WO2010126229A2 - Small-scale, large-capacity, seawater-flow power generator for high-speed seawater flows - Google Patents

Small-scale, large-capacity, seawater-flow power generator for high-speed seawater flows Download PDF

Info

Publication number
WO2010126229A2
WO2010126229A2 PCT/KR2010/002005 KR2010002005W WO2010126229A2 WO 2010126229 A2 WO2010126229 A2 WO 2010126229A2 KR 2010002005 W KR2010002005 W KR 2010002005W WO 2010126229 A2 WO2010126229 A2 WO 2010126229A2
Authority
WO
WIPO (PCT)
Prior art keywords
current
generator
tidal
power generation
capacity
Prior art date
Application number
PCT/KR2010/002005
Other languages
French (fr)
Korean (ko)
Other versions
WO2010126229A3 (en
Inventor
장경수
이정은
장성원
장재원
Original Assignee
Jang Kyung Soo
Lee Jung Eun
Jang Seung Won
Jang Jae Won
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jang Kyung Soo, Lee Jung Eun, Jang Seung Won, Jang Jae Won filed Critical Jang Kyung Soo
Publication of WO2010126229A2 publication Critical patent/WO2010126229A2/en
Publication of WO2010126229A3 publication Critical patent/WO2010126229A3/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/26Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using tide energy
    • F03B13/264Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using tide energy using the horizontal flow of water resulting from tide movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/08Machine or engine aggregates in dams or the like; Conduits therefor, e.g. diffusors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/26Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using tide energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/10Stators
    • F05B2240/13Stators to collect or cause flow towards or away from turbines
    • F05B2240/133Stators to collect or cause flow towards or away from turbines with a convergent-divergent guiding structure, e.g. a Venturi conduit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/40Use of a multiplicity of similar components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Definitions

  • the present invention relates to an algae generator for converting the kinetic energy of the algae generated by tidal tides, which are rapidly flowing rivers or natural phenomena, into electrical energy.
  • tidal power generation system marine power generation system, or drainage locks or gates of tidal power generation system constructed together with tidal power crossing the sea, separated from tidal current, which is a natural phenomenon generated in the ocean by tidal tides, and tidal power generation using it.
  • the rapid flow of seawater generated from artificial marine structures such as structures is called the current, and the development using this is called current generation.
  • the inventors of the present invention devised an integrated power generation system (registered patent 10-0867547, PCT / KR2008 / 001388), which combines tidal power generation and ocean current generation, and combined marine power generation combined with hydrological and current generation.
  • an integrated power generation system registered patent 10-0867547, PCT / KR2008 / 001388
  • the speed of algae due to natural phenomena of tidal tides through artificially constructed marine structures, such as marine power generation systems, drainage locks of seawalls, or hydrologic structures.
  • the present invention relates to a small-capacity current generator for high-speed current that can obtain electrical energy from the kinetic energy of the current flowing at a much higher speed.
  • the tidal current system consists of a water turbine, a gearbox, a generator, a power converter, and a supporting structure.
  • Algae power generates electricity by rotating a water wheel turbine driven by kinetic energy of a fluid, such as wind power, and converting a low speed of the axle shaft connected to a water turbine to a high speed gearbox through a gearbox.
  • the generated electrical energy is transmitted to substations on nearby beaches through submarine cables.
  • tidal power generated by tidal current generators installed on tidal currents generated by tidal tides can be calculated from the following equation (1).
  • the high tidal flow rate is absolutely advantageous for tidal power generation because the power output Pw that can be obtained from tidal current is proportional to the density ⁇ of the seawater, the efficiency ⁇ of the tidal current generator and the seawater passage cross-section A, and is proportional to 3 squared of the tidal current V.
  • Algae generators are classified into helical, HAT (horizontal axis turbine), and VAT (vertical axis turbine) types according to the type of water turbine.
  • HAT horizontal axis turbine
  • VAT vertical axis turbine
  • MW-class commercial algae generators have not been released yet, but the technology of the wind power field accumulated for decades can be easily combined, so the flow rate of algae is good and construction cost is low. Efforts are being made. Overseas, technology development for the commercialization of algae generators is actively underway in Europe, Canada and the United States, mainly in the United Kingdom, Norway and Denmark.
  • Blue Energy Canada and Canoe Pass are two of the leading companies.
  • Blue Energy Canada has developed its own vertical turbine type Davis turbine, exporting technology to the Philippines, Mexico and other facilities.
  • Verdant Power installed a small 25kW horizontal propeller type tidal generator next to Roosevelt Island in Manhattan, New York, USA in December 2006.In May 2007, Verdant Power installed five 5m water turbine turbines and 35kW generating capacity. It produces and supplies power from six horizontal propeller type algae generators with a total capacity of 0.2 MW.
  • tidal current generators have a column of circular cross-section fixed to the seabed, and the generator is installed and fixed on it to generate power by using the flow of tidal current. Therefore, algae generators submerged in the sea apply the same theoretical principles as wind turbines and are lined up or installed in the form of wind farms.
  • the biggest difference between wind and tidal power is that the aberration turbine for tidal current generation is much smaller for the same rated power, and can be arranged much closer if the complex consists of multiple tidal generators. This is because the density of seawater is about 840 times greater than the density of air.
  • algae strength generally does not necessarily require a large tidal range or height, but is directly related to the tidal height in the area.
  • large-scale power generation is not realized because of the great potential of algae resources, but the speed of algae, or energy density, is too small for economic development in most seas. In other words, the sea area where rapid seawater flows are limited worldwide, and the power generation efficiency of the available algae generator is insufficient to secure economic feasibility.
  • Algae power generation is possible even in places where the flow rate is around 1.0m / s, but for economical power generation, the area where the average speed of algae is 2.0m / s or more is considered as a promising region. Depending on the speed, it can be designed to produce power output of up to 750kW to 1,000kW per unit of water turbine.
  • the water turbine of 16m wing diameter developed by Marine Current Turbines of UK in Seagen project is very large capacity of 600kW per unit.
  • aberration turbines with a power generation capacity of 750 to 1,000 kW per unit are quite large.
  • the wing diameter of the aberration turbine which has a larger power generation capacity, should not only be more than 20 m, but also the depth of the seabed to install such a tidal generator should be deeper, and the cost of construction will increase along with the difficulty of installation.
  • the wing diameter of the aberration turbine should be more than 24m, and the diameter of the aberration turbine blade should be 27m or more for the power generation capacity to be 1,000kW.
  • the pressure coefficient (Cp) is lower than the steam pressure, that is, the threshold of seawater.
  • Cp the pressure coefficient
  • the resistance of algae generated at such high flow rates is a very important problem when installing generator housings and power generation structures, since only a few minutes of the day become slack water, so that the seawater moves through the foundation. Building and installing a tidal generator is a very difficult problem.
  • the average speed of algae that is effective for algae generation is more than 2.0m / s, and the depth of the seabed, terrain or accessibility is not desirable for algae in the area where the average speed of algae is 2.0m / s. It may not.
  • the maximum speed of more than 6.0m / s even more than 2.0m is converted to kinetic energy, depending on the region, such as Korea's wool stone tree.
  • the instantaneous maximum speed is an important design factor that must be considered in terms of durability and safety of the tidal generator, but it is also a cause of overdesign and high cost considering that the resistance of the tidal current is proportional to the square of the tidal velocity.
  • the average speed of algae is the most important design factor in terms of continuous or rated power generation.
  • Another factor to consider when designing an algae generator is the turbulence intensity of the algae. This is because it causes a significant change in the load on the aberration turbine and power generation structure of the tidal current generator and is a major cause of fatigue and vibration problems of the machinery. Therefore, it is necessary to understand the degree of turbulence intensity of algae not only to place algae generators away from areas with strong laminar flow, but also to ensure the durability of machinery.
  • the technical limitations of the existing algae generators developed by using the algae due to the natural phenomenon of tidal tides are as follows.
  • the average speed range of natural algae that can be used commercially is about 2.0 to 2.5 m / s
  • the limit of wing diameter of the aberration turbine of the algae generator is about 20 to 25 m.
  • the power generation capacity per unit is limited to 1,000kW.
  • (4) building foundations on the seabed and installing algae generators in fast tides is a major challenge, and (5) the durability of the machine is very difficult to secure due to the degree of turbulence of the algae and the resistance of tidal currents that change frequently. It is a task.
  • the inventors of the present invention devised an integrated power generation system that combines tidal power generation and current generation (patent 10-0867547, PCT / KR2008 / 001388) and a combined marine power generation system that combines hydrological and current generation (patented patent) 10-0883756, PCT / KR2008 / 002414), currents flowing through artificial marine structures, such as tidal power plants or tidal power generation systems, such as tidal power plants built in areas with large tidal flats, or drainage doors or hydrologic structures, It is found that the flow rate is much faster than the average speed of the algae.
  • the generation capacity and design specifications of the current generators that can be installed where the current flows at high speed should be determined in consideration of the available current speed, depth of the sea, water level fluctuations on the sea side and the lake side, and seabed topography.
  • the large-capacity algae generator of the existing concept such as that developed in advanced marine countries, can not be installed where the high speed current flows.
  • the present invention devised to solve the problems of the prior art as described above provides a small-capacity current generator for high-speed current current that can be generated using the current flowing at a speed much faster than the speed of the tidal current due to tidal currents.
  • the purpose is.
  • an artificial marine structure such as an integrated power generation system, a composite marine power generation system or a drainage lock or a hydrologic structure of the embankment,
  • the small sized large current current generator for high speed current which has a small wing size of 5-12m and a power output of 0.5MW or more per water turbine.
  • the support pillar or monopile installed on the sea bed to support the small-capacity ocean current generator for high speed current flow is characterized in that the cross-sectional shape of the streamline or oval.
  • the small-capacity current generator for high-speed ocean current of the present invention when constructing an ocean current power plant in conjunction with the construction of an offshore power generation system such as tidal power plant, a drainage lock of a sea repellent, or a hydrologic structure, closes the installation area of the current generation complex with a barrier. This can be safely installed at a much lower cost than the installation of an algae generator in the ocean, which leads to high economic benefits.
  • the development of large-scale current generation complexes is premised on the mass production of current generators, so not only can a significant reduction in production costs, but also a reduction in production costs can be expected.
  • the small-capacity ocean current generator for high speed current current of the present invention has the same power generation capacity, so that the size of the current generator turbine is much smaller than that of a general tidal current generator. It can be easily developed by utilizing wind turbine development technology.
  • 1 is a satellite image of Google Earth showing the sea water is rapidly flowing from the sea side of the seawater drainage lock located in the southern end of the Saemangeum dike.
  • FIG. 2 is a plan view of an integrated power generation system that combines tidal power generation and ocean current generation
  • FIG. 3 is a side view of the aberration structure and the lake side current generation complex of the tidal power plant of FIG. 2, and FIG. 4 is an ocean current generator at this time.
  • FIG. 5 is a side view of the hydrologic structure and the offshore current generation complex of the tidal dam of FIG. 2, and FIG. 6 is the current generator at this time.
  • 7 to 9 are examples of a small-capacity ocean current generator for high speed ocean current equipped with a three-wing water turbine turbine.
  • Figure 10 shows the relationship between the power generation output according to the current flow speed in the size of the blade diameter of the water turbine turbine 2-25m, the design range of the existing concept of the current generator and the design range of the small-capacity current generator for high speed current current of the present invention Shows.
  • FIG. 11 shows a comparative comparison of the sizes of the small-capacity current generators (a) for high speed current currents, the algae generator (b) and the offshore wind generator (c) of the present invention when the same power generation capacity is 4MW.
  • FIGS. 12 to 17 are various modified examples of the small-capacity ocean current generator for high speed current according to the present invention, a single water turbine turbine (FIGS. 12, 13, and 14), a double water turbine turbine (FIGS. 15 and 16), and 3 Show the shape of the current generator consisting of a heavy water turbine (Fig. 17).
  • FIG. 18 supports the current generators 62 including a gearbox 60 and a large capacity generator 61, a hydraulic system and a cooling system, and a power converter installed on the exterior of the current generator nussel 58.
  • sluice 220 offshore current development complex
  • 1 is a place where the small-capacity current generator for the high speed current current of the present invention can be applied, and a satellite of Google Earth showing the sea water flowing rapidly from the sea side to the lake side through a caustic drainage lock located at the south end of the Saemangeum embankment. It is a photograph.
  • Figure 2 is a plan view of the integrated power generation system combined with tidal power generation and current generation according to the present invention
  • Figure 3 is a side view of the aberration structure and the lake side current generation complex of the tidal power station of Figure 2
  • Figure 4 is installed at this time 5 is a form of a possible current generator
  • FIG. 5 shows a side view of the hydrologic structure of the tidal dam of FIG. 2 and the ocean current development complex
  • FIG. 6 is a form of the current generator that can be installed at this time.
  • the integrated power generation system which combines tidal power generation and ocean current generation, builds a seawall 10 that blocks the sea where the difference between tidal tides occurs as shown in FIG. 2.
  • the lake 12 is formed as shown in FIG. 2.
  • the tidal power generator 10 is provided with an tidal power plant 100 and an tidal dam 200 intercepting the lake side 12 and the sea side 14.
  • the tidal power plant 100 and the tidal dam 200 in the middle of the connection between the tidal power plant 100 and the tidal dam 200 is preferably arranged at a distance to the connection structure 300 or a connection aid.
  • the connecting structure 300 or the connecting aid may be built in the tens, hundreds, thousands, meters, or kilometers, depending on the topography of the current generation complex.
  • the generator 110 is installed.
  • the aberration structure 102 constituting the tidal power plant 100 illustrates that 10 aberration structures 102 are connected to each other by using one unit as shown in FIG. 2, but is limited thereto.
  • the number of installations can vary depending on the nature or the plan of generation.
  • a plurality of current generators 120 are generated using the flow of seawater discharged through the tidal power generation aberration generator 110 do. As described above, the plurality of current generators 120 are installed on the lake side 12 to form the lake side current generation complex 120.
  • the plurality of current generators 120 are disposed in a lattice form having a predetermined distance between the matrices by the diameter of the turbine blades of the current generators, but the odd thermal current generators 120C and the even thermal current generators ( 120D) is preferably arranged to be offset from each other.
  • the hydrologic structure 210 constituting the tidal dam 200 is provided with a hydrologic gate 212 as shown in FIG. 5.
  • the sluice gate 212 is lowered by the hoisting device 214 at the time of creation to block seawater 14 from flowing into the lake side 12, and as the tide rises, the sluice gate 212 receives the seawater from the sluice channel 216. ) To discharge to the sea side (14).
  • the hydrological structure 210 constituting the tidal dam 200 illustrates eight hydrological structures 210 using one as a unit as shown in FIG. 2, but is limited thereto. Depending on your plan, the number of installations can vary.
  • the current generators of the lake side current generation complex 120 and the sea side current generation complex 220 are respectively supported and installed on a support column or a monopile F installed in the sea floor.
  • the current generators of the lake-side current generation complex 120 and the sea-side current generation complex 220 includes a propeller that rotates to drive the flow of the current, and a generator having a rotor connected to the rotating shaft of the propeller.
  • the aberration structure 102 of the tidal power plant 100 and the hydrologic structure 210 of the tidal dam 200 are configured by connecting at least one or more as shown in FIG. 2.
  • a plurality of current generators may be installed only at the lake side 12 to form an integrated power generation system that combines tidal power generation and current generation, and a plurality of current generators 220 may be installed only at the seawater side 14 of the tidal dam 200.
  • the current generator that can be installed in the current generation complex should be designed differently from the general tidal current generator. Accordingly, the present invention provides a small mass current generator suitable for the current flowing at high speed.
  • the generation capacity and specifications of the current generators that can be installed in the current generation complex are as follows: current speeds available in the waters before and after the tidal power plant, the size of the exit of the aberration structure of the tidal power plant, the depth of the sea, the water level fluctuations on the sea and lake sides, and the seabed topography
  • current speeds available in the waters before and after the tidal power plant the size of the exit of the aberration structure of the tidal power plant, the depth of the sea, the water level fluctuations on the sea and lake sides, and the seabed topography
  • an integrated power generation system as shown in FIG. 2 will be described by installing an ocean current power generation complex in the Sihwa Lake tidal power plant currently under construction.
  • the LB of the seabed in the region to be installed in the current side of the lake-side current generation complex is EL (-) 20.0m
  • the minimum low water level of the lake is EL (-) 4.46m.
  • Current generators can be installed in the water.
  • the lake side current generator of the aberration structure 102 of the tidal power plant 100 is preferably an ocean current generator having a wing diameter of about 10 m as shown in FIG. 4.
  • the bottom surface SB of the region where the ocean current generator installation of the tidal dam 200 hydrological structure 210 is installed is EL (-) 16.0 m, and the lowest water level of the sea is EL (-) 4.60 m,
  • current generators can be installed in water at least 11.4m deep. Therefore, the sea current generator of the tidal dam 200, the hydrologic structure 210 is preferably an ocean current generator having a blade diameter of about 8 m as shown in FIG. 6, and from about 2.0 to 3.0 m from the sea bottom to the tip of the water turbine turbine. It is desirable to allow a margin.
  • FIG. 7 is an example of propeller-type horizontal current generators equipped with a three-wing aberration turbine, which smooth the surface of the wing to avoid cavitation causing performance deterioration, and as shown in FIG. Due to the relatively low tangential speed at the root portion, the tip portion of the wing is preferably twisted so as to receive an optimal angle of attack, and the shape of the wing tip is preferably round as shown in FIG. 8.
  • the wing tip speed is reduced, which is advantageous in preventing cavitation.
  • the cross section of the aberration turbine blades has an elliptic shape and a pitch control function corresponding to bidirectional flow.
  • the tidal current of the Sihwa Lake tidal power plant is 6.0m / t after the tidal power generation is over 3.0m / s.
  • the speed of the current current is 6.0m / s or more when drained through the water gate 212 of the tidal dam 200, the hydrologic structure 210 at 1.9m free fall during fall. This is because there is no energy extracting device in the middle of the hydrologic structure 210 of the tidal dam 200, so that the potential energy of the seawater is converted into kinetic energy in the entire amount when raising the water gate 212. In this way, the sea current velocity generated when the potential energy due to the water head difference is converted into kinetic energy can be calculated from the following equation (2).
  • h is the head difference between the lake and sea
  • g is the acceleration of gravity.
  • a 1.9 m water head changes from Eq. (2) to a current of about 6.1 m / s as the water passes through the tidal water of the tidal dam aberration, and about 10.8 m / s at 6.0 m. It changes to the current of velocity. Therefore, the current generator installed in such a fast current flows has a much smaller wing size of a water turbine than the existing concept of a tidal current generator designed to generate power using a current of 2 to 2.5 m / s. To get it.
  • Figure 10 shows the result of calculating the relationship between the power generation output according to the current speed when the size of the blade diameter of the water turbine turbine is 2-25m from Equation (1), the design range of the small-capacity current generator for high speed current current of the present invention (10) and the design range (20) of the existing tidal current generator is indicated by a rectangular box, respectively.
  • Table 1 shows the relationship between the power generation amount for the rotational cross-sectional area (A, m 2 ) and the tide velocity (V, m / s) of aberration turbine blades applied to a propeller type horizontal axis type tidal current generator.
  • the amount of power generated by one current generator having a 10 m water wheel turbine blade is about 0.43 MW as shown in point A of FIG.
  • the power generation amount of one current generator with an aberration turbine blade of 8 m is about 2.2 MW as shown in point B of FIG. 10.
  • the design range 10 of the small-capacity current generator for high speed current current of the present invention is significantly different from the design range 20 of the general tidal current generator.
  • the algae generators currently being developed in the developed countries correspond to the design range 20 of FIG. 10, which means that they cannot be used as they are at high speeds of 3.0 m / s or more.
  • the power generation amount of the tidal current generator can be obtained from one water turbine.
  • the limit is about 1.0 MW.
  • the average speed of the algae used in the existing algae power generation is limited to about 2.5 m / s.
  • the amount of power generated by the existing algae generator is It is less than 0.5MW, and in order to obtain more than 1.0MW of power per unit, as shown in point C of FIG. 10, the wing diameter of the water turbine should be 20m or more.
  • the current generator installed here has a design range (10) different from the conventional concept algae generator.
  • the wing diameter of the water turbine generator can vary depending on the seabed topography conditions and the current plan for the construction of the current generation complex. The larger the depth of the sea, the larger the wing diameter of the water turbine can be.
  • the wing diameter of the turbines is preferably 5 to 12m to ensure structural stability of the current generators.
  • the small-capacity current generator for high-speed current current of the present invention can obtain a large amount of power generation of as small as 0.5 MW to several MW per unit unit.
  • FIG. 11 is a comparative comparison of the sizes of the small-capacity ocean current generator (a) and the general tidal current generator (b) and the offshore wind power generator (c) for the high speed current current obtained from the result of FIG. 10 when the same power generation capacity is 4MW.
  • (b) is a conceptual diagram devised by the British Tidal Stream, 4MW class tidal power generation system consisting of four aberration turbines having a power capacity of 1.0MW per unit unit and a wing diameter of 20m at a tidal flow of 2.5m / s as shown in point C of FIG. It is imagined to be installed at a depth of 60 meters below sea level.
  • 4MW large-scale offshore wind turbines such as (c) or 4MW class tidal power generators such as (b) are large in size and require a large investment in development. It is a difficult reality.
  • the high speed current current generator of the present invention as shown in the current generator design range 10 of FIG. 10, although large in size, but very small in size, has concentrated on the domestic wind turbine development technology and shipbuilding technology.
  • the domestic technology alone is very likely to develop in a short time, and the development and investment costs will be very low. Therefore, the small-capacity current generator for the high speed ocean current of the present invention provides a new technology area and the opportunity of pioneering and preoccupying the global market.
  • FIGS. 7 to 9 are various modified examples of the small-capacity ocean current generator for a high speed current according to the present invention having a basic three-wheel type aberration turbine of the horizontal axis as shown in FIGS. 7 to 9.
  • Figures 13 and 14 show the shapes of the current generators consisting of a double aberration turbine (Figs. 15 and 16) and a triple aberration turbine (Fig. 17).
  • the aberration turbine wing diameter of the small-capacity ocean current generator for the high speed current current of the present invention is much smaller than that of the algae generator generated by using the algae due to the natural phenomenon of tidal tides.
  • the size of the gearbox and generator increases, so it is almost impossible to install the gearbox, generator, and auxiliary equipment in the nussel part of the current generator.
  • the size of the generator and the gearbox is determined according to the ratio of the type and gear of the generator, and in general, when the generating capacity is MW class, the high speed of the present invention Since it is too large compared to the wing size of the aberration turbine of the small current large-capacity current generator for ocean current, it cannot be installed inside the nussel of the current generator.
  • the small-capacity current generator for the high speed current current of the present invention is to remove the power generation facilities including the gearbox, the generator, the hydraulic system, the cooling system, and the power converter to the outside of the current generator nussel. desirable.
  • the kinetic energy of the high speed current flow is converted into the rotational force of the aberration shaft 55 connected to the aberration turbine 54, and then, the combination of the gear 56 and the intermediate rotation shaft 57 of the current generator nussel 58 is used.
  • the power generation facilities 62 including the speed increase gear box 60, the large capacity generator 61, the hydraulic system and the cooling system, and the power converter installed outside are installed.
  • the example which installed in the temporary upper board 63 is shown.
  • the upper plate 63 is installed on the monopile for supporting the current generator generators 62 of the power generation facilities 62 including the speed increase gearbox 60, the generator 61, the hydraulic system and the cooling system, and the power converter. It can be installed on the surface of the sea, so that it is easy to prevent the breakdown of the generator due to water leakage, and can ensure the convenience of maintenance in case of failure.
  • the small-capacity ocean current generator for the high speed current current of the present invention has been described with reference to a limited embodiment and the drawing mainly on a horizontal three-wing shaped aberration turbine, but it has various shapes such as a vertical aberration turbine or a horizontal two-wing aberration turbine. It can also be applied to turbines.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Oceanography (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

The present invention relates to a seawater-flow power generator for obtaining electrical energy by causing the blades of a water turbine to rotate using seawater flowing at high speed through man-made sea-based structures such as lock gate or sluice gate structures in sea walls or sea-based power generation systems such as a tidal power generation systems, and provides a small-scale, large-capacity, seawater-flow power generator for high-speed seawater flows which is suitable for seawater flowing at very much faster speeds than the speeds of tidal currents created by the natural phenomenon of ebb and flow alone.

Description

고속 해류용 소형 대용량 해류발전기Small Sized Large Current Current Generator for High Speed Current
본 발명은 빠른 속도로 흐르는 강물이나 자연현상인 조석간만에 의해 발생하는 조류가 가지고 있는 운동에너지를 전기에너지로 변환하는 조류발전기에 관한 것으로,The present invention relates to an algae generator for converting the kinetic energy of the algae generated by tidal tides, which are rapidly flowing rivers or natural phenomena, into electrical energy.
이하, 조석간만에 의해 해양에서 발생되는 자연현상인 조류의 흐름과 이를 이용하여 발전하는 조류발전과 구분하여, 바다를 가로지르는 방조제와 더불어 건설되는 조력발전시스템이나 해양발전시스템 또는 방조제의 배수갑문이나 수문구조물과 같은 인공의 해양구조물에서 발생되는 빠른 해수의 흐름을 해류로 하고, 이를 이용하는 발전을 해류발전이라고 하였다.Hereinafter, tidal power generation system, marine power generation system, or drainage locks or gates of tidal power generation system constructed together with tidal power crossing the sea, separated from tidal current, which is a natural phenomenon generated in the ocean by tidal tides, and tidal power generation using it. The rapid flow of seawater generated from artificial marine structures such as structures is called the current, and the development using this is called current generation.
보다 구체적으로는, 본 발명의 발명자가 고안하여 국내 특허등록된 조력발전과 해류발전을 겸하는 통합발전시스템(등록특허10-0867547, PCT/KR2008/001388)과 수문발전과 해류발전을 겸하는 복합 해양발전시스템(등록특허10-0883756, PCT/KR2008/002414)과 관련된 것으로, 해양발전시스템이나 방조제의 배수갑문 또는 수문구조물과 같이 인공적으로 구축된 해양구조물 등을 통하여 조석간만의 자연현상에 의한 조류의 속도보다 훨씬 빠른 속도로 흐르는 해류의 운동에너지로부터 전기에너지를 얻을 수 있는 고속 해류용 소형 대용량 해류발전기에 관한 것이다.More specifically, the inventors of the present invention devised an integrated power generation system (registered patent 10-0867547, PCT / KR2008 / 001388), which combines tidal power generation and ocean current generation, and combined marine power generation combined with hydrological and current generation. Related to the system (Patent 10-0883756, PCT / KR2008 / 002414), the speed of algae due to natural phenomena of tidal tides through artificially constructed marine structures, such as marine power generation systems, drainage locks of seawalls, or hydrologic structures. The present invention relates to a small-capacity current generator for high-speed current that can obtain electrical energy from the kinetic energy of the current flowing at a much higher speed.
조류발전시스템은 수차터빈, 증속기어박스, 발전기 및 전력변환장치와 지지구조물 등으로 구성된다. 조류발전은 풍력발전과 같이 유체의 운동에너지를 이용하여 구동되는 수차터빈을 회전시키고, 수차터빈에 연결된 수차축의 저 회전 속도를 증속기어박스를 통해 발전기 축을 고속으로 변환함으로써 전기를 생산한다. 생산된 전기에너지는 해저케이블을 통해 가까운 해변의 변전소로 송전한다.The tidal current system consists of a water turbine, a gearbox, a generator, a power converter, and a supporting structure. Algae power generates electricity by rotating a water wheel turbine driven by kinetic energy of a fluid, such as wind power, and converting a low speed of the axle shaft connected to a water turbine to a high speed gearbox through a gearbox. The generated electrical energy is transmitted to substations on nearby beaches through submarine cables.
조류로부터 에너지를 추출하는 조류발전에 적용되는 기본적인 물리법칙들은 풍력발전의 경우와 동일하며, 풍력발전기의 수평축 프로펠러형 터빈 날개와 유사한 양력장치가 비용 측면에서 효과적이고 가장 효율적인 것으로 밝혀져 있다. The basic laws of physics applied to algae power generation, which extract energy from algae, are the same as in wind power generation. Lifting devices similar to wind turbine horizontal propeller-type turbine blades are found to be the most cost-effective and most efficient.
대개 조석간만에 의해 발생하는 빠른 조류의 길목에 조류발전기를 설치해 발전하는 조류발전은 풍력발전과 마찬가지로 다음 식(1)으로부터 발전출력을 계산할 수 있다.
Figure PCTKR2010002005-appb-I000001
In general, tidal power generated by tidal current generators installed on tidal currents generated by tidal tides can be calculated from the following equation (1).
Figure PCTKR2010002005-appb-I000001
따라서 조류발전에서 얻을 수 있는 발전출력 Pw는 해수의 밀도 ρ, 조류발전기의 효율 η과 해수통과 단면적 A에 비례하고 조류속도 V의 3 제곱에 비례하므로 높은 조류속도는 조류발전에 절대적으로 유리하다.Therefore, the high tidal flow rate is absolutely advantageous for tidal power generation because the power output Pw that can be obtained from tidal current is proportional to the density ρ of the seawater, the efficiency η of the tidal current generator and the seawater passage cross-section A, and is proportional to 3 squared of the tidal current V.
조류발전기는 수차터빈의 종류에 따라 헬리칼(Helical)식, HAT(Horizontal Axis Turbine)식, VAT(Vertical Axis Turbine)식으로 구분되며, 설치방법에 따라 부유식, 착저식으로 구분된다. 국내외적으로 MW급 상업용 조류발전기는 아직까지 출시되지 않은 실정이나 수십 년간 축적된 풍력분야의 기술이 용이하게 접목될 수 있기 때문에 조류의 유속조건이 양호하고 공사비가 적게 소요되는 곳에서부터 상업발전을 위한 노력이 시도되고 있다. 해외에서는 영국, 노르웨이, 덴마크 등을 중심으로 한 유럽과 캐나다, 미국 등지에서 조류발전기의 상업화를 위한 기술개발이 활발하게 진행되고 있다. Algae generators are classified into helical, HAT (horizontal axis turbine), and VAT (vertical axis turbine) types according to the type of water turbine. At home and abroad, MW-class commercial algae generators have not been released yet, but the technology of the wind power field accumulated for decades can be easily combined, so the flow rate of algae is good and construction cost is low. Efforts are being made. Overseas, technology development for the commercialization of algae generators is actively underway in Europe, Canada and the United States, mainly in the United Kingdom, Norway and Denmark.
영국의 Marine Current Turbines사는 2003년 Seaflow 프로젝트의 일환으로써, Lymouth Denver 지역의 Foreland Point에 수차터빈의 날개지름이 11m인 0.3MW급 시험 조류발전기를 설치하여 실증실험을 하였으며, 그 후속 프로젝트인 Seagen 프로젝트에서는 날개지름이 16m인 0.6MW급 수차터빈 2기로 구성된 1.2MW급 수평축 프로펠러 타입 조류발전기를 영국 북아일랜드의 Strongford Lough에 설치하여 실증시험 중이다. 한때 고장으로 수차터빈을 교체하는 어려움을 겪기도 하였지만 2008년 12월 18일에 유속 2.5m/s에서 1.201.8MW의 발전량을 기록하는 쾌거를 이루었다.As part of the Seaflow project in 2003, UK Marine Current Turbines installed a 0.3 MW test algae generator with a 11 m wingspan at Foreland Point in Lymouth Denver. The 1.2MW horizontal shaft propeller type tidal generator, consisting of two 0.6MW water turbine turbines with 16m wingspan, is being tested in Strongford Lough, Northern Ireland. At one point, the trouble caused the trouble of replacing the water turbine, but on December 18, 2008, it recorded 1.201.8 MW at 2.5m / s flow rate.
노르웨이의 Hammerfest Strom사는 2003년에 세계 최초로 100kW급 수평축 프로펠러형 수차발전기를 개발하여 현장실험을 하였으며, 생산된 전력을 그리드 시스템에 연결하는데 성공한 바 있다. 또한 Kvalsundet사는 2003년과 2006년에 각각 300kW, 700kW 조류발전기를 개발완료하였고, 머지않아 13.3MW의 조류발전단지를 건설할 예정이다.In Norway, Hammerfest Strom in 2003 developed the world's first 100 kW horizontal propeller type aberration generator and conducted field experiments. The company succeeded in connecting the generated power to the grid system. Kvalsundet also completed 300kW and 700kW algae generators in 2003 and 2006, and plans to build a 13.3MW algae complex in the near future.
캐나다는 정부지원에 힘입어 조류발전에 관련된 연구를 꾸준히 진행하여, 이미 실용화 단계로 진입하고 있으며, Blue Energy Canada와 Canoe Pass사가 대표적인 기업이라 할 수 있다. 특히 Blue Energy Canada사는 자체적으로 수직축 타입인 Davis 터빈을 개발하여 필리핀, 멕시코 등지에 기술을 수출하여 시설물을 설치하고 있다.With government support, Canada has steadily carried out research on algae development and is already entering the commercialization stage. Blue Energy Canada and Canoe Pass are two of the leading companies. In particular, Blue Energy Canada has developed its own vertical turbine type Davis turbine, exporting technology to the Philippines, Mexico and other facilities.
미국은 유럽이나 캐나다에 비해 조류발전에 대한 연구가 많이 진행되고 있지는 않으나 Tidal Electric사에서는 독자적인 기술을 개발하여 왔으며, 최근에는 멕시코 Tijuana 지역에 조류발전기를 설치할 계획이다. Verdant Power사는 2006년 12월 미국 뉴욕시 맨하턴 이스트 강변 루즈벨트 섬 옆에 25kW짜리 소규모 수평축 프로펠러 타입 조류발전기 1기를 설치하였고, 2007년 5월에는 수차터빈 날개지름 5m, 발전용량 35kW짜리 5기를 설치함으로써, 총 발전시설용량 0.2MW인 프로펠러 타입의 수평축 입식 조류발전기 6기로부터 전력을 생산공급하고 있다.Although the United States is not doing much research on algae generation compared to Europe or Canada, Tidal Electric has developed its own technology and recently plans to install algae generators in Tijuana, Mexico. Verdant Power installed a small 25kW horizontal propeller type tidal generator next to Roosevelt Island in Manhattan, New York, USA in December 2006.In May 2007, Verdant Power installed five 5m water turbine turbines and 35kW generating capacity. It produces and supplies power from six horizontal propeller type algae generators with a total capacity of 0.2 MW.
한편, 우리나라에서는 한국해양연구원을 중심으로 2000년부터 전라남도 진도의 울돌목을 국내 최고의 조류발전소 건설 예정지로 선정하고, 기초 데이터를 수집해 왔다. 또한 2006년부터 조력조류에너지 실용화 기술개발 및 상용화 기반구축을 위한 연구를 진행하고 있으며, 크기가 지름 3,000 높이 3,600인 수직축 터빈 3대를 직렬로 연결한 헬리컬 수차 2기로 구성된 1.0MW(0.5MW 2기)급 조류발전기를 개발하였으며, 울돌목에 설치하여 실증시험 중이다. 또 한편으로는 해외 기술력의 지원을 받은 중소기업 중심으로 소규모 수평축 프로펠러 타입의 100kW급 부유식 조류발전시스템 개발도 진행되고 있다.Meanwhile, Korea has selected Uldolmok in Jindo, Jeollanam-do as the best site for construction of algae power plant in Korea and collected basic data since 2000. Also, since 2006, we have been conducting research on developing tidal current energy commercialization technology and commercialization base.We have 1.0MW (0.5MW 2 units) consisting of two helical aberrations connected in series of three vertical shaft turbines with a diameter of 3,000 height and 3,600 in series. ) A tidal current generator was developed, and it is being installed in wool dolls. On the other hand, the development of small scale horizontal propeller type 100kW floating-type algae power generation system with small and medium-sized enterprises supported by overseas technology is also in progress.
[종전기술의 문제점][Problems with Conventional Technology]
조류발전기는 대부분 해저지반에 원형 단면의 기둥을 고정하고, 그 위에 발전기를 설치고정하여 조류의 흐름을 이용하여 발전하도록 하고 있다. 따라서 바다 속에 가라앉혀진 조류발전기들은 풍력발전기와 똑같은 이론적 원리가 적용되며 일렬로 줄지어 세우거나 풍력발전단지 형태로 설치한다. Most tidal current generators have a column of circular cross-section fixed to the seabed, and the generator is installed and fixed on it to generate power by using the flow of tidal current. Therefore, algae generators submerged in the sea apply the same theoretical principles as wind turbines and are lined up or installed in the form of wind farms.
풍력발전과 조류발전의 가장 큰 차이는 동일한 정격 출력에 대하여 조류발전용 수차터빈의 크기가 훨씬 작으며, 다수의 조류발전기로 단지를 구성할 경우 훨씬 가깝게 배치될 수 있다는 것이다. 이것은 바닷물의 밀도가 공기의 밀도보다 약 840배 더 크기 때문이다.The biggest difference between wind and tidal power is that the aberration turbine for tidal current generation is much smaller for the same rated power, and can be arranged much closer if the complex consists of multiple tidal generators. This is because the density of seawater is about 840 times greater than the density of air.
조류는 약 12시간 24분 주기로 하루에 2주기씩 밀물과 썰물이 반복되는 사인곡선 형태로 변화하며, 대개 180도 반대 방향으로 흐른다. 즉, 하루에 4번씩 조류의 흐름 방향이 바뀌며, 설치지역의 주변과 해저지형의 조건에 따라 조류의 속도가 불균일하고, 흐름 방향이 영향을 받게 되므로 조류발전소의 안전성 확보나 신뢰성 있는 발전량의 조절이 어렵다.Algae change in the form of a sinusoidal cycle of tide and ebb tide two times a day, about 12 hours and 24 minutes, usually flowing 180 degrees in the opposite direction. That is, the flow of algae is changed four times a day, and the algae velocity is uneven and the flow direction is affected by the surrounding area of the installation area and the seabed topography. It is difficult.
또한, 일반적으로, 조류의 강도가 반드시 커다란 조석 범위나 높이를 필요로 하는 것은 아니지만 그 지역의 조석 높이와 직접적으로 연관이 있다. 하지만, 조력발전에 비해 조류발전의 경우 본격적인 대규모 발전이 실현되지 못하고 있는데, 이는 조류자원의 잠재성은 대단하지만 대부분의 바다에서 조류의 속도, 즉 에너지 밀도가 경제적인 개발을 하기에는 너무 작기 때문이다. 다시 말해서 빠른 해수의 흐름이 나타나는 해역이 전 세계적으로 제한되어 있고, 사용 가능한 조류발전기의 발전효율도 경제성을 확보하기에 미흡하기 때문이다.Also, algae strength generally does not necessarily require a large tidal range or height, but is directly related to the tidal height in the area. However, in comparison to tidal power generation, large-scale power generation is not realized because of the great potential of algae resources, but the speed of algae, or energy density, is too small for economic development in most seas. In other words, the sea area where rapid seawater flows are limited worldwide, and the power generation efficiency of the available algae generator is insufficient to secure economic feasibility.
조류발전은 유속이 1.0m/s 내외인 곳에서도 가능하나 경제성이 있는 발전을 위해서는 조류의 평균속도가 2.0m/s 이상인 곳을 유망지역으로 검토하며, 해저지형의 조건 및 지역적인 흐름 형태와 조류속도에 따라 수차터빈 단위기 당 최대 750kW에서 1,000kW 정도의 발전출력을 내도록 설계할 수 있다.Algae power generation is possible even in places where the flow rate is around 1.0m / s, but for economical power generation, the area where the average speed of algae is 2.0m / s or more is considered as a promising region. Depending on the speed, it can be designed to produce power output of up to 750kW to 1,000kW per unit of water turbine.
하지만, 지금까지의 조류발전기 개발현황을 살펴보면, 앞에서 언급한 바와 같이 영국의 Marine Current Turbines사가 Seagen 프로젝트에서 개발 중인 날개지름 16m인 수차터빈이 단위기 당 발전용량 600kW로써 매우 큰 용량에 속하는 것임을 감안할 때, 단위기 당 발전용량이 750∼1,000kW인 수차터빈은 상당히 대용량이라고 할 수 있다. 이보다 더 큰 발전용량을 내는 수차터빈의 날개지름은 20m 이상이 되어야 할 뿐만 아니라 이러한 조류발전기를 설치할 수 있는 해저의 깊이도 더 깊어져야 하며, 설치시 어려움의 가중과 더불어 공사비가 증가하게 된다. However, when looking at the current state of the development of the algae generator, as mentioned above, the water turbine of 16m wing diameter developed by Marine Current Turbines of UK in Seagen project is very large capacity of 600kW per unit. For example, aberration turbines with a power generation capacity of 750 to 1,000 kW per unit are quite large. In addition, the wing diameter of the aberration turbine, which has a larger power generation capacity, should not only be more than 20 m, but also the depth of the seabed to install such a tidal generator should be deeper, and the cost of construction will increase along with the difficulty of installation.
보다 구체적으로 설명하면, Betz의 법칙에 따라 조류로부터 얻을 수 있는 이론적 최대출력 값의 계수 16/27과 조류발전기 수차터빈의 기계효율을 0.7 정도라고 가정하더라도 식(1)으로부터, 조류속도 2.0m/s일 때 단위 수차터빈의 발전용량이 750kW가 되기 위해서는 수차터빈의 날개지름은 24m 이상이 되어야 하고, 발전용량이 1,000kW가 되기 위해서는 수차터빈 날개의 지름은 27m 이상이 되어야 한다.To be more specific, according to Betz's law, even if the coefficient 16/27 of the theoretical maximum output value obtained from the tidal current and the mechanical efficiency of the tidal generator water turbine are about 0.7, the tidal velocity is 2.0m / At s, in order to generate 750kW of unit aberration turbine, the wing diameter of the aberration turbine should be more than 24m, and the diameter of the aberration turbine blade should be 27m or more for the power generation capacity to be 1,000kW.
일반적으로 빠른 조류속도에서 날개지름이 20m가 넘는 수차터빈이 20rpm정도로 회전할 경우 가장 속도가 빠른 수차터빈의 날개 팁에서는 압력계수(Cp)값이 해수의 증기압 즉, 임계값보다 떨어지게 되는 낮은 압력지점이 발생하여 수차터빈의 날개에서 캐비테이션이 발생하기 쉽게 된다. 그리고 이처럼 빠른 유속에서 발생하는 조류의 저항은 발전장치 하우징 및 발전구조물을 설치할 때에 매우 중요한 문제가 되는데, 하루 중에서 단지 몇 분만이 조류속도가 느린 해수(slack water)가 되므로 해수가 이동하는 동안 기초를 건설하고 조류발전기를 설치하는 것은 몹시 어려운 문제이기 때문이다. In general, when the aberration turbine with a blade diameter of more than 20m rotates at about 20rpm at high tidal flow speed, at the tip of the wing of the fastest aberration turbine, the pressure coefficient (Cp) is lower than the steam pressure, that is, the threshold of seawater. As a result, cavitation is likely to occur in the blades of the aberration turbine. And the resistance of algae generated at such high flow rates is a very important problem when installing generator housings and power generation structures, since only a few minutes of the day become slack water, so that the seawater moves through the foundation. Building and installing a tidal generator is a very difficult problem.
전 세계적으로도 조류발전에 유효한 조류의 평균속도가 2.0m/s 넘는 곳은 드문 실정이며, 조류의 평균속도가 2.0m/s 넘는 지역도 해저의 수심이나 지형 또는 접근성 등이 조류발전에 바람직하지 않을 수도 있다. 뿐만 아니라 우리나라의 울돌목처럼 지역에 따라 2.0m 정도의 조차가 운동에너지로 변환하면서 순간 최대속도가 6.0m/s 이상이 되는 곳도 있다. 여기서 순간 최대속도는 조류발전기의 내구성과 안전도 측면에서 반드시 고려해야하는 중요한 설계 인자이지만 조류에 의한 저항이 조류속도의 제곱에 비례한다는 것을 고려할 때 과설계와 고비용의 원인이 되기도 한다. 조류발전기의 지속적인 발전이나 정격발전 측면에는 조류의 평균속도가 가장 중요한 설계 인자이다.It is rare in the world that the average speed of algae that is effective for algae generation is more than 2.0m / s, and the depth of the seabed, terrain or accessibility is not desirable for algae in the area where the average speed of algae is 2.0m / s. It may not. In addition, there is a place where even the maximum speed of more than 6.0m / s even more than 2.0m is converted to kinetic energy, depending on the region, such as Korea's wool stone tree. The instantaneous maximum speed is an important design factor that must be considered in terms of durability and safety of the tidal generator, but it is also a cause of overdesign and high cost considering that the resistance of the tidal current is proportional to the square of the tidal velocity. The average speed of algae is the most important design factor in terms of continuous or rated power generation.
조류발전기를 설계할 때 고려하여야 하는 또 다른 요소는 조류의 난류 강도이다. 이것은 조류발전기의 수차터빈과 발전구조물에 미치는 부하에 중요한 변화를 초래하고 기계장치의 피로와 진동문제를 일으키는 주요 원인이 되기 때문이다. 따라서 강한 층류를 가진 지역을 피하여 조류발전기를 배치하기 위한 것뿐만 아니라 기계장치의 내구성을 확보하기 위해서 반드시 조류의 난류 강도 정도를 이해하는 것이 필요하다.Another factor to consider when designing an algae generator is the turbulence intensity of the algae. This is because it causes a significant change in the load on the aberration turbine and power generation structure of the tidal current generator and is a major cause of fatigue and vibration problems of the machinery. Therefore, it is necessary to understand the degree of turbulence intensity of algae not only to place algae generators away from areas with strong laminar flow, but also to ensure the durability of machinery.
이상과 같이 조석간만의 자연현상에 의한 조류를 이용하여 발전하는 종전의 조류발전기들이 가지고 있는 기술적인 한계점들을 정리해보면 다음과 같다. (1) 상업적으로 활용할 수 있는 자연적인 조류의 평균속도 범위는 2.0∼2.5m/s 정도이며, (2) 조류발전기의 수차터빈 날개지름의 한계는 20∼25m 정도이며, (3) 수차터빈 단위기 당 얻을 수 있는 발전용량은 1,000kW 정도가 한계이다. 또한, (4) 빠른 조류 속에서 해저지반에 기초를 건설하고 조류발전기를 설치하는 것이 커다란 난제이며, (5) 조류의 난류 정도와 빈번하게 방향이 바뀌는 조류의 저항 때문에 기계의 내구성 확보도 매우 어려운 과제이다. As mentioned above, the technical limitations of the existing algae generators developed by using the algae due to the natural phenomenon of tidal tides are as follows. (1) The average speed range of natural algae that can be used commercially is about 2.0 to 2.5 m / s, and (2) The limit of wing diameter of the aberration turbine of the algae generator is about 20 to 25 m. The power generation capacity per unit is limited to 1,000kW. In addition, (4) building foundations on the seabed and installing algae generators in fast tides is a major challenge, and (5) the durability of the machine is very difficult to secure due to the degree of turbulence of the algae and the resistance of tidal currents that change frequently. It is a task.
최근 들어 본 발명의 발명자가 고안하여 국내 특허등록한 조력발전과 해류발전을 겸하는 통합발전시스템(등록특허 10-0867547, PCT/KR2008/001388)과 수문발전과 해류발전을 겸하는 복합 해양발전시스템(등록특허 10-0883756, PCT/KR2008/002414)에서, 조석간만의 차가 큰 지역에 구축된 조력발전소와 같은 해양발전시스템이나 방조제의 배수갑문 또는 수문구조물과 같은 인공의 해양구조물을 통하여 흐르는 해류가 자연현상에 의한 조류의 평균속도보다 훨씬 빠른 평균속도로 흐른다는 것을 밝혔다.Recently, the inventors of the present invention devised an integrated power generation system that combines tidal power generation and current generation (patent 10-0867547, PCT / KR2008 / 001388) and a combined marine power generation system that combines hydrological and current generation (patented patent) 10-0883756, PCT / KR2008 / 002414), currents flowing through artificial marine structures, such as tidal power plants or tidal power generation systems, such as tidal power plants built in areas with large tidal flats, or drainage doors or hydrologic structures, It is found that the flow rate is much faster than the average speed of the algae.
일반적으로 상기와 같이 해류가 고속으로 흐르는 곳에 설치 가능한 해류발전기의 발전용량 및 설계사양은 이용 가능한 해류속도, 바다의 깊이, 해측과 호수측의 수위변동 및 해저지형 등을 고려하여 결정해야 한다. 한편, 선진 해양국가에서 개발하고 있는 것과 같은 기존 개념의 대형 소용량 조류발전기는 상기와 같이 고속 해류가 흐르는 곳에는 설치할 수가 없는 것이다.In general, the generation capacity and design specifications of the current generators that can be installed where the current flows at high speed should be determined in consideration of the available current speed, depth of the sea, water level fluctuations on the sea side and the lake side, and seabed topography. On the other hand, the large-capacity algae generator of the existing concept, such as that developed in advanced marine countries, can not be installed where the high speed current flows.
상기와 같은 종래기술의 문제점들을 해결하기 위하여 창안된 본 발명은 조석간만의 자연현상에 의한 조류의 속도보다 훨씬 빠른 속도로 흐르는 해류를 이용하여 발전할 수 있는 고속 해류용 소형 대용량 해류발전기를 제공하는데 그 목적이 있다. The present invention devised to solve the problems of the prior art as described above provides a small-capacity current generator for high-speed current current that can be generated using the current flowing at a speed much faster than the speed of the tidal current due to tidal currents. The purpose is.
상기의 목적을 달성하기 위한 본 발명의 고속 해류용 소형 대용량 해류발전기의 구체적인 수단으로써, 통합발전시스템이나 복합 해양발전시스템 또는 방조제의 배수갑문이나 수문구조물과 같은 인공 해양구조물을 조성하고 상기 인공 해양구조물을 통하여 해측과 호수측으로 출입하는 고속 해류의 운동에너지로부터 전기에너지를 추출하는 해류발전기에 있어서,       As a specific means of the small-capacity ocean current generator for the high speed current current of the present invention for achieving the above object, by forming an artificial marine structure, such as an integrated power generation system, a composite marine power generation system or a drainage lock or a hydrologic structure of the embankment, In the current generator for extracting electrical energy from the kinetic energy of the high speed current flowing into the sea and lake side through
수차터빈의 날개지름이 5∼12m정도로 소형이면서도 수차터빈 1기당 0.5MW 이상의 발전출력을 내는 고속 해류용 소형 대용량 해류발전기인 것을 특징으로 한다.It is characterized by the small sized large current current generator for high speed current, which has a small wing size of 5-12m and a power output of 0.5MW or more per water turbine.
또한, 해저지반에 입설되어 상기 고속 해류용 소형 대용량 해류발전기를 지지하는 지지기둥 또는 모노파일은 단면의 형태가 유선형 또는 타원형인 것을 특징으로 한다.In addition, the support pillar or monopile installed on the sea bed to support the small-capacity ocean current generator for high speed current flow is characterized in that the cross-sectional shape of the streamline or oval.
1. 경제적 파급효과-맨땅에 설치하게 됨1. Economic ripple effect-to be installed on the ground
본 발명의 고속 해류용 소형 대용량 해류발전기는 조력발전소와 같은 해양발전시스템이나 방조제의 배수갑문 또는 수문구조물의 건설과 연계하여 해류발전단지를 구성할 경우에는 해류발전단지의 설치 지역을 가물막이로 막아 맨땅이 되게 할 수 있으므로 해양에 조류발전기를 설치하는 것에 비해 훨씬 적은 비용으로 안전하게 설치할 수 있어 높은 경제적 이익을 얻을 수 있다. 또한, 대규모의 해류발전단지 개발은 해류발전기의 양산이 전제되므로 제작비용 등의 대폭적인 절감뿐만 아니라 절감뿐만 아니라 관련 산업의 급성장을 기대할 수 있다.The small-capacity current generator for high-speed ocean current of the present invention, when constructing an ocean current power plant in conjunction with the construction of an offshore power generation system such as tidal power plant, a drainage lock of a sea repellent, or a hydrologic structure, closes the installation area of the current generation complex with a barrier. This can be safely installed at a much lower cost than the installation of an algae generator in the ocean, which leads to high economic benefits. In addition, the development of large-scale current generation complexes is premised on the mass production of current generators, so not only can a significant reduction in production costs, but also a reduction in production costs can be expected.
2. 기술적 파급효과-국내 독자기술로 개발 가능함2. Technical ripple effect-Possible to develop by domestic original technology
본 발명의 고속 해류용 소형 대용량 해류발전기는 동일 발전용량일 경우 해류발전기 수차터빈의 크기가 일반적인 조류발전기의 것보다 훨씬 작아지므로 빠른 해류의 저항에 대해서도 구조적으로 강하고 안정적인 해류발전기를 제공할 뿐만 아니라 국내의 풍력발전기 개발기술을 활용하여 용이하게 개발할 수 있다.The small-capacity ocean current generator for high speed current current of the present invention has the same power generation capacity, so that the size of the current generator turbine is much smaller than that of a general tidal current generator. It can be easily developed by utilizing wind turbine development technology.
일반적으로 조석간만에 의해 발생하는 자연적인 조류는 조석에 따라 하루에 4번씩 흐름의 방향이 바뀌며 해저지형의 영향을 많이 받지만 해양발전시스템이나 방조제의 배수갑문을 통하여 얻을 수 있는 해류는 인공 해양구조물 및 부대시설의 운영계획에 따라 예측 가능한 일방향 또는 양방향으로 일정하게 흐르는 양질의 잘 발달한 난류성 해수 흐름으로써 풍력발전이나 조석간만에 의한 조류와 같은 순간 최대속도라는 현상이 발생하지 않으며, 자연현상에 의해 바다에서 발생하는 조류의 흐름보다 훨씬 더 속도분포가 균일하고 이용가치가 높은 운동에너지를 포함하므로 발전량뿐만 아니라 고속 해류용 소형 대용량 해류발전기의 내구성에도 매우 유리하다.In general, natural tidal currents generated by tidal tides change the direction of the flow four times a day according to tides, and are affected by the seabed topography.However, the currents that can be obtained through the marine power generation system or the drainage lock of the embankment are artificial marine structures and units. According to the operation plan of the facility, it is a high quality and well-developed turbulent seawater that flows continuously in one or two directions that can be predicted, and does not occur at the maximum speed such as wind power or tidal currents. It is much more favorable than the flow of algae, which includes kinetic energy with uniform velocity distribution and high utilization value.
3. 정책적 파급효과3. Policy Ripple Effect
시화호 조력발전소와 연계한 해류발전단지에 대한 타당성 검토결과 시화호 조력발전소 발전시설용량 254MW에 대하여 약 20% 이상의 발전시설용량에 해당하는 해류발전단지를 구성할 수 있어 우리나라 정부의 국가에너지기본계획에 의한 2030년 해양에너지 보급 목표달성에 크게 일조할 수 있을 것이다. 또한, 조력발전소 건설 붐과 더불어 대규모 해류발전단지를 개발한다면, 해류발전기 제조 산업뿐만 아니라 새로운 해양발전 플랜트 산업분야를 개척하는 것으로, 우리나라의 미래 먹거리 신성장동력 산업으로서 손색이 없을 것이다.Feasibility study on the current-generation power plant in conjunction with the Sihwa Lake tidal power plant resulted in an ocean current power plant that is equivalent to about 20% of the power generation capacity of 254 MW of Sihwa Lake tidal power plant. It will greatly contribute to the achievement of marine energy supply targets. In addition, if the development of a large-scale ocean current power plant with the tidal power plant construction boom, not only the current generator industry, but also pioneering a new marine power plant industry, it will be a good new growth engine industry for Korea's future food.
도 1은 새만금 방조제 남단에 위치한 가력배수갑문의 해측에서 호수측으로 해수가 빠른 속도로 유입되고 있는 모습을 보여주는 구글어스의 위성사진이다. 1 is a satellite image of Google Earth showing the sea water is rapidly flowing from the sea side of the seawater drainage lock located in the southern end of the Saemangeum dike.
도 2는 조력발전과 해류발전을 겸하는 통합발전시스템의 평면적인 구성도이고, 2 is a plan view of an integrated power generation system that combines tidal power generation and ocean current generation,
도 3은 도 2의 조력발전소의 수차구조물 및 호수측 해류발전단지의 측면도이며, 도 4는 이때의 해류발전기이다.FIG. 3 is a side view of the aberration structure and the lake side current generation complex of the tidal power plant of FIG. 2, and FIG. 4 is an ocean current generator at this time.
도 5는 도 2의 조력 댐의 수문구조물 및 해측 해류발전단지의 측면도를 도시한 것이며, 도 6은 이때의 해류발전기이다.FIG. 5 is a side view of the hydrologic structure and the offshore current generation complex of the tidal dam of FIG. 2, and FIG. 6 is the current generator at this time.
도 7부터 도 9는 3 날개 수차터빈을 장착한 고속 해류용 소형 대용량 해류발전기의 일례이다.7 to 9 are examples of a small-capacity ocean current generator for high speed ocean current equipped with a three-wing water turbine turbine.
도 10은 수차터빈 날개지름의 크기가 2∼25m에서 해류속도에 따른 발전출력의 관계를 도시한 것으로, 기존 개념의 조류발전기의 설계범위와 본 발명의 고속 해류용 소형 대용량 해류발전기의 설계범위를 보여준다.Figure 10 shows the relationship between the power generation output according to the current flow speed in the size of the blade diameter of the water turbine turbine 2-25m, the design range of the existing concept of the current generator and the design range of the small-capacity current generator for high speed current current of the present invention Shows.
도 11은 동일 발전용량 4MW인 경우, 본 발명의 고속 해류용 소형 대용량 해류발전기(a)와 기존 개념의 조류발전기(b) 그리고 해상 풍력발전기(c)의 크기를 상대적으로 비교 도시한 것이다. 11 shows a comparative comparison of the sizes of the small-capacity current generators (a) for high speed current currents, the algae generator (b) and the offshore wind generator (c) of the present invention when the same power generation capacity is 4MW.
도 12부터 도 17은 본 발명에 따른 고속 해류용 소형 대용량 해류발전기의 다양한 변형 예로써, 단일 수차터빈(도 12, 도 13, 도 14), 2중 수차터빈(도 15, 도 16) 그리고 3중 수차터빈(도 17)으로 구성된 해류발전기의 형상들을 보여준다.12 to 17 are various modified examples of the small-capacity ocean current generator for high speed current according to the present invention, a single water turbine turbine (FIGS. 12, 13, and 14), a double water turbine turbine (FIGS. 15 and 16), and 3 Show the shape of the current generator consisting of a heavy water turbine (Fig. 17).
도 18은 해류발전기 너셀(58)의 외부에 설치되어 있는 증속기어박스(60)와 대용량 발전기(61), 유압시스템 및 냉각시스템 그리고 전력변환장치를 포함하는 발전시설들(62)을 해류발전기 지지용 모노파일(F)의 상부 해수면 위에 가설한 상판(63)에 설치한 예를 보여주고 있다.FIG. 18 supports the current generators 62 including a gearbox 60 and a large capacity generator 61, a hydraulic system and a cooling system, and a power converter installed on the exterior of the current generator nussel 58. FIG. The example installed in the upper board 63 hypothesized on the upper sea surface of the monofil F for dragons is shown.
<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>
10 : 고속 해류용 소형 대용량 해류발전기의 설계범위10: Design range of small capacity ocean current generator for high speed current
20 : 기존 개념의 조류발전기의 설계범위20: Design range of existing concept algae generator
54 : 수차터빈 55 : 수차축54: water turbine 55: water shaft
56 : 기어 57 : 중간 회전축56 gear 57 intermediate shaft
58 : 너셀 60 : 증속기어박스58: Nussel 60: Gearbox
61 : 발전기 62 : 발전시설61: generator 62: power plant
63 : 상판63: top plate
100 : 조력발전소 102 : 수차구조물100: tidal power plant 102: aberration structure
120 : 호수측 해류발전단지 110 : 수차발전기120: current side of the current generation complex 110: water turbine generator
200 : 조력댐 210 : 수문구조물200: tidal dam 210: hydrologic structure
212 : 수문 220 : 해측 해류발전단지212: sluice 220: offshore current development complex
300 : 연결구조물 F : 모노파일, 지지기둥300: connecting structure F: monopile, support column
LB : 호수지면 SB : 해저지면LB: Lake Ground SB: Seabed
도 1은 본 발명의 고속 해류용 소형 대용량 해류발전기를 적용할 수 있는 곳으로써, 새만금 방조제 남단에 위치한 가력배수갑문을 통해 해측에서 호수측으로 해수가 빠른 속도로 유입되고 있는 모습을 보여주는 구글어스의 위성사진이다. 1 is a place where the small-capacity current generator for the high speed current current of the present invention can be applied, and a satellite of Google Earth showing the sea water flowing rapidly from the sea side to the lake side through a caustic drainage lock located at the south end of the Saemangeum embankment. It is a photograph.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시 예를 상세히 설명한다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 2는 본 발명에 따른 조력발전과 해류발전을 겸하는 통합발전시스템의 평면적인 구성도이고, 도 3은 도 2의 조력발전소의 수차구조물 및 호수측 해류발전단지의 측면도이며, 도 4는 이때 설치가능한 해류발전기의 한 형태이며, 도 5는 도 2의 조력 댐의 수문구조물 및 해측 해류발전단지의 측면도를 도시한 것이며, 도 6은 이때 설치가능한 해류발전기의 한 형태이다.Figure 2 is a plan view of the integrated power generation system combined with tidal power generation and current generation according to the present invention, Figure 3 is a side view of the aberration structure and the lake side current generation complex of the tidal power station of Figure 2, Figure 4 is installed at this time 5 is a form of a possible current generator, and FIG. 5 shows a side view of the hydrologic structure of the tidal dam of FIG. 2 and the ocean current development complex, and FIG. 6 is a form of the current generator that can be installed at this time.
조력발전과 해류발전을 겸하는 통합발전시스템은 도 2와 같이 조석간만의 차가 크게 발생하는 곳에 바다를 가로막는 방조제(10)를 축조한다.The integrated power generation system, which combines tidal power generation and ocean current generation, builds a seawall 10 that blocks the sea where the difference between tidal tides occurs as shown in FIG. 2.
상기와 같이 방조제(10)가 축조되고 나면 도 2와 같이 호수(12)가 형성된다. 상기 방조제(10)에는 호수측(12)과 해측(14)을 가로막는 조력발전소(100)와 조력 댐(200)이 설치된다.After the fabricator 10 is constructed as described above, the lake 12 is formed as shown in FIG. 2. The tidal power generator 10 is provided with an tidal power plant 100 and an tidal dam 200 intercepting the lake side 12 and the sea side 14.
이때, 상기 조력발전소(100)와 조력 댐(200)의 중간에는 조력발전소(100)와 조력 댐(200)을 잇는 연결구조물(300) 또는 연결방조제를 두어 거리를 두고 구성함이 바람직하다.At this time, the tidal power plant 100 and the tidal dam 200 in the middle of the connection between the tidal power plant 100 and the tidal dam 200 is preferably arranged at a distance to the connection structure 300 or a connection aid.
상기 연결구조물(300) 또는 연결방조제는 해류발전단지의 지형특성에 따라 수십 수백 수천 미터 또는 수 킬로미터로 구축될 수 있다.The connecting structure 300 or the connecting aid may be built in the tens, hundreds, thousands, meters, or kilometers, depending on the topography of the current generation complex.
상기 조력발전소(100)를 구성하는 수차구조물(102) 내에는 도 3과 같이 해측(14)에서 호수측(12)으로 유입되는 해수의 흐름으로 회전하는 수차날개(112)를 갖는 조력발전용 수차발전기(110)가 설치된다.In the aberration structure 102 constituting the tidal power plant 100, an aberration for a tidal power having aberration blades 112 rotating in the flow of seawater flowing from the sea side 14 to the lake side 12 as shown in FIG. The generator 110 is installed.
상기 조력발전소(100)를 구성하는 수차구조물(102)은 도 2와 같이 1개를 단위체로 하여 10개의 수차구조물(102)이 서로 연결된 것을 예시하고 있으나, 이에 한정하는 것이고, 해류발전단지의 지형특성 또는 발전량의 계획에 따라 설치 수를 달리할 수 있다.The aberration structure 102 constituting the tidal power plant 100 illustrates that 10 aberration structures 102 are connected to each other by using one unit as shown in FIG. 2, but is limited thereto. The number of installations can vary depending on the nature or the plan of generation.
상기 조력발전소(100)의 수차구조물(102) 후방 즉, 호수측(12)에는 조력발전용 수차발전기(110)를 통하여 배출되는 해수의 흐름을 이용하여 발전하는 다수의 해류발전기(120)가 설치된다. 상기와 같이 다수의 해류발전기(120)가 호수측(12)에 설치됨으로써 호수측 해류발전단지(120)를 이루게 된다.Behind the aberration structure 102 of the tidal power plant 100, that is, the lake side 12, a plurality of current generators 120 are generated using the flow of seawater discharged through the tidal power generation aberration generator 110 do. As described above, the plurality of current generators 120 are installed on the lake side 12 to form the lake side current generation complex 120.
상기 다수의 해류발전기(120)는 도 2 및 도 3에 도시된 바와 같이 행렬 간에 해류발전기의 터빈 날개 지름만큼 일정 간격을 갖는 격자 형태로 배치하되 홀수 열 해류발전기(120C)와 짝수 열 해류발전기(120D)가 서로 어긋나게 배치됨이 바람직하다.As shown in FIGS. 2 and 3, the plurality of current generators 120 are disposed in a lattice form having a predetermined distance between the matrices by the diameter of the turbine blades of the current generators, but the odd thermal current generators 120C and the even thermal current generators ( 120D) is preferably arranged to be offset from each other.
상기 조력 댐(200)을 구성하는 수문구조물(210)은 도 5와 같이 수문(212)이 설치된다. 상기 수문(212)은 창조시 권양장치(214)에 의해 하강하여 해측(14) 해수가 호수측(12)으로 유입되는 것을 차단하고, 낙조시 상승하여 호수측(12) 해수를 수문도수로(216)를 통해 해측(14)으로 방류시키는 역할을 한다.The hydrologic structure 210 constituting the tidal dam 200 is provided with a hydrologic gate 212 as shown in FIG. 5. The sluice gate 212 is lowered by the hoisting device 214 at the time of creation to block seawater 14 from flowing into the lake side 12, and as the tide rises, the sluice gate 212 receives the seawater from the sluice channel 216. ) To discharge to the sea side (14).
상기 조력 댐(200)을 구성하는 수문구조물(210)은 도 2와 같이 1개를 단위체로 하여 8개의 수문구조물(210)을 예시하고 있으나, 이에 한정하는 것이고, 해류발전단지의 지형특성 또는 발전량의 계획에 따라 설치 수를 달리할 수 있다.The hydrological structure 210 constituting the tidal dam 200 illustrates eight hydrological structures 210 using one as a unit as shown in FIG. 2, but is limited thereto. Depending on your plan, the number of installations can vary.
한편, 상기 수문구조물(210)의 수문(212) 쪽 후방, 즉 해측(14)에는 도 2 및 도 5와 같이 수문(212)을 통하여 바다로 방류되는 빠른 속도의 해수를 이용하여 발전하는 다수의 해류발전기(220)가 설치된다. 상기 다수의 해류발전기(220)가 해측(14)에 설치될 경우 해측 해류발전단지(220)를 이루게 된다.On the other hand, behind the sluice 212 side of the sluice structure 210, that is, the sea side 14, using a number of high-speed seawater discharged to the sea through the sluice 212 as shown in Figures 2 and 5 Current generator 220 is installed. When the plurality of current generators 220 are installed on the sea side 14, the sea current generators 220 are formed.
여기서, 호수측 해류발전단지(120)와 해측 해류발전단지(220)의 해류발전기들은 해저 지면에 입설된 지지기둥 또는 모노파일(F)에 각기 지지되어 설치된다.Here, the current generators of the lake side current generation complex 120 and the sea side current generation complex 220 are respectively supported and installed on a support column or a monopile F installed in the sea floor.
또한, 호수측 해류발전단지(120)와 해측 해류발전단지(220)의 해류발전기들은 해류의 흐름에 회전 구동하는 프로펠러, 프로펠러의 회전축에 연결된 회전자를 갖는 발전기를 포함한다.In addition, the current generators of the lake-side current generation complex 120 and the sea-side current generation complex 220 includes a propeller that rotates to drive the flow of the current, and a generator having a rotor connected to the rotating shaft of the propeller.
상기에서 조력발전소(100)의 수차구조물(102)과 조력 댐(200)의 수문구조물(210)은 도 2에 도시된 바와 같이 적어도 1개 이상 연결하여 구성된다.In the above, the aberration structure 102 of the tidal power plant 100 and the hydrologic structure 210 of the tidal dam 200 are configured by connecting at least one or more as shown in FIG. 2.
한편, 상기 실시 예에서 조력발전소(100)와 조력 댐(200)의 지형특성 또는 발전량의 계획에 따라 다수의 해류발전기로 해류발전단지(120)(220)를 구성할 때 조력발전소(100)의 호수측(12)에만 다수의 해류발전기를 설치하여 조력발전과 해류발전을 겸하는 통합발전시스템을 구성할 수도 있고, 조력 댐(200)의 해수측(14)에만 다수의 해류발전기(220)를 설치하여 조력발전과 해류발전을 겸하는 통합발전시스템을 구성할 수도 있으며, 도 2와 같이 조력발전소(100)의 호수측(12)과 조력 댐(200)의 해수측(14) 모두에 다수의 해류발전기(120)(220)를 각각 설치하여 조력발전과 해류발전을 겸하는 통합발전시스템을 구성할 수도 있다.On the other hand, according to the embodiment of the tidal power plant 100 and the tidal dam 200 in accordance with the plan of the topographical characteristics or the amount of power generation of the current generation complexes 120, 220 of the tidal power plant 100 of the tidal power plant 100 A plurality of current generators may be installed only at the lake side 12 to form an integrated power generation system that combines tidal power generation and current generation, and a plurality of current generators 220 may be installed only at the seawater side 14 of the tidal dam 200. It is also possible to configure an integrated power generation system that combines tidal power generation and ocean current power generation, and as shown in Figure 2 a plurality of current generators on both the lake side 12 of the tidal power plant 100 and the sea water side 14 of the tidal dam 200 Each of the 120 and 220 may be installed to form an integrated power generation system that combines tidal power generation and ocean current generation.
이와 같이 구성된 실시 예에서 본 발명의 고속 해류용 소형 대용량 해류발전기의 특성을 설명한다. In the embodiment configured as described above will be described the characteristics of the small-capacity current generator for high speed current current of the present invention.
도 2와 같이 구성된 통합발전시스템의 해류발전단지에는 자연적인 조류의 속도 보다 훨씬 빠른 속도의 해류가 흐르게 된다. 따라서 상기 해류발전단지에 설치할 수 있는 해류발전기는 일반적인 조류발전기와는 다르게 설계되어야 한다. 따라서 본 발명에서는 고속으로 흐르는 해류에 적합한 소형 대용량 해류발전기를 제공한다.In the current generation complex of the integrated power generation system configured as shown in FIG. Therefore, the current generator that can be installed in the current generation complex should be designed differently from the general tidal current generator. Accordingly, the present invention provides a small mass current generator suitable for the current flowing at high speed.
일반적으로 해류발전단지에 설치 가능한 해류발전기의 발전용량 및 사양은 조력발전소 전후의 해역에서 이용 가능한 해류속도, 조력발전소 수차구조물의 출구 크기와 바다의 깊이, 해측과 호수측의 수위변동 및 해저지형 등을 고려하여 결정하며, 그리고 해류발전단지로부터 최대 발전량을 얻기 위하여 경제적인 측면을 고려하여 해류발전기의 배치 방안을 결정해야 한다. Generally, the generation capacity and specifications of the current generators that can be installed in the current generation complex are as follows: current speeds available in the waters before and after the tidal power plant, the size of the exit of the aberration structure of the tidal power plant, the depth of the sea, the water level fluctuations on the sea and lake sides, and the seabed topography In order to obtain the maximum power generation from the current generation complex, it is necessary to decide on the arrangement of the current generator in consideration of economic aspects.
해류발전기의 수차터빈이 배치되는 수중공간의 위치를 고려할 때 해저바닥의 영향을 덜 받기 위하여 도 4와 도 6처럼 해저지면으로부터 수차터빈의 날개 팁까지 2∼3m 정도의 여유 공간을 두는 것이 바람직하며, 해상의 기후변화나 부유물질 등으로부터 영향을 덜 받도록 하기 위하여 도 4와 도 6처럼 해수면으로부터도 수차터빈 날개 팁까지 2m 이상의 여유 공간을 두는 것이 바람직하다.Considering the location of the underwater space where the aquatic turbine of the current generator is disposed, it is desirable to have a clearance of about 2 to 3m from the bottom of the seabed to the wing tip of the aquatic turbine, as shown in Figs. In order to be less affected by climate change or floating material at sea, it is desirable to have a free space of 2m or more from the sea surface to the tip of the water turbine turbine as shown in FIGS. 4 and 6.
본 발명의 고속 해류용 소형 대용량 해류발전기에서는 현재 건설중인 시화호 조력발전소에 해류발전단지를 설치하여 도 2와 같은 통합발전시스템을 구성하는 경우를 실시 예로 설명한다. 시화호 조력발전소의 경우, 도 3과 같이 호수측 해류발전단지 설치 대상지역의 해저지면 LB는 EL (-)20.0m, 호수의 최저 저수위가 EL (-) 4.46m이므로, 상시적으로 최소 15.54m 깊이의 수중에 해류발전기를 설치할 수 있다. 따라서 조력발전소(100) 수차구조물(102)의 호수측 해류발전기는 도 4처럼 수차터빈의 날개지름이 10m 정도인 해류발전기가 바람직하다. 또한, 도 5와 같이 조력 댐(200) 수문구조물(210)의 해측 해류발전기 설치 대상지역의 해저지면 SB는 EL (-)16.0m이고, 바다의 최저 저수위가 EL (-) 4.60m이므로, 상시적으로 최소 11.4m 깊이의 수중에 해류발전기를 설치할 수 있다. 따라서 조력 댐(200) 수문구조물(210)의 해측 해류발전기는 도 6처럼 수차터빈의 날개지름이 8m 정도인 해류발전기가 바람직하며, 이때 해저지면에서부터 수차터빈의 날개 끝까지 약 2.0∼3.0m 정도의 여유를 두는 것이 바람직하다.In the small-capacity ocean current generator for high speed current current of the present invention, an integrated power generation system as shown in FIG. 2 will be described by installing an ocean current power generation complex in the Sihwa Lake tidal power plant currently under construction. In the case of the Sihwa Lake tidal power plant, as shown in Fig. 3, the LB of the seabed in the region to be installed in the current side of the lake-side current generation complex is EL (-) 20.0m, and the minimum low water level of the lake is EL (-) 4.46m. Current generators can be installed in the water. Therefore, the lake side current generator of the aberration structure 102 of the tidal power plant 100 is preferably an ocean current generator having a wing diameter of about 10 m as shown in FIG. 4. In addition, as shown in FIG. 5, the bottom surface SB of the region where the ocean current generator installation of the tidal dam 200 hydrological structure 210 is installed is EL (-) 16.0 m, and the lowest water level of the sea is EL (-) 4.60 m, For example, current generators can be installed in water at least 11.4m deep. Therefore, the sea current generator of the tidal dam 200, the hydrologic structure 210 is preferably an ocean current generator having a blade diameter of about 8 m as shown in FIG. 6, and from about 2.0 to 3.0 m from the sea bottom to the tip of the water turbine turbine. It is desirable to allow a margin.
도 7, 도 8, 도 9는 3 날개 수차터빈을 장착한 프로펠러형태의 수평축 해류발전기의 일례로써, 성능저하를 초래하는 캐비테이션을 피하기 위해서 날개의 표면을 매끄럽게 하고, 도 7처럼 수차터빈의 날개가 뿌리부분에서 상대적으로 낮은 tangential 속도로 인해 최적인 받음 각을 받을 수 있도록 날개의 팁 부분을 많이 비튼 형태가 바람직하고 도 8처럼 날개 팁의 형상은 라운드로 하는 것이 바람직하다. 본 발명의 고속 해류용 소형 대용량 해류발전기처럼 수차터빈 날개의 크기가 작아지게 되면 날개 팁 속도가 작아지므로 캐비테이션 방지에도 유리하다. 또한, 해류의 방향이 빈번하게 바뀌는 것에 대응하기 위하여 수차터빈 날개의 단면형상은 타원(elliptic) 형태로 하고 양방향 흐름에 대응한 피치 제어 기능이 있는 것이 바람직하다. 또한, 도 4와 도 6에서처럼 해류의 방향에 대하여 해류발전기 지지용 수직기둥의 폭이 좁은 유선형이나 타원형 단면형태로 하는 것이 고속 해류의 저항을 이기는데 바람직하고, 도 9처럼 나셀을 유선형이나 타원형 형태로 하는 것이 양방향으로 흐르는 고속 해류의 저항을 최소화하기 위해 바람직하다.7, 8, and 9 are examples of propeller-type horizontal current generators equipped with a three-wing aberration turbine, which smooth the surface of the wing to avoid cavitation causing performance deterioration, and as shown in FIG. Due to the relatively low tangential speed at the root portion, the tip portion of the wing is preferably twisted so as to receive an optimal angle of attack, and the shape of the wing tip is preferably round as shown in FIG. 8. When the size of the aberration turbine blades is reduced, as is the case of the small-capacity ocean current generator for the high speed current current of the present invention, the wing tip speed is reduced, which is advantageous in preventing cavitation. In addition, in order to cope with frequent changes in the direction of the current, it is preferable that the cross section of the aberration turbine blades has an elliptic shape and a pitch control function corresponding to bidirectional flow. In addition, it is preferable to have a narrow streamline or elliptical cross-sectional shape of the vertical pillar for supporting the current generator in the direction of the sea current as shown in Figs. 4 and 6 to overcome the resistance of the high speed current, and as shown in Fig. 9, the nacelle is streamlined or elliptical. In order to minimize the resistance of the high speed current flowing in both directions.
한편, “시화호 조력발전소 건설공사 수치해석 및 수리모형실험” 보고서에 의하면, 시화호 조력발전소는 창조시 수두차 6.0m에서 조력발전한 후 호수측으로 방출되는 해류의 속도는 3.0m/s 이상인데, 이것은 수두차 6.0m인 해수가 가지는 위치에너지로부터 단위기 당 발전시설용량 25.4MW인 조력발전용 수차발전기(110)가 발전하고 난 뒤, 해수를 호수측(12)으로 방출할 때 발생할 수 있는 해류의 속도이다. 하지만, 낙조시 낙차 1.9m에서 조력 댐(200) 수문구조물(210)의 수문(212)을 통해 배수될 때에는 해류의 속도가 6.0m/s 이상인 것으로 보고되었다. 이것은 조력 댐(200) 수문구조물(210) 중간에는 아무런 에너지 추출장치가 없으므로 수문(212)을 올릴 때 해수의 위치에너지가 전량 운동에너지로 변환되기 때문이다. 이처럼 해수의 수두차에 의한 위치에너지가 전량 운동에너지로 변환될 때 발생되는 해류속도는 다음의 이론식 (2)로부터도 계산할 수 있다.On the other hand, according to the report of the numerical analysis and hydraulic model test of the Sihwa Lake tidal power plant construction, the tidal current of the Sihwa Lake tidal power plant is 6.0m / t after the tidal power generation is over 3.0m / s. The velocity of currents that may occur when the seawater is discharged to the lake side 12 after generation of tidal power generator 110 for tidal power generation with a capacity of 25.4 MW per unit from the potential energy of sea water having a 6.0 m difference. to be. However, it was reported that the speed of the current current is 6.0m / s or more when drained through the water gate 212 of the tidal dam 200, the hydrologic structure 210 at 1.9m free fall during fall. This is because there is no energy extracting device in the middle of the hydrologic structure 210 of the tidal dam 200, so that the potential energy of the seawater is converted into kinetic energy in the entire amount when raising the water gate 212. In this way, the sea current velocity generated when the potential energy due to the water head difference is converted into kinetic energy can be calculated from the following equation (2).
Figure PCTKR2010002005-appb-I000002
Figure PCTKR2010002005-appb-I000002
여기서, h 는 호수측과 해측의 수두차이며, g 는 중력가속도이다. 예를 들어, 수두차 1.9m인 해수는 조력 댐 수차구조물의 수문을 지날 때 식(2)으로부터 속도가 약 6.1m/s인 해류로 바뀌고, 수두차가 6.0m일 때는 약 10.8m/s라는 엄청난 속도의 해류로 바뀐다. 따라서 이처럼 빠른 해류가 흐르는 곳에 설치되는 해류발전기는 2∼2.5m/s의 조류속도를 이용하여 발전하는 것을 목표로 설계하는 기존 개념의 조류발전기에 비해 수차터빈의 날개 크기가 훨씬 작지만 대용량의 발전출력을 얻을 수 있는 것이다.Where h is the head difference between the lake and sea, and g is the acceleration of gravity. For example, a 1.9 m water head changes from Eq. (2) to a current of about 6.1 m / s as the water passes through the tidal water of the tidal dam aberration, and about 10.8 m / s at 6.0 m. It changes to the current of velocity. Therefore, the current generator installed in such a fast current flows has a much smaller wing size of a water turbine than the existing concept of a tidal current generator designed to generate power using a current of 2 to 2.5 m / s. To get it.
도 10에는 수차터빈 날개지름의 크기가 2∼25m일 때 해류속도에 따른 발전출력의 관계를 식(1)으로부터 계산한 결과를 도시한 것으로, 본 발명의 고속 해류용 소형 대용량 해류발전기의 설계범위(10)와 기존 개념의 조류발전기의 설계범위(20)를 각각 사각박스로 표시하였다.Figure 10 shows the result of calculating the relationship between the power generation output according to the current speed when the size of the blade diameter of the water turbine turbine is 2-25m from Equation (1), the design range of the small-capacity current generator for high speed current current of the present invention (10) and the design range (20) of the existing tidal current generator is indicated by a rectangular box, respectively.
아래 표 1은 프로펠러형 수평축 형식의 조류발전기에 대하여 적용한 수차터빈 날개의 회전단면적(A, m2), 조류속도(V, m/s)에 대한 발전량과의 관계를 나타낸 것이다.Table 1 below shows the relationship between the power generation amount for the rotational cross-sectional area (A, m 2 ) and the tide velocity (V, m / s) of aberration turbine blades applied to a propeller type horizontal axis type tidal current generator.
표 1
해류발전기 날개지름 해류 속도 발전량
호수측 10m 3m/s 0.43MW
해측 8m 6m/s 2.2MW
Kilowatt Power = Cpideal 0.5ρηAV3, 여기서 Cpideal = 16/27 (Betz Law)
Table 1
Current Generator Wingspan Current flow rate Power generation
Lake side 10m
3 m / s 0.43 MW
Seaside
8m
6 m / s 2.2 MW
Kilowatt Power = Cpideal 0.5ρηAV 3, where Cpideal = 16/27 (Betz Law)
상기 표 1로부터 도 4에서처럼 호수측 해류발전기로 접근하는 해류속도가 3m/s일 때, 도 10의 점 A처럼 수차터빈 날개지름이 10m인 해류발전기 1기의 발전량은 약 0.43MW이고, 도 4d에서처럼 해측 해류발전기로 접근하는 해류속도가 6m/s일 때, 도 10의 점 B처럼 수차터빈 날개지름이 8m인 해류발전기 1기의 발전량은 약 2.2MW가 된다.When the current velocity approaching the lake side current generator is 3m / s, as shown in Table 1 from Table 1, the amount of power generated by one current generator having a 10 m water wheel turbine blade is about 0.43 MW as shown in point A of FIG. As shown in FIG. 10, when the current velocity approaching the offshore current generator is 6 m / s, the power generation amount of one current generator with an aberration turbine blade of 8 m is about 2.2 MW as shown in point B of FIG. 10.
도 10에 따르면 본 발명의 고속 해류용 소형 대용량 해류발전기의 설계범위(10)는 일반적인 조류발전기의 설계범위(20)와 확연히 다름을 알 수 있다. 또한, 현재 선진국에서 개발하고 있는 조류발전기도 도 10의 설계범위(20)에 해당하는 것으로서, 평균속도 3.0m/s 이상의 고속 해류가 흐르는 곳에서는 그대로 사용할 수 없다는 것을 의미한다. According to Figure 10 it can be seen that the design range 10 of the small-capacity current generator for high speed current current of the present invention is significantly different from the design range 20 of the general tidal current generator. In addition, the algae generators currently being developed in the developed countries correspond to the design range 20 of FIG. 10, which means that they cannot be used as they are at high speeds of 3.0 m / s or more.
도 10의 설계범위(20)에서처럼 기존의 조류발전기에서는 조류의 평균속도가 최대 2.5m/s일 때, 수차터빈의 날개지름이 20m라고 하더라도, 수차터빈 1기로부터 얻을 수 있는 조류발전기의 발전량의 한계는 약 1.0MW 정도이다. 하지만, 아직까지 단위 수차터빈의 발전용량이 이 정도 규모인 조류발전기는 존재하지 않고 있다.As shown in the design range 20 of FIG. 10, in the existing tidal current generator, when the average speed of tidal current is 2.5m / s, even if the wing diameter of the water turbine is 20m, the power generation amount of the tidal current generator can be obtained from one water turbine. The limit is about 1.0 MW. However, there is no tidal current generator with a power generation capacity of this unit turbine.
다시 말하자면, 도 10에 따르면, 기존 개념의 조류발전에서 이용하는 조류의 평균속도는 2.5m/s 정도가 한계인데, 이때 수차터빈의 날개지름이 12m보다 작을 경우 기존의 조류발전기로 얻을 수 있는 발전량은 0.5MW 보다 적으며, 단위기 당 1.0MW 이상의 발전량을 얻기 위해서는 도 10의 C점에서 보는 것처럼 수차터빈의 날개지름이 20m 이상이 되어야 한다.In other words, according to FIG. 10, the average speed of the algae used in the existing algae power generation is limited to about 2.5 m / s. At this time, when the wing diameter of the water turbine turbine is less than 12 m, the amount of power generated by the existing algae generator is It is less than 0.5MW, and in order to obtain more than 1.0MW of power per unit, as shown in point C of FIG. 10, the wing diameter of the water turbine should be 20m or more.
반면에, 본 발명자가 기발명한 통합발전시스템이나 복합 해양발전시스템의 해류발전단지에서는 해수의 수위 차에 따라 발생하는 해류의 평균속도가 3∼11m/s에 달하므로 이곳에 설치되는 해류발전기는 기존 개념의 조류발전기와는 다른 설계범위(10)를 가진다. 이때 해류발전기 수차터빈의 날개지름은 해류발전단지 건설 대상 지역의 해저지형 조건 및 해류발전단지 건설계획에 따라 달라질 수 있으며, 특히 바다 깊이가 깊어질수록 더 커질 수도 있겠지만 수차터빈의 날개지름이 커질수록 수차터빈 단위기 당 견디어야 하는 해류의 저항도 수차터빈 날개길이의 제곱에 비례하여 급격히 커진다는 점을 고려할 때, 해류발전기의 구조적인 안정성 확보를 위하여 수차터빈 날개지름은 5∼12m 정도가 바람직하며, 이때 본 발명의 고속 해류용 소형 대용량 해류발전기는 단위기 당 작게는 0.5MW에서 크게는 수 MW라는 대용량의 발전량을 얻을 수 있는 것이다.On the other hand, in the current generation complex of the present inventors the integrated power generation system or the combined marine power generation system, since the average speed of the currents generated by the sea level difference reaches 3-11 m / s, the current generator installed here It has a design range (10) different from the conventional concept algae generator. At this time, the wing diameter of the water turbine generator can vary depending on the seabed topography conditions and the current plan for the construction of the current generation complex.The larger the depth of the sea, the larger the wing diameter of the water turbine can be. Considering that the resistance of the currents to withstand per unit of the turbines increases rapidly in proportion to the square of the blades of the turbines, the wing diameter of the turbines is preferably 5 to 12m to ensure structural stability of the current generators. In this case, the small-capacity current generator for high-speed current current of the present invention can obtain a large amount of power generation of as small as 0.5 MW to several MW per unit unit.
도 11은 동일 발전용량 4MW인 경우, 도 10의 결과로부터 얻은 본 발명의 고속 해류용 소형 대용량 해류발전기(a)와 일반적인 조류발전기(b) 그리고 해상 풍력발전기(c)의 크기를 상대적으로 비교 도시한 것이다. 여기서 (b)는 영국의 Tidal Stream 사가 고안한 개념도로서, 도 10의 점 C처럼 조류속도 2.5m/s에서 단위기당 발전용량이 1.0MW이고 날개지름 20m인 수차터빈 4기로 구성한 4MW급 조류발전시스템을 해저 60m 깊이에 설치한 상상도이다. (c)와 같은 4MW급 대용량 해상 풍력발전기나 (b)와 같은 4MW급 조류발전기는 규모도 크고 개발하는데 많은 투자비용이 필요하며, 현재의 국내 기술로는 단기간에 개발하여 세계시장을 앞서나가기가 어려운 현실이다. 하지만, 도 10의 해류발전기 설계범위(10)에서 나타낸 것처럼 본 발명의 고속 해류용 해류발전기는 비록 대용량이지만 크기가 매우 작으므로 그동안 축적된 국내의 풍력발전기 개발기술력과 조선기술력에 집중적인 연구개발을 더 한다면 국내 기술력만으로도 단기간 내에 개발할 수 있는 가능성이 매우 높고, 개발 및 투자비용도 매우 저렴할 것이다. 따라서 본 발명의 고속 해류용 소형 대용량 해류발전기는 새로운 기술영역과 세계시장의 개척 및 선점이라는 기회를 제공한다.FIG. 11 is a comparative comparison of the sizes of the small-capacity ocean current generator (a) and the general tidal current generator (b) and the offshore wind power generator (c) for the high speed current current obtained from the result of FIG. 10 when the same power generation capacity is 4MW. It is. Here (b) is a conceptual diagram devised by the British Tidal Stream, 4MW class tidal power generation system consisting of four aberration turbines having a power capacity of 1.0MW per unit unit and a wing diameter of 20m at a tidal flow of 2.5m / s as shown in point C of FIG. It is imagined to be installed at a depth of 60 meters below sea level. 4MW large-scale offshore wind turbines such as (c) or 4MW class tidal power generators such as (b) are large in size and require a large investment in development. It is a difficult reality. However, the high speed current current generator of the present invention, as shown in the current generator design range 10 of FIG. 10, although large in size, but very small in size, has concentrated on the domestic wind turbine development technology and shipbuilding technology. In addition, the domestic technology alone is very likely to develop in a short time, and the development and investment costs will be very low. Therefore, the small-capacity current generator for the high speed ocean current of the present invention provides a new technology area and the opportunity of pioneering and preoccupying the global market.
도 12부터 도 17은 도 7부터 도 9까지와 같은 수평축 3 날개 타입의 수차터빈을 기본 형태로 하는 본 발명에 따른 고속 해류용 소형 대용량 해류발전기의 다양한 변형 예로써, 단일 수차터빈(도 12, 도13, 도 14), 2중 수차터빈(도 15, 도 16) 그리고 3중 수차터빈(도 17)으로 구성된 해류발전기의 형상들을 보여준다.12 to 17 are various modified examples of the small-capacity ocean current generator for a high speed current according to the present invention having a basic three-wheel type aberration turbine of the horizontal axis as shown in FIGS. 7 to 9. Figures 13 and 14 show the shapes of the current generators consisting of a double aberration turbine (Figs. 15 and 16) and a triple aberration turbine (Fig. 17).
앞에서 설명한 바와 같이 본 발명의 고속 해류용 소형 대용량 해류발전기의 수차터빈 날개지름은 조석간만의 자연현상에 의한 조류를 이용하여 발전하는 조류발전기의 것에 비해 훨씬 작아지므로 고속 해류의 저항에 유리하게 대응할 수 있지만 일반적으로 발전용량이 커질수록 증속기어와 발전기의 크기도 커지게 되므로 증속기어박스와 발전기 그리고 부대설비들을 모두 해류발전기의 너셀 부분에 설치하기란 거의 불가능하게 된다.As described above, the aberration turbine wing diameter of the small-capacity ocean current generator for the high speed current current of the present invention is much smaller than that of the algae generator generated by using the algae due to the natural phenomenon of tidal tides. However, in general, as the power generation capacity increases, the size of the gearbox and generator increases, so it is almost impossible to install the gearbox, generator, and auxiliary equipment in the nussel part of the current generator.
소형 기어와 더불어 소형 대용량 발전기가 존재한다고 하면 별문제가 없겠으나 발전기와 증속기어박스의 크기는 발전기의 타입과 기어의 비에 따라 크기가 결정되며, 일반적으로 발전용량이 MW급일 경우, 본 발명의 고속 해류용 소형 대용량 해류발전기의 수차터빈의 날개 크기에 비하여 지나치게 커지게 되므로 해류발전기의 너셀 내부에 모두 장착할 수가 없다.If there is a small high-capacity generator in addition to the small gear, there is no problem, but the size of the generator and the gearbox is determined according to the ratio of the type and gear of the generator, and in general, when the generating capacity is MW class, the high speed of the present invention Since it is too large compared to the wing size of the aberration turbine of the small current large-capacity current generator for ocean current, it cannot be installed inside the nussel of the current generator.
상기와 같은 문제점을 해결하기 위해서는 본 발명의 고속 해류용 소형 대용량 해류발전기는 증속기어박스와 발전기 그리고 유압시스템 및 냉각시스템 그리고 전력변환장치를 포함하는 발전시설들을 해류발전기 너셀의 외부로 빼내어 설치하는 것이 바람직하다. In order to solve the above problems, the small-capacity current generator for the high speed current current of the present invention is to remove the power generation facilities including the gearbox, the generator, the hydraulic system, the cooling system, and the power converter to the outside of the current generator nussel. desirable.
도 18에서는 고속 해류가 가지는 운동에너지를 수차터빈(54)과 연결된 수차축(55)의 회전력으로 변환한 후 다시 기어(56)와 중간 회전축(57)의 조합을 통해 해류발전기 너셀(58)의 외부에 설치되어 있는 증속기어박스(60)와 대용량 발전기(61), 유압시스템 및 냉각시스템 그리고 전력변환장치를 포함하는 발전시설들(62)을 해류발전기 지지용 모노파일(F)의 상부 해수면 위에 가설한 상판(63)에 설치한 예를 보여주고 있다. In FIG. 18, the kinetic energy of the high speed current flow is converted into the rotational force of the aberration shaft 55 connected to the aberration turbine 54, and then, the combination of the gear 56 and the intermediate rotation shaft 57 of the current generator nussel 58 is used. On the upper sea level of the monopile F for supporting the current generator, the power generation facilities 62 including the speed increase gear box 60, the large capacity generator 61, the hydraulic system and the cooling system, and the power converter installed outside are installed. The example which installed in the temporary upper board 63 is shown.
따라서 해수 중에는 소형 수차터빈(54)과 동력전달 수차축(55)과 기어(56)만 소형 너셀(58) 내부에 설치할 수 있으므로 고장의 원인을 줄이며, 해류의 저항을 적게 받을 수 있도록 작게 만들 수 있다. 또한, 증속기어박스(60)와 발전기(61), 유압시스템 및 냉각시스템 그리고 전력변환장치를 포함하는 발전시설들(62)을 해류발전기 지지용 모노파일(F)에 가설한 상판(63)을 통해 해수면 위에 설치할 수 있어 누수에 의한 발전기의 고장을 용이하게 예방할 수 있을 뿐만 아니라, 고장시 유지보수의 편리성을 확보할 수 있다.Therefore, in the seawater, since only the small water turbine turbine 54, the power transmission axle shaft 55, and the gear 56 can be installed inside the small nussel 58, it is possible to reduce the cause of the failure and make it small to receive the resistance of the current. have. In addition, the upper plate 63 is installed on the monopile for supporting the current generator generators 62 of the power generation facilities 62 including the speed increase gearbox 60, the generator 61, the hydraulic system and the cooling system, and the power converter. It can be installed on the surface of the sea, so that it is easy to prevent the breakdown of the generator due to water leakage, and can ensure the convenience of maintenance in case of failure.
이상과 같이, 본 발명의 고속 해류용 소형 대용량 해류발전기는 수평축 3 날개 형상의 수차터빈을 위주로 비록 한정된 실시 예와 도면에 의해 설명되었으나 수직축 수차터빈이나 수평축 2 날개 형상의 수차터빈 등 다양한 형상의 수차터빈에서도 적용할 수 있다. As described above, the small-capacity ocean current generator for the high speed current current of the present invention has been described with reference to a limited embodiment and the drawing mainly on a horizontal three-wing shaped aberration turbine, but it has various shapes such as a vertical aberration turbine or a horizontal two-wing aberration turbine. It can also be applied to turbines.
또한 본 발명은 비록 한정된 실시 예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.In addition, although the present invention has been described by way of limited embodiments and drawings, the present invention is not limited thereto and will be described by the person skilled in the art to which the present invention pertains. Of course, various modifications and variations are possible within the scope of the claims.
우리나라에서는 현재 건설중인 시화호 조력발전소를 비롯하여 가로림 조력발전소, 강화도 조력발전소, 인천만 조력발전소 등과 같이 세계적으로도 유래를 찾아볼 수 없을 정도로 많은 조력발전소 건설이 진행되고 있으며, 뿐만 아니라 새만금, 천수만, 아산만 등에서도 조력발전이 검토되고 있다. 또한, 우리나라 군산과 부안 사이에 위치하고 있는 새만금의 가력배수갑문에서는 필요할 때 수문을 열어 대량의 해수를 5.0m/s 이상의 매우 빠른 속도로 유통시키고 있다. 해양 선진국에서 평균속도 범위가 2.0∼2.5m/s인 조류에 적합하도록 개발하고 있는 조류발전기들은 상기와 같이 고속 해류가 흐르는 곳에서 그대로 사용할 수 없다. In Korea, there are many tidal power plants under construction such as Sihwa Lake Tidal Power Plant, Garorim Tidal Power Plant, Ganghwa Island Tidal Power Plant, Incheon Bay Tidal Power Plant, etc., and the Saemangeum, Cheonsu Bay, Tidal power generation is also being considered in Asan Bay. In addition, Saemangeum's Gaeseong drainage gate located between Gunsan and Buan in Korea opens the floodgate when needed to distribute a large amount of seawater at a very high speed of 5.0m / s or more. The algae generators developed by marine developed countries to be suitable for algae with an average speed range of 2.0 to 2.5 m / s cannot be used where such high speed currents flow.
국내의 이러한 실정들을 십분 활용하고, 풍력발전과 조선해양의 축적된 기술력을 바탕으로 고속 해류용 소형 대용량 해류발전기의 개발에 박차를 가한다면, 단기간에 우리나라가 이 분야에서 기술적 우위를 확보할 수 있을 뿐만 아니라 나아가 세계 시장을 선점할 수 있는 시너지효과를 얻을 수 있을 것이다.If we make full use of these conditions in Korea and accelerate the development of small-capacity ocean current generators for high speed ocean currents based on the accumulated technology of wind power and shipbuilding and offshore, Korea will be able to secure technological advantage in this field in a short time. In addition, it will be possible to obtain synergies to preoccupy the world market.

Claims (4)

  1. 해측(14)과 호수(12)측을 구획하는 방조제(10)나 상기 방조제(10)에 조력발전소와 해류발전을 겸하는 통합발전시스템이나 상기 방조제(10)에 수문발전과 해류발전을 겸하는 복합 해양발전시스템 또는 방조제(10)의 배수갑문이나 수문구조물을 통해 호수측과 해측으로 흐르는 고속 해류를 한쪽 방향 또는 양방향으로 이용하여 발전하는 해류발전기에 있어서,Seawall (14) partitioning the sea side (14) and the lake (12) side or integrated power generation system that combines tidal power plant and current generation power generation to the seawall (10), or the combined ocean that combines hydrologic and current generation to the seawall (10) In the current generator to generate power by using a high speed current flowing in the lake side and the sea side in one direction or in both directions through the drainage lock or hydrologic structure of the power generation system or the seawall (10),
    상기 해류발전기의 수차터빈 날개지름의 크기가 5m에서부터 12m 이하이면서, 증속기어박스(60)와 발전기(61) 그리고 유압시스템 및 냉각시스템 그리고 전력변환장치를 포함하는 발전시설들(62)을 해류발전기 너셀(58) 밖에 설치하는 것을 특징으로 하는 고속 해류용 소형 대용량 해류발전기.The size of the aberration turbine blades of the current generator is 5m to 12m or less, the power generation gears including the gearbox 60, the generator 61 and the hydraulic system and cooling system and the power converter 62 to the current generator Small capacity large current current generator for high speed current, characterized in that installed outside the nussel (58).
  2. 청구항 1에 있어서,The method according to claim 1,
    해류발전기 너셀(58)의 외부에 설치되어 있는 증속기어박스(60)와 대용량 발전기(61), 유압시스템 및 냉각시스템 그리고 전력변환장치를 포함하는 발전시설들(62)을 해류발전기 지지용 지지기둥 또는 모노파일(F)의 상부 해수면 위에 가설한 상판(63) 위에 설치하는 것을 특징으로 하는 고속 해류용 소형 대용량 해류발전기,A support pillar for supporting the current generator generator includes a speed increase gear box 60 installed at the outside of the current generator nussel 58 and a large capacity generator 61, a hydraulic system and a cooling system, and a power converter 62. Or a small capacity large current current generator for high speed current, characterized in that installed on the upper plate 63 installed on the upper sea surface of the mono pile (F),
  3. 청구항 1에 있어서,The method according to claim 1,
    해저지반에 입설되어 상기 고속 해류용 소형 대용량 해류발전기를 지지하는 지지기둥 또는 모노파일(F)의 단면형태가 유선형 또는 타원형인 것을 특징으로 하는 고속 해류용 소형 대용량 해류발전기.The small-scale large-capacity current generator for high-speed current, characterized in that the cross-sectional shape of the support pillar or monopile (F) is installed in the seabed ground supporting the small-capacity current generator for the high speed current.
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 해류발전기의 수차터빈의 날개가 뿌리부분에서보다 낮은 tangential 속도로 인해 최적인 받음각을 받을 수 있도록 날개의 팁 부분을 많이 비틀고 날개 팁의 형상을 라운드 형태로 한 것을 특징으로 하는 고속 해류용 소형 대용량 해류발전기.Small capacity for high speed current, characterized in that the wing of the water turbine turbine of the current generator is twisted a lot of the tip portion of the wing and the shape of the wing tip in a round shape so as to receive the optimum angle of attack due to the lower tangential speed than the root portion Current generator.
PCT/KR2010/002005 2009-04-27 2010-04-01 Small-scale, large-capacity, seawater-flow power generator for high-speed seawater flows WO2010126229A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020090036572A KR101075071B1 (en) 2009-04-27 2009-04-27 Small but large capacity ocean current turbine generators for high speed ocean current
KR10-2009-0036572 2009-04-27

Publications (2)

Publication Number Publication Date
WO2010126229A2 true WO2010126229A2 (en) 2010-11-04
WO2010126229A3 WO2010126229A3 (en) 2010-12-23

Family

ID=43032645

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/002005 WO2010126229A2 (en) 2009-04-27 2010-04-01 Small-scale, large-capacity, seawater-flow power generator for high-speed seawater flows

Country Status (2)

Country Link
KR (1) KR101075071B1 (en)
WO (1) WO2010126229A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108397342A (en) * 2018-05-12 2018-08-14 王爱金 A kind of small-sized tidal-energy electric generator set

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020071290A (en) * 2001-03-06 2002-09-12 양태열 Tidal Current Power Generation System
KR20030050835A (en) * 2001-12-19 2003-06-25 학교법인 인하학원 Bridge current power generating system
KR20040033160A (en) * 2002-10-11 2004-04-21 현대중공업 주식회사 Current energy power generation apparatus using impeller type water mill

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020071290A (en) * 2001-03-06 2002-09-12 양태열 Tidal Current Power Generation System
KR20030050835A (en) * 2001-12-19 2003-06-25 학교법인 인하학원 Bridge current power generating system
KR20040033160A (en) * 2002-10-11 2004-04-21 현대중공업 주식회사 Current energy power generation apparatus using impeller type water mill

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108397342A (en) * 2018-05-12 2018-08-14 王爱金 A kind of small-sized tidal-energy electric generator set

Also Published As

Publication number Publication date
KR20100117875A (en) 2010-11-04
KR101075071B1 (en) 2011-10-21
WO2010126229A3 (en) 2010-12-23

Similar Documents

Publication Publication Date Title
Elghali et al. Marine tidal current electric power generation technology: State of the art and current status
CN101649813B (en) Integrated system for generating electricity by current, sea wave as well as tide kinetic energy and wind and solar energy
KR100883756B1 (en) Complex ocean power system combining sluice power and ocean current power
KR100867547B1 (en) Integration power system consisted of tidal power and ocean stream
US20200208611A1 (en) Deep-sea energy integrated system based on floating wind turbine and current energy device
US9664170B2 (en) Hydroelectric generator
KR101263678B1 (en) Offshore combind generator
Aly et al. State of the art for tidal currents electric energy resources
JP3169982U (en) Power ship
WO2010126229A2 (en) Small-scale, large-capacity, seawater-flow power generator for high-speed seawater flows
Warak et al. Overview of generation of electricity using tidal energy
CN109973314B (en) Novel marine floating type wind-water synchronous generator set
KR20030050835A (en) Bridge current power generating system
KR20080023777A (en) Dual blade type ocean generator
Kedar et al. A review on under water windmill
CN207111295U (en) A kind of Ocean Tidal Current Energy electricity generation system
CA2644792C (en) Tidal energy structure
KR101042971B1 (en) Power generation system using a dam for tidal power generation
KR20120013806A (en) Offshore combind generator
CN214063198U (en) Floating ship type power generation device
KR101000805B1 (en) Direction changeable device for pile fixed ocean stream generation
WO2021248369A1 (en) Large tidal current energy power generation apparatus and assembly platform therefor
KR20030050834A (en) Current power generating system installed in cassion
JP2022170765A (en) Mutual transfer system for natural energy power generation
KR20090079479A (en) A tidal power station device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10769874

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10769874

Country of ref document: EP

Kind code of ref document: A2