WO2010125989A1 - Fluorine-containing resin composition, molded body and method for producing same - Google Patents

Fluorine-containing resin composition, molded body and method for producing same Download PDF

Info

Publication number
WO2010125989A1
WO2010125989A1 PCT/JP2010/057326 JP2010057326W WO2010125989A1 WO 2010125989 A1 WO2010125989 A1 WO 2010125989A1 JP 2010057326 W JP2010057326 W JP 2010057326W WO 2010125989 A1 WO2010125989 A1 WO 2010125989A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
molded body
reinforcing fiber
fluororesin
fluorine
Prior art date
Application number
PCT/JP2010/057326
Other languages
French (fr)
Japanese (ja)
Inventor
勝通 野口
幸生 金澤
ひろみ 木下
Original Assignee
日本バルカー工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本バルカー工業株式会社 filed Critical 日本バルカー工業株式会社
Publication of WO2010125989A1 publication Critical patent/WO2010125989A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/18Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles incorporating preformed parts or layers, e.g. compression moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/305Spray-up of reinforcing fibres with or without matrix to form a non-coherent mat in or on a mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/46Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
    • B29C70/465Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs and impregnating by melting a solid material, e.g. sheets, powders of fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/34Feeding the material to the mould or the compression means
    • B29C2043/345Feeding the material to the mould or the compression means using gas, e.g. air, to transport non liquid material
    • B29C2043/3455Feeding the material to the mould or the compression means using gas, e.g. air, to transport non liquid material for particles, powder, fibres, e.g. fluidized or sprayed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/12Use of polyvinylhalogenides or derivatives thereof as moulding material containing fluorine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/12Use of polyvinylhalogenides or derivatives thereof as moulding material containing fluorine
    • B29K2027/18PTFE, i.e. polytetrafluorethene, e.g. ePTFE, i.e. expanded polytetrafluorethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/08Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/08Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns
    • B29K2105/0809Fabrics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/712Containers; Packaging elements or accessories, Packages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene

Definitions

  • the present invention relates to a fluorine-containing resin composition, a molded article, and a method for producing the same, and more particularly to a fluorine-containing resin composition suitable for producing a complicated three-dimensional shaped article.
  • Patent Document 1 a mixture containing tetrafluoroethylene-based resin particles, graphite fiber, water and an organic dispersion medium is prepared. Discloses a technique in which tetrafluoroethylene resin particles and graphite fibers are separated from and dried, followed by compression molding.
  • Patent Document 2 discloses a method for producing a sheet-like composite, in which a mixture of a flake-like fluororesin and graphite fiber is heated and pressed.
  • a molded body having a planar shape such as a plate material can be obtained.
  • a block was formed by laminating a molded body such as a plate material, and the block was cut into a desired shape (for example, bowl shape).
  • Patent Document 3 a raw material for papermaking mainly composed of fluorine fibers such as PTFE fiber is prepared by a wet papermaking method using a three-dimensional papermaking die.
  • the molded raw material thus obtained is heat treated at a temperature equal to or higher than the melting point of the fluorine fiber to obtain a preform, and further, the preform is inserted into a male and female mold corresponding to the product dimensions and heat treated to perform porous treatment.
  • a technique for manufacturing a molded body is disclosed.
  • the present invention is intended to solve the problems associated with the prior art as described above, and is composed of a fluororesin and a reinforcing fiber, and has excellent strength, high surface smoothness, and generation of particles (peeled materials). It is an object of the present invention to provide a molded product which is difficult to form, a fluorine-containing resin composition suitable for the raw material of such a molded product, and a method for producing such a molded product.
  • Another object of the present invention is to provide a method for easily producing a molded article comprising a fluororesin and reinforcing fibers and having excellent strength and the like.
  • the carbon fiber is preferable as the reinforcing fiber (B).
  • a step (Ia) of forming the deposit by spraying the fluororesin fiber (A) and the reinforcing fiber (B) onto a mold, and paper making the fluororesin fiber (A) and the reinforcing fiber (B).
  • Step (Ib) of forming the deposit Is mentioned.
  • a net mold having a shape corresponding to the molded body is preferable.
  • the molded body of the present invention is characterized by being manufactured by the above manufacturing method.
  • the molded article of the present invention is a cocoon-shaped molded article comprising a tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer and a reinforcing fiber (B), and the major axis of the reinforcing fiber (B) is ⁇ . It is characterized by being oriented in the in-plane direction.
  • a molded article comprising a fluororesin and reinforcing fibers, having excellent strength, high surface smoothness, and hardly generating particles.
  • FIG. 1 is a diagram schematically showing a method (Ia) for producing a deposit according to the present invention.
  • FIG. 2 is a schematic sectional view of a method for producing a molded body from the deposited body of the present invention.
  • FIG. 3 is a photograph of a side surface of the molded body produced in Example 1.
  • 4 is a photograph of the bottom surface of the molded body produced in Example 1.
  • FIG. 5 is a photograph of the surface of a molded body produced by a conventional method.
  • the PFA is perfluoroethylene represented by tetrafluoroethylene and the formula: CF 2 ⁇ CF—O—R f (wherein R f represents a fluoroalkyl group, preferably a fluoroalkyl group having 1 to 10 carbon atoms). It is a copolymer with alkyl vinyl ether.
  • a perfluoroalkyl vinyl ether may be used individually by 1 type, and may use 2 or more types together.
  • the PFA preferably contains 99.5 to 92% by mass of a structural unit derived from tetrafluoroethylene and 0.5 to 8% by mass of a structural unit derived from perfluoroalkyl vinyl ether (provided that the amount of PFA is 100% by mass). To do.)
  • the average fiber length of the PFA fiber (A) is preferably 1 to 50 mm, more preferably 5 to 20 mm.
  • the fiber diameter of the PFA fiber (A) is preferably 10 to 40 ⁇ m.
  • the PFA fiber (A) is particularly well entangled with the reinforcing fiber (B) when mixed with the reinforcing fiber (B) described later. In the method, the shape of the deposit can be maintained more stably.
  • the PFA fiber (A) may be obtained by cutting a PFA fiber having a fiber length exceeding the desired fiber length into the desired length.
  • PFA fibers examples include “HASTEX” (fiber diameter of about 20 ⁇ m) manufactured by Toyo Polymer.
  • reinforcing fibers (B) examples include carbon fibers, glass fibers, aramid fibers, boron fibers, aluminum fibers, and silicon carbide fibers.
  • examples of the reinforcing fibers include short fibers, long fibers, and whiskers.
  • carbon fiber is preferable because of its excellent chemical resistance.
  • any of a PAN (polyacrylonitrile) -based carbon fiber and a pitch-based carbon fiber can be used, and a PAN-based carbon fiber is preferable from the viewpoint of producing a molded article having higher strength.
  • the fiber length of the reinforcing fiber (B) is preferably 1 to 30 mm, more preferably 5 to 20 mm.
  • the fiber diameter of the reinforcing fiber (B) is preferably 1 to 15 ⁇ m.
  • the reinforcing fiber (B) may be obtained by cutting a reinforcing fiber having a fiber length exceeding the desired fiber length into the desired length.
  • Examples of commercially available carbon fibers include “STS40 F13” manufactured by Toho Tenax (fiber size: 7 ⁇ m).
  • the fluorine-containing resin composition of the present invention contains the PFA fiber (A) and the reinforcing fiber (B), and can be prepared by mixing each component by a conventional method.
  • the weight ratio ((A) :( B)) of the PFA fiber (A) and the reinforcing fiber (B) is 70 to 90:10 to 30 (however, the total of both is 100).
  • a molded article having high strength can be produced.
  • a high-strength fluorine-containing resin molded article having a three-dimensional shape can be easily produced.
  • the step (I) is a step of forming a deposit containing the PFA fiber (A) and the reinforcing fiber (B).
  • step (Ia) and step (Ib) are preferable as the mode of step (I).
  • Step (Ib) A step (Ib) in which the fluororesin fiber (A) and the reinforcing fiber (B) are made to form the deposit.
  • the PFA fiber (A) and the reinforcing fiber (B) can be reliably entangled to form a stable deposit.
  • the step (Ia) is particularly preferable in that it can be easily formed even with a complicated three-dimensionally shaped deposit.
  • the reinforcing fiber (B) is oriented so that the major axis thereof is in the in-plane direction of the mold surface, and thus the obtained deposit is heated and pressurized.
  • the reinforcing fibers (B) are oriented so that their long axes are directed in the in-plane direction of the surface of the molded body. Therefore, the obtained molded body is excellent in strength (tensile strength), and has little surface protrusion due to few protrusions of the reinforcing fibers (B) from the surface, and it is difficult to generate particles from the surface.
  • the reinforcing fiber (B) is oriented so that its long axis is in the in-plane direction of the deposit surface (main surface). Excellent molded bodies can be obtained.
  • a conventionally known spray-up method can be applied. That is, the fluororesin fiber (A) and the reinforcing fiber (B) can be supplied to the jetting fluid, and these can be sprayed onto a mold to form a deposit.
  • the fluororesin fiber (A) and the reinforcing fiber (B) may be separately supplied to the jetting fluid, and a mixture containing the fluororesin fiber (A) and the reinforcing fiber (B) is prepared in advance. May be supplied to the jetting fluid. By preparing the mixture in advance, a molded body having a more uniform composition can be produced.
  • a dispersion liquid containing the PFA fiber (A) and the reinforcing fiber (B) in the above ratio and a dispersion medium may be prepared.
  • a dispersion liquid containing the PFA fibers (A) and the reinforcing fibers (B) and a dispersion medium in the above proportion is prepared, and the PFA fibers (A) and the reinforcing fibers ( B) can be made to form a deposit.
  • Examples of the jet fluid include water and air.
  • Examples of the dispersion medium include water, and a dispersant for improving dispersibility, such as a surfactant or polyvinyl alcohol, may be mixed in the dispersion.
  • the shape of the mold may be appropriately selected so as to correspond to the shape of the molded body to be manufactured.
  • the mold may be a mold that can efficiently transmit the jet fluid and / or the dispersion liquid, and includes a net-shaped mold.
  • a mesh mold is used, the PFA fibers (A) and the reinforcing fibers (B) can be deposited while allowing most of the jet fluid or dispersion medium to pass through the meshes during the spraying. A deposit can be formed.
  • the mesh size and wire diameter of the mesh mold may be appropriately set in consideration of the fiber length of the PFA fiber (A) and the reinforcing fiber (B), the passage of the jet fluid or the dispersion medium, etc.
  • the mesh opening may be 0.5 to 10 mm, and the wire diameter may be 0.25 to 1 mm.
  • the step (II) is a step of obtaining a molded body by heating and pressing the deposited body obtained in the step (I).
  • Conditions such as the temperature at the time of the heating and pressing may be set so that the PFA is melted.
  • the temperature is 300 to 350 ° C.
  • the pressure is 5 to 25 Mpa
  • the time is 1 to 120 minutes. it can.
  • step (II) the deposited body is usually heated and pressurized by placing it in a mold having a shape corresponding to the shape of the molded body to be manufactured.
  • the bulk density of the deposited body is low and it is difficult to directly heat and press mold the deposited body, the bulk density of the whole or a part of the deposited body is increased prior to the heat and pressure molding. It is preferable.
  • Partially heating and pressing the deposited body (temperature: about 290 to 350 ° C., pressure: about 0.05 to 1 MPa) to increase the bulk density of the portion;
  • Examples include a method of increasing the bulk density by pressurizing the deposited body as a whole (room temperature, pressure: about 0.05 to 1 MPa).
  • the molded body of the present invention is composed of PFA and the above reinforcing fibers, has high strength, has high surface smoothness, and hardly generates particles.
  • the shape of the molded body of the present invention is not particularly limited.
  • the shape of a cylinder / prism-like body having an opening on one side, a casing, a spherical body, a hemispherical body, a plate-like body, or a complicated shape. May be.
  • the shape of the molded body can be adjusted by selecting a mold corresponding to the desired shape in the step (I).
  • the long axis of the reinforcing fiber (B) is oriented in the in-plane direction of the molded article surface.
  • the body can be suitably used as a container such as a storage container, a processing container, or a cleaning container used in a semiconductor manufacturing process or medical treatment.
  • Example 1 Carbon fiber (“STS40 F13” (manufactured by Toho Tenax)) was thoroughly washed with acetone to remove the sizing agent, then dried at 80 ° C. for 2 hours, and then cut to a length of 12 mm.
  • PFA fiber (“HASTEX” (manufactured by Toyo Polymer) was cut into a length of 12 mm.
  • Water is sprayed from a spray gun at a rate of 3 L / min toward a bowl-shaped (maximum diameter 60 mm x depth 25 mm) wire mesh (opening: 1.40 mm, wire diameter: 0.717 mm (JIS Z 8801)).
  • a spray gun By dropping the dispersion liquid little by little into the water stream, PFA fibers and carbon fibers were sprayed on the outer surface of the wire mesh, and the entire amount was deposited to form a deposit.
  • the obtained fluororesin molding was a bowl-shaped molding having a depth of 25 mm, a diameter of 76 ⁇ , and a thickness of 0.2 mm.
  • a photograph of the side of this molded body is shown in FIG. 3, and a photograph of the bottom is shown in FIG.
  • Example 1 instead of the dispersion used in Example 1, 4 g of the powder obtained by washing a PFA dispersion (“AD-2CRE”, manufactured by Daikin Industries, Ltd.) with water and then drying was added to 2 L of ethanol water (ethanol 20%). In addition, 1 g of carbon fiber prepared in the same manner as in Example 1 and a surfactant were added to the ethanol water to prepare a dispersion.
  • AD-2CRE PFA dispersion
  • a deposit was formed in the same manner as in Example 1 except that this dispersion was used. However, the obtained deposited body was tattered because it could not retain its shape.

Abstract

Disclosed is a molded body which is formed from a fluororesin and reinforcing fibers. The molded body has excellent strength and high surface smoothness, and does not easily generate particles. Also disclosed are a fluorine-containing resin composition that is suitable as a starting material for the molded body, and a method for producing the molded body. Specifically, the fluorine-containing resin composition contains (A) fluororesin fibers that are formed from a tetrafluoroethylene/perfluoroalkyl vinyl ether copolymer and (B) reinforcing fibers at a weight ratio (A):(B) of 70-90:10-30 (with the total of (A) and (B) being 100).

Description

含フッ素樹脂組成物、成形体およびその製造方法Fluorine-containing resin composition, molded article and method for producing the same
 本発明は、含フッ素樹脂組成物、成形体およびその製造方法に関し、詳しくは、複雑な立体形状の成形体の製造に適した含フッ素樹脂組成物等に関する。 The present invention relates to a fluorine-containing resin composition, a molded article, and a method for producing the same, and more particularly to a fluorine-containing resin composition suitable for producing a complicated three-dimensional shaped article.
 フッ素樹脂の機械的特性の改善を目的とした、フッ素樹脂に強化繊維が配合されてなる複合材料が従来知られている。 Conventionally known are composite materials in which reinforcing fibers are blended in a fluororesin for the purpose of improving the mechanical properties of the fluororesin.
 このような複合材料に関する従来技術として、たとえば特開昭54-114559号(特許文献1)には、テトラフルオロエチレン系樹脂粒子、グラファイト繊維、水および有機分散媒を含む混合物を調製し、この混合物からテトラフルオロエチレン樹脂粒子およびグラファイト繊維を分離し、乾燥させた後、圧縮成形する技術が開示されている。 As a conventional technique related to such a composite material, for example, in Japanese Patent Application Laid-Open No. 54-114559 (Patent Document 1), a mixture containing tetrafluoroethylene-based resin particles, graphite fiber, water and an organic dispersion medium is prepared. Discloses a technique in which tetrafluoroethylene resin particles and graphite fibers are separated from and dried, followed by compression molding.
 また、特表平7-503983号公報(特許文献2)には、フレーク状のフッ素樹脂とグラファイト繊維との混合物を加熱加圧成形する、シート状の複合体の製造方法が開示されている。 Also, Japanese Patent Publication No. 7-503983 (Patent Document 2) discloses a method for producing a sheet-like composite, in which a mixture of a flake-like fluororesin and graphite fiber is heated and pressed.
 これらの製造方法によれば板材のような平面的な形状の成形体を得ることができるが、立体的な形状、たとえばお椀型のような形状の成形体を製造する場合には、まず上記の板材等の成形体を積層してブロックを形成し、このブロックを所望の形状(たとえば、お椀型)となるように切削していた。 According to these manufacturing methods, a molded body having a planar shape such as a plate material can be obtained. However, when manufacturing a molded body having a three-dimensional shape, for example, a bowl shape, first, A block was formed by laminating a molded body such as a plate material, and the block was cut into a desired shape (for example, bowl shape).
 しかしながら、この製造方法では、製造しようとする成形体の形状によってはブロックのほとんどが切削ロスになってしまうという問題があった。さらに、得られた成形体の切削面は、図5に示すように強化繊維の切断面が突出するために平滑性が悪く、また成形体からパーティクルが発生し易いため、この成形体を、たとえば半導体用途(半導体製造プロセスに使用される貯蔵容器、処理容器、洗浄容器等)に適用することは困難であった。 However, in this manufacturing method, there is a problem that most of the blocks become cutting loss depending on the shape of the molded body to be manufactured. Further, the cutting surface of the obtained molded body has poor smoothness because the cut surface of the reinforcing fiber protrudes as shown in FIG. 5, and particles are likely to be generated from the molded body. It has been difficult to apply to semiconductor applications (storage containers, processing containers, cleaning containers, etc. used in semiconductor manufacturing processes).
 また、上記の板材等の成形体を塑性変形(深絞り/くせ付け)することにより立体的な形状の成形体を得ることも可能であるが、加工の際の制約などが多いため、塑性変形法は、簡単な形状の成形体にしか適用できなかった。 It is also possible to obtain a three-dimensional shaped product by plastic deformation (deep drawing / crease) of the molded product such as the above plate material, but there are many restrictions during processing, so plastic deformation. The method was applicable only to simple shaped bodies.
 一方、特開平5-287700号公報(特許文献3)には、PTFE繊維等のフッ素繊維を主成分とした抄紙原料を立体抄き型を用いて湿式抄造法により成形原体を作製し、得られた該成形原体をフッ素繊維の融点以上の温度で熱処理して予備成形体としたのち、さらに、該予備成形体を製品寸法に対応した雌雄の型に嵌入して熱処理を行って多孔質成形体を製造する技術が開示されている。 On the other hand, in Japanese Patent Laid-Open No. 5-287700 (Patent Document 3), a raw material for papermaking mainly composed of fluorine fibers such as PTFE fiber is prepared by a wet papermaking method using a three-dimensional papermaking die. The molded raw material thus obtained is heat treated at a temperature equal to or higher than the melting point of the fluorine fiber to obtain a preform, and further, the preform is inserted into a male and female mold corresponding to the product dimensions and heat treated to perform porous treatment. A technique for manufacturing a molded body is disclosed.
特開昭54-114559号公報JP 54-114559 A 特表平7-503983号公報JP 7-503983 Gazette 特開平5-287700号公報Japanese Patent Laid-Open No. 5-287700
 本発明は、上記のような従来技術に伴う問題点を解決しようとするものであって、フッ素樹脂と強化繊維とからなり、強度に優れ、表面平滑性が高く、パーティクル(剥離物)が発生し難い成形体、ならびにこのような成形体の原料に適した含フッ素樹脂組成物、このような成形体の製造方法を提供することを目的とする。 The present invention is intended to solve the problems associated with the prior art as described above, and is composed of a fluororesin and a reinforcing fiber, and has excellent strength, high surface smoothness, and generation of particles (peeled materials). It is an object of the present invention to provide a molded product which is difficult to form, a fluorine-containing resin composition suitable for the raw material of such a molded product, and a method for producing such a molded product.
 また本発明は、フッ素樹脂と強化繊維とからなり、強度等に優れた成形体を容易に製造する方法を提供することを目的とする。 Another object of the present invention is to provide a method for easily producing a molded article comprising a fluororesin and reinforcing fibers and having excellent strength and the like.
 本発明の含フッ素樹脂組成物は、テトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体からなるフッ素樹脂繊維(A)および強化繊維(B)を重量比で(A):(B)=70~90:10~30の割合(但し、両者の合計は100である。)で含有することを特徴としている。 The fluorine-containing resin composition of the present invention comprises (A) :( B) = 70 to 90 (A) :( B) = 70 to 90 by weight ratio of a fluororesin fiber (A) and a reinforcing fiber (B) made of a tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer. : 10 to 30 (however, the total of both is 100).
 上記強化繊維(B)としては、炭素繊維が好ましい。 The carbon fiber is preferable as the reinforcing fiber (B).
 本発明の成形体の製造方法は、
 テトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体からなるフッ素樹脂繊維(A)および強化繊維(B)(但し、両者の割合は、重量比で(A):(B)=70~90:10~30(但し、両者の合計は100である。)である。)を含有する堆積体を形成する工程(I)、および
 上記堆積体を加熱加圧成形して成形体を得る工程(II)
を有することを特徴としている。
The method for producing a molded article of the present invention comprises:
Fluororesin fiber (A) and reinforcing fiber (B) made of a tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (however, the ratio of both is (A) :( B) = 70 to 90:10 to 30 (however, the sum of the two is 100)), and a step (II) of obtaining a molded body by heating and pressing the deposited body.
It is characterized by having.
 上記工程(I)の好ましい態様としては、
 上記フッ素樹脂繊維(A)および上記強化繊維(B)を金型に吹き付けて上記堆積体を形成する工程(Ia)、ならびに
 上記フッ素樹脂繊維(A)および上記強化繊維(B)を抄紙して上記堆積体を形成する工程(Ib)
が挙げられる。
As a preferable aspect of the said process (I),
A step (Ia) of forming the deposit by spraying the fluororesin fiber (A) and the reinforcing fiber (B) onto a mold, and paper making the fluororesin fiber (A) and the reinforcing fiber (B). Step (Ib) of forming the deposit
Is mentioned.
 上記金型としては、上記成形体に対応する形状の網状の金型が好ましい。 As the mold, a net mold having a shape corresponding to the molded body is preferable.
 本発明の成形体は、上記の製造方法によって製造されたことを特徴としている。 The molded body of the present invention is characterized by being manufactured by the above manufacturing method.
 本発明の成形体は、テトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体と、強化繊維(B)とからなる、椀形状の成形体であって、該強化繊維(B)の長軸が椀の面内方向に配向していることを特徴としている。 The molded article of the present invention is a cocoon-shaped molded article comprising a tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer and a reinforcing fiber (B), and the major axis of the reinforcing fiber (B) is 椀. It is characterized by being oriented in the in-plane direction.
 本発明によれば、フッ素樹脂と強化繊維とからなり、強度に優れ、表面平滑性が高く、パーティクルが発生し難い成形体が提供される。 According to the present invention, there is provided a molded article comprising a fluororesin and reinforcing fibers, having excellent strength, high surface smoothness, and hardly generating particles.
 また本発明によれば、フッ素樹脂と強化繊維とからなり、強度等に優れた成形体を容易に製造することができる。 Further, according to the present invention, it is possible to easily produce a molded article made of a fluororesin and reinforcing fibers and having excellent strength and the like.
図1は、本発明の堆積体の製造方法(Ia)を模式的に示す図である。FIG. 1 is a diagram schematically showing a method (Ia) for producing a deposit according to the present invention. 図2は、本発明の堆積体から成形体を製造する方法の概略断面図である。FIG. 2 is a schematic sectional view of a method for producing a molded body from the deposited body of the present invention. 図3は、実施例1で製造された成形体の側面の写真である。FIG. 3 is a photograph of a side surface of the molded body produced in Example 1. 図4は、実施例1で製造された成形体の底面の写真である。4 is a photograph of the bottom surface of the molded body produced in Example 1. FIG. 図5は、従来の方法で製造された成形体の表面の写真である。FIG. 5 is a photograph of the surface of a molded body produced by a conventional method.
 以下、本発明について具体的に説明する。 Hereinafter, the present invention will be specifically described.
              〔含フッ素樹脂組成物〕
 本発明の含フッ素樹脂組成物は、テトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体(以下「PFA」ともいう。)からなるフッ素樹脂繊維(A)(以下「PFA繊維(A)」ともいう。)および強化繊維(B)を重量比で(A):(B)=70~90:10~30の割合(但し、両者の合計は100である。)で含有することを特徴としている。
[Fluorine-containing resin composition]
The fluorine-containing resin composition of the present invention is also referred to as a fluororesin fiber (A) (hereinafter also referred to as “PFA fiber (A)”) made of a tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (hereinafter also referred to as “PFA”). ) And the reinforcing fiber (B) in a weight ratio of (A) :( B) = 70 to 90:10 to 30 (however, the total of both is 100).
 <PFA繊維(A)>
 上記PFAは、テトラフルオロエチレンと式:CF2=CF-O-Rf(式中、Rfはフルオロアルキル基、好ましくは炭素数1~10のフルオロアルキル基を表す。)で示されるパーフルオロアルキルビニルエーテルとの共重合体である。パーフルオロアルキルビニルエーテルは、1種単独で用いてもよく2種以上を併用してもよい。
<PFA fiber (A)>
The PFA is perfluoroethylene represented by tetrafluoroethylene and the formula: CF 2 ═CF—O—R f (wherein R f represents a fluoroalkyl group, preferably a fluoroalkyl group having 1 to 10 carbon atoms). It is a copolymer with alkyl vinyl ether. A perfluoroalkyl vinyl ether may be used individually by 1 type, and may use 2 or more types together.
 上記PFAは、好ましくはテトラフルオロエチレン由来の構成単位を99.5~92質量%およびパーフルオロアルキルビニルエーテル由来の構成単位を0.5~8質量%含む(但し、PFAの量を100質量%とする。)。 The PFA preferably contains 99.5 to 92% by mass of a structural unit derived from tetrafluoroethylene and 0.5 to 8% by mass of a structural unit derived from perfluoroalkyl vinyl ether (provided that the amount of PFA is 100% by mass). To do.)
 上記PFA繊維(A)の平均繊維長は、好ましくは1~50mm、さらに好ましくは5~20mmである。また、上記PFA繊維(A)の繊維径は、好ましくは10~40μmである。繊維長および繊維径が上記範囲にあると、PFA繊維(A)は、後述する強化繊維(B)と混合した際に該強化繊維(B)と、特に良く絡み合うため、後述する成形体の製造方法において堆積体の形状をより安定に保持することができる。 The average fiber length of the PFA fiber (A) is preferably 1 to 50 mm, more preferably 5 to 20 mm. The fiber diameter of the PFA fiber (A) is preferably 10 to 40 μm. When the fiber length and the fiber diameter are within the above ranges, the PFA fiber (A) is particularly well entangled with the reinforcing fiber (B) when mixed with the reinforcing fiber (B) described later. In the method, the shape of the deposit can be maintained more stably.
 上記PFA繊維(A)は、上記所望の繊維長を超える繊維長を有するPFA繊維を上記所望の長さに切ったものであってもよい。 The PFA fiber (A) may be obtained by cutting a PFA fiber having a fiber length exceeding the desired fiber length into the desired length.
 市販のPFA繊維としては、例えば、東洋ポリマー製の「HASTEX」(繊維径20μm程度)を挙げることができる。 Examples of commercially available PFA fibers include “HASTEX” (fiber diameter of about 20 μm) manufactured by Toyo Polymer.
 <強化繊維(B)>
 上記強化繊維(B)としては、炭素繊維、ガラス繊維、アラミド繊維、ボロン繊維、アルミニウム繊維、炭化珪素繊維などが挙げられ、その態様としては短繊維、長繊維、ウィスカーなどが挙げられる。
<Reinforcing fiber (B)>
Examples of the reinforcing fibers (B) include carbon fibers, glass fibers, aramid fibers, boron fibers, aluminum fibers, and silicon carbide fibers. Examples of the reinforcing fibers include short fibers, long fibers, and whiskers.
 これらの中でも、耐薬品性に優れていることから、炭素繊維が好ましい。炭素繊維としては、PAN(ポリアクリルニトリル)系炭素繊維、ピッチ系炭素繊維のいずれも用いることができ、より強度の高い成形体を製造する観点からはPAN系炭素繊維が好ましい。 Among these, carbon fiber is preferable because of its excellent chemical resistance. As the carbon fiber, any of a PAN (polyacrylonitrile) -based carbon fiber and a pitch-based carbon fiber can be used, and a PAN-based carbon fiber is preferable from the viewpoint of producing a molded article having higher strength.
 上記強化繊維(B)の繊維長は、好ましくは1~30mm、さらに好ましくは5~20mmである。また、上記強化繊維(B)の繊維径は、好ましくは1~15μmである。繊維長および繊維径が上記範囲にあると、上記フッ素樹脂(A)を補強する効果が十分に発揮される。 The fiber length of the reinforcing fiber (B) is preferably 1 to 30 mm, more preferably 5 to 20 mm. The fiber diameter of the reinforcing fiber (B) is preferably 1 to 15 μm. When the fiber length and fiber diameter are in the above ranges, the effect of reinforcing the fluororesin (A) is sufficiently exhibited.
 上記強化繊維(B)は、上記所望の繊維長を超える繊維長を有する強化繊維を上記所望の長さに切ったものであってもよい。 The reinforcing fiber (B) may be obtained by cutting a reinforcing fiber having a fiber length exceeding the desired fiber length into the desired length.
 市販の炭素繊維としては、たとえば、東邦テナックス製「STS40 F13」(サイズ剤を除去したもの、繊維径:7μm)を挙げることができる。 Examples of commercially available carbon fibers include “STS40 F13” manufactured by Toho Tenax (fiber size: 7 μm).
 <含フッ素樹脂組成物>
 本発明の含フッ素樹脂組成物は、上記PFA繊維(A)および上記強化繊維(B)を含んでおり、各成分を常法で混合することにより調製できる。
<Fluorine-containing resin composition>
The fluorine-containing resin composition of the present invention contains the PFA fiber (A) and the reinforcing fiber (B), and can be prepared by mixing each component by a conventional method.
 上記PFA繊維(A)と上記強化繊維(B)との重量比((A):(B))は、70~90:10~30である(但し、両者の合計は100である。)。上記PFA繊維(A)と上記強化繊維(B)との重量比が上記範囲にある本発明の含フッ素樹脂組成物を用いると、強度が高い成形体を製造することができる。 The weight ratio ((A) :( B)) of the PFA fiber (A) and the reinforcing fiber (B) is 70 to 90:10 to 30 (however, the total of both is 100). When the fluorine-containing resin composition of the present invention in which the weight ratio of the PFA fiber (A) and the reinforcing fiber (B) is in the above range is used, a molded article having high strength can be produced.
               〔成形体の製造方法〕
 本発明の成形体の製造方法は、
 上記PFA繊維(A)および上記強化繊維(B)(但し、両者の割合は、重量比で(A):(B)=70~90:10~30(但し、両者の合計は100である。)である。)を含有する堆積体を形成する工程(I)、および
 上記堆積体を加熱加圧成形して成形体を形成する工程(II)
を有することを特徴としている。
[Method for producing molded article]
The method for producing a molded article of the present invention comprises:
The PFA fiber (A) and the reinforcing fiber (B) (provided that the ratio of both is (A) :( B) = 70 to 90:10 to 30 in terms of weight ratio (provided that the total of both is 100). And (II) a step of forming a deposit containing (a), and a step of forming the compact by heating and press-molding the deposit (II).
It is characterized by having.
 堆積体の原料としてフッ素樹脂の粉体やフレークを用いると、堆積体からフッ素樹脂が剥落してしまうため、堆積体の形状を保持できない、成形体の組成が不均一になる、成形体に穴が開く、などの不都合が生じる。一方、本発明の成形体の製造方法においては、原料であるフッ素樹脂としてPFA繊維(A)が用いられるため、PFA繊維(A)と強化繊維(B)とが絡み合い、フッ素樹脂(PFA繊維(A))が剥落することなく堆積体の形状を保持することができる。そして、このような堆積体を加熱加圧成形することにより、全体として均質な組成を有し、強度が高い成形体を製造することができる。 If fluororesin powder or flakes are used as the raw material of the deposit, the fluororesin will be peeled off from the deposit, so that the shape of the deposit cannot be maintained, the composition of the molded product becomes non-uniform, and there are holes in the molded product. Inconveniences such as opening. On the other hand, in the method for producing a molded article of the present invention, since PFA fiber (A) is used as a raw material fluororesin, PFA fiber (A) and reinforcing fiber (B) are entangled with each other, and fluororesin (PFA fiber ( A)) can keep the shape of the deposit without peeling off. Then, by molding such a deposited body by heating and pressing, a molded body having a homogeneous composition as a whole and high strength can be produced.
 したがって、本発明の成形体の製造方法によれば、立体的な形状を有する強度の高い含フッ素樹脂成形体を容易に製造することができる。 Therefore, according to the method for producing a molded article of the present invention, a high-strength fluorine-containing resin molded article having a three-dimensional shape can be easily produced.
 <工程(I)>
 上記工程(I)は、上記PFA繊維(A)および上記強化繊維(B)を含有する堆積体を形成する工程である。
<Process (I)>
The step (I) is a step of forming a deposit containing the PFA fiber (A) and the reinforcing fiber (B).
 上記PFA繊維(A)と上記強化繊維(B)との割合は、重量比で(A):(B)=70~90:10~30(但し、両者の合計は100である。)である。 The ratio of the PFA fiber (A) to the reinforcing fiber (B) is (A) :( B) = 70 to 90:10 to 30 (however, the sum of the two is 100). .
 工程(I)の態様としては、以下の工程(Ia)および工程(Ib)が好ましい。 The following step (Ia) and step (Ib) are preferable as the mode of step (I).
 工程(Ia):上記フッ素樹脂繊維(A)および上記強化繊維(B)を金型に吹き付けて上記堆積体を形成する工程。 Step (Ia): A step of spraying the fluororesin fiber (A) and the reinforcing fiber (B) onto a mold to form the deposit.
 工程(Ib):上記フッ素樹脂繊維(A)および上記強化繊維(B)を抄紙して上記堆積体を形成する工程(Ib)。 Step (Ib): A step (Ib) in which the fluororesin fiber (A) and the reinforcing fiber (B) are made to form the deposit.
 工程(Ia)または工程(Ib)によれば、PFA繊維(A)と強化繊維(B)とを確実に絡み合わせて安定な堆積体を形成することができる。 According to the process (Ia) or the process (Ib), the PFA fiber (A) and the reinforcing fiber (B) can be reliably entangled to form a stable deposit.
 これらの中でも、複雑な立体形状の堆積体であっても容易に形成できる点で、工程(Ia)が特に好ましい。 Among these, the step (Ia) is particularly preferable in that it can be easily formed even with a complicated three-dimensionally shaped deposit.
 また、工程(Ia)により堆積体を形成すれば、上記強化繊維(B)は、その長軸が金型表面の面内方向に向くように配向するため、得られた堆積体を加熱加圧成形して製造される成形体においては、図3および4に示すように、上記強化繊維(B)は、その長軸が該成形体表面の面内方向に向くように配向する。そのため、得られる成形体は、強度(引っ張り強度)に優れ、その表面からの上記強化繊維(B)の突出が少ないため表面平滑性に優れ、その表面からパーティクルを発生させ難い。 Further, if the deposit is formed by the step (Ia), the reinforcing fiber (B) is oriented so that the major axis thereof is in the in-plane direction of the mold surface, and thus the obtained deposit is heated and pressurized. In the molded body produced by molding, as shown in FIGS. 3 and 4, the reinforcing fibers (B) are oriented so that their long axes are directed in the in-plane direction of the surface of the molded body. Therefore, the obtained molded body is excellent in strength (tensile strength), and has little surface protrusion due to few protrusions of the reinforcing fibers (B) from the surface, and it is difficult to generate particles from the surface.
 同様に、工程(Ib)により堆積体を形成しても、上記強化繊維(B)は、その長軸が堆積体表面(主面)の面内方向に向くように配向するため、上記のような優れた成形体が得られる。 Similarly, even if the deposit is formed by the step (Ib), the reinforcing fiber (B) is oriented so that its long axis is in the in-plane direction of the deposit surface (main surface). Excellent molded bodies can be obtained.
 工程(Ia)においては、従来公知のスプレーアップ工法を適用することができる。すなわち、噴射流体に上記フッ素樹脂繊維(A)および上記強化繊維(B)を供給し、これらを金型に吹き付けて堆積体を形成することができる。 In the step (Ia), a conventionally known spray-up method can be applied. That is, the fluororesin fiber (A) and the reinforcing fiber (B) can be supplied to the jetting fluid, and these can be sprayed onto a mold to form a deposit.
 噴射流体に上記フッ素樹脂繊維(A)および上記強化繊維(B)を別々に供給してもよく、予め上記フッ素樹脂繊維(A)および上記強化繊維(B)を含む混合物を調製し、この混合物を噴射流体に供給してもよい。予め混合物を調製することにより、より均一な組成の成形体を製造することができる。 The fluororesin fiber (A) and the reinforcing fiber (B) may be separately supplied to the jetting fluid, and a mixture containing the fluororesin fiber (A) and the reinforcing fiber (B) is prepared in advance. May be supplied to the jetting fluid. By preparing the mixture in advance, a molded body having a more uniform composition can be produced.
 この混合物として、上記の割合の上記PFA繊維(A)および上記強化繊維(B)ならびに分散媒を含む分散液を調製してもよい。 As this mixture, a dispersion liquid containing the PFA fiber (A) and the reinforcing fiber (B) in the above ratio and a dispersion medium may be prepared.
 工程(Ib)においては、上記の割合の上記PFA繊維(A)および上記強化繊維(B)ならびに分散媒を含む分散液を調製し、この分散液から上記PFA繊維(A)および上記強化繊維(B)を抄紙して堆積体を形成することができる。 In the step (Ib), a dispersion liquid containing the PFA fibers (A) and the reinforcing fibers (B) and a dispersion medium in the above proportion is prepared, and the PFA fibers (A) and the reinforcing fibers ( B) can be made to form a deposit.
 上記噴射流体としては、水、空気などが挙げられる。上記分散媒としては、水が挙げられ、この分散液には界面活性剤やポリビニルアルコールのように分散性を高める分散剤を混合しても良い。 上 記 Examples of the jet fluid include water and air. Examples of the dispersion medium include water, and a dispersant for improving dispersibility, such as a surfactant or polyvinyl alcohol, may be mixed in the dispersion.
 なお、上記のように分散剤を使用する場合は、得られる堆積体から分散剤を水洗等により除去することが好ましい。 In addition, when using a dispersing agent as mentioned above, it is preferable to remove a dispersing agent from the obtained deposit by water washing.
 上記金型の形状は、製造しようとする成形体の形状に対応するように適宜選択すればよい。 The shape of the mold may be appropriately selected so as to correspond to the shape of the molded body to be manufactured.
 上記金型としては、噴射流体および/または分散液が効率よく透過可能な金型であればよく、網状の金型が挙げられる。網状の金型を用いると、上記の吹き付けの際に、噴射流体または分散媒の大部分を網目から通過させつつ上記PFA繊維(A)および上記強化繊維(B)を堆積できるため、効率的に堆積体を形成することができる。 The mold may be a mold that can efficiently transmit the jet fluid and / or the dispersion liquid, and includes a net-shaped mold. When a mesh mold is used, the PFA fibers (A) and the reinforcing fibers (B) can be deposited while allowing most of the jet fluid or dispersion medium to pass through the meshes during the spraying. A deposit can be formed.
 上記網状の金型の目開きおよび線径は、上記PFA繊維(A)および上記強化繊維(B)の繊維長や、噴射流体または分散媒の通過などを考慮して適宜設定すれば良く、たとえば目開きが0.5~10mm、線径が0.25~1mmであってもよい。 The mesh size and wire diameter of the mesh mold may be appropriately set in consideration of the fiber length of the PFA fiber (A) and the reinforcing fiber (B), the passage of the jet fluid or the dispersion medium, etc. The mesh opening may be 0.5 to 10 mm, and the wire diameter may be 0.25 to 1 mm.
 <工程(II)>
 上記工程(II)は、工程(I)で得られた堆積体を加熱加圧成形して成形体を得る工程である。
<Process (II)>
The step (II) is a step of obtaining a molded body by heating and pressing the deposited body obtained in the step (I).
 上記加熱加圧成形時の温度等の条件は、上記PFAが溶融するように設定すれば良く、たとえば、温度を300~350℃、圧力を5~25Mpa、時間を1~120分とすることができる。 Conditions such as the temperature at the time of the heating and pressing may be set so that the PFA is melted. For example, the temperature is 300 to 350 ° C., the pressure is 5 to 25 Mpa, and the time is 1 to 120 minutes. it can.
 工程(II)では、上記堆積体を、通常は、製造しようとする成形体の形状に対応する形状の金型に入れるなどして加熱加圧する。 In step (II), the deposited body is usually heated and pressurized by placing it in a mold having a shape corresponding to the shape of the molded body to be manufactured.
 上記堆積体の嵩密度が低く、上記堆積体を直接加熱加圧成形することが困難である場合には、加熱加圧成形に先立って、堆積体の全体または一部の嵩密度を高めておくことが好ましい。 If the bulk density of the deposited body is low and it is difficult to directly heat and press mold the deposited body, the bulk density of the whole or a part of the deposited body is increased prior to the heat and pressure molding. It is preferable.
 その方法としては、
 上記堆積体を部分的に加熱加圧(温度:約290~350℃、圧力:約0.05~1MPa)してその部分の嵩密度を高める;
 上記堆積体を全体的に加圧(室温、圧力:約0.05~1MPa)して嵩密度を高める;などの方法が挙げられる。
As the method,
Partially heating and pressing the deposited body (temperature: about 290 to 350 ° C., pressure: about 0.05 to 1 MPa) to increase the bulk density of the portion;
Examples include a method of increasing the bulk density by pressurizing the deposited body as a whole (room temperature, pressure: about 0.05 to 1 MPa).
                 [成形体]
 本発明の成形体は、PFAおよび上記強化繊維からなり、高い強度を有し、高い表面平滑性を有し、パーティクルを発生させ難い。
[Molded body]
The molded body of the present invention is composed of PFA and the above reinforcing fibers, has high strength, has high surface smoothness, and hardly generates particles.
 本発明の成形体の形状は、特に限定されないが、たとえば一方面が開口した円柱・角柱状体、椀体、球状体、半球状体、板状体等の形状、さらに、複雑な形状であってもよい。
成形体の形状は、上記の工程(I)において、所望の形状に対応する金型を選択することにより調節できる。
The shape of the molded body of the present invention is not particularly limited. For example, the shape of a cylinder / prism-like body having an opening on one side, a casing, a spherical body, a hemispherical body, a plate-like body, or a complicated shape. May be.
The shape of the molded body can be adjusted by selecting a mold corresponding to the desired shape in the step (I).
 本発明の成形体においては、好ましくは、該強化繊維(B)の長軸が成形体表面の面内方向に配向している。 In the molded article of the present invention, preferably, the long axis of the reinforcing fiber (B) is oriented in the in-plane direction of the molded article surface.
 上述のように、本発明の製造方法によれば、強度(引っ張り強度)に優れ、表面平滑性に優れ、表面からパーティクルを発生させ難い成形体を得ることができ、このような本発明の成形体は、半導体製造プロセスや医療等に使用される貯蔵容器、処理容器、洗浄容器等の容器として好適に使用することができる。 As described above, according to the production method of the present invention, it is possible to obtain a molded article having excellent strength (tensile strength), excellent surface smoothness, and hardly generating particles from the surface. The body can be suitably used as a container such as a storage container, a processing container, or a cleaning container used in a semiconductor manufacturing process or medical treatment.
 以下、実施例に基づいて本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically based on examples, but the present invention is not limited to these examples.
 [実施例1]
 炭素繊維(「STS40 F13」(東邦テナックス製))を、サイズ剤を除去するためにアセトンで充分洗浄し、次いで80℃で2時間乾燥した後、12mmの長さに切断した。
[Example 1]
Carbon fiber (“STS40 F13” (manufactured by Toho Tenax)) was thoroughly washed with acetone to remove the sizing agent, then dried at 80 ° C. for 2 hours, and then cut to a length of 12 mm.
 また、PFA繊維(「HASTEX」(東洋ポリマー製))を、12mmの長さに切断した。 Moreover, PFA fiber (“HASTEX” (manufactured by Toyo Polymer)) was cut into a length of 12 mm.
 上記のように調製したPFA繊維4gおよび炭素繊維1gを10Lの水に投入し、攪拌し、均一な分散液を調製した。 4 g of PFA fibers and 1 g of carbon fibers prepared as described above were put into 10 L of water and stirred to prepare a uniform dispersion.
 お椀状(最大径60mm×深さ25mm)の金網(目開き:1.40mm、線径:0.717mm(JIS Z 8801))に向けてスプレーガンから水を3L/毎分で噴射し、この水流に上記分散液を少量ずつ滴下することにより、PFA繊維および炭素繊維を金網の外面に吹き付け、全量を堆積させ、堆積体を形成した。 Water is sprayed from a spray gun at a rate of 3 L / min toward a bowl-shaped (maximum diameter 60 mm x depth 25 mm) wire mesh (opening: 1.40 mm, wire diameter: 0.717 mm (JIS Z 8801)). By dropping the dispersion liquid little by little into the water stream, PFA fibers and carbon fibers were sprayed on the outer surface of the wire mesh, and the entire amount was deposited to form a deposit.
 そして、この堆積体を24時間放置し乾燥させた。 And this deposit was left to dry for 24 hours.
 次に、上記の堆積体を、雌雄の金型に嵌入して330℃まで加熱し、次いで10MPaに加圧して10分間保持し、加圧したまま室温まで冷却し、成形体を得た。得られた含フッ素樹脂成形体は深さ25mm、口径76φ、厚み0.2mmのお碗型の成形体であった。
この成形体の側面の写真を図3に、底面の写真を図4に示す。
Next, the deposited body was inserted into male and female molds, heated to 330 ° C., then pressurized to 10 MPa, held for 10 minutes, and cooled to room temperature while being pressurized, to obtain a molded body. The obtained fluororesin molding was a bowl-shaped molding having a depth of 25 mm, a diameter of 76φ, and a thickness of 0.2 mm.
A photograph of the side of this molded body is shown in FIG. 3, and a photograph of the bottom is shown in FIG.
 なお、図3、4および5はデジタルマイクロスコープ(VHX-200、(株)キーエンス製)を用いて撮影した写真である。 3, 4 and 5 are photographs taken using a digital microscope (VHX-200, manufactured by Keyence Corporation).
 [比較例1]
 実施例1で用いた分散液に替えて、PFAディスパージョン(「AD-2CRE」、ダイキン工業製)を水で洗浄後、乾燥させて得られた粉末4gを、2Lのエタノール水(エタノール20%wt)に入れて分散させ、さらにこのエタノール水中に実施例1と同様に調製した炭素繊維1gおよび界面活性剤を加えて、分散液を調製した。
[Comparative Example 1]
Instead of the dispersion used in Example 1, 4 g of the powder obtained by washing a PFA dispersion (“AD-2CRE”, manufactured by Daikin Industries, Ltd.) with water and then drying was added to 2 L of ethanol water (ethanol 20%). In addition, 1 g of carbon fiber prepared in the same manner as in Example 1 and a surfactant were added to the ethanol water to prepare a dispersion.
 この分散液を用いた以外は実施例1と同様に堆積体の形成をした。しかし、得られた堆積体は、形状を保持できずボロボロであった。 A deposit was formed in the same manner as in Example 1 except that this dispersion was used. However, the obtained deposited body was tattered because it could not retain its shape.
1:PFA繊維と強化繊維とを含む分散液
2:噴射流体
3:スプレーガン
4:金網
5:吹き付けられたPFA繊維および強化繊維
6:堆積体
7:金型
8:成形体
1: Dispersion liquid containing PFA fiber and reinforcing fiber 2: Spray fluid 3: Spray gun 4: Wire mesh 5: Sprayed PFA fiber and reinforcing fiber 6: Deposit body 7: Mold 8: Molded body

Claims (8)

  1.  テトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体からなるフッ素樹脂繊維(A)および強化繊維(B)を重量比で(A):(B)=70~90:10~30の割合(但し、両者の合計は100である。)で含有する含フッ素樹脂組成物。 Weight ratio of fluororesin fiber (A) and reinforcing fiber (B) made of a tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (A) :( B) = 70 to 90:10 to 30 (however, both Of the fluorine-containing resin composition.
  2.  上記強化繊維(B)が炭素繊維であることを特徴とする請求項1に記載の含フッ素樹脂組成物。 The fluorine-containing resin composition according to claim 1, wherein the reinforcing fiber (B) is a carbon fiber.
  3.  工程(I):テトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体からなるフッ素樹脂繊維(A)および強化繊維(B)(但し、両者の割合は、重量比で(A):(B)=70~90:10~30(但し、両者の合計は100である。)である。)を含有する堆積体を形成する工程、および
     工程(II):上記堆積体を加熱加圧成形して成形体を得る工程
    を有することを特徴とする成形体の製造方法。
    Step (I): Fluororesin fiber (A) and reinforcing fiber (B) made of a tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (however, the ratio of both is (A) :( B) = 70 by weight) ~ 90: 10-30 (however, the sum of both is 100)), and a step (II): forming the deposited body by heating and pressing the deposited body The manufacturing method of the molded object characterized by having the process of obtaining.
  4.  上記工程(I)が、上記フッ素樹脂繊維(A)および上記強化繊維(B)を金型に吹き付けて堆積体を形成する工程(Ia)であることを特徴とする請求項3に記載の成形体の製造方法。 The said process (I) is the process (Ia) of spraying the said fluororesin fiber (A) and the said reinforced fiber (B) to a metal mold | die, and forming a deposit, The shaping | molding of Claim 3 characterized by the above-mentioned. Body manufacturing method.
  5.  上記工程(I)が、上記フッ素樹脂繊維(A)および上記強化繊維(B)を抄紙して上記堆積体を形成する工程(Ib)であることを特徴とする請求項3に記載の成形体の製造方法。 4. The molded body according to claim 3, wherein the step (I) is a step (Ib) in which the fluororesin fiber (A) and the reinforcing fiber (B) are made to form the deposit. Manufacturing method.
  6.  上記金型が上記成形体に対応する形状の網状の金型であることを特徴とする請求項4に記載の成形体の製造方法。 The method for producing a molded body according to claim 4, wherein the mold is a net-shaped mold having a shape corresponding to the molded body.
  7.  請求項3~6のいずれかに記載の製造方法によって製造された成形体。 A molded body produced by the production method according to any one of claims 3 to 6.
  8.  テトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体と、強化繊維(B)とからなる、椀形状の成形体であって、該強化繊維(B)の長軸が椀の面内方向に配向していることを特徴とする成形体。 A cocoon-shaped molded article comprising a tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer and a reinforcing fiber (B), wherein the long axis of the reinforcing fiber (B) is oriented in the in-plane direction of the cocoon. A molded product characterized by being.
PCT/JP2010/057326 2009-04-30 2010-04-26 Fluorine-containing resin composition, molded body and method for producing same WO2010125989A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009111470A JP2010260922A (en) 2009-04-30 2009-04-30 Fluorine-containing resin composition, molded article and method for producing the same
JP2009-111470 2009-04-30

Publications (1)

Publication Number Publication Date
WO2010125989A1 true WO2010125989A1 (en) 2010-11-04

Family

ID=43032138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/057326 WO2010125989A1 (en) 2009-04-30 2010-04-26 Fluorine-containing resin composition, molded body and method for producing same

Country Status (3)

Country Link
JP (1) JP2010260922A (en)
TW (1) TW201041910A (en)
WO (1) WO2010125989A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI454370B (en) * 2011-11-04 2014-10-01 Advanced Int Multitech Co Ltd Production method of plate - like fiber reinforced product
KR20220062029A (en) * 2019-10-23 2022-05-13 다이킨 고교 가부시키가이샤 Member for semiconductor cleaning device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11200139A (en) * 1998-01-20 1999-07-27 Daikin Ind Ltd Thermally melting fluorine resin fiber
JP2004232132A (en) * 2003-01-30 2004-08-19 Toray Ind Inc Heat-resistant fabric
WO2009141899A1 (en) * 2008-05-21 2009-11-26 株式会社フジコー Felt material for air filter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11200139A (en) * 1998-01-20 1999-07-27 Daikin Ind Ltd Thermally melting fluorine resin fiber
JP2004232132A (en) * 2003-01-30 2004-08-19 Toray Ind Inc Heat-resistant fabric
WO2009141899A1 (en) * 2008-05-21 2009-11-26 株式会社フジコー Felt material for air filter

Also Published As

Publication number Publication date
TW201041910A (en) 2010-12-01
JP2010260922A (en) 2010-11-18

Similar Documents

Publication Publication Date Title
Yi et al. Three dimensional printing of carbon/carbon composites by selective laser sintering
KR101146612B1 (en) Prepreg, preform, molded product, and method for manufacturing prepreg
Kotani et al. Effect of SiC particle dispersion on microstructure and mechanical properties of polymer-derived SiC/SiC composite
WO2013031860A1 (en) Molded body having rising surface, and method for producing same
JP5691699B2 (en) Press molding method and molded body thereof
JP6816010B2 (en) Thermoplastic composites and moldings
TWI460077B (en) Carbon fiber structure and method for manufacturing the same
WO2006132423A1 (en) Web, stampable sheet, expansion-molded stampable sheet, and process for producing these
CN101591178A (en) The manufacturing of rigid carbon-fiber heat-insulation material and surface treatment method
CA2958409C (en) Titanium-based compositions, methods of manufacture and uses thereof
JP2017043095A (en) Fiber-reinforced composite material molding and manufacturing method of the same
JP5662078B2 (en) C / C composite material molded body and method for producing the same
JP2011194852A (en) Press-molding method and molding thereof
JP2012192645A (en) Method for manufacturing molded article
TW201223741A (en) Carbon fiber-reinforced carbon composite material and method for manufacturing the same
JP2012213946A (en) Molding manufacturing method and molding
WO2010125989A1 (en) Fluorine-containing resin composition, molded body and method for producing same
JP7294131B2 (en) Molded product manufacturing method
Wang et al. Fabrication of high thermal conductivity nanodiamond/aramid nanofiber composite films with superior multifunctional properties
WO2010125996A1 (en) Fluororesin molded body and method for producing same
JP2007015901A (en) Manufacture of sic/sic composite material of high thermal conductivity using carbon nanotube or nanofiber
JP2014122439A (en) Method for producing carbon fiber bundle and carbon fiber bundle obtained by the production method
Yang et al. Enhancing mechanical properties of selectively laser sintered SiC/Si composites printed using electrostatic spraying microspheres with fine particles
JP2011093758A (en) Carbonaceous material
Takemura et al. Effect of molding condition on tensile properties of hemp fiber reinforced composite

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10769687

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10769687

Country of ref document: EP

Kind code of ref document: A1