WO2010126175A1 - Apparatus for achieving combined optical images based on double cladding fiber devices - Google Patents

Apparatus for achieving combined optical images based on double cladding fiber devices Download PDF

Info

Publication number
WO2010126175A1
WO2010126175A1 PCT/KR2009/002215 KR2009002215W WO2010126175A1 WO 2010126175 A1 WO2010126175 A1 WO 2010126175A1 KR 2009002215 W KR2009002215 W KR 2009002215W WO 2010126175 A1 WO2010126175 A1 WO 2010126175A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
optical
signal
optical fiber
unit
Prior art date
Application number
PCT/KR2009/002215
Other languages
French (fr)
Korean (ko)
Inventor
이병하
유선영
최해룡
정용민
Original Assignee
광주과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 광주과학기술원 filed Critical 광주과학기술원
Priority to PCT/KR2009/002215 priority Critical patent/WO2010126175A1/en
Publication of WO2010126175A1 publication Critical patent/WO2010126175A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4795Scattering, i.e. diffuse reflection spatially resolved investigating of object in scattering medium
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/45Refractivity; Phase-affecting properties, e.g. optical path length using interferometric methods; using Schlieren methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering

Definitions

  • the present invention relates to a hybrid imaging apparatus capable of acquiring a first image and a second image. More particularly, the present invention relates to a hybrid imaging apparatus capable of acquiring a first image and a second image at the same position of a sample. The present invention relates to a composite imaging device that can be minimized.
  • Optical coherence tomography is an optical coherence tomography (OCT) that collects an image signal reflected from a sample by irradiating a broadband light source with a wavelength bandwidth of several tens of nm or more and analyzes the interference between the collected image signal and the reference stage image signal. It is a device to acquire a tomography image for a sample by using. These include time domain tomography (TD-OCT), frequency domain tomography (FD-OCT) and spectral domain tomography (SD-OCT).
  • TD-OCT time domain tomography
  • FD-OCT frequency domain tomography
  • SD-OCT spectral domain tomography
  • Time-domain tomography is a device that measures the interface of the optical path coincidence by scanning the reference stage, using a broadband light source, a mobile reference stage, a photodiode ( Acquire images using photodiode. High resolution image processing is possible, and high speed image processing is possible by increasing the scanning speed of the reference stage.
  • the frequency domain tomography uses a fixed reference stage, induces interference by frequency using a wide-wavelength wavelength variable laser, and a photodiode ) To acquire the image.
  • the image processing speed is determined by the variable speed of the tunable laser.
  • the spectral domain tomography apparatus SD-OCT uses a fixed reference stage like a frequency domain tomography apparatus FD-OCT, and uses a broadband light source. After the interference signal is separated from the detector by wavelength, an image is acquired by using a spectrometer or a line charged coupled device camera.
  • Fluorescence Spectroscopy means that when a sample is irradiated with a single wavelength light source in the ultraviolet or visible region, part of the irradiated light is absorbed by the sample, and the other part is lost by heat, and then the wavelength is different from that irradiated.
  • the fluorescence signal is generated in the sample.
  • the fluorescence signal is collected by using a spectrometer (spectrometer) to obtain a fluorescence image of the sample.
  • Raman spectroscopy is a device that obtains an image by irradiating a single wavelength light source in the ultraviolet or near infrared region to a sample, and collecting the image signal by Raman scattering from a scattered image signal using a spectrometer to be.
  • the Raman scattering refers to a case in which scattered light having a wavelength shorter or longer than irradiation light is generated, which is a phenomenon caused by a change in the vibration state of molecules in a sample.
  • Multi-photon microscopy is a pulsed laser of picoseconds or femtoseconds whose instantaneous power is much higher than that of a general light source or a continuous laser light source, and induces two- or three-photon nonlinear absorption of the sample.
  • Photomultiplier tubes or CCD cameras are used to collect and image high energy signals with wavelengths shorter than the wavelength of the light source.
  • dyes having excellent secondary or tertiary light absorption are used to induce effective multiphoton absorption.
  • Second Harmonic Generation Microscopy uses nonlinear optical characteristics like multiphoton microscopy, but uses direct secondary nonlinear signal light rather than fluorescence by nonlinear absorption.
  • a much higher picosecond or femtosecond pulsed laser is irradiated onto the sample to acquire an image by collecting a nonlinear second harmonic generated by the asymmetrical alignment of several molecules using a photomultiplier tube or CCD camera. do. It may have the effect of increasing the contrast ratio of a site having a specific structure.
  • Each device has been developed independently, and in order to implement a complex imaging device, a probe manufactured to enable two or more optical image imaging by simply combining devices composed of bulk optical systems or combining bulk elements together Have been used mainly.
  • An object of the present invention is to provide a hybrid imaging apparatus for reducing the size of a probe while simultaneously acquiring a first image and a second image.
  • One embodiment of the hybrid imaging apparatus according to the present invention for achieving the above object of the present invention is to irradiate the first optical signal and the second optical signal to the sample, and to compare the first image signal with the first optical signal.
  • a first image unit generating an image
  • a second image unit emitting the second optical signal, receiving the second image signal, and generating a second image, using the core region of one double cladding optical fiber; Irradiating the first optical signal and the second optical signal to the sample, collecting the first image signal from the sample by using the core region of the one double cladding optical fiber, and the inner cladding region of the one double cladding optical fiber.
  • Received by using a double cladding optical fiber of the may include a light path unit for separating and transmitting the first image portion and the second image portion.
  • the first image unit may include a first light source that emits the first optical signal, a first reference stage that receives the first optical signal and outputs a first reference stage video signal, and the first image signal and the first image signal. It may include a first detector for receiving the first reference stage image signal to generate a first image.
  • the first imaging unit may be any one of a time domain tomography device (TD-OCT), a frequency domain tomography device (FD-OCT), and a spectrum domain tomography device (SD-OCT).
  • TD-OCT time domain tomography device
  • FD-OCT frequency domain tomography device
  • SD-OCT spectrum domain tomography device
  • the second image unit may include a second light source that emits the second optical signal and a second detector that receives the second image signal and generates a second image.
  • the second imaging unit may be any one of a fluorescence spectrophotometer, a Raman spectroscopic imager, a multiphoton microscope, and a second harmonic microscope.
  • the probe is extended through the optical signal expansion unit and the optical signal expansion unit for extending the first optical signal and the second optical signal received from the optical path through the core region of the one double cladding optical fiber It may include a lens unit for focusing the first optical signal and the second optical signal to irradiate the sample.
  • the lens unit may be an optical fiber lens integrally formed with the optical signal expansion unit.
  • the optical fiber lens may be a side reflector formed on one side of the optical fiber and a lens formed on the side facing the one side may be capable of side contrast.
  • the optical path unit transmits the first optical signal and the second optical signal to the probe using the core region of the single double cladding optical fiber, and transmits the first image signal of the single double cladding optical fiber.
  • a complex coupler that transmits the second image signal to the first image unit through a core region and optically couples only the inner cladding region to the second image unit without optically coupling the second image signal to the core region of the single double cladding optical fiber;
  • At least one coupler or a wavelength division multiplexer for optical connection between the first imaging unit, the second imaging unit, and the composite coupler may be included.
  • the one double cladding optical fiber may be one of one double cladding photonic crystal optical fiber and a double cladding plastic optical fiber.
  • the hybrid imaging apparatus can acquire the first image and the second image at the same time. Since the hybrid imaging apparatus uses a double cladding optical fiber, it is possible to simultaneously perform single mode transmission through the core region of the double cladding optical fiber and multimode transmission through the internal cladding region of the dual cladding optical fiber. Therefore, the first optical signal and the second optical signal emitted from the light source can be irradiated at the same position of the sample through the core region of the double cladding optical fiber, and the first image signal reflected from the sample is collected at the core region of the double cladding optical fiber. In addition, since the second image signal generated from the sample may be collected in the inner cladding region of the double cladding optical fiber, not only the probe may be implemented but also may contribute to the miniaturization of the probe.
  • the complex imaging apparatus may be used as an equipment for diagnosing lesions of the retina in an ophthalmology using a tomography image in a first image, and may be used as a fluorescence microscope using a fluorescence spectroscopy image in a second image.
  • the composite imaging device has the advantage that it can measure not only tomographic images of biological samples but also small chemical changes in the samples. Therefore, the composite imaging device can be used as a complex imaging device such as a microscopic endoscope for early diagnosis of tumors or cancers. Will have
  • FIG. 1 is a block diagram for explaining a configuration example of a composite imaging apparatus according to the present invention.
  • FIG. 2 is a graph for explaining a change in refractive index of a double cladding optical fiber that can be used in a composite imaging apparatus according to an exemplary embodiment of the present invention.
  • FIG 3 is a cross-sectional view of a double cladding photonic crystal optical fiber that may be used in the composite imaging apparatus according to the present invention.
  • FIG. 4 is a side cross-sectional view of a composite coupler used in a composite imaging apparatus according to the present invention.
  • FIG. 5 is a front cross-sectional view of a composite coupler used in a composite imaging apparatus according to the present invention.
  • FIG. 6 is a diagram illustrating an example of a composite coupler used in the composite imaging apparatus according to the present invention.
  • FIG. 7 is a near field image of a signal passing through a core region of a complex coupler used in a complex imaging apparatus according to the present invention.
  • FIG. 8 is a near field image of a signal passing through an inner cladding region of a complex coupler used in a complex imaging apparatus according to the present invention.
  • FIG. 10 is a side cross-sectional view illustrating a case in which the lens unit is not integrated with the optical signal extension unit as an embodiment of the probe used in the composite imaging apparatus according to the present invention.
  • FIG. 11 is a side cross-sectional view illustrating an optical fiber lens in which a lens unit is integrated with an optical signal expansion unit, as an embodiment of a probe used in a complex imaging apparatus according to the present invention.
  • FIG. 12 is a side cross-sectional view of a probe capable of side contrast as another embodiment of a probe used in a complex imaging apparatus according to the present invention.
  • FIG. 13 is a graph comparing an operating distance of a probe used in a complex imaging apparatus according to the present invention, and comparing the measured operation distance of a probe without a lens.
  • FIG. 14 is a tomography image of a tomato obtained through the composite imaging apparatus according to the present invention.
  • 15 is a fluorescence spectra of tomatoes obtained through the composite imaging apparatus according to the present invention.
  • FIG. 1 is a block diagram illustrating a configuration example of a hybrid imaging apparatus 100 according to the present invention.
  • the hybrid imaging apparatus 100 may emit the first optical signal from the first image unit 110 and the second optical signal from the second image unit 120. have. Both optical signals may be irradiated onto the sample through the probe 130 via the optical path unit 140.
  • the probe 130 may collect the first image signal reflected from the sample and the second image signal generated from the sample. Both image signals may be input to the first image unit 110 via the optical path unit 140, and the second image signal may be input to the second image unit 120.
  • the first image unit 110 may generate a first image using the input signal
  • the second image unit 120 may generate a second image using the input second image signal.
  • the first imaging unit 110 may be composed of a first light source 111, a first reference stage 112, and a first detector 113.
  • the first light signal may be emitted from the first light source 111, and a part of the emitted light signal may be distributed to the first reference stage 112, and the remaining light signals may be distributed in the sample direction and irradiated onto the sample.
  • the first image signal collected from the sample is input to the first detector 113 through the probe 130 and the optical path unit 140, and the first reference terminal image signal reflected from the first reference terminal 112 is also made of the first image signal. It is input to one detector 113.
  • the first detector 113 measures a signal generated by the interference between the first image signal collected after being reflected from the sample and the first reference terminal image signal reflected by the first reference stage 112 and a series of signal processing procedures.
  • the first image may be generated through.
  • the first imaging unit 110 corresponds to any one of a time domain tomography apparatus (TD-OCT), a frequency domain tomography apparatus (FD-OCT), and a spectrum domain tomography apparatus (SD-OCT).
  • TD-OCT time domain tomography apparatus
  • FD-OCT frequency domain tomography apparatus
  • SD-OCT spectrum domain tomography apparatus
  • a broadband light source is used as the first light source 111
  • a mobile reference end is used as the first reference end 112
  • a photo detector is used as the first detector 113.
  • Diodes can be used.
  • a frequency domain tomography apparatus (FD-OCT) a wideband wavelength variable light source is used as the first light source 111
  • a fixed reference end is used as the first reference end 112
  • the first detector 113 is used.
  • a photodiode may be used.
  • a broadband light source is used as the first light source 111
  • a fixed reference end is used as the first reference end 112
  • the spectrograph is used as the first detector 113.
  • Meter or line CCD cameras are available.
  • the second imaging unit 120 may be composed of a second light source 121 and a second detector 122.
  • the second light signal may be emitted from the second light source 121, and the second light signal may be irradiated onto the sample.
  • the second image signal collected from the sample is input to the second detector 122 via the probe 130 and the optical path unit 140, and the second image is captured by the second detector 122 using the second image signal. Can be generated.
  • the second imaging unit 120 may correspond to any one of a fluorescence spectroscopic imaging apparatus, a Raman spectroscopic imaging apparatus, a multi-photon microscope, and a second harmonic microscope.
  • a fluorescence spectroscopic imaging apparatus a single wavelength light source in the ultraviolet or visible light region may be used as the second light source 121, and a spectrometer may be used as the second detector 122.
  • a Raman spectroscopic imaging apparatus a single wavelength light source in an ultraviolet or near infrared region may be used as the second light source 121, and a spectrometer may be used as the second detector 122.
  • a picosecond or femtosecond laser having a very high instantaneous power is used as the second light source 121 compared to a general light source, and a photomultiplier tube or a CCD camera may be used as the second detector 122.
  • the second light source 121 uses a picosecond or femtosecond laser having a very high instantaneous output compared to a general light source
  • the second detector 122 uses a photomultiplier tube or a CCD camera. Can be.
  • the probe 130 may include an optical signal expansion unit 131 and a lens unit 132.
  • the lens unit 132 may include an optical fiber lens which is integrally formed with the optical signal expansion unit 131. In the case of not integral, the lens unit 132 may be configured as a green lens.
  • the lens unit 132 may be configured as an integrated optical fiber lens capable of front or side imaging.
  • the first optical signal and the second optical signal are widened through the optical signal expansion unit 131, and then irradiated to the sample through a separate lens 132 such as a green lens or an integrated optical fiber lens ( 132 may be focused and irradiated.
  • the first image signal reflected from the sample and the second image signal generated from the sample are collected by a separate lens 132 or an integrated optical fiber lens 132 and input to the double cladding optical fiber through the optical signal expansion unit 131.
  • the first image signal may be mainly collected through the core region of the double cladding optical fiber
  • the second image signal may be mainly collected through the inner cladding region of the double cladding optical fiber.
  • the light path unit 140 may include a composite coupler 141.
  • the first optical signal and the second optical signal are at least one wavelength division multiplexer or single mode coupler 142 and at least one single mode coupler 143 until they reach the composite coupler 141 of the optical path unit 140.
  • the first image signal and the second image signal collected by the probe 130 are respectively distributed in the composite coupler 141,
  • the first image signal may be advanced to the first detector 113 of the first image unit 110, and the second image signal may be advanced to the second detector 122 of the second image unit 120. .
  • connection between the two optical fibers is necessary.
  • the connection can be fused to the optical fusion system 144 or connected through the optical connector 144. If both core sizes are different, a mode stripper may be used so that the first optical signal and the second optical signal can be transmitted only into the core of the double cladding optical fiber.
  • the composite coupler 141 may be manufactured using a double cladding optical fiber, or may be manufactured using a double cladding photonic crystal optical fiber or a double cladding plastic optical fiber.
  • the complex imaging apparatus 100 may use any material that is a target of the first image and the second image as the sample 150.
  • very narrow biological samples such as blood vessels may be used, and in this case, optical images of the inside of the biological sample may be acquired.
  • the first image and the second image of the same position of the sample can be obtained at the same time.
  • FIG. 2 is a graph for explaining a change in refractive index of a double cladding optical fiber that can be used in a composite imaging apparatus according to an exemplary embodiment of the present invention.
  • the dual cladding optical fiber 200 used for the composite coupler 141 and the probe 130 of the optical path unit 140 may include a core region 210, an inner cladding region 220, and an outer cladding region ( 230).
  • the refractive index of the core region is higher than that of the inner cladding and outer cladding regions.
  • the outer cladding region is usually composed of silica, but various materials having a lower refractive index than that of the inner cladding region may be used. Therefore, the polymer having a low refractive index may be coated on the outer cladding region, and air may serve as the outer cladding even when there is no coating material. It may also be used by coating with a highly reflective metal. When a polymer having a low refractive index is coated on the outer cladding region, the polymer may serve as a jacket as well as the outer cladding.
  • FIG 3 is a cross-sectional view of a double cladding photonic crystal optical fiber that may be used in the composite imaging apparatus according to the present invention.
  • a double cladding photonic crystal optical fiber 300 which is a type of double cladding optical fiber, has a plurality of air holes arranged in two layers along the optical fiber, and portions having no air holes are respectively core regions 310.
  • the inner cladding region 320 and the outer cladding region 330 serve.
  • each air hole layer may be composed of one or more layers. Therefore, the composite coupler 141 and the probe 130 may be manufactured using the double cladding photonic crystal optical fiber.
  • FIG. 4 is a side cross-sectional view of the composite coupler used in the composite imaging apparatus according to the present invention
  • FIG. 5 is a front cross-sectional view of the composite coupler used in the composite imaging apparatus according to the present invention.
  • the first image signal reflected from the sample is collected in the core region of the probe 130, and the second image signal generated from the sample is internally clad with the probe 130. Is collected in the area.
  • the two double cladding optical fibers constituting the composite coupler 141 have optical coupling only in the inner cladding region 520 and no optical coupling in the core region 510.
  • the first video signal and the second video signal proceed through the double cladding optical fiber, and the first video signal passes through the core region of the composite coupler, and the second video signal passes through the internal cladding region of the composite coupler. Coupled to be cross ported toward the second detector.
  • Such a composite coupler can be manufactured using a side polishing method. It can also be manufactured by the fused tapering method and the near-field optical coupling method by twisting two double cladding optical fibers.
  • a side polishing method or a melt tensile method may be used, but these methods are complicated and have a disadvantage of using a separate coupling machine.
  • a double cladding optical fiber formed by coating a conventional single-mode optical fiber (SMF) with a polymer in a preferred embodiment of the present invention.
  • SMF single-mode optical fiber
  • the polymer when the outside of the single mode optical fiber is coated with a polymer having a lower refractive index than the cladding material of the single mode optical fiber, the polymer not only serves as a protective jacket but also serves as an external cladding of the optical fiber.
  • the core and inner cladding of the double cladding optical fiber manufactured as described above have the same size as the conventional single mode optical fiber, the coupling loss of the double cladding optical fiber and the single mode optical fiber is very small. If the diameter of the core of the double cladding fiber is smaller than the diameter of the single mode fiber, the internal cladding mode of the double cladding fiber is transferred to the core of the single mode fiber, which causes unwanted peaks in the OCT signal. This problem occurs because the diameter of the core of the conventional double cladding optical fiber is smaller than the core diameter of the single mode optical fiber.
  • the double cladding optical fiber is formed by applying a polymer coating on the outside of the conventional single mode optical fiber as proposed above, the above problems can be solved.
  • Forming the composite coupler 141 using a polymer coated double cladding optical fiber can be performed very simply.
  • FIG. 6 is a diagram illustrating an example of a composite coupler used in the composite imaging apparatus according to the present invention.
  • the outer polymer jacket of the two polymer coated double cladding optical fibers is deleted and twisted together.
  • the composite coupler manufacturing method according to this method is very simple and does not require a separate device.
  • the coupling coupler can be coupled in multiple twists to increase the coupling efficiency.
  • FIG. 7 is a near field image of a signal passing through a core region of the composite coupler 141 used in the composite imaging apparatus according to the present invention
  • FIG. 8 illustrates a composite coupler 141 used in the composite imaging apparatus according to the present invention.
  • the near field image of the signal passing through the internal cladding region is a near field image of the signal passing through the internal cladding region.
  • both image signals of the core region 610 and the cladding region 620 are transmitted to the through port through the near field image.
  • the video signal of the cladding region 720 is transmitted but no video signal is transmitted to the core region 710.
  • the composite coupler 141 manufactured through this can be seen that the optical coupling occurs only in the inner cladding region, not the core region.
  • the measurement result is based on the wavelength of the light source using the optical coupling efficiency of the inner cladding region with respect to the composite coupler 141 using the double cladding optical fiber.
  • Optical coupling efficiency is defined as the ratio of optical coupling to the cross port for the total incident optical power. Looking at the results, it can be seen that a constant optical coupling occurred from 600nm to 800nm. At this time, the optical coupling efficiency was about 18%. Preferably the optical coupling efficiency should be 50%.
  • FIG. 10 is a side cross-sectional view illustrating a case in which the lens unit is not integrated with the optical signal extension unit as an embodiment of the probe 130 used in the complex imaging apparatus according to the present invention.
  • the probe 900 using the double cladding optical fiber may include an optical signal expansion unit 911 and a lens unit 921.
  • the optical signal expansion unit 911 allows the optical signal that has been guided along the core of the double cladding optical fiber to have a sufficient size when it reaches the optical fiber lens unit, and has a coreless silicaless or green lens. Etc. can be formed using a method of bonding to an optical fiber end.
  • the lens unit 921 serves to focus the optical signal extended through the optical signal expansion unit 911 with a proper working distance, and a green lens or the like may be used.
  • FIG. 11 is a side cross-sectional view of an optical fiber lens in which the lens unit is integrated with the optical signal extension unit as an embodiment of the probe 130 used in the composite imaging apparatus according to the present invention.
  • the probe 900 using the double cladding optical fiber may include an optical signal expansion unit 912 and an integrated optical fiber lens unit 922.
  • the optical signal expansion unit 912 extends to have a sufficient size when the optical signal guided along the core of the double cladding optical fiber reaches the optical fiber lens unit, and may be formed as described above.
  • the integrated optical fiber lens unit 922 serves to focus the optical signal extended through the optical signal expansion unit 912 with a proper working distance, and the integrated optical fiber lens unit 922 is a high temperature device using arc discharge, laser, or the like. It can be formed using a method of applying heat or a heterojunction method using a polymer.
  • FIG. 12 is a side cross-sectional view of a probe capable of side contrast as another embodiment of the probe 130 used in the hybrid imaging apparatus according to the present invention.
  • the probe 1000 capable of side illumination may include an optical signal extension 1010, a reflector surface 1020, and a ball lens 1030.
  • a separate silica rod is bonded to any one of a general double cladding optical fiber, a double cladding plastic optical fiber, and a double cladding photonic crystal optical fiber to form an optical signal expansion unit 1010, and then high temperature heat is applied to the ends thereof.
  • the ball lens 1030 is formed by the method.
  • the reflector surface 1020 through a micromachining or polishing method using a laser, the optical fiber probe 1000 capable of side contrast can be manufactured.
  • the optical signal which has been guided along the core of the double cladding optical fiber, is gradually spread from the optical signal expansion unit 1010 and is reflected from the reflector surface 1020 to the side surface, and the optical signal reflected from the reflector surface is applied to the ball lens 1030. It spreads until it meets and then gathers again through the ball lens.
  • FIG. 13 is a graph comparing the working distance of the probe 130 used in the complex imaging apparatus according to the present invention, and comparing the measured working distance of the probe without a lens.
  • the working distance of the manufactured lens was measured by locating a reflecting mirror at the front end of the optical fiber probe lens surface and observing optical power that is returned from the reflecting mirror and recombined into the probe.
  • the optical power decreases rapidly according to the separation distance, but in the case of the lens integrated double cladding optical fiber, the optical power gradually decreases.
  • the separation length where the optical power is half is defined as the operating distance, it can be seen that the operating distance of the manufactured lens-integrated double cladding optical fiber probe is about 2.5 mm.
  • FIG. 14 is a tomography image of a tomato obtained through the composite imaging apparatus according to the present invention
  • FIG. 15 is a fluorescence spectrum of the tomato obtained through the composite imaging apparatus according to the present invention.
  • the composite imaging apparatus according to the present invention could be miniaturized by using a single double cladding fiber optic probe, and thus, there is an advantage in that the above image image can be simultaneously obtained.
  • the composite imaging apparatus capable of acquiring the first image and the second image according to the present invention can be effectively used in an OCT related industry.

Abstract

Disclosed is an apparatus for achieving combined optical images which is able to acquire a 1st image and a 2nd image at the same time and reduce the size of a probe by using a double cladding optical fiber device. A 1st image unit of the apparatus generates the 1st image and emits a 1st optical signal, and a second image unit of the apparatus creates the 2nd image and emits a 2nd optical signal. Both optical signals are irradiated onto a sample from a probe after passing through an optical path unit, and the probe collects the 1st and 2nd image signals generated by both optical signals. The optical path unit distributes the 1st and 2nd image signals to the 1st and 2nd image units respectively by using a multi-coupler. A 1st detector obtains the 1st image, and a 2nd detector acquires the 2nd image. Therefore, the apparatus is able to obtain the 1st and 2nd images simultaneously for the same position of the sample. In addition, the apparatus is variously applicable to small sized devices by minimizing the size of the probe.

Description

이중 클래딩 광섬유 소자를 이용한 복합형 영상장치Hybrid Imaging Device Using Double Cladding Fiber Optic Device
본 발명은 제1영상과 제2영상을 획득할 수 있는 복합형 영상장치에 관한 것으로, 더욱 상세하게는 시료의 동일한 위치에 대하여 제1영상과 제2영상을 동시에 획득할 수 있으며 프로브의 크기를 최소화 할 수 있는 복합형 영상장치에 관한 것이다.The present invention relates to a hybrid imaging apparatus capable of acquiring a first image and a second image. More particularly, the present invention relates to a hybrid imaging apparatus capable of acquiring a first image and a second image at the same position of a sample. The present invention relates to a composite imaging device that can be minimized.
단층영상장치(OCT: Optical Coherence Tomography)란 수십nm 이상의 파장 대역폭을 갖는 광대역 광원을 시료에 조사하여, 시료로부터 반사되어 나오는 영상신호를 수집하고, 수집된 영상신호와 기준단 영상신호 간의 간섭현상을 이용하여 시료에 대한 단층영상을 획득하는 장치이다. 여기에는 시간영역 단층영상장치(TD-OCT: Time Domain OCT), 주파수영역 단층영상장치(FD-OCT: Frequency Domain OCT) 및 스펙트럼영역 단층영상장치(SD-OCT: Spectral Domain OCT) 등이 있다.Optical coherence tomography (OCT) is an optical coherence tomography (OCT) that collects an image signal reflected from a sample by irradiating a broadband light source with a wavelength bandwidth of several tens of nm or more and analyzes the interference between the collected image signal and the reference stage image signal. It is a device to acquire a tomography image for a sample by using. These include time domain tomography (TD-OCT), frequency domain tomography (FD-OCT) and spectral domain tomography (SD-OCT).
시간영역 단층영상장치(TD-OCT)는 기준단의 스캐닝(scanning)을 이용하여 광경로가 일치하는 경계면을 측정하는 장치로서, 광대역 광원을 이용하고, 이동형의 기준단을 이용하고, 포토다이오드(photodiode)를 이용하여 영상을 획득한다. 높은 분해능의 영상처리가 가능하며, 기준단의 스캐닝(scanning) 속도를 높임으로써 고속 영상처리가 가능하다.Time-domain tomography (TD-OCT) is a device that measures the interface of the optical path coincidence by scanning the reference stage, using a broadband light source, a mobile reference stage, a photodiode ( Acquire images using photodiode. High resolution image processing is possible, and high speed image processing is possible by increasing the scanning speed of the reference stage.
주파수영역 단층영상장치(FD-OCT)는 시간영역 단층영상장치(TD-OCT)와는 달리 고정형의 기준단을 이용하고, 광대역의 파장가변 레이저를 이용하여 주파수별 간섭을 유도하며, 포토다이오드(photodiode)를 이용하여 영상을 획득한다. 파장 가변 레이저의 가변 속도에 의해 영상처리 속도가 결정된다.Unlike the time domain tomography (TD-OCT), the frequency domain tomography (FD-OCT) uses a fixed reference stage, induces interference by frequency using a wide-wavelength wavelength variable laser, and a photodiode ) To acquire the image. The image processing speed is determined by the variable speed of the tunable laser.
스펙트럼영역 단층영상장치(SD-OCT)는 주파수영역 단층영상장치(FD-OCT)와 같이 고정형의 기준단을 이용하고, 광대역 광원을 이용한다. 검출기에서 간섭신호를 파장별로 분리한 후 스펙트로미터(spectrometer) 또는 라인CCD카메라(Line Charged Coupled Device Camera)를 이용하여 영상을 획득한다.The spectral domain tomography apparatus SD-OCT uses a fixed reference stage like a frequency domain tomography apparatus FD-OCT, and uses a broadband light source. After the interference signal is separated from the detector by wavelength, an image is acquired by using a spectrometer or a line charged coupled device camera.
형광분광 영상장치(Fluorescence Spectroscopy)란 자외선 또는 가시광선 영역의 단일 파장 광원을 시료에 조사하면, 조사된 광의 일부는 시료에서 흡수되고, 다른 일부는 열로 소실된 후, 조사된 광원과는 다른 파장을 가지는 형광신호가 시료에서 발생하게 되는데, 이 형광신호를 스펙트로미터(spectrometer)를 이용하여 수집하는 것으로 시료에 대한 형광영상을 획득하는 장치이다.Fluorescence Spectroscopy means that when a sample is irradiated with a single wavelength light source in the ultraviolet or visible region, part of the irradiated light is absorbed by the sample, and the other part is lost by heat, and then the wavelength is different from that irradiated. The fluorescence signal is generated in the sample. The fluorescence signal is collected by using a spectrometer (spectrometer) to obtain a fluorescence image of the sample.
라만분광 영상장치(Raman Spectroscopy)란 자외선 또는 근적외선 영역의 단일 파장 광원을 시료에 조사하여, 산란되는 영상신호 중에서 라만산란에 의한 영상신호를 스펙트로미터(spectrometer)를 이용하여 수집하여 영상을 획득하는 장치이다. 여기에서, 라만산란이란 조사광보다 짧거나 긴 파장의 산란광이 발생되는 경우를 말하며, 이는 시료 내 분자의 진동상태의 변화에 의한 현상이다.Raman spectroscopy is a device that obtains an image by irradiating a single wavelength light source in the ultraviolet or near infrared region to a sample, and collecting the image signal by Raman scattering from a scattered image signal using a spectrometer to be. Here, the Raman scattering refers to a case in which scattered light having a wavelength shorter or longer than irradiation light is generated, which is a phenomenon caused by a change in the vibration state of molecules in a sample.
다중 광자 현미경(Multi-Photon Microscopy)이란 순간 출력이 일반 광원이나 연속 레이저 광원보다 훨씬 높은 피코초나 펨토초의 펄스 레이저를 시료에 조사하여, 시료의 2광자 혹은 3광자 비선형 흡수를 유도하고, 광전자증배관 튜브(Photomultiplier Tube) 또는 CCD카메라를 이용하여 광원의 파장보다 짧은 파장의 높은 에너지 신호를 수집하여 영상화 한다. 일반적으로 2차나 3차광 흡수가 뛰어난 염료(dye)를 이용하여 효과적인 다광자 흡수를 유도한다.Multi-photon microscopy is a pulsed laser of picoseconds or femtoseconds whose instantaneous power is much higher than that of a general light source or a continuous laser light source, and induces two- or three-photon nonlinear absorption of the sample, Photomultiplier tubes or CCD cameras are used to collect and image high energy signals with wavelengths shorter than the wavelength of the light source. Generally, dyes having excellent secondary or tertiary light absorption are used to induce effective multiphoton absorption.
2차 조화파 현미경(Second Harmonic Generation Microscopy)이란 다광자 현미경과 같이 비선형 광학 특성을 이용하지만, 비선형 흡수에 의한 형광발광 보다는 직접적인 2차 비선형 신호광을 이용하는 방법으로, 순간 출력이 일반 광원이나 연속 레이저 광원보다 훨씬 높은 피코초나 펨토초의 펄스 레이저를 시료에 조사하여, 광전자증배관 튜브(Photomultiplier Tube) 또는 CCD카메라를 이용하여 여러 분자들의 비대칭적인 정렬에 의해 발생하는 비선형 2차 조화파를 수집하여 영상을 획득한다. 특정 구조를 가진 부위의 명암비율(contrast)을 높이는 효과를 줄 수 있다.Second Harmonic Generation Microscopy uses nonlinear optical characteristics like multiphoton microscopy, but uses direct secondary nonlinear signal light rather than fluorescence by nonlinear absorption. A much higher picosecond or femtosecond pulsed laser is irradiated onto the sample to acquire an image by collecting a nonlinear second harmonic generated by the asymmetrical alignment of several molecules using a photomultiplier tube or CCD camera. do. It may have the effect of increasing the contrast ratio of a site having a specific structure.
각각의 장치는 독자적으로 개발되어 왔으며, 복합형 영상장치를 구현하기 위해서는 벌크 형태의 광학계로 구성된 장치들을 단순 결합하거나 벌크 소자들을 상호 조합하여 두 가지 이상의 광 영상 이미징(imaging)이 가능하도록 제작된 프로브들을 주로 이용하여 왔다.Each device has been developed independently, and in order to implement a complex imaging device, a probe manufactured to enable two or more optical image imaging by simply combining devices composed of bulk optical systems or combining bulk elements together Have been used mainly.
미국 등록 특허 제 6,498,948호의 경우 세 개의 광 영상 시스템을 동시에 구현하기 위해 내시경용 튜브 안에 광 조영을 위한 광학계, 형광 영상 측정을 위한 벌크 광학계와 CCD 카메라(Charge-Coupled Device Camera), 그리고 단층영상 스캐닝 시스템을 동시에 내장시킨 프로브가 제안하였다. 이와 같이 제작된 프로브는 형광분광 영상과 단층영상을 동시에 측정할 수 있는 장점을 가진다. 그러나 각각의 광 영상 시스템이 벌크 소자들을 기반으로 하기 때문에 광 정렬이 매우 복잡할 뿐만 아니라 세 가지 신호를 위한 광학계가 상호 독립적으로 동작해야 하므로 프로브 크기가 커지는 단점을 가진다. 또한 세 가지 광원들을 조사하고 세 가지 서로 다른 신호들을 얻기 위해 서로 다른 채널들을 이용하여야 하기 때문에 샘플의 동일 지점에 대한 세 가지 정보를 동시에 얻는 것이 사실상 불가능하다.In US Patent No. 6,498,948, an optical system for light imaging, a bulk optical system for fluorescence imaging, a charge-coupled device camera, and a tomography imaging system are implemented in an endoscope tube to simultaneously implement three optical imaging systems. Proposed a probe at the same time has been proposed. The probe manufactured as described above has an advantage of simultaneously measuring fluorescence spectroscopy and tomography images. However, since each optical imaging system is based on bulk devices, optical alignment is very complicated and the size of the probe is large because optical systems for three signals must operate independently of each other. In addition, it is virtually impossible to simultaneously obtain three pieces of information about the same point in the sample because three different light sources must be used and different channels must be used to obtain three different signals.
벌크 시스템으로 구성된 기존 복합형 광 영상 장치의 광 정렬의 복잡성 그리고 프로브 크기의 한계성을 극복하고자 Alexandre R. Tumlinson, Jennifer K. Barton등의 논문("Miniature endoscope for simultaneous optical coherence tomography and laser induced fluorescence measurement," Appl. Opt., vol. 43, no. 1. pp. 113-121, 2004)에서는 벌크 소자들을 광섬유들로 대체하고, 측면조영이 가능하도록 광섬유들의 끝단에 소형 벌크 소자인 그린(GRIN) 렌즈와 프리즘을 접속하여 광 정렬의 복잡성을 제거하였다. 그러나 단층영상 이미지를 위해서 프로브의 중앙부에 단일모드 광섬유를 위치시켰고 형광분광 신호를 위해서는 단일 모드 광섬유의 외곽 즉 프로브의 주변부에 다중모드 광섬유 다발을 위치시켰기 때문에, 엄밀히 말해서, 샘플 상의 동일 위치에 대한 단층영상 이미지의 획득과 형광분광 측정을 동시에 할 수는 없다. 또한 여전히 벌크 소자를 이용하며 여러 종류의 광섬유를 단순히 측면으로 나열하여 이용하므로, 역시 프로브 직경을 줄이는데 한계를 가진다.In order to overcome the complexity of the optical alignment and the probe size limitations of existing hybrid optical imaging devices composed of bulk systems, a paper by Alexandre R. Tumlinson, Jennifer K. Barton et al. ("Miniature endoscope for simultaneous optical coherence tomography and laser induced fluorescence measurement, "Appl. Opt., Vol. 43, no. 1. pp. 113-121, 2004) replaces bulk elements with optical fibers, and a small bulk element (GRIN) lens at the ends of the optical fibers to allow side illumination. The prism is connected to eliminate the complexity of the light alignment. However, because the single-mode fiber is placed at the center of the probe for tomographic images and the multi-mode fiber bundle is placed outside the single-mode fiber, i.e. at the periphery of the probe, for fluorescence spectroscopy, strictly speaking, tomographic to the same location on the sample. Acquisition of image images and fluorescence spectroscopy cannot be performed simultaneously. In addition, it still uses a bulk element, and several types of optical fibers are simply arranged side by side, which also limits the size of the probe.
본 발명의 목적은 제1영상과 제2영상을 동시에 획득하면서 프로브의 크기를 감소시키는 복합형 영상장치를 제공하는 것이다.An object of the present invention is to provide a hybrid imaging apparatus for reducing the size of a probe while simultaneously acquiring a first image and a second image.
상술한 본 발명의 목적을 달성하기 위한 본 발명에 따른 복합형 영상장치의 일 실시예는 시료에 제1광신호와 제2광신호를 조사하여, 상기 제1광신호에 의한 제1영상신호와 상기 제2광신호에 의한 제2영상신호를 수집하여 제1영상과 제2영상을 생성하는 복합형 영상장치에 있어서, 상기 제1광신호를 출사하고, 상기 제1영상신호를 입력받아 제1영상을 생성하는 제1영상부, 상기 제2광신호를 출사하고, 상기 제2영상신호를 입력받아 제2영상을 생성하는 제2영상부, 하나의 이중 클래딩 광섬유의 코어영역을 이용하여 상기 제1광신호와 상기 제2광신호를 상기 시료에 조사하고, 상기 시료로부터 상기 하나의 이중 클래딩 광섬유의 코어 영역을 이용하여 상기 제1영상신호를 수집하고, 상기 하나의 이중 클래딩 광섬유의 내부클래딩 영역을 이용하여 상기 제2영상신호를 수집하는 프로브 및 상기 프로브에 상기 제1광신호와 상기 제2광신호를 상기 하나의 이중 클래딩 광섬유를 이용하여 전달하고, 상기 프로브로부터 상기 제1영상신호와 상기 제2영상신호를 상기 하나의 이중 클래딩 광섬유를 이용하여 전달받아 상기 제1영상부와 상기 제2영상부에 분리하여 전달하는 광경로부를 포함할 수 있다.One embodiment of the hybrid imaging apparatus according to the present invention for achieving the above object of the present invention is to irradiate the first optical signal and the second optical signal to the sample, and to compare the first image signal with the first optical signal. A hybrid image device for collecting a second image signal based on the second optical signal to generate a first image and a second image, wherein the first optical signal is emitted and the first image signal is received. A first image unit generating an image, a second image unit emitting the second optical signal, receiving the second image signal, and generating a second image, using the core region of one double cladding optical fiber; Irradiating the first optical signal and the second optical signal to the sample, collecting the first image signal from the sample by using the core region of the one double cladding optical fiber, and the inner cladding region of the one double cladding optical fiber. Using the second spirit A probe collecting a signal and transferring the first optical signal and the second optical signal to the probe using the single double cladding optical fiber, and transmitting the first image signal and the second image signal from the probe; Received by using a double cladding optical fiber of the may include a light path unit for separating and transmitting the first image portion and the second image portion.
여기에서, 상기 제1영상부는 상기 제1광신호를 출사하는 제1광원, 상기 제1광신호를 입력받아 제1기준단영상신호를 출력하는 제1기준단 및 상기 제1영상신호와 상기 제1기준단영상신호를 입력받아 제1영상을 생성하는 제1검출기를 포함할 수 있다.The first image unit may include a first light source that emits the first optical signal, a first reference stage that receives the first optical signal and outputs a first reference stage video signal, and the first image signal and the first image signal. It may include a first detector for receiving the first reference stage image signal to generate a first image.
여기에서, 상기 제1영상부는 시간영역 단층영상장치(TD-OCT), 주파수영역 단층영상장치(FD-OCT) 및 스펙트럼영역 단층영상장치(SD-OCT) 중 어느 하나일 수 있다.The first imaging unit may be any one of a time domain tomography device (TD-OCT), a frequency domain tomography device (FD-OCT), and a spectrum domain tomography device (SD-OCT).
여기에서, 상기 제2영상부는 상기 제2광신호를 출사하는 제2광원 및 상기 제2영상신호를 입력받아 제2영상을 생성하는 제2검출기를 포함할 수 있다.The second image unit may include a second light source that emits the second optical signal and a second detector that receives the second image signal and generates a second image.
여기에서, 상기 제2영상부는 형광분광 영상장치, 라만분광 영상장치, 다중 광자 현미경 및 2차 조화파 현미경 중 어느 하나일 수 있다.The second imaging unit may be any one of a fluorescence spectrophotometer, a Raman spectroscopic imager, a multiphoton microscope, and a second harmonic microscope.
여기에서, 상기 프로브는 상기 광경로부로부터 상기 하나의 이중 클래딩 광섬유의 코어 영역을 통하여 전달받은 상기 제1광신호와 제2광신호를 확장시키는 광신호확장부 및 상기 광신호확장부를 통해 확장된 상기 제1광신호와 제2광신호를 상기 시료에 조사하기 위해 집속시키는 렌즈부를 포함할 수 있다.Here, the probe is extended through the optical signal expansion unit and the optical signal expansion unit for extending the first optical signal and the second optical signal received from the optical path through the core region of the one double cladding optical fiber It may include a lens unit for focusing the first optical signal and the second optical signal to irradiate the sample.
여기에서, 상기 렌즈부는 상기 광신호확장부와 일체형으로 구성되는 광섬유 렌즈일 수 있다.Here, the lens unit may be an optical fiber lens integrally formed with the optical signal expansion unit.
여기에서, 상기 광섬유 렌즈는 광섬유의 일 측면에 형성된 측면 반사체와 상기 일 측면과 마주보는 측면에 형성된 렌즈로 구성되어 측면 조영이 가능한 것일 수 있다.Here, the optical fiber lens may be a side reflector formed on one side of the optical fiber and a lens formed on the side facing the one side may be capable of side contrast.
여기에서, 상기 광경로부는 상기 제1광신호와 상기 제2광신호를 상기 하나의 이중 클래딩 광섬유의 코어 영역을 이용하여 상기 프로브로 전달하고, 상기 제1영상신호를 상기 하나의 이중 클래딩 광섬유의 코어 영역을 통하여 상기 제1영상부로 전달하고, 상기 제2영상신호를 상기 하나의 이중 클래딩 광섬유의 코어 영역과는 광결합시키지 않고 내부 클래딩 영역에만 광결합시켜 상기 제2영상부로 전달하는 복합커플러 및 상기 제1영상부, 상기 제2영상부 및 상기 복합커플러 간의 광 연결을 위한 적어도 하나의 커플러 또는 파장분할다중화기를 포함할 수 있다.Here, the optical path unit transmits the first optical signal and the second optical signal to the probe using the core region of the single double cladding optical fiber, and transmits the first image signal of the single double cladding optical fiber. A complex coupler that transmits the second image signal to the first image unit through a core region and optically couples only the inner cladding region to the second image unit without optically coupling the second image signal to the core region of the single double cladding optical fiber; At least one coupler or a wavelength division multiplexer for optical connection between the first imaging unit, the second imaging unit, and the composite coupler may be included.
여기에서, 상기 하나의 이중 클래딩 광섬유는 하나의 이중 클래딩 광자결정 광섬유 및 이중 클래딩 플라스틱 광섬유 중 어느 하나일 수 있다.Here, the one double cladding optical fiber may be one of one double cladding photonic crystal optical fiber and a double cladding plastic optical fiber.
[발명의 효과][Effects of the Invention]
본 발명에 따른 복합형 영상장치는 제1영상과 제2영상을 동시에 획득할 수 있다. 상기 복합형 영상장치는 이중 클래딩 광섬유를 이용하므로 이중 클래딩 광섬유의 코어 영역을 통해 단일모드 전송과 이중 클래딩 광섬유의 내부클래딩 영역을 통해 다중모드 전송을 동시에 할 수 있다. 따라서 광원에서 출사된 제1광신호와 제2광신호를 이중 클래딩 광섬유의 코어 영역을 통해 시료의 동일 위치에 조사할 수 있고, 시료에서 반사된 제1영상신호는 이중 클래딩 광섬유의 코어 영역에서 수집하고, 시료에서 발생된 제2영상신호는 이중 클래딩 광섬유의 내부클래딩 영역에서 수집할 수 있으므로, 하나의 프로브로 구현이 가능할 뿐만 아니라 프로브의 소형화에도 기여할 수 있다.The hybrid imaging apparatus according to the present invention can acquire the first image and the second image at the same time. Since the hybrid imaging apparatus uses a double cladding optical fiber, it is possible to simultaneously perform single mode transmission through the core region of the double cladding optical fiber and multimode transmission through the internal cladding region of the dual cladding optical fiber. Therefore, the first optical signal and the second optical signal emitted from the light source can be irradiated at the same position of the sample through the core region of the double cladding optical fiber, and the first image signal reflected from the sample is collected at the core region of the double cladding optical fiber. In addition, since the second image signal generated from the sample may be collected in the inner cladding region of the double cladding optical fiber, not only the probe may be implemented but also may contribute to the miniaturization of the probe.
또한, 상기 복합형 영상장치는 제1영상 중의 단층영상을 이용하여 안과에서는 망막의 병변을 진단하기 위한 장비로 이용될 수 있고, 제2영상 중의 형광분광 영상을 이용하여 형광 현미경으로 이용될 수 있다. 더불어, 복합형 영상장치는 생체 시료의 단층영상뿐만 아니라 시료의 미세한 화학적 변화까지도 측정할 수 있다는 장점을 가지고 있으므로 종양이나 암 등의 조기진단을 위한 초소형의 내시경 등의 복합 영상장치로서도 높은 활용 가치를 가질 것이다.In addition, the complex imaging apparatus may be used as an equipment for diagnosing lesions of the retina in an ophthalmology using a tomography image in a first image, and may be used as a fluorescence microscope using a fluorescence spectroscopy image in a second image. . In addition, the composite imaging device has the advantage that it can measure not only tomographic images of biological samples but also small chemical changes in the samples. Therefore, the composite imaging device can be used as a complex imaging device such as a microscopic endoscope for early diagnosis of tumors or cancers. Will have
도 1은 본 발명에 따른 복합형 영상장치의 구성예를 설명하기 위한 블록도이다.1 is a block diagram for explaining a configuration example of a composite imaging apparatus according to the present invention.
도 2는 본 발명에 따른 복합형 영상장치에 이용될 수 있는 이중 클래딩 광섬유의 굴절률 변화를 단면 영역별로 설명하기 위한 그래프이다.FIG. 2 is a graph for explaining a change in refractive index of a double cladding optical fiber that can be used in a composite imaging apparatus according to an exemplary embodiment of the present invention.
도 3은 본 발명에 따른 복합형 영상장치에 이용될 수 있는 이중 클래딩 광자결정 광섬유의 단면도이다.3 is a cross-sectional view of a double cladding photonic crystal optical fiber that may be used in the composite imaging apparatus according to the present invention.
도 4는 본 발명에 따른 복합형 영상장치에 이용되는 복합커플러의 측면 단면도이다.4 is a side cross-sectional view of a composite coupler used in a composite imaging apparatus according to the present invention.
도 5는 본 발명에 따른 복합형 영상장치에 이용되는 복합커플러의 정면 단면도이다.5 is a front cross-sectional view of a composite coupler used in a composite imaging apparatus according to the present invention.
도 6은 본 발명에 따른 복합형 영상 장치에 이용되는 복합 커플러의 일례를 도시한 도면이다. 6 is a diagram illustrating an example of a composite coupler used in the composite imaging apparatus according to the present invention.
도 7은 본 발명에 따른 복합형 영상장치에 이용되는 복합커플러의 코어 영역을 통과한 신호의 근접장 이미지이다.7 is a near field image of a signal passing through a core region of a complex coupler used in a complex imaging apparatus according to the present invention.
도 8은 본 발명에 따른 복합형 영상장치에 이용되는 복합커플러의 내부클래딩 영역을 통과한 신호의 근접장 이미지이다.8 is a near field image of a signal passing through an inner cladding region of a complex coupler used in a complex imaging apparatus according to the present invention.
도 9는 본 발명에 따른 복합형 영상장치에 이용되는 복합커플러의 파장에 따른 광결합 효율을 실험적으로 측정한 그래프이다.9 is a graph experimentally measuring the optical coupling efficiency according to the wavelength of the composite coupler used in the composite imaging apparatus according to the present invention.
도 10은 본 발명에 따른 복합형 영상장치에 이용되는 프로브의 일 실시예로 렌즈부가 광신호확장부와 일체형이 아닌 경우를 도시한 측면 단면도이다.FIG. 10 is a side cross-sectional view illustrating a case in which the lens unit is not integrated with the optical signal extension unit as an embodiment of the probe used in the composite imaging apparatus according to the present invention.
도 11은 본 발명에 따른 복합형 영상장치에 이용되는 프로브의 일 실시예로 렌즈부가 광신호확장부와 일체형인 광섬유 렌즈를 도시한 측면 단면도이다.FIG. 11 is a side cross-sectional view illustrating an optical fiber lens in which a lens unit is integrated with an optical signal expansion unit, as an embodiment of a probe used in a complex imaging apparatus according to the present invention.
도 12는 본 발명에 따른 복합형 영상장치에 이용되는 프로브의 다른 실시예로 측면 조영이 가능한 프로브의 측면 단면도이다.12 is a side cross-sectional view of a probe capable of side contrast as another embodiment of a probe used in a complex imaging apparatus according to the present invention.
도 13은 본 발명에 따른 복합형 영상장치에 이용되는 프로브의 작동거리를 측정한 것으로, 렌즈가 없는 프로브의 작동거리 측정값과 비교한 그래프이다.FIG. 13 is a graph comparing an operating distance of a probe used in a complex imaging apparatus according to the present invention, and comparing the measured operation distance of a probe without a lens.
도 14는 본 발명에 따른 복합 영상장치를 통해 획득한 토마토의 단층영상 이미지이다.14 is a tomography image of a tomato obtained through the composite imaging apparatus according to the present invention.
도 15는 본 발명에 따른 복합 영상장치를 통해 획득한 토마토의 형광분광 스펙트럼이다.15 is a fluorescence spectra of tomatoes obtained through the composite imaging apparatus according to the present invention.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.As the inventive concept allows for various changes and numerous embodiments, particular embodiments will be illustrated in the drawings and described in detail in the text. However, this is not intended to limit the present invention to a specific disclosed form, it should be understood to include all modifications, equivalents, and substitutes included in the spirit and scope of the present invention.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Unless defined otherwise, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art. Terms such as those defined in the commonly used dictionaries should be construed as having meanings consistent with the meanings in the context of the related art, and are not construed in ideal or excessively formal meanings unless expressly defined in this application. Do not.
이하, 첨부한 도면들을 참조하여, 본 발명의 바람직한 실시예를 보다 상세하게 설명하고자 한다.Hereinafter, with reference to the accompanying drawings, it will be described in detail a preferred embodiment of the present invention.
도 1은 본 발명에 따른 복합형 영상장치(100)의 구성예를 설명하기 위한 블록도이다.1 is a block diagram illustrating a configuration example of a hybrid imaging apparatus 100 according to the present invention.
도 1을 참조하면, 본 발명에 따른 복합형 영상장치(100)는 제1영상부(110)에서 제1광신호를 출사하고, 제2영상부(120)에서 제2광신호를 출사할 수 있다. 상기 양자의 광신호는 광경로부(140)를 거쳐 프로브(130)를 통해 시료에 조사될 수 있다. 상기 프로브(130)에서는 시료에서 반사된 제1영상신호와 시료에서 발생된 제2영상신호를 수집할 수 있다. 상기 양자의 영상신호는 광경로부(140)를 거쳐 제1영상신호는 제1영상부(110)로 입력되고, 제2영상신호는 제2영상부(120)로 입력될 수 있다. 제1영상부(110)는 입력된 신호를 이용하여 제1영상을 생성하고, 제2영상부(120)는 입력된 제2영상신호를 이용하여 제2영상을 생성할 수 있다.Referring to FIG. 1, the hybrid imaging apparatus 100 according to the present invention may emit the first optical signal from the first image unit 110 and the second optical signal from the second image unit 120. have. Both optical signals may be irradiated onto the sample through the probe 130 via the optical path unit 140. The probe 130 may collect the first image signal reflected from the sample and the second image signal generated from the sample. Both image signals may be input to the first image unit 110 via the optical path unit 140, and the second image signal may be input to the second image unit 120. The first image unit 110 may generate a first image using the input signal, and the second image unit 120 may generate a second image using the input second image signal.
제1영상부(110)는 제1광원(111), 제1기준단(112) 및 제1검출기(113)로 구성될 수 있다. 제1광원(111)에서 제1광신호를 출사하고, 출사된 광신호의 일부는 제1기준단(112)으로 분배되고, 나머지 광신호는 시료방향으로 분배되어 시료에 조사될 수 있다. 시료에서 수집된 제1영상신호는 프로브(130)와 광경로부(140)를 거쳐 제1검출기(113)로 입력되며, 제1기준단(112)에서 반사된 제1기준단영상신호도 제1검출기(113)로 입력된다. 제1검출기(113)는 시료에서 반사된 후 수집된 제1영상신호와 제1기준단(112)에서 반사된 제1기준단영상신호 간의 간섭에 의해 발생한 신호를 측정하게 되며 일련의 신호처리 과정을 거쳐 제1영상을 생성할 수 있다.The first imaging unit 110 may be composed of a first light source 111, a first reference stage 112, and a first detector 113. The first light signal may be emitted from the first light source 111, and a part of the emitted light signal may be distributed to the first reference stage 112, and the remaining light signals may be distributed in the sample direction and irradiated onto the sample. The first image signal collected from the sample is input to the first detector 113 through the probe 130 and the optical path unit 140, and the first reference terminal image signal reflected from the first reference terminal 112 is also made of the first image signal. It is input to one detector 113. The first detector 113 measures a signal generated by the interference between the first image signal collected after being reflected from the sample and the first reference terminal image signal reflected by the first reference stage 112 and a series of signal processing procedures. The first image may be generated through.
예를 들면, 상기 제1영상부(110)는 시간영역 단층영상장치(TD-OCT), 주파수영역 단층영상장치(FD-OCT) 및 스펙트럼영역 단층영상장치(SD-OCT) 중 어느 하나에 해당될 수 있다. 시간영역 단층영상장치(TD-OCT)의 경우에는, 제1광원(111)으로 광대역 광원을 이용하고, 제1기준단(112)으로 이동형 기준단을 이용하며, 제1검출기(113)로는 포토다이오드를 이용할 수 있다. 주파수영역 단층영상장치(FD-OCT)의 경우에는, 제1광원(111)으로 광대역 파장 가변 광원을 이용하고, 제1기준단(112)으로 고정형 기준단을 이용하며, 제1검출기(113)로는 포토다이오드를 이용할 수 있다. 스펙트럼영역 단층영상장치(SD-OCT)의 경우에는, 제1광원(111)으로 광대역 광원을 이용하고, 제1기준단(112)으로 고정형 기준단을 이용하며, 제1검출기(113)로는 스펙트로미터 또는 라인CCD카메라를 이용할 수 있다.For example, the first imaging unit 110 corresponds to any one of a time domain tomography apparatus (TD-OCT), a frequency domain tomography apparatus (FD-OCT), and a spectrum domain tomography apparatus (SD-OCT). Can be. In case of the TD-OCT, a broadband light source is used as the first light source 111, a mobile reference end is used as the first reference end 112, and a photo detector is used as the first detector 113. Diodes can be used. In the case of a frequency domain tomography apparatus (FD-OCT), a wideband wavelength variable light source is used as the first light source 111, a fixed reference end is used as the first reference end 112, and the first detector 113 is used. As the photodiode, a photodiode may be used. In the case of the spectral region tomography apparatus (SD-OCT), a broadband light source is used as the first light source 111, a fixed reference end is used as the first reference end 112, and the spectrograph is used as the first detector 113. Meter or line CCD cameras are available.
제2영상부(120)는 제2광원(121)과 제2검출기(122)로 구성될 수 있다. 제2광원(121)에서 제2광신호를 출사하고, 출사된 제2광신호는 시료에 조사될 수 있다. 시료에서 수집된 제2영상신호는 프로브(130)와 광경로부(140)를 거쳐 제2검출기(122)로 입력되고, 제2검출기(122)에서 제2영상신호를 이용하여 제2영상을 생성할 수 있다.The second imaging unit 120 may be composed of a second light source 121 and a second detector 122. The second light signal may be emitted from the second light source 121, and the second light signal may be irradiated onto the sample. The second image signal collected from the sample is input to the second detector 122 via the probe 130 and the optical path unit 140, and the second image is captured by the second detector 122 using the second image signal. Can be generated.
예를 들면, 상기 제2영상부(120)는 형광분광 영상장치, 라만분광 영상장치, 다중 광자 현미경 및 2차 조화파 현미경 중의 어느 하나에 해당될 수 있다. 형광분광 영상장치의 경우에는, 제2광원(121)으로 자외선 또는 가시광선 영역의 단일 파장 광원을 이용하며, 제2검출기(122)로는 스펙트로미터를 이용할 수 있다. 라만분광 영상장치의 경우에는, 제2광원(121)으로 자외선 또는 근적외선 영역의 단일 파장 광원을 이용하며, 제2검출기(122)로는 스펙트로미터를 이용할 수 있다. 다중 광자 현미경의 경우에는, 제2광원(121)으로 순간 출력이 일반 광원에 비해 매우 높은 피코초 또는 펨토초 레이저를 이용하며, 제2검출기(122)로는 포토멀티플라이어 튜브 또는 CCD카메라를 이용할 수 있다. 2차 조화파 현미경의 경우에는, 제2광원(121)으로 순간 출력이 일반 광원에 비해 매우 높은 피코초 또는 펨토초 레이저를 이용하며, 제2검출기(122)로는 포토멀티플라이어 튜브 또는 CCD카메라를 이용할 수 있다.For example, the second imaging unit 120 may correspond to any one of a fluorescence spectroscopic imaging apparatus, a Raman spectroscopic imaging apparatus, a multi-photon microscope, and a second harmonic microscope. In the case of a fluorescence spectroscopic imaging apparatus, a single wavelength light source in the ultraviolet or visible light region may be used as the second light source 121, and a spectrometer may be used as the second detector 122. In the case of a Raman spectroscopic imaging apparatus, a single wavelength light source in an ultraviolet or near infrared region may be used as the second light source 121, and a spectrometer may be used as the second detector 122. In the case of a multi-photon microscope, a picosecond or femtosecond laser having a very high instantaneous power is used as the second light source 121 compared to a general light source, and a photomultiplier tube or a CCD camera may be used as the second detector 122. . In the case of the second harmonic microscope, the second light source 121 uses a picosecond or femtosecond laser having a very high instantaneous output compared to a general light source, and the second detector 122 uses a photomultiplier tube or a CCD camera. Can be.
프로브(130)는 광신호확장부(131)와 렌즈부(132)로 구성될 수 있다. 상기 렌즈부(132)는 광신호확장부(131)와 일체형으로 구성되는 광섬유 렌즈를 포함하여 구성될 수 있다. 일체형이 아닌 경우에 렌즈부(132)는 그린 렌즈로 구성될 수 있다. 상기 렌즈부(132)는 정면 또는 측면 조영이 가능한 일체형 광섬유 렌즈로 구성 될 수 있다.The probe 130 may include an optical signal expansion unit 131 and a lens unit 132. The lens unit 132 may include an optical fiber lens which is integrally formed with the optical signal expansion unit 131. In the case of not integral, the lens unit 132 may be configured as a green lens. The lens unit 132 may be configured as an integrated optical fiber lens capable of front or side imaging.
예를 들면, 상기 제1광신호와 제2광신호는 광신호확장부(131)를 통해서 넓게 확장된 후에 그린 렌즈 등의 별도의 렌즈(132)를 통과하여 시료에 조사되거나, 일체형 광섬유 렌즈(132)를 통해 집속되어 조사될 수 있다. 시료에서 반사된 제1영상신호와 시료에서 발생된 제2영상신호는 별도의 렌즈(132) 또는 일체형 광섬유 렌즈(132)에서 수집되며, 광신호확장부(131)를 통해 이중 클래딩 광섬유로 입력될 수 있다. 이 경우에 상기 제1영상신호는 이중 클래딩 광섬유의 코어 영역을 통하여 주로 수집되고, 상기 제2영상신호는 이중 클래딩 광섬유의 내부클래딩 영역을 통하여 주로 수집될 수 있다.For example, the first optical signal and the second optical signal are widened through the optical signal expansion unit 131, and then irradiated to the sample through a separate lens 132 such as a green lens or an integrated optical fiber lens ( 132 may be focused and irradiated. The first image signal reflected from the sample and the second image signal generated from the sample are collected by a separate lens 132 or an integrated optical fiber lens 132 and input to the double cladding optical fiber through the optical signal expansion unit 131. Can be. In this case, the first image signal may be mainly collected through the core region of the double cladding optical fiber, and the second image signal may be mainly collected through the inner cladding region of the double cladding optical fiber.
광경로부(140)는 복합커플러(141)를 포함하여 구성될 수 있다. 상기 제1광신호와 제2광신호는 광경로부(140)의 복합커플러(141)에 도달하기까지 적어도 하나의 파장분할다중화기 또는 단일모드 커플러(142)와 적어도 하나의 단일모드 커플러(143)를 거친 후에 복합커플러(141)를 지나서 상기 프로브(130)로 진행하고, 상기 프로브(130)에서 수집된 제1영상신호와 제2영상신호는 복합커플러(141)에서 각각 분배된 후, 제1영상신호는 제1영상부(110)의 제1검출기(113)로 진행하도록 할 수 있으며, 제2영상신호는 제2영상부(120)의 제2검출기(122)로 진행하도록 할 수 있다.The light path unit 140 may include a composite coupler 141. The first optical signal and the second optical signal are at least one wavelength division multiplexer or single mode coupler 142 and at least one single mode coupler 143 until they reach the composite coupler 141 of the optical path unit 140. After passing through the multiple coupler 141 and proceeds to the probe 130, the first image signal and the second image signal collected by the probe 130 are respectively distributed in the composite coupler 141, The first image signal may be advanced to the first detector 113 of the first image unit 110, and the second image signal may be advanced to the second detector 122 of the second image unit 120. .
상기 제1광신호와 제2광신호는 광경로부의 복합커플러(141)에 도달하기까지의 광경로 중에 이중 클래딩 광섬유와 종류가 다른 광섬유가 이용된 경우에는 양자의 접속이 필요하여, 이 경우에 접속은 광융착 시스템(144)으로 융착하거나 광커넥터(144)를 통해 접속시킬 수 있다. 양자의 코어 크기가 서로 다른 경우에는 제1광신호와 제2광신호가 이중 클래딩 광섬유의 코어 안으로만 전송될 수 있도록 모드 제거기(mode stripper)를 이용할 수 있다.When the first optical signal and the second optical signal are different from the double cladding optical fiber in the optical path until the composite coupler 141 reaches the optical path part, the connection between the two optical fibers is necessary. The connection can be fused to the optical fusion system 144 or connected through the optical connector 144. If both core sizes are different, a mode stripper may be used so that the first optical signal and the second optical signal can be transmitted only into the core of the double cladding optical fiber.
상기 복합커플러(141)는 이중 클래딩 광섬유를 이용하여 제작될 수 있으며, 또한 이중 클래딩 광자결정 광섬유 또는 이중 클래딩 플라스틱 광섬유를 이용하여 제작될 수 있다.The composite coupler 141 may be manufactured using a double cladding optical fiber, or may be manufactured using a double cladding photonic crystal optical fiber or a double cladding plastic optical fiber.
본 발명에 따른 복합형 영상장치(100)는 제1영상과 제2영상의 대상이 되는 물질이면 어느 것이나 시료(150)로 이용할 수 있다. 특히 혈관과 같이 매우 협소한 생체시료를 이용할 수도 있으며, 이 경우에는 생체시료의 내부에 대한 광학적 영상 획득도 가능하다.The complex imaging apparatus 100 according to the present invention may use any material that is a target of the first image and the second image as the sample 150. In particular, very narrow biological samples such as blood vessels may be used, and in this case, optical images of the inside of the biological sample may be acquired.
상기와 같은 과정에 의하여 시료의 동일위치에 대한 제1영상과 제2영상을 동시에 획득할 수 있다.By the above process, the first image and the second image of the same position of the sample can be obtained at the same time.
도 2는 본 발명에 따른 복합형 영상장치에 이용될 수 있는 이중 클래딩 광섬유의 굴절률 변화를 단면 영역별로 설명하기 위한 그래프이다.FIG. 2 is a graph for explaining a change in refractive index of a double cladding optical fiber that can be used in a composite imaging apparatus according to an exemplary embodiment of the present invention.
도 2를 참조하면, 광경로부(140)의 복합커플러(141)와 프로브(130)에 이용되는 이중 클래딩 광섬유(200)는 코어 영역(210), 내부클래딩 영역(220) 및 외부클래딩 영역(230)으로 구성된다. 굴절률 분포 그래프에서 코어 영역의 굴절률은 내부클래딩 및 외부클래딩 영역의 굴절률보다 높다. 외부클래딩 영역은 보통 실리카로 구성되지만, 내부클래딩 영역의 굴절률보다 굴절률이 낮은 여러 가지 물질을 이용할 수 있다. 따라서 외부클래딩 영역에 굴절률이 낮은 폴리머를 코팅하여 사용할 수 있으며, 코팅 물질이 없는 경우에도 공기가 외부클래딩 역할을 할 수 있다. 또한 반사도가 높은 금속으로 코팅하여 사용할 수도 있다. 외부클래딩 영역에 굴절률이 낮은 폴리머를 코팅하여 사용하는 경우에 폴리머는 외부클래딩의 역할과 더불어 재킷의 역할도 할 수 있게 된다.Referring to FIG. 2, the dual cladding optical fiber 200 used for the composite coupler 141 and the probe 130 of the optical path unit 140 may include a core region 210, an inner cladding region 220, and an outer cladding region ( 230). In the refractive index distribution graph, the refractive index of the core region is higher than that of the inner cladding and outer cladding regions. The outer cladding region is usually composed of silica, but various materials having a lower refractive index than that of the inner cladding region may be used. Therefore, the polymer having a low refractive index may be coated on the outer cladding region, and air may serve as the outer cladding even when there is no coating material. It may also be used by coating with a highly reflective metal. When a polymer having a low refractive index is coated on the outer cladding region, the polymer may serve as a jacket as well as the outer cladding.
도 3은 본 발명에 따른 복합형 영상장치에 이용될 수 있는 이중 클래딩 광자결정 광섬유의 단면도이다.3 is a cross-sectional view of a double cladding photonic crystal optical fiber that may be used in the composite imaging apparatus according to the present invention.
도 3을 참조하면, 이중 클래딩 광섬유의 한 종류인 이중 클래딩 광자결정 광섬유(300)는 광섬유를 따라 다수의 공기구멍들이 두 개의 층으로 배열되어 있고, 공기구멍이 없는 부분들이 각각 코어 영역(310), 내부클래딩 영역(320) 및 외부클래딩 영역(330)의 역할을 한다. 이때, 각각의 공기구멍 층들은 한 층 또는 그 이상의 층으로 구성될 수 있다. 따라서 이중 클래딩 광자결정 광섬유를 이용하여 복합커플러(141)와 프로브(130)를 제작할 수 있다.Referring to FIG. 3, a double cladding photonic crystal optical fiber 300, which is a type of double cladding optical fiber, has a plurality of air holes arranged in two layers along the optical fiber, and portions having no air holes are respectively core regions 310. In addition, the inner cladding region 320 and the outer cladding region 330 serve. At this time, each air hole layer may be composed of one or more layers. Therefore, the composite coupler 141 and the probe 130 may be manufactured using the double cladding photonic crystal optical fiber.
도 4는 본 발명에 따른 복합형 영상장치에 이용되는 복합커플러의 측면 단면도이고, 도 5는 본 발명에 따른 복합형 영상장치에 이용되는 복합커플러의 정면 단면도이다.4 is a side cross-sectional view of the composite coupler used in the composite imaging apparatus according to the present invention, and FIG. 5 is a front cross-sectional view of the composite coupler used in the composite imaging apparatus according to the present invention.
도 4와 도 5를 병행하여 참조하면, 시료(sample)에서 반사된 제1영상신호는 프로브(130)의 코어 영역에서 수집되고, 시료에서 발생된 제2영상신호는 프로브(130)의 내부클래딩 영역에서 수집된다. 복합커플러(141)를 구성하는 두 개의 이중 클래딩 광섬유는 내부클래딩 영역(520)에서만 광결합이 있고, 코어 영역(510)에서는 광결합이 없는 특징이 있다.4 and 5, the first image signal reflected from the sample is collected in the core region of the probe 130, and the second image signal generated from the sample is internally clad with the probe 130. Is collected in the area. The two double cladding optical fibers constituting the composite coupler 141 have optical coupling only in the inner cladding region 520 and no optical coupling in the core region 510.
제1영상신호와 제2영상신호는 이중 클래딩 광섬유를 통해 진행하다가 제1영상신호는 복합커플러의 코어 영역을 통해서 통과(through port)하게 되고, 제2영상신호는 복합커플러의 내부클래딩 영역에서 광결합되어 제2검출기 방향으로 전달(cross port)되게 된다.The first video signal and the second video signal proceed through the double cladding optical fiber, and the first video signal passes through the core region of the composite coupler, and the second video signal passes through the internal cladding region of the composite coupler. Coupled to be cross ported toward the second detector.
위와 같은 복합커플러는 측면 연마 방법(side polishing method)을 이용하여 제작할 수 있다. 또한 용융 인장 방법(fused tapering method)과 두 개의 이중 클래딩 광섬유를 꼬아서 만드는 근접장 광결합 방법에 의해서도 제작할 수 있다.Such a composite coupler can be manufactured using a side polishing method. It can also be manufactured by the fused tapering method and the near-field optical coupling method by twisting two double cladding optical fibers.
복합 커플러를 구성함에 있어서 측면 연마 방법 또는 용융 인장 방법을 사용할 수 있으나 상기 방법들은 복잡할 뿐더러 별도의 커플링 기계를 사용하여야 하는 단점이 있다. 이러한 문제점을 해결하기 위하여, 본 발명의 실시에 있어서 바람직한 일 실시 형태로 통상적인 단일모드 광섬유(SMF)를 폴리머로 코팅하여 형성된 이중 클래딩 광섬유를 사용할 수 있다. 전술한 바와 같이 단일모드 광섬유의 외부를 단일모드 광섬유의 클래딩 재질보다 굴절률이 낮은 폴리머로 코팅하게 되면, 상기 폴리머는 보호 자켓의 역할을 할 뿐만 아니라 광섬유의 외부 클래딩으로서의 역할을 수행한다. 이렇게 제작된 이중 클래딩 광섬유의 코어와 내부 클래딩의 크기는 통상적인 단일모드 광섬유와 동일하게 되므로, 이중 클래딩 광섬유와 단일모드 광섬유의 커플링 손실은 매우 작게 된다. 만약 이중 클래딩 광섬유의 코어의 지름이 단일모드 광섬유의 지름보다 작은 경우에는 이중 클래딩 광섬유의 내부 클래딩 모드가 단일모드 광섬유의 코어로 전달되는 문제점이 발생하게 되어 OCT 신호에 원치 않는 피크를 발생시킨다. 이러한 문제점은 통상적인 이중 클래딩 광섬유의 코어의 지름이 단일모드 광섬유의 코어 지름보다 작게 형성되었기에 발생하였던 것이다. In the construction of the composite coupler, a side polishing method or a melt tensile method may be used, but these methods are complicated and have a disadvantage of using a separate coupling machine. In order to solve this problem, it is possible to use a double cladding optical fiber formed by coating a conventional single-mode optical fiber (SMF) with a polymer in a preferred embodiment of the present invention. As described above, when the outside of the single mode optical fiber is coated with a polymer having a lower refractive index than the cladding material of the single mode optical fiber, the polymer not only serves as a protective jacket but also serves as an external cladding of the optical fiber. Since the core and inner cladding of the double cladding optical fiber manufactured as described above have the same size as the conventional single mode optical fiber, the coupling loss of the double cladding optical fiber and the single mode optical fiber is very small. If the diameter of the core of the double cladding fiber is smaller than the diameter of the single mode fiber, the internal cladding mode of the double cladding fiber is transferred to the core of the single mode fiber, which causes unwanted peaks in the OCT signal. This problem occurs because the diameter of the core of the conventional double cladding optical fiber is smaller than the core diameter of the single mode optical fiber.
그러나, 위에서 제안한 바와 같이 통상적인 단일모드 광섬유의 외부에 폴리머 코팅을 함으로써 이중 클래딩 광섬유를 형성하면 상기와 같은 문제점을 해소할 수 있게 된다. However, if the double cladding optical fiber is formed by applying a polymer coating on the outside of the conventional single mode optical fiber as proposed above, the above problems can be solved.
폴리머 코팅된 이중 클래딩 광섬유를 사용하여 복합 커플러(141)를 형성하는 것은 매우 간단하게 수행될 수 있다. Forming the composite coupler 141 using a polymer coated double cladding optical fiber can be performed very simply.
도 6은 본 발명에 따른 복합형 영상 장치에 이용되는 복합 커플러의 일례를 도시한 도면이다. 6 is a diagram illustrating an example of a composite coupler used in the composite imaging apparatus according to the present invention.
도 6에 따르면, 이중 클래딩 광섬유의 내부 클래딩을 접합시켜 복합 커플러를 형성함에 있어서, 두 개의 폴리머 코팅된 이중 클래딩 광섬유의 외부 폴리머 재킷을 삭제한 후 서로 꼬와서 연결한다. 이러한 방식에 따른 복합 커플러 제작 방법은 매우 간단할 뿐만 아니라 별도의 장치를 필요로 하지 않는다. 또한, 복합 커플러가 다수의 꼬임으로 연결되므로 커플링 효율을 증가시킬 수 있다는 장점이 있게 된다. According to FIG. 6, in joining the inner cladding of the double cladding optical fiber to form a composite coupler, the outer polymer jacket of the two polymer coated double cladding optical fibers is deleted and twisted together. The composite coupler manufacturing method according to this method is very simple and does not require a separate device. In addition, there is an advantage that the coupling coupler can be coupled in multiple twists to increase the coupling efficiency.
도 7은 본 발명에 따른 복합형 영상장치에 이용되는 복합커플러(141)의 코어 영역을 통과한 신호의 근접장 이미지이고, 도 8은 본 발명에 따른 복합형 영상장치에 이용되는 복합커플러(141)의 내부클래딩 영역을 통과한 신호의 근접장 이미지이다.7 is a near field image of a signal passing through a core region of the composite coupler 141 used in the composite imaging apparatus according to the present invention, and FIG. 8 illustrates a composite coupler 141 used in the composite imaging apparatus according to the present invention. The near field image of the signal passing through the internal cladding region.
도 7과 도8을 병행하여 참조하면, 근접장 이미지를 통해 through port로는 코어 영역(610)과 클래딩 영역(620)의 영상신호가 모두 전송되는 것을 알 수 있다. 그러나 cross port로 전송된 신호의 근접장 이미지를 살펴보면 클래딩 영역(720)의 영상신호는 전송이 되지만 코어 영역(710)으로 전송되는 영상신호는 없음을 알 수 있다. 이것을 통해 제작된 복합커플러(141)는 코어 영역이 아닌 내부클래딩 영역에서만 광결합이 일어나는 것을 알 수 있다.Referring to FIG. 7 and FIG. 8, it can be seen that both image signals of the core region 610 and the cladding region 620 are transmitted to the through port through the near field image. However, when looking at the near field image of the signal transmitted to the cross port, it can be seen that the video signal of the cladding region 720 is transmitted but no video signal is transmitted to the core region 710. The composite coupler 141 manufactured through this can be seen that the optical coupling occurs only in the inner cladding region, not the core region.
도 9는 본 발명에 따른 복합형 영상장치에 이용되는 복합커플러의 파장에 따른 광결합 효율을 실험적으로 측정한 그래프이다.9 is a graph experimentally measuring the optical coupling efficiency according to the wavelength of the composite coupler used in the composite imaging apparatus according to the present invention.
도 9를 참조하면, 이중 클래딩 광섬유를 이용한 복합커플러(141)에 대한 내부클래딩 영역의 광결합 효율을 사용한 광원의 파장에 따라 측정한 결과이다. 광결합 효율은 총 입사 광파워에 대하여 cross port로 광결합이 일어난 비율로서 정의된다. 결과를 살펴보면 600nm에서 800nm까지 일정한 광결합이 일어났음을 알 수 있다. 이때 광결합 효율은 약 18%였다. 바람직하게는 광결합 효율이 50%가 되어야 할 것이다.Referring to FIG. 9, the measurement result is based on the wavelength of the light source using the optical coupling efficiency of the inner cladding region with respect to the composite coupler 141 using the double cladding optical fiber. Optical coupling efficiency is defined as the ratio of optical coupling to the cross port for the total incident optical power. Looking at the results, it can be seen that a constant optical coupling occurred from 600nm to 800nm. At this time, the optical coupling efficiency was about 18%. Preferably the optical coupling efficiency should be 50%.
도 10은 본 발명에 따른 복합형 영상장치에 이용되는 프로브(130)의 일 실시예로 렌즈부가 광신호확장부와 일체형이 아닌 경우를 도시한 측면 단면도이다.FIG. 10 is a side cross-sectional view illustrating a case in which the lens unit is not integrated with the optical signal extension unit as an embodiment of the probe 130 used in the complex imaging apparatus according to the present invention.
도 10을 참조하면, 이중 클래딩 광섬유를 이용한 프로브(900)는 광신호확장부(911)와 렌즈부(921)로 구성될 수 있다. 광신호확장부(911)는 이중 클래딩 광섬유의 코어를 따라 도파되어 오던 광신호가 광섬유 렌즈부에 도달 할 때 충분한 크기를 갖도록 확장되게 하며, 코어가 없는 실리카 라드(coreless fiber) 혹은 그린(GRIN) 렌즈 등을 광섬유 끝단에 접합하여 주는 방법을 사용하여 형성할 수 있다. 렌즈부(921)는 광신호확장부(911)를 통해 확장된 광신호를 적당한 작동거리를 가지고 집속하는 역할을 하여, 그린 렌즈 등이 이용될 수 있다.Referring to FIG. 10, the probe 900 using the double cladding optical fiber may include an optical signal expansion unit 911 and a lens unit 921. The optical signal expansion unit 911 allows the optical signal that has been guided along the core of the double cladding optical fiber to have a sufficient size when it reaches the optical fiber lens unit, and has a coreless silicaless or green lens. Etc. can be formed using a method of bonding to an optical fiber end. The lens unit 921 serves to focus the optical signal extended through the optical signal expansion unit 911 with a proper working distance, and a green lens or the like may be used.
도 11은 본 발명에 따른 복합형 영상장치에 이용되는 프로브(130)의 일 실시예로 렌즈부가 광신호확장부와 일체형인 광섬유 렌즈를 도시한 측면 단면도이다.FIG. 11 is a side cross-sectional view of an optical fiber lens in which the lens unit is integrated with the optical signal extension unit as an embodiment of the probe 130 used in the composite imaging apparatus according to the present invention.
도 11을 참조하면, 이중 클래딩 광섬유를 이용한 프로브(900)는 광신호확장부(912)와 일체형 광섬유 렌즈부(922)로 구성될 수 있다. 광신호확장부(912)는 이중 클래딩 광섬유의 코어를 따라 도파되어 오던 광신호가 광섬유 렌즈부에 도달 할 때 충분한 크기를 갖도록 확장되게 하며, 상기와 같은 방법으로 형성할 수 있다. 일체형 광섬유 렌즈부(922)는 광신호확장부(912)를 통해 확장된 광신호를 적당한 작동거리를 가지고 집속하는 역할을 하며, 일체형 광섬유 렌즈부(922)는 아크방전, 레이저 등을 이용한 고온의 열을 가하는 방법 혹은 폴리머를 이용한 이종접합 방법을 이용해 형성할 수 있다.Referring to FIG. 11, the probe 900 using the double cladding optical fiber may include an optical signal expansion unit 912 and an integrated optical fiber lens unit 922. The optical signal expansion unit 912 extends to have a sufficient size when the optical signal guided along the core of the double cladding optical fiber reaches the optical fiber lens unit, and may be formed as described above. The integrated optical fiber lens unit 922 serves to focus the optical signal extended through the optical signal expansion unit 912 with a proper working distance, and the integrated optical fiber lens unit 922 is a high temperature device using arc discharge, laser, or the like. It can be formed using a method of applying heat or a heterojunction method using a polymer.
도 12는 본 발명에 따른 복합형 영상장치에 이용되는 프로브(130)의 다른 실시예로 측면 조영이 가능한 프로브의 측면 단면도이다.12 is a side cross-sectional view of a probe capable of side contrast as another embodiment of the probe 130 used in the hybrid imaging apparatus according to the present invention.
도 12를 참조하면, 프로브의 다른 실시예로서 측면조영이 가능한 프로브(1000)는 광신호확장부(1010), 반사체면(1020) 및 볼렌즈(1030)로 구성될 수 있다. 먼저, 일반 이중 클래딩 광섬유, 이중 클래딩 플라스틱 광섬유 및 이중 클래딩 광자결정 광섬유 중 어느 하나에 광신호확장부(1010)의 형성을 위해 별도의 실리카 라드를 접합한 후, 그 끝단에 고온의 열을 가하는 등의 방법으로 볼렌즈(1030)를 형성한다. 그리고 레이저를 이용한 미세가공 혹은 연마방법 등을 통해 반사체면(1020)을 형성하여 주는 것으로 측면 조영이 가능한 광섬유 프로브(1000)를 제작할 수 있다. 이중 클래딩 광섬유의 코어를 따라 도파되어 오던 광신호는 광신호확장부(1010)에서 점차적으로 퍼지면서 반사체면(1020)에서 측면으로 반사되며, 반사체면에서 반사된 광신호는 볼렌즈(1030)를 만나기 전까지 퍼지게 되고 볼렌즈를 지나면서 다시 모이게 된다.Referring to FIG. 12, as another embodiment of the probe, the probe 1000 capable of side illumination may include an optical signal extension 1010, a reflector surface 1020, and a ball lens 1030. First, a separate silica rod is bonded to any one of a general double cladding optical fiber, a double cladding plastic optical fiber, and a double cladding photonic crystal optical fiber to form an optical signal expansion unit 1010, and then high temperature heat is applied to the ends thereof. The ball lens 1030 is formed by the method. In addition, by forming the reflector surface 1020 through a micromachining or polishing method using a laser, the optical fiber probe 1000 capable of side contrast can be manufactured. The optical signal, which has been guided along the core of the double cladding optical fiber, is gradually spread from the optical signal expansion unit 1010 and is reflected from the reflector surface 1020 to the side surface, and the optical signal reflected from the reflector surface is applied to the ball lens 1030. It spreads until it meets and then gathers again through the ball lens.
도 13은 본 발명에 따른 복합형 영상장치에 이용되는 프로브(130)의 작동거리를 측정한 것으로, 렌즈가 없는 프로브의 작동거리 측정값과 비교한 그래프이다.FIG. 13 is a graph comparing the working distance of the probe 130 used in the complex imaging apparatus according to the present invention, and comparing the measured working distance of the probe without a lens.
도 13을 참조하면, 제작된 렌즈의 동작거리(working distance)는 광섬유 프로브 렌즈면의 앞단에 반사거울을 위치시킨 후 반사거울에서 되돌아 나와 프로브 내로 재결합되는 광 파워를 관찰하는 방법으로 측정하였다. 렌즈가 없는 광섬유의 경우에는 광 파워가 이격거리에 따라 급격히 감소하지만, 렌즈일체형 이중 클래딩 광섬유의 경우에는 광 파워가 서서히 감소하는 것을 볼 수 있다. 광 파워가 반이 되는 이격길이를 동작거리로 정의할 때, 제작된 렌즈 일체형 이중 클래딩 광섬유 프로브의 동작거리는 약 2.5mm인 것을 알 수 있다.Referring to FIG. 13, the working distance of the manufactured lens was measured by locating a reflecting mirror at the front end of the optical fiber probe lens surface and observing optical power that is returned from the reflecting mirror and recombined into the probe. In the case of the optical fiber without a lens, the optical power decreases rapidly according to the separation distance, but in the case of the lens integrated double cladding optical fiber, the optical power gradually decreases. When the separation length where the optical power is half is defined as the operating distance, it can be seen that the operating distance of the manufactured lens-integrated double cladding optical fiber probe is about 2.5 mm.
도 14는 본 발명에 따른 복합 영상장치를 통해 획득한 토마토의 단층영상 이미지이고, 도 15는은 본 발명에 따른 복합 영상장치를 통해 획득한 토마토의 형광분광 스펙트럼이다.FIG. 14 is a tomography image of a tomato obtained through the composite imaging apparatus according to the present invention, and FIG. 15 is a fluorescence spectrum of the tomato obtained through the composite imaging apparatus according to the present invention.
도 14와 도 15를 병행하여 참조하면, 이는 본 발명에 따른 복합형 영상장치를 통해 토마토의 동일한 지점에 대한 단층영상(2차원 단층 이미지)과 형광분광 영상을 동시에 획득한 것이다. 본 발명에 따른 복합형 영상장치는 하나의 이중 클래딩 광섬유 프로브를 이용하여 소형화할 수 있었고, 따라서 상기와 같은 영상 이미지를 동시에 얻을 수 있는 장점이 있다.Referring to FIG. 14 and FIG. 15 in parallel, this means that the tomography image (two-dimensional tomographic image) and the fluorescence spectral image of the same point of the tomato are simultaneously acquired through the hybrid imaging apparatus according to the present invention. The composite imaging apparatus according to the present invention could be miniaturized by using a single double cladding fiber optic probe, and thus, there is an advantage in that the above image image can be simultaneously obtained.
본 발명에 따른 제1영상과 제2영상을 획득할 수 있는 복합형 영상장치는 OCT 관련 산업에 효과적으로 이용될 수 있다. The composite imaging apparatus capable of acquiring the first image and the second image according to the present invention can be effectively used in an OCT related industry.

Claims (12)

  1. 시료에 제1광신호와 제2광신호를 조사하여, 상기 제1광신호에 의한 제1영상신호와 상기 제2광신호에 의한 제2영상신호를 수집하여 제1영상과 제2영상을 생성하는 복합형 영상장치에 있어서,Irradiating a first optical signal and a second optical signal to the sample, collecting the first image signal by the first optical signal and the second image signal by the second optical signal to generate a first image and a second image In the composite imaging device,
    상기 제1광신호를 출사하고, 상기 제1영상신호를 입력받아 제1영상을 생성하는 제1영상부;A first image unit which emits the first optical signal and generates the first image by receiving the first image signal;
    상기 제2광신호를 출사하고, 상기 제2영상신호를 입력받아 제2영상을 생성하는 제2영상부;A second image unit which emits the second optical signal and receives the second image signal to generate a second image;
    하나의 이중 클래딩 광섬유의 코어영역을 이용하여 상기 제1광신호와 상기 제2광신호를 상기 시료에 조사하고, 상기 시료로부터 상기 하나의 이중 클래딩 광섬유의 코어 영역을 이용하여 상기 제1영상신호를 수집하고, 상기 하나의 이중 클래딩 광섬유의 내부클래딩 영역을 이용하여 상기 제2영상신호를 수집하는 프로브; 및The first optical signal and the second optical signal are irradiated to the sample using the core region of one double cladding optical fiber, and the first image signal is obtained from the sample using the core region of the single cladding optical fiber. A probe configured to collect and collect the second image signal by using an inner cladding region of the single cladding optical fiber; And
    상기 프로브에 상기 제1광신호와 상기 제2광신호를 상기 하나의 이중 클래딩 광섬유를 이용하여 전달하고, 상기 프로브로부터 상기 제1영상신호와 상기 제2영상신호를 상기 하나의 이중 클래딩 광섬유를 이용하여 전달받아 상기 제1영상부와 상기 제2영상부에 분리하여 전달하는 광경로부를 포함하는 복합형 영상장치.The first optical signal and the second optical signal are transmitted to the probe using the single double cladding optical fiber, and the first image signal and the second image signal are transmitted from the probe to the single double cladding optical fiber. And a light path unit for receiving and transmitting the first image unit and the second image unit separately.
  2. 제1항에 있어서,The method of claim 1,
    상기 제1영상부는The first image unit
    상기 제1광신호를 출사하는 제1광원;A first light source emitting the first light signal;
    상기 제1광신호를 입력받아 제1기준단영상신호를 출력하는 제1기준단; 및A first reference stage configured to receive the first optical signal and output a first reference stage image signal; And
    상기 제1영상신호와 상기 제1기준단영상신호를 입력받아 제1영상을 생성하는 제1검출기를 포함하는 복합형 영상장치.And a first detector configured to receive the first image signal and the first reference terminal image signal and generate a first image.
  3. 제2항에 있어서,The method of claim 2,
    상기 제1영상부는 시간영역 단층영상장치, 주파수영역 단층영상장치 및 스펙트럼영역 단층영상장치 중 어느 하나인 복합형 영상장치.And the first imaging unit is any one of a time domain tomography device, a frequency domain tomography device, and a spectrum domain tomography device.
  4. 제1항에 있어서,The method of claim 1,
    상기 제2영상부는The second image unit
    상기 제2광신호를 출사하는 제2광원; 및A second light source emitting the second light signal; And
    상기 제2영상신호를 입력받아 제2영상을 생성하는 제2검출기를 포함하는 복합형 영상장치.And a second detector configured to receive the second image signal and generate a second image.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 제2영상부는 형광분광 영상장치, 라만분광 영상장치, 다중 광자 현미경 및 2차 조화파 현미경 중 어느 하나인 복합형 영상장치.And the second imaging unit is any one of a fluorescence spectroscopy apparatus, a Raman spectroscopy imaging apparatus, a multi-photon microscope, and a second harmonic microscope.
  6. 제1항에 있어서,The method of claim 1,
    상기 프로브는The probe is
    상기 광경로부로부터 상기 하나의 이중 클래딩 광섬유의 코어 영역을 통하여 전달받은 상기 제1광신호와 제2광신호를 확장시키는 광신호확장부; 및An optical signal expansion unit extending the first optical signal and the second optical signal received from the optical path unit through a core region of the single cladding optical fiber; And
    상기 광신호확장부를 통해 확장된 상기 제1광신호와 제2광신호를 상기 시료에 조사하기 위해 집속시키는 렌즈부를 포함하는 복합형 영상장치.And a lens unit configured to focus the first optical signal and the second optical signal extended through the optical signal expansion unit to irradiate the sample.
  7. 제6항에 있어서,The method of claim 6,
    상기 렌즈부는The lens unit
    상기 광신호확장부와 일체형으로 구성되는 광섬유 렌즈인 복합형 영상장치.And a fiber optic lens integrated with the optical signal expansion unit.
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 광섬유 렌즈는The optical fiber lens
    광섬유의 일 측면에 형성된 측면 반사체와 상기 일 측면과 마주보는 측면에 형성된 렌즈로 구성되어 측면 조영이 가능한 복합형 영상장치.And a side reflector formed on one side of an optical fiber and a lens formed on a side facing the one side, the side imaging being possible.
  9. 제1항 내지 제8항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 8,
    상기 광경로부는,The light path unit,
    상기 제1광신호와 상기 제2광신호를 상기 하나의 이중 클래딩 광섬유의 코어 영역을 이용하여 상기 프로브로 전달하고, 상기 제1영상신호를 상기 하나의 이중 클래딩 광섬유의 코어 영역을 통하여 상기 제1영상부로 전달하고, 상기 제2영상신호를 상기 하나의 이중 클래딩 광섬유의 코어 영역과는 광결합시키지 않고 내부 클래딩 영역에만 광결합시켜 상기 제2영상부로 전달하는 복합커플러를 추가로 포함하는 것을 특징으로 하는 복합형 영상 장치.The first optical signal and the second optical signal are transmitted to the probe using the core region of the single double cladding optical fiber, and the first image signal is transmitted through the core region of the single double cladding optical fiber. And a composite coupler for transmitting to the image unit and optically coupling only the inner cladding region to the second image unit without optically coupling the second image signal to the core region of the single double cladding optical fiber. Hybrid imaging device.
  10. 제9항에 있어서, The method of claim 9,
    상기 광경로부는, 상기 제1영상부, 상기 제2영상부 및 상기 복합커플러 간의 광 연결을 위한 적어도 하나의 커플러 또는 파장분할다중화기를 추가로 포함하는 것을 특징으로 하는 복합형 영상장치.And the optical path unit further comprises at least one coupler or a wavelength division multiplexer for optical connection between the first image unit, the second image unit, and the composite coupler.
  11. 제1항에 있어서,The method of claim 1,
    상기 하나의 이중 클래딩 광섬유는 하나의 이중 클래딩 광자결정 광섬유 및 이중 클래딩 플라스틱 광섬유 중 어느 하나인 복합형 영상장치.Wherein said one double cladding optical fiber is one of one double cladding photonic crystal optical fiber and a double cladding plastic optical fiber.
  12. 제9항에 있어서, The method of claim 9,
    상기 이중 클래딩 광섬유는 단일모드 광섬유의 외부를 폴리머 코팅하여 형성된 것이며, 상기 복합 커플러는 상기 이중 클래딩 광섬유의 폴리머 코팅 영역을 제거한 후 이중 클래딩 광섬유를 서로 꼬와서 연결시켜 형성하는 것을 특징으로 하는 복합형 영상장치.The double cladding optical fiber is formed by polymer coating an exterior of the single mode optical fiber, and the composite coupler is formed by removing the polymer coating region of the double cladding optical fiber by twisting the double cladding optical fibers together. Device.
PCT/KR2009/002215 2009-04-28 2009-04-28 Apparatus for achieving combined optical images based on double cladding fiber devices WO2010126175A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2009/002215 WO2010126175A1 (en) 2009-04-28 2009-04-28 Apparatus for achieving combined optical images based on double cladding fiber devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2009/002215 WO2010126175A1 (en) 2009-04-28 2009-04-28 Apparatus for achieving combined optical images based on double cladding fiber devices

Publications (1)

Publication Number Publication Date
WO2010126175A1 true WO2010126175A1 (en) 2010-11-04

Family

ID=43032308

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/002215 WO2010126175A1 (en) 2009-04-28 2009-04-28 Apparatus for achieving combined optical images based on double cladding fiber devices

Country Status (1)

Country Link
WO (1) WO2010126175A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050024719A1 (en) * 2003-07-29 2005-02-03 Olympus Corporation Confocal microscope
US20060158655A1 (en) * 2005-01-20 2006-07-20 Everett Matthew J Apparatus and method for combined optical-coherence-tomographic and confocal detection
US20090021724A1 (en) * 2007-07-20 2009-01-22 Vanderbilt University Combined raman spectroscopy-optical coherence tomography (rs-oct) system and applications of the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050024719A1 (en) * 2003-07-29 2005-02-03 Olympus Corporation Confocal microscope
US20060158655A1 (en) * 2005-01-20 2006-07-20 Everett Matthew J Apparatus and method for combined optical-coherence-tomographic and confocal detection
US20090021724A1 (en) * 2007-07-20 2009-01-22 Vanderbilt University Combined raman spectroscopy-optical coherence tomography (rs-oct) system and applications of the same

Similar Documents

Publication Publication Date Title
JP5232826B2 (en) Optical connector
JP6388603B2 (en) Asymmetric optical fiber coupler
US8705184B2 (en) Multi-path, multi-magnification, non-confocal fluorescence emission endoscopy apparatus and methods
WO2012169740A2 (en) Optical coherence tomography device and optical coherence tomography method using same
KR100968611B1 (en) Apparatus for achieving combined optical images based on double cladding fiber devices
Ryu et al. Combined system of optical coherence tomography and fluorescence spectroscopy based on double-cladding fiber
US10564101B1 (en) Cable movement-isolated multi-channel fluorescence measurement system
JP2019511010A (en) Multi-channel fiber optic rotary bonder
CN102062731A (en) Fiber spectroscopic probe mountable on a microscope
WO2018216946A1 (en) Annular-beam coupling system
KR101258682B1 (en) Optical fiber array probe imaging system intergrated with endoscope
KR101278285B1 (en) Imaging system using lens-integrated type optical fiber array probe
WO2013129755A1 (en) Spectroscopic inspection device
Abramov et al. Multiple-channel spectrally encoded imaging
WO2010126175A1 (en) Apparatus for achieving combined optical images based on double cladding fiber devices
WO2017150879A1 (en) Noise attenuation collimator and imaging catheter system comprising same
WO2023016438A1 (en) Scanning fiber endoscope probe and scanning fiber endoscope
KR101971777B1 (en) Imaging catheter system
Ryu et al. The development of double clad fiber and double clad fiber coupler for fiber based biomedical imaging systems
CN206096616U (en) Thin footpathization endoscope probe and endoscope
WO2012074312A2 (en) Paired-optical fiber probe with a single body lens and method for manufacturing same
JP7200936B2 (en) Measuring optics, luminance and colorimeters
Ouzounov et al. Dual modality microendoscope with optical zoom capability
CN108132236A (en) A kind of Raman detection device that can be imaged
Hasegawa et al. A near infrared angioscope visualizing lipid within arterial vessel wall based on multi-spectral image in 1.7 µm wavelength band

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09844057

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09844057

Country of ref document: EP

Kind code of ref document: A1