WO2010125998A1 - 蒸気測定装置 - Google Patents

蒸気測定装置 Download PDF

Info

Publication number
WO2010125998A1
WO2010125998A1 PCT/JP2010/057353 JP2010057353W WO2010125998A1 WO 2010125998 A1 WO2010125998 A1 WO 2010125998A1 JP 2010057353 W JP2010057353 W JP 2010057353W WO 2010125998 A1 WO2010125998 A1 WO 2010125998A1
Authority
WO
WIPO (PCT)
Prior art keywords
moisture
water
sensor
moisture sensitive
steam
Prior art date
Application number
PCT/JP2010/057353
Other languages
English (en)
French (fr)
Inventor
浩志 伊與田
保 井上
Original Assignee
公立大学法人大阪市立大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 公立大学法人大阪市立大学 filed Critical 公立大学法人大阪市立大学
Priority to JP2011511388A priority Critical patent/JPWO2010125998A1/ja
Publication of WO2010125998A1 publication Critical patent/WO2010125998A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/56Investigating or analyzing materials by the use of thermal means by investigating moisture content
    • G01N25/62Investigating or analyzing materials by the use of thermal means by investigating moisture content by psychrometric means, e.g. wet-and-dry bulb thermometers
    • G01N25/64Investigating or analyzing materials by the use of thermal means by investigating moisture content by psychrometric means, e.g. wet-and-dry bulb thermometers using electric temperature-responsive elements

Definitions

  • the present invention relates to a steam measuring device having a relatively simple configuration and capable of measuring a wide range of humidity (water vapor concentration) including only water vapor from the humidity of room air over a range from room temperature to high temperature.
  • the present invention has been made in view of the above-described problems, and the object thereof is a simple configuration, which is less likely to cause deterioration of the sensor due to condensation and the like, and is capable of measuring qualitative values or reproducing processing conditions. It is an object of the present invention to provide a vapor measuring apparatus capable of measuring to the extent possible.
  • the present inventors have made a porous material that is temperature-stable and thermally stable as a moisture-sensitive part, and while appropriately supplying or discharging water from the outside to the moisture-sensitive part, By measuring the temperature of the moisture sensitive part while maintaining the state where water is present near the surface of the wet part or the water is evaporating, the room temperature is continuously increased even at a high temperature exceeding 300 ° C.
  • a steam measuring device capable of measuring in a wide humidity range from superheated steam to superheated steam was obtained, and the present invention was completed. That is, the present invention is as follows.
  • the steam measuring device of the present invention is a steam measuring device having a moisture sensitive part formed of a porous material and a first sensor for measuring a temperature in the vicinity of the surface of the moisture sensitive part. And a supply path for supplying water, and a discharge path for discharging water from the inside of the moisture sensitive part.
  • the vapor measuring apparatus of the present invention includes a moisture-sensitive portion formed of a porous material, a first sensor that measures a temperature in the vicinity of the surface of the moisture-sensitive portion, and a moisture amount present on the surface of the moisture-sensitive portion.
  • the steam measuring device includes a control unit that controls water supply or water discharge based on the amount of water measured by the second sensor.
  • the vapor measuring device may include a third temperature sensor that measures the temperature of the gas around the moisture sensitive portion.
  • the vapor measuring device may include a pressure sensor that measures the pressure outside the moisture layer present on the surface of the moisture sensitive portion.
  • the steam measuring device calculates the amount of water vapor based on data from the first temperature sensor, the third temperature sensor, and the pressure sensor.
  • the moisture sensitive portion is preferably formed of a ceramic porous material in which 0.1 ⁇ m to 10 ⁇ m pores and 10 to 30 ⁇ m pores are mixed.
  • the moisture sensing part may be provided with a flow path of water that penetrates the substantially central part of the moisture sensing part.
  • the moisture-sensitive part may have a columnar structure, and may be provided with a water flow path that passes through substantially the center in the axial direction of the column.
  • the moisture sensitive part may have a spherical shape or a part of a spherical outer shape.
  • the first sensor and the second sensor have an electrode structure, and a change in electric resistance and / or a change in capacitance is detected via the electrode.
  • the steam measuring device of the present invention is a steam measuring device having a moisture sensitive part formed of a porous material and a first sensor for measuring a temperature in the vicinity of the surface of the moisture sensitive part.
  • the vapor measuring apparatus of the present invention may supply a liquid substance having a boiling point equal to or lower than the temperature of the surrounding gas to the moisture sensitive part, and measure the vapor concentration of the substance contained in the surrounding gas.
  • the present invention is an apparatus provided with the above-described vapor measuring apparatus.
  • the above-mentioned apparatus functions as the humidifier or the humidification sensor.
  • the present invention will be described based on air, water, and water vapor.
  • the present invention is not limited to air, water, and water vapor, and a liquid substance having a temperature below the ambient gas temperature in the moisture sensitive portion. The same can be applied to the case of supplying.
  • the vapor measuring apparatus of the present invention measures the temperature of the moisture sensitive part while maintaining the state where water is present near the surface of the moisture sensitive part or the water is evaporating.
  • the humidity (the amount of water vapor in the gas expressed in terms of absolute humidity, water vapor concentration, water vapor partial pressure, etc.), even at high temperatures exceeding 300 ° C., continuously and over a wide humidity range from indoor air to superheated water vapor )can be measured.
  • the steam measuring device of the present invention can be used for a heating device using superheated steam or a mixed gas of air and steam, rather than being used as an independent measuring instrument for accurately measuring an absolute value.
  • its value and usefulness are increased by incorporating it into various devices such as food processing devices, drying devices, sterilization devices, heating devices, etc., in particular, where objects to be processed and gas are in direct contact and processing.
  • a control means for minimizing the amount of energy used by the apparatus a control means for the most appropriate processing conditions according to the processing object and processing purpose, and a control means for making the processing conditions reproducible. Can be used.
  • FIG. 1 is a conceptual diagram illustrating the configuration of the vapor measuring apparatus according to the first embodiment.
  • FIG. 2 is a conceptual diagram illustrating a configuration of a modified example of the steam measuring apparatus according to the first embodiment.
  • FIG. 3 is a conceptual diagram illustrating the configuration of the vapor measuring apparatus according to the second embodiment.
  • FIG. 4 is a conceptual diagram illustrating the configuration of the steam measuring apparatus according to the third embodiment.
  • FIG. 5 is a conceptual diagram illustrating the configuration of the vapor measuring apparatus according to the fourth embodiment.
  • FIG. 6 is a diagram for explaining the measurement principle of the steam measuring apparatus of the present invention.
  • FIG. 7 is a graph showing the relationship between temperature and vapor mole fraction.
  • FIG. 8 is a diagram for explaining the pore size distribution (mercury intrusion method) of the porous material used in the moisture sensitive part of the vapor measuring apparatus of the present invention.
  • FIG. 9 is a graph obtained by measuring the responsiveness of humidity using the vapor measuring apparatus of the present invention.
  • FIG. 10 is a graph for confirming whether or not water is present on the surface of the moisture sensitive part when the water vapor molar fraction is changed using the vapor measuring apparatus of the present invention.
  • FIG. 1 is a diagram showing an example of the configuration of the vapor measuring apparatus of the present invention.
  • the steam measuring device of the present invention includes a humidity sensing unit 1, a first sensor 2 for measuring the temperature near the surface of the moisture sensing unit, a supply path 8, and a discharge path 9. Is provided. Further, in the example of this figure, a calculation unit 6 is provided.
  • air pressure (PT) air pressure
  • the vapor measuring apparatus according to the present embodiment is suitable for use when the temperature around the moisture sensitive portion (Tgas) and the pressure (PT) in the airflow portion are known by some means.
  • the moisture-sensing part 1 is a part for measuring the temperature of water in contact with the surrounding airflow by causing water to exist on the surface thereof.
  • the moisture sensitive part 1 is formed of a thermally stable porous material.
  • the porous material is preferably ceramic. This is because ceramic is thermally stable.
  • the porous material preferably has a high wettability in order to allow water to exist on the surface. In the present specification, “wetability” means ease of compatibility between the surface of the porous material and water (free water).
  • the void structure is such that the water present in the void is not easily affected by gravity, and fine pores (0.1 to 10 ⁇ m) for the water to wet the entire surface of the moisture sensitive portion by capillary suction force. ) And supplying water to the surface of the moisture sensitive part with a small pressure that can be generated by a space between the water supply and the vicinity of the surface of the moisture sensitive part or the head, or excess water on the surface. It is preferable to have pores (10 to 30 ⁇ m) for sucking and discharging. It is more preferable that the fine pores have a structure having almost no pores of 30 ⁇ m or more because water existing in the voids is hardly affected by gravity.
  • the size of the diameter is calculated by mechanically calculating a diameter in a certain direction on a plane as a diameter.
  • the method for calculating the diameter is not particularly limited, and is a known method. For example, the pore diameter measured by a mercury intrusion method or the like.
  • the diameter equivalent diameter satisfies the following conditions.
  • (1) In order to facilitate movement to the surface by capillary suction force, it is desirable that the pore size distribution is wide in the unitary pore structure (10 to 30 ⁇ m). In addition, it can be expected that the moisture transfer coefficient is larger in the binary pore structure than in the one-pore structure.
  • (2) In order for water to move appropriately due to the pressure difference, it is desirable to have pores of 10 to 30 ⁇ m.
  • the porosity is limited from the viewpoints of ease of manufacturing, manufacturing cost, and material strength, but it is preferably 0.45 or more and higher. The porosity is measured by a known method such as a mercury intrusion method or a method of including water.
  • the shape of the moisture sensitive portion 1 is not particularly limited.
  • the shape is spherical, columnar (columnar, prismatic, etc.), pyramid (conical, pyramidal, etc.), frustum (frustum, pyramidal). , Etc.), bell shape, spindle shape, plate shape (flat plate shape, curved plate shape, corrugated plate shape, cubic shape, etc.).
  • the outer shape of a part of a sphere means one having an outer shape including a part of a sphere, such as a hemisphere, a frustum shape, or a bell shape.
  • the moisture sensing section is connected to the supply path and the discharge path, and the flow through the moisture sensing section is used to circulate water inside the moisture sensing section and hold water to be supplied to the surface.
  • a road space
  • water is evenly supplied to the surface of the moisture-sensitive part. This is preferable.
  • the moisture-sensitive part has an outer shape, a channel shape, and a porous structure so that water can be supplied from the channel to the surface.
  • a preferable outer shape of the moisture-sensitive portion has a cylindrical shape, a spherical shape, or a part of a spherical shape for reasons such as ease of manufacture.
  • the flow path of the moisture sensitive portion 1 is not particularly limited as long as it connects the supply path 8 and the discharge path 9, and is a single tube, U-shaped tube, double tube that penetrates the porous material, or these A combination of a plurality of these may be used.
  • a single tube or a U-shaped tube both ends thereof, and in the case of a double tube, the inner tube and the outer tube may be connected to either the water supply channel or the water discharge channel, respectively.
  • a sphere it is a spherical space near or near the center of the sphere, and as an example of a small moisture-sensitive part shape that is relatively easy to manufacture. I just need it.
  • the moisture-sensitive part 1 there is no restriction
  • size According to the intended purpose, environment, the pore structure of a porous material, etc., it can select suitably.
  • the moisture sensitive portion is a columnar shape having a diameter of about 10 mm, it may be a tube having a diameter of 0.5 to 7 mm.
  • the part where heat is applied in contact with the surrounding airflow is in a state where water is present.
  • the temperature of this part is important.
  • the portion where heat is not directly transmitted from the airflow has a structure in which water is not supplied from the flow path so that evaporation does not occur, or the surface portion where water does not easily evaporate is insulated.
  • the moisture-sensitive part is a part that is fixed to the supply path or the discharge path with a sealant or the like, or a part that contacts the apparatus wall surface for attachment.
  • the moisture sensitive part 1 formed of a porous material having such a void structure is not particularly limited and can be manufactured by a known method.
  • a material for a moisture-sensitive part having an appropriate pore structure can be obtained by mixing an inorganic solid material with a powdery substance containing carbon as a main component and baking at a high temperature.
  • the moisture sensitive portion 1 has a shape that can be easily replaced.
  • the first sensor 2 is provided in the vicinity of the surface of the moisture sensitive unit 1.
  • the portion where heat is applied by contact with the surrounding airflow on the surface of the moisture sensitive portion 1 is in a state where water is present.
  • the first sensor 2 is provided at this portion.
  • the first sensor 2 measures the temperature near the surface of the moisture sensitive unit 1.
  • the first sensor 2 measures temperature based on, for example, a thermocouple, a resistance temperature detector, or a similar principle.
  • the vicinity of the surface of the moisture sensitive portion 1 includes the inside of the moisture sensitive portion. In this case, the first sensor is inserted into the moisture sensitive part.
  • the supply path 8 and the discharge path 9 are pipes which are formed or protected by a material having heat resistance, preferably heat insulation.
  • the supply path 8 and the discharge path 9 both have one end connected to the moisture sensing section 1 and the other end connected to a water supply section provided outside the airflow space (for example, a pipe or a processing chamber) for measuring water vapor. Connected to the water drain.
  • the water supply unit and the water discharge unit may be different or the same. In the example of FIG. 1, the water supply unit and the water discharge unit are the same.
  • the supply path 8 and the discharge path 9 are formed of a material having heat resistance, preferably a material having heat insulation, at a portion connected to the moisture sensitive portion 1 or a portion exposed to an air flow space for measuring water vapor. Or a protected tube. Specific examples of these materials include silicon, Teflon (registered trademark), and stainless steel. Also in the water supply part, it is good to be formed with these materials.
  • the thickness and length of the pipe and the positional relationship with the water tank may be determined.
  • water cooling is required in order to make water temperature suitable, it can also be used as a water cooling part.
  • the supply path 8 and the discharge path 9 are heated by water in a portion exposed to the airflow space or radiated including a water tank in a portion not exposed to the airflow in order to make the temperature of the water supplied to the moisture sensitive unit 1 appropriate. It is desirable to adjust the presence or absence of heat insulation in consideration of the effect of cooling.
  • the supply path 8 and the discharge path 9 are each provided with pressure control means in the flow path such as the pump 10 and the valve 11, or a configuration in which a head difference is generated between the water supply part and the water discharge part.
  • pressure control means in the flow path such as the pump 10 and the valve 11, or a configuration in which a head difference is generated between the water supply part and the water discharge part.
  • the amount of water supply / drainage is preferably determined or controlled appropriately from the viewpoints of the amount of water evaporation in the moisture-sensitive part, the improvement of response time when the humidity of the airflow is reduced, and the control of the water temperature supplied to the moisture-sensitive part. .
  • the water temperature control for example, if the pipe line of the supply unit exposed to high temperature is long, water may be heated and boil between them. In this case, insulate the pipes in the high-temperature part, and do not insulate the pipes and water tanks outside the air flow space to be measured for cooling. It is preferable to increase the amount of water supply / drainage.
  • the temperature of water in the portion supplied to the moisture-sensing unit is near the wet bulb temperature in order to improve measurement accuracy. For this reason, it is advisable to optimize the heat dissipation and heat insulation design in the piping.
  • a mechanism for positive control may be provided as necessary.
  • the adjustment of the moisture amount may be performed manually by visual observation, or the surface of the moisture sensitive portion 1 may be image-analyzed to observe the wet state of the surface of the moisture sensitive portion 1.
  • the calculating part 6 calculates
  • FIG. since only one sensor is required, a simple structure can be obtained. It is preferable to apply when the evaporation rate is slow under the measurement conditions and the supply of water is sufficient mainly by the movement of water with only capillary suction force.
  • RO membrane reverse Osmosis Membrane
  • the device for purifying water can be installed in a pump inlet, outlet, water supply tank, drainage tank, or a pipe connecting the water supply tank and the drainage tank. It is desirable that these are cartridge type and can be easily replaced. By providing the function of measuring electrical conductivity for measuring the ion concentration, more advanced control and water management are possible.
  • Embodiment 1 (Modification of Embodiment 1)
  • the example of Embodiment 1 shown in FIG. 1 can be further simplified. As shown in FIG. 2, the pump and the discharge path are omitted from the configuration of FIG. Other configurations are the same as those in FIG.
  • a small water supply means such as a cartridge is used, or the pore structure of the moisture sensitive portion and the thickness of the pipe line are maintained so that the surface of the moisture sensitive portion can be kept wet. Adjust the sheath and length.
  • This embodiment is particularly suitable for short-time use.
  • FIG. 3 is a diagram showing an example of the configuration of the vapor measuring apparatus of the present invention.
  • the steam measuring device of the present invention exists near the surface of the moisture sensitive part 1, the first sensor 2 for measuring the temperature near the surface of the moisture sensitive part, and the moisture sensitive part.
  • a second sensor 3 for measuring the moisture content, a supply path 8 and a discharge path 9 are provided.
  • the calculating part 6 and the control part 7 are provided. Except for the second sensor 2 and the control unit 7, the configuration is the same as in FIG.
  • the second sensor 3 is provided in the vicinity of the surface of the moisture sensitive unit 1. The portion where heat is applied by contact with the surrounding airflow on the surface of the moisture sensitive portion 1 is in a state where water is present. The second sensor 3 is provided at this portion. The second sensor 3 measures the amount of moisture present near the surface of the moisture sensitive part. In this specification, the amount of moisture means the degree of whether or not the surface of the moisture sensitive part is wet.
  • a specific example of the second sensor 3 includes a sensor that measures changes in electrical conductivity, dielectric constant, capacitance, and the like depending on the amount of moisture.
  • Those physical quantities may be measured (contact measurement) as the output from the electrode in contact with the surface of the moisture-sensitive part, or via an optical fiber or optical element arranged in a non-contact manner near the surface of the moisture-sensitive part.
  • measurement non-contact measurement
  • measurement may be performed as a change in infrared absorption.
  • the steam measuring device of the present invention when water content is measured by electric conductivity, it is preferable to use water having an appropriate electric conductivity. For this reason, it is desirable to attach an ion exchange resin, an ion exchange membrane, an RO membrane, or a water purifier for appropriately removing salts, ions, scales, dirt, etc. dissolved in water to the water supply unit.
  • Control part When the second sensor 3 is used as shown in FIG. 3, a signal for controlling the supply or discharge of water is transmitted from the control unit 7 using data obtained by measuring the amount of water near the surface of the moisture sensitive unit 1. Specifically, the increase / decrease in the supply of water from the pump and the increase / decrease in the discharge of water from the humidity sensing unit are performed.
  • thermocouples can be used for the first sensor 2 and the second sensor 3.
  • the second sensor can be used as a backup when the first sensor fails or to improve the temperature measurement accuracy.
  • both the first sensor 2 and the second sensor 3 are used as electrodes continuously or intermittently in FIG.
  • the controller 7 does not increase the supply of water if it detects the energization of the first sensor 2 and the second sensor 3.
  • the control unit 7 increases the pressure of the pipe line to increase the supply of water, or closes the valve 11 to supply water to the surface of the moisture sensitive unit 1.
  • FIG. 4 is a diagram showing an example of the configuration of the steam measuring device of the present invention.
  • the vapor measuring apparatus of the present invention includes a moisture sensing unit 1, a first sensor 2 for measuring the temperature near the surface of the moisture sensing unit, and the gas surrounding the moisture sensing unit 1.
  • a third sensor 4 for measuring temperature, a supply path 8 and a discharge path 9 are provided.
  • the calculating part 6 and the control part 7 are provided. Except for the third sensor 4, the configuration is the same as in FIG.
  • the 2nd sensor 3 and the control part 7 which measure the moisture content which exists in the surface vicinity of the moisture sensitive part 1, the 2nd sensor 3 and the control part 7 are included. Can be omitted.
  • the modified example of the above embodiment may include a third sensor as in the present embodiment.
  • the vapor measuring device of the present embodiment is suitable for use when the pressure of the airflow portion is known.
  • the third sensor 4 measures the ambient temperature (Tgas) around the moisture sensitive unit 1.
  • the third sensor 4 only needs to be able to measure the temperature of the airflow that is not affected by the moisture sensitive unit 1.
  • the third sensor 4 may be fixed to the moisture sensitive unit 1 or separated.
  • the third sensor 4 can measure the temperature of the gas, such as a thermocouple or a resistance temperature detector.
  • FIG. 5 is a diagram showing an example of the configuration of the steam measuring device of the present invention.
  • the steam measuring device of the present invention includes a humidity sensing unit 1, a first sensor 2 for measuring the temperature near the surface of the moisture sensing unit, and the temperature of the gas around the moisture sensing unit.
  • a third sensor 4 for measuring the pressure a pressure sensor 5, a supply path 8, and a discharge path 9.
  • the calculating part 6 and the control part 7 are provided. Except for the third sensor 4 and the pressure sensor 5, the configuration is the same as in FIG.
  • the 2nd sensor 3 and the control part 7 which measure the moisture content which exists in the surface vicinity of the moisture sensitive part 1, the 2nd sensor 3 and the control part 7 are abbreviate
  • the steam measuring apparatus is suitable for use when the amount of water vapor is determined using the wet bulb temperature (Tsf), the ambient temperature (Tgas) around the moisture sensitive portion, and the pressure (PT) of the airflow portion. .
  • the pressure sensor 5 is provided to measure the pressure (total pressure PT) outside (airflow) of the moisture layer present on the surface of the moisture-sensitive part 1.
  • the pressure sensor 5 may be fixed to the moisture sensitive part 1 or separated.
  • the type of the pressure sensor 5 is not particularly limited as long as it can withstand the use environment, and a known pressure gauge can be used.
  • the water pressure of a supply channel or a drainage channel is measured, and the value estimated based on the value can also be used.
  • a pressure gauge that can be used in the present invention, when the pressure change over time is small, for example, a pressure gauge for visual observation using a Bourdon tube or a simple method such as a U-tube manometer is used. There may be.
  • the calculation unit 6 can obtain the calculation result by using the value of the atmospheric pressure approximately.
  • the water surface (the gas phase side of the gas-liquid interface) has a water vapor partial pressure (concentration) equivalent to the saturated vapor pressure at the water temperature, which is due to the difference in water vapor partial pressure or the total pressure with the surrounding gas.
  • a water vapor flow (j) occurs from the surface of the water to the surrounding gas.
  • the gas temperature is high and the evaporation rate is fast, or under conditions where radiation heat transfer affects, it is recommended to correct those effects according to the required measurement accuracy.
  • the influence of radiation can be reduced by attaching a radiation shielding plate.
  • the flow velocity can be adjusted by providing a bypass part in the pipe to be measured.
  • qcd changes with time as the surface temperature of water changes, so theoretical calculations or measured values such as temperature (water supply temperature, Correction may be made based on the value of qcd estimated from the drainage temperature, sensor internal temperature, and the like.
  • the measuring apparatus of the present invention can improve the performance of an apparatus that uses high-temperature and high-humidity air or superheated steam.
  • the amount of water vapor is measured by, for example, using the value of Tsf for Tad and incorporating the following formulas (1) and (2) into the computing unit.
  • the water vapor obtained from the temperature Tsf near the surface of the moisture sensitive portion, the temperature Tgas of the gas around the moisture sensitive portion, the pressure obtained from the pressure sensor, and the temperature near the surface of the moisture sensitive portion may be used as long as the amount of water vapor can be measured from the partial pressure.
  • a radiation shielding device around the sensor, bleed (suction), and attach this sensor to a pipe section of low radiation material, or use a material with low emissivity for moisture sensitivity. There are methods such as manufacturing parts.
  • Temperature measurement error may occur.
  • the temperature measurement error can be reduced by using a minute platinum resistance thermometer or the like instead of the thermocouple, or using a sheath thermocouple.
  • the structure can be simplified by inserting from the end surface in the axial direction of the moisture sensitive portion 1.
  • the attachment position is preferably the surface.
  • the surface is affected by the airflow temperature, it is significant from a practical aspect if it is attached slightly inside the surface.
  • a temperature sensor When mounted on the surface, or when mounted on the inner side of the surface, in each case, a temperature sensor is attached to one or more other locations in the inner radial direction of the moisture sensitive portion 1, for example, a portion slightly close to the surface from the water flow path, or the water temperature (supply) Measure water temperature, drainage temperature, or both) and calculate qcd or humidity (water vapor concentration) using these data, so that faster response time and higher accuracy can be measured. It becomes possible. In this case, the water vapor concentration is obtained by correcting the equation (1) or using another heat conduction equation or a heat / mass transfer model.
  • the intake damper is controlled in the closing direction, the water vapor supply amount from the boiler (in the case of an electric boiler, input) (Such as increasing the amount of spray, simultaneously increasing the supply water temperature, or increasing the hot air temperature at the supply location, etc.) Good.
  • Tsf exceeds the boiling point temperature in PT (100 ° C at atmospheric pressure)
  • the measured value is judged to be abnormal, a warning is issued, and the concentration output is changed to a safe value. It is desirable to control the amount of water vapor (humidity) by increasing the amount. Such a state can occur when the water supply is not operating properly, or when the airflow temperature is abnormally high, or when the flow rate is fast and “the evaporation rate is unexpectedly high”.
  • a vapor measuring device in which only the first and third sensors are attached in the device.
  • PT can be approximated to atmospheric pressure, and water can be supplied so that the surface of the moisture sensitive portion can be sufficiently wetted only by capillary suction.
  • the calculation unit for example, designs an electronic circuit and a calculation program so that a predetermined voltage signal output value is obtained for the water vapor concentration after AD conversion and calculation of the first and third temperature signals converted into voltage
  • the output signal is displayed on a voltmeter and simultaneously output to a humidity control circuit or an external device.
  • a small microcomputer, microprocessor, microcontroller, or the like can be used for the arithmetic processing and control.
  • the steam measuring apparatus of the present invention By incorporating the measuring device of the present invention into various devices that use superheated steam, a mixed gas of air and water vapor, or experimental devices for research and development, it is possible to grasp processing conditions such as humidity, increase the efficiency of the device, or It is possible to grasp or control to the optimum processing conditions according to the processing object and processing purpose.
  • the steam is used.
  • the steam measuring apparatus is not limited to the steam, and can be similarly applied to a liquid substance having a boiling point equal to or lower than the temperature of the surrounding gas.
  • It can be used to grasp and control the heat treatment conditions in an oven or an experimental apparatus using superheated steam, saturated steam, steam or other mixed gas.
  • the exhaust enthalpy measurement and operating conditions can be grasped by attaching a sensor to the exhaust from the drying chamber or the exhaust part from the device to the outside air. Furthermore, quality control and energy saving can be performed by controlling the humidity of these devices.
  • the vapor measuring apparatus of the present invention can be further applied as follows. By measuring the evaporation amount (evaporation rate) of water per unit time from the difference between the supply amount and the discharge amount of water to the moisture sensitive part, the heat transfer amount and heat transfer coefficient by convection and radiation can be obtained. If the relationship between the flow velocity and the heat transfer coefficient is known, the flow velocity can be measured.
  • evaporation amount evaporation rate
  • the drainage tank and the water supply tank are the same, and the amount of evaporation is measured by measuring the amount of water in the tank in detail with an electronic balance or the like. Since the value is proportional to the amount of heat transfer, a convection (or a combination of convection and radiation) heat transfer coefficient between the airflow and the moisture sensitive part can be obtained. In addition, the flow velocity of the airflow can be obtained from the value. Furthermore, a liquid other than water can be flowed in the same manner as described above in a predetermined condition and in a stream of components, and the same measurement can be performed. As a result, using this measuring device, it is possible to easily obtain approximate values for the heat transfer coefficient, mass transfer coefficient, and other factors such as thermal conductivity, kinematic viscosity, and fluid-liquid substance diffusion coefficient of various substances. Can be sought.
  • the absolute pressure that contributes greatly to convective heat transfer is up to about 20 kPa. Even under a reduced pressure or a pressure higher than atmospheric pressure, although the error of the absolute value increases, the mixing ratio of water vapor and air can be measured or the qualitative change tendency of the mixing ratio can be monitored.
  • the vapor measuring apparatus of the present invention can measure not only the substance concentration in the airflow at a high temperature but also the substance concentration in the airflow in a state of 0 ° C. or lower such as a freezer.
  • the surface of part of the moisture sensitive part is processed with glaze and high temperature sealant so that moisture cannot move, and heat insulation and the area of the evaporation surface are adjusted by attaching a heat insulating material.
  • the measurement accuracy of the steam measuring device of the present invention or the accuracy when measuring the heat transfer coefficient can be improved.
  • the moisture sensitive portion is cylindrical, errors due to the influence of the end face can be reduced by processing the end face.
  • this steam measuring device When this steam measuring device is incorporated in a device for measuring water vapor, it can function as a humidification sensor or a humidifier in addition to the function of the steam measuring device. Specifically, when the steam measuring device detects that the device is below a predetermined humidity, it sends a signal instructing an increase in humidity to the control unit of the device to humidify the inside of the device, or the device is For example, when the steam measuring device detects that the humidity has become lower than the humidity, the steam measuring device supplies a large amount of water to the moisture sensitive portion, and the steam measuring device itself supplies the humidity.
  • a commercially available air flow meter for normal temperature and a predetermined amount of water vapor measured by the condensation method were mixed to produce a gas having a predetermined water vapor molar fraction. Considering an ideal gas, it is equivalent to water vapor partial pressure / total pressure.
  • the steam measuring apparatus shown in FIG. 5 (length in the major axis direction: about 5 cm, outer diameter: about 9 mm) is prepared, and the temperature measured by the moisture sensitive part 1 is used as the adiabatic cooling temperature, assuming that the Lewis relationship is established. The partial pressure was determined. The calculation is described in, for example, literature (Ikeda et al., Proceedings of the 2009 Annual Meeting of the Japan Society of Mechanical Engineers, Vol. 3, No. 09-1, pp. 101-102 (2009)).
  • the calibration condition means a predetermined water vapor mole fraction of the produced gas
  • the airflow temperature means an actual measurement value in the apparatus at each airflow temperature.
  • FIG. 8 shows the pore size distribution (mercury intrusion method) of the porous material used in the moisture sensitive part 1 of the manufactured device. The porosity of the moisture sensitive part used in this example was about 0.5.
  • Example 2 Using the apparatus shown in FIG. 4, the response time was confirmed by changing the humidity in steps, using an apparatus (not shown) for switching between the produced air and water vapor.
  • the experiment was performed under the conditions that the air flow flux was 1 m / s and the wet bulb temperature was changed from 80 ° C to 100 ° C.
  • the results are shown in FIG. From FIG. 9, it can be seen that the water vapor mole fraction (humidity) can be measured stably over one hour with high response over a wide range from 0 to 1.
  • what is represented by the straight line in a graph shows the approximate value of a flowmeter, and what is represented by the curve means the measured value at the time of using this vapor
  • FIG. 10 shows the results of recording the signals of the first to third sensors when the airflow temperature Tgas is about 200 ° C. and the flow velocity U is about 1 m / s.
  • the airflow humidity is changed from 0.4 (high humidity air) to 1 (superheated steam) from 20 seconds to 40 seconds after the start of recording.
  • the temperature of the first sensor changes when the water vapor mole fraction is changed.
  • it turns out that it is 100 degreeC on the conditions of the water vapor
  • the signal E (right axis scale of the graph) from the second sensor 3 (electric resistance sensor having an electrode) shows an increasing tendency when the amount of water increases, and indicates 0 V when water is exhausted. From FIG.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

 簡易な構成で、結露などによりセンサが劣化するおそれが少なく、しかも、定性的な値の測定、あるいは処理条件の再現が可能な程度の測定ができる蒸気測定装置を提供する。 このため、本発明の蒸気測定装置は、多孔質材料で形成される感湿部と、前記感湿部の表面付近温度を測定する第1のセンサとを有する蒸気測定装置であって、前記感湿部内に、水を供給する供給路と、前記感湿部内から、水を排出する排出路とを備えることを特徴とする。

Description

蒸気測定装置
 本発明は、比較的簡単な構成で、常温から高温に渡って、室内空気の湿度から水蒸気のみを含むような幅広い湿度(水蒸気の濃度)の測定が可能な蒸気測定装置に関する。
 乾燥装置や食品加工装置などのように高温で用いられる装置においても装置内の湿度を測定することが要求される。しかし、従来の常温で用いられる湿度センサは、高温での使用は困難である。特に、湿球部にガーゼ(不織布、ウィックと呼ばれるもの)を捲いた構造のものは、熱に弱い、100℃の熱水中で変性が起き得る、乾くと焦げるなどの問題がある。
 一方、高温で測定可能なセンサも開発されている(特許文献1、2参照)。しかし、これらのセンサは、高価である、あるいは水蒸気の結露などによりセンサが劣化や破損するなどの問題がある。このため、乾燥装置や食品加工装置などの、幅広い水蒸気濃度での測定が必要な装置や汚損や破損を生ずるおそれのある装置への利用は進んでいない。
 これらの装置においては、品質の管理は経験的なものに依存し、処理条件の再現性に乏しかったり,制御が不十分で最適化されておらず、そのためにエネルギー効率も悪いという問題がある。
 また、研究開発等においては、手軽に絶対値の測定ができる湿度測定装置が要求される。一方、実際に製造等に用いられる装置では、定性的な値の測定、あるいは処理条件の再現が可能な程度の測定ができ、使用者が構造と原理を容易に理解でき、かつ安価な装置が求められる。しかし、現在の高温用の湿度測定装置では、このような要求に応えられていないという問題がある。
特開2001-201478号公報 特開2008-82993号公報
 すなわち、本発明は、上記問題に鑑みなされたものであり、その目的は、簡易な構成で、結露などによりセンサが劣化するおそれが少なく、しかも、定性的な値の測定、あるいは処理条件の再現が可能な程度の測定ができる蒸気測定装置を提供することにある。
 本発明者らは、上記課題を鋭意検討した結果、温度測定が可能で熱的に安定な多孔質材料を感湿部とし、感湿部に水を外部から適切に供給あるいは排出しながら、感湿部表面近傍に水が存在している、あるいは水が蒸発している状態を保ちつつ、感湿部温度を測定することで、300℃を超える高温下においても、連続的に、かつ室内温度から過熱水蒸気に至る広い湿度範囲で測定が可能な蒸気測定装置を得て、本発明を完成した。すなわち、本発明は以下のとおりである。
 本発明の蒸気測定装置は、多孔質材料で形成される感湿部と、前記感湿部の表面付近温度を測定する第1のセンサとを有する蒸気測定装置であって、前記感湿部内に、水を供給する供給路と、前記感湿部内から、水を排出する排出路とを備えることを特徴とする。
 また、本発明の蒸気測定装置は、多孔質材料で形成される感湿部と、前記感湿部の表面付近温度を測定する第1のセンサと前記感湿部の表面に存在する水分量を測定する第2のセンサとを有する蒸気測定装置であって、前記感湿部内に、水を供給する供給路と、前記感湿部内から、水を排出する排出路とを備えることを特徴とする。
 前記蒸気測定装置は、前記第2のセンサにより測定した水分量に基いて、水の供給または水の排出を制御する、制御部を備える。
 前記蒸気測定装置は、前記感湿部の周囲の気体の温度を測定する第3の温度センサを備えていてもよい。
 前記蒸気測定装置は、前記感湿部の表面に存在する水分層の外部の圧力を測定する圧力センサを備えていてもよい。
 前記蒸気測定装置は、前記第1の温度センサ、第3の温度センサ、および圧力センサからのデータを基に、水蒸気量を算出する。
 前記感湿部は、0.1μm~10μmの細孔と10~30μmの細孔とが混在した、セラミック多孔材料で形成されていると好ましい。
 前記感湿部は、該感湿部の略中央部を貫通する水の流路が設けられているとよい。前記感湿部は、円柱構造であり、円柱の軸方向の略中心を貫通する水の流路が設けられていてもよい。前記感湿部は、球形あるいは、球形の一部分の外形状を有していてもよい。
 第1のセンサ、および第2のセンサが電極構造を有するセンサであって、該電極を介して電気抵抗変化、および/または容量変化を検出するとよい。
 本発明の蒸気測定装置は、多孔質材料で形成される感湿部と、前記感湿部の表面付近温度を測定する第1のセンサとを有する蒸気測定装置であって、前記感湿部内に、水を供給する供給路を、備えることを特徴とする
 本発明の蒸気測定装置は、前記感湿部に、沸点が周囲の気体の温度以下の液体物質を供給し、周囲の気体中に含まれるその物質の蒸気濃度を測定することとしてもよい。
 本発明は、上記の蒸気測定装置が備えられた装置である。
 本発明は、上記装置は、上記の蒸気測定装置が加湿器または加湿センサとしても機能する。
 なお、以下の説明では、空気と水、水蒸気に基いて本発明を説明するが、本発明は、空気と水、水蒸気に限定するものではなく、感湿部に周囲の気体温度以下の液体物質を供給する場合においても、同様に適用することができる。
 本発明の蒸気測定装置は、感湿部表面近傍で水が存在し、あるいは水が蒸発している状態を保ちつつ、感湿部温度を測定する。この結果、300℃を超える高温下においても、連続的に、かつ室内空気から過熱水蒸気に至る広い湿度範囲においても湿度(絶対湿度、水蒸気濃度、水蒸気分圧などで表現される気体中の水蒸気量)を測定することができる。
 特に、本発明の蒸気測定装置は、絶対値を正確に測定するための独立した計測器としての利用よりも、過熱水蒸気や空気と水蒸気の混合気体による加熱装置に利用することができる。たとえば、食品加工装置、乾燥装置、殺菌装置、加熱装置など、特に被処理物と気体が直接接触して処理するようなさまざまな装置に組み込むことで、その価値と有益性が増す。この結果、装置のエネルギー使用量を最小限とするための制御手段、あるいは処理物と処理目的に応じて最も適切な処理条件への制御手段、再現性のある処理条件にするための制御手段として用いることができる。
図1は、実施の形態1の蒸気測定装置の構成を説明する概念図である。 図2は、実施の形態1の蒸気測定装置の変形例の構成を説明する概念図である。 図3は、実施の形態2の蒸気測定装置の構成を説明する概念図である。 図4は、実施の形態3の蒸気測定装置の構成を説明する概念図である。 図5は、実施の形態4の蒸気測定装置の構成を説明する概念図である。 図6は、本発明の蒸気測定装置の測定原理を説明する図である。 図7は、温度と蒸気モル分率との関係を示すグラフである。 図8は、本発明の蒸気測定装置の感湿部に用いた多孔質材料の細孔径分布(水銀圧入法)を説明する図である。 図9は、本発明の蒸気測定装置を用いた湿度の応答性を測定したグラフである。 図10は、本発明の蒸気測定装置を用いて、水蒸気モル分率を変えた場合に、感湿部表面に水が存在するかどうかを確認したグラフである。
  1  感湿部
  2  第1のセンサ
  3  第2のセンサ
  4  第3のセンサ
  5  圧力センサ
  6  演算部
  7  制御部
  8  供給路
  9  排出路
  10  ポンプ
  11  バルブ
 以下に、本発明を詳細に説明する。
(実施の形態1)
 図1は、本発明の蒸気測定装置の構成の一例を示す図である。図1に示すように、本発明の蒸気測定装置は、感湿部1と、感湿部の表面付近の温度を測定するための第1のセンサ2と、供給路8と、排出路9とを備える。また、この図の例では、演算部6を備えている。
 下記の蒸気測定装置の測定原理に記載するように、水蒸気量を測定するためには、感湿部の感湿部の表面付近の温度(Tsf)と、感湿部の周囲の気温(Tgas)と、気流部分の圧力(PT)とを用いる。本実施の形態の蒸気測定装置は、感湿部の周囲の気温(Tgas)と、気流部分の圧力(PT)とが、何らかの手段で、既知である場合の使用に適する。
 (感湿部)
 本発明において、感湿部1は、その表面に水を存在させ、周囲の気流と接する水の温度を測定するための部位である。感湿部1は、熱的に安定な多孔質材料で形成される。多孔質材料は、セラミックであることが好ましい。セラミックは、熱的に安定だからである。また、多孔質材料は、表面に水を存在させるためには、濡れ性が高い性質を有することが好ましい。なお、本明細書中で、「濡れ性」とは、多孔質材料の表面と水(自由水)とのなじみやすさを意味する。
 多孔質材料において、空隙構造は、空隙に存在する水が重力の影響をうけにくく、かつ、毛管吸引力により水が感湿部の表面全体を濡らすための微細な細孔(0.1~10μm)と、水供給用の空間と感湿部表面近傍までの超小型ポンプや揚程差で発生しうる程度のわずかな圧力により、感湿部表面に水を供給する、あるいは表面の過剰な水を吸引排出するための細孔(10~30μm)とを有するとよい。微細な細孔において、30μm以上の細孔をほとんど有さない構造とすれば、空隙に存在する水が重力の影響をうけにくくするために、より好ましい。これらの細孔構造は、均一でもよく、また、使用環境や感湿部形状に応じて、部位毎に異なるような不均一なものでもよい。なお、上記細孔は、完全な円形ではない。したがって、本発明において直径の大きさは、平面上で一定の方向にある径を機械的に直径として計算したものである。直径の計算方法は、特に制限されず、公知の方法による。例えば、水銀圧入法等により測定される細孔直径等である。
 具体的には、直径相当径は、以下の条件を満たすと好ましい。
(1)毛管吸引力による表面への移動が容易であるためには、一元細孔構造では細孔径分布が幅広いことが望ましい(10~30μm)。
 加えて、一元細孔構造よりも二元細孔構造のほうが水分移動係数は大きくなることが期待できる。
(2)圧力差により適度に水が移動するためには、10~30μmの細孔があることが望ましい。
(3)重力の影響を受けにくくするためには、30μmよりも大きな細孔径を有さないことが望ましい。
(4)空隙率は,製造のしやすさ、製造コスト、材料の強度の観点からの制約があるが、0.45以上で、より高い方が望ましい。なお、空隙率は、水銀圧入法や、水を含ませる方法など公知の方法により測定する。
 感湿部1の形状は、特に制限はなく、例えば、球形、柱状(円柱状、角柱状など)、錘状(円錐状、角錐状など)、錘台状(円錘台状、角錐台状、など)、釣鐘状、紡錘状、板状(平板状、曲板状、波板状、立方体形状、など)であればよい。なお、本明細書中で、「球形の一部分の外形状」とは、半球状、円錘台状、釣鐘状など、球形の一部分を含む外形を有するものを意味する。また、感湿部には、供給路と排出路とを接続し、感湿部内部に水を流通させ、かつ、表面に供給するための水を保持するための、感湿部を貫通する流路(空間)が設けられている。例えば、感湿部1周辺の表面全体から均一に蒸発がおきる場合は、この流路から感湿部表面に向かう最短距離が略同じ長さであると、水が均等に感湿部表面に供給されるので好ましい。測定する環境の影響で、蒸発速度や流路から表面への水の移動速度が感湿部表面の部位によって異なる場合は、表面の部位の蒸発速度分布あるいは外部圧力分布(動圧)に応じて流路から表面へ水が供給できるような、感湿部の外形、流路形状、多孔質構造の感湿部とすることが好ましい。好ましい感湿部の外形は、製造の容易さなどの理由から、円柱状、球形あるいは、球形の一部分の外形状を有するものである。
 感湿部1の流路は、供給路8と、排出路9とを連結するものであれば、特に制限はなく、多孔質材料を貫通する単管、U字管、二重管、あるいはこれらを複数組み合わせたものであってもよい。単管、U字管の場合はその両端、二重管の場合は内側の管と外側の管が、それぞれ水の供給路と排出路のいずれかに接続されていればよい。球状の場合は、球の中心または中心近くの球状の空間であり、製作が比較的容易な小型の感湿部形状の例として、柱状の場合は、柱の略中心部を貫通する流路であればよい。
 感湿部1の大きさは特に制限はなく、使用する目的に応じて適宜選択できる。また、流路の内径や感湿部中での位置や大きさには特に制限はなく、使用する目的、環境、多孔質材料の細孔構造等に応じて適宜選択できる。例えば、感湿部が直径10mm程度の円柱状の場合は、直径0.5~7mmの管であればよい。
 感湿部1の表面で、周囲の気流と接触して熱が加えられる部分は、水が存在する状態となっている。以下に述べるように、この部分の温度が重要となる。一方、気流から直接熱が伝わらない部分は、蒸発が起きないように流路から水が供給されない構造になっていることが好ましく、あるいは、水の蒸発が生じにくい表面部分は、断熱されていることが好ましい。例えば、感湿部が、シール剤等で供給路や排出路と固定される部分や、取り付けのために装置壁面と接触する部分などである。
 このような空隙構造を有する多孔質材料で形成された感湿部1は、特に制限はなく公知の方法で製造できる。例えば、無機固体材料に炭素を主成分とする粉状物質とを混合して高温で焼成することで、適切な細孔構造を有した感湿部用の素材を得ることができる。
 なお、感湿部1は、取り替えやすい形状であると望ましい。
(第1のセンサ)
 第1のセンサ2は、感湿部1の表面付近に設けられている。感湿部1の表面で周囲の気流と接触して熱が加えられる部分は、水が存在する状態となっている。この部分に、第1のセンサ2を設ける。第1のセンサ2は、感湿部1の表面付近の温度を測定する。第1のセンサ2は、例えば、熱電対、測温抵抗体、あるいはそれと同様の原理により温度を測定するものである。また、感湿部1の表面付近という場合には、感湿部の内部をも含む。この場合には、第1のセンサを感湿部内に挿入した構造となる。
(供給路・排出路)
 供給路8および排出路9は、耐熱性を有し、好ましくは断熱性を有する材質で形成あるいは保護されている管である。供給路8および排出路9は、いずれも一端は感湿部1に接続され、他端は水蒸気を測定する気流空間(例えば、配管や処理室など)の外部に設けられている水供給部および水排出部に接続されている。水供給部と水排出部は、異なっていても、同一のものでもよい。図1の例では、水供給部と水排出部は同一のものである。
 供給路8および排出路9は、感湿部1に接続されている部分、あるいは水蒸気を測定する気流空間にさらされる部分は、耐熱性を有する材料で、好ましくは、断熱性を有する材料で形成、あるいは保護されている管である。これらの材料としては、具体的には、シリコン、テフロン(登録商標)、ステンレスなどが例示される。水供給部においても、これらの材料で形成されているとよい。
 供給路8および排出路9の水蒸気を測定する気流空間の外側の感湿部1に接続されているものとは他端の側は、感湿部1の流路内の圧力を適切にするために、管の太さ、長さ、水タンクとの位置関係を決定すればよい。また、水温を適切にするために水の冷却が必要な場合は、水の冷却部として使用することもできる。
 供給路8および排出路9は、感湿部1に供給される水温を適切にするために、気流空間にさらされる部分では水の加熱、あるいは気流にさらされない部分では水タンクも含めて放熱による冷却の効果を考慮して断熱の有無を調整することが望ましい。
 供給路8および排出路9にはそれぞれポンプ10、バルブ11などの流路内の圧力制御手段を設ける、あるいは水供給部と水排出部との間に揚程差を生じさせる構成とする。これにより、表面が適切な水分量になるように供給水量と感湿部1からの排出水量(感湿部内の流路空間の圧力)を自動、あるいは手動により調節する。
 給水にポンプを使用せず、揚程差で水を供給する場合は、揚程差または給水路8、排水路9のパイプの長さ、太さ、排水タンクの水位等で調整する。さらに、配管部に制御部を設けて排出水量(実際は感湿部1内の管路の水圧)を調整することもできる。この場合、排水タンクの水を、給水タンクに送水するためにポンプが必要となるが、制御の必要は低いため、安価なものが使用できる。
 水の給排水の量は、感湿部での水の蒸発量、気流の湿度低下時の応答時間の向上、感湿部に供給される水温制御の観点から、適切に決定あるいは制御することが望ましい。水温制御では、例えば、高温にさらされる供給部の管路が長いとその間で水が加熱されて沸騰するおそれがある。この場合は、高温部の管路を断熱すると共に、測定する気流空間の外側の管路や水タンクは冷却のために断熱せず、必要に応じて積極的に冷却するためのフィン・ファンなどの機構を設けると共に、水の給排水の量を多くするとよい。
 感湿部に供給される部分での水の温度は、測定精度向上のためには、湿球温度付近であることが望ましい。このため、配管での放熱・断熱の設計を最適にしておくとよい。必要に応じて、積極的に制御する機構を設けてもよい。
 水分量の調整は、例えば、目視における手動でもよく、あるいは、感湿部1の表面を画像解析して感湿部1の表面の湿潤状態を観察してもよい。
 (演算部)
 演算部6は、測定された感湿部1の表面付近の温度から水蒸気量を求める。本実施の形態は、センサが一つでよいので、簡便な構造にすることができる。測定条件において、蒸発速度が遅く、主に毛管吸引力のみの水の移動によって水の供給が十分である場合に適用すると好ましい。
 (その他の構成)
 また、必要に応じて、水供給部に電気伝導度を測定する機構、電気伝導度を制御するための機構を設ける構成としてもよい。また、感湿部のスケール等の水に含まれる成分による汚れを洗浄するための機構を設ける構成としてもよい。
 感湿部のスケール等による汚れを防止するための機構としては、常時水をイオン交換膜、イオン交換樹脂、逆浸透膜(Reverse Osmosis Membrane、以下、「RO膜」という)などを用いて浄化する方法などが挙げられる。水の状態、センサの信号により、メンテナンス時期の信号を出力する機構をもたせることもできる。あるいは、自己洗浄機能(測定停止中にクエン酸等で循環洗浄をする機能、定期的にセンサ部の水分を吸引して排出する、あるいは水過剰供給することでセンサ表面の水を落下させる等)を持たせる構成にしてもよい。
 水を浄化するための装置は、ポンプの吸入口、排出口、給水タンク、排水タンク、あるいは給水タンクと排水タンクを接続する配管内などに設置することができる。これらはカートリッジタイプで取り替えが容易な方が望ましい。イオン濃度を測定するための電気伝導度を測定する機能を付与することで、より高度な制御や水管理が可能である。
(実施の形態1の変形例)
 図1に示す実施の形態1の例をさらに簡略化することもできる。図2に示すように、図1の構成から、ポンプと、排出路を省略した構成である。他の構成は、図1と同様である。
 図2に示す構成の場合は、カートリッジのような小型の水供給手段を用いる、あるいは感湿部の表面が濡れている状態を維持できるように、感湿部の細孔構造、管路の太さや長さなどを調整する。この実施の形態の場合、特に短時間使用する場合に適する。
(実施の形態2)
 図3は、本発明の蒸気測定装置の構成の一例を示す図である。図3に示すように、本発明の蒸気測定装置は、感湿部1と、感湿部の表面付近の温度を測定するための第1のセンサ2と、感湿部の表面付近に存在する水分量を測定する第2のセンサ3と、供給路8と、排出路9とを備える。また、この図の例では、演算部6と制御部7とを備えている。
 第2のセンサ2と制御部7を除けば、図1と同じ構成である。
 (第2のセンサ)
 第2のセンサ3は、感湿部1の表面付近に設けられている。感湿部1の表面で周囲の気流と接触して熱が加えられる部分は、水が存在する状態となっている。この部分に、第2のセンサ3を設ける。第2のセンサ3は、感湿部の表面付近に存在する水分量を測定する。本明細書中で、水分量とは、感湿部の表面が濡れているかどうかという程度を意味する。具体的な第2のセンサ3の一例としては、水分量による電気伝導度、誘電率、電気容量等の変化を測定するものなどを挙げることができる。それらの物理量は、感湿部表面に接触させた電極からの出力として測定(接触式測定)してもよく、また、感湿部表面近傍に非接触配置された光ファイバや光学素子等を介し、赤外線吸収量の変化として測定(非接触式測定)してもよい。
 本発明の蒸気測定装置で、電気伝導度により水分量の測定を行う場合は、適度な電気伝導度を有する水を用いることが好ましい。このため、水供給部に、水に溶存する塩、イオン、スケール、汚れ等を適切に除去するためのイオン交換樹脂、イオン交換膜、RO膜、あるいは水の浄化器などの取り付けが望ましい。
 (制御部)
 図3に示すように第2のセンサ3を用いる場合、感湿部1の表面付近の水分量を測定したデータを用い、制御部7から、水の供給または排出を制御する信号を発信する。具体的には、ポンプからの水の供給の増減、感湿部からの水の排出の増減を行う。
 第1のセンサ2と第2のセンサ3とを共に、電極構造を有するセンサを用いる場合は、第1のセンサ2と第2のセンサ3とを用いて、感湿部1の表面の濡れ状態を検出することができる。例えば、第1のセンサ2と第2のセンサ3とに熱電対を用いることができる。この場合、第2のセンサは、第1のセンサの故障時のバックアップ、あるいは温度測定精度を向上させるために使用することもできる。
 電極構造を有するセンサを用いる場合は、図3において、第1のセンサ2と第2のセンサ3とを、共に連続あるいは間欠的に電極として用いる。例えば、電気伝導度を用いて水分量を測定する場合は、制御部7が、第1のセンサ2と第2のセンサ3との通電を検知すれば水の供給を増加させない。一方、感湿部1の表面が乾燥していれば、通電しない。制御部7は、通電を検知しなければ、管路の圧力を高めて水の供給を増加させる、あるいはバルブ11を閉じるなどを行い、感湿部1の表面に水を供給する。
(実施の形態3)
 図4は、本発明の蒸気測定装置の構成の一例を示す図である。図4に示すように、本発明の蒸気測定装置は、感湿部1と、感湿部の表面付近の温度を測定するための第1のセンサ2と、感湿部1の周囲の気体の温度を測定する第3のセンサ4と、供給路8と、排出路9とを備える。また、この図の例では、演算部6、制御部7を備えている。
 第3のセンサ4を除けば、図3と同じ構成である。なお、なお、この図の例では、感湿部1の表面付近に存在する水分量を測定する第2のセンサ3と制御部7を有しているが、第2のセンサ3と制御部7は省略することもできる。また、上記実施の形態の変形例についても、本実施の形態と同様に第3のセンサを備えていてもよい。
 本実施の形態の蒸気測定装置は、気流部分の圧力が既知である場合の使用に適する。
 (第3のセンサ)
 図4に示すように、第3のセンサ4は、感湿部1の周囲の気温(Tgas)を測定する。第3のセンサ4は、感湿部1の影響を受けない気流の温度を測定することができればよい。第3のセンサ4は、感湿部1に固定されていても分離されていてもよい。第3のセンサ4は、熱電対、測温抵抗体など、気体の温度測定ができるものである。
(実施の形態4)
 図5は、本発明の蒸気測定装置の構成の一例を示す図である。図5に示すように、本発明の蒸気測定装置は、感湿部1と、感湿部の表面付近の温度を測定するための第1のセンサ2と、感湿部の周囲の気体の温度を測定する第3のセンサ4と、圧力センサ5と、供給路8と、排出路9とを備える。また、この図の例では、演算部6、制御部7を備えている。
 第3のセンサ4と圧力センサ5とを除けば、図3と同じ構成である。なお、この図の例では、感湿部1の表面付近に存在する水分量を測定する第2のセンサ3と制御部7を有しているが、第2のセンサ3と制御部7は省略することもできる。また、第3のセンサ4も省略することができる。
 本実施の形態の蒸気測定装置は、湿球温度(Tsf)と、感湿部の周囲の気温(Tgas)と、気流部分の圧力(PT)とを用いて水蒸気量を求める場合の使用に適する。
 (圧力センサ)
 図5に示すように、圧力センサ5は、感湿部1の表面に存在する水分層の外部(気流)の圧力(全圧PT)を測定するために設ける。圧力センサ5は、感湿部1に固定されていても分離されていてもよい。圧力センサ5としては、使用環境に耐えうるものであれば種類は特に限定されず、公知の圧力計が使用できる。また、供給路あるいは排水路の水圧を測定し、その値をもとに推算した値を使用することもできる。本発明で利用できる圧力計としては、圧力の時間的な変化が小さい場合は、例えば、ブルドン管を使用した目視用の圧力計や、U字管マノメータのような簡便な方法により測定するものであってもよい。さらに、圧力が大気圧に近く、高温のために正確な測定が困難な場合は、近似的に大気圧の値を用いることで、演算部6で演算結果を得ることもできる。
[測定原理]
 以下に、本発明の蒸気測定装置の測定原理を図6に基づいて説明する。気体中におかれた水は、水の表面と接触する気体からの対流伝熱(気体の流れが無い場合は気体からの伝導伝熱を含む)により、気体と水表面間で、その温度の差に基づいて熱の移動(qcv)が起きる。また、水の表面には周囲からのふく射(熱輻射)伝熱により熱の移動(qr)が起きる。
 水の表面(気液界面の液相側)とその内側で温度差がある場合は、水表面から水内部方向への伝導伝熱(水の移動に伴う熱の移動も含む)により、熱の移動(qcd)が起きる。
 水の表面(気液界面の気相側)では、その水温における飽和蒸気圧相当の水蒸気分圧(濃度)を有しており、周囲の気体との水蒸気分圧の差あるいは全圧の差により水の表面から周囲の気体方向へ水蒸気の流れ(j)が起きる。
 水の表面においては、qcv+qr=qcd+jγの関係が成立している。この式において、jは水の蒸発速度(負の場合は凝縮速度)、γは水の蒸発潜熱である。水の表面はこの関係が成り立つ温度となる。このことから、水の表面温度から、周囲気体の湿度(水蒸気分圧、水蒸気濃度など)を理論的に知ることが可能である。これらの原理は、例えば、Transport Phenomena 2nd Ed., P684,R.B.Bird,W.E.Stewart,E.N.Lightfoot,John Wiley AND Sons,Inc.(2002),USA等に記述がある。
 これらの測定原理を利用した絶対湿度あるいは相対湿度の測定法として、qr、qcdが共に0で、圧力が大気圧近傍であるとき、乾球温度と湿球温度より測定する方法(JIS Z8806)が広く知られている。しかし、これらは気温が100℃未満における湿度の測定を想定したものである。
 比較的低湿度の条件下で、正確に湿度(水蒸気分圧や絶対湿度)を測定するためには、十分な風速の定常の気流中で、qcvに対してふく射伝熱qrの相対的な寄与が小さく、対流伝熱が全て水の蒸発潜熱として使用されているときの水の温度を測定する必要がある。
 また、過熱水蒸気に近い、高温で高湿度条件では、低温低湿度条件に比べて温度に対する飽和蒸気圧依存性が強い。また、演算においてPTが演算結果に与える影響が大きくなる。したがって、過熱水蒸気に近い、高湿度条件で正確に湿度を測定するためには、わずかな温度測定誤差、あるいは圧力の変化が、水蒸気分圧を見積もる際に大きな測定誤差になりうる。正確な圧力を測定されていることが望ましく、また、温度や圧力の測定誤差が把握されていれば、誤差範囲の演算、あるいはこれらに起因する誤差の補正等を行ってもよい。一方、ふく射伝熱qrの影響に起因する誤差は低湿度の場合に比べて小さい。
 さらに、気体の温度が高く、蒸発速度が速い場合や、ふく射伝熱が影響するような条件では、求められる測定精度に応じてそれらの影響を補正するとよい。ふく射の遮蔽板を取り付けることでふく射の影響を低減することができる。配管中に感湿部をとりつける場合は、測定する配管にバイパス部を設けることで流速を調整することができる。また、気流条件(流速、温度、湿度など)が時間的に変化する場合は、水の表面温度の変化と共にqcdが時間的に変化することから、理論計算あるいは温度等の実測値(給水温度,排水温度,センサ内部温度など)から推算されるqcdの値にもとづいて補正をすればよい。
 周囲流体の流速が遅い場合は、相対的にふく射伝熱の寄与が増大すること、自然対流の影響が増大することから、熱と物質移動の相似則(チルトン‐コルバーンの法則)に基づく演算誤差も増大する。これらも、測定精度を向上させるためには、校正に基づいて補正をすればよい。
 このように、本発明の測定装置を用いれば、300℃を超えるような高温域でも、水の供給と温度測定が可能であれば原理的に測定が可能である。また、本発明の測定装置は、酸化、高湿度条件下での水分凝縮による劣化などの影響を受けない。すなわち、本発明の測定装置は、高温高湿度の空気や過熱水蒸気を利用する装置の高性能化を図ることができる。
 本発明の蒸気測定装置において、水蒸気量を測定するのは、例えば、TadにTsfの値を用いて,以下の式(1)、(2)を演算部に組み込んで演算をする。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 
 感湿部の表面付近の温度Tsf、感湿部の周囲の気体の温度Tgas、圧力センサから得られる圧力(PT)、および、感湿部の表面付近の温度から(2)式により求められる水蒸気分圧(Ps,sat)から、式(1)により水蒸気量を求めることができる。なお、Tgas、圧力センサから得られる圧力が既知の場合(実施の形態1)、圧力センサから得られる圧力が既知の場合(実施の形態2)、Tsf、Tgas、圧力センサから得られる圧力全てを測定する場合(実施の形態4)のいずれの場合でも、式(1)から水蒸気量を求めることができることがわかる。
 なお、上記方法によらないでも、感湿部の表面付近の温度Tsf、感湿部の周囲の気体の温度Tgas、圧力センサから得られる圧力、および感湿部の表面付近の温度から求められる水蒸気分圧から水蒸気量を測定することができるものであれば、他の方法をもちいてもよい。
 実施の状態により、ふく射等の影響を受ける場合がある。ふく射の影響を排除するためには、輻射遮蔽する装置をセンサ周辺に取り付ける、抽気(吸引)して,輻射性の低い材質の配管部分に本センサを取り付ける、あるいは輻射率の低い材質で感湿部を製作するなどの方法がある。
 温度測定誤差を生ずる場合がある。この場合には、熱電対ではなく、微小な白金測温抵抗体などを使用する、あるいはシース熱電対を使用するなどにより、温度測定誤差を低減することができる。シース熱電対の場合は、感湿部1の軸方向端面から挿入することにより、構造を簡略化することができる。
 第1のセンサを表面に取り付けると、応答時間が早くなる。そのため、取り付け位置は
好ましくは表面である。一方、表面は気流温度の影響を受けるため、表面より僅かに内側に取り付けると、実用面から有意である。
 表面に取り付けた場合、表面より内側に取り付ける場合、いずれも感湿部1の内部半径方向にもう一カ所以上、例えば、水流路から僅かに表面に近い部分に温度センサを取り付ける、あるいは水温(供給水温度,排水温度,あるいはその両方)を測定しておき、それらのデータも用いてqcdあるいは湿度(水蒸気濃度)を算出することで、より早い応答時間での計測、及び高精度での計測が可能になる。この場合は、(1)式を修正する、あるいは、他の熱伝導の式や熱・物質移動モデルを用いて水蒸気濃度を求める。
[水蒸気量(湿度)の制御方法]
 水蒸気濃度が所定の値よりも大きい場合は、取り付けた装置(食品加工・殺菌・熱処理など)へのブロワによる吸気供給量を増やす、気流循環部の吸気側(大気圧よりも低圧力部分)で外部と接続された箇所のバルブやダンパーを開ける側に操作することで外気(空気)を吸入する、あるいはボイラからの水蒸気供給量や熱風経路中の加湿量を減少する(装置:ウェットスクラバーのようなもの、本発明の感湿部と同様の湿った多孔質材料部を用いる、スプレー(水の供給量を減らす、供給水温度を低くするなど)などの制御を行うとよい。
 一方、水蒸気濃度(あるいはTsf)が所定の値よりも低い場合は、ブロワ等からの空気供給量を減らす、吸気ダンパーを閉じる方向に制御する、ボイラからの水蒸気供給量(電気ボイラの場合は投入電力)を増加させる、熱風経路中の加湿量が増加する(方法:スプレーの量を増やす、同時に供給水温度を高くする、供給箇所の熱風温度を上昇させておくなど)などの制御を行えばよい。
 TsfがPTにおける沸点温度(大気圧では100℃)を超える場合は、測定値が異常であると判断し、警告を出すとともに、濃度の出力を安全な値に変える、表面への水供給量を増加させることで、水蒸気量(湿度)の制御行うことが望ましい。このような状態は、水供給が上手く動作していないとき、あるいは気流温度が異常に高い場合や流速が早く、「蒸発速度が想定外に大きいとき」に起こりえる。
 装置内には第1と第3のセンサのみ取り付けた蒸気測定装置を用いることもできる。PTを大気圧と近似でき、毛管吸引力のみで十分に感湿部表面が濡れるように水を供給できる場合である。演算部は,例えば、電圧に変換した第1と第3の温度信号をAD変換・演算した後、水蒸気濃度に対して所定の電圧信号の出力値が得られるように電子回路ならびに演算プログラムを設計し、その出力信号を電圧計で表示し、同時に湿度制御回路や外部装置に出力する構造とするなどである。演算処理と制御には、小型のマイクロコンピュータ、マイクロプロセッサ、マイクロコントローラなどを用いることができる。
[本発明の蒸気測定装置の利用例]
 本発明の測定装置を過熱水蒸気や空気と水蒸気の混合気体を利用するさまざまな装置、あるいは研究開発用の実験装置に組み込むことで、湿度などの処理条件の把握と、装置の高効率化、あるいは処理物と処理目的に応じた最適な処理条件の把握あるいはその条件に制御することができる。また、上記説明では、水蒸気を用いて説明したが、本蒸気測定装置は、水蒸気に限るものではなく、沸点が周囲の気体の温度以下の液体物質についても同様に適用することができる。
 実用の形態として、例えば、特開2008-17828号公報の(種子等の熱処理装置)など、気流循環型の連続処理装置に適用することで、湿度(水蒸気の濃度)の管理を行うことができる。
 業務用厨房で用いられるスチームコンベクションオーブンの庫内や排気部に取り付けることで、余剰な水蒸気の供給を抑えることで高効率化と庫内湿度制御ができる。
 過熱水蒸気、あるいは飽和水蒸気あるいは水蒸気と他の混合気体を使用するオーブンあるいは実験装置等において、熱処理条件を把握し制御するために使用することができる。
 噴霧乾燥機、気流乾燥機、熱処理装置等において、乾燥室からの排気、あるいは装置から外気への排気部にセンサを取り付けることで、排気のエンタルピの測定および運転条件を把握することができる。さらに、これらの装置の湿度を制御することで,品質向上や省エネルギー化を行うことができる。
[本発明の蒸気測定装置の応用例]
 本発明の蒸気測定装置は、さらに、以下のような応用が可能である。
 感湿部への水の供給量と排出量の差から水の単位時間あたりの蒸発量(蒸発速度)を測定することで、対流とふく射による伝熱量や熱伝達係数を求めることができる。また、流速と熱伝達係数の関係が既知であれば、流速の測定ができる。
 具体的には、ポンプを使用して、排水タンク・給水タンクを同一のものとし、そのタンクの水量を電子天秤等で詳細に測定することで、蒸発量を測定する。その値は、伝熱量と比例するため、気流-感湿部間の対流(あるいは対流と輻射の複合)熱伝達係数を求めることができる。また、その値から,気流の流速を求めることもできる。さらに、水以外の液体を所定条件、成分の気流中で、上記と同様に流し、同様の測定をすることもできる。これにより、本上記測定装置を用いると、さまざまな物質の熱伝達係数、物質移動係数、その他、流体の熱伝導率・動粘度・流体-液体物質間の拡散係数などについて、概略値を簡便に求めることができる。
 使用する圧力に適した感湿部の細孔構造と、水の供給、排出方法を適宜選択することで、大気圧での利用に加えて、対流伝熱の寄与が大きい絶対圧で20kPa程度までの減圧下、あるいは大気圧以上の加圧下においても、絶対値の誤差は増大するものの水蒸気と空気の混合比の測定あるいは混合比の定性的な変化傾向のモニタリングができる。
 空気以外の他の気体、あるいは適切な液体を感湿部に供給することで、空気―水系以外での気流中の成分濃度の測定に応用できる。
 例えば、メタノール、エタノールなどのアルコール、不凍液などを含む有機溶媒などであっても、この沸点が周囲の気体の温度以下の液体物質であれば、適切な演算式を得ておくことで、気流中の物質濃度を本測定装置で測定することができる。また、2成分以上の液体物質を含む場合においても、感湿部表面の2成分以上の濃度を、電気抵抗、その他のセンサで測定できれば,それぞれの濃度で校正式を得ることで,2成分以上の成分を同時に濃度を測定することができる。すなわち、本発明の蒸気測定装置は、高温での気流中の物質濃度の測定だけでなく、冷凍庫など0℃以下の状態においても気流中の物質濃度の測定を行うことができる。
 感湿部の一部の表面を釉薬や高温用シール剤等で水分が移動できない様に加工し、さらに断熱性材料を取り付けることで伝熱と蒸発面の面積を調整する。これにより、本発明の蒸気測定装置の測定精度、あるいは、熱伝達係数を測定する際等の精度を向上させることができる。たとえば、感湿部が円柱状である場合には、その端面を加工することで、端面の影響による誤差を低減できる。
 本蒸気測定装置を水蒸気を測定する装置に組み込んだ場合は、蒸気測定装置の機能以外に加湿センサまたは加湿器としても機能させることができる。具体的には、装置が所定の湿度以下になったことを蒸気測定装置が検知した場合に、装置の制御部に湿度の増加を指示する信号を送り、装置内を加湿する、あるいは装置が所定の湿度以下になったことを蒸気測定装置が検知した場合に、蒸気測定装置が感湿部に多くの水を供給して、蒸気測定装置自体が湿度を供給するなどである。
(実施例1)
 市販の常温用空気流量計と、凝縮法で測定した所定量のボイラからの水蒸気を混合させて、所定の水蒸気モル分率の気体を作った。理想気体と考えると水蒸気分圧/全圧と等価である。図5に示す蒸気測定装置(長軸方向の長さ約5cm、外径約9mm)を作製し、ルイスの関係が成立するものとして、感湿部1で測定された温度を断熱冷却温度として水蒸気分圧を求めた。演算は、例えば、文献(伊與田他,日本機械学会2009年度年次大会講演論文集,Vol.3, No.09-1, pp.101-102(2009))など)に記載されている、特に補正を行わない最も簡便な方法を用いている。結果を表1に示す。表1において、校正条件は、上記した作製した気体の所定の水蒸気モル分率を意味し、気流温度は、各気流温度における、上記装置での実際の測定値を意味する。上記製作した装置の感湿部1に用いた多孔質材料の細孔径分布(水銀圧入法)を図8に示す。本実施例で用いた感湿部の空隙率は、約0.5であった。
Figure JPOXMLDOC01-appb-T000003
 
 表1から、水蒸気分圧を推算すると、(qcd、qrを0と仮定した場合)最大誤差約5%程度の精度で測定ができていることがわかる。
(実施例2)
 図4に記載の装置を用い、作製した空気と水蒸気を切り替える装置(図示せず)を用い、湿度をステップ状に変化させて、応答時間を確認した。実験は、気流流束1m/s、湿球温度80℃から100℃に変える条件で行った。結果を図9に示す。図9から、水蒸気モル分率(湿度)が0~1まで広範囲で高い応答性で1時間以上安定して測定出来ていることがわかる。なお、グラフ中直線で表されているのは、流量計の概算値を示し、曲線で表されているものが、本蒸気測定装置を用いた場合の計測値を意味する。
 
(実施例3)
 気流温度Tgasが約200℃、流速Uが約1m/sで、第1~第3のセンサの信号を記録した結果を図10に示す。図10から、記録開始後20秒から40秒までの間で気流湿度を,水蒸気モル分率0.4(高湿度空気)から1(過熱水蒸気)まで変化させている。水蒸気モル分率を変えた際に、第1のセンサの温度が変化していることがわかる。また、水蒸気モル分率1の条件で100℃になっていることがわかる。第2のセンサ3(電極を有する電気抵抗式センサ)からの信号E(グラフの右軸スケール)は、水分量が増えると上昇傾向を示し、水が無くなると0Vを示す。図10から、水蒸気モル分率が増加した後、Eは、4.7Vに上昇し、その後,3.8Vへと低下した。このことから、第2のセンサ3付近の水の量は、水蒸気モル分率が1になった後増加し、その後減少するものの、感湿部表面に水が存在する状態を保っていることがわかる。第3のセンサから、測定中の気流温度は約195℃であった。
 

Claims (15)

  1.  多孔質材料で形成される感湿部と、
     前記感湿部の表面付近温度を測定する第1のセンサと
    を有する蒸気測定装置であって、
     前記感湿部内に、水を供給する供給路と、
     前記感湿部内から、水を排出する排出路とを
    備えることを特徴とする、蒸気測定装置。
  2.  多孔質材料で形成される感湿部と、
     前記感湿部の表面付近温度を測定する第1のセンサと
     前記感湿部の表面に存在する水分量を測定する第2のセンサと、
    を有する蒸気測定装置であって、
     前記感湿部内に、水を供給する供給路と、
     前記感湿部内から、水を排出する排出路とを
    備えることを特徴とする、蒸気測定装置。
  3.  前記蒸気測定装置は、前記第2のセンサにより測定した水分量に基いて、水の供給または水の排出を制御する、制御部を備える、請求項2に記載の蒸気測定装置。
  4.  前記蒸気測定装置は、前記感湿部の周囲の気体の温度を測定する第3の温度センサを備える、請求項1または2に記載の蒸気測定装置。
  5.  前記蒸気測定装置は、前記感湿部の表面に存在する水分層の外部の圧力を測定する圧力センサを備える、請求項1または2に記載の蒸気測定装置。
  6.  前記蒸気測定装置は、前記第1のセンサ、第3のセンサ、および圧力センサからのデータを基に、水蒸気量を算出する、請求項1または2に記載の蒸気測定装置。
  7.  前記感湿部は、0.1μm~10μmの細孔と10~30μmの細孔とが混在した、セラミック多孔材料で形成されている、請求項1または2に記載の蒸気測定装置。
  8.  前記感湿部は、該感湿部の略中央部を貫通する水の流路が設けられている、請求項1または2に記載の蒸気測定装置。
  9.  前記感湿部は、円柱構造であり、円柱の略中央部を貫通する水の流路が設けられている、請求項1または2に記載の蒸気測定装置。
  10.  前記感湿部は、球形あるいは、球形の一部分の外形状を有する請求項1または2に記載の蒸気測定装置。
  11.  第1のセンサ、および第2のセンサが電極構造を有するセンサであって、該電極を介して電気抵抗変化、および/または容量変化を検出する請求項2記載の蒸気測定装置。
  12.  多孔質材料で形成される感湿部と、
     前記感湿部の表面付近温度を測定する第1のセンサと
    を有する蒸気測定装置であって、
     前記感湿部内に、水を供給する供給路を、
    備えることを特徴とする、蒸気測定装置。
  13.  前記感湿部に、沸点が周囲の気体の温度以下の液体物質を供給し、周囲の気体中に含まれるその物質の蒸気濃度を測定する1または2に記載の蒸気測定装置。
  14.  前記請求項1~13のいずれかに記載の蒸気測定装置が備えられた装置。
  15.  上記の蒸気測定装置が加湿器または加湿センサとしても機能する、請求項14に記載の装置。
     
PCT/JP2010/057353 2009-04-27 2010-04-26 蒸気測定装置 WO2010125998A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011511388A JPWO2010125998A1 (ja) 2009-04-27 2010-04-26 蒸気測定装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009107436 2009-04-27
JP2009-107436 2009-04-27

Publications (1)

Publication Number Publication Date
WO2010125998A1 true WO2010125998A1 (ja) 2010-11-04

Family

ID=43032146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/057353 WO2010125998A1 (ja) 2009-04-27 2010-04-26 蒸気測定装置

Country Status (2)

Country Link
JP (1) JPWO2010125998A1 (ja)
WO (1) WO2010125998A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014178286A (ja) * 2013-03-15 2014-09-25 Miyagawa Kasei Ind Co Ltd 蒸気量測定装置および蒸気量測定方法
CN112285152A (zh) * 2020-09-27 2021-01-29 西安交通大学 一种高温热管碱金属工质蒸发冷凝测量系统及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61120050A (ja) * 1984-11-15 1986-06-07 Kanebo Ltd 湿球温度計測装置
JPH04361146A (ja) * 1991-06-07 1992-12-14 Onoda Cement Co Ltd 湿球温度計
JPH07293889A (ja) * 1994-04-27 1995-11-10 Matsushita Electric Ind Co Ltd 加熱調理装置
JP2000241329A (ja) * 1999-02-17 2000-09-08 Tlv Co Ltd 蒸気乾き度測定装置
JP2001254952A (ja) * 2000-03-15 2001-09-21 Sanyo Electric Co Ltd 蒸気発生装置及び該装置を備えた電子レンジ
JP2007229379A (ja) * 2006-03-03 2007-09-13 Miura Co Ltd 蒸気加熱装置
JP2008151379A (ja) * 2006-12-15 2008-07-03 Sanden Corp 蒸気加熱装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0663989B2 (ja) * 1988-04-18 1994-08-22 株式会社日立製作所 恒温恒湿槽における湿球センサ皿への給水制御方法、及び給水制御装置
JP3140709B2 (ja) * 1997-03-04 2001-03-05 タバイエスペック株式会社 湿球ウイック給水装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61120050A (ja) * 1984-11-15 1986-06-07 Kanebo Ltd 湿球温度計測装置
JPH04361146A (ja) * 1991-06-07 1992-12-14 Onoda Cement Co Ltd 湿球温度計
JPH07293889A (ja) * 1994-04-27 1995-11-10 Matsushita Electric Ind Co Ltd 加熱調理装置
JP2000241329A (ja) * 1999-02-17 2000-09-08 Tlv Co Ltd 蒸気乾き度測定装置
JP2001254952A (ja) * 2000-03-15 2001-09-21 Sanyo Electric Co Ltd 蒸気発生装置及び該装置を備えた電子レンジ
JP2007229379A (ja) * 2006-03-03 2007-09-13 Miura Co Ltd 蒸気加熱装置
JP2008151379A (ja) * 2006-12-15 2008-07-03 Sanden Corp 蒸気加熱装置

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
HIROYUKI IYODA ET AL.: "Fundamental Characteristics of Superheated Steam Heating", THERMOPHYS PROP, vol. 29TH, 8 October 2008 (2008-10-08), pages 25 - 27 *
HIROYUKI IYODA ET AL.: "Koon'yo Koiki Shitsudo Sensor no Kaihatsu", JAPAN SOCIETY FOR FOOD ENGINEERING NENJI TAIKAI KOEN YOSHISHU, vol. 10TH, 21 July 2009 (2009-07-21), pages 138 *
SHOGO ISSHIKI ET AL.: "Kiryu Kanso Chu no Zairyo Ondo Rireki ni Ataeru Kanso Neppu no Joken Hendo no Eikyo", THE JAPAN SOCIETY OF MECHANICAL ENGINEERS NENJI TAIKAI KOEN RONBUNSHU, vol. 2008, no. 3, 2 August 2008 (2008-08-02), pages 27 - 28 *
SHOGO ISSHIKI ET AL.: "Shimeri Zairyo no Ondo Sokutei ni yoru Kan'i Shitsudo Sokuteiho no Kento", JAPAN SOCIETY FOR FOOD ENGINEERING NENJI TAIKAI KOEN YOSHISHU, vol. 10TH, 21 July 2009 (2009-07-21), pages 137 *
SHOGO ISSHIKI ET AL.: "Shitsujun Zairyo no Ondo Sokutei ni yoru Kanetsu Suijoki to Kuki Kongohi no Kan'i Sokuteiho", THE JAPAN SOCIETY OF MECHANICAL ENGINEERS NENJI TAIKAI KOEN RONBUNSHU, vol. 2009, no. 3, 12 September 2009 (2009-09-12), pages 101 - 102 *
TOSHIKAZU TEZUKA ET AL.: "Shimeri Kuki Senzu to sono Oyo(l)", KUKI CHOWA - EISEI KOGAKU, vol. 57, no. 12, 5 December 1983 (1983-12-05), pages 81 - 92 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014178286A (ja) * 2013-03-15 2014-09-25 Miyagawa Kasei Ind Co Ltd 蒸気量測定装置および蒸気量測定方法
CN112285152A (zh) * 2020-09-27 2021-01-29 西安交通大学 一种高温热管碱金属工质蒸发冷凝测量系统及方法
CN112285152B (zh) * 2020-09-27 2021-08-13 西安交通大学 一种高温热管碱金属工质蒸发冷凝测量系统及方法

Also Published As

Publication number Publication date
JPWO2010125998A1 (ja) 2012-11-01

Similar Documents

Publication Publication Date Title
JP2007333750A (ja) 呼吸用気体絶対湿度センサの精度を自動的に検査するシステム及び方法
JP2011505554A (ja) 気体混合物の組成を検出するための方法及び装置
KR20080096684A (ko) 증기를 방출하기 위한 시스템 및 방법
JP6767272B2 (ja) センサ校正支援装置および方法
CN110488894B (zh) 一种空气温湿度测试装置及利用其进行温湿度控制的方法
CN207689449U (zh) 甲醛或voc释放量测试及预处理简易舱
WO2010125998A1 (ja) 蒸気測定装置
US8609045B1 (en) Mercury monitoring system and reaction chamber for enhancing conversion of elemental mercury gas into oxidized mercury
JP2012013377A (ja) 気体発生装置
US9689819B2 (en) Electronic psychrometer and/or humidistat with low temperature and high humidity capability
KR100656412B1 (ko) 가스측정기 교정용 가습 표준가스 제조장치
US20110094292A1 (en) Apparatus for air property measurement
Hudoklin et al. The new LMK primary standard for dew-point sensor calibration: evaluation of the high-range saturator efficiency
CN111933974A (zh) 一种燃料电池增湿反应气体的露点温度的测试方法
JPH0350978B2 (ja)
Roberts Dew point temperature
CN112952148B (zh) 一种燃料电池加湿控制装置
JP6815212B2 (ja) チャンバ装置
CN113587976A (zh) 一种宽温域空气温湿度取样测量装置
JP2019058293A (ja) 発汗計
Choi et al. Uncertainty of the Kriss low frost-point humidity generator
US11639907B2 (en) Device for determining the dew point of a gas in a process chamber and heat treatment device having such a device for determining the dew point
US11213650B2 (en) Process as well as gas heater for heating a carrier gas stream
CN107543842A (zh) 高温烟气湿球温度测量装置
JP2011133426A (ja) 静電容量式レベル計

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10769696

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2011511388

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10769696

Country of ref document: EP

Kind code of ref document: A1