WO2010130120A1 - WiMAX演进系统下行子帧分配、信息传输及获取方法 - Google Patents

WiMAX演进系统下行子帧分配、信息传输及获取方法 Download PDF

Info

Publication number
WO2010130120A1
WO2010130120A1 PCT/CN2009/074140 CN2009074140W WO2010130120A1 WO 2010130120 A1 WO2010130120 A1 WO 2010130120A1 CN 2009074140 W CN2009074140 W CN 2009074140W WO 2010130120 A1 WO2010130120 A1 WO 2010130120A1
Authority
WO
WIPO (PCT)
Prior art keywords
downlink
subframe
unit frame
frame
subframes
Prior art date
Application number
PCT/CN2009/074140
Other languages
English (en)
French (fr)
Inventor
方惠英
曲红云
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN200910141620.6A external-priority patent/CN101686496A/zh
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP09844532.3A priority Critical patent/EP2418886A4/en
Priority to US13/257,823 priority patent/US8792467B2/en
Publication of WO2010130120A1 publication Critical patent/WO2010130120A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/34Reselection control
    • H04W36/38Reselection control by fixed network equipment
    • H04W36/385Reselection control by fixed network equipment of the core network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2643Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using time-division multiple access [TDMA]
    • H04B7/2656Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using time-division multiple access [TDMA] for structure of frame, burst
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2656Frame synchronisation, e.g. packet synchronisation, time division duplex [TDD] switching point detection or subframe synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present invention relates to the field of wireless communications, and more particularly to a method for downlink subframe allocation, allocation information transmission, and terminal acquisition of downlink subframe allocation information by a next-generation WiMAX (Worldwide Interoperability for Microwave Access) system.
  • WiMAX Worldwide Interoperability for Microwave Access
  • OFDM Orthogonal Frequency Division Multiplexing
  • OFDM greatly reduces the system's sensitivity to multipath fading channel frequency selectivity by converting high-speed data streams into low-speed parallel data streams.
  • OFDM further enhances the system's ability to resist intersymbol interference.
  • the high bandwidth utilization and simple implementation make OFDM more and more widely used in wireless communication.
  • a WiMAX system based on OFDMA Orthogonal Frequency Division Multiple Access
  • Wireless communication technologies are constantly evolving, and market demands are changing. This requires technologies and standards to absorb new technologies through evolving processes while meeting new demands. Through this evolutionary process, standards and systems implemented in accordance with this standard can not only continue their vitality through smooth upgrades, protect the user's existing investment, but also provide more and better services than the old system.
  • mobile WiMAX systems based on the IEEE 802.16e (16e) air interface standard have been unable to meet the high transmission rate, high throughput, fast mobility and low latency requirements of broadband mobile communications in the future.
  • IEEE 802.16m referred to as 16m
  • the 16m system in this document represents a WiMAX system with an air interface standard of IEEE 802.16m, including a backward compatible 16m system (also known as a 16m/16e hybrid system) and a non-backward compatible 16m system (also known as a pure 16m system).
  • the base station in the 16m system is called a 16m base station
  • the IEEE 802.16m is a 16m downlink subframe defined by a pure 16m system.
  • the terminal in a pure 16m system is called a terminal. 16m terminal.
  • the 16e system represents a WiMAX system that uses the air interface standard IEEE 802.16e.
  • the downlink subframe defined by the IEEE 802.16e for the 16e system is called the 16e downlink subframe, and the terminal in the 16e system is called the 16e terminal.
  • the backward compatible 16m system includes both 16m downlink subframes and 16e downlink subframes, which can be both 16m terminals and 16e terminal months.
  • FIG. 1 is a schematic diagram of the superframe structure proposed in the current 16m frame structure design.
  • the superframe 101 has a length of 20 ms and is composed of four 5 ms unit frames 102, and the superframe control information 103 is located on a number of symbols at the beginning of the superframe.
  • the unit frame 102 is composed of 8 subframes 104, and the subframe 104 is divided into a downlink subframe and an uplink subframe, which can be configured according to the system.
  • Subframe 104 is composed of six OFDM symbols 105. According to the frame structure of Fig. 1, the 5ms unit frame contains 8 subframe units.
  • the 16m system On the basis of a super-frame, a frame and a sub-frame, the 16m system must also consider backward compatibility with existing WiMAX terminals. Therefore, 16m needs to be considered. Subframe and 16e subframe allocation, and reasonable configuration of the frame structure to reduce interference between different configuration systems.
  • the Super Frame Header is located in the subframe at the beginning of the superframe.
  • the downlink includes a 16e downlink subframe and a 16m downlink subframe. Since different base stations have different 16e and 16m service requirements, in order to enhance the resource utilization of the 16e/16m hybrid system, the mixing ratio of the 16e downlink and the 16m downlink subframe between different base stations can be set to be different, according to the service in the same base station. The mixing ratio of the 16e downlink subframe and the 16m downlink subframe may also be changed with the superframe as the minimum period.
  • the relationship between 16e unit frame and 16m unit frame is defined in the current 16m system description file.
  • the 16m frame start offset that is, the offset between the 16e unit frame start position and the 16m unit frame start position, and the unit is Subframe, see Figure 2.
  • the present invention provides a downlink subframe allocation method of a WiMAX evolution system, which can ensure synchronization symbol alignment between different base stations.
  • the present invention provides a method for allocating a downlink subframe of a WiMAX evolution system, where the WiMAX evolution system is an IEEE 802.16m system, and the following IEEE 802.16m is abbreviated as 16m.
  • the downlink subframe allocation method includes:
  • the 16m frame start offset is set as a parameter of the configuration area range, and all 16m base stations in the same configuration area in the system set the start position of the 16m unit frame according to the 16m frame start offset;
  • the 16m base station fixedly allocates a starting subframe of a 16m unit frame as a 16m downlink subframe, and transmits a superframe control header with a synchronization symbol at a start position of the first unit frame in the superframe;
  • the 16m base station fixedly allocates a starting subframe of a 16m unit frame as a 16m downlink subframe, and transmits a synchronization symbol at a starting position of the first unit frame in the superframe; the first unit of the 16m base station in the superframe Transmitting a superframe control header in a start subframe of the frame; the synchronization symbol and the superframe control header are time division multiplexed (TDM) in a first unit frame of the superframe;
  • TDM time division multiplexed
  • the configuration area is a neighboring area coverage configured or determined by an operator.
  • the foregoing downlink subframe allocation method may further have the following features:
  • the number of downlink subframes of the 16m unit frame is N, and when N ⁇ 3, the starting offset of the 16m frame ranges from [1, N-2];
  • N 2
  • the 16m frame start offset is 1.
  • N is determined by the ratio of the downlink and uplink subframes of the 16m unit frame, and is a parameter of the configuration area range.
  • the 16m frame start offset is set to 1 or 2 subframes.
  • the foregoing downlink subframe allocation method may further have the following features:
  • the WiMAX evolution system is a backward compatible 16m system
  • the foregoing downlink subframe allocation method further includes: determining, by the 16m base station, a ratio of a 16m downlink subframe and a 16e downlink subframe in a 16m unit frame according to a current requirement of a 16m service and a 16e service. Further, the foregoing downlink subframe allocation method further includes:
  • the 16m base station uses the 16m downlink subframe number in the 16m unit frame as the sector range parameter, and the downlink and uplink of the 16m unit frame set according to the current 16m service and the 16e service requirement of each sector and the associated configuration area range.
  • the subframe ratio determines the number of 16m downlink subframes in a 16m unit frame of each sector.
  • the foregoing downlink subframe allocation method may further have the following feature: the number of 16m downlink subframes in a 16m unit frame of the same sector changes with a superframe as a minimum period.
  • the foregoing downlink subframe allocation method further includes:
  • the 16m base station sets a 16m unit according to a preset allocation manner according to a 16m frame start offset set by a range of a configuration area, a downlink subframe number of a 16m unit frame, and a ratio of a 16m downlink subframe and a 16e downlink subframe.
  • Each downlink subframe in the frame is allocated as a 16m downlink subframe or a 16e downlink subframe, where a starting subframe of a 16m unit frame is fixedly allocated to a 16m downlink subframe, and a first downlink subframe after an uplink to a downlink transition point.
  • Fixed allocation is 16e downlink subframe.
  • the foregoing downlink subframe allocation method may further have the following features:
  • the starting offset of the 16m frame is L
  • the number of downlink subframes of the 16m unit frame is N
  • the number of 16m downlink subframes in the N downlink subframes is M, from the starting position of the 16m unit frame to the downlink to the uplink switching point.
  • the preset allocation method is as follows:
  • M ⁇ P the first M downlink subframes including the start subframe in the 16m unit frame are all allocated as 16m downlink subframes, and the other downlink subframes are all allocated as 16e downlink subframes;
  • N > M > P the first to the N-th downlink subframes after the uplink to the downlink transition point in the 16m unit frame are all allocated as 16e downlink subframes, and the other downlink subframes are all allocated as 16m downlink subframes.
  • the foregoing method of the present invention supports the downlink subframe allocation of the backward compatible 16m system, so that the ratios of the 16m downlink subframe and the 16e downlink subframe are flexibly configured according to the service requirements of different base stations, and the synchronous transmission of synchronization symbols of different base stations is ensured. Preventing mutual interference caused by misalignment of synchronization symbols does not cause neighboring interference problems due to the proportional change of 16m and 16e downlink subframe configurations. At the same time, when coexisting with other TDD systems, it will not have a great impact on the synchronization channel and the reception of some system access required information.
  • the present invention also provides a downlink subframe in a WiMAX evolution system.
  • the method for allocating and allocating information transmission enables the base station to flexibly configure the proportion of the 16m and 16e downlink subframes according to service requirements, and can transmit the allocation information of the downlink subframe to the terminal with little overhead.
  • the present invention also provides a downlink subframe allocation and allocation information transmission method in a WiMAX evolution system, where the WiMAX evolution system is a backward compatible 16m system, and the transmission method includes: a 16m base station is set according to a range of a configuration area to which it belongs.
  • the downlink and uplink subframe ratios of the 16m unit frame and the current 16m service and 16e service requirements determine the number of 16m downlink subframes in the 16m unit frame, and then combine the 16m frame start offset set in the associated configuration area range, according to the pre-
  • the allocation mode is allocated to the downlink subframe in the 16m unit frame, where the starting subframe of the 16m unit frame is fixedly allocated as the 16m downlink subframe;
  • the 16m base station compares the downlink and uplink subframe ratios of the 16m unit frame, the 16m frame start offset, and
  • the 16m downlink subframe number information in the 16m unit frame is written into the superframe control header and broadcast to the 16m terminal.
  • the foregoing downlink subframe allocation and allocation information transmission method may further have the following features: the 16m frame start offset and the 16m downlink subframe number information in the 16m unit frame are represented by three bits.
  • the foregoing downlink subframe allocation and allocation information transmission method may further have the following features: the number of downlink subframes of the 16m unit frame is N, and when N ⁇ 3, the value range of the 16m frame start offset Is [1, N-2];
  • N 2
  • the starting offset of the 16m frame is 1
  • N is determined by the ratio of the downlink and uplink subframes of the 16m unit frame, which is a parameter of the configuration area range.
  • M ⁇ P the first M downlink subframes including the start subframe in the 16m unit frame are all allocated as 16m downlink subframes, and the other downlink subframes are all allocated as 16e downlink subframes;
  • N > M > P the first to the NMth downlink subframes after the uplink to the downlink transition point in the 16m unit frame are all allocated as 16e downlink subframes, and the other downlink subframes are all allocated as 16m downlink subframes.
  • the allocation of 16m subframes and 16e subframes can be dynamically set according to the actual service requirements of the backward compatible 16e system.
  • different 16m and 16e downlinks can be indicated by a small overhead. The change in the way the frame is allocated.
  • the present invention also provides a method for acquiring downlink subframe allocation information by a 16m terminal in a WiMAX evolution system, so that a 16m terminal can quickly and simply acquire allocation information of a 16m downlink subframe.
  • the present invention provides a method for acquiring 16m subframe allocation information by a 16m terminal in a backward compatible 16m system, including:
  • the frame configuration information is obtained from the superframe control header, and the frame configuration information represents or carries a 16m frame start offset, a downlink and uplink subframe ratio of a 16m unit frame, and 16m in a 16m unit frame.
  • the downlink sub-frames and other information according to the obtained information and the preset determination manner, determine which downlink subframes in the 16m unit frame are 16m downlink subframes, where the starting subframe of the 16m unit frame is fixed to the 16m downlink subframe.
  • the method for acquiring the 16m subframe allocation information by the foregoing 16m terminal may further have the following features:
  • the starting offset of the 16m frame is L
  • the number of downlink subframes of the 16m unit frame is N
  • the number of 16m downlink subframes in the N downlink subframes is M, from the starting position of the 16m unit frame to the downlink to the uplink switching point.
  • the number of downlink subframes included in the 16m downlink subframe is determined by the following manner:
  • the first M downlink subframes in the 16m unit frame including the start subframe are 16m downlink subframes
  • N > M > P except for the first to N-th downlink subframes after the uplink to downlink transition point in the 16m unit frame, the other downlink subframes are 16m downlink subframes.
  • the 16m terminal can quickly and easily acquire the allocation information of the 16m downlink subframe.
  • FIG. 1 is a schematic diagram showing the structure of a superframe structure proposed in the current 16m frame structure design
  • 2 is a schematic diagram of a 16m frame start offset in a backward compatible 16m frame structure
  • FIG. 3 is a flowchart of a method for downlink subframe allocation, indication, and terminal acquisition of downlink subframe allocation information in a backward compatible 16m system according to an embodiment of the present invention
  • FIG. 4a and FIG. 4b are respectively a 16m frame start offset of 1 and 2, a schematic diagram of allocation of a 16m downlink subframe and a 16e downlink subframe in a backward compatible 16m system unit frame according to an embodiment of the present invention
  • 5a to 5d are schematic diagrams showing the distribution of 16m subframes and 16e subframes in four different cases in the embodiment of the present invention.
  • the 16m system is used as an example to describe the downlink subframe allocation method of the 16m system.
  • the method can also be applied to the non-backward compatible 16m system.
  • the process is as shown in FIG. 3, including:
  • Step 310 Set a 16m frame start offset in the parameter of the configuration area range, and all 16m base stations in the configuration area range start the 16m unit frame start position according to the 16m frame start offset, and the 16m base station will be 16m.
  • the starting subframe of the unit frame is fixedly allocated as a 16m downlink subframe, so that the superframe control header with the synchronization symbol is sent at the beginning of the starting subframe of the first unit frame in the superframe, or
  • the sync symbol and the superframe control header are time division multiplexed (TDM) in the first unit frame in the superframe.
  • the 16m frame start offset is used as a parameter of the configuration area range (also referred to as deployment wide range), and in the same configuration area range, whether backward compatible or non-backward compatible 16m systems are used.
  • the start position of the 16m unit frame is set according to the frame start offset set by the configuration area range, and the first frame starting from the start position, that is, the start subframe is allocated as a 16m downlink subframe.
  • a superframe may be started by a synchronization symbol (also referred to as a preamble symbol for synchronization), in order to ensure synchronization symbol alignment between different base stations, one consideration is to superframe control headers containing synchronization symbols.
  • the downlink subframe Fixedly placed at the beginning of the last downlink subframe close to the downlink/uplink transition point (the downlink subframe is fixedly allocated as a 16m downlink subframe).
  • the 16m system needs to coexist with other TDD systems, for example, the 16m system and the LTE-TDD system and the adjacent frequency of the TD-SCDMA coexist.
  • the partial symbol punctures in the subframes or sub-frames close to the downlink/uplink transition point, the synchronization channel, and some system access required information will be greatly affected.
  • the starting offset of the 16m frame is in the range of [1, N-2]. , preferably 1 or 2.
  • the previous downlink subframe of the downlink/uplink conversion point (downlink to uplink transition point) of the unit frame is not used as the starting subframe, so that the superframe control header is not in the previous downlink of the downlink/uplink transition point.
  • N 2
  • the 16m frame start offset is 1
  • N is determined by the downlink/uplink subframe ratio of the 16m unit frame, which is a parameter of the configuration area range.
  • the 16m frame start offset in the range of the configuration area is the same, and is not different due to the different ratios of the 16m downlink subframe and the 16e downlink subframe. Therefore, this embodiment can ensure synchronous transmission of synchronization symbols of different base stations. There may be multiple sync symbols in the superframe, but the spacing between these sync symbols is the same, so just align one of them.
  • Step 320 The 16m base station determines a 16m downlink subframe and a 16e downlink subframe in a 16m unit frame according to the configured downlink/downlink subframe ratio (downlink and uplink subframe ratio) and the current requirements of the 16m service and the 16e service. Number (or ratio);
  • the number information of the 16m downlink subframe and/or the 16e downlink subframe in the 16m unit frame is used as a parameter of the sector specific.
  • the 16m unit frame in each sector is determined.
  • the ratio of the 16m downlink subframe and the 16e downlink subframe may be different, and the ratio of the 16m downlink subframe to the 16e downlink subframe in the 16m unit frame of different sectors may be different, and the number in the 16m unit frame of the same sector is the minimum period of the superframe.
  • the change is made, that is, the division of the 16m subframe and the 16e subframe may be different in different superframes, and the same sector may adjust the ratio of the 16m subframe and the 16e subframe according to the change of the traffic.
  • Step 330 The 16m base station according to the number of 16m downlink subframes and/or 16e downlink subframes in the 16m unit frame, the set 16m frame start offset, and the downlink subframe number of the 16m unit frame, according to a preset allocation manner Each downlink subframe in a 16m unit frame is allocated as a 16m downlink subframe or a 16e downlink subframe;
  • the first one after the uplink/downlink transition point (upstream to downlink transition point) in the 16m unit frame The downlink subframe is fixedly allocated as a 16e downlink subframe.
  • the 16m downlink subframe and the 16e downlink subframe may be sequentially included, or only included 16m downlink subframe; may include only 16e downlink subframes, or 16e downlink subframes and 16m downlink subframes, or only 16m downlink subframes, from the uplink/downlink transition point to the 16m unit frame start position ( For pure 16m systems).
  • the number of 16m downlink subframes may also be equal to the number of downlink subframes in the unit frame, that is, the configuration sector is a pure 16m system.
  • 4a and 4b are schematic diagrams of the allocation of the 16m downlink subframe and the 16e downlink subframe in the backward compatible 16m system unit frame, respectively, when the 16m initial offset is 1 and 2, and the downlink/uplink subframe in the unit frame.
  • the frame ratio is 5:3.
  • the downlink subframe in the unit frame includes a 16m downlink subframe and a 16e downlink subframe.
  • the ratio of the 16m downlink subframe to the 16e downlink subframe may be 4:1, 3:2, 2:3, and 1:4. Because some base stations in the same area may belong to a pure 16m system, some base stations belong to a backward compatible 16m system. In this case, the pure 16m system also needs to be consistent with the backward compatible 16m system in the downlink subframe allocation mode, but only its downlink.
  • the subframes are all 16m downlink subframes. For convenience of explanation, the figure also lists the downlink subframe allocation of the pure 16m system.
  • the 16m frame start offset of the configuration area is 1 subframe
  • the frame start offset of the backward compatible 16m system and the pure 16m system in the configuration area is 1 subframe
  • the synchronization channel 302 is located at 16m superframe.
  • the four downlink subframes from the 16m unit frame start position 301 to the downlink/uplink transition point 303 are 16m downlink subframes;
  • the first three downlink subframes between the 301 and the downlink/uplink transition point 303 are 16m downlink subframes, and the last downlink subframe is a 16e downlink subframe.
  • the first two downlink subframes from the 16m unit frame start position 301 to the downlink/uplink transition point 303 are 16m downlink subframes, and the last two downlinks.
  • the subframe is a 16e downlink subframe;
  • the first downlink subframe from the 16m unit frame start position 301 to the downlink/uplink transition point 303 is a 16m downlink subframe, and the last three downlinks.
  • the subframe is a 16e downlink subframe.
  • the 16m frame start offset of the configuration area is 2 subframes
  • the frame start offset of the backward compatible 16m system and the pure 16m system in the configuration area is 2 subframes
  • the synchronization channel 310 is located at 16m superframe.
  • the three downlink subframes between the 306 and the downlink/uplink transition point 307 are 16m downlink subframes, and the first downlink subframe between the uplink/downlink transition point 308 and the next 16m unit frame start 309 is 16e downlink.
  • the subframe, the second downlink subframe is a 16m downlink subframe.
  • the three downlink subframes from the 16m unit frame start position 306 to the downlink/uplink transition point 307 are 16m downlink subframes
  • the first 2 downlink subframes from the 16m unit frame start position 306 to the downlink/uplink transition point 307 are 16m downlink subframes, and the latter downlink.
  • the subframe is a 16e downlink subframe;
  • the first downlink subframe from the 16m unit frame start position 306 to the downlink/uplink transition point 307 is a 16m downlink subframe, and the last two downlinks.
  • the subframe is a 16e downlink subframe.
  • the two downlink subframes between the uplink/downlink transition point 308 and the start of the next 16m frame are 16e downlink. Subframe.
  • the above allocation method can be summarized in the following cases. Please refer to the example of FIG. 5a to FIG. 5d.
  • the subframes are all 16m downlink subframes.
  • N-M 1 16e subframes.
  • M-P 1 16m downlink subframe.
  • the L subframes from the uplink/downlink transition point 604 to the next 16m unit frame start 601 are 16e downlink subframes.
  • the L subframes from the up/down transition point 604 to the next 16m unit frame start 601 are all 16e downlink subframes.
  • M ⁇ P the first M downlink subframes including the starting subframe in the 16m unit frame are allocated as
  • 16m downlink subframes, and other downlink subframes are allocated as 16e downlink subframes;
  • N > M > P the first to the Nth downlink subframes after the uplink to the downlink transition point in the 16m unit frame are all allocated as 16e downlink subframes, and the other downlink subframes are all allocated as 16m downlink subframes;
  • Step 340 The 16m base station writes the downlink/uplink subframe ratio of the 16m unit frame, the 16m frame start offset, and the 16m downlink subframe number in the 16m unit frame to the 16m superframe control header, and broadcasts to the 16m terminal.
  • the following table is an example of the information related to the downlink subframe allocation indication in the superframe control header of the embodiment.
  • the information mainly includes the 3-bit 16m frame start offset information, the 3-bit 16m downlink subframe number information, and the 3-bit Downlink/uplink subframe ratio information and lbit conversion point number information related to the downlink/uplink subframe ratio.
  • the number of conversion points is 2.
  • Step 350 After the downlink synchronization of the 16m terminal, according to the downlink/uplink subframe ratio, the 16m frame start offset, and the 16m downlink subframe number information in the 16m superframe control header, the judgment corresponding to the preset allocation manner of the 16m base station is performed.
  • the method determines which downlink subframes in a 16m unit frame are 16m downlink subframes.
  • the 16m terminal is synchronized in the starting subframe of the 16m unit frame containing the synchronization channel, and is set from 16m.
  • the corresponding judgment method is as follows:
  • the downlink subframe from the 16m unit frame start subframe to the downlink/uplink transition point is a 16m downlink subframe.
  • the L subframes from the uplink/downlink transition point to the next 16m unit frame are all 16e downlink subframes;
  • the first M consecutive downlink subframes including the start subframe from the 16m unit frame are 16m downlink subframes, and the (PM) downlink subframes before the downlink/uplink transition point are 16e downlink subframes,
  • the subframes from the uplink/downlink conversion point to the start of the next 16m unit frame are all 16e subframes.
  • the P downlink subframes from the 16m unit frame start subframe to the downlink/uplink transition point are all 16m downlink subframes, and from the uplink/downlink transition point, there are (NM) 16e subframes, After the 16e subframe, there are (MP) 16m downlink subframes before the start of the 16m unit frame.
  • the first M downlink subframes in the 16m unit frame including the start subframe are 16m downlink subframes
  • all other downlink subframes are 16m downlink subframes;
  • all downlink subframes in the 16m unit frame are 16m downlink subframes.
  • the foregoing method of the present invention supports the downlink subframe allocation of the backward compatible 16m system, so that different base stations can flexibly configure the proportion of the 16m downlink subframe and the 16e downlink subframe according to service requirements, and ensure different
  • the synchronous transmission of the base station synchronization symbols prevents the mutual interference caused by the misalignment of the synchronization symbols.
  • the reception of the information required for the synchronization channel and some system access is not caused by the puncture hole. Great impact.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

WiMAX演进系统下行子帧分配、 信息传输及获取方法
技术领域
本发明涉及无线通信领域, 特别是涉及下一代 WiMAX ( Worldwide Interoperability for Microwave Access, 波存取全球互通 )系统的下行子帧分 配、 分配信息传输以及终端获取下行子帧分配信息的方法。
背景技术
OFDM ( Orthogonal Frequency Division Multiplexing, 正交频分复用 )通 过将高速传输的数据流转换为低速并行传输的数据流, 使系统对多径衰落信 道频率选择性的敏感度大大降低。 通过引入循环前缀, OFDM进一步增强了 系统抗符号间干扰的能力。 除此之外, 带宽利用率高、 实现简单等特点使 OFDM在无线通信领域的应用越来越广。基于 OFDMA( Orthogonal Frequency Division Multiple Access,正交频分复用多址)的 WiMAX系统就是使用 OFDM 技术的系统。
无线通信技术在不断进步, 同时市场需求也会发生变化, 这就要求技术 和标准可以通过不断演进的过程来吸收新的技术, 同时满足新的需求。 通过 这种演进的过程, 标准以及按照此标准实现的系统不但可以通过平滑升级延 续其生命力, 保护用户已有的投资, 而且还可以提供比旧系统更多更好的服 务。 随着通信技术的飞速发展, 基于 IEEE 802.16e (简称 16e )空口标准的移 动 WiMAX系统已经不能满足未来人们对宽带移动通信的高传输速率、 高吞 吐量、快速移动和低时延的需求。 目前, IEEE802.16工作组的 TGm任务组正 在致力于制定改进的空中接口规范 IEEE 802.16m (简称 16m), 该规范能支持 更高的峰值速率, 更高的频谱效率和扇区容量。
本文档中的 16m系统表示釆用空口标准 IEEE 802.16m的 WiMAX系统, 包括后向兼容的 16m系统(也称为 16m/16e混合系统)和非后向兼容的 16m 系统(也称为纯 16m系统 ) , 16m系统中的基站称为 16m基站, IEEE 802.16m 为纯 16m系统定义的下行子帧称为 16m下行子帧,纯 16m系统中的终端称为 16m终端。而 16e系统表示釆用空口标准 IEEE 802.16e的 WiMAX系统, IEEE 802.16e为 16e系统定义的下行子帧称为 16e下行子帧, 16e系统中的终端称 为 16e终端。 后向兼容的 16m系统中既包含 16m下行子帧, 也包含 16e下行 子帧, 可同时为 16m终端和 16e终端月良务。
为了满足 16m系统中低延迟业务的有效应用,当前 16m帧结构的设计中, 主要考虑了超帧、 单位帧和子帧的三层设计思路。 图 1是在目前 16m帧结构 设计中建议的超帧结构组成示意图。 超帧 101的长度是 20ms, 由 4个 5ms的 单位帧 102组成, 超帧控制信息 103位于超帧开始处的若干个符号上。 单位 帧 102由 8个子帧 104组成, 子帧 104分为下行子帧和上行子帧, 可根据系 统进行配置。 子帧 104 由 6个 OFDM符号 105构成。 根据图 1的帧结构, 5ms单位帧中包含 8个子帧单元。
在超帧 ( super-frame ) 、 单位帧 ( frame )和子帧 ( sub-frame )三层帧结 构的基础上, 16m系统还必须考虑对现有 WiMAX终端的后向兼容, 由此, 需要考虑 16m子帧和 16e子帧的分配, 以及合理配置帧结构来降低不同配置 系统间的干扰。
超帧控制头 ( Super Frame Header )位于超帧开始处的子帧中。 在后向兼 容的 16m帧结构中, 下行包含 16e下行子帧和 16m下行子帧。 由于不同的基 站有不同的 16e和 16m业务需求,为了增强 16e/16m混合系统的资源利用率, 不同基站间的 16e下行和 16m下行子帧的混合比例可以设置为不同, 同一基 站中根据业务的变化, 16e下行子帧和 16m下行子帧的混合比例也可以以超 帧为最小周期进行变化。 在当前的 16m系统描述文件中对 16e单位帧和 16m 单位帧的关系进行了定义。 16m单位帧和 16e单位帧之间有固定子帧长度的 偏置, 称为 16m帧起始偏置, 即 16e单位帧起始位置和 16m单位帧起始位置 之间的偏置, 其单位为子帧, 参见图 2所示。
对于如何在 16m单位帧的下行子帧中进行 16e下行子帧和 16m下行子帧 的分配, 如何指示该下行子帧的分配信息, 以及终端如何来获取该分配方式, 目前还没有很好的方案来解决这些问题。
发明内容 为解决现有技术问题, 本发明提供一种 WiMAX演进系统的下行子帧分 配方法, 可以保证不同基站间的同步符号对齐。
本发明提供了一种 WiMAX演进系统的下行子帧分配方法,所述 WiMAX 演进系统为 IEEE 802.16m系统, 以下将 IEEE 802.16m简称为 16m, 该下行 子帧分配方法包括:
将 16m帧起始偏置作为配置区域范围的参数进行设置, 系统中同一配置 区域范围内所有的 16m基站均按该 16m帧起始偏置来设置 16m单位帧的起始 位置;
所述 16m基站将 16m单位帧的起始子帧固定分配为 16m下行子帧,在超 帧中第一个单位帧的起始位置发送带有同步符号的超帧控制头;
所述 16m基站将 16m单位帧的起始子帧固定分配为 16m下行子帧,在超 帧中第一个单位帧的起始位置发送同步符号; 所述 16m基站在超帧中第一个 单位帧的起始子帧中发送超帧控制头; 所述同步符号和所述超帧控制头在超 帧的第一个单位帧中时分复用 (TDM ) ;
其中, 所述配置区域是运营商配置或确定的邻区覆盖范围。
进一步地, 上述下行子帧分配方法还可具有以下特点:
所述 16m单位帧的下行子帧数为 N, 在 N≥ 3时, 所述 16m帧起始偏置 的取值范围为 [1 , N-2];
在 N = 2时, 所述 16m帧起始偏置为 1。 N由 16m单位帧的下行和上行 子帧比例决定, 是配置区域范围的参数。
进一步地, 上述下行子帧分配方法还可具有以下特点: 所述 16m帧起始 偏置设置为 1个或 2个子帧。
进一步地, 上述下行子帧分配方法还可具有以下特点:
所述 WiMAX演进系统为后向兼容的 16m系统;
上述下行子帧分配方法还包括: 所述 16m基站根据当前的 16m业务和 16e业务的需求确定 16m单位帧中的 16m下行子帧和 16e下行子帧的比例。 进一步地, 上述下行子帧分配方法还包括:
所述 16m基站将 16m单位帧中的 16m下行子帧数作为扇区范围的参数, 根据各个扇区当前的 16m业务和 16e业务的需求和所属配置区域范围设定的 16m单位帧的下行和上行子帧比例, 分别确定各个扇区 16m单位帧中的 16m 下行子帧数。
进一步地, 上述下行子帧分配方法还可具有以下特点: 同一扇区 16m单 位帧中的 16m下行子帧数以超帧为最小周期进行变化。
进一步地, 上述下行子帧分配方法还包括:
所述 16m基站根据所属配置区域范围设定的 16m帧起始偏置、 16m单位 帧的下行子帧数及其中 16m下行子帧和 16e下行子帧的比例, 按预设的分配 方式将 16m单位帧中的每一个下行子帧分配为 16m下行子帧或 16e下行子帧, 其中 16m单位帧的起始子帧固定分配为 16m下行子帧,上行到下行转换点后 的第一个下行子帧固定分配为 16e下行子帧。
进一步地, 上述下行子帧分配方法还可具有以下特点:
所述 16m帧起始偏置为 L, 16m单位帧的下行子帧数为 N, N个下行子 帧中的 16m下行子帧数为 M,从 16m单位帧起始位置到下行到上行转换点之 间包含的下行子帧数为 P, P=N-L, 则所述预设的分配方式如下:
如 M≤ P,将该 16m单位帧中包含起始子帧的前 M个下行子帧均分配为 16m下行子帧, 其他下行子帧均分配为 16e下行子帧;
如 N > M > P, 将该 16m单位帧中上行到下行转换点后的第 1至第 N-M 个下行子帧均分配为 16e下行子帧, 其他下行子帧均分配为 16m下行子帧。
本发明的上述方法支持后向兼容的 16m系统的下行子帧分配, 使得不同 基站间根据业务需求灵活配置 16m下行子帧和 16e下行子帧的比例的同时, 保证不同基站同步符号的同步发送, 防止同步符号不对齐造成的相互干扰, 不会因为 16m和 16e下行子帧配置比例变化带来邻区干扰问题。 同时, 在和 其他 TDD系统邻频共存时,也不会因戳孔对同步信道和一些系统接入所需信 息的接收造成很大的影响。
为解决现有技术问题, 本发明还提供一种 WiMAX演进系统中下行子帧 分配及分配信息传输的方法,使得基站可以根据业务需求灵活配置 16m和 16e 下行子帧的比例, 通过很少的开销就可将下行子帧的分配信息发送给终端。
本发明还提供了一种 WiMAX演进系统中下行子帧分配及分配信息传输 的方法, 所述 WiMAX演进系统为后向兼容的 16m系统, 该传输方法包括: 16m基站根据所属配置区域范围设定的 16m单位帧的下行和上行子帧比 例以及当前 16m业务和 16e业务的需求,确定 16m单位帧中的 16m下行子帧 数, 再结合所属配置区域范围设定的 16m帧起始偏置, 按照预设的分配方式 对 16m单位帧中的下行子帧进行分配,其中 16m单位帧的起始子帧固定分配 为 16m下行子帧;
16m基站将所述 16m单位帧的下行和上行子帧比例、 16m帧起始偏置和
16m单位帧中的 16m下行子帧数信息写入超帧控制头中, 广播给 16m终端。
进一步地, 上述下行子帧分配及分配信息传输方法还可具有以下特点: 所述 16m帧起始偏置和 16m单位帧中的 16m下行子帧数信息均用 3个比 特表示。
进一步地, 上述下行子帧分配及分配信息传输方法还可具有以下特点: 所述 16m单位帧的下行子帧数为 N, 在 N≥ 3时, 所述 16m帧起始偏置 的取值范围为 [1 , N-2];
在 N = 2时, 所述 16m帧起始偏置为 1 , N由 16m单位帧的下行和上行 子帧比例决定, 是配置区域范围的参数。
进一步地, 上述下行子帧分配及分配信息传输方法还可具有以下特点: 所述 16m帧起始偏置为 L, 16m单位帧的下行子帧数为 N, N个下行子 帧中的 16m下行子帧数为 M,从 16m单位帧起始位置到下行到上行转换点之 间包含的下行子帧数为 P, P=N-L, 则所述预设的分配方式如下:
如 M≤ P,将该 16m单位帧中包含起始子帧的前 M个下行子帧均分配为 16m下行子帧, 其他下行子帧均分配为 16e下行子帧;
如 N > M > P, 将该 16m单位帧中上行到下行转换点后的第 1至第 N-M 个下行子帧均分配为 16e下行子帧, 其他下行子帧均分配为 16m下行子帧。 通过使用本发明的上述方法, 可以根据实际的后向兼容 16e系统的业务 需求来准动态设置 16m子帧和 16e子帧的分配, 此外, 通过很小的开销就能 指示不同 16m和 16e下行子帧分配方式的变化。
为解决现有技术问题, 本发明还提供一种 WiMAX演进系统中 16m终端 获取下行子帧分配信息的方法,使得 16m终端能快速简单地获取 16m下行子 帧的分配信息。
本发明提供了一种后向兼容的 16m系统中 16m终端获取 16m子帧分配信 息的方法, 包括:
16m终端下行同步后, 从超帧控制头中获取帧配置信息, 所述帧配置信 息表征或携带 16m帧起始偏置、 16m单位帧的下行和上行子帧比例,以及 16m 单位帧中的 16m下行子帧数等信息, 根据获取的信息和预设的判定方式, 确 定 16m单位帧中的哪些下行子帧是 16m下行子帧,其中 16m单位帧的起始子 帧固定为 16m下行子帧。
进一步地,上述 16m终端获取 16m子帧分配信息的方法还可具有以下特 点:
所述 16m帧起始偏置为 L, 16m单位帧的下行子帧数为 N, N个下行子 帧中的 16m下行子帧数为 M,从 16m单位帧起始位置到下行到上行转换点之 间包含的下行子帧数为 P, P=N-L, 所述 16m终端根据以下方式判断 16m单 位帧中哪些下行子帧是 16m下行子帧:
如M≤P,则该 16m单位帧中包含起始子帧的前 M个下行子帧为 16m下 行子帧;
如 N > M > P, 则除该 16m单位帧中上行到下行转换点后的第 1个到第 N-M个下行子帧外, 其他下行子帧均为 16m下行子帧。
通过本发明的上述方法, 16m终端能快速简单地获取 16m下行子帧的分 配信息。
附图概述
图 1是在目前 16m帧结构设计中建议的超帧结构组成示意图; 图 2是后向兼容的 16m帧结构中的 16m帧起始偏置的示意图;
图 3是本发明实施例后向兼容的 16m系统下行子帧分配、 指示和终端获 取下行子帧分配信息的方法的流程图; 图 4a和图 4b分别为是 16m帧起始偏置为 1和 2时, 本发明实施例后向 兼容的 16m系统单位帧中 16m下行子帧和 16e下行子帧的分配示意图;
图 5a〜图 5d是本发明实施例 16m子帧和 16e子帧分配在 4种不同情况下 各自的示意图。
本发明的较佳实施方式
下面结合附图对本发明实施例进行详细说明。
本实施例以后向兼容的 16m系统为例,对 16m系统下行子帧分配方法进 行说明,对于非后向兼容的 16m系统也可以釆用该方法,其流程如图 3所示, 包括:
步骤 310, 在配置区域范围的参数中设置 16m帧起始偏置, 该配置区域 范围内所有的 16m基站均按该 16m帧起始偏置来设置 16m单位帧的起始位 置, 16m基站将 16m单位帧的起始子帧固定分配为 16m下行子帧, 这样, 将 在超帧中第一个单位帧的起始子帧的起始位置发送带有同步符号的超帧控制 头, 或
在超帧中第一个单位帧的起始子帧的起始位置发送同步符号; 在超帧中 第一个单位帧的起始子帧发送同步符号和超帧控制头 ( Superframe Header ) , 所述同步符号和超帧控制头在超帧中的第一个单位帧中时分复用 (TDM ) 。
本实施例中, 将 16m帧起始偏置作为配置区域范围 (也称为配置范围: deployment wide ) 的参数, 在同一个配置区域范围中, 无论后向兼容或非后 向兼容的 16m系统均按照该配置区域范围设定的帧起始偏置来设置 16m单位 帧的起始位置, 并从起始位置开始的第一个帧即起始子帧分配为 16m下行子 帧。
由于超帧可能由同步符号 (也称为用于同步的前导码符号)开始, 为了 保证不同基站间的同步符号对齐, 一种考虑是将包含同步符号的超帧控制头 固定放置在靠近下行 /上行转换点的最后一个下行子帧的开始位置(该下行子 帧固定分配为 16m下行子帧 ) 。 然而, 由于 16m系统需要和其他 TDD系统 邻频共存, 比如, 16m系统和 LTE-TDD系统、 TD-SCDMA的邻频共存。 在 共存方案中, 通常会将靠近下行 /上行转换点的子帧或子帧中的部分符号戳孔 ( puncture ) , 同步信道和一些系统接入所需信息将会受到很大的影响。
为了尽量避免戳孔对同步信道的影响, 假设所述 16m单位帧的下行子帧 数为 N, N≥3时, 所述 16m帧起始偏置的取值范围为 [1 , N-2] , 较佳为 1 或 2。 这样不会将单位帧下行 /上行转换点 (下行到上行转换点) 的前一个下 行子帧作为起始子帧, 这样超帧控制头也不会在位于下行 /上行转换点的前一 个下行子帧上, 这样在 16m系统和其他 TDD系统邻频共存时, 也不会因戳 孔对同步信道和一些系统接入所需信息的接收造成很大的影响。 在 N = 2时, 所述 16m帧起始偏置为 1 , N由 16m单位帧的下行 /上行子帧比例决定, 是配 置区域范围的参数。
因为配置区域范围内的 16m帧起始偏置是相同的,并不因 16m下行子帧 和 16e下行子帧的比例不同而不同, 因此本实施例可以保证不同基站同步符 号的同步发送。 在超帧中可能有多个同步符号, 但这些同步符号之间的间隔 是相同的, 因此对齐其中一个即可。
步骤 320, 所述 16m基站根据配置的下行 /下行子帧比例 (下行和上行子 帧比例 ) 以及当前的 16m业务和 16e业务的需求, 确定 16m单位帧中的 16m 下行子帧和 16e下行子帧的数目 (或者说比例) ;
本实施例将 16m单位帧中 16m下行子帧和 /或 16e下行子帧的数目信息如 16m下行子帧和 16e下行子帧的比例作为扇区范围 ( sector specific ) 的参数。 对于后向兼容的 16m系统,根据各个扇区当前的 16m业务和 16e业务的需求 和所属配置区域范围设定的 16m单位帧的下行 /上行子帧比例,分别确定各个 扇区 16m单位帧中的 16m下行子帧和 16e下行子帧的数目,不同扇区 16m单 位帧中的 16m下行子帧和 16e下行子帧的比例可以不同, 同一扇区 16m单位 帧中的该数目以超帧为最小周期进行变化, 即 16m子帧和 16e子帧的划分在 不同超帧可以不同, 并且同一扇区可根据业务的变化调整 16m子帧和 16e子 帧的比例。 步骤 330, 16m基站根据 16m单位帧中的 16m下行子帧和 /或 16e下行子 帧的数目、设置的 16m帧起始偏置和 16m单位帧的下行子帧数, 按预设的分 配方式将 16m单位帧中的每一个下行子帧分配为 16m下行子帧或 16e下行子 帧;
为了与 16e系统兼容, 对于后向兼容的 16m系统(该系统的 16e下行子 帧数大于等于 1 ) ,将 16m单位帧中的上行 /下行转换点(上行到下行转换点) 后的第 1个下行子帧固定分配为 16e下行子帧。
根据不同的 16m和 16e子帧比例配置,在 16m帧结构中,从 16m单位帧 的起始位置到下行 /上行转换点之间,可依次包含 16m下行子帧和 16e下行子 帧, 或仅包含 16m下行子帧; 从上行 /下行转换点到 16m单位帧起始位置之 间, 可仅包含 16e下行子帧, 或依次包含 16e下行子帧和 16m下行子帧, 或 仅包含 16m下行子帧(对于纯 16m系统)。 16m下行子帧数也可等于单位帧 中的下行子帧数, 即配置扇区为纯 16m的系统。
图 4a和图 4b分别是在 16m初始偏置为 1和 2时, 本实施例后向兼容的 16m系统单位帧中 16m下行子帧和 16e下行子帧的分配示意图, 单位帧中下 行 /上行子帧比例为 5:3。
对于后向兼容的 16m系统, 单位帧中的下行子帧包含 16m下行子帧和 16e下行子帧。 16m下行子帧和 16e下行子帧的比例可为 4:1 , 3:2, 2:3和 1 :4。 因为在同一区域可能存在一些基站属于纯 16m系统, 一些基站属于后向兼容 的 16m系统,此时纯 16m系统也需要在下行子帧的分配方式上与后向兼容的 16m系统一致, 只是其下行子帧全部都是 16m下行子帧。 为了方便说明, 图 中同时列出了纯 16m系统的下行子帧分配的情形。
图 4a中,配置区域的 16m帧起始偏置为 1个子帧, 配置区域下后向兼容 的 16m系统和纯 16m系统的帧起始偏置均为 1个子帧,同步信道 302位于 16m 超帧中第一个 16m单位帧的起始位置 301。
对于 4:1的 16m下行子帧和 16e下行子帧比例, 从 16m单位帧起始位置 301到下行 /上行转换点 303之间的 4个下行子帧均为 16m下行子帧;
对于 3:2的 16m下行子帧和 16e下行子帧比例, 从 16m单位帧起始位置 301到下行 /上行转换点 303之间的前 3个下行子帧为 16m下行子帧,最后一 个下行子帧为 16e下行子帧;
对于 2:3的 16m下行子帧和 16e下行子帧比例, 从 16m单位帧起始位置 301到下行 /上行转换点 303之间的前 2个下行子帧为 16m下行子帧,后 2个 下行子帧为 16e下行子帧;
对于 1 :4的 16m下行子帧和 16e下行子帧比例, 从 16m单位帧起始位置 301到下行 /上行转换点 303之间的第 1个下行子帧为 16m下行子帧,后 3个 下行子帧为 16e下行子帧。
对于 4:1 , 3:2, 2:3和 1 :4的 16m下行子帧和 16e下行子帧比例, 上行 / 下行转换点 304至下一个 16m帧起始 305之间的 1个下行子帧均为 16e下行 子帧。
图 4b中, 配置区域的 16m帧起始偏置为 2个子帧, 配置区域下后向兼 容的 16m系统和纯 16m系统的帧起始偏置均为 2个子帧,同步信道 310位于 16m超帧中第一个 16m单位帧的起始位置 306。
对于 4:1的 16m下行子帧和 16e下行子帧比例, 从 16m单位帧起始位置
306到下行 /上行转换点 307之间的 3个下行子帧均为 16m下行子帧, 上行 / 下行转换点 308到下一个 16m单位帧起始 309之间的第一个下行子帧为 16e 下行子帧, 第 2个下行子帧为 16m下行子帧。
对于 3:2的 16m下行子帧和 16e下行子帧比例, 从 16m单位帧起始位置 306到下行 /上行转换点 307之间的 3个下行子帧为 16m下行子帧;
对于 2:3的 16m下行子帧和 16e下行子帧比例, 从 16m单位帧起始位置 306到下行 /上行转换点 307之间的前 2个下行子帧为 16m下行子帧,后 1个 下行子帧为 16e下行子帧;
对于 1 :4的 16m下行子帧和 16e下行子帧比例, 从 16m单位帧起始位置 306到下行 /上行转换点 307之间的第 1个下行子帧为 16m下行子帧,后 2个 下行子帧为 16e下行子帧。
对于 3:2, 2:3和 1 :4的 16m下行子帧和 16e下行子帧比例, 上行 /下行转 换点 308至下一个 16m帧起始 309之间的 2个下行子帧均为 16e下行子帧。 对以上分配方法可以用以下几种情况下来概括, 请参照图 5a〜图 5d的示 例, 该示例中, 单位帧中下行 /上行子帧比例为 5:3 , 则下行子帧数 N=5。 16m 帧起始偏置 L=2, 16m下行子帧数为 M, 从 16m单位帧起始位置 601到下行 /上行转换点 603共有 P个下行子帧, P=N-L=3。 如图 5a所示。
图 5b示出了 P < M时下行子帧的分配情况, 16m下行子帧数 M为 4, 则 从 16m单位帧起始子帧 601到下行 /上行转换点 603之间的 P=3个下行子帧 均为 16m下行子帧。 从上行 /下行转换点 604到 16m单位帧起始 601的子帧 中,从上行 /下行转换点 604开始,有( N-M ) =1个 16e子帧。在 16e子帧后, 下一个 16m单位帧起始 601前, 还有 (M-P ) = 1个 16m下行子帧。
图 5c示出了 P=M时下行子帧的分配情况, 16m下行子帧数 M为 3 , 则 从 16m单位帧起始 601到下行 /上行转换点 603之间的 P=3个下行子帧均为 16m下行子帧。 从上行 /下行转换点 604到下一个 16m单位帧起始 601之间 的 L个子帧均为 16e下行子帧。
图 5d示出了 P > M时下行子帧的分配情况, 16m下行子帧数 M为 2, 则 从 16m单位帧起始位置 601开始的 M=2个连续下行子帧为 16m下行子帧, 下行 /上行转换点 603前的 (P-M ) =1个下行子帧为 16e下行子帧。 从上行 / 下行转换点 604到下一个 16m单位帧起始 601之间的 L个子帧均为 16e下 行子帧。
概括一下即为:
如 M≤ P,将该 16m单位帧中包含起始子帧的前 M个下行子帧均分配为
16m下行子帧, 其他下行子帧均分配为 16e下行子帧;
如 N > M > P, 将该 16m单位帧中上行到下行转换点后的第 1至第 N-M 个下行子帧均分配为 16e下行子帧, 其他下行子帧均分配为 16m下行子帧; 补充一下纯 16m系统中的情况, 即 N = M时,将该 16m单位帧中所有的 下行子帧均分配为 16m下行子帧。
步骤 340, 16m基站将 16m单位帧的下行 /上行子帧比例、 16m帧起始偏 置和 16m单位帧中的 16m下行子帧数信息写入 16m超帧控制头,广播给 16m 终端; 下表是本实施例超帧控制头中和下行子帧分配指示相关的信息的一个示 例, 这些信息主要包含 3bit的 16m帧起始偏置信息、 3bit的 16m下行子帧个 数信息、 3bit的下行 /上行子帧比例信息以及与下行 /上行子帧比例相关的 lbit 的转换点个数信息。 对于后向兼容的 16m系统, 转换点个数为 2。
Figure imgf000014_0001
步骤 350, 16m终端下行同步后, 根据 16m超帧控制头中的下行 /上行子 帧比例、 16m帧起始偏置和 16m下行子帧数信息, 按与 16m基站预设的分配 方式对应的判断方法确定 16m单位帧中的哪些下行子帧是 16m下行子帧。
16m终端在包含同步信道的 16m单位帧的起始子帧获得同步, 设从 16m 单位帧起始子帧到下行 /上行转换共有 P=N-L个下行子帧, 其中, N为下行子 帧数, L为 16m起始帧偏置。 相应的判断方法如下:
如果 P=M, 则从 16m单位帧起始子帧到下行 /上行转换点的下行子帧均 为 16m下行子帧。 从上行 /下行转换点到下一个 16m单位帧起始的 L个子帧 均为 16e下行子帧;
如果 P > M ,则从 16m单位帧包含起始子帧的前 M个连续下行子帧为 16m 下行子帧, 下行 /上行转换点前的 (P-M )个下行子帧为 16e下行子帧, 从上 行 /下行转换点到下一个 16m单位帧起始的子帧均为 16e子帧。
如果 P < M, 从 16m单位帧起始子帧到下行 /上行转换点的 P个下行子帧 均为 16m下行子帧,从上行 /下行转换点开始,有(N-M )个 16e子帧, 在 16e 子帧后, 16m单位帧起始前, 还有 (M-P )个 16m下行子帧。
该对应的判断方法可 ^既括如下:
如M≤P,则该 16m单位帧中包含起始子帧的前 M个下行子帧为 16m下 行子帧;
如 N > M > P, 则除该 16m单位帧中上行到下行转换点后的第 1个到第
N-M个下行子帧外, 其他下行子帧均为 16m下行子帧;
补充一下纯 16m系统的情况, 即 N = M时,该 16m单位帧中所有的下行 子帧均为 16m下行子帧。
当然, 本发明还可有其它多种实施例, 在不背离本发明精神及其实质的 但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围
工业实用性
与现有技术相比, 本发明的上述方法支持后向兼容的 16m系统的下行子 帧分配, 使得不同基站间根据业务需求灵活配置 16m下行子帧和 16e下行子 帧的比例的同时, 保证不同基站同步符号的同步发送, 防止同步符号不对齐 造成的相互干扰, 同时, 在和其他 TDD系统邻频共存时, 也不会因戳孔对同 步信道和一些系统接入所需信息的接收造成很大的影响。

Claims

权 利 要 求 书
1、一种 WiMAX演进系统的下行子帧分配方法 , 所述 WiMAX演进系统 为 IEEE 802.16m系统, 以下将 IEEE 802.16m简称为 16m, 所述下行子帧分 配方法包括:
将 16m帧起始偏置作为配置区域范围的参数进行设置, 系统中同一配置 区域范围内所有的 16m基站均按所述 16m帧起始偏置来设置 16m单位帧的起 始位置;
所述 16m基站将 16m单位帧的起始子帧固定分配为 16m下行子帧,在超 帧中第一个单位帧的起始位置发送带有同步符号的超帧控制头。
2、 如权利要求 1所述的下行子帧分配方法, 其中,
所述 16m单位帧的下行子帧数为 N, 在 N≥ 3时, 所述 16m帧起始偏置 的取值范围为 [1 , N-2]。
3、 如权利要求 1所述的下行子帧分配方法, 其中,
所述 16m单位帧的下行子帧数为 N, 在 N = 2时, 所述 16m帧起始偏置 为 1。
4、 如权利要求 2所述的下行子帧分配方法, 其中, 所述 16m帧起始偏 置设置为 1个或 2个子帧。
5、 如权利要求 1所述的下行子帧分配方法, 其中,
所述 WiMAX演进系统为后向兼容的 16m系统;
所述方法还包括: 所述 16m基站根据当前的 16m业务和 16e业务的需求 确定 16m单位帧中的 16m下行子帧和 16e下行子帧的比例。
6、 如权利要求 1所述的下行子帧分配方法, 其还包括:
所述 16m基站将 16m单位帧中的 16m下行子帧数作为扇区范围的参数, 根据各个扇区当前的 16m业务和 16e业务的需求和所属配置区域范围设定的 16m单位帧的下行和上行子帧比例, 分别确定各个扇区 16m单位帧中的 16m 下行子帧数。
7、 如权利要求 6所述的下行子帧分配方法, 其中, 同一扇区 16m单位帧中的 16m下行子帧数以超帧为最小周期进行变化。
8、 如权利要求 5或 7所述的下行子帧分配方法, 其还包括:
所述 16m基站根据所属配置区域范围设定的 16m帧起始偏置、 16m单位 帧的下行子帧数及其中 16m下行子帧和 16e下行子帧的比例, 按预设的分配 方式将 16m单位帧中的每一个下行子帧分配为 16m下行子帧或 16e下行子帧, 其中 16m单位帧的起始子帧固定分配为 16m下行子帧,上行到下行转换点后 的第一个下行子帧固定分配为 16e下行子帧。
9、 如权利要求 8所述的下行子帧分配方法, 其中,
所述 16m帧起始偏置为 L, 16m单位帧的下行子帧数为 N, N个下行子 帧中的 16m下行子帧数为 M,从 16m单位帧起始位置到下行到上行转换点之 间包含的下行子帧数为 P, P=N-L, 则所述预设的分配方式为:
如 M≤ P,将所述 16m单位帧中包含起始子帧的前 M个下行子帧均分配 为 16m下行子帧, 其他下行子帧均分配为 16e下行子帧;
如 N > M > P,将所述 16m单位帧中上行到下行转换点后的第 1至第 N-M 个下行子帧均分配为 16e下行子帧, 其他下行子帧均分配为 16m下行子帧。
10、 一种 WiMAX演进系统中下行子帧分配及分配信息传输的方法, 所 述 WiMAX演进系统为后向兼容的 16m系统, 所述方法包括:
16m基站根据所属配置区域范围设定的 16m单位帧的下行和上行子帧比 例以及当前 16m业务和 16e业务的需求,确定 16m单位帧中的 16m下行子帧 数, 再结合所属配置区域范围设定的 16m帧起始偏置, 按照预设的分配方式 对 16m单位帧中的下行子帧进行分配,其中 16m单位帧的起始子帧固定分配 为 16m下行子帧;
16m基站将所述 16m单位帧的下行和上行子帧比例、 16m帧起始偏置和 16m单位帧中的 16m下行子帧数信息写入到位于超帧中第一个单位帧起始位 置的包含同步符号的超帧控制头中, 广播给 16m终端。
11、 如权利要求 10所述的方法, 其中,
所述 16m帧起始偏置和 16m单位帧中的 16m下行子帧数信息均用 3个比 特表示。
12、 如权利要求 11所述的方法, 其中,
所述 16m单位帧的下行子帧数为 N, 在 N≥ 3时, 所述 16m帧起始偏置 的取值范围为 [1 , N-2] , 在 N = 2时, 所述 16m帧起始偏置为 1 , N由 16m单 位帧的下行和上行子帧比例决定, 是配置区域范围的参数。
13、 如权利要求 11所述的方法, 其中,
所述 16m帧起始偏置为 L, 16m单位帧的下行子帧数为 N, N个下行子 帧中的 16m下行子帧数为 M,从 16m单位帧起始位置到下行到上行转换点之 间包含的下行子帧数为 P, P=N-L, 则所述预设的分配方式为:
如 M≤ P,将所述 16m单位帧中包含起始子帧的前 M个下行子帧均分配 为 16m下行子帧, 其他下行子帧均分配为 16e下行子帧;
如 N > M > P,将所述 16m单位帧中上行到下行转换点后的第 1至第 N-M 个下行子帧均分配为 16e下行子帧, 其他下行子帧均分配为 16m下行子帧。
14、一种后向兼容的 16m系统中 16m终端获取 16m子帧分配信息的方法, 包括:
16m终端下行同步后, 从超帧控制头中获取帧配置信息, 所述帧配置信 息表征或携带 16m帧起始偏置、 16m单位帧的下行和上行子帧比例、以及 16m 单位帧中的 16m下行子帧数等信息, 根据获取的信息和预设的判定方式, 确 定 16m单位帧中的哪些下行子帧是 16m下行子帧,其中 16m单位帧的起始子 帧固定为 16m下行子帧。
15、 如权利要求 14所述的方法, 其中,
所述 16m帧起始偏置为 L, 16m单位帧的下行子帧数为 N, N个下行子 帧中的 16m下行子帧数为 M,从 16m单位帧起始位置到下行到上行转换点之 间包含的下行子帧数为 P, P=N-L, 所述预设的判定方式为:
如 M≤ P, 则判定所述 16m单位帧中包含起始子帧的前 M个下行子帧为 16m下行子帧;
如 N > M > P, 则判定除所述 16m单位帧中上行到下行转换点后的第 1 个到第 N-M个下行子帧外, 其他下行子帧均为 16m下行子帧。
16、 一种 WiMAX演进系统的下行子帧分配方法, 所述 WiMAX演进系 统为 IEEE 802.16m系统, 以下将 IEEE 802.16m简称为 16m, 所述下行子帧 分配方法包括:
将 16m帧起始偏置作为配置区域范围的参数进行设置, 系统中同一配置 区域范围内所有的 16m基站均按该 16m帧起始偏置来设置 16m单位帧的起始 位置;
所述 16m基站将 16m单位帧的起始子帧固定分配为 16m下行子帧,在超 帧中第一个单位帧的起始位置发送同步符号。
17、 如权利要求 16所述的下行子帧分配方法, 其中,
所述 16m单位帧的下行子帧数为 N, 在 N≥ 3时, 所述 16m帧起始偏置 的取值范围为 [1 , N-2]。
18、 如权利要求 16所述的下行子帧分配方法, 其中,
所述 16m单位帧的下行子帧数为 N, 在 N = 2时, 所述 16m帧起始偏置 为 1。
19、 如权利要求 16所述的下行子帧分配方法, 其还包括: 所述 16m基 站在超帧中第一个单位帧的起始子帧中发送超帧控制头。
20、如权利要求 19所述的下行子帧分配方法, 所述同步符号和所述超帧 控制头在超帧的第一个单位帧中时分复用 (TDM ) 。
PCT/CN2009/074140 2008-09-27 2009-09-23 WiMAX演进系统下行子帧分配、信息传输及获取方法 WO2010130120A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP09844532.3A EP2418886A4 (en) 2009-05-15 2009-09-23 DOWNLINK SUBFRAME DISTRIBUTION, INFORMATION ACQUISITION AND TRANSMISSION METHOD FOR WIMAX EVOLUTION SYSTEM
US13/257,823 US8792467B2 (en) 2008-09-27 2009-09-23 Method for downlink sub-frame allocation, information transmission or acquisition in a WiMax evolved system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910141620.6A CN101686496A (zh) 2008-09-27 2009-05-15 WiMAX演进系统下行子帧分配、信息传输及获取方法
CN200910141620.6 2009-05-15

Publications (1)

Publication Number Publication Date
WO2010130120A1 true WO2010130120A1 (zh) 2010-11-18

Family

ID=43085789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/074140 WO2010130120A1 (zh) 2008-09-27 2009-09-23 WiMAX演进系统下行子帧分配、信息传输及获取方法

Country Status (3)

Country Link
EP (1) EP2418886A4 (zh)
KR (1) KR20120016092A (zh)
WO (1) WO2010130120A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015109594A1 (zh) * 2014-01-27 2015-07-30 华为技术有限公司 一种载波数据传输方法,及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008039027A1 (en) * 2006-09-28 2008-04-03 Samsung Electronics Co., Ltd. Method and apparatus for composition of a frame in a communication system
WO2008049028A1 (en) * 2006-10-17 2008-04-24 Intel Corporation Device, system, and method for partitioning and framing communication signals in broadband wireless access networks
CN101198179A (zh) * 2007-12-21 2008-06-11 中兴通讯股份有限公司 后向兼容802.16e系统的接入方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009062115A2 (en) * 2007-11-09 2009-05-14 Zte U.S.A., Inc. Flexible ofdm/ofdma frame structure for communication systems

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008039027A1 (en) * 2006-09-28 2008-04-03 Samsung Electronics Co., Ltd. Method and apparatus for composition of a frame in a communication system
WO2008049028A1 (en) * 2006-10-17 2008-04-24 Intel Corporation Device, system, and method for partitioning and framing communication signals in broadband wireless access networks
CN101198179A (zh) * 2007-12-21 2008-06-11 中兴通讯股份有限公司 后向兼容802.16e系统的接入方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Backward Compatible FDD 802.16m Frame Structure For Full-Duplex and Half-Duplex MS Operations", IEEE 802.16M-08/031R1 BROADBAND WIRELESS ACCESS WORKING GROUP, 10 March 2008 (2008-03-10), XP017729163 *
See also references of EP2418886A4 *

Also Published As

Publication number Publication date
KR20120016092A (ko) 2012-02-22
EP2418886A4 (en) 2014-08-20
EP2418886A1 (en) 2012-02-15

Similar Documents

Publication Publication Date Title
US8964689B2 (en) Method and apparatus for operating multi-band and multi-cell
US7813315B2 (en) Spectrum sharing in a wireless communication network
US8638652B2 (en) Signal transmission with fixed subcarrier spacing within OFDMA communication systems
JP4636181B2 (ja) 異なるシステムを共存させるセルラ通信システム及び方法
US8290067B2 (en) Spectrum sharing in a wireless communication network
JP5731026B2 (ja) 通信システムのためのフレキシブルなofdm/ofdmaフレーム構造
US8391217B2 (en) Synchronous spectrum sharing by dedicated networks using OFDM/OFDMA signaling
US9635680B2 (en) Method and apparatus for multiplexing signals having different protocols
WO2015180551A1 (zh) 信息发送方法、信息接收方法、装置及系统
WO2009052752A1 (en) Transmission method and device in long term evolution time division duplex system
EP3267749A1 (en) Wireless communication system, wireless communication method, wireless lan base station device, and wireless lan terminal device
WO2017041748A1 (zh) 无线通信的方法和装置
WO2009070964A1 (fr) Procédé et appareil pour déterminer la structure d&#39;une trame radio d&#39;un système duplex à répartition dans le temps
KR20080072288A (ko) 이종망간 서비스 연동 방법 및 시스템
WO2017076351A1 (zh) 数据传送方法
US8238301B2 (en) Method, system, and wireless frame structure for supporting different mode of multiple access
WO2010051752A1 (zh) 一种实现多载波聚合传输的方法和装置
WO2009056051A1 (en) Tdd system signal transmission method and the adoptive frame structure thereof
TWI640215B (zh) 經由錨定載波的小區存取方法和裝置
WO2009049489A1 (fr) Procédé et dispositif de communication
US8792467B2 (en) Method for downlink sub-frame allocation, information transmission or acquisition in a WiMax evolved system
WO2008025274A1 (fr) Station de base et procédé pour transmettre la signalisation de commande de liaison descendante utilisée par la station de base
WO2020063596A1 (zh) 一种通信方法及装置
WO2009097821A1 (zh) 一种下行传输的方法和装置
WO2010130120A1 (zh) WiMAX演进系统下行子帧分配、信息传输及获取方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09844532

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13257823

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20117026803

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009844532

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE