WO2010130071A1 - 基于霍尔元件的定位方法及定位系统 - Google Patents

基于霍尔元件的定位方法及定位系统 Download PDF

Info

Publication number
WO2010130071A1
WO2010130071A1 PCT/CN2009/001124 CN2009001124W WO2010130071A1 WO 2010130071 A1 WO2010130071 A1 WO 2010130071A1 CN 2009001124 W CN2009001124 W CN 2009001124W WO 2010130071 A1 WO2010130071 A1 WO 2010130071A1
Authority
WO
WIPO (PCT)
Prior art keywords
hall element
magnet
hall
moving part
magnetic field
Prior art date
Application number
PCT/CN2009/001124
Other languages
English (en)
French (fr)
Inventor
曾卫东
郭鸿英
Original Assignee
Zeng Weidong
Guo Hongying
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeng Weidong, Guo Hongying filed Critical Zeng Weidong
Publication of WO2010130071A1 publication Critical patent/WO2010130071A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/147Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the movement of a third element, the position of Hall device and the source of magnetic field being fixed in respect to each other

Definitions

  • the invention relates to a positioning method and a positioning system based on a Hall element.
  • the photoelectric sensor can only be used in an environment where there is little dust and the light can penetrate, such as being placed in the open air.
  • the exposed surface of the transmitting and receiving components should be cleaned frequently, and photosensors cannot be used in many working environments.
  • Another method is to use a Hall element. If the conductor is in a position perpendicular to the magnetic field, when there is current through the conductor, a voltage is generated in the lateral direction, which is the Hall effect, that is, the Hall voltage will be generated in a direction perpendicular to each other:
  • is the sensitivity of the Hall element
  • the boot is mV/mA ' T 0
  • the Hall effect is most pronounced in semiconductors, so the Hall element is actually a semiconductor device that converts the magnetic signal into an electrical signal for signal detection.
  • the Hall element is generally fabricated as a linear Hall element and a switching Hall element.
  • the linear Hall element is composed of a Hall element, a linear amplifier, and a residual voltage compensator. If the sensor voltage pin is connected to a certain voltage (such as 5V), there will be a certain Hall potential difference output when it is perpendicular to the magnetic field. The magnitude and direction of the magnetic induction can be known by measuring the potential difference of the linear Hall element.
  • the switched Hall element consists of a voltage regulator, a Hall element, a differential amplifier, a Schmitt trigger, and an OC gate output.
  • the Hall element After being applied to the two ends of the Hall element, the Hall element outputs a Hall potential difference input to the amplifier for amplification and then sends it to the Schmitt trigger, which is shaped into a square wave and sent to the 0C gate output.
  • the trigger When the applied magnetic field reaches the "operating point", the trigger outputs a high voltage to turn on the transistor, and the 0C gate outputs a low voltage, which is called “on”; when the applied magnetic field reaches the "release point”, the trigger output The low voltage, the triode is loaded, so that the 0C gate outputs a high voltage, which is called the "off” state.
  • This two high and low voltage conversions make the Hall switch complete a switching action. Switching Hall element can avoid malfunction when measuring, and the measurement of cycle and speed has high accuracy.
  • the working principle of the existing Hall element is to obtain a corresponding output voltage value according to the magnitude of the vertical component of the magnetic flux passing through the Hall element, or according to the variation of the vertical component of the magnetic flux passing through the Hall element.
  • the corresponding output voltage conversion amount is obtained, and the corresponding physical quantity is measured and controlled by the magnitude or variation trend of the output voltage.
  • precise positioning cannot be performed.
  • the switching type Hall element can only perform qualitative judgment of the positioning condition, and high-precision quantitative measurement cannot be performed.
  • the two permanent magnets are placed opposite to each other to form a magnetic field with a uniform gradient.
  • the linear Hall element is placed in the middle, and the magnetic induction intensity is zero. This point can be used as the zero point of the displacement.
  • the invention provides a positioning method and a positioning system based on a Hall element, which solves the technical problem that the existing positioning system has high cost, complicated structure and high installation precision requirement.
  • a positioning method based on a Hall element which is special in that it comprises the following steps:
  • the Hall element and the magnet are respectively mounted on the fixed moving part and the moving part according to the following requirements: A. The relative movement trajectory of the Hall element is passed over the end face of one of the magnetic poles of the magnet and the Hall element is The magnetic pole face maintains a reasonable working air gap; B. When the Hall element passes the pole end face, the direction of the Hall piece of the Hall element is parallel to the magnetic field direction of the magnet;
  • the relative motion trajectory of the above Hall element is a straight line or an arc.
  • the above magnet is a permanent magnet or a magnetic field stabilized electromagnet.
  • the Hall element described above is a switching Hall element or a linear Hall element.
  • a positioning device based on a Hall element comprising a magnet, one or more Hall elements, the Hall element and the magnet being respectively mounted on a fixed moving part and a moving part, the output and motion of the Hall element
  • the control system of the components is connected, which is characterized in that: the movement trajectory of the Hall element passes over the end face of one of the magnetic poles of the magnet and the Hall element maintains a reasonable working air gap with the magnetic pole face;
  • the Hall element has its Hall sheet in a direction parallel to the direction of the magnetic field of the magnet as it passes through the pole face.
  • the relative motion trajectory of the above Hall element is a straight line or an arc.
  • the above magnet is a permanent magnet or a magnetic field stabilized electromagnet.
  • the Hall element described above is a switching Hall element or a linear Hall element.
  • Simple structure The simplest structure of the present invention can form a positioning system using only one magnet and one Hall element, which is much simpler than the existing photoelectric sensor, and is even simpler than the existing Hall displacement sensor.
  • the magnet of the present invention can be used with a very low cost permanent magnet, coupled with a very low cost Hall element, making the overall system cost tens of times lower than the photoelectric sensor.
  • the system of the present invention does not cut the magnetic field output voltage only when the Hall piece is moved to the extension of the center line of the magnetic pole. Therefore, when the output voltage of the Hall element is zero, the surface Hall plate coincides with the center line of the magnetic pole.
  • the positioning accuracy of the present invention is only related to the detection sensitivity of the Hall element output voltage. It is especially important that the positioning consistency of the system of the present invention is very good regardless of the detection sensitivity of the output voltage.
  • the invention can be widely applied to various common positioning measurements, and can be especially used in an environment where dust is excessively illuminable so that light can not penetrate but magnetic lines of force can penetrate.
  • the invention basically does not require subsequent maintenance and overhaul, and can work reliably for a long time.
  • 1 to 4 are four movement modes between the magnet and the Hall element in the prior art
  • FIG. 5 is a schematic view showing the working principle of a Hall element as a positioning system in the prior art
  • FIG. 7 and FIG. 8 are schematic diagrams showing the working process of the positioning system composed of the Hall element of the present invention
  • FIG. 9 is a schematic diagram showing the relationship between the distance of the existing switching Hall element and the sensing signal
  • FIG. 10 is a schematic diagram showing the relationship between the distance of the existing linear Hall element and the sensing signal
  • Figure 11 is a schematic view showing the relationship between the distance and the sensing signal when the bidirectional switching type Hall element is used in the present invention.
  • Figure 12 is a schematic view showing the relationship between the distance and the sensing signal when the unidirectional switching type Hall element is used in the present invention.
  • Figure 13 is a schematic view showing the relationship between the distance and the induced signal when the unidirectional linear Hall element is used in the present invention.
  • Figure 14 is a schematic view showing the relationship between the distance and the induced signal when the bidirectional linear Hall element is used in the present invention.
  • FIG. 15 is a schematic view showing the working principle of multiple positioning of a plurality of Hall elements according to the present invention
  • FIG. 16 is a schematic view showing the working principle of the present invention for performing angular positioning
  • a positioning device based on a Hall element includes a magnet 1, a Hall element 2, and a Hall element 2 and a magnet 1 respectively mounted on a fixed moving part 5 and a moving part 4, a Hall element
  • the output of 2 is connected to the control system of the moving member 4, and when the Hall element 2 is mounted on the moving member 4, the movement trajectory (moving direction C) of the Hall element 2 is required from one of the magnetic poles (S pole) of the magnet 1.
  • the Hall element can also be mounted on a stationary component to mount the magnet on the moving component.
  • the magnet can be a permanent magnet or a magnetic field stabilized electromagnetic iron.
  • the Hall element can be any Hall element, but a switching Hall element is preferred.
  • the relative motion trajectory of the Hall element may be a straight line or an arc.
  • the moving trajectory of the moving part corresponds to the motion mode shown in FIG. 1 and FIG. 2, and the relationship between the distance and the sensing signal is shown in the figure. 11.
  • the working process of the positioning device based on Hall element is as follows:
  • the initial position of the moving part is as shown in Fig. 6, the middle position is as shown in Fig. 7, and the final position is as shown in Fig. 8.
  • Fig. 6 it can be known that the magnetic flux passes through the Hall plate at a low density, and a certain Hall voltage is generated in the Hall element.
  • the Hall voltage is getting bigger and bigger.
  • the Hall voltage becomes smaller and smaller.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Hall/Mr Elements (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Description

基于霍尔元件的 ^方法及定位系统
技术领域
本发明涉及一种基于霍尔元件的定位方法及定位系统。
背景技术
在自动控制系统中经常需要精确判断一个运动部件是否运动到确定的位 置, 常用的方法有光电传感器等, 但是光电传感器只能用于粉尘少且光线能 够照射穿透的环境, 如放置到露天则要经常清理发射元件与接受元件外露表 面, 而且还有许多工作环境中无法使用光电传感器。
还有一种方法是采用霍尔元件。 若导体处于与磁场垂直的位置, 当有电 流通过导体时, 在横向会产生一个电压, 此即霍尔效应, 即在与这二者相互 垂直的方向上将产生霍尔电压:
UH = KHIB (1)
其中 ^为霍尔元件的灵敏度, 靴为 mV/mA ' T 0
一般霍尔元件与磁体间有 4种运动方式:参见图 1和图 9,若磁体在霍尔 元件前垂直于霍尔元件向后运动, 随着相对位置的改变, 测得的霍尔电压迅 速降低; 参见图 2和图 10, 如果此磁体平行于霍尔元件侧向运动, 随着位移 的增大, 可以测得当磁体靠近传感器时, 霍尔电压增大, 离开传感器时逐渐 减小, 中间将产生一个峰值; 参见图 3, 只要将磁体粘贴在转盘、轮圈或转轴 等各种运动物体上, 并在适当的位置放置霍尔元件, 由此产生的霍尔电压信 号就可以作各种物理量的测量和控制; 图 4是将磁体放置在霍尔元件的背后, 霍尔元件的前方放置转盘、 轮圈或转轴等各种运动物体, 同样可以进行各种 物理量的测量和控制。
霍尔效应在半导体中最为显著, 所以霍尔元件实际上就是一个半导体器 件, 此器件能把磁信号转化为电信号以实现信号检测。 霍尔元件一般制作成 线性霍尔元件和开关型霍尔元件。线性霍尔元件是由霍尔元件、 线性放大器、 剩余电压补偿器组成。 若该传感器电压引脚接有一定电压 (如 5V) , 在与磁场 垂直时, 将有一定的霍尔电势差输出。 通过对线性霍尔元件的电势差测量, 可以知道磁感应强度的大小和方向。 开关型霍尔元件由稳压器、 霍尔元件、 差分放大器、 施密特触发器和 0C门输出五个部分组成。 在输入端输入电压, 经稳压器后加在霍尔元件的两端, 由霍尔元件输出一个霍尔电势差输入到放 大器放大后送至施密特触发器, 经过整形使其成为方波, 输送到 0C门输出。 当施加的磁场达到 "工作点"时, 触发器输出高电压, 使三极管导通, 0C门 输出低电压, 称这种状态为 "开"; 当施加磁场达到 "释放点"时, 触发器 输出低电压, 三极管载止, 使 0C门输出高电压, 称其为 "关"态。 这样两次 高低电压变换, 使霍尔开关完成了一次开关动作。 开关型霍尔元件测量时能 够避免误动作, 且周期、 转速的测量具有很高的准确度。
综上, 现有霍尔元件的工作原理是根据穿过霍尔元件的磁力线的垂直分 量的大小来得到相应的输出电压值, 或着根据穿过霍尔元件的磁力线的垂直 分量的变化量来得到相应的输出电压变换量, 再由输出电压的大小或变化趋 势进行相应物理量的测量和控制。 但是, 按照现有霍尔元件与磁体的 4种运 动方式, 无法进行精确定位。 特别是开关型霍尔元件只能进行定位情况的定 性判断, 无法进行高精度的定量测量。
如图 5所示, 两块永久磁体同极性相对放置形成一均勾梯度的磁场, 将 线性型霍尔元件置于中间, 其磁感应强度为零, 这个点可作为位移的零点, 如果保持通入霍尔元件的电流 /不变, 当霍尔元件在 Z轴上作 位移时, 输 出的霍尔电压的变化量只由它在该磁场中的位移量 Z来决定,即电压大小与 位移大小成正比:
^UH = KHI Az (2)
dz 其中: Δ 为位移量; 了为磁感应强度 s沿位移方向的梯度, 为常数。
dz 虽然这种方法可以实现精确定位, 但是其存在以下技术问题: 1、 对磁体 气隙的要求较高且工作距离较小, 要求两个磁体必须同极性相对放置且形成 均匀梯度磁场, 另外磁体的体积要求比霍尔元件的体积大许多; 2、 必须严格 保证霍尔元件位于两个磁体的中心, 否则无法正常工作; 3、 因位移与电压输 出一般存在非线性关系, 所以必须采用电路或软件进行补偿。 所以其无法大 量应用在普通的定位测量中。
发明内容 本发明提出了一种基于霍尔元件的定位方法及定位系统, 其解决了现有 的定位系统成本高、 结构复杂、 安装精度要求高的技术问题。
本发明的技术解决方案是:
一种基于霍尔元件的定位方法, 其特殊之处在于: 其包括以下步骤:
1]将霍尔元件和磁体按照以下要求分别安装在相对运动的固定部件和运 动部件上: A、 使霍尔元件的相对运动轨迹从磁体的其中一个磁极的端面上方 穿过且霍尔元件与该磁极端面保持合理的工作气隙; B、 当霍尔元件通过该磁 极端面时, 霍尔元件的霍尔片所在方向与磁体的磁场方向平行;
2]在运动部件向固定部件靠近的过程中监控霍尔元件产生的输出信号, 当霍尔元件产生的输出信号发生突变时, 运动部件所处的位置即为定位点。
上述霍尔元件的相对运动轨迹为直线或弧线。
上述磁体为永久磁铁或磁场稳定的电磁铁。
上述霍尔元件为开关型霍尔元件或线性霍尔元件。
一种基于霍尔元件的定位系统, 包括磁体、 一个或多个霍尔元件, 所述 霍尔元件和磁体分别安装在相对运动的固定部件和运动部件上, 所述霍尔元 件的输出与运动部件的控制系统相连接, 其特殊之处在于: 所述霍尔元件的 运动轨迹从磁体的其中一个磁极的端面上方穿过且霍尔元件与该磁极端面保 持合理的工作气隙; 所述霍尔元件在通过该磁极端面时其霍尔片所在方向与 所述磁体的磁场方向平行。
上述霍尔元件的相对运动轨迹为直线或弧线。
上述磁体为永久磁铁或磁场稳定的电磁铁。
上述霍尔元件为开关型霍尔元件或线性霍尔元件。
本发明具有的优点是:
1、 结构简单。 本发明最简单的结构只采用一个磁体和一个霍尔元件就可 以构成一套定位系统, 比现有的光电传感器的结构简单许多, 甚至比现有的 霍尔位移传感器的结构都要简单。
2、 成本低。 本发明的磁体可以采用成本非常低廉的永久磁铁, 加上价格 很低的霍尔元件, 使得整个系统的成本比光电传感器降低数十倍。
3、 对安装精度的要求低, 应用范围广。 现有的霍尔位移传感器必须严格 保证霍尔元件位于两个磁体的中心, 否则无法正常工作。 而本发明只要磁体 和霍尔元件之间的距离只要能保证在霍尔元件的工作气隙之内, 则定位系统 就可以正常工作, 不会因为距离的微小变化而影响定位准确度。 所以本发明 系统对安装精度没有太高的要求。
4、 定位准确度高, 一致性好。 本发明系统只有当霍尔片运动到磁极的中 心线的延伸线上时, 才没有切割磁力线输出电压。 所以, 当霍尔元件的输出 电压为零时, 则表面霍尔片与磁极的中心线重合。 本发明的定位准确度只与 霍尔元件输出电压的检测灵敏度有关。 尤其重要的是, 不管输出电压的检测 灵敏度高低如何, 本发明系统的定位一致性非常好。
5、 应用范围广。 本发明可以广泛应用于各种普通的定位测量中, 尤其能 够用于粉尘多使得光线不能够照射穿透但磁力线能够穿透的环境。
6、 可靠性高。 本发明基本无须后续维护和检修, 可长期可靠工作。
附图说明
图 1至图 4是现有技术中磁体和霍尔元件间的四种运动方式;
图 5现有技术中霍尔元件作为定位系统的工作原理示意图,
图 6、 图 7和图 8是本发明霍尔元件组成的定位系统的工作过程示意图; 图 9为现有开关型霍尔元件的距离与感应信号的关系示意图;
图 10为现有线性霍尔元件的距离与感应信号的关系示意图;
图 11为本发明采用双向开关型霍尔元件时的距离与感应信号的关系示意 图;
图 12为本发明采用单向开关型霍尔元件时的距离与感应信号的关系示意 图;
图 13 为本发明采用单向线性霍尔元件时的距离与感应信号的关系示意 图;
图 14为本发明采用双向线性霍尔元件时的距离与感应信号的关系示意 图;
图 15是本发明采用多个霍尔元件进行多次定位的工作原理示意图; 图 16是本发明进行角度定位时的工作原理示意图;
. 其中: 1-磁体, 2-霍尔元件, 3-旋转部件, 4-运动部件, 5-固定部件, A- 磁场方向, B-霍尔片所在方向, L-工作气隙, C-运动方向, X轴为霍尔片与磁 场中心轴的垂直距离, Y轴为霍尔元件的感应信号大小, 0' 为磁场中心轴。 具体实施方式
如图 6所示, 一种基于霍尔元件的定位系统, 包括磁体 1、 霍尔元件 2, 霍尔元件 2和磁体 1分别安装在相对运动的固定部件 5和运动部件 4上, 霍 尔元件 2的输出与运动部件 4的控制系统相连接, 将霍尔元件 2安装在运动 部件 4上时, 要求霍尔元件 2的运动轨迹(运动方向 C)从磁体 1的其中一个 磁极(S极) 的端面上方穿过且霍尔元件 2与该磁极(S极)端面保持合理的 工作气隙 L; 同时应保证霍尔元件 2在通过该磁极(S极)端面时其霍尔片所 在方向 B与所述磁体的磁场方向 A平行。 同理, 也可将霍尔元件安装在固定 部件上, 将磁体安装在运动部件上。 磁体可以是永久磁铁或磁场稳定的电磁 铁。 霍尔元件可以是任意霍尔元件, 但以开关型霍尔元件为佳。
霍尔元件的相对运动轨迹可以是直线或弧线, 当运动部件的运动轨迹相 对于固定部件是直线时, 相当于图 1、 图 2所示的运动方式, 其距离与感应信 号的关系参见图 11、 图 12、 图 13和图 14; 当运动部件的运动轨迹相对于固 定部件是弧线时, 相当于图 3所示的运动方式, 具体参见图 16。 如果需要进 行多点定位, 其工作原理参见图 15。
基于霍尔元件的定位系统的工作过程如下:
当运动部件从远处沿运动方向 C向固定部件运动时, 运动部件的最初位 置如图 6所示, 中间位置如图 7所示, 最终位置如图 8所示。 在图 6中, 可 以知道磁力线穿过霍尔片的密度较小, 霍尔元件中产生一定的霍尔电压, 由 图 6位置向图 7位置运动过程中, 随着霍尔元件与磁体的距离靠近, 霍尔电 压也越来越大, 由图 7位置向图 8位置运动过程中, 随着霍尔元件中霍尔片 与磁力线夹角越来越小, 霍尔电压由大变小, 当霍尔元件到达图 8所示位置 时(此时霍尔片所在方向与磁场方向平行), 则没有磁力线穿过霍尔片, 则此 时霍尔元件没有输出电压。 所以, 当霍尔元件由远处向磁体运动时, 霍尔元 件没有输出电压的位置就是运动部件所希望的定位位置。

Claims

权利要求书
1、 一种基于霍尔元件的定位方法, 其特征在于: 其包括以下步骤:
1]将霍尔元件和磁体按照以下要求分别安装在相对运动的固定部件和运 动部件上: A、 使霍尔元件的相对运动轨迹从磁体的其中一个磁极的端面上方 穿过且霍尔元件与该磁极端面保持合理的工作气隙; B、 当霍尔元件通过该磁 极端面时, 霍尔元件的霍尔片所在方向与磁体的磁场方向平行;
2]在运动部件向固定部件靠近的过程中监控霍尔元件产生的输出信号, 当霍尔元件产生的输出信号发生突变时, 运动部件所处的位置即为定位点。
2、 根据权利要求 1所述的基于霍尔元件的定位方法, 其特征在于: 所述 霍尔元件的相对运动轨迹为直线或弧线。
3、 根据权利要求 1或 2所述的基于霍尔元件的定位方法, 其特征在于: 所述磁体为永久磁铁或磁场稳定的电磁铁。
4、 根据权利要求 3所述的基于霍尔元件的定位方法, 其特征在于: 所述 霍尔元件为开关型霍尔元件或线性霍尔元件。
5、 一种基于霍尔元件的定位系统, 包括磁体、 一个或多个霍尔元件, 所 述霍尔元件和磁体分别安装在相对运动的固定部件和运动部件上, 所述霍尔 元件的输出与运动部件的控制系统相连接, 其特征在于: 所述霍尔元件的运 动轨迹从磁体的其中一个磁极的端面上方穿过且霍尔元件与该磁极端面保持 合理的工作气隙; 所述霍尔元件在通过该磁极端面时其霍尔片所在方向与所 述磁体的磁场方向平行。
6、 根据权利要求 5所述的基于霍尔元件的定位系统, 其特征在于: 所述 霍尔元件的相对运动轨迹为直线或弧线。
7、 根据权利要求 5或 6所述的基于霍尔元件的定位系统, 其特征在于: 所述磁体为永久磁铁或磁场稳定的电磁铁。
8、 根据权利要求 7所述的基于霍尔元件的定位方法, 其特征在于: 所述 霍尔元件为开关型霍尔元件或线性霍尔元件。
PCT/CN2009/001124 2009-05-14 2009-10-09 基于霍尔元件的定位方法及定位系统 WO2010130071A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910022524.X 2009-05-14
CN200910022524XA CN101886934A (zh) 2009-05-14 2009-05-14 基于霍尔元件的定位方法及定位系统

Publications (1)

Publication Number Publication Date
WO2010130071A1 true WO2010130071A1 (zh) 2010-11-18

Family

ID=43072943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/001124 WO2010130071A1 (zh) 2009-05-14 2009-10-09 基于霍尔元件的定位方法及定位系统

Country Status (2)

Country Link
CN (1) CN101886934A (zh)
WO (1) WO2010130071A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102630644B (zh) * 2012-04-23 2013-09-11 西南大学 一种昆虫跟踪装置
CN102678903B (zh) * 2012-05-10 2015-04-01 宁波高发汽车控制系统股份有限公司 一种汽车自动换挡装置
CN104596579A (zh) * 2015-01-12 2015-05-06 中国北方发动机研究所(天津) 一种基于霍耳效应的可编程多物理量测量模块
CN105630121A (zh) * 2015-12-23 2016-06-01 魅族科技(中国)有限公司 一种功能复位控制装置
CN105824312B (zh) * 2016-03-14 2018-09-25 山东拓步教育科技有限公司 一种基于霍尔定位系统的精确定位装置及定位方法
CN110858493A (zh) * 2018-08-23 2020-03-03 神讯电脑(昆山)有限公司 资讯撷取装置
CN109489534A (zh) * 2018-11-09 2019-03-19 浙江国自机器人技术有限公司 一种插齿和转盘的位置检测装置、控制系统及机械设备
CN109443185A (zh) * 2018-11-13 2019-03-08 曾子珂 一种外置式霍尔位移传感器
CN109613454B (zh) * 2018-12-14 2020-12-11 常熟理工学院 一种选针器选针头实时故障检测方法和检测装置
CN109506681B (zh) * 2018-12-26 2021-05-11 绍兴光大芯业微电子有限公司 基于硅霍尔效应的磁编码器芯片结构
CN112229314A (zh) * 2020-11-13 2021-01-15 广州市雅江光电设备有限公司 一种霍尔元件的感应区间中间点的定位方法
CN112462177B (zh) * 2020-11-13 2022-08-30 广州市雅江光电设备有限公司 一种霍尔元件的感应区间临界点的定位方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6577123B2 (en) * 2001-06-04 2003-06-10 Delphi Technologies, Inc. Linear position sensor assembly
US6798195B2 (en) * 2001-12-14 2004-09-28 Wabash Technologies, Inc. Magnetic position sensor having shaped pole pieces at least partially formed of a non-magnetic material for producing a magnetic field having varying magnetic flux density along an axis
CN2817078Y (zh) * 2005-08-01 2006-09-13 王海生 导磁金属接近传感器
CN1934419A (zh) * 2004-02-04 2007-03-21 霍尼韦尔国际公司 平衡磁线性位移传感器
JP2007225575A (ja) * 2006-02-27 2007-09-06 Tdk Corp 磁石構造体及びこれを用いた位置検出装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6577123B2 (en) * 2001-06-04 2003-06-10 Delphi Technologies, Inc. Linear position sensor assembly
US6798195B2 (en) * 2001-12-14 2004-09-28 Wabash Technologies, Inc. Magnetic position sensor having shaped pole pieces at least partially formed of a non-magnetic material for producing a magnetic field having varying magnetic flux density along an axis
CN1934419A (zh) * 2004-02-04 2007-03-21 霍尼韦尔国际公司 平衡磁线性位移传感器
CN2817078Y (zh) * 2005-08-01 2006-09-13 王海生 导磁金属接近传感器
JP2007225575A (ja) * 2006-02-27 2007-09-06 Tdk Corp 磁石構造体及びこれを用いた位置検出装置

Also Published As

Publication number Publication date
CN101886934A (zh) 2010-11-17

Similar Documents

Publication Publication Date Title
WO2010130071A1 (zh) 基于霍尔元件的定位方法及定位系统
US9207100B2 (en) Magnetic position sensor with field direction measurement and flux collector
US6304078B1 (en) Linear position sensor
US7521922B2 (en) Linear position sensor
KR101638234B1 (ko) 전류 센서
CN1637379A (zh) 磁线性位置传感器
WO2013002135A1 (ja) 近接センサ
WO2018196835A1 (zh) 一种磁电阻线性位置传感器
KR20140091474A (ko) 가변 플럭스 컬렉터를 이용한 위치 측정
US20210262832A1 (en) Multiple position detection using an inhomogeneously varying magnetic field
Wang et al. Embedded position estimation using tunnel magnetoresistance sensors for permanent magnet linear synchronous motor systems
TWI434025B (zh) Non - contact sensing device
CA1232957A (en) Rotational sensor
TW201947185A (zh) 線性位移感測裝置
US7019607B2 (en) Precision non-contact digital switch
CN208399786U (zh) 一种采用音圈马达控制的变焦镜头
CN112161560B (zh) 一种基于永磁磁通测量的位移传感装置及方法
JP3009250B2 (ja) 位置検出装置
KR102533278B1 (ko) 위치감측기구
CN107976556A (zh) 一种微机械磁场传感器
Lv et al. A novel contactless rotary position micro-sensing system based on electromagnetism
JPS61175504A (ja) 位置決め感知器
JP6226091B2 (ja) 電流センサ
Wang et al. Measurement of Contact Travel of High Voltage Circuit Breaker Based on GMR Sensor
JP2543566B2 (ja) アナログ式ファラデ―効果型光位置検出装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09844488

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09844488

Country of ref document: EP

Kind code of ref document: A1