において、インシュレータが、コイルが分割コアと相対する箇所にのみ形成されていることが好ましい。
(3)(1)に記載する固定子製造方法において、前記インシュレータが、前記コイルの全周を覆って形成されていることが好ましい。
(4)(3)に記載する固定子製造方法において、前記インシュレータの外周面と、前記分割コアに隣接する分割コアのインシュレータ外周面との間に隙間が形成されていることが好ましい。
In order to achieve the above object, a stator manufacturing method according to an aspect of the present invention has the following configuration.
(1) In a stator manufacturing method for manufacturing a stator having a split stator including a split core, an insulator, and a concentrated winding coil, a molding step for forming the insulator by inserting the concentrated winding coil, and the insulator While the formed concentrated winding coil is kept at a predetermined temperature or more, it is attached to the teeth portion of the split core and cooled, whereby a shrink fitting process for shrink fitting the concentrated winding coil formed with the insulator into the teeth portion, Have.
(2) In the stator manufacturing method described in (1), it is preferable that the insulator is formed only at a location where the coil faces the split core.
(3) In the stator manufacturing method described in (1), it is preferable that the insulator is formed to cover the entire circumference of the coil.
(4) In the stator manufacturing method described in (3), it is preferable that a gap is formed between the outer peripheral surface of the insulator and the insulator outer peripheral surface of the split core adjacent to the split core.
(5)(1)乃至(4)に記載する固定子製造方法のいずれか1つにおいて、前記集中巻きコイルがエッジワイズコイルであること、前記エッジワイズコイルを成形金型内で位置決めする位置決め機構を有することが好ましい。
(6)(5)に記載する固定子製造方法において、前記位置決め機構が、予めエッジワイズコイルをインサートして、成形された凸部であることが好ましい。
(7)(1)乃至(6)に記載する固定子製造方法のいずれか1つの固定子製造法により製造された固定子とするのが好ましい。
(5) In any one of the stator manufacturing methods described in (1) to (4), the concentrated winding coil is an edgewise coil, and a positioning mechanism that positions the edgewise coil in a molding die It is preferable to have.
(6) In the stator manufacturing method described in (5), it is preferable that the positioning mechanism is a convex portion formed by inserting an edgewise coil in advance.
(7) Preferably, the stator is manufactured by any one of the stator manufacturing methods described in (1) to (6).
 次に、上記構成を有する固定子製造方法、及び固定子の作用及び効果について説明する。
(1)分割コアと、インシュレータと、集中巻きコイルとを備える分割固定子を有する固定子を製造する固定子製造方法において、集中巻きコイルをインサートして、インシュレータを成形する成形工程と、インシュレータが成形された集中巻きコイルを、所定温度以上に保ったまま、分割コアのティース部に装着し、冷却することにより、インシュレータが成形された集中巻きコイルをティース部に焼き嵌めする焼き嵌め工程を、有する。
 コイルをキャビティ内にインサートして、インシュレータを成形したときに、インシュレータ及びコイルは、150℃以上の温度まで加熱されている。内周面等にインシュレータが成形されたコイルが、まだ所定温度(例えば、150℃)以上ある状態で、すなわち、インシュレータ成形直後に、分割コアのティース部に装着して、分割コアを冷金として、インシュレータとコイルとを冷却するので、インシュレータとコイルとが、冷却されて収縮するため、インシュレータとコイルとが、分割コアのティース部に対して、焼き嵌めされる。これにより、インシュレータとティース部との間の隙間(空気層の存在)をほとんどなくすことができる。また、インシュレータを成形するために使用した熱エネルギを、インシュレータとコイルの焼き嵌め工程にそのまま使用できるため、省エネ、二酸化炭素の削減に貢献できる。
Next, the stator manufacturing method having the above-described configuration, and the operation and effect of the stator will be described.
(1) In a stator manufacturing method for manufacturing a stator having a split stator including a split core, an insulator, and a concentrated winding coil, a molding step for forming the insulator by inserting the concentrated winding coil, and the insulator While the formed concentrated winding coil is kept at a predetermined temperature or more, it is attached to the teeth portion of the split core and cooled, whereby a shrink fitting process for shrink fitting the concentrated winding coil formed with the insulator into the teeth portion, Have.
When the insulator is molded by inserting the coil into the cavity, the insulator and the coil are heated to a temperature of 150 ° C. or higher. The coil with the insulator formed on the inner peripheral surface or the like is still at a predetermined temperature (for example, 150 ° C.) or more, that is, immediately after the insulator is formed, it is attached to the tooth portion of the split core, and the split core is used as cold metal. Since the insulator and the coil are cooled, the insulator and the coil are cooled and contracted, so that the insulator and the coil are shrink-fitted to the teeth portion of the split core. Thereby, the clearance gap (existence of an air layer) between an insulator and a teeth part can be almost eliminated. In addition, since the heat energy used to form the insulator can be used as it is in the shrink-fitting process of the insulator and the coil, it can contribute to energy saving and carbon dioxide reduction.
(2)(1)に記載する固定子製造方法において、インシュレータが、コイルが分割コアと相対する箇所にのみ形成されていることを特徴とするので、インシュレータをコイルに成形し、成形直後の余熱でコイルを分割コアに対して、焼き嵌めできる。
(3)(1)に記載する固定子製造方法において、前記インシュレータが、前記コイルの全周を覆って形成されていることを特徴とするので、インシュレータは、特許文献1のインシュレータと樹脂モールドとを一体として形成したものとなるため、樹脂モールド工程を省略することができ、生産効率を高めることができる。
(4)(3)に記載する固定子製造方法において、前記インシュレータの外周面と、前記分割コアに隣接する分割コアのインシュレータ外周面との間に隙間が形成されていることを特徴とするので、ハイブリッド自動車で使用され、固定子に冷却油がかけられたときに、隙間に冷却油が進入して、コイルをより冷却することができる。
(2) In the stator manufacturing method described in (1), since the insulator is formed only at a location where the coil faces the split core, the insulator is formed into a coil, and the remaining heat immediately after the molding Thus, the coil can be shrink-fitted into the split core.
(3) In the stator manufacturing method described in (1), the insulator is formed so as to cover the entire circumference of the coil. Therefore, the insulator includes an insulator and a resin mold of Patent Document 1. Therefore, the resin molding step can be omitted and the production efficiency can be improved.
(4) In the stator manufacturing method described in (3), a gap is formed between the outer peripheral surface of the insulator and the outer peripheral surface of the insulator of the split core adjacent to the split core. When the cooling oil is applied to the stator and used in the hybrid vehicle, the cooling oil enters the gap and the coil can be further cooled.
(5)(1)に記載する固定子製造方法において、前記集中巻きコイルがエッジワイズコイルであること、前記エッジワイズコイルを成形金型内で位置決めする位置決め機構を有すること、を特徴とするので、エッジワイズコイルの内周面にインシュレータを所定の厚みで成形することができる。エッジワイズコイルの内周面に形成されるインシュレータの厚みは、0.2~0.3mm程度である。その程度の厚みで十分な絶縁が確保できるからであり、薄くすることにより、コイルからコアへの熱伝達の効率を高くするためである。しかし、インシュレータの厚みは、確実に0.2mm確保される必要があり、そのために、位置決め機構を必要とするのである。 (5) In the stator manufacturing method described in (1), the concentrated winding coil is an edgewise coil, and has a positioning mechanism for positioning the edgewise coil in a molding die. The insulator can be formed with a predetermined thickness on the inner peripheral surface of the edgewise coil. The insulator formed on the inner peripheral surface of the edgewise coil has a thickness of about 0.2 to 0.3 mm. This is because sufficient insulation can be secured with such a thickness, and by reducing the thickness, the efficiency of heat transfer from the coil to the core is increased. However, the thickness of the insulator needs to be surely ensured to be 0.2 mm, and therefore a positioning mechanism is required.
(6)(5)に記載する固定子製造方法において、前記位置決め機構が、予めエッジワイズコイルをインサートして、成形された凸部であることを特徴とするので、エッジワイズコイルをインサートして、予備成形することにより、エッジワイズコイルの必要箇所に凸部を形成できる。凸部が形成されたエッジワイズコイルを、インシュレータ成形用金型にインサートすると、凸部が金型内面に当接して位置決めされる。この状態で、成形することにより、エッジワイズコイルの内周面に形成されるインシュレータの厚みを一定とすることができる。ここで、凸部はインシュレータと同じ材料で形成されているので、凸部もインシュレータの一部を構成する。 (6) In the stator manufacturing method described in (5), since the positioning mechanism is a convex portion formed by inserting an edgewise coil in advance, the edgewise coil is inserted. By performing the pre-molding, a convex portion can be formed at a necessary portion of the edgewise coil. When the edgewise coil in which the convex portion is formed is inserted into the insulator molding die, the convex portion comes into contact with the inner surface of the die and is positioned. By forming in this state, the thickness of the insulator formed on the inner peripheral surface of the edgewise coil can be made constant. Here, since the convex portion is formed of the same material as the insulator, the convex portion also constitutes a part of the insulator.
第1実施例の上型、下型、インサートするエッジワイズコイルを示す断面図である。It is sectional drawing which shows the upper mold | type of 1st Example, a lower mold | type, and the edgewise coil to insert. 図1において、エッジワイズコイルをインサートした状態を示す図である。In FIG. 1, it is a figure which shows the state which inserted the edgewise coil. 図2において、上型を閉じた状態を示す図である。In FIG. 2, it is a figure which shows the state which closed the upper mold | type. 図3において、樹脂を射出してインシュレータを成形した状態を示す図である。In FIG. 3, it is a figure which shows the state which inject | emitted resin and shape | molded the insulator. インシュレータが成形された直後のエッジワイズコイルと、分割コアとの関係を示す図である。It is a figure which shows the relationship between the edgewise coil immediately after shape | molding an insulator, and a division | segmentation core. インシュレータが成形された直後のエッジワイズコイルを、分割コアのティース部に装着した状態を示す図である。It is a figure which shows the state which mounted | wore the tooth part of a split core with the edgewise coil immediately after shape | molding an insulator. エッジワイズコイルの斜視図である。It is a perspective view of an edgewise coil. 固定子組立の斜視図である。It is a perspective view of a stator assembly. 第2実施例の位置決め凸部が形成されたエッジワイズコイルを示す図である。It is a figure which shows the edgewise coil in which the positioning convex part of 2nd Example was formed. 第2実施例の位置決め凸部を成形する方法を説明する断面図である。It is sectional drawing explaining the method to shape | mold the positioning convex part of 2nd Example. 図9の位置決め凸部が形成されたエッジワイズコイルを、下型にインサートして、上型を閉じた状態を示す図である。It is a figure which shows the state which inserted the edgewise coil in which the positioning convex part of FIG. 9 was formed in the lower mold | type, and closed the upper mold | type. 図11において、樹脂を射出してインシュレータを成形した状態を示す図である。In FIG. 11, it is a figure which shows the state which inject | emitted resin and shape | molded the insulator. インシュレータが成形された直後のエッジワイズコイルと、分割コアとの関係を示す図である。It is a figure which shows the relationship between the edgewise coil immediately after shape | molding an insulator, and a division | segmentation core. インシュレータが成形された直後のエッジワイズコイルを、分割コアのティース部に装着した状態を示す図である。It is a figure which shows the state which mounted | wore the tooth part of a split core with the edgewise coil immediately after shape | molding an insulator. 第3実施例の隣接するティース部に装着されたインシュレータが形成されたエッジワイズコイルを示す断面図である。It is sectional drawing which shows the edgewise coil in which the insulator with which the adjacent teeth part of 3rd Example was mounted | worn was formed.
 以下、本発明の1実施例である固定子製造方法について図面を用いて詳細に説明する。図1乃至図4に、エッジワイズコイルを金型にインサートして、インシュレータを成形する工程を示す。図7に、エッジワイズコイル11の斜視図を示す。エッジワイズコイル11は、厚さ1~2mm、幅8~10mmの断面が矩形形状で、外周にエナメル層が形成された導線を矩形形状に巻いて、順次矩形の短辺の長さを変化させて、全体断面が台形形状に成形したものである。エッジワイズコイル11からは、端子部11a、11bが突出している。
 図3においては、固定型である下型12と、可動型である上型13とでキャビティ14を構成している。エッジワイズコイル11は、キャビティ14内にインサートされている。図3には表れていないが、図7に示すエッジワイズコイル11の端子部11a、11bは、上下の金型12,13に形成された段差部により挟み込まれて、キャビティ14の外に突出している。図3及び図4に示すように、下型12には、樹脂Fを射出するための射出口12aが形成されている。
Hereinafter, a stator manufacturing method according to an embodiment of the present invention will be described in detail with reference to the drawings. 1 to 4 show a process of forming an insulator by inserting an edgewise coil into a mold. FIG. 7 is a perspective view of the edgewise coil 11. The edgewise coil 11 has a rectangular cross section with a thickness of 1 to 2 mm and a width of 8 to 10 mm, and a conductive wire having an enamel layer formed on the outer periphery is wound into a rectangular shape, and the length of the short side of the rectangle is sequentially changed. Thus, the entire cross section is formed into a trapezoidal shape. Terminal portions 11 a and 11 b protrude from the edgewise coil 11.
In FIG. 3, a cavity 14 is constituted by a lower mold 12 that is a fixed mold and an upper mold 13 that is a movable mold. The edgewise coil 11 is inserted into the cavity 14. Although not shown in FIG. 3, the terminal portions 11 a and 11 b of the edgewise coil 11 shown in FIG. 7 are sandwiched by stepped portions formed on the upper and lower molds 12 and 13 and protrude out of the cavity 14. Yes. As shown in FIGS. 3 and 4, the lower mold 12 is formed with an injection port 12 a for injecting the resin F.
 図2に示すように、下型12内にエッジワイズコイル11をインサートしたときに、キャビティ14の内面14aがエッジワイズコイル11の外周面11cと当接することにより、キャビティ14内でエッジワイズコイル11が位置決めされている。この状態で、上型13が下型12と当接する位置まで下降する。その状態を図3に示す。
 図3に示すように、エッジワイズコイル11の内周面には、インシュレータ15を形成するためのキャビティ空間14bが存在する。また、エッジワイズコイル11の上部端面には、キャビティ空間14cが存在する。また、エッジワイズコイル11の下部端面には、キャビティ空間14dが存在する。キャビティ空間14b、14c、14dにより、キャビティ14が構成されている。また、射出口12aは、分配流路12bにより、キャビティ空間14dに連通している。
As shown in FIG. 2, when the edgewise coil 11 is inserted into the lower mold 12, the inner surface 14 a of the cavity 14 comes into contact with the outer peripheral surface 11 c of the edgewise coil 11. Is positioned. In this state, the upper mold 13 is lowered to a position where it comes into contact with the lower mold 12. The state is shown in FIG.
As shown in FIG. 3, a cavity space 14 b for forming the insulator 15 exists on the inner peripheral surface of the edgewise coil 11. Further, a cavity space 14 c exists on the upper end surface of the edgewise coil 11. A cavity space 14 d exists on the lower end face of the edgewise coil 11. A cavity 14 is configured by the cavity spaces 14b, 14c, and 14d. The injection port 12a communicates with the cavity space 14d through the distribution flow path 12b.
 図4は、インシュレータ15を成形するための樹脂Fが射出された状態を示している。樹脂は、熱可塑性樹脂であり、150℃以上に加熱され溶融している。インシュレータ15は、筒部15aと、筒部15aの分割コア本体側の一端に形成されたコア側部15bと、筒部15aの他端側に形成されたティース先端側部15cとを有している。
 筒部15aは、エッジワイズコイル11の筒状の内面を覆っている部分である。コア側部15bは、図5に示す、分割コア16のティース部16a以外の内周面であるコア本体内周面16bと相対する部分である。ティース先端側部15cは、エッジワイズコイル11を保持するためのものである。
FIG. 4 shows a state in which the resin F for molding the insulator 15 is injected. The resin is a thermoplastic resin and is heated to 150 ° C. or more and melted. The insulator 15 includes a cylindrical portion 15a, a core side portion 15b formed at one end of the cylindrical portion 15a on the divided core main body side, and a teeth tip side portion 15c formed at the other end side of the cylindrical portion 15a. Yes.
The cylindrical portion 15 a is a portion that covers the cylindrical inner surface of the edgewise coil 11. The core side part 15b is a part facing the core main body inner peripheral surface 16b which is an inner peripheral surface other than the teeth part 16a of the split core 16 shown in FIG. The teeth tip side portion 15 c is for holding the edgewise coil 11.
 図5に、エッジワイズコイル11をインサートして、インシュレータ15を成形した状態であるコイル組立体17を示す。図5に示すように、ティース部根元部の横幅寸法をA=20.000mmとしている。また、コイル組立体17のインシュレータ15の内面幅をB=20-0.013mmとしている。いずれも、常温における寸法である。
 分割コア16は、積層鋼板から構成されており、鉄製である。鉄の線膨張係数は、12*10-6である。エッジワイズコイル11は銅製であり、インシュレータは樹脂製である。銅及びインシュレータ樹脂の線膨張係数は、17*10-6である。
 図2において、分割コア16は常温であり、A=20mmである。エッジワイズコイル11とインシュレータ15の温度は、金型から取り出した直後のため、約150℃である。そのため、コイル組立体17のインシュレータ内面幅は、熱膨張しており、B=20mmである。
FIG. 5 shows a coil assembly 17 in a state where the edgewise coil 11 is inserted and the insulator 15 is formed. As shown in FIG. 5, the width of the base of the teeth portion is A = 20.000 mm. Further, the inner surface width of the insulator 15 of the coil assembly 17 is set to B = 20−0.013 mm. Both are dimensions at room temperature.
The division | segmentation core 16 is comprised from the laminated steel plate, and is iron. The linear expansion coefficient of iron is 12 * 10 −6 . The edgewise coil 11 is made of copper, and the insulator is made of resin. The linear expansion coefficient of copper and insulator resin is 17 * 10 −6 .
In FIG. 2, the split core 16 is at room temperature and A = 20 mm. The temperature of the edgewise coil 11 and the insulator 15 is about 150 ° C. because it is just after being taken out of the mold. Therefore, the insulator inner surface width of the coil assembly 17 is thermally expanded, and B = 20 mm.
 これにより、コイル組立体17を分割コア16のティース部16aの根元まで、すなわち、インシュレータ15のコア側部15bの外面が、分割コア16のコア本体内周面16bに当接する位置まで挿入することができる。
 この状態で、コイル組立体17を常温まで冷却することにより、Bは、0.013mm縮小してB=19.987mmになろうとする。これにより、締め代0.013mmの焼き嵌めが行われる。常温になった状態を図6に示す。
 インシュレータ15とエッジワイズコイル11とが、ティース部16aに対して焼き嵌めされることにより、インシュレータ15の筒部15aの内周面と、ティース部16aの外周面と間に存在する空気層がなくすことができる。
 図6の状態から、エッジワイズコイル11の外側を樹脂モールドして、分割固定子を完成させ、18個の分割固定子を環状に配置して、焼き嵌めリング19を焼き嵌めすることにより、図8に示すように、固定子組立20が完成する。固定子組立20に、バスバーを取り付けて配線し、3相の各端子を接続することにより、固定子が完成する。
Thereby, the coil assembly 17 is inserted to the base of the tooth portion 16a of the split core 16, that is, to the position where the outer surface of the core side portion 15b of the insulator 15 is in contact with the core body inner peripheral surface 16b of the split core 16. Can do.
In this state, by cooling the coil assembly 17 to room temperature, B is reduced by 0.013 mm to B = 19.987 mm. As a result, shrink fitting with a tightening margin of 0.013 mm is performed. The state at room temperature is shown in FIG.
The insulator 15 and the edgewise coil 11 are shrink-fitted into the tooth portion 16a, thereby eliminating an air layer existing between the inner peripheral surface of the cylindrical portion 15a of the insulator 15 and the outer peripheral surface of the tooth portion 16a. be able to.
From the state of FIG. 6, the outer side of the edgewise coil 11 is resin-molded to complete the split stator, 18 split stators are arranged in an annular shape, and the shrink fit ring 19 is shrink fit. As shown in FIG. 8, the stator assembly 20 is completed. A stator is completed by attaching a bus bar to the stator assembly 20 and wiring and connecting the terminals of the three phases.
 以上、詳細に説明したように、本実施例の固定子製造方法によれば、分割コア16と、インシュレータ15と、集中巻きコイルであるエッジワイズコイル11とを備える分割固定子を有する固定子を製造する固定子製造方法において、エッジワイズコイル11をインサートして、インシュレータ15を成形する成形工程と、インシュレータ15が成形されたエッジワイズコイル11を、所定温度(本実施例では、150℃)以上に保ったまま、分割コア16のティース部16aに装着し、冷却することにより、インシュレータ15が成形されたエッジワイズコイル11をティース部16aに焼き嵌めする焼き嵌め工程を、有するので、エッジワイズコイル11をキャビティ14内にインサートして、インシュレータ15を成形したときに、インシュレータ15及びコイル11は、150℃以上の温度まで加熱されている。内周面等にインシュレータ15が成形されたエッジワイズコイル11が、まだ所定温度(本実施例では、150℃)以上ある状態で、すなわち、インシュレータ成形直後に、分割コア16のティース部16aに装着して、分割コア16を冷金として、インシュレータ15とエッジワイズコイル11とを冷却するので、インシュレータ15とエッジワイズコイル11とが、冷却されて収縮するため、インシュレータ15とエッジワイズコイル11とが、分割コア16のティース部16aに対して、焼き嵌めされる。これにより、インシュレータ15とティース部16aとの間の隙間(空気層の存在)をほとんどなくすことができる。そして、固定子の放熱特性を向上させることができる。
 また、インシュレータ15を成形するために使用した熱エネルギを、インシュレータ15とエッジワイズコイル11の焼き嵌め工程にそのまま使用できるため、省エネ、二酸化炭素の削減に貢献できる。
 また、インシュレータ15が、エッジワイズコイル11が分割コア16と相対する箇所にのみ形成されていることを特徴とするので、インシュレータ15をエッジワイズコイル11に成形し、成形直後の余熱でエッジワイズコイル11を分割コア16に対して、焼き嵌めできる。
As described above in detail, according to the stator manufacturing method of the present embodiment, a stator having a split stator including the split core 16, the insulator 15, and the edgewise coil 11 that is a concentrated winding coil. In the stator manufacturing method to be manufactured, the edgewise coil 11 is inserted and the insulator 15 is molded, and the edgewise coil 11 on which the insulator 15 is molded has a predetermined temperature (150 ° C. in this embodiment) or higher. The edgewise coil has a shrink fitting process in which the edgewise coil 11 in which the insulator 15 is molded is shrink-fitted into the teeth portion 16a by being mounted on the teeth portion 16a of the split core 16 and being cooled. 11 is inserted into the cavity 14 and the insulator 15 is molded. Shureta 15 and the coil 11 are heated to a temperature of at least 0.99 ° C.. The edgewise coil 11 with the insulator 15 formed on the inner peripheral surface or the like is mounted on the tooth portion 16a of the split core 16 in a state where the temperature is still higher than a predetermined temperature (150 ° C. in this embodiment), that is, immediately after the insulator is formed. Then, the insulator 15 and the edgewise coil 11 are cooled by using the split core 16 as a cold gold. Therefore, since the insulator 15 and the edgewise coil 11 are cooled and contracted, the insulator 15 and the edgewise coil 11 are Then, it is shrink-fitted into the teeth portion 16a of the split core 16. Thereby, the clearance gap (presence of an air layer) between the insulator 15 and the teeth part 16a can be almost eliminated. And the thermal radiation characteristic of a stator can be improved.
Further, since the heat energy used for forming the insulator 15 can be used as it is in the shrink-fitting process of the insulator 15 and the edgewise coil 11, it can contribute to energy saving and carbon dioxide reduction.
Further, since the insulator 15 is formed only at a position where the edgewise coil 11 is opposed to the split core 16, the insulator 15 is formed into the edgewise coil 11, and the edgewise coil is formed by the residual heat immediately after the molding. 11 can be shrink-fitted to the split core 16.
 次に、本発明の第2の実施例について説明する。
 図9に、本成形前に、エッジワイズコイル11の外周に4箇所の位置決め凸部21を形成した状態のものを示す。図10に、図9の状態のものを成形する方法を示す。図10は、エッジワイズコイル11がインサートされた固定型である下型22、及び可動型である上型23の断面図を示している。断面は、図9におけるAA断面に対応する下型22、上型23を示している。
 下型22には、樹脂が通過する流路24が形成されている。流路24は、樹脂を供給するためのノズル25に接続している。図9では、樹脂が射出され、位置決め凸部21が4箇所に形成された状態を示している。これにより、図9に示すものができる。これは、本成形前の予備的な工程である。
Next, a second embodiment of the present invention will be described.
FIG. 9 shows a state in which four positioning convex portions 21 are formed on the outer periphery of the edgewise coil 11 before the main forming. FIG. 10 shows a method for forming the product in the state shown in FIG. FIG. 10 shows a cross-sectional view of a lower mold 22 that is a fixed mold in which the edgewise coil 11 is inserted, and an upper mold 23 that is a movable mold. The cross section shows a lower mold 22 and an upper mold 23 corresponding to the AA cross section in FIG.
A flow path 24 through which resin passes is formed in the lower mold 22. The flow path 24 is connected to a nozzle 25 for supplying resin. FIG. 9 shows a state where the resin is injected and the positioning convex portions 21 are formed at four locations. As a result, the one shown in FIG. 9 is obtained. This is a preliminary process before the main molding.
 次に、本成形工程について説明する。図11に、図9に示した位置決め凸部21が形成されたエッジワイズコイル11を、固定型である下型26のキャビティ28内にインサートして、可動型である上型27を閉じた状態を示す。下型26には、樹脂の流路33が形成されている。
 図11に示すように、エッジワイズコイル11は、4箇所の位置決め凸部21が、下型26のキャビティ28の内周面に当接して位置決めされている。エッジワイズコイル11は、4箇所の位置決め凸部21を介してのみ下型26、及び上型27と接触しており、他の部分は、キャビティ28内で浮いた状態となっている。下型26のキャビティ28の内面が下にいくほど、狭くなっているので、エッジワイズコイル11は、4箇所の位置決め凸部21により、位置決めされるのである。
 エッジワイズコイル11の図中上面側には、キャビティ28aが形成され、左側にはキャビティ28bが形成され、下側にはキャビティ28cが形成され、右側には、位置決め凸部21以外の場所にキャビティ28dが形成されている。
Next, the main forming process will be described. FIG. 11 shows a state in which the edgewise coil 11 formed with the positioning convex portion 21 shown in FIG. 9 is inserted into the cavity 28 of the lower mold 26 which is a fixed mold, and the upper mold 27 which is a movable mold is closed. Indicates. A resin flow path 33 is formed in the lower mold 26.
As shown in FIG. 11, the edgewise coil 11 is positioned with four positioning convex portions 21 in contact with the inner peripheral surface of the cavity 28 of the lower mold 26. The edgewise coil 11 is in contact with the lower die 26 and the upper die 27 only through the four positioning convex portions 21, and the other portions are in a state of floating in the cavity 28. Since the inner surface of the cavity 28 of the lower mold 26 becomes narrower as it goes down, the edgewise coil 11 is positioned by the four positioning protrusions 21.
A cavity 28 a is formed on the upper surface side of the edgewise coil 11 in the drawing, a cavity 28 b is formed on the left side, a cavity 28 c is formed on the lower side, and a cavity is formed on the right side except for the positioning convex portion 21. 28d is formed.
 図12に、樹脂Fを射出してインシュレータ29を成形した状態を示す。流路33は、樹脂Fを射出するためのノズル36に接続されている。
 エッジワイズコイル11は、インシュレータ29により全周を覆われている。位置決め凸部21と、図12で射出した樹脂は同じ樹脂なので、位置決め凸部21も、新たに射出された樹脂Fと共に、インシュレータ29を構成している。本実施例のインシュレータ29は、第1実施例のインシュレータ15と、樹脂モールドとを含む構成である。
 樹脂Fは、熱可塑性樹脂であり、150℃以上に加熱され溶融している。
 図13に、エッジワイズコイル11をインサートして、インシュレータ29を成形した状態であるコイル組立体30を示す。図13に示すように、ティース部根元部の横幅寸法をA=20.000mmとしている。また、コイル組立体30のインシュレータ29の内面幅をB=20-0.013mmとしている。いずれも、常温における寸法である。
 分割コア16は、積層鋼板から構成されており、鉄製である。鉄の線膨張係数は、12*10-6である。エッジワイズコイル11は銅製であり、インシュレータは樹脂製である。銅及びインシュレータ樹脂の線膨張係数は、17*10-6である。
 図13において、分割コア16は常温であり、A=20mmである。エッジワイズコイル11とインシュレータ29の温度は、金型から取り出した直後のため、約150℃である。そのため、コイル組立体30のインシュレータ内面幅は、熱膨張しており、B=20mmである。
FIG. 12 shows a state where the resin F is injected and the insulator 29 is molded. The flow path 33 is connected to a nozzle 36 for injecting the resin F.
The edgewise coil 11 is covered with an insulator 29 around the entire circumference. Since the positioning convex portion 21 and the resin injected in FIG. 12 are the same resin, the positioning convex portion 21 also constitutes the insulator 29 together with the newly injected resin F. The insulator 29 according to the present embodiment includes the insulator 15 according to the first embodiment and a resin mold.
The resin F is a thermoplastic resin and is heated to 150 ° C. or more and melted.
FIG. 13 shows a coil assembly 30 in a state where the edgewise coil 11 is inserted and the insulator 29 is formed. As shown in FIG. 13, the width of the base of the tooth portion is set to A = 20.000 mm. Further, the inner surface width of the insulator 29 of the coil assembly 30 is set to B = 20−0.013 mm. Both are dimensions at room temperature.
The division | segmentation core 16 is comprised from the laminated steel plate, and is iron. The linear expansion coefficient of iron is 12 * 10 −6 . The edgewise coil 11 is made of copper, and the insulator is made of resin. The linear expansion coefficient of copper and insulator resin is 17 * 10 −6 .
In FIG. 13, the split core 16 is at room temperature and A = 20 mm. The temperature of the edgewise coil 11 and the insulator 29 is about 150 ° C. because it is just after being taken out of the mold. Therefore, the insulator inner surface width of the coil assembly 30 is thermally expanded, and B = 20 mm.
 これにより、コイル組立体30を分割コア16のティース部16aの根元まで、すなわち、インシュレータ29のコア側部29bの外面が、分割コア16のコア本体内周面16bに当接する位置まで挿入することができる。
 この状態で、コイル組立体30を常温まで冷却することにより、Bは、0.013mm縮小してB=19.987mmになろうとする。これにより、締め代0.013mmの焼き嵌めが行われる。常温になった状態を図14に示す。
 インシュレータ29とエッジワイズコイル11とが、ティース部16aに対して焼き嵌めされることにより、インシュレータ29の筒部29aの内周面と、ティース部16aの外周面と間に存在する空気層がなくすことができる。
 図14の状態の分割固定子を、18個環状に配置して、焼き嵌めリング19を焼き嵌めすることにより、図8に示すように、固定子組立20が完成する。固定子組立20に、バスバーを取り付けて配線し、3相の各端子を接続することにより、固定子が完成する。
Thereby, the coil assembly 30 is inserted to the base of the tooth portion 16a of the split core 16, that is, to the position where the outer surface of the core side portion 29b of the insulator 29 is in contact with the core body inner peripheral surface 16b of the split core 16. Can do.
In this state, by cooling the coil assembly 30 to room temperature, B is reduced by 0.013 mm to B = 19.987 mm. As a result, shrink fitting with a tightening margin of 0.013 mm is performed. FIG. 14 shows the state at room temperature.
The insulator 29 and the edgewise coil 11 are shrink-fitted to the tooth portion 16a, thereby eliminating an air layer existing between the inner peripheral surface of the tubular portion 29a of the insulator 29 and the outer peripheral surface of the tooth portion 16a. be able to.
As shown in FIG. 8, the stator assembly 20 is completed by arranging 18 split stators in the state of FIG. 14 in an annular shape and shrink-fitting the shrink-fitting ring 19. A stator is completed by attaching a bus bar to the stator assembly 20 and wiring and connecting the terminals of the three phases.
 以上、説明したように、第2実施例の固定子製造方法によれば、インシュレータ29が、エッジワイズコイル11の全周を覆って形成されていることを特徴とするので、インシュレータ29は、特許文献1のインシュレータと樹脂モールドとを一体として形成したものとなるため、樹脂モールド工程を省略することができ、生産効率を高めることができる。
 また、エッジワイズコイル11を成形金型内で位置決めする位置決め機構を有すること、を特徴とするので、エッジワイズコイル11の内周面にインシュレータ29を所定の厚みで成形することができる。エッジワイズコイル11の内周面に形成されるインシュレータ29の厚みは、0.2~0.3mm程度である。その程度の厚みで十分な絶縁が確保できるからであり、薄くすることにより、エッジワイズコイル11からコアへの熱伝達の効率を高くするためである。しかし、インシュレータ29の厚みは、確実に0.2mm確保される必要があり、そのために、位置決め機構を必要とするのである。
As described above, according to the stator manufacturing method of the second embodiment, the insulator 29 is formed so as to cover the entire circumference of the edgewise coil 11. Since the insulator and the resin mold of Document 1 are integrally formed, the resin molding step can be omitted and the production efficiency can be increased.
Moreover, since it has the positioning mechanism which positions the edgewise coil 11 in a shaping die, the insulator 29 can be shape | molded by the predetermined | prescribed thickness to the internal peripheral surface of the edgewise coil 11. FIG. The insulator 29 formed on the inner peripheral surface of the edgewise coil 11 has a thickness of about 0.2 to 0.3 mm. This is because sufficient insulation can be secured with such a thickness, and by reducing the thickness, the efficiency of heat transfer from the edgewise coil 11 to the core is increased. However, the thickness of the insulator 29 needs to be surely ensured by 0.2 mm, and thus a positioning mechanism is required.
 また、位置決め機構が、予めエッジワイズコイル11をインサートして、成形された位置決め凸部21であることを特徴とするので、エッジワイズコイル11をインサートして、予備成形することにより、エッジワイズコイル11の必要箇所に位置決め凸部21を形成できる。位置決め凸部21が形成されたエッジワイズコイル11を、インシュレータ成形用金型である下型26にインサートすると、位置決め凸部21が下型26の内面に当接して位置決めされる。この状態で、成形することにより、エッジワイズコイル11の内周面に形成されるインシュレータ29の厚みを一定とすることができる。ここで、位置決め凸部21はインシュレータ29と同じ材料で形成されているので、位置決め凸部21もインシュレータ29の一部を構成する。 Further, since the positioning mechanism is the positioning convex portion 21 formed by inserting the edgewise coil 11 in advance, the edgewise coil can be obtained by inserting the edgewise coil 11 and performing preliminary molding. The positioning convex part 21 can be formed in 11 necessary places. When the edgewise coil 11 on which the positioning convex portion 21 is formed is inserted into the lower mold 26 that is an insulator molding die, the positioning convex portion 21 comes into contact with the inner surface of the lower mold 26 and is positioned. By forming in this state, the thickness of the insulator 29 formed on the inner peripheral surface of the edgewise coil 11 can be made constant. Here, since the positioning convex portion 21 is formed of the same material as the insulator 29, the positioning convex portion 21 also constitutes a part of the insulator 29.
 次に、本発明の第3実施例について説明する。第3実施例は、インシュレータ29の形状が、第2実施例のものと相違するのみで、他の構成等は、第2実施例と同じであるので、相違する点のみ詳細に説明し、他の部分については、説明を割愛する。
 図15に、第3実施例のインシュレータ34の形状を示す。隣接する分割コア16に装着されたエッジワイズコイル11とインシュレータ34を断面で示している。
 図15に示すように、隣接するインシュレータ34の外面同士の間に隙間Sが形成されている。
 この隙間Sは、18個の分割固定子の間に18箇所の隙間Sが形成されている。ハイブリッド自動車においては、固定子を冷却するために、固定子に冷却油をかける場合がある。その場合に、隙間Sが存在することにより、冷却油が隙間S内を流れて、エッジワイズコイル11を効率よく冷却できる。
Next, a third embodiment of the present invention will be described. In the third embodiment, only the shape of the insulator 29 is different from that of the second embodiment, and other configurations and the like are the same as those of the second embodiment. The explanation of the part is omitted.
FIG. 15 shows the shape of the insulator 34 of the third embodiment. The edgewise coil 11 and the insulator 34 attached to the adjacent split core 16 are shown in cross section.
As shown in FIG. 15, a gap S is formed between the outer surfaces of adjacent insulators 34.
As for this gap S, 18 gaps S are formed between 18 divided stators. In a hybrid vehicle, cooling oil may be applied to the stator in order to cool the stator. In that case, since the clearance S exists, the cooling oil flows through the clearance S, and the edgewise coil 11 can be efficiently cooled.
 なお、この発明は前記実施形態に限定されるものではなく、発明の趣旨を逸脱することのない範囲で構成の一部を適宜変更して実施することもできる。
 例えば、本実施例では、エッジワイズコイル11の位置決め機構を、予備成形により位置決め凸部21を成形することにより行っているが、位置決め機構が、付勢手段によりキャビティ内に突出した摺動部材を備えることにより行っても良い。この方法によれば、エッジワイズコイル11がキャビティ内で、摺動部材の先端で位置決めされる。成形することにより、エッジワイズコイル11の内周面に形成されるインシュレータ15の厚みを一定とすることができる。ここで、摺動部材は、キャビティ内に樹脂が充填された状態では、樹脂の内圧が付勢手段の力を上まわるため、摺動部材は金型内に引っ込み、所定の厚みのインシュレータを成形できる。
In addition, this invention is not limited to the said embodiment, A part of structure can also be changed suitably and implemented in the range which does not deviate from the meaning of invention.
For example, in the present embodiment, the positioning mechanism of the edgewise coil 11 is performed by forming the positioning convex portion 21 by preforming. However, the positioning mechanism is provided with a sliding member protruding into the cavity by the biasing means. You may go by providing. According to this method, the edgewise coil 11 is positioned in the cavity at the tip of the sliding member. By shaping, the thickness of the insulator 15 formed on the inner peripheral surface of the edgewise coil 11 can be made constant. Here, in the state where the resin is filled in the cavity, since the internal pressure of the resin exceeds the force of the urging means, the sliding member is retracted into the mold to form an insulator having a predetermined thickness. it can.
11  エッジワイズコイル
12、22、26 下型
13、23、27 上型
14  キャビティ
15、29、34 インシュレータ
16  分割コア
16a ティース部
16b コア本体内周面
17、30 コイル組立体
20  固定子組立
21  位置決め凸部
28  キャビティ
11 Edgewise coils 12, 22, 26 Lower mold 13, 23, 27 Upper mold 14 Cavities 15, 29, 34 Insulator 16 Split core 16a Teeth 16b Core body inner peripheral surface 17, 30 Coil assembly 20 Stator assembly 21 Positioning Convex part 28 Cavity

Claims (7)

  1.  分割コアと、インシュレータと、集中巻きコイルとを備える分割固定子を有する固定子を製造する固定子製造方法において、
     前記集中巻きコイルをインサートして、インシュレータを成形する成形工程と、
     前記インシュレータが成形された前記集中巻きコイルを、所定温度以上に保ったまま、前記分割コアのティース部に装着し、冷却することにより、前記インシュレータが成形された前記集中巻きコイルを前記ティース部に焼き嵌めする焼き嵌め工程を、
    有することを特徴とする固定子製造方法。
    In a stator manufacturing method of manufacturing a stator having a split stator including a split core, an insulator, and a concentrated winding coil,
    A molding step of inserting the concentrated winding coil and molding an insulator;
    The concentrated winding coil in which the insulator is molded is attached to the teeth portion of the split core while being kept at a predetermined temperature or more, and is cooled, whereby the concentrated winding coil in which the insulator is molded is attached to the teeth portion. The shrink fitting process for shrink fitting,
    A stator manufacturing method comprising:
  2.  請求項1に記載する固定子製造方法において、
     前記インシュレータが、前記コイルが前記分割コアと相対する箇所にのみ形成されていることを特徴とする固定子製造方法。
    In the stator manufacturing method according to claim 1,
    The stator manufacturing method, wherein the insulator is formed only at a position where the coil faces the split core.
  3.  請求項1に記載する固定子製造方法において、
     前記インシュレータが、前記コイルの全周を覆って形成されていることを特徴とする固定子製造方法。
    In the stator manufacturing method according to claim 1,
    The method for manufacturing a stator, wherein the insulator is formed to cover the entire circumference of the coil.
  4.  請求項3に記載する固定子製造方法において、
     前記インシュレータの外周面と、前記分割コアに隣接する分割コアのインシュレータ外周面との間に隙間が形成されていることを特徴とする固定子製造方法。
    In the stator manufacturing method according to claim 3,
    A stator manufacturing method, wherein a gap is formed between an outer peripheral surface of the insulator and an insulator outer peripheral surface of a split core adjacent to the split core.
  5.  請求項1乃至4に記載する固定子製造方法のいずれか1つにおいて、
     前記集中巻きコイルがエッジワイズコイルであること、
     前記エッジワイズコイルを成形金型内で位置決めする位置決め機構を有すること、
    を特徴とする固定子製造方法。
    In any one of the stator manufacturing methods described in Claim 1 thru | or 4,
    The concentrated winding coil is an edgewise coil;
    Having a positioning mechanism for positioning the edgewise coil in a molding die;
    The stator manufacturing method characterized by these.
  6.  請求項5に記載する固定子製造方法において、
     前記位置決め機構が、予めエッジワイズコイルをインサートして、成形された凸部であることを特徴とする固定子製造方法。
    In the stator manufacturing method according to claim 5,
    The stator manufacturing method, wherein the positioning mechanism is a convex portion formed by inserting an edgewise coil in advance.
  7.  請求項1乃至6に記載する固定子製造方法のいずれか1つの固定子製造法により製造されたことを特徴とする固定子。 A stator manufactured by any one of the stator manufacturing methods according to claim 1.
PCT/JP2009/058751 2009-05-11 2009-05-11 Method for manufacturing stator, and stator WO2010131319A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010540979A JP5093362B2 (en) 2009-05-11 2009-05-11 Stator manufacturing method and stator
PCT/JP2009/058751 WO2010131319A1 (en) 2009-05-11 2009-05-11 Method for manufacturing stator, and stator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/058751 WO2010131319A1 (en) 2009-05-11 2009-05-11 Method for manufacturing stator, and stator

Publications (1)

Publication Number Publication Date
WO2010131319A1 true WO2010131319A1 (en) 2010-11-18

Family

ID=43084709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/058751 WO2010131319A1 (en) 2009-05-11 2009-05-11 Method for manufacturing stator, and stator

Country Status (2)

Country Link
JP (1) JP5093362B2 (en)
WO (1) WO2010131319A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014041637A1 (en) * 2012-09-12 2014-03-20 三菱電機株式会社 Armature of rotating electrical machine and method for manufacturing same
JP2016220393A (en) * 2015-05-20 2016-12-22 三映電子工業株式会社 Resin molded coil and manufacturing method thereof
CN112583216A (en) * 2019-09-27 2021-03-30 北京金风科创风电设备有限公司 Generator stator assembly, insulation processing method thereof and mold
WO2021241113A1 (en) * 2020-05-29 2021-12-02 パナソニックIpマネジメント株式会社 Coil, stator comprising same, and motor
WO2022249828A1 (en) * 2021-05-28 2022-12-01 パナソニックIpマネジメント株式会社 Stator and manufacturing method for stator
JP7444733B2 (en) 2020-08-19 2024-03-06 株式会社Subaru Stator manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008160938A (en) * 2006-12-21 2008-07-10 Toyota Motor Corp Stator of motor, and manufacturing method of stator
JP2009072055A (en) * 2007-08-21 2009-04-02 Toyota Motor Corp Split stator, motor, and split stator manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008160938A (en) * 2006-12-21 2008-07-10 Toyota Motor Corp Stator of motor, and manufacturing method of stator
JP2009072055A (en) * 2007-08-21 2009-04-02 Toyota Motor Corp Split stator, motor, and split stator manufacturing method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014041637A1 (en) * 2012-09-12 2014-03-20 三菱電機株式会社 Armature of rotating electrical machine and method for manufacturing same
CN104620475A (en) * 2012-09-12 2015-05-13 三菱电机株式会社 Armature of rotating electrical machine and method for manufacturing same
JP5837213B2 (en) * 2012-09-12 2015-12-24 三菱電機株式会社 Armature of rotating electric machine and method for manufacturing the same
CN104620475B (en) * 2012-09-12 2017-04-05 三菱电机株式会社 The armature and its manufacture method of electric rotating machine
US9893594B2 (en) 2012-09-12 2018-02-13 Mitsubishi Electric Corporation Armature of rotating electrical machine and method for manufacturing same
JP2016220393A (en) * 2015-05-20 2016-12-22 三映電子工業株式会社 Resin molded coil and manufacturing method thereof
CN112583216A (en) * 2019-09-27 2021-03-30 北京金风科创风电设备有限公司 Generator stator assembly, insulation processing method thereof and mold
WO2021241113A1 (en) * 2020-05-29 2021-12-02 パナソニックIpマネジメント株式会社 Coil, stator comprising same, and motor
EP4160878A4 (en) * 2020-05-29 2023-12-06 Panasonic Intellectual Property Management Co., Ltd. Coil, stator comprising same, and motor
JP7444733B2 (en) 2020-08-19 2024-03-06 株式会社Subaru Stator manufacturing method
WO2022249828A1 (en) * 2021-05-28 2022-12-01 パナソニックIpマネジメント株式会社 Stator and manufacturing method for stator

Also Published As

Publication number Publication date
JP5093362B2 (en) 2012-12-12
JPWO2010131319A1 (en) 2012-11-01

Similar Documents

Publication Publication Date Title
JP4661849B2 (en) Stator structure
CN103023168B (en) Motor and method of manufacturing motor
JP5093362B2 (en) Stator manufacturing method and stator
JP5043313B2 (en) Outer stator of reciprocating motor and manufacturing method thereof
CN101785166B (en) Split stator, motor, and split stator manufacturing method
JP4404145B2 (en) Split stator manufacturing method
CN105026000A (en) Electrical machine having a cooling device, and method for producing said electrical machine
JP5505077B2 (en) Stator manufacturing method
CN108448771A (en) The method of coil segment and manufacture coil segment for stator coil
CN104836395A (en) Method of molding resin casing and motor
CN104428980A (en) Coil, rotating electrical machine, and method of manufacturing coil
US20110156504A1 (en) Motor and method for manufacturing the same
WO2011155038A1 (en) Stator manufacturing method and stator
JP2014023387A (en) Motor and manufacturing method of the same
JP5172318B2 (en) Coil molded body manufacturing method and coil molded body
JP6814568B2 (en) Laminated iron core
CN116097548A (en) Wind turbine with at least one electric machine
JP6331219B2 (en) Movable electric machine, coil manufacturing method
JP2010028914A (en) Resin molded coil, resin molded stators, and manufacturing method for the stators
JP4900294B2 (en) Split stator manufacturing method
JP2009131052A (en) Mold coil manufacturing method, mold coil, stator using mold coil, and rotary electric machine
JP5077167B2 (en) Stator manufacturing system
JP2009289859A (en) Method of manufacturing molded coil
JP2009290955A (en) Mold coil, manufacturing method for mold coil, and stator formed using mold coil
CN116457908B (en) Injection molding inductance device, powder magnetic core and injection molding method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2010540979

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09844593

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09844593

Country of ref document: EP

Kind code of ref document: A1