WO2010126015A1 - Multivariate detection device and multivariate detection method - Google Patents

Multivariate detection device and multivariate detection method Download PDF

Info

Publication number
WO2010126015A1
WO2010126015A1 PCT/JP2010/057406 JP2010057406W WO2010126015A1 WO 2010126015 A1 WO2010126015 A1 WO 2010126015A1 JP 2010057406 W JP2010057406 W JP 2010057406W WO 2010126015 A1 WO2010126015 A1 WO 2010126015A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon microphone
microphone
detection unit
physical
multivariate
Prior art date
Application number
PCT/JP2010/057406
Other languages
French (fr)
Japanese (ja)
Inventor
信治 晝間
和之 井上
量 馬嶋
Original Assignee
株式会社トランスバーチャル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トランスバーチャル filed Critical 株式会社トランスバーチャル
Publication of WO2010126015A1 publication Critical patent/WO2010126015A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/005Electrostatic transducers using semiconductor materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D1/00Measuring arrangements giving results other than momentary value of variable, of general application
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D15/00Component parts of recorders for measuring arrangements not specially adapted for a specific variable
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/02Casings; Cabinets ; Supports therefor; Mountings therein
    • H04R1/028Casings; Cabinets ; Supports therefor; Mountings therein associated with devices performing functions other than acoustics, e.g. electric candles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/04Microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R29/00Monitoring arrangements; Testing arrangements
    • H04R29/004Monitoring arrangements; Testing arrangements for microphones

Definitions

  • the present invention relates to a multivariate detection apparatus and a multivariate detection method for detecting a multivariate in a plurality of physical quantities such as sound, pressure, acceleration, temperature, and light by a sensor using a single silicon microphone.
  • the present inventor is a non-patent literature “The Society of Instrument and Control Engineers,“ Multifunctional Sensing by Capacitor Microphone Sensor and Application to Security ”(Vol.40, No.1, 1/9 (2004)).
  • a condenser microphone is mounted in a light-transmitting chamber made of a cylindrical acrylic resin.
  • the signal detected by the condenser microphone is configured to be input to the determination circuit via the amplifier circuit and the low-pass circuit.
  • the sound is in the audible sound range (about 20 Hz to 20 kHz), the pressure in the room when the door is opened and closed, the pressure in the fluctuation of the flame (about 4 Hz), and the acceleration caused by vibrations such as earthquakes.
  • a condenser microphone detects a plurality of physical variables corresponding to events such as temperature change caused by a flame of a lighter or the like, and light when a lamp is turned on or off. The detected physical quantity is discriminated by a discrimination circuit, and the discriminating circuit can discriminate which physical phenomenon is caused by the physical phenomenon among fire, suspicious person intrusion and earthquake. .
  • the condenser microphone that is a component of the detection unit cannot directly detect light, and the irradiation energy of the detected light is once converted into heat quantity. After that, it is converted to pressure and detected. For this reason, since the light energy is indirectly detected, there is a problem that the detection accuracy is lowered accordingly.
  • the chamber equipped in the condenser microphone has a diameter of 10 mm and a depth length (protrusion length in the normal direction to the condenser microphone) of 20 mm. Therefore, when the detection unit is mounted, there is a problem that the shape of the detection unit is increased, the space around the capacitor microphone mounting unit is increased, and the device is restricted in size.
  • the present invention has been made to solve such a conventional problem, and by adopting a silicon microphone instead of a condenser microphone, the optical energy is directly detected to improve accuracy, Multivariate detection device and multivariate detection that eliminates the need for a chamber to make the silicon microphone mounting part more compact and space-saving, as well as enabling high-temperature reflow soldering processes, improving mounting efficiency by automating board mounting, and reducing man-hours. It aims to provide a method.
  • the present invention relates to a detection unit for detecting a plurality of physical variables related to physical phenomena such as sound, static pressure fluctuation, dynamic pressure fluctuation, acceleration, light irradiation change, and temperature change, and an output signal output from the detection part
  • the multivariate detection apparatus includes a determination unit that determines the type of the physical variable based on the above, and the detection unit is configured by a silicon microphone.
  • the silicon microphone according to the present invention is not only a sound such as door opening and closing, but also a physical variable for different physical events such as ceiling lighting by a fluorescent lamp, a table lamp by a halogen lamp, a flashlight by a bean ball, and a flame fluctuation by an electronic lighter. It was found that can be detected. Based on such knowledge, a silicon microphone is configured as a detection unit instead of the condenser microphone of the non-patent document and the patent document. Thereby, the multivariate detection apparatus of the present invention can identify a plurality of physical variables by the determination means based on the detection signal detected by the silicon microphone.
  • the silicon microphone function as a metal oxide semiconductor device (CMOS) to detect the light electronically.
  • CMOS metal oxide semiconductor device
  • the silicon microphone causes a function as a CMOS or CCD by coating the surface of the silicon wafer with a conductive material such as an oxide film or silicon nitride or a semiconductive material.
  • a conductive material such as an oxide film or silicon nitride or a semiconductive material.
  • the silicon microphone is formed as a human sensor using a gain characteristic with respect to a long wavelength.
  • the silicon microphone since the silicon microphone easily reacts to far infrared rays, it can be applied as a human sensor.
  • a housing for housing the silicon microphone is provided in the detection unit, and a condensing lens is attached to the housing so as to face the silicon microphone.
  • the present invention by providing a condensing lens in the housing, it is possible to efficiently condense even a wide range of faint light and enter the silicon microphone. This makes it possible to obtain a compact multivariate detection device that is integrally provided with a condensing lens.
  • the silicon microphone emits a signal in response to light and has a low-frequency microphone characteristic capable of detecting opening / closing of a door.
  • the present invention detects a plurality of physical variables related to a physical phenomenon such as sound, static pressure fluctuation, dynamic pressure fluctuation, acceleration, light irradiation change, and temperature change, and outputs an output signal output from the detection section.
  • the type of the physical variable is determined by the determining means based on the method, and the type of the physical variable is detected, wherein the detection unit is formed by a silicon microphone, and based on an output signal detected by the silicon microphone
  • the multivariate detection method is characterized in that the type of the physical variable is determined.
  • the silicon microphone as a detection unit, the physics against different physical events such as door opening / closing, ceiling lighting with a fluorescent lamp, table lamp with a halogen lamp, flashlight with a bean bulb, and fluctuation of flame with an electronic lighter. Variables can be detected and judged (identified).
  • the present invention light can be directly detected by using a silicon microphone in the detection unit.
  • the physical quantity identification accuracy can be improved, and a multivariate detection apparatus suitable for security systems such as fire, crime prevention (intrusion, picking), and earthquakes can be obtained.
  • the chamber can be eliminated, and as a result, the silicon microphone mounting part can be made compact and space-saving, and by using a silicon microphone, the high-temperature reflow soldering process, which was a weak point of condenser microphones, can be achieved. Mounting efficiency can be improved by automation of board mounting.
  • (a) is a cross-sectional view schematically showing a schematic configuration of a silicon microphone
  • (b) is a cross-sectional view similar to (a) in a modification of the silicon microphone.
  • it is a functional block diagram of the determination circuit in the determination means. It is a characteristic graph of a silicon microphone and a condenser microphone for comparison when the door is opened and closed (first time). Similarly, it is a characteristic graph of a silicon microphone and a condenser microphone for comparison when the door is opened and closed (second time). It is a characteristic graph of the silicon microphone and the condenser microphone for comparison when the ceiling illumination is turned on / off (first time).
  • FIG. 1 is a circuit configuration diagram of a multivariate detection device
  • FIG. 2A is a cross-sectional view schematically showing a schematic configuration of a silicon microphone
  • FIG. 3 is a functional configuration diagram of a determination circuit in a determination unit.
  • the circuit configuration of the present embodiment is different only in the detection unit described in the above non-patent document, and the other components are almost common. That is, the multivariate detection apparatus of the present embodiment is applied with the detection unit 1, the amplification circuit 2 that receives the output signal (voltage signal) from the detection unit 1, and the output signal (voltage signal) from the amplification circuit 2. And a judging means 3 comprising a low-pass circuit 3a and a judging circuit 3b.
  • the detection unit 1 includes two chips of a silicon microphone 5 and a CMOS driving circuit 6 mounted on a printed circuit board 4 by high-temperature reflow soldering.
  • the silicon microphone 5 includes a thin film diaphragm (vibrating film) 8 and a back plate (back electrode) 9 laminated on the diaphragm 8 so as to face each other with a small gap.
  • the main part is formed.
  • a lid 12 is attached to the printed circuit board 4, and a case is formed with the printed circuit board 4.
  • the internal silicon microphone 5 and the CMOS 6 are protected from the outside.
  • the lid 12 or the printed circuit board 4 is formed with a hole 11 through which sound and light pass.
  • the hole 11 is formed in the upper part of the silicon microphone 5 in the lid 12 so that light from the outside directly hits the silicon microphone 5.
  • the silicon microphone 5 is not limited to the above configuration, and may be in various forms.
  • a silicon microphone of a type in which the drive circuit 6 is not mounted on the printed board 4 can be used.
  • the silicon microphone 5 has a low-frequency microphone characteristic that can react to light by the CCD effect and can detect the opening and closing of the door.
  • the detection unit 1 constituted by the silicon microphone 5 when the sound pressure around the detection unit 1 is transmitted from the hole 11 and the diaphragm 8 vibrates, the capacitance between the diaphragm 8 and the back plate 9 is increased. Change. Due to the operating voltage applied between the two, the change in capacitance is converted into a change in voltage and output to the amplifier circuit 2 as a voltage signal.
  • the silicon microphone 5 when light enters the silicon microphone 5 from the outside through the hole 11, the silicon microphone 5 itself functions as a CMOS or a CCD (Charge-Coupled Device). The signal is output to the amplifier circuit 2 as a voltage signal. A characteristic test by which the silicon microphone 5 can detect a physical quantity will be described later.
  • a condenser lens 13 is provided on the lid 12 of the detection unit 1 that houses each silicon microphone 5.
  • the condenser lens 13 effectively collects light on the silicon microphone 5.
  • a light shielding cylinder 14 is provided on the outer periphery of the lid 12 so that light other than the light source to be measured can be blocked as much as possible. In this case, a hole 11 for passing sound is formed around the condenser lens 13 in the lid 12.
  • the voltage signal output from the detection unit 1 is amplified by the amplification circuit 2 to a signal level suitable for detection.
  • the voltage signal from the amplifier circuit 2 is input to the low-pass circuit 3a.
  • the low-pass circuit 3a functions as a low-pass filter that blocks the high-frequency side of the input signal and passes the low-frequency side.
  • the determination circuit 3b shown in FIG. 3 is for determining which physical phenomenon has occurred by determining which physical quantity-related component is included in the signal based on the output from the detection unit 1. That is, the determination circuit 3b includes filter units FT, FL, FD, FP, and FE to which the output voltage signal e from the low-pass circuit 3a is input, an amplifier 30 connected to each of these filter units, and each amplifier 30. And a determination unit 35 to which the output from is input.
  • Filter units FT, FL, FD, FP, and FE are filter circuits that emphasize and output a specific frequency band of the input signal e.
  • the filter unit FT allows the temperature change to be separated and captured by passing a signal having a cutoff frequency of about 0.1 Hz.
  • the output signal from the filter unit FT is amplified by the amplifier 30 to become a signal ST.
  • the filter unit FL can determine the presence of light by separating and capturing the portion of the light captured by the silicon microphone 5 by passing a signal having a cutoff frequency of about 3 to 6 Hz.
  • the output signal from the filter unit FL is amplified by the amplifier 30 to become a signal SL.
  • the filter unit FD functions when a suspicious person enters, and by passing a signal having a frequency band of 7 to 10 Hz, it can separately detect a static pressure fluctuation component associated with opening and closing of the door and determine whether the door is opened or closed.
  • the output signal from the filter unit FD is amplified by the amplifier 30 to become a signal SD.
  • the filter unit FP functions for picking when a suspicious person intrudes.
  • the acoustic frequency characteristic waveform due to picking passes through a frequency band of about 10 to 15 Hz, so that the acoustic components accompanying picking are separated and captured. Determine picking.
  • the output signal from the filter unit FP is amplified by the amplifier 30 to become a signal SP.
  • the filter unit FE functions with respect to acceleration caused by an earthquake, and separates and identifies an acceleration component from the signal e by passing a signal in a frequency band of about 0.5 to 10 Hz generated by vibration of a building or the like.
  • the output signal from the filter unit FE is amplified by the amplifier 30 to become a signal SE.
  • the determination unit 35 determines what physical phenomenon has occurred based on information indicating which of the input signals ST, SL, SD, SP, and SE has changed and the characteristics of the change. In other words, by appropriately configuring the filter unit of the determination circuit 5, for example, at least one of physical events such as fire, door opening / closing, picking, and earthquake can be determined. In particular, it is possible to detect the fire using light, and it is possible to detect the fire even when heat is not transmitted. Further, even when an outsider uses a flashlight indoors in the case of theft or the like, the detection using the light can be similarly performed. Even when a plurality of physical phenomena overlap, the physical quantity related to each physical phenomenon can be separated, so that the physical phenomenon generated by overlapping can be determined. The determination unit 35 outputs the determination result as a determination signal rg.
  • the determination signal rg When the determination signal rg is output, it means that a physical phenomenon related to security has occurred, so that, for example, processing such as sounding of an alarm, operation of a sprinkler, shut-off operation of a gas pipeline, etc. is performed. .
  • the present inventors tested the characteristics using a silicon microphone and a condenser microphone for measurement. The results are shown in FIGS.
  • the test condition was that two types of microphones were connected in the same circuit, and the power supply voltage of the circuit was 3V.
  • a capacitor was used to remove the DC component, but no other filters or amplifier circuits were used, and the waveforms were recorded and compared as they were.
  • the opening and closing of the door is measured by installing a microphone in the laboratory and opening and closing the door about 5 m away from the microphone. The door was opened and closed twice (see FIGS. 4 and 5).
  • a flashlight (bean bulb) was installed at a position approximately 30 cm away from the microphone in a linear distance, and turned on and off (see FIG. 8).
  • the light source for which the silicon microphone was reacting was examined.
  • a light source a light source existing around us, such as an incandescent bulb, a fluorescent lamp, and an LED, was used as a measurement target.
  • the silicon microphone 5 has an excellent function of efficiently detecting not only light but also a heat source. It turns out that there is.
  • the above-described silicon microphone 5 has an excellent function for detecting light and a heat source efficiently. Based on such knowledge, the detection unit 1 in the multivariate detection apparatus and the multivariate detection method is configured by the silicon microphone 5. As a result, a large number of physical variables can be effectively detected and identified by the single silicon microphone 5.
  • the multivariate detection device and the multivariate detection method it is possible to identify a plurality of physical variables by the determination unit based on the detection signal detected by the silicon microphone only by providing the detection unit 1 with the silicon microphone 5. For this reason, since the detection unit 1 is configured without using a chamber, the entire apparatus can be made compact. Since the silicon microphone 5 also functions as a CMOS or a CCD, it is possible to improve the identification accuracy by directly detecting light electronically. Since the silicon microphone easily reacts to far infrared rays, it can be used as a human sensor.
  • the condensing lens 13 on the lid 12, it is possible to efficiently condense even a wide range of faint light, and the entire apparatus can be compactly formed by providing the condensing lens integrally. Furthermore, the accuracy can be improved. In addition, since the silicon microphone 5 is excellent in heat resistance, high-temperature reflow soldering that is impossible with a capacitor microphone is possible, and as a result, the mounting efficiency can be improved by automating the substrate mounting in the multivariate detection device.
  • the position where the hole is provided in the housing may be changed as appropriate.
  • the silicon microphone 5 may have a form other than those exemplified in the above example.
  • the present invention is used in a multivariate detection apparatus and a multivariate detection method for detecting multivariate in a plurality of physical quantities such as sound, pressure, acceleration, temperature, and light using a single silicon microphone.

Abstract

Disclosed is a multivariate detection device provided with a detection unit (1) for detecting a plurality of physical variates related to physical phenomena including sound, static pressure fluctuation, dynamic pressure fluctuation, acceleration, light irradiation change, and temperature change, and a determination means (3) for determining the kind of the physical variate on the basis of an output signal outputted from the detection unit (1), the detection unit (1) being configured by a silicon microphone (5). The silicon microphone functions as a complement metal oxide semiconductor (CMOS) and electronically detects light. A condenser lens (13) is provided in a casing for housing the silicon microphone. Consequently, a chamber becomes unnecessary by using the silicon microphone instead of a capacitor microphone, and thus light can be directly detected.

Description

多変量検出装置および多変量検出方法Multivariate detection apparatus and multivariate detection method
 本発明は、音、圧力、加速度、温度、光など複数の物理量における多変量を単一のシリコンマイクロフォンを使用したセンサにより検知する多変量検出装置および多変量検出方法に関する。 The present invention relates to a multivariate detection apparatus and a multivariate detection method for detecting a multivariate in a plurality of physical quantities such as sound, pressure, acceleration, temperature, and light by a sensor using a single silicon microphone.
 本発明者は、非特許文献となる「社団法人計測自動制御学会論文集「コンデンサマイクロフォン型センサによる多機能センシングとセキュリティへの応用」(Vol.40, No.1, 1/9(2004))」にあるように、単体のコンデンサマイクロフォン(ECM)により複数の物理変量を検知・識別する技術に関する研究を行った者の指導を受けて、同非特許文献等に基づいて特許文献「特開2004-354199号公報」に記載の発明をした。すなわち、同非特許文献および同特許文献に記載のものは、円筒状のアクリル樹脂で成る透光性を備えたチャンバにコンデンサマイクロフォンを装着する。コンデンサマイクロフォンで検知された信号は、増幅回路およびローパス回路を経て判定回路に入力されるように構成されている。非特許文献および特許文献に記載のものによれば、可聴音域(20Hz~20kHz程度)の音声、ドア開閉時における室内の圧力変動や炎の揺らぎ(4Hz程度)における圧力、地震などの震動による加速度、ライターなどの炎による温度変化、灯類の点消灯時における光といった事象に応じた複数の物理変量がコンデンサマイクロフォンで検知される。検知された物理量は判別回路で識別され、また、識別された物理量が火災、不審者の浸入および地震のうち、どの物理現象により生じた物理量であるかを判別回路で判別できるようになっている。 The present inventor is a non-patent literature “The Society of Instrument and Control Engineers,“ Multifunctional Sensing by Capacitor Microphone Sensor and Application to Security ”(Vol.40, No.1, 1/9 (2004)). As described in Japanese Patent Application Laid-Open No. 2004-2005, based on the non-patent literature and the like, under the guidance of a person who conducted research on a technique for detecting and identifying a plurality of physical variables using a single condenser microphone (ECM). -354199 "was invented. That is, according to the non-patent document and the patent document, a condenser microphone is mounted in a light-transmitting chamber made of a cylindrical acrylic resin. The signal detected by the condenser microphone is configured to be input to the determination circuit via the amplifier circuit and the low-pass circuit. According to non-patent documents and patent documents, the sound is in the audible sound range (about 20 Hz to 20 kHz), the pressure in the room when the door is opened and closed, the pressure in the fluctuation of the flame (about 4 Hz), and the acceleration caused by vibrations such as earthquakes. A condenser microphone detects a plurality of physical variables corresponding to events such as temperature change caused by a flame of a lighter or the like, and light when a lamp is turned on or off. The detected physical quantity is discriminated by a discrimination circuit, and the discriminating circuit can discriminate which physical phenomenon is caused by the physical phenomenon among fire, suspicious person intrusion and earthquake. .
 しかしながら、上記の非特許文献および特許文献に記載のものにあっては、検出部の構成要素であるコンデンサマイクロフォンでは光を直接的に検出できず、検出した光の照射エネルギを一旦熱量に変換処理した後に圧力に換算して検出するようにしている。このため、光エネルギを間接的に検出するので検出精度がそれだけ低下する問題があった。
また、コンデンサマイクロフォンに装備されるチャンバは直径が10mm、奥行き長さ(コンデンサマイクロフォンに対する法線方向の出っ張り長さ)が20mmの寸法を有する。そのため、検出部を実装する場合、検出部の形状が大きくなり、コンデンサマイクロフォン実装部周辺のスペースが大きくなり、装置のコンパクト化に制約を受ける問題があった。
However, in the non-patent document and the one described in the patent document, the condenser microphone that is a component of the detection unit cannot directly detect light, and the irradiation energy of the detected light is once converted into heat quantity. After that, it is converted to pressure and detected. For this reason, since the light energy is indirectly detected, there is a problem that the detection accuracy is lowered accordingly.
Further, the chamber equipped in the condenser microphone has a diameter of 10 mm and a depth length (protrusion length in the normal direction to the condenser microphone) of 20 mm. Therefore, when the detection unit is mounted, there is a problem that the shape of the detection unit is increased, the space around the capacitor microphone mounting unit is increased, and the device is restricted in size.
 また、コンデンサマイクロフォンは熱に弱いので、回路基板などに高温リフローはんだを行って実装する場合に、コンデンサマイクロフォンそのものの感度が低下し、手作業による実装を行わなければならず、自動実装による工数削減を図るのが困難になる問題もあった。 In addition, since condenser microphones are vulnerable to heat, when mounting high-temperature reflow soldering on circuit boards, etc., the sensitivity of the condenser microphone itself must be reduced, and manual mounting is required, reducing man-hours through automatic mounting. There were also problems that made it difficult to achieve.
 本発明は、このような従来の問題点を解決するためになされたものであって、コンデンサマイクロフォンの代わりにシリコンマイクロフォンを採用することで、光エネルギを直接的に検出して精度を向上し、チャンバを不要化してシリコンマイクロフォン実装部のコンパクト化、省スペース化を図るとともに、高温リフローはんだ工程を可能にし、基板実装の自動化による実装効率の向上、工数削減を図る多変量検出装置および多変量検出方法を提供することを目的とする。 The present invention has been made to solve such a conventional problem, and by adopting a silicon microphone instead of a condenser microphone, the optical energy is directly detected to improve accuracy, Multivariate detection device and multivariate detection that eliminates the need for a chamber to make the silicon microphone mounting part more compact and space-saving, as well as enabling high-temperature reflow soldering processes, improving mounting efficiency by automating board mounting, and reducing man-hours. It aims to provide a method.
 本発明は、音響、静圧変動、動圧変動、加速度、光の照射変化、および温度変化などの物理現象に関わる複数の物理変量を検出する検出部、および当該検出部から出力された出力信号に基づいて前記物理変量の種類を判定する判定手段を具備した多変量検出装置であって、前記検出部をシリコンマイクロフォンで構成したことを特徴とする多変量検出装置である。 The present invention relates to a detection unit for detecting a plurality of physical variables related to physical phenomena such as sound, static pressure fluctuation, dynamic pressure fluctuation, acceleration, light irradiation change, and temperature change, and an output signal output from the detection part The multivariate detection apparatus includes a determination unit that determines the type of the physical variable based on the above, and the detection unit is configured by a silicon microphone.
 本発明に係るシリコンマイクロフォンはドア開閉等の音響だけでなく、蛍光灯による天井照明、ハロゲンランプによる卓上電灯、豆球による懐中電灯、電子ライターによる炎のゆらぎといった異なる物理事象に対しても物理変量を検知できることが判明した。係る知見に基づき、上記非特許文献および特許文献のコンデンサマイクロフォンの代わりにシリコンマイクロフォンを検出部として構成する。これにより、本発明の多変量検出装置はシリコンマイクロフォンで検出した検知信号に基づき判定手段で複数の物理変量を識別できるようになる。 The silicon microphone according to the present invention is not only a sound such as door opening and closing, but also a physical variable for different physical events such as ceiling lighting by a fluorescent lamp, a table lamp by a halogen lamp, a flashlight by a bean ball, and a flame fluctuation by an electronic lighter. It was found that can be detected. Based on such knowledge, a silicon microphone is configured as a detection unit instead of the condenser microphone of the non-patent document and the patent document. Thereby, the multivariate detection apparatus of the present invention can identify a plurality of physical variables by the determination means based on the detection signal detected by the silicon microphone.
 本発明はまた、前記シリコンマイクロフォンは、金属酸化膜半導体素子(CMOS:Complementary Metal Oxide Semiconductor)として機能させ、前記光を電子的に検知することを特徴とすることが好ましい。 In the present invention, it is preferable that the silicon microphone function as a metal oxide semiconductor device (CMOS) to detect the light electronically.
 本発明によれば、シリコンマイクロフォンはシリコンウェーハ面に、酸化膜や窒化ケイ素などの導電性材料または半導電性材料が被覆されることによりCMOSあるいはCCDとしての機能を惹起する。係る機能によりシリコンマイクロフォンはあたかもCMOSとして光を電子的に検知することが可能となる。したがって、シリコンマイクロフォンが受光する照射エネルギに基づいて換算処理ルーチンを経ることなく直接的に物理量の判定(識別)が可能となり、識別精度を向上できるようになる。 According to the present invention, the silicon microphone causes a function as a CMOS or CCD by coating the surface of the silicon wafer with a conductive material such as an oxide film or silicon nitride or a semiconductive material. Such a function enables the silicon microphone to detect light electronically as if it were a CMOS. Therefore, the physical quantity can be directly determined (identified) without going through the conversion processing routine based on the irradiation energy received by the silicon microphone, and the identification accuracy can be improved.
 本発明はまた、前記シリコンマイクロフォンを、長波長に対する利得特性を利用して、人感センサとして形成されることを特徴とすることが好ましい。 In the present invention, it is preferable that the silicon microphone is formed as a human sensor using a gain characteristic with respect to a long wavelength.
 本発明によれば、シリコンマイクロフォンは遠赤外線に対しても反応しやすいので、人感センサとして適用できるようになる。 According to the present invention, since the silicon microphone easily reacts to far infrared rays, it can be applied as a human sensor.
 本発明はまた、前記検出部に、前記シリコンマイクロフォンを収容する筐体を設け、当該筐体に、前記シリコンマイクロフォンに対向して集光レンズを取り付けたことを特徴とすることが好ましい。 In the present invention, it is preferable that a housing for housing the silicon microphone is provided in the detection unit, and a condensing lens is attached to the housing so as to face the silicon microphone.
 本発明によれば、筐体に集光レンズを設けることで、広範囲の、微光でも効率良く集光してシリコンマイクロフォンに入射させることができる。これにより、集光レンズを一体に設けたコンパクトな多変量検出装置を得ることができるようになる。 According to the present invention, by providing a condensing lens in the housing, it is possible to efficiently condense even a wide range of faint light and enter the silicon microphone. This makes it possible to obtain a compact multivariate detection device that is integrally provided with a condensing lens.
 本発明はまた、前記シリコンマイクロフォンは、光に反応して信号を発し、且つドアの開閉を検知できる程度の低周波マイクロフォン特性を持っていることを特徴とすることが好ましい。 In the present invention, it is preferable that the silicon microphone emits a signal in response to light and has a low-frequency microphone characteristic capable of detecting opening / closing of a door.
 本発明は、音響、静圧変動、動圧変動、加速度、光の照射変化、および温度変化などの物理現象に関わる複数の物理変量を検出部で検出し、当該検出部から出力された出力信号に基づいて前記物理変量の種類を判定手段で判定することにより、物理変量の種類を検知する方法であって、前記検出部をシリコンマイクロフォンで形成し、該シリコンマイクロフォンで検出した出力信号に基づいて前記物理変量の種類を判定することを特徴とする多変量検出方法である。 The present invention detects a plurality of physical variables related to a physical phenomenon such as sound, static pressure fluctuation, dynamic pressure fluctuation, acceleration, light irradiation change, and temperature change, and outputs an output signal output from the detection section. The type of the physical variable is determined by the determining means based on the method, and the type of the physical variable is detected, wherein the detection unit is formed by a silicon microphone, and based on an output signal detected by the silicon microphone The multivariate detection method is characterized in that the type of the physical variable is determined.
 本発明によれば、シリコンマイクロフォンを検出部に構成することで、ドア開閉、蛍光灯による天井照明、ハロゲンランプによる卓上電灯、豆球による懐中電灯、電子ライターによる炎のゆらぎといった異なる物理事象対する物理変量を検知し、判定(識別)できるようになる。 According to the present invention, by configuring the silicon microphone as a detection unit, the physics against different physical events such as door opening / closing, ceiling lighting with a fluorescent lamp, table lamp with a halogen lamp, flashlight with a bean bulb, and fluctuation of flame with an electronic lighter. Variables can be detected and judged (identified).
 本発明によれば、検出部にシリコンマイクロフォンを使用することで、光を直接的に検出できる。これにより物理量の識別精度を向上でき、火災、防犯(浸入、ピッキング)、地震等のセキュリティシステムに好適な多変量検出装置を得ることができる。また、チャンバを不要化でき、その結果、シリコンマイクロフォン実装部のコンパクト化および省スペース化を図れ、ひいてはコンデンサマイクロフォンの弱点であった高温リフローはんだ工程をシリコンマイクロフォンを使用することでそれが可能となり、基板実装の自動化による実装効率の向上を図ることができる。 According to the present invention, light can be directly detected by using a silicon microphone in the detection unit. As a result, the physical quantity identification accuracy can be improved, and a multivariate detection apparatus suitable for security systems such as fire, crime prevention (intrusion, picking), and earthquakes can be obtained. In addition, the chamber can be eliminated, and as a result, the silicon microphone mounting part can be made compact and space-saving, and by using a silicon microphone, the high-temperature reflow soldering process, which was a weak point of condenser microphones, can be achieved. Mounting efficiency can be improved by automation of board mounting.
本発明の実施形態に係る回路構成図である。It is a circuit block diagram concerning the embodiment of the present invention. 同じく、(a)はシリコンマイクロフォンの概要構成を模式的に示す断面図、(b)はシリコンマイクロフォンの変形例における(a)と同様の断面図である。Similarly, (a) is a cross-sectional view schematically showing a schematic configuration of a silicon microphone, and (b) is a cross-sectional view similar to (a) in a modification of the silicon microphone. 同じく、判定手段における判定回路の機能的構成図である。Similarly, it is a functional block diagram of the determination circuit in the determination means. ドアを開閉(1回目)したときのシリコンマイクロフォンと比較用のコンデンサマイクロフォンの特性グラフである。It is a characteristic graph of a silicon microphone and a condenser microphone for comparison when the door is opened and closed (first time). 同じく、ドアを開閉(2回目)したときのシリコンマイクロフォンと比較用のコンデンサマイクロフォンの特性グラフである。Similarly, it is a characteristic graph of a silicon microphone and a condenser microphone for comparison when the door is opened and closed (second time). 天井照明をON/OFF(1回目)したときのシリコンマイクロフォンと比較用のコンデンサマイクロフォンの特性グラフである。It is a characteristic graph of the silicon microphone and the condenser microphone for comparison when the ceiling illumination is turned on / off (first time). 同じく、天井照明をON/OFF(2回目)したときのシリコンマイクロフォンと比較用のコンデンサマイクロフォンの特性グラフである。Similarly, it is a characteristic graph of a silicon microphone and a condenser microphone for comparison when the ceiling illumination is turned on / off (second time). 懐中電灯をON/OFFしたときのシリコンマイクロフォンと比較用のコンデンサマイクロフォンの特性グラフである。It is a characteristic graph of the silicon microphone and the condenser microphone for comparison when the flashlight is turned on / off. 太陽光について計測した結果を示すシリコンマイクロフォンの特性グラフである。It is a characteristic graph of a silicon microphone which shows the result measured about sunlight. 天井照明について計測した結果を示すシリコンマイクロフォンの特性グラフである。It is a characteristic graph of a silicon microphone which shows the result measured about ceiling lighting. 白色LEDについて計測した結果を示すシリコンマイクロフォンの特性グラフである。It is a characteristic graph of the silicon microphone which shows the result measured about white LED. 赤色LEDについて計測した結果を示すシリコンマイクロフォンの特性グラフである。It is a characteristic graph of the silicon microphone which shows the result measured about red LED. 黄色LEDについて計測した結果を示すシリコンマイクロフォンの特性グラフである。It is a characteristic graph of a silicon microphone which shows the result measured about yellow LED. 懐中電灯について計測した結果を示すシリコンマイクロフォンの特性グラフである。It is a characteristic graph of the silicon microphone which shows the result measured about the flashlight. 卓上照明(白熱球)について計測した結果を示すシリコンマイクロフォンの特性グラフである。It is a characteristic graph of a silicon microphone which shows the result measured about table lamp (incandescent bulb). 卓上照明(蛍光灯)について計測した結果を示すシリコンマイクロフォンの特性グラフである。It is a characteristic graph of a silicon microphone which shows the result measured about desk lamp (fluorescent lamp). 赤外線LEDについて計測した結果を示すシリコンマイクロフォンの特性グラフである。It is a characteristic graph of a silicon microphone which shows the result measured about infrared LED.
 以下、本発明に係る多変量検出装置および多変量検出方法に係る実施形態を図に基づいて詳述する。図1は多変量検出装置の回路構成図、図2(a)はシリコンマイクロフォンの概要構成を模式的に示す断面図、図3は判定手段における判定回路の機能的構成図である。 Hereinafter, embodiments of the multivariate detection apparatus and the multivariate detection method according to the present invention will be described in detail with reference to the drawings. FIG. 1 is a circuit configuration diagram of a multivariate detection device, FIG. 2A is a cross-sectional view schematically showing a schematic configuration of a silicon microphone, and FIG. 3 is a functional configuration diagram of a determination circuit in a determination unit.
 図1に示すように、本実施形態の回路構成は、上記の非特許文献に記載における検出部のみが相違し、それ以外の構成要素は両者ほぼ共通するものである。すなわち、本実施形態の多変量検出装置は、検出部1と、該検出部1からの出力信号(電圧信号)を受ける増幅回路2と、増幅回路2からの出力信号(電圧信号)を印加されるローパス回路3aおよび判定回路3bより成る判定手段3とからなる。 As shown in FIG. 1, the circuit configuration of the present embodiment is different only in the detection unit described in the above non-patent document, and the other components are almost common. That is, the multivariate detection apparatus of the present embodiment is applied with the detection unit 1, the amplification circuit 2 that receives the output signal (voltage signal) from the detection unit 1, and the output signal (voltage signal) from the amplification circuit 2. And a judging means 3 comprising a low-pass circuit 3a and a judging circuit 3b.
 〈検出部〉 <Detection unit>
 上記の検出部1は図2(a)に示すように、プリント基板4にシリコンマイクロフォン5およびCMOSによる駆動回路6の2チップが高温リフローはんだにより実装される。より具体的には、シリコンマイクロフォン5は薄膜状のダイヤフラム(振動膜)8と、ダイヤフラム8の上に微少間隙を存して対向配置して積層したバックプレート(背面電極)9とによりシリコンマイクロフォン5の主要部が形成される。プリント基板4に蓋12が装着され、プリント基板4とで筐体が形成され、内部のシリコンマイクロフォン5およびCMOS6が外部から保護される。また、蓋12又はプリント基板4には、音や光を通す孔部11が形成される。ここでは、蓋12におけるシリコンマイクロフォン5の上部に、孔部11が形成されることで、外部からの光がシリコンマイクロフォン5を直射するようになっている。 As shown in FIG. 2 (a), the detection unit 1 includes two chips of a silicon microphone 5 and a CMOS driving circuit 6 mounted on a printed circuit board 4 by high-temperature reflow soldering. More specifically, the silicon microphone 5 includes a thin film diaphragm (vibrating film) 8 and a back plate (back electrode) 9 laminated on the diaphragm 8 so as to face each other with a small gap. The main part is formed. A lid 12 is attached to the printed circuit board 4, and a case is formed with the printed circuit board 4. The internal silicon microphone 5 and the CMOS 6 are protected from the outside. The lid 12 or the printed circuit board 4 is formed with a hole 11 through which sound and light pass. Here, the hole 11 is formed in the upper part of the silicon microphone 5 in the lid 12 so that light from the outside directly hits the silicon microphone 5.
 なお、シリコンマイクロフォン5は上記構成に限定されるものでなく、種々の形態のものであってもよい。例えば、プリント基板4に駆動回路6を実装しないタイプのシリコンマイクロフォンとすることも可能である。 Note that the silicon microphone 5 is not limited to the above configuration, and may be in various forms. For example, a silicon microphone of a type in which the drive circuit 6 is not mounted on the printed board 4 can be used.
 特に本実施形態では、シリコンマイクロフォン5の特性として、CCD効果によって光に反応し、更にドアの開閉を検知できる程度の低周波マイクロフォン特性を持っている。 Particularly in this embodiment, the silicon microphone 5 has a low-frequency microphone characteristic that can react to light by the CCD effect and can detect the opening and closing of the door.
 こうして、シリコンマイクロフォン5で構成される検出部1において、検出部1周囲の音の圧力が孔部11から伝達してダイヤフラム8が振動すると、ダイヤフラム8とバックプレート9との間の静電容量が変化する。両者間に印加されている動作電圧により、静電容量の変化が電圧の変化に変換され増幅回路2へ電圧信号として出力される。また、外部から孔部11を通じて光がシリコンマイクロフォン5に入射すると、シリコンマイクロフォン5そのものがCMOSあるいはCCD(Charge Coupled Device)としても機能するため、電子的に反応して光量を検知し、検出された信号が電圧信号として増幅回路2へ出力されるようになっている。なお、シリコンマイクロフォン5が物理量を検出できる特性試験については後述する。 Thus, in the detection unit 1 constituted by the silicon microphone 5, when the sound pressure around the detection unit 1 is transmitted from the hole 11 and the diaphragm 8 vibrates, the capacitance between the diaphragm 8 and the back plate 9 is increased. Change. Due to the operating voltage applied between the two, the change in capacitance is converted into a change in voltage and output to the amplifier circuit 2 as a voltage signal. In addition, when light enters the silicon microphone 5 from the outside through the hole 11, the silicon microphone 5 itself functions as a CMOS or a CCD (Charge-Coupled Device). The signal is output to the amplifier circuit 2 as a voltage signal. A characteristic test by which the silicon microphone 5 can detect a physical quantity will be described later.
 なお、図2(b)に示すように、各シリコンマイクロフォン5を収納する検出部1の蓋12に集光レンズ13が設けられるようにすることも好ましい。集光レンズ13により、光がシリコンマイクロフォン5に効果的に集光されるようになる。さらに、蓋12の外周には遮光筒14が設けられ、計測する光源以外の光をできる限り遮断できるようにすることも好ましい。この場合、蓋12における集光レンズ13の周りに、音を通す為の孔部11が形成される。 Note that, as shown in FIG. 2B, it is also preferable that a condenser lens 13 is provided on the lid 12 of the detection unit 1 that houses each silicon microphone 5. The condenser lens 13 effectively collects light on the silicon microphone 5. Furthermore, it is also preferable that a light shielding cylinder 14 is provided on the outer periphery of the lid 12 so that light other than the light source to be measured can be blocked as much as possible. In this case, a hole 11 for passing sound is formed around the condenser lens 13 in the lid 12.
 〈増幅回路〉 <Amplifier circuit>
 検出部1から出力される電圧信号は、増幅回路2によって検出に適した信号レベルに増幅される。 The voltage signal output from the detection unit 1 is amplified by the amplification circuit 2 to a signal level suitable for detection.
 〈ローパス回路〉 <Low-pass circuit>
 ローパス回路3aには、増幅回路2からの電圧信号が入力される。これにより、ローパス回路3aは入力される信号の高周波側を遮断し、低周波側を通過させるローパスフィルタとして機能するようになっている。 The voltage signal from the amplifier circuit 2 is input to the low-pass circuit 3a. As a result, the low-pass circuit 3a functions as a low-pass filter that blocks the high-frequency side of the input signal and passes the low-frequency side.
 〈判定回路〉 <Judgment circuit>
 図3に示す判定回路3bは検出部1からの出力に基づく信号にどの物理量に関わる成分が含まれているかを判別してどの物理現象が発生したかを判定するためのものである。すなわち、判定回路3bには、ローパス回路3aからの出力電圧信号eが入力されるフィルタ部FT、FL、FD、FP、FEと、これらのフィルタ部にそれぞれ接続される増幅器30と、各増幅器30からの出力が入力される判定部35とを有する。 The determination circuit 3b shown in FIG. 3 is for determining which physical phenomenon has occurred by determining which physical quantity-related component is included in the signal based on the output from the detection unit 1. That is, the determination circuit 3b includes filter units FT, FL, FD, FP, and FE to which the output voltage signal e from the low-pass circuit 3a is input, an amplifier 30 connected to each of these filter units, and each amplifier 30. And a determination unit 35 to which the output from is input.
 フィルタ部FT、FL、FD、FP、FEはそれぞれ、入力された信号eの特定の周波数帯を強調して出力するフィルタ回路である。 Filter units FT, FL, FD, FP, and FE are filter circuits that emphasize and output a specific frequency band of the input signal e.
 フィルタ部FTは、遮断周波数0.1Hz程度の帯域の信号を通過させることで温度変化を分離して捉えることをを可能にする。フィルタ部FTからの出力信号は増幅器30で増幅されて信号STとなる。 The filter unit FT allows the temperature change to be separated and captured by passing a signal having a cutoff frequency of about 0.1 Hz. The output signal from the filter unit FT is amplified by the amplifier 30 to become a signal ST.
 フィルタ部FLは遮断周波数3~6Hz程度の帯域の信号を通過させることでシリコンマイクロフォン5が捉えた光の部分を分離して捉え、光の存在を判定することができる。フィルタ部FLからの出力信号は増幅器30で増幅されて信号SLとなる。 The filter unit FL can determine the presence of light by separating and capturing the portion of the light captured by the silicon microphone 5 by passing a signal having a cutoff frequency of about 3 to 6 Hz. The output signal from the filter unit FL is amplified by the amplifier 30 to become a signal SL.
 フィルタ部FDは不審者の侵入時に機能するもので、周波数7~10Hzの帯域の信号を通過させることにより、扉の開閉に伴う静圧変動成分を分離して捉え、扉の開閉を判定できる。フィルタ部FDからの出力信号は増幅器30により増幅されて信号SDとなる。 The filter unit FD functions when a suspicious person enters, and by passing a signal having a frequency band of 7 to 10 Hz, it can separately detect a static pressure fluctuation component associated with opening and closing of the door and determine whether the door is opened or closed. The output signal from the filter unit FD is amplified by the amplifier 30 to become a signal SD.
 フィルタ部FPは不審者の侵入に伴うピッキングに機能するもので、ピッキングによる音響の周波数特性の波形が約10~15Hzの帯域の周波数を通過させることで、ピッキングに伴う音響成分を分離して捉え、ピッキングを判定する。フィルタ部FPからの出力信号は増幅器30により増幅されて信号SPとなる。 The filter unit FP functions for picking when a suspicious person intrudes. The acoustic frequency characteristic waveform due to picking passes through a frequency band of about 10 to 15 Hz, so that the acoustic components accompanying picking are separated and captured. Determine picking. The output signal from the filter unit FP is amplified by the amplifier 30 to become a signal SP.
 フィルタ部FEは地震に伴う加速度に関して機能するもので、建物等の振動により生じる0.5~10Hz程度の周波数帯域の信号を通過させることで、信号eから加速度成分を分離して識別する。フィルタ部FEからの出力信号は増幅器30で増幅されて信号SEとなる。このようにシリコンマイクロフォン5を利用することで、低周波側から、光、静圧変動、音響の順に事象を振り分けることが可能となる。 The filter unit FE functions with respect to acceleration caused by an earthquake, and separates and identifies an acceleration component from the signal e by passing a signal in a frequency band of about 0.5 to 10 Hz generated by vibration of a building or the like. The output signal from the filter unit FE is amplified by the amplifier 30 to become a signal SE. By using the silicon microphone 5 in this manner, events can be distributed in the order of light, static pressure fluctuation, and sound from the low frequency side.
 判定部35は入力される信号ST、SL、SD、SP、SEのいずれが変化したかという情報と、その変化の特徴とに基づいてどのような物理現象が発生したかを判定する。換言すると、判定回路5のフィルタ部を適宜に構成することで、例えば、火災、扉の開閉、ピッキング、地震等の物理事象の少なくともいずれか一つを判定できる。特に、火災に関して光を利用した検出が可能となり、熱が伝わらない状況でも火災を検知することが可能になる。また、盗難等において、部外者が室内で懐中電灯を利用した場合でも、同様に光を利用した検出が可能となる。複数の物理現象が重なった場合でも、各物理現象に関わる物理量を分離できるため、重なって発生した物理現象を判定できる。判定部35は判定結果を判定信号rgとして出力する。 The determination unit 35 determines what physical phenomenon has occurred based on information indicating which of the input signals ST, SL, SD, SP, and SE has changed and the characteristics of the change. In other words, by appropriately configuring the filter unit of the determination circuit 5, for example, at least one of physical events such as fire, door opening / closing, picking, and earthquake can be determined. In particular, it is possible to detect the fire using light, and it is possible to detect the fire even when heat is not transmitted. Further, even when an outsider uses a flashlight indoors in the case of theft or the like, the detection using the light can be similarly performed. Even when a plurality of physical phenomena overlap, the physical quantity related to each physical phenomenon can be separated, so that the physical phenomenon generated by overlapping can be determined. The determination unit 35 outputs the determination result as a determination signal rg.
 判定信号rgが出力されたときには、セキュリティに関わる物理現象が発生したことを意味しているのであるから、例えば、警報の発声、スプリンクラーの作動、ガス管路等の遮断操作等の処理を行わせる。 When the determination signal rg is output, it means that a physical phenomenon related to security has occurred, so that, for example, processing such as sounding of an alarm, operation of a sprinkler, shut-off operation of a gas pipeline, etc. is performed. .
 〈シリコンマイクロフォンの特性試験1〉 <Character test of silicon microphone 1>
 本発明者はシリコンマイクロフォン、およびコンデンサマイクロフォンを計測に用いて特性を試験した。この結果を図4~図8に示す。 The present inventors tested the characteristics using a silicon microphone and a condenser microphone for measurement. The results are shown in FIGS.
 試験条件は2タイプのマイクロフォンを同一回路において接続し、回路の電源電圧を3Vで行った。直流成分を除去するためコンデンサを用いているが、それ以外にフィルタ、増幅回路は用いず、そのままの波形を記録し比較した。 The test condition was that two types of microphones were connected in the same circuit, and the power supply voltage of the circuit was 3V. A capacitor was used to remove the DC component, but no other filters or amplifier circuits were used, and the waveforms were recorded and compared as they were.
 計測は次のような状況下で行った。すなわち、扉の開閉については、実験室内にマイクロフォンを設置し、そこから約5m離れた扉の開閉を行い計測する。扉の開閉は2回行った(図4、図5参照)。 Measured under the following conditions. That is, the opening and closing of the door is measured by installing a microphone in the laboratory and opening and closing the door about 5 m away from the microphone. The door was opened and closed twice (see FIGS. 4 and 5).
 天井照明については、実験室内の天井に設置された蛍光灯すべてを同時に消灯・点灯して行った。蛍光灯の消灯・点灯は2回行った(図6、図7参照)。 For ceiling lighting, all fluorescent lamps installed on the ceiling in the laboratory were turned off and on simultaneously. The fluorescent lamp was turned off / on twice (see FIGS. 6 and 7).
 懐中電灯については、懐中電灯(豆電球)をマイクロフォンから直線距離で約30cm離れた位置に設置し、点灯・消灯を行った(図8参照)。 For the flashlight, a flashlight (bean bulb) was installed at a position approximately 30 cm away from the microphone in a linear distance, and turned on and off (see FIG. 8).
 これら図4~図8の計測グラフから、シリコンマイクロフォンはコンデンサマイクロフォンでは捉えられない光を捉えていることが確認できた。 From these measurement graphs in FIGS. 4 to 8, it was confirmed that the silicon microphone captures light that cannot be captured by the condenser microphone.
 〈シリコンマイクロフォンの特性試験2〉 <Characteristic test 2 of silicon microphone>
 上記の特性試験1の結果を踏まえて、どのような光源についてシリコンマイクロフォンが反応しているのかについて調べた。光源としては白熱球や蛍光灯、LEDなど、身の回りに存在する光源を計測対象として用いた。 Based on the result of the characteristic test 1 described above, the light source for which the silicon microphone was reacting was examined. As a light source, a light source existing around us, such as an incandescent bulb, a fluorescent lamp, and an LED, was used as a measurement target.
 計測には2つの異なったシリコンマイクロフォン、タイプ1、タイプ2を用意した。 * Two different silicon microphones, Type 1 and Type 2, were prepared for measurement.
 さらに計測条件としては、これら2タイプのシリコンマイクロフォンからの信号を、O.16~4.82Hzの周波数を通過帯域としたフィルタ部に通し、信号レベルに応じて増幅率を選択するようにした。この計測用回路に通し、データロガーを用いてPCに取り込み、グラフ表示を行った。 Furthermore, as a measurement condition, signals from these two types of silicon microphones were passed through a filter unit with a frequency band of O.16 to 4.82 Hz, and the amplification factor was selected according to the signal level. Through this measurement circuit, it was taken into a PC using a data logger and displayed in a graph.
 計測は夜間にこの状態で光源の点灯、消灯を行い、その波形を計測した(太陽光は除く)。計測した結果、太陽光については直射日光を計測し、増幅率1倍で図9のグラフが、天井照明は照度639LX、増幅率100倍で図10のグラフが、自転車用白色ライトはマイクロフォンから20cm離した状態でON/OFFしたとき、増幅率100倍で図11のグラフが、同じく赤色LEDライトの場合には照度1000LX、増幅率100倍で図12のグラフが、黄色(高輝度)LEDではマイクロフォンから約20cm離した状態でON/OFFしたときで図13のグラフが、豆電球の懐中電灯ではマイクロフォンから約20cm離した状態でON/OFFしたときで図14のグラフが、卓上用照明(白熱球)ではマイクロフォンから約20cm離した状態でON/OFFしたとき、増幅率2倍で図15のグラフが、同じく卓上用照明(蛍光灯)では、マイクロフォンから約20cm離した状態でON/OFFしたとき、増幅率2倍で図16のグラフが、および、赤外線LEDではマイクロフォンから約20cm離した状態でON/OFFしたとき、増幅率10倍で図17のグラフが得られた。 Measured in this state at night, the light source was turned on and off, and the waveform was measured (excluding sunlight). As a result of the measurement, direct sunlight was measured for sunlight, and the graph of FIG. 9 with an amplification factor of 1 was shown, the ceiling lighting was 639LX, the graph of FIG. 10 with an amplification factor of 100 times, and the white light for bicycles was 20 cm from the microphone. When turned on / off in a separated state, the graph of FIG. 11 with an amplification factor of 100 is the same for a red LED light, and the graph of FIG. 12 with an illumination factor of 1000LX and an amplification factor of 100 is the yellow (high brightness) LED. The graph of FIG. 13 when turned on / off with a distance of about 20 cm from the microphone, and the graph of FIG. 14 with the light bulb flashlight turned on / off with a distance of about 20 cm from the microphone, is a table lamp ( (Incandescent bulb), when turned ON / OFF at a distance of about 20 cm from the microphone, the graph of FIG. In the case of (fluorescent lamp), when turned ON / OFF in a state about 20 cm away from the microphone, the graph of FIG. 16 is doubled with the amplification factor, and in the case of the infrared LED, when turned on / off in a state about 20 cm away from the microphone, The graph of FIG. 17 was obtained with an amplification factor of 10.
 以上の特性試験2のうち、太陽光、卓上用照明(白熱球)および、赤外線LEDの結果から、上記のシリコンマイクロフォン5は光だけでなく熱源も効率的に検知することができる機能に優れている事が判明した。 Among the above characteristic tests 2, from the results of sunlight, desk lamp (incandescent bulb), and infrared LED, the silicon microphone 5 has an excellent function of efficiently detecting not only light but also a heat source. It turns out that there is.
 以上の特性試験1,2から、上記のシリコンマイクロフォン5は光及び熱源を効率的に検知することができる機能に優れている特性を有することが判明した。係る知見に基づき、多変量検出装置および多変量検出方法における検出部1をシリコンマイクロフォン5で構成した。これにより、一個のシリコンマイクロフォン5により多数の物理変量を効果的に検出し、識別することが可能となる。 From the above characteristic tests 1 and 2, it was found that the above-described silicon microphone 5 has an excellent function for detecting light and a heat source efficiently. Based on such knowledge, the detection unit 1 in the multivariate detection apparatus and the multivariate detection method is configured by the silicon microphone 5. As a result, a large number of physical variables can be effectively detected and identified by the single silicon microphone 5.
 本実施形態に係る多変量検出装置および多変量検出方法によれば、検出部1にシリコンマイクロフォン5を設けるだけで、シリコンマイクロフォンで検出した検知信号に基づき判定手段で複数の物理変量を識別できる。このため、チャンバを使用することなく検出部1を構成したので装置全体をコンパクトにできる。シリコンマイクロフォン5はCMOSやCCDとしても機能するので、光を直接に電子的に検知して識別精度を向上できる。シリコンマイクロフォンは遠赤外線に対しても反応しやすいので、人感センサとしても利用できる。また、蓋12に集光レンズ13を設けることで、広範囲の、微光でも効率良く集光でき、かつ、集光レンズを一体に設けることで装置全体をコンパクトに形成できる。さらに、精度の向上を図れる。また、シリコンマイクロフォン5は耐熱性に優れるので、コンデンサマイクロフォンでは不可能であった高温リフローはんだを可能にし、その結果、多変量検出装置における基板実装の自動化による実装効率の向上を図ることもできる。 According to the multivariate detection device and the multivariate detection method according to the present embodiment, it is possible to identify a plurality of physical variables by the determination unit based on the detection signal detected by the silicon microphone only by providing the detection unit 1 with the silicon microphone 5. For this reason, since the detection unit 1 is configured without using a chamber, the entire apparatus can be made compact. Since the silicon microphone 5 also functions as a CMOS or a CCD, it is possible to improve the identification accuracy by directly detecting light electronically. Since the silicon microphone easily reacts to far infrared rays, it can be used as a human sensor. Further, by providing the condensing lens 13 on the lid 12, it is possible to efficiently condense even a wide range of faint light, and the entire apparatus can be compactly formed by providing the condensing lens integrally. Furthermore, the accuracy can be improved. In addition, since the silicon microphone 5 is excellent in heat resistance, high-temperature reflow soldering that is impossible with a capacitor microphone is possible, and as a result, the mounting efficiency can be improved by automating the substrate mounting in the multivariate detection device.
 本発明は、上記実施形態に限られるものではなく、その趣旨及び技術思想を逸脱しない範囲で種々の変形が可能であることは言うまでもない。 The present invention is not limited to the above-described embodiment, and it goes without saying that various modifications can be made without departing from the spirit and technical idea thereof.
 例えば、筐体に孔部を設ける位置は、適宜変更してもよいものである。 For example, the position where the hole is provided in the housing may be changed as appropriate.
 また、シリコンマイクロフォン5としては上記で例に挙げたもの以外の形態を備えたものでもよいの勿論である。 Further, as a matter of course, the silicon microphone 5 may have a form other than those exemplified in the above example.
 本発明は音、圧力、加速度、温度、光など複数の物理量における多変量を単一のシリコンマイクロフォンを使用して検知する多変量検出装置および多変量検出方法に利用される。 The present invention is used in a multivariate detection apparatus and a multivariate detection method for detecting multivariate in a plurality of physical quantities such as sound, pressure, acceleration, temperature, and light using a single silicon microphone.

Claims (6)

  1.  音響、静圧変動、動圧変動、加速度、光の照射変化、および温度変化などの物理現象に関わる複数の物理変量を検出する検出部、および当該検出部から出力された出力信号に基づいて前記物理変量の種類を判定する判定手段を具備した多変量検出装置であって、前記検出部をシリコンマイクロフォンで構成したことを特徴とする多変量検出装置。 Based on an output signal output from the detection unit that detects a plurality of physical variables related to physical phenomena such as acoustic, static pressure fluctuation, dynamic pressure fluctuation, acceleration, light irradiation change, and temperature change, and the like A multivariate detection apparatus comprising a determination means for determining the type of a physical variable, wherein the detection unit is constituted by a silicon microphone.
  2.  前記シリコンマイクロフォンは、金属酸化膜半導体素子(CMOS:Complementary Metal Oxide Semiconductor)として機能させ、前記光を電子的に検知することを特徴とする請求の範囲1記載の多変量検出装置。 The multivariate detection device according to claim 1, wherein the silicon microphone functions as a metal oxide semiconductor device (CMOS) and detects the light electronically.
  3.  前記シリコンマイクロフォンを、長波長に対する反応特性を利用して、人感センサとして形成されることを特徴とする請求の範囲1または2記載の多変量検出装置。 3. The multivariate detection device according to claim 1 or 2, wherein the silicon microphone is formed as a human sensor using a response characteristic with respect to a long wavelength.
  4.  前記検出部に、前記シリコンマイクロフォンを収容する筐体を設け、当該筐体に、前記シリコンマイクロフォンに対向して集光レンズを取り付けたことを特徴とする請求の範囲1~3のいずれか一項に記載の多変量検出装置。 4. The detection unit according to claim 1, wherein a housing for housing the silicon microphone is provided in the detection unit, and a condenser lens is attached to the housing so as to face the silicon microphone. A multivariate detection apparatus according to 1.
  5.  前記シリコンマイクロフォンは、光に反応して信号を発し、且つドアの開閉を検知できる程度の低周波マイクロフォン特性を持っていることを特徴とする請求の範囲1~4のいずれか一項に記載の多変量検出装置。 The silicon microphone according to any one of claims 1 to 4, wherein the silicon microphone emits a signal in response to light and has a low-frequency microphone characteristic capable of detecting opening and closing of a door. Multivariate detector.
  6.  音響、静圧変動、動圧変動、加速度、光の照射変化、および温度変化などの物理現象に関わる複数の物理変量を検出部で検出し、当該検出部から出力された出力信号に基づいて前記物理変量の種類を判定手段で判定することにより、物理変量の種類を検知する方法であって、前記検出部をシリコンマイクロフォンで形成し、該シリコンマイクロフォンで検出した出力信号に基づいて前記物理変量の種類を判定することを特徴とする多変量検出方法。 The detection unit detects a plurality of physical variables related to physical phenomena such as acoustic, static pressure fluctuation, dynamic pressure fluctuation, acceleration, light irradiation change, and temperature change, and based on the output signal output from the detection part A method of detecting a type of a physical variable by determining a type of the physical variable by a determination unit, wherein the detection unit is formed by a silicon microphone, and the physical variable is determined based on an output signal detected by the silicon microphone. A multivariate detection method characterized by determining a type.
PCT/JP2010/057406 2009-04-27 2010-04-27 Multivariate detection device and multivariate detection method WO2010126015A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-107242 2009-04-27
JP2009107242A JP2010256193A (en) 2009-04-27 2009-04-27 Device and method for detection of multivariate

Publications (1)

Publication Number Publication Date
WO2010126015A1 true WO2010126015A1 (en) 2010-11-04

Family

ID=43032160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/057406 WO2010126015A1 (en) 2009-04-27 2010-04-27 Multivariate detection device and multivariate detection method

Country Status (2)

Country Link
JP (1) JP2010256193A (en)
WO (1) WO2010126015A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6409629B2 (en) * 2015-03-11 2018-10-24 オムロン株式会社 Sensor system
CN112945280A (en) * 2021-02-07 2021-06-11 苏州森斯微电子技术有限公司 Multivariable detection device based on capacitive microphone and disaster sensing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0943051A (en) * 1994-07-07 1997-02-14 Vaisala Oy Infrared detector
JP2004354199A (en) * 2003-05-29 2004-12-16 Tama Tlo Kk Multivariate detection sensor and physical quantity identification method using it
WO2007097456A1 (en) * 2006-02-27 2007-08-30 Tokyo Institute Of Technology Micro liquid quantity measuring device, and micro liquid quantity measuring method
JP2009200740A (en) * 2008-02-20 2009-09-03 Panasonic Corp Composite sensor and composite microphone device using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0943051A (en) * 1994-07-07 1997-02-14 Vaisala Oy Infrared detector
JP2004354199A (en) * 2003-05-29 2004-12-16 Tama Tlo Kk Multivariate detection sensor and physical quantity identification method using it
WO2007097456A1 (en) * 2006-02-27 2007-08-30 Tokyo Institute Of Technology Micro liquid quantity measuring device, and micro liquid quantity measuring method
JP2009200740A (en) * 2008-02-20 2009-09-03 Panasonic Corp Composite sensor and composite microphone device using the same

Also Published As

Publication number Publication date
JP2010256193A (en) 2010-11-11

Similar Documents

Publication Publication Date Title
JP7211622B2 (en) Intelligent spark detection device and method using infrared thermal image
RU2351918C2 (en) Method of estimation of diffused light signal and detector of diffused light for method realisation
US7482918B2 (en) Detection system and method for determining an alarm condition therein
CN101713733B (en) Photoelectric smoke sensor
US8792658B2 (en) Techniques for protection of acoustic devices
DK1857989T4 (en) Fire alarm device and method for testing its performance
US20060202847A1 (en) Smoke detector
JP3613005B2 (en) Pressure sensor and door open / close monitoring system
ATE457505T1 (en) METHOD AND DEVICE FOR DETECTING INDIVIDUALS USING ELECTRICAL FIELD SENSORS
CN104054114B (en) Current sense with internal ADC capacitors
US5247283A (en) Method for testing smoke sensor and a smoke sensor having a function of executing the test
WO2010126015A1 (en) Multivariate detection device and multivariate detection method
US5543783A (en) Glass break detector and a method therefor
US8346500B2 (en) Self check-type flame detector
JP2001249047A (en) Flame-detecting apparatus
US8154415B2 (en) Detector
US8661874B2 (en) Photoacoustic detector with background signal correction
KR101497539B1 (en) Smoke detector with dual optical chambers
JP6568725B2 (en) Fire detector
US20050068177A1 (en) Security device for detecting change of air pressure and method thereof
CN115552227A (en) Foreign matter detection apparatus and detection method
JP2003281641A (en) Embedded smoke sensor with alarm buzzer
JP4357876B2 (en) Multivariate detection sensor and physical quantity identification method using the same
EP2271967A2 (en) Process and system of energy signal detection
KR20140125075A (en) Photoelectric smoke head and method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10769713

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10769713

Country of ref document: EP

Kind code of ref document: A1