WO2010127594A1 - 业务传输处理方法、节点设备及网络系统 - Google Patents

业务传输处理方法、节点设备及网络系统 Download PDF

Info

Publication number
WO2010127594A1
WO2010127594A1 PCT/CN2010/072174 CN2010072174W WO2010127594A1 WO 2010127594 A1 WO2010127594 A1 WO 2010127594A1 CN 2010072174 W CN2010072174 W CN 2010072174W WO 2010127594 A1 WO2010127594 A1 WO 2010127594A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical channel
path
node
och
otu
Prior art date
Application number
PCT/CN2010/072174
Other languages
English (en)
French (fr)
Inventor
阎君
陈亘
张波
何达
曾宇
裴玲
谭伟
陈旻
肖新
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP10771997.3A priority Critical patent/EP2429107B1/en
Priority to ES10771997.3T priority patent/ES2644521T3/es
Publication of WO2010127594A1 publication Critical patent/WO2010127594A1/zh
Priority to US13/289,712 priority patent/US9088379B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1605Fixed allocated frame structures
    • H04J3/1652Optical Transport Network [OTN]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2203/00Aspects of optical multiplex systems other than those covered by H04J14/05 and H04J14/07
    • H04J2203/0001Provisions for broadband connections in integrated services digital network using frames of the Optical Transport Network [OTN] or using synchronous transfer mode [STM], e.g. SONET, SDH
    • H04J2203/0057Operations, administration and maintenance [OAM]
    • H04J2203/006Fault tolerance and recovery

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a service transmission processing method, a node device, and a network system.
  • Optical Transport Network is a new optical transmission technology.
  • OTN optical Transport Network
  • the working channel and the protection channel are generally included.
  • the switching condition for example, the working channel or the protection channel fails
  • the switching between the working channel and the protection channel occurs.
  • FIG. 1 is a schematic diagram of a prior art optical channel transmission processing manner. It is assumed that the working channel and the protection channel are included between the node A and the node C.
  • the working channel is an OCh path, and the protection channel includes two OCh paths, one is from node A to node B, and the other is from node B to node C.
  • Node B is a 3R relay node.
  • Node B is the switching condition between the detected nodes A and B (OCh defect and OTUk defect) as a switching condition
  • node C is the switching of the detected defects between the nodes B and C (OCh defect and OTUk defect) as a switching condition. condition.
  • the prior art has the following problems:
  • the node C can only simultaneously perform OCh defects and OTUk defects between the nodes B and C.
  • the detection can trigger the switching, and the node C cannot detect the defect between the nodes A and B, so the existing service transmission processing method needs to be improved.
  • the technical problem to be solved by the embodiments of the present invention is to provide a service transmission processing method, a node device, and a network system, which can improve the processing process in service transmission.
  • the embodiment provided by the present invention is implemented by the following technical solutions:
  • a service transmission processing method includes:
  • the relay processing includes terminating the optical channel OCh of the service data, where the optical channel transmission unit OTU is transparently transmitted when the optical channel OCh is terminated.
  • a service transmission processing method includes:
  • a node device comprising:
  • a receiving unit configured to receive service data after the 3R relay node performs relay processing, where the relay processing includes terminating an optical channel OCh that regenerates the service data, where the optical channel is transmitted when the optical channel OCh is terminated.
  • the unit OTU performs transparent transmission;
  • a detecting unit configured to perform defect detection on a path of the optical channel transmission unit OTU, to obtain a detection result of a path of the optical channel transmission unit OTU.
  • a node device comprising:
  • An obtaining unit configured to acquire an overhead in an OTN frame of the optical transport network
  • a processing unit configured to determine whether the overhead includes client layer failure information inserted after the signal is invalid, and if yes, determining a path where the defect occurs according to the client layer failure information.
  • a network system including:
  • a first node device configured to send service data
  • a relay node device configured to perform relay processing on the received service data, where the relay processing includes terminating an optical channel OCh for regenerating the service data, where the optical channel transmission unit OTU is terminated when the optical channel OCh is terminated. Pass through;
  • the second node device is configured to receive the service data sent by the relay node, perform defect detection on the path of the optical channel transmission unit OTU, and obtain a detection result of the path of the optical channel transmission unit OTU.
  • a network system including:
  • the first node device is configured to monitor the received service data, and if the signal is found to be invalid, insert the client layer failure information into the overhead in the OTN frame of the optical transport network;
  • a second node device configured to acquire an overhead in an OTN frame of the optical transport network sent by the first node device, determine whether the cost of the client layer is included in the overhead, and if yes, determine that the failure occurs according to the client layer failure information. The path to the defect.
  • a node device comprising:
  • a receiving unit configured to receive service data
  • the terminating unit is configured to terminate the optical channel OCh of the service data, and transparently transmit the optical channel transmission unit OTU.
  • the embodiment of the present invention performs the relay processing by the 3R relay node, where the relay processing includes terminating the optical channel OCh for regenerating the service data, where the optical channel is terminated when the optical channel OCh is terminated.
  • the channel transmission unit OTU performs transparent transmission, and according to the optical channel transmission unit OTU being transparently transmitted, the defect of the path of the optical channel transmission unit OTU different from the existing protection range can be detected, and the subsequent process reference for the service transmission processing is improved.
  • the business transmission processing method is improved.
  • FIG. 1 is a schematic diagram of a prior art optical channel transmission processing method
  • FIG. 2 is a flowchart of a service transmission processing method according to an embodiment of the present invention.
  • FIG. 3 is a flowchart of a method for processing a service transmission according to Embodiment 2 of the present invention.
  • FIG. 4 is a schematic diagram of a third service transmission processing method according to Embodiment 3 of the present invention.
  • FIG. 5 is a schematic diagram of an atomic function model of a new 3R function according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a fourth service transmission processing method according to Embodiment 4 of the present invention.
  • FIG. 7 is a schematic diagram of a service transmission processing method according to Embodiment 5 of the present invention.
  • FIG. 8 is a schematic structural diagram of a frame header of a fifth OTN frame according to an embodiment of the present invention.
  • 9 is a schematic structural diagram of a node device according to an embodiment of the present invention.
  • 10 is a schematic structural diagram of a node device according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of a network system according to an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of a network system according to an embodiment of the present invention.
  • Embodiments of the present invention provide a service transmission processing method capable of providing more reasonable processing in service transmission.
  • FIG. 2 is a flowchart of a service transmission processing method according to an embodiment of the present invention, including the steps:
  • Step 201 Receive service data after the 3R relay node performs relay processing, where the relay processing includes an optical channel OCh that terminates the service data, where the optical channel transmission unit is terminated when the optical channel OCh is terminated.
  • OTU is transparent.
  • Step 202 Perform defect detection on the path of the optical channel transmission unit OTU, and obtain a detection result of the path of the optical channel transmission unit OTU.
  • the optical channel OCh is used to terminate the optical channel OCh.
  • the transparent transmission of the optical channel transmission unit OTU may be: when the service data is decapsulated, the optical channel is completed.
  • the optical channel transport unit OTU After decapsulation between the OCh and the optical channel transport unit OTU, decapsulation between the optical channel transport unit OTU and the optical channel data unit ODU is not performed; when the decapsulated service data is repackaged, the optical channel is transmitted
  • the unit OTU is encapsulated into an optical channel OCh. Since the OTU is not further decapsulated at the time of termination, the OTU is directly used for the reproduction. In all embodiments of the present invention, for the sake of simplicity, the termination of the 3R relay node is referred to as transparent transmission to the OTU.
  • the detection result of the path of the optical channel transmission unit OTU may further include: if the detection result of the path of the optical channel transmission unit OTU is a defect, triggering the switching protection of the OTU level of the optical channel transmission unit.
  • the embodiment of the present invention performs the relay processing by the 3R relay node, where the relay processing includes terminating the optical channel OCh for regenerating the service data, where when the optical channel OCh is terminated,
  • the optical channel transmission unit OTU is transparently transmitted, and the optical channel transmission unit OTU is transparently transmitted to detect a defect of a path of the optical channel transmission unit OTU different from the existing protection range, and is available for the industry.
  • the service transmission processing method is also improved.
  • FIG. 3 is a flowchart of a method for processing a service transmission according to Embodiment 2 of the present invention, including the steps of:
  • Step 301 Acquire an overhead in an OTN frame of the optical transport network.
  • Frame overhead, or other overhead in the header portion such as OTUk overhead.
  • Step 302 Determine whether the overhead includes the client layer failure information inserted after the signal is invalid, and if yes, determine the path where the defect occurs according to the customer layer failure information.
  • Determining the path of the defect according to the customer layer failure information includes: determining, according to the customer layer failure information, the path in which the defect occurs is a path before the node inserting the failure information of the client layer;
  • Determining the path of the defect according to the customer layer failure information further includes: determining, according to the path in which the defect occurs, the path before the node inserting the failure information of the client layer, the path after the node inserting the failure information of the client layer does not perform the switching.
  • the embodiment of the present invention determines whether the overhead in the OTN frame of the optical transport network is included in the overhead information of the client layer that is inserted after the signal is invalid, so that different levels of defects can be detected.
  • the subsequent process reference of the service transmission process also improves the service transmission processing method.
  • the OCh defect mentioned in the embodiment of the present invention includes, for example, LOS Loss of Signal Payload (Loss), Forward Defect Indication Payload (FDI-P), and overhead forward defect indication. (FDI-O, Forward Defect Indication Overhead), Open Connection Indication (OCI), etc.
  • OTUk defects including, for example, OTUk-TIM (OTUk Trail trace identifier mismatch), OTUk-DEG (OTUk Degraded defect), OTUk Backward defect indicator (OTUk-BDI, OTUk Backward defect indicator) Wait.
  • OTUk-TIM OTUk Trail trace identifier mismatch
  • OTUk-DEG OTUk Degraded defect
  • OTUk Backward defect indicator OTUk-BDI, OTUk Backward defect indicator
  • FIG. 4 is a schematic diagram of a third service transmission processing method according to Embodiment 3 of the present invention.
  • node X, node Y, node ⁇ , node ⁇ , and node C in the system are OTN device nodes, and node B is a 3R relay node.
  • the service data is sent by the node A to the node B, and after the node B performs the 3R relay, it is sent to the node C, and the node C sends it to the node Y.
  • the service transmission process shown in FIG. 4 includes:
  • Node A sends the service data sent by node X to node B;
  • Node B relays the service data to 3R and sends it to node C;
  • each is an OCh path.
  • An ODUk path is between the node X and the node Y, and the improvement of the 3R relay node according to the embodiment of the present invention is updated as the function of the node B of the 3R relay node, and an OTUk path between the node A and the node C. , i.e., not terminated in the node B OTUk regeneration, thus OTUk path crossed the node B, OTUk forming a path between nodes a and C (a - B - C) 0
  • the 3R relay node in the embodiment of the present invention provides a new 3R function, in addition to the optical signal to noise ratio
  • the main difference is that the level of termination regeneration is different from the existing one.
  • FIG. 5 is a schematic diagram of an atomic function model of a new 3R function according to an embodiment of the present invention.
  • the general ellipse indicates the connection function
  • the triangle indicates the terminal function
  • the trapezoid indicates the adaptation function (the function of receiving the signal is the adaptation sink function, and the function of transmitting the signal is the adaptation source function).
  • the new 3R function includes the OCh/OTUk adaptation function in the trapezoid, and also includes the OCh terminal function in the triangle.
  • the OCR is still terminated at the 3R relay node (the termination can be understood as decapsulation, and the regeneration can be understood as re-encapsulation), but the OTUk is not terminated, so the OTUk can span the 3R. Following the node transparent transmission.
  • the 3R relay node may perform the relaying of the service data by: decapsulating the received service data, and removing the overhead part of the service data from the OCh layer to obtain the OTUk, and then removing the overhead of the OTUk again.
  • the optical channel data unit (ODU, Optical Channel Data Unit) is obtained.
  • the OTUk path no longer belongs to the same protection range as the OCh path.
  • OCh and OTUk are terminated between each adjacent node, that is, node A and node B act as an OCh path, also as an OTUk path, and node B and node C act as An OCh path is also used as an OTUk path.
  • the protection range of the OTUk path is the same as that of the OCh path.
  • the OTUk path can span the 3R node, that is, the OTUk path crossing node in FIG. B, then there is an OTUk path (A - B - C ) between node A and node C, so that the protection scope of OCh level and OTUk level will not be the same.
  • Node C detects the defects of each hierarchical path and determines whether switching protection needs to be performed according to the detection result.
  • the node C may perform defect detection on the path (OCh path) of the optical channel of the service data, and obtain a detection result of the path of the optical channel according to parameters of the optical channel, such as a payload signal, an open connection indication, and the like;
  • the path (OTUk path) of the optical channel transfer unit of the service data performs defect detection, and the detection result of the path of the optical channel transfer unit is obtained based on parameters of the optical channel transfer unit, such as a path trace identifier parameter or the like.
  • the defects of each hierarchical path detected by the node C may include OCh defects between the node B and the node C, and also include OTUk defects between the node A and the node C.
  • the scope of protection needs is between Node B and Node C. In this case, only the OCh level protection can be used, and only the OCh defect is detected. This is because the OTUk level path has been associated with the OCh level after adopting the new 3R function. The paths are different, so it is not necessary to consider the OTUk defect as a trigger for OCh level protection.
  • an OCh defect is detected at the C node, it can be considered that a problem occurs between the node B and the node C, which can be used as a trigger condition for the OCh level protection between the node B and the node C. If the OCh level defect is not detected at the C node, it can be considered that it is normal between the node B and the node C node.
  • the OCh generally has a monitoring function for monitoring the SF defect of the OCh path.
  • the embodiment of the present invention further proposes to use the unused bytes of the OTUk in addition to monitoring the failure information of the OCh path (SF, Client Signal Fail).
  • the overhead monitors the electrical layer for signal degradation (SD, SD Signal degrade), including error monitoring of the OCh path range.
  • SD signal degradation
  • the used overhead is regenerated in the source node of the OCh path, and is terminated in the sink node of the OCh path.
  • the overhead carries the signal-related information set by the active node.
  • the information can be identified by the value of the byte in the overhead.
  • the node compares the information corresponding to the source node with the information corresponding to the source node, and can detect whether an error occurs.
  • the error detection result can also be regarded as an OCh defect and is used as a switching SD condition.
  • the protection scope of the path is consistent with the monitoring scope of the overhead. This solves the problem
  • the OTUk defect completely conforming to the protection scope can be used as the switching condition.
  • you need to configure the protection of the path between nodes B and C you can use the OCh defect that fully complies with the protection scope.
  • OTUk overhead (such as undefined bytes in OTUk overhead) can be used to perform error monitoring on the range of the OCh path.
  • FIG. 6 is a schematic diagram of a fourth service transmission processing method according to Embodiment 4 of the present invention.
  • the system includes node eight, node B, and node C.
  • Node A and node C include a working channel and a protection channel.
  • the working channel is an OCh path.
  • the protection channel includes two OCh paths, one is from node A to node B, and the other is from node B to node C.
  • Node B is a 31 relay node.
  • the service transmission process shown in FIG. 6 includes:
  • Node B receives the service data sent by node A
  • Node B relays the service data to 3R and sends it to node C;
  • the node A, B, and C are an OTUk path, that is, the new 3R function proposed according to the embodiment of the present invention, and the node B does not terminate the regeneration OTUk, so the path of the OTUk crosses the node B, at the node A and the node C. Form an OTUk path between them ( A - B - C ) 0
  • Node C detects the defects of each hierarchical path and determines whether switching protection needs to be performed according to the detection result.
  • the node C may perform defect detection on the path (OCh path) of the optical channel of the service data, and obtain a detection result of the path of the optical channel according to parameters of the optical channel, such as a payload signal, an open connection indication, and the like;
  • the path (OTUk path) of the optical channel transfer unit of the service data performs defect detection, and the detection result of the path of the optical channel transfer unit is obtained based on parameters of the optical channel transfer unit, such as a path trace identifier parameter or the like.
  • the defects of each hierarchical path detected by the node C may include an OCh defect between the node B and the node C, and also include an OTUk defect between the node A and the node C.
  • the OTUk defect is monitored as a switching condition. This is because after the new 3R function, the OTUk level path is different from the OCh level path, so the OCh defect can be ignored as the trigger condition of the OTUk level protection.
  • OTUk defect if an OTUk defect is detected at the C node, it can be considered that a problem occurs between the node A and the node C, which can be used as a trigger condition for the OTUk level protection between the node A and the node C. If the OTUk defect is not detected at the C node, it can be considered that it is normal between the node A and the node C.
  • OCh level is the service layer of the OTUk hierarchy, and the scope of its path The range (AB or BC) is also within the range of the OTUk path (ABC), so OCh defects can also be considered as a trigger for OTUk level protection.
  • FIG. 7 is a schematic diagram of a fifth service transmission processing method according to Embodiment 5 of the present invention.
  • node X, node Y, node ⁇ , and node ⁇ in the system are OTN device nodes. There is a working channel between node X and node A, and a protection channel and a working channel are set between node A and node B.
  • defects between nodes are determined by using client layer fail information (CSF, Client Signal Fail).
  • CSF Client Layer Fail
  • the service transmission process shown in Figure 7 includes:
  • Node A monitors the process of node X transmitting service data. If it detects that no service data is received, that is, signal failure occurs, the client layer failure information (CSF) is inserted into the overhead of the OTN frame and transmitted to node B. ;
  • CSF client layer failure information
  • node A monitors the process of node X transmitting service data. If it detects that no service data is received, that is, signal failure occurs, then client layer failure information (CSF) is inserted into OTN. In the overhead of the frame, the overhead is transmitted to the Node B.
  • CSF client layer failure information
  • CSF client layer invalidation information
  • the header portion of the OTN frame includes different overhead portions, such as OCh overhead, OTUk overhead, ODUk overhead, and frame overhead.
  • the location of the frame overhead may be set in the OTN frame (PSI, Payload Structure Identifier). Location.
  • FIG. 8 is a schematic diagram showing the structure of a frame header of a fifth OTN frame according to an embodiment of the present invention. Lines 1 - 7 of row 1 are OCh overheads, columns 8 - 14 of row 1 are OTUk overheads, columns 1 - 14 of rows 2 - 3 are ODUk overheads, and rows 15 and 15 are PSIs.
  • the embodiment of the invention delivers the CSF through the PSI.
  • a certain byte in the multiframe of the PSI for example, every bit of a byte between PSI[18] and PSI[255] represents the state of a client layer signal, for example, a value of 0 indicates the path.
  • the client layer signal is normal.
  • a value of 1 indicates that the client layer signal is invalid or expressed in the opposite sense.
  • Normally, 0 is inserted by default, indicating that the client layer signal is normal.
  • other overheads in the OTN frame structure can also be considered to pass the CSF. It is generally required to quickly insert a CSF into a PSI after several frames or several milliseconds after determining that it should be inserted.
  • the k-order optical channel data unit is adapted to the source functional entity (OTUkP/XXX_A_So, Optical Data Unit of level k Path /XXX adaptation Source function, XXX indicates a certain customer service) fast after several frames or several milliseconds
  • the CSF is quickly inserted into the PSI.
  • Node B determines whether switching protection is required based on the customer layer failure information.
  • Node B When Node B detects the CSF, it can be determined that there is a problem in the protection range (A - B), that is, a problem between nodes X and A, which also affects the relationship between node A and node B.
  • the working channel and the protection channel make the working channel and the protection channel between the node A and the node B unusable, and the node B does not have the switching protection regardless of whether the OCh defect or the OTUk defect finds a problem between the nodes A and B. This can avoid the occurrence of false switching protection.
  • the embodiment of the present invention provides a node device and a network system.
  • FIG. 9 is a schematic structural diagram of a node device according to an embodiment of the present invention.
  • the node device includes: a receiving unit 901 and a detecting unit 902.
  • the receiving unit 901 is configured to receive the service data that is relayed by the 3R relay node, where the relay processing includes the optical channel OCh that terminates the regenerated service data, where the optical channel transmission unit OTU is transparently transmitted when the optical channel OCh is terminated;
  • the detecting unit 902 is configured to perform defect detection on the path of the optical channel transmission unit OTU, and obtain a detection result of the path of the optical channel transmission unit OTU.
  • the path of the optical channel transmission unit OTU is a path that spans the 3R relay node.
  • the optical channel OCh that terminates the data of the regenerative service wherein when the optical channel OCh is terminated, the optical channel transmission unit OTU may be transparently transmitted: when the service data is decapsulated, the optical channel OCh and the optical channel transmission unit OTU are completed. After decapsulation, the decapsulation between the optical channel transport unit OTU and the optical channel data unit ODU is not performed; when the decapsulated service data is repackaged, the optical channel transport unit OTU is encapsulated into an optical channel OCh 0
  • the node device further includes: a protection processing unit 903, configured to trigger the switching protection of the OTU level of the optical channel transmission unit after the detecting unit 902 detects that the path of the optical channel transmission unit OTU is defective.
  • a protection processing unit 903 configured to trigger the switching protection of the OTU level of the optical channel transmission unit after the detecting unit 902 detects that the path of the optical channel transmission unit OTU is defective.
  • the detecting unit 902 Before detecting the defect of the path of the optical channel transmission unit OTU, the detecting unit 902 further includes: performing defect detection on the path of the optical channel OCh; and the protection processing unit 903 triggers the optical channel after the detecting unit 902 detects that the path OCh of the optical channel is defective. OCh level switching protection.
  • the node device further includes: an error monitoring unit 904, configured to compare the stored information with the information set by the 3R relay node in the overhead of the optical channel transmission unit OTU in the service data, to obtain an error on the path of the optical channel OCh The result of code monitoring.
  • FIG. 10 is a schematic structural diagram of a node device according to an embodiment of the present invention.
  • the node device includes: an obtaining unit 1001 and a processing unit 1002.
  • An obtaining unit 1001 configured to acquire an overhead in an OTN frame of the optical transport network
  • the processing unit 1002 is configured to determine whether the overhead includes the client layer failure information inserted after the signal is invalid, and if yes, determine the path where the defect occurs according to the client layer failure information.
  • the node device further includes: a protection processing unit 1003, configured to determine, after the processing unit 1002 determines, according to the client layer failure information, that the path in which the defect occurs is a path before the node that inserts the client layer failure information, after determining the node that inserts the client layer failure information The path does not perform a switchover.
  • a protection processing unit 1003 configured to determine, after the processing unit 1002 determines, according to the client layer failure information, that the path in which the defect occurs is a path before the node that inserts the client layer failure information, after determining the node that inserts the client layer failure information The path does not perform a switchover.
  • FIG. 11 is a schematic structural diagram of a network system according to an embodiment of the present invention.
  • the network system includes: a first node device 1101, a relay node device 1102, and a second node device 1103.
  • the first node device 1101 is configured to send service data.
  • the relay node device 1102 is configured to perform relay processing on the received service data, where the relay processing includes terminating the optical channel OCh of the regenerated service data, where the optical channel transmission unit OTU is transparently transmitted and sent when the optical channel OCh is terminated.
  • the second node device 1103 is configured to receive the service data sent by the relay node, perform defect detection on the path of the optical channel transmission unit OTU, and obtain a detection result of the path of the optical channel transmission unit OTU.
  • the second node device 1103 has the structure shown in FIG. 9 above. For details, refer to the foregoing description, and details are not described herein again.
  • FIG. 12 is a schematic structural diagram of a network system according to an embodiment of the present invention.
  • the network system includes: a first node device 1201 and a second node device 1202.
  • the first node device 1201 is configured to monitor the received service data, and if the signal is found to be invalid, insert the client layer failure information into the overhead in the OTN frame of the optical transport network,
  • the second node device 1202 is configured to obtain an overhead in the OTN frame of the optical transport network sent by the first node device 1201; determine whether the overhead information is included in the overhead, and if so, determine the path where the defect occurs according to the customer layer failure information.
  • the second node device 1202 is specifically the structure shown in FIG. 10 above. For details, refer to the foregoing description. Let me repeat.
  • a node device comprising:
  • a receiving unit configured to receive service data
  • the terminating unit is configured to terminate the optical channel OCh of the service data, and transparently transmit the optical channel transmission unit OTU.
  • the terminating unit specifically includes: a decapsulation unit, configured to perform decapsulation between the optical channel transmission unit OTU and the optical channel data unit ODU after the decapsulation between the optical channel OCh and the optical channel transmission unit OTU is completed; And an encapsulating unit, configured to encapsulate the optical channel transmission unit OTU into an optical channel OCh when re-encapsulating the decapsulated service data.
  • the node device may also include
  • a detecting unit configured to perform defect detection on a path of the optical channel OCh, if an optical channel is detected
  • the embodiment of the present invention performs a relay process by using a 3R relay node, where the relay process includes terminating an optical channel OCh that regenerates the service data, where the optical channel is transmitted when the optical channel OCh is terminated.
  • the unit OTU performs transparent transmission, and according to the optical channel transmission unit OTU being transparently transmitted, the defect of the path of the optical channel transmission unit OTU different from the existing protection range can be detected, and the subsequent process of the service transmission processing can be referred to, thereby perfecting the service. Transmission processing method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本发明实施例公开一种业务传输处理方法、节点设备及网络系统。其中一种方法包括:接收3R中继节点进行中继处理后的业务数据,所述中继处理包括终结再生所述业务数据的光信道OCh,其中,终结所述光信道OCh时,对光信道传送单元 OTU进行透传;对所述光信道传送单元OTU的路径进行缺陷检测,得到所述光信道传送单元OTU的路径的检测结果。另一种方法包括:获取光传送网OTN帧中的开销;判断所述开销中是否含有在信号失效后被插入的客户层失效信息,若是,根据所述客户层失效信息确定发生缺陷的路径。 本发明实施例技术方案能够完善业务传输中的处理过程。

Description

业务传输处理方法、 节点设备及网络系统
本申请要求于 2009 年 5 月 6 日提交中国专利局、 申请号为 200910140406.9、 发明名称为"业务传输处理方法、 节点设备及网络系统 "的中 国专利申请的优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域,具体涉及一种业务传输处理方法、节点设备及 网络系统。
背景技术
光传送网 (OTN, Optical Transport Network )是一种新的光传送技术, 随 着 OTN技术的发展, 目前光网络中开始大量采用各种方式的保护。 对于光传 送网络, 一般包括工作通道和保护通道, 当倒换条件发生时(例如工作通道或 保护通道发生故障) , 则工作通道和保护通道间发生倒换。
对于光信道(OCh, Optical Channel )传输处理, 现有技术中存在几种方 式。 其中一种方式是主要使用 OCh缺陷和光信道传送单元(OTUk, Optical channel Transport Unit )缺陷作为倒换条件, OTUk与 OCh同时终结再生, 当 检测到 OCh缺陷和 OTUk缺陷后, 触发倒换。 图 1是现有技术光信道传输处 理方式示意图。 假设节点 A和节点 C之间包括工作通道和保护通道, 其工作 通道为一个 OCh路径,其保护通道包括两个 OCh路径, 一个是从节点 A到节 点 B, 一个是从节点 B到节点 C, 其中节点 B是 3R中继节点。 节点 B是将检 测到的节点 A和 B之间的缺陷 (OCh缺陷和 OTUk缺陷)作为倒换条件, 节 点 C是将检测到的节点 B和 C之间的缺陷( OCh缺陷和 OTUk缺陷 )作为倒 换条件。
在对现有技术的研究和实践过程中, 发明人发现现有技术存在以下问题: 现有技术业务传输处理方法中,所以节点 C只能同时对节点 B和 C之间的 OCh 缺陷和 OTUk缺陷进行检测从而可以触发倒换, 而节点 C无法检测到节点 A 和 B之间存在缺陷, 因此现有业务传输处理方法有待完善。
发明内容
本发明实施例要解决的技术问题是提供一种业务传输处理方法、节点设备 及网络系统, 能够完善业务传输中的处理过程。 为解决上述技术问题, 本发明所提供的实施例是通过以下技术方案实现 的:
一种业务传输处理方法, 包括:
接收 3R中继节点进行中继处理后的业务数据, 所述中继处理包括终结再 生所述业务数据的光信道 OCh, 其中, 终结所述光信道 OCh时, 对光信道传送 单元 OTU进行透传;
对所述光信道传送单元 OTU的路径进行缺陷检测,得到所述光信道传送单 元 OTU的路径的检测结果。
一种业务传输处理方法, 包括:
获取光传送网 OTN帧中的开销;
判断所述开销中是否含有在信号失效后被插入的客户层失效信息, 若是, 根据所述客户层失效信息确定发生缺陷的路径。
一种节点设备, 包括:
接收单元, 用于接收 3R中继节点进行中继处理后的业务数据, 所述中继 处理包括终结再生所述业务数据的光信道 OCh,其中,终结所述光信道 OCh时, 对光信道传送单元 OTU进行透传;
检测单元,用于对所述光信道传送单元 OTU的路径进行缺陷检测,得到所 述光信道传送单元 OTU的路径的检测结果。
一种节点设备, 包括:
获取单元, 用于获取光传送网 OTN帧中的开销;
处理单元,用于判断所述开销中是否含有在信号失效后被插入的客户层失 效信息, 若是, 根据所述客户层失效信息确定发生缺陷的路径。
一种网络系统, 包括:
第一节点设备, 用于发送业务数据;
中继节点设备, 用于将接收的业务数据进行中继处理, 所述中继处理包括 终结再生所述业务数据的光信道 OCh, 其中, 终结所述光信道 OCh时, 对光信 道传送单元 OTU进行透传;
第二节点设备, 用于接收所述中继节点发送的业务数据,对所述光信道传 送单元 OTU的路径进行缺陷检测,得到所述光信道传送单元 OTU的路径的检测 结果。 一种网络系统, 包括:
第一节点设备, 用于对接收的业务数据进行监视, 若发现信号失效, 将客 户层失效信息插入到光传送网 OTN帧中的开销中;
第二节点设备,用于获取所述第一节点设备发送的光传送网 OTN帧中的开 销; 判断所述开销中是否含有所述客户层失效信息, 若是, 根据所述客户层失 效信息确定发生缺陷的路径。
一种节点设备, 包括:
接收单元, 用于接收业务数据;
终结单元, 用于终结所述业务数据的光信道 OCh, 并对光信道传送单元 OTU进行透传。 上述技术方案可以看出, 本发明实施例通过 3R中继节点进行中继处理, 所述中继处理包括终结再生所述业务数据的光信道 OCh, 其中, 终结所述光 信道 OCh时, 对光信道传送单元 OTU进行透传, 根据光信道传送单元 OTU 被透传可以检测出与现有保护范围不同的光信道传送单元 OTU 的路径的缺 陷, 可供业务传输处理的后续过程参考, 也就完善了业务传输处理方法。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施 例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地, 下面描述 中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付 出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1是现有技术光信道传输处理方式示意图;
图 2是本发明实施例一业务传输处理方法的流程图;
图 3是本发明实施例二业务传输处理方法的流程图;
图 4是本发明实施例三业务传输处理方法示意图;
图 5是本发明实施例提出的新的 3R功能的原子功能模型示意图;
图 6是本发明实施例四业务传输处理方法示意图;
图 7是本发明实施例五业务传输处理方法示意图;
图 8是本发明实施例五 OTN帧的帧头结构示意图;
图 9是本发明实施例节点设备一结构示意图; 图 10是本发明实施例节点设备二结构示意图;
图 11是本发明实施例网络系统一结构示意图;
图 12是本发明实施例网络系统二结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是 全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造 性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。 本发明实施例要提供一种业务传输处理方法,能够在业务传输中提供更合 理的处理。
图 2是本发明实施例一业务传输处理方法的流程图, 包括步骤:
步骤 201、 接收 3R中继节点进行中继处理后的业务数据, 中继处理包括终 结再生业务数据的光信道 OCh, 其中, 终结光信道 OCh时, 对光信道传送单元
OTU进行透传。
步骤 202、 对光信道传送单元 OTU的路径进行缺陷检测, 得到光信道传送 单元 OTU的路径的检测结果。
上述终结再生业务数据的光信道 OCh, 其中, 终结光信道 OCh时, 对光信 道传送单元 OTU进行透传可以为: 将业务数据进行解封装时, 在完成光信道
OCh与光信道传送单元 OTU之间的解封装后,不进行光信道传送单元 OTU与光 通道数据单元 ODU之间的解封装; 在对解封装后的业务数据进行重封装时, 将光信道传送单元 OTU封装成光信道 OCh。由于终结时 OTU不会被进一步解封 装, 再生时直接以 OTU为基本单位, 本发明所有实施例中, 为简便起见, 将 3R 中继节点的这种终结再生称为对 OTU进行透传。
得到光信道传送单元 OTU的路径的检测结果后还可以包括:若光信道传送 单元 OTU的路径的检测结果为存在缺陷,触发光信道传送单元 OTU层次的倒换 保护。
从该实施例内容可以看出, 本发明实施例通过 3R中继节点进行中继处理, 所述中继处理包括终结再生所述业务数据的光信道 OCh, 其中, 终结所述光信 道 OCh时,对光信道传送单元 OTU进行透传,根据光信道传送单元 OTU被透传 可以检测出与现有保护范围不同的光信道传送单元 OTU的路径的缺陷,可供业 务传输处理的后续过程参考, 也就完善了业务传输处理方法。
本发明实施例还提供一种业务传输处理方法。 图 3是本发明实施例二业务 传输处理方法的流程图, 包括步骤:
步骤 301、 获取光传送网 OTN帧中的开销。
m τ
Figure imgf000007_0001
曰 3 m:
帧开销, 或帧头部分中的其他开销例如 OTUk开销等。
步骤 302、 判断开销中是否含有在信号失效后被插入的客户层失效信息, 若是, 根据客户层失效信息确定发生缺陷的路径。
根据客户层失效信息确定发生缺陷的路径包括:根据客户层失效信息确定 发生缺陷的路径为位于插入客户层失效信息的节点之前的路径;
根据客户层失效信息确定发生缺陷的路径之后还包括:根据发生缺陷的路 径为位于插入客户层失效信息的节点之前的路径,确定插入客户层失效信息的 节点之后的路径不执行倒换。
从上述内容可以看出, 本发明实施例通过获取光传送网 OTN帧中的开销, 判断开销中是否含有在信号失效后被插入的客户层失效信息,因此可以检测出 不同层次的缺陷, 以供业务传输处理的后续过程参考,也就完善了业务传输处 理方法。
以下进一步详细介绍本发明实施例技术方案。
本发明实施例所说的 OCh缺陷,包括例如净荷信号丢失(LOS-P, LOS Loss of signal Payload )、 净荷前向缺陷指示 (FDI-P , Forward Defect Indication Payload )、 开销前向缺陷指示 (FDI-O, Forward Defect Indication Overhead ), 开放连接指示(OCI, Open Connection Indication )等。
OTUk缺陷,包括例如:路径踪迹标识符失配( OTUk— TIM, OTUk Trail trace identifier mismatch )、 劣化缺陷 ( OTUk— DEG, OTUk Degraded defect )、 后向 缺陷指示(OTUk— BDI, OTUk Backward defect indicator )等。
图 4是本发明实施例三业务传输处理方法示意图。
如图 4所示, 系统中的节点 X、 节点 Y、 节点 Α、 节点 Β、 节点 C为 OTN设备 节点, 其中节点 B是 3R中继节点。 节点 A和节点 B间设有一个工作通道, 节点 B 和节点 C间设置有保护通道和工作通道。业务数据由节点 A发送给节点 B,在节 点 B进行 3R中继后发送给节点 C, 由节点 C发送给节点 Y。 具体的, 图 4所示的业务传输过程包括:
1 )节点 A将节点 X发送的业务数据发送给节点 B;
2 )节点 B将业务数据进行 3R中继, 发送给节点 C;
^^如节点 X需向节点 A发送业务数据, 节点 X与节点 A之间, 节点 A与节点 B之间, 节点 B与节点 C之间, 节点 C与节点 Y之间各为一个 OCh路径, 节点 X 与节点 Y之间为一个 ODUk路径, 而根据本发明实施例对 3R中继节点的改进, 作为 3R中继节点的节点 B的功能被更新, 节点 A与节点 C之间为一个 OTUk路 径, 即在节点 B不终结再生 OTUk, 因此 OTUk的路径跨过了节点 B, 在节点 A 和节点 C之间形成一个 OTUk路径 ( A - B - C )0
本发明实施例中的 3R中继节点提供新的 3R功能, 除了可对光信噪比
( OSNR, Optical Signal Noise Ratio )劣化进行补偿外, 主要区别是终结再生 的层次与现有不同。
图 5是本发明实施例提出的新的 3R功能的原子功能模型示意图。 在原子功 能模型中, 一般椭圆形表示连接功能, 三角形表示终端功能, 梯形表示适配功 能(接收信号的功能为适配宿功能, 发送信号的功能为适配源功能)。 如图 5 所示, 新的 3R功能包括梯形中的 OCh/OTUk适配功能, 还包括三角形中的 OCh 终端功能。
根据本发明实施例提出的新的 3R功能, 仍然是在 3R中继节点终结再生 OCh (终结可理解为解封装, 再生可以理解为重封装), 但不终结再生 OTUk, 因此 OTUk可以跨越 3R中继节点透传。
具体的, 3R中继节点对业务数据进行中继可以为: 将接收的业务数据进 行解封装, 将业务数据从 OCh层次去除开销部分得到 OTUk, 此时不再与现有 一样再将 OTUk去除开销得到光通道数据单元 (ODU, Optical Channel Data Unit。在进行重封装时, 不再需要进行将 ODU增加开销部分得到 OTUk的过程, 而是直接将 OTUk增加开销部分得到 OCh。
这样, OTUk路径就不再与 OCh路径属于同一保护范围。 例如图 4中, 如果 按现有 3R功能, OCh和 OTUk是在每相邻的节点间终结再生的, 即节点 A与节 点 B作为一个 OCh路径, 也作为一个 OTUk路径, 节点 B与节点 C作为一个 OCh 路径, 也作为一个 OTUk路径, 此时 OTUk路径与 OCh路径的保护范围是相同, 但根据新的 3R功能, OTUk路径可跨越过 3R节点, 即图 4中 OTUk路径跨越节点 B, 则节点 A和节点 C之间为一个 OTUk路径 (A - B - C ), 这样, OCh层次和 OTUk层次的保护范围将不再相同。
3 ) 节点 C检测各层次路径的缺陷, 根据检测结果确定是否需要进行倒换 保护。
节点 C可以对所述业务数据的光信道的路径(OCh路径)进行缺陷检测, 根据所述光信道的参数例如净荷信号、开放连接指示等参数得到光信道的路径 的检测结果; 以及对所述业务数据的光信道传送单元的路径(OTUk路径)进 行缺陷检测,根据所述光信道传送单元的参数例如路径踪迹标识符参数等得到 光信道传送单元的路径的检测结果。
也就是说, 节点 C检测的各层次路径的缺陷可以包括节点 B和节点 C间 的 OCh缺陷, 也包括节点 A和节点 C间的 OTUk缺陷。 以需要保护的范围是 节点 B和节点 C之间为例, 此时可以只采用 OCh层次的保护, 则仅仅检测 OCh缺陷,这是因为采用新 3R功能后, OTUk层次的路径已经与 OCh层次的 路径不同, 所以不必考虑把 OTUk缺陷作为 OCh层次保护的触发条件。 也就 是说, 如果在 C节点检测到 OCh缺陷, 则可以认为在节点 B和节点 C间出现 问题, 可以作为节点 B和节点 C间的 OCh层次保护的触发条件。 如果在 C节 点检测不到 OCh层次的缺陷, 则可以认为在节点 B和节点 C节点间正常。
另外, OCh—般具有监视功能用于监视 OCh路径的 SF缺陷, 本发明实 施例进一步提出除了监视 OCh路径的失效信息(SF, Client Signal Fail )缺陷 夕卜, 还利用 OTUk的未用字节等开销对电层进行信号劣化(SD, SD Signal degrade )监视, 包括对 OCh路径范围进行误码监视。 所利用的开销是在 OCh 路径的源节点再生, 在 OCh路径的宿节点终结, 开销中携带有源节点设置的 与信号相关的信息, 这些信息可以通过开销中字节的取值进行标识,宿节点根 据源节点在开销中设置的相关信息, 与本节点对应的信息进行比较,可以检测 到是否有误码发生, 误码的检测结果也可以视为 OCh缺陷并作为倒换 SD条 件, 此时 OCh路径的保护范围与开销的监视范围是一致的这样可以解决 OCh 层次无法对误码进行监视的问题。
因此, 本实施例中当用户需要配置节点 A和 C之间的路径的保护的时候, 就可以采用与保护范围完全符合的 OTUk缺陷作为倒换条件。 当需要配置节点 B和 C之间的路径的保护的时候, 就可以采用与保护范围完全符合的 OCh缺陷 作为倒换条件。 另外, 还可以同时利用 OTUk开销(如 OTUk开销中未定义的字 节)对 OCh路径的范围进行误码监视。
图 6是本发明实施例四业务传输处理方法示意图。
如图 6所示, 系统中包括节点八、 节点 B和节点 C。 节点 A和节点 C之间包括 工作通道和保护通道, 其工作通道为一个 OCh路径, 其保护通道包括两个 OCh 路径, 一个是从节点 A到节点 B, 一个是从节点 B到节点 C, 其中节点 B是 31中 继节点。 具体的, 图 6所示的业务传输过程包括:
1 )节点 B接收节点 A发送的业务数据;
2 )节点 B将业务数据进行 3R中继, 发送给节点 C;
节点 A、 B、 C之间为一个 OTUk路径, 即根据本发明实施例提出的新的 3R 功能, 在节点 B不终结再生 OTUk, 因此 OTUk的路径跨过了节点 B, 在节点 A 和节点 C之间形成一个 OTUk路径 ( A - B - C )0
3R中继节点对业务数据进行中继的过程可以参见实施例三中的描述, 此 处不再赘述。
3 ) 节点 C检测各层次路径的缺陷, 根据检测结果确定是否需要进行倒换 保护。
节点 C可以对所述业务数据的光信道的路径(OCh路径)进行缺陷检测, 根据所述光信道的参数例如净荷信号、开放连接指示等参数得到光信道的路径 的检测结果; 再对所述业务数据的光信道传送单元的路径(OTUk路径)进行 缺陷检测,根据所述光信道传送单元的参数例如路径踪迹标识符参数等得到光 信道传送单元的路径的检测结果。
也就是说, 节点 C检测的各层次路径的缺陷可以包括节点 B和节点 C间 的 OCh缺陷,也包括节点 A和节点 C间的 OTUk缺陷。 以需要对节点 A和节 点 C之间的路径进行保护为例, 此时可以只采用 OTUk层次的保护, 则监视 OTUk缺陷作为倒换条件。 这是因为采用新 3R功能后, OTUk层次的路径已 经与 OCh层次的路径不同, 所以可以不考虑把 OCh缺陷作为 OTUk层次保护 的触发条件。 也就是说, 如果在 C节点检测到 OTUk缺陷, 则可以认为在节 点 A和节点 C间出现问题,可以作为节点 A和节点 C间的 OTUk层次保护的 触发条件。 如果在 C节点检测不到 OTUk缺陷, 则可以认为在节点 A和节点 C间正常。 另外, 因为 OCh层次是 OTUk层次的服务层, 并且它的路径的范 围 (AB或 BC )也在 OTUk的路径的范围 (ABC ) 内, 所以也可以考虑采用 OCh缺陷作为 OTUk层次保护的触发条件。
图 7是本发明实施例五业务传输处理方法示意图。
如图 7所示, 系统中的节点 X、 节点 Y、 节点 Α、 节点 Β为 OTN设备节点。 节点 X和节点 A间设有一个工作通道, 节点 A和节点 B间设置有保护通道和工作 通道。
本发明实施例中, 通过使用客户层失效信息(CSF, Client Signal Fail )判 断节点间的缺陷。
图 7所示的业务传输过程包括:
1 )节点 A对节点 X发送业务数据的过程进行监视, 如果检测到接收不到业 务数据, 也即发生信号失效, 则把客户层失效信息(CSF )插入到 OTN帧的开 销中传送给节点 B;
假设节点 X、 A之间发生故障, 节点 A对节点 X发送业务数据的过程进行监 视, 如果检测到接收不到业务数据, 也即发生信号失效, 则把客户层失效信息 ( CSF )插入到 OTN帧的开销中, 将该开销传送给节点 B。
将客户层失效信息(CSF )插入到开销的过程参见以下描述:
OTN帧的帧头部分包括有不同的开销部分, 例如 OCh开销、 OTUk开销、 ODUk开销和帧开销等, 其中帧开销的位置可以设置在 OTN帧中的净荷结构标 识(PSI, Payload Structure Identifier )所处位置。 如图 8所示, 图 8是本发明实 施例五 OTN帧的帧头结构示意图。 第 1行的 1 - 7列为 OCh开销, 第 1行的 8 - 14 列为 OTUk开销, 第 2 - 3行的第 1 - 14列为 ODUk开销, 第 4行第 15是 PSI。
本发明实施例通过 PSI传递 CSF。 将 PSI的复帧中的某个字节, 例如 PSI[18] 到 PSI[255]之间的某个字节的每 1个比特代表一路客户层信号的状态,例如取值 为 0表示该路客户层信号正常,取值为 1表示该路客户层信号失效,或者采用相 反的含义表示。 一般默认情况下插入 0, 表示客户层信号正常。 当然, 也可以 考虑采用 OTN帧结构中的其他开销来传递 CSF。一般要求在确定应该插入后在 若干帧或若干毫秒后就快速将 CSF插入到 PSI中。 例如在接收到前面其他功能 实体传递过来的严重信号失效( SSF, Severe signal fail )后, k阶光通道数据单 元适配源功能实体( ODUkP/XXX— A— So, Optical Data Unit of level k Path/XXX adaptation Source function, XXX表示某种客户业务)在若干帧或若干毫秒后快 速将 CSF插入到 PSI中。
另外, 对于不支持上述功能的设备, 可以直接插入 0x00到未使用的 OTN 帧的开销中,使得接收端如果支持上述功能就可以认为客户层信号正常,这样 可以使得支持上述功能的设备与不支持上述功能的设备也可以互通。
2 )节点 B根据客户层失效信息, 确定是否需要进行倒换保护。
节点 B检测到 CSF, 则可以确定是在保护范围 (A - B ) 之夕卜出现了问题, 即属于节点 X和 A之间的问题,该问题同时也就影响到了节点 A到节点 B间的工 作通道和保护通道,使得节点 A到节点 B间的工作通道和保护通道都无法使用, 则节点 B无论根据 OCh缺陷或 OTUk缺陷是否发现节点 A、 B间出现问题, 都不 会发生倒换保护, 这样可以避免误倒换保护的发生。
上述内容伴细介绍了本发明实施例业务传输处理方法,相应的, 本发明实 施例提供一种节点设备和网络系统。
图 9是本发明实施例节点设备一结构示意图。
如图 9所示, 节点设备包括: 接收单元 901、 检测单元 902。
接收单元 901, 用于接收 3R中继节点进行中继后的业务数据, 中继处理包 括终结再生业务数据的光信道 OCh, 其中, 终结光信道 OCh时, 对光信道传送 单元 OTU进行透传;
检测单元 902, 用于对光信道传送单元 OTU的路径进行缺陷检测, 得到光 信道传送单元 OTU的路径的检测结果。
其中, 光信道传送单元 OTU的路径为跨越 3R中继节点的路径。
上述终结再生业务数据的光信道 OCh, 其中, 终结光信道 OCh时, 对光信 道传送单元 OTU进行透传可以为: 将业务数据进行解封装时, 在完成光信道 OCh与光信道传送单元 OTU之间的解封装后,不进行光信道传送单元 OTU与光 通道数据单元 ODU之间的解封装; 在对解封装后的业务数据进行重封装时, 将光信道传送单元 OTU封装成光信道 OCh0
节点设备还包括:保护处理单元 903, 用于在检测单元 902检测到光信道传 送单元 OTU的路径存在缺陷后, 触发光信道传送单元 OTU层次的倒换保护。
检测单元 902对光信道传送单元 OTU的路径进行缺陷检测之前还包括: 对 光信道 OCh的路径进行缺陷检测;保护处理单元 903在检测单元 902检测到光信 道的路径 OCh存在缺陷后, 触发光信道 OCh层次的倒换保护。 节点设备还包括: 误码监视单元 904, 用于根据存储的信息与业务数据中 由 3R中继节点在光信道传送单元 OTU的开销中设置的信息进行比较, 得到对 光信道 OCh的路径进行误码监视的结果。
图 10是本发明实施例节点设备二结构示意图。
如图 10所示, 节点设备包括: 获取单元 1001、 处理单元 1002。
获取单元 1001, 用于获取光传送网 OTN帧中的开销;
处理单元 1002,用于判断开销中是否含有在信号失效后被插入的客户层失 效信息, 若是, 根据客户层失效信息确定发生缺陷的路径。
节点设备还包括:保护处理单元 1003, 用于在处理单元 1002根据客户层失 效信息确定发生缺陷的路径为位于插入客户层失效信息的节点之前的路径时, 确定插入客户层失效信息的节点之后的路径不执行倒换。
图 11是本发明实施例网络系统一结构示意图。
如图 11所示, 网络系统包括: 第一节点设备 1101、 中继节点设备 1102、 第 二节点设备 1103。
第一节点设备 1101, 用于发送业务数据;
中继节点设备 1102, 用于将接收的业务数据进行中继处理, 中继处理包括 终结再生业务数据的光信道 OCh, 其中, 终结光信道 OCh时, 对光信道传送单 元 OTU进行透传, 发送中继处理后的业务数据;
第二节点设备 1103, 用于接收中继节点发送的业务数据,对光信道传送单 元 OTU的路径进行缺陷检测, 得到光信道传送单元 OTU的路径的检测结果。
第二节点设备 1103具有上述图 9所示的结构, 具体参见前面描述, 此处不 再赘述。
图 12是本发明实施例网络系统二结构示意图。
如图 12所示, 网络系统包括: 第一节点设备 1201、 第二节点设备 1202。 第一节点设备 1201, 用于对接收的业务数据进行监视, 若发现信号失效, 将客户层失效信息插入到光传送网 OTN帧中的开销中,
第二节点设备 1202,用于获取第一节点设备 1201发送的光传送网 OTN帧中 的开销; 判断开销中是否含有客户层失效信息, 若是, 根据客户层失效信息确 定发生缺陷的路径。
第二节点设备 1202具体上述图 10所示的结构,具体参见前面描述,此处不 再赘述。
一种节点设备, 其特征在于, 包括:
接收单元, 用于接收业务数据;
终结单元, 用于终结所述业务数据的光信道 OCh, 并对光信道传送单元 OTU进行透传。 所述终结单元具体包括: 解封装单元, 用于在完成光信道 OCh 与光信道传送单元 OTU之间的解封装后,不进行光信道传送单元 OTU与光通道 数据单元 ODU之间的解封装; 封装单元, 用于对解封装后的业务数据进行重 封装时, 将光信道传送单元 OTU封装成光信道 OCh。
该节点设备还可以包括,
检测单元, 用于对所述光信道 OCh的路径进行缺陷检测, 若检测到光信道
OCh的路径存在缺陷, 触发光信道 OCh层次的倒换保护。
综上所述, 本发明实施例通过 3R中继节点进行中继处理, 所述中继处理 包括终结再生所述业务数据的光信道 OCh, 其中, 终结所述光信道 OCh时, 对 光信道传送单元 OTU进行透传,根据光信道传送单元 OTU被透传可以检测出与 现有保护范围不同的光信道传送单元 OTU的路径的缺陷,可供业务传输处理的 后续过程参考, 也就完善了业务传输处理方法。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分步骤 是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可 读存储介质中, 例如只读存储器, 磁盘或光盘等。
以上对本发明实施例所提供的一种业务传输处理方法、节点设备及网络系 阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时, 对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围 上均会有改变之处, 综上所述, 本说明书内容不应理解为对本发明的限制。

Claims

权 利 要 求
1、 一种业务传输处理方法, 其特征在于, 包括:
接收 3R中继节点进行中继处理后的业务数据, 所述中继处理包括终结再 生所述业务数据的光信道 OCh, 其中, 终结所述光信道 OCh时, 对光信道传送 单元 OTU进行透传;
对所述光信道传送单元 OTU的路径进行缺陷检测,得到所述光信道传送单 元 OTU的路径的检测结果。
2、 根据权利要求 1所述的业务传输处理方法, 其特征在于:
所述光信道传送单元 OTU的路径为跨越所述 3R中继节点的路径。
3、 根据权利要求 1或 2所述的业务传输处理方法, 其特征在于, 所述终结 再生所述业务数据的光信道 OCh, 其中, 终结所述光信道 OCh时, 对光信道传 送单元 OTU进行透传具体为:
将所述业务数据进行解封装时,在完成光信道 OCh与光信道传送单元 OTU 之间的解封装后, 不进行光信道传送单元 OTU与光通道数据单元 ODU之间的 解封装;
在对解封装后的业务数据进行重封装时,将光信道传送单元 OTU封装成光 信道 OCh。
4、 根据权利要求 3所述的业务传输处理方法, 其特征在于:
所述对光信道传送单元 OTU的路径进行缺陷检测之前还包括:对所述光信 道 OCh的路径进行缺陷检测, 若检测到光信道 OCh的路径存在缺陷, 触发光信 道 OCh层次的倒换保护。
5、 根据权利要求 1或 2所述的业务传输处理方法, 其特征在于:
所述得到光信道传送单元 OTU的路径的检测结果后包括:若光信道传送单 元 OTU的路径的检测结果为存在缺陷,触发光信道传送单元 OTU层次的倒换保 护。
6、 根据权利要求 1或 2所述的业务传输处理方法, 其特征在于:
还包括根据存储的信息与所述业务数据中由 3R中继节点在所述光信道传 送单元 OTU的开销中设置的信息进行比较,得到对光信道 OCh的路径进行误码 监视的结果。
7、 一种业务传输处理方法, 其特征在于, 包括: 获取光传送网 OTN帧中的开销;
判断所述开销中是否含有在信号失效后被插入的客户层失效信息, 若是, 根据所述客户层失效信息确定发生缺陷的路径。
8、 根据权利要求 7所述的业务传输处理方法, 其特征在于:
所述根据客户层失效信息确定发生缺陷的路径包括:根据所述客户层失效 信息确定发生缺陷的路径为位于插入客户层失效信息的节点之前的路径;
所述根据客户层失效信息确定发生缺陷的路径之后包括:根据发生缺陷的 路径为位于插入客户层失效信息的节点之前的路径,确定所述插入客户层失效 信息的节点之后的路径不执行倒换。
9、 一种节点设备, 其特征在于, 包括:
接收单元, 用于接收 3R中继节点进行中继处理后的业务数据, 所述中继 处理包括终结再生所述业务数据的光信道 OCh,其中,终结所述光信道 OCh时, 对光信道传送单元 OTU进行透传;
检测单元,用于对所述光信道传送单元 OTU的路径进行缺陷检测,得到所 述光信道传送单元 OTU的路径的检测结果。
10、 根据权利要求 9所述的节点设备, 其特征在于:
所述接收单元接收的业务数据被 3R中继节点终结再生所述业务数据的光 信道 OCh包括:
由所述 3R中继节点将所述业务数据进行解封装时,在完成光信道 OCh与光 信道传送单元 OTU之间的解封装后,不进行光信道传送单元 OTU与光通道数据 单元 ODU之间的解封装; 由所述 3R中继节点对解封装后的业务数据进行重封 装时, 将光信道传送单元 OTU封装成光信道 OCh。
11、 根据权利要求 9或 10所述的节点设备, 其特征在于, 还包括: 保护处理单元,用于在所述检测单元检测到光信道传送单元 OTU的路径存 在缺陷后, 触发光信道传送单元 OTU层次的倒换保护。
12、 根据权利要求 11所述的节点设备, 其特征在于:
所述检测单元对光信道传送单元 OTU的路径进行缺陷检测之前还包括:对 所述光信道 OCh的路径进行缺陷检测;
所述保护处理单元在所述检测单元检测到光信道的路径 OCh存在缺陷后, 触发光信道 OCh层次的倒换保护。
13、 根据权利要求 9或 10所述的节点设备, 其特征在于, 还包括: 误码监视单元, 用于根据存储的信息与所述业务数据中由 3R中继节点在 所述光信道传送单元 OTU的开销中设置的信息进行比较, 得到对光信道 OCh 的路径进行误码监视的结果。
14、 一种节点设备, 其特征在于, 包括:
获取单元, 用于获取光传送网 OTN帧中的开销;
处理单元,用于判断所述开销中是否含有在信号失效后被插入的客户层失 效信息, 若是, 根据所述客户层失效信息确定发生缺陷的路径。
15、 根据权利要求 14所述的节点设备, 其特征在于, 还包括:
保护处理单元,用于在所述处理单元根据所述客户层失效信息确定发生缺 陷的路径为位于插入客户层失效信息的节点之前的路径时,确定所述插入客户 层失效信息的节点之后的路径不执行倒换。
16、 一种网络系统, 其特征在于, 包括:
第一节点设备, 用于发送业务数据;
中继节点设备, 用于将接收的业务数据进行中继处理, 所述中继处理包括 终结再生所述业务数据的光信道 OCh, 其中, 终结所述光信道 OCh时, 对光信 道传送单元 OTU进行透传, 发送中继处理后的业务数据;
第二节点设备, 用于接收所述中继节点发送的业务数据,对所述光信道传 送单元 OTU的路径进行缺陷检测,得到所述光信道传送单元 OTU的路径的检测 结果。
17、 一种网络系统, 其特征在于, 包括:
第一节点设备, 用于对接收的业务数据进行监视, 若发现信号失效, 将客 户层失效信息插入到光传送网 OTN帧中的开销中;
第二节点设备, 用于获取所述第一节点设备发送的光传送网 OTN帧中的 开销; 判断所述开销中是否含有所述客户层失效信息, 若是, 根据所述客户层 失效信息确定发生缺陷的路径。
18、 一种节点设备, 其特征在于, 包括:
接收单元, 用于接收业务数据;
终结单元, 用于终结所述业务数据的光信道 OCh, 并对光信道传送单元 OTU进行透传。
19、根据权利要求 18所述的节点设备, 其特征在于, 所述终结单元具体包 括:
解封装单元,用于在完成光信道 OCh与光信道传送单元 OTU之间的解封装 后, 不进行光信道传送单元 OTU与光通道数据单元 ODU之间的解封装;
封装单元, 用于对解封装后的业务数据进行重封装时,将光信道传送单元 OTU封装成光信道 OCh0
20、 根据权利要求 19所述的节点设备, 其特征在于, 还包括,
检测单元, 用于对所述光信道 OCh的路径进行缺陷检测, 若检测到光信 道 OCh的路径存在缺陷, 触发光信道 OCh层次的倒换保护。
PCT/CN2010/072174 2009-05-06 2010-04-24 业务传输处理方法、节点设备及网络系统 WO2010127594A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10771997.3A EP2429107B1 (en) 2009-05-06 2010-04-24 Methods, node equipment and network system for service transmission processing
ES10771997.3T ES2644521T3 (es) 2009-05-06 2010-04-24 Procedimientos, equipo de nodo y sistema de red para procesamiento de transmisión de servicios
US13/289,712 US9088379B2 (en) 2009-05-06 2011-11-04 Service transmission processing method, node device and network system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910140406.9 2009-05-06
CN200910140406.9A CN101883295B (zh) 2009-05-06 2009-05-06 业务传输处理方法、节点设备及网络系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/289,712 Continuation US9088379B2 (en) 2009-05-06 2011-11-04 Service transmission processing method, node device and network system

Publications (1)

Publication Number Publication Date
WO2010127594A1 true WO2010127594A1 (zh) 2010-11-11

Family

ID=43049968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/072174 WO2010127594A1 (zh) 2009-05-06 2010-04-24 业务传输处理方法、节点设备及网络系统

Country Status (5)

Country Link
US (1) US9088379B2 (zh)
EP (1) EP2429107B1 (zh)
CN (1) CN101883295B (zh)
ES (1) ES2644521T3 (zh)
WO (1) WO2010127594A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120230674A1 (en) * 2011-03-10 2012-09-13 Catherine Haiyan Yuan Triggers to Fault Information Insertion in Optical Transport Network

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101998679B (zh) * 2009-08-13 2012-11-07 华为技术有限公司 一种传输承载的中继方法、装置和通信系统
CN102014312B (zh) * 2009-09-04 2014-03-12 中兴通讯股份有限公司 客户信号失效的指示方法与装置
CN103379391A (zh) * 2012-04-24 2013-10-30 中兴通讯股份有限公司 Olt和通过该olt进行信号处理的方法和装置
CN104158586B (zh) * 2014-08-06 2017-01-11 华为技术有限公司 一种倒换实现方法、站点及系统
CN106301857B (zh) * 2015-06-08 2019-10-25 华为技术有限公司 一种网络保护的方法、网络节点及系统
CN109218061A (zh) * 2017-07-07 2019-01-15 中兴通讯股份有限公司 灵活以太网之故障通知及获取方法、装置、通信设备
CN112104471B (zh) * 2019-06-18 2024-03-29 华为技术有限公司 一种故障传输方法和装置
US11838048B2 (en) * 2020-01-17 2023-12-05 Infinera Corporation SD-FEC defect propagation across regeneration nodes in support of single and multi-carrier super channel protection in ROADM networks

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1874201A (zh) * 2006-06-20 2006-12-06 中兴通讯股份有限公司 在接收设备共享配置下的光网络保护触发方法及装置
CN1983931A (zh) * 2006-04-05 2007-06-20 华为技术有限公司 在光网络中传递故障信息的方法及系统
CN101030844A (zh) * 2006-03-01 2007-09-05 华为技术有限公司 一种光纤通道业务复用器、数据传送系统及数据传送方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7286487B2 (en) * 2002-11-18 2007-10-23 Infinera Corporation Optical transmission network with asynchronous mapping and demapping and digital wrapper frame for the same
EP1411665A1 (en) * 2002-10-18 2004-04-21 Alcatel Method and apparatus for shared protection in an optical transport network ring based on the ODU management
CN100373847C (zh) * 2004-12-14 2008-03-05 华为技术有限公司 在光传送网中传输低速率业务信号的方法
CN101145839A (zh) 2006-09-11 2008-03-19 华为技术有限公司 实现k阶光通道数据单元子层监视子网连接保护方法及装置
US8666242B2 (en) * 2007-06-05 2014-03-04 Cisco Technology, Inc. Response to OTUk-BDI for OTN interfaces to restore bidirectional communications
CN101179350A (zh) 2007-11-22 2008-05-14 华为技术有限公司 管理光通道数据单元共享保护子网的方法和设备
US9485015B2 (en) * 2011-11-14 2016-11-01 Infinera Corporation Optical layer status exchange over OSC-OAM method for ROADM networks

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101030844A (zh) * 2006-03-01 2007-09-05 华为技术有限公司 一种光纤通道业务复用器、数据传送系统及数据传送方法
CN1983931A (zh) * 2006-04-05 2007-06-20 华为技术有限公司 在光网络中传递故障信息的方法及系统
CN1874201A (zh) * 2006-06-20 2006-12-06 中兴通讯股份有限公司 在接收设备共享配置下的光网络保护触发方法及装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120230674A1 (en) * 2011-03-10 2012-09-13 Catherine Haiyan Yuan Triggers to Fault Information Insertion in Optical Transport Network

Also Published As

Publication number Publication date
US9088379B2 (en) 2015-07-21
CN101883295B (zh) 2014-04-30
EP2429107A4 (en) 2012-03-14
ES2644521T3 (es) 2017-11-29
EP2429107B1 (en) 2017-09-06
CN101883295A (zh) 2010-11-10
US20120051736A1 (en) 2012-03-01
EP2429107A1 (en) 2012-03-14

Similar Documents

Publication Publication Date Title
WO2010127594A1 (zh) 业务传输处理方法、节点设备及网络系统
EP3902234B1 (en) Dcn packet processing method, network device, and network system
US7710864B2 (en) Recovery mechanism for 10 GE optical transport network wavelength division multiplexing ring
US9479248B2 (en) Fault localization using tandem connection monitors in optical transport network
KR102582988B1 (ko) 플렉시블 이더넷 통신 방법 및 네트워크 장치
US20080259786A1 (en) System and method for supporting sdh/sonet aps on ethernet
US7706254B2 (en) Method and system for providing ethernet protection
US8675501B2 (en) Transmission apparatus and reporting method for reporting fault
US20080050117A1 (en) Method and apparatus for photonic resiliency of a packet switched network
JP2016144211A (ja) 光転送ネットワークにおけるフレームアライメントイベントの管理
WO2020199421A1 (zh) 一种双归保护方法、接入节点、设备及通信网络
US10601537B2 (en) Fault propagation in segmented protection
JP7163508B2 (ja) フレキシブルイーサネット通信方法とネットワークデバイス
US7213178B1 (en) Method and system for transporting faults across a network
WO2016197881A1 (zh) 一种网络保护的方法、网络节点及系统
JP2022507745A (ja) 通信方法および通信装置
JP4946909B2 (ja) フレーム監視装置およびフレーム監視方法
JP7191228B2 (ja) 通信方法および装置
US10367724B1 (en) Optical channel data unit (ODU) fault propagation and link recovery using ODU-delay measurement
EP3873029A1 (en) Port configuration detection method, terminal, and computer-readable storage medium
WO2021244390A1 (zh) 一种告警处理方法及装置
WO2018077110A1 (zh) 一种发送报文和接收报文的方法、网络设备及报文发送系统
US8554947B1 (en) Network data transmission systems and methods

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10771997

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010771997

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010771997

Country of ref document: EP