WO2010125907A1 - Composition for diagnosis of conformational disease - Google Patents

Composition for diagnosis of conformational disease Download PDF

Info

Publication number
WO2010125907A1
WO2010125907A1 PCT/JP2010/056538 JP2010056538W WO2010125907A1 WO 2010125907 A1 WO2010125907 A1 WO 2010125907A1 JP 2010056538 W JP2010056538 W JP 2010056538W WO 2010125907 A1 WO2010125907 A1 WO 2010125907A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
atom
hydrogen atom
general formula
integer
Prior art date
Application number
PCT/JP2010/056538
Other languages
French (fr)
Japanese (ja)
Inventor
英郎 佐治
正博 小野
寛之 木村
秀和 河嶋
Original Assignee
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学 filed Critical 国立大学法人京都大学
Publication of WO2010125907A1 publication Critical patent/WO2010125907A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/0019Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules
    • A61K49/0021Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules the fluorescent group being a small organic molecule
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/041Heterocyclic compounds
    • A61K51/044Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine, rifamycins
    • A61K51/0446Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine, rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil

Definitions

  • the present invention relates to a diagnostic composition containing a boron dipyrromethene (BODIPY) derivative. Since the compound contained in the composition of the present invention specifically binds to amyloid ⁇ protein and emits long-wavelength fluorescence suitable for biological imaging, it is useful for diagnosis of conformational diseases such as Alzheimer's disease. .
  • BODIPY boron dipyrromethene
  • AD Alzheimer's disease
  • Senile plaque is the most characteristic brain lesion of AD, and its main component is amyloid ⁇ protein (A ⁇ ) having a ⁇ sheet structure. Imaging of senile plaques from outside the body is thought to lead to the establishment of an effective diagnostic method for AD, but imaging requires an amyloid imaging probe that specifically binds to A ⁇ . To date, a number of radioactive probes for PET or SPECT derived from Congo Red or Thioflavin T have been developed. On the other hand, there are only a few reports of fluorescent probes targeting A ⁇ , and the practical use of fluorescent probes has not progressed due to problems such as brain migration and fluorescence characteristics.
  • Non-Patent Document 1 Synthesized compounds in which a stilbene skeleton or diphenylacetylene skeleton was introduced into BODIPY, a fluorescent dye, and reported that these compounds emit fluorescence with a wavelength of 665-680 nm.
  • Non-patent Document 2 Synthesized a probe compound containing BODIPY and a complex of 2,2′-dipicolylamine and zinc for AD diagnosis. Furthermore, the present inventors synthesized a compound in which 5 ′-[4- (dimethylamino) phenyl] -2,2′-bithiophene was introduced at the 8-position of BODIPY, and found that this compound binds to amyloid plaques. (Non-patent document 3).
  • the present invention has been made based on the technical background as described above, and has high binding specificity for A ⁇ , high blood-brain barrier permeability, and rapid disappearance from sites other than brain senile plaques.
  • An object is to provide a fluorescent compound possessed together.
  • the present inventor obtained the following knowledge (A) and (B) as a result of intensive studies to solve the above-mentioned problems.
  • BODIPY is advantageous in that it is stable in vivo and can be modified with various substituents, and it is possible to increase the fluorescence wavelength and add functions as a radioactive probe and MRI probe. .
  • BODIPY has a very compact structure compared to other fluorescent nuclei such as other rhodamines and fluoresceins. It is thought that it is advantageous also about later brain transferability.
  • the present inventor has recognized for the first time the effectiveness of BODIPY as an amyloid imaging probe.
  • the present inventors synthesized a BODIPY derivative (hereinafter referred to as “first BODIPY derivative”) into which 5 ′-[4- (dimethylamino) phenyl] -2,2′-bithiophene has been introduced, It has been found that it shows permeability of the blood-brain barrier in the body, and actually binds to A ⁇ present in the brain after brain transfer.
  • Non-Patent Document 1 describes that a BODIPY derivative was synthesized for use as an amyloid imaging probe.
  • a BODIPY derivative was synthesized for use as an amyloid imaging probe.
  • the synthesized in Non-Patent Document 1 is a compound in which a stilbene skeleton or a diphenylacetylene skeleton is introduced into BODIPY, and 5 ′-[4- (dimethylamino) phenyl] -2,2′-bithiophene is introduced into BODIPY.
  • the compound which introduced is not synthesized.
  • NPL 1 does not mention anything about the effectiveness of BODIPY as an amyloid imaging probe.
  • BODIPY derivative in which 2-phenyl-5-propenylthiophene is introduced at the 3-position of BODIPY (hereinafter referred to as “second BODIPY derivative”) binds to A ⁇ and has a long wavelength. It was found that it emits fluorescence (maximum fluorescence wavelength: 612 nm).
  • Non-Patent Documents 1 to 3 It has already been clarified in Non-Patent Documents 1 to 3 that a compound containing BODIPY is useful as a fluorescent probe for diagnosis of AD.
  • Non-Patent Document 1 is significantly different in chemical structure from the second BODIPY derivative. In Non-Patent Document 1, it has not been confirmed whether the synthesized compound actually binds to A ⁇ .
  • Non-Patent Document 2 also differs greatly in chemical structure from the second BODIPY derivative, and this compound binds strongly to hyperphosphorylated tau protein and hardly binds to A ⁇ (for example, Figure 3b and Figure 4h).
  • the wavelength of emitted fluorescence is short (maximum fluorescence wavelength: 547 nm), which is far from the wavelength range of near infrared light suitable for biological imaging.
  • the compound described in Non-Patent Document 3 is the first BODIPY derivative described above.
  • the first BODIPY derivative and the second BODIPY derivative are common in that a compound containing a benzene ring and a thiophene ring is added to BODIPY.
  • the compound is added to the 8-position of BODIPY (carbon not on the pyrrole ring), whereas the second BODIPY derivative is in the 3-position of BODIPY (carbon on the pyrrole ring).
  • guide_body is observed only with the excitation light of a short wavelength (470 nm).
  • R 21 represents a hydrogen atom, a fluorine atom, a bromine atom, an iodine atom, a cyano group, an amino group, a methylamino group, a dimethylamino group, a hydroxyl group, a methoxy group, a dicyanovinyl group, — (OCH 2 CH 2 ).
  • j -F [wherein j represents an integer of 1 to 10.
  • R 22 represents a hydrogen atom or an iodine atom
  • R 23 represents a hydrogen atom or a methyl group
  • R 24 represents a hydrogen atom or a methyl group
  • R 25 represents a hydrogen atom or an iodine atom
  • R 26 represents a hydrogen atom or a methyl group
  • X represents a sulfur atom or an oxygen atom
  • i represents an integer of 0 to 10 [provided that when i is 0, dipyrromethene in the general formula (II)
  • the skeleton and the benzene ring represent a case in which they are bonded via a hetero five-membered ring. ].
  • composition for diagnosing conformation disease according to (1) wherein i in the general formula (II) is 2 or 3.
  • R 21 in the general formula (II) is hydrogen atom, fluorine atom, bromine atom, iodine atom, cyano group, amino group, methylamino group, dimethylamino group, hydroxyl group, methoxy group, dicyanovinyl group, 2 -Fluoroethoxy group, 2- (2-fluoroethoxy) ethoxy group, 2- ⁇ 2- (2-fluoroethoxy) ethoxy ⁇ ethoxy group, 2-hydroxyethoxy group, 2- (2-hydroxyethoxy) ethoxy group, or The composition for diagnosing conformation disease according to (1) or (2), which is a 2- ⁇ 2- (2-hydroxyethoxy) ethoxy ⁇ ethoxy group.
  • the composition for diagnosis is a 2- ⁇ 2- (2-hydroxyethoxy) ethoxy ⁇ ethoxy group.
  • X 1 is a hydrogen atom, a fluorine atom, a bromine atom, an iodine atom, a cyano group, an amino group, a methylamino group, a dimethylamino group, a hydroxyl group, a methoxy group, a dicyanovinyl group, — (OCH 2 CH 2 ).
  • m 1 -F [wherein m represents an integer of 1 to 10. Or a group represented by the general formula (A)
  • Y 1 represents a hydrogen atom, a fluorine atom, a bromine atom, an iodine atom, a cyano group, an amino group, a methylamino group, a dimethylamino group, a hydroxyl group, a methoxy group, a dicyanovinyl group, or — (OCH 2 CH 2 ) in m -F ⁇ formula, m represents an integer of 1-10.
  • Y 2 and Y 3 are the same or different and represent a hydrogen atom or a trifluoromethyl group.
  • X 2 and X 3 are the same or different and represent a hydrogen atom or a trifluoromethyl group
  • R 11 and R 12 are the same or different and represent a hydrogen atom or a methyl group
  • R 13 And R 14 represents a hydrogen atom, a methyl group, or a general formula (B)
  • Z 1 represents a hydrogen atom, a fluorine atom, a bromine atom, an iodine atom, a cyano group, an amino group, a methylamino group, a dimethylamino group, a hydroxyl group, a methoxy group, a dicyanovinyl group, or — (OCH 2 CH 2 ) in m -F ⁇ formula, m represents an integer of 1-10.
  • Z 2 and Z 3 are the same or different and each represents a hydrogen atom or a trifluoromethyl group, and k represents an integer of 1 to 10.
  • N represents an integer of 0 to 10
  • n 0 represents a case in which the dipyrromethene skeleton in the general formula (I) and the benzene ring are directly bonded without a thiophene ring. . ].
  • X 1 in the general formula (I) is a hydrogen atom, a fluorine atom, a bromine atom, an iodine atom, a cyano group, an amino group, a methylamino group, a dimethylamino group, a hydroxyl group, a methoxy group, a dicyanovinyl group, or — (OCH 2 CH 2 ) m —F [wherein m represents an integer of 1 to 10.
  • X 2 and X 3 are hydrogen atoms, R 11 , R 12 , R 13 , and R 14 are the same or different and are a hydrogen atom or a methyl group, and n is 1 to
  • the composition for diagnosing conformation disease according to (5) which is an integer of 10.
  • X 1 in the general formula (I) is a hydrogen atom
  • X 2 and X 3 are trifluoromethyl groups
  • R 11 , R 12 , R 13 , and R 14 are the same or different
  • X 1 in the general formula (I) is a hydrogen atom, a fluorine atom, a bromine atom, an iodine atom, a cyano group, an amino group, a methylamino group, a dimethylamino group, a hydroxyl group, a methoxy group, a dicyanovinyl group, or — (OCH 2 CH 2 ) m —F [wherein m represents an integer of 1 to 10.
  • X 2 and X 3 are hydrogen atoms
  • R 11 and R 12 are the same or different, and are a hydrogen atom or a methyl group
  • any one of R 13 and R 14 is generally The group represented by the formula (B), the other is a hydrogen atom or a methyl group
  • n is 0, and Z 2 and Z 3 in the general formula (B) are hydrogen atoms.
  • X 1 in the general formula (I) is a hydrogen atom, a fluorine atom, a bromine atom, an iodine atom, a cyano group, an amino group, a methylamino group, a dimethylamino group, a hydroxyl group, a methoxy group, a dicyanovinyl group, or — (OCH 2 CH 2 ) m —F [wherein m represents an integer of 1 to 10.
  • X 2 and X 3 are hydrogen atoms
  • R 11 and R 12 are the same or different, and are a hydrogen atom or a methyl group
  • any one of R 13 and R 14 is generally A group represented by the formula (B), the other is a hydrogen atom or a methyl group
  • n is 0,
  • Z 1 in the general formula (B) is a hydrogen atom
  • Z 2 and Z 3 are trifluoro
  • the composition for conformation disease diagnosis according to (5) which is a methyl group.
  • X 1 in the general formula (I) is a hydrogen atom, a fluorine atom, a bromine atom, an iodine atom, a cyano group, an amino group, a methylamino group, a dimethylamino group, a hydroxyl group, a methoxy group, a dicyanovinyl group, or — (OCH 2 CH 2 ) m —F [wherein m represents an integer of 1 to 10.
  • X 2 and X 3 are hydrogen atoms
  • R 11 and R 12 are the same or different, and are a hydrogen atom or a methyl group
  • any one of R 13 and R 14 is generally A group represented by the formula (B), the other is a hydrogen atom or a methyl group
  • n is an integer of 1 to 10
  • Z 2 and Z 3 in the general formula (B) are hydrogen atoms (5 )
  • the composition for diagnosing conformation disease is
  • X 1 in the general formula (I) is a hydrogen atom
  • X 2 and X 3 are trifluoromethyl groups
  • R 11 and R 12 are the same or different and are a hydrogen atom or a methyl group
  • Any one of 13 and R 14 is a group represented by the general formula (B), the other is a hydrogen atom or a methyl group
  • n is an integer of 1 to 10
  • Z 1 in the general formula (B) The composition for diagnosing conformation disease according to (5), wherein is a hydrogen atom and Z 2 and Z 3 are trifluoromethyl groups.
  • X 1 in the general formula (I) is a group represented by the general formula (A), X 2 and X 3 are hydrogen atoms, and R 11 , R 12 , R 13 , and R 14 are the same. Or, differently, it is a hydrogen atom or a methyl group, n is 0, and Y 2 and Y 3 in the general formula (A) are hydrogen atoms, The composition for diagnosing conformation disease according to (5).
  • X 1 in the general formula (I) is a group represented by the general formula (A), X 2 and X 3 are hydrogen atoms, and R 11 , R 12 , R 13 , and R 14 are the same.
  • composition for diagnosis of conformational disease (14) The composition for diagnosing conformation disease according to any one of (1) to (13), wherein the conformation disease is Alzheimer's disease.
  • the compound contained in the composition of the present invention binds to A ⁇ and emits fluorescence having a wavelength close to near-infrared light having high biological permeability. For this reason, the diagnostic composition of the present invention enables early and accurate diagnosis of conformational diseases such as AD.
  • a BZ filter Cy5 (manufactured by Keyence Corporation, excitation wavelength: 620/60 nm, absorption wavelength: 700/75 nm) was used as a filter, and the exposure time was 1/50 second.
  • a BZ filter GFPB-BP (manufactured by Keyence Corporation, excitation wavelength: 470/40 nm, absorption wavelength: 535/50 nm) was used as a filter, and the exposure time was 1/50 seconds.
  • BODIPY10 fluorescence spectrum Micrograph of brain section of AD model mouse stained with BODIPY11.
  • a BZ filter Cy5 (manufactured by Keyence Corporation, excitation wavelength: 620/60 nm, absorption wavelength: 700/75 nm) was used as a filter, and the exposure time was 1/7 seconds.
  • a BZ filter GFPB-BP (manufactured by Keyence Corporation, excitation wavelength: 470/40 nm, absorption wavelength: 535/50 nm) was used as a filter, and the exposure time was 1/7 seconds.
  • BODIPY11 fluorescence spectrum The figure which shows the chemical structure of BODIPY13-17. Fluorescence micrograph of a BODIPY derivative Tg2576 mouse brain section (left) and ThS fluorescence micrograph of the adjacent section (right). Fluorescence micrograph of brain section after administration of BODIPY13 to Tg2576 mice (A) and immunostaining photograph with anti-amyloid antibody in the adjacent section (B).
  • X 1 represents a hydrogen atom, a fluorine atom, a bromine atom, an iodine atom, a cyano group, an amino group, a methylamino group. , Dimethylamino group, hydroxyl group, methoxy group, dicyanovinyl group, — (OCH 2 CH 2 ) m —F [wherein, m represents an integer of 1 to 10. Wherein R 13 and R 14 represent a hydrogen atom or a methyl group, and n represents an integer of 1 to 10. ] Formula (Ib)
  • X 2 , X 3 , R 11 , R 12 , Z 1 to Z 3 , k are as defined in the general formula (I), and X 1 represents a hydrogen atom, a fluorine atom, a bromine atom, an iodine atom, a cyano Group, amino group, methylamino group, dimethylamino group, hydroxyl group, methoxy group, dicyanovinyl group, — (OCH 2 CH 2 ) m —F [wherein, m represents an integer of 1 to 10. And R 14 represents a hydrogen atom or a methyl group. ] Formula (Ic)
  • X 2 , X 3 , R 11 , R 12 , Z 1 to Z 3 , k are as defined in the general formula (I), and X 1 represents a hydrogen atom, a fluorine atom, a bromine atom, an iodine atom, a cyano Group, amino group, methylamino group, dimethylamino group, hydroxyl group, methoxy group, dicyanovinyl group, — (OCH 2 CH 2 ) m —F [wherein, m represents an integer of 1 to 10. Wherein R 14 represents a hydrogen atom or a methyl group, and n represents an integer of 1 to 10. ] Or general formula (Id)
  • X 1 is preferably a dimethylamino group, a methylamino group, an amino group, a methoxy group, or a hydroxyl group.
  • X 1 is preferably a hydrogen atom.
  • X 2 and X 3 are preferably a hydrogen atom. However, when the compound represented by the general formula (Ia) is used as an MRI probe, X 2 and X 3 are preferably a trifluoromethyl group.
  • R 11 to R 14 are preferably methyl groups.
  • n is preferably an integer of 1 to 10, more preferably an integer of 2 to 5.
  • X 1 is preferably a dimethylamino group, a methylamino group, an amino group, a methoxy group, or a hydroxyl group.
  • X 2 and X 3 are preferably a hydrogen atom.
  • R 11 , R 12 and R 14 are preferably methyl groups.
  • Z 1 is preferably a dimethylamino group, a methylamino group, an amino group, a methoxy group, or a hydroxyl group.
  • Z 1 is preferably a hydrogen atom.
  • Z 2 and Z 3 are preferably a hydrogen atom. However, when the compound represented by formula (Ib) is used as an MRI probe, Z 2 and Z 3 are preferably a trifluoromethyl group.
  • k is preferably an integer of 1 to 10, and more preferably an integer of 2 to 5.
  • X 1 is preferably a dimethylamino group, a methylamino group, an amino group, a methoxy group, or a hydroxyl group.
  • X 1 is preferably a hydrogen atom.
  • X 2 and X 3 are preferably a hydrogen atom. However, when the compound represented by the general formula (Ic) is used as an MRI probe, X 2 and X 3 are preferably a trifluoromethyl group.
  • R 11 , R 12 , and R 14 are preferably a methyl group.
  • Z 1 is preferably a dimethylamino group, a methylamino group, an amino group, a methoxy group, or a hydroxyl group.
  • Z 1 is preferably a hydrogen atom.
  • Z 2 and Z 3 are preferably a hydrogen atom. However, when the compound represented by the general formula (Ic) is used as an MRI probe, Z 2 and Z 3 are preferably a trifluoromethyl group.
  • k is preferably an integer of 1 to 10, more preferably an integer of 2 to 5.
  • n is preferably an integer of 1 to 10, more preferably an integer of 2 to 5.
  • Y 1 is preferably a dimethylamino group, a methylamino group, an amino group, a methoxy group, or a hydroxyl group.
  • Y 1 is preferably a hydrogen atom.
  • Y 2 and Y 3 are preferably a hydrogen atom. However, when the compound represented by the general formula (Id) is used as an MRI probe, Y 2 and Y 3 are preferably a trifluoromethyl group.
  • R 11 to R 14 are preferably methyl groups.
  • m is preferably 1 to 3.
  • Typical compounds among the compounds represented by the general formula (I) are shown in the following table.
  • “Me” represents a methyl group
  • “A” represents a group represented by the general formula (A)
  • “B” represents a group represented by the general formula (B)
  • “ ⁇ ” "Represents that the group or the like is not present in the compound.
  • Ia-1 BODIPY4
  • Ib-1 Ib-1
  • Ic-1 Id-1
  • the compound represented by the general formula (I) is described in Examples described later, and Rurack et al., Molecular switching in the near infrared (NIR) with a functionalized boron-dipyrromethene dye, Angew. Chem. Int. Ed. 2001, 40, 385-387 and the like.
  • composition for diagnosing conformation disease of the present invention is a compound represented by the above general formula (II), a compound obtained by labeling the compound with a labeling substance, or these And a pharmaceutically acceptable salt of the compound.
  • R 21 , R 22 and R 25 in the general formula (II) may be an iodine atom, and the iodine atom also includes a radioisotope (eg, 123 I, 125 I).
  • a radioisotope eg, 123 I, 125 I.
  • R 21 in the general formula (II) may be a fluorine atom, and this fluorine atom includes a radioisotope (for example, 18 F).
  • R 21 in the general formula (II) may be a group represented by — (OCH 2 CH 2 ) j —F, and the fluorine atom in this group includes a radioisotope (for example, 18 F). Is also included.
  • R 21 is preferably a dimethylamino group, a methylamino group, an amino group, a methoxy group, or a hydroxyl group.
  • R 21 is radiolabeled, a fluorine atom, an iodine atom, or a group represented by — (OCH 2 CH 2 ) j —F is preferable.
  • the position of R 21 in the general formula (II) may be any of the ortho, meta, and para positions, but is preferably the para position.
  • R 22 is preferably a hydrogen atom.
  • R 23 is preferably a hydrogen atom.
  • R 24 is preferably a methyl group.
  • R 25 is preferably a hydrogen atom.
  • R 26 is preferably a methyl group.
  • X is preferably a sulfur atom.
  • i is preferably an integer of 1 to 10, more preferably an integer of 1 to 3.
  • i is preferably 2 or 3. This is because a compound in which i is 2 or 3 is predicted to emit longer wavelength fluorescence than a compound in which i is 1 than in a compound in which i is 1.
  • Typical compounds among the compounds represented by the general formula (II) are shown in the following table.
  • “p-” represents a group at the para position
  • “Me” represents a methyl group
  • “FX” represents a 2-fluoroethoxy group
  • “FX2” represents 2- (2 -Fluoroethoxy) ethoxy group
  • “FX3” represents 2- ⁇ 2- (2-fluoroethoxy) ethoxy ⁇ ethoxy group
  • HOX represents 2-hydroxyethoxy group
  • HOX2 represents 2- ( Represents a 2-hydroxyethoxy) ethoxy group
  • “HOX3” represents a 2- ⁇ 2- (2-hydroxyethoxy) ethoxy ⁇ ethoxy group.
  • preferred compounds include II-309 (BODPY10) and II-310 (BODIPY11).
  • the compound represented by the general formula (II) is described in Examples described later and Umezawa K et al., Bright, color-tunable fluorescent dyes in the vis / NIR region: establishment of new “tailor-made” multicolor fluorophores based. on borondipyrromethene, Chemistry-A European Journal, 15 (5), 1096-1106, 2009, and the like.
  • (C) Composition for diagnosis of conformation disease The compounds represented by the general formulas (I) and (II) have a BODIPY skeleton in the molecule, and thus have a fluorescent label. Also good.
  • the type of label is not particularly limited, but a radiolabel or an MRI label is preferable.
  • the compounds represented by the general formulas (I) and (II) may contain a radionuclide in the molecule, and the compounds represented by the general formulas (I) and (II) A radionuclide may be bound to.
  • the kind of radionuclide is not particularly limited, and can be appropriately determined depending on the mode of use.
  • SPECT computed tomography
  • ⁇ -ray emitting nuclides can be used, and positron emission tomography (PET) is used.
  • PET positron emission tomography
  • positron emitting nuclides can be used.
  • Examples of the ⁇ -ray emitting nuclide include 99m Tc, 111 In, 67 Ga, 201 Tl, 123 I, and 133 Xe. Among these, 99m Tc and 123 I are preferable, and 99m Tc is particularly preferable.
  • Examples of the positron emitting nuclide include 11 C, 13 N, 15 O, 18 F, 62 Cu, 68 Ga, and 76 Br. Among these, 11 C, 13 N, 15 O, and 18 F are preferable, and 11 C Is particularly preferred.
  • radionuclides having a longer half-life such as 125 I, may be used.
  • the method of binding the radionuclide to the compounds represented by the general formulas (I) and (II) may be a method generally used for each radionuclide.
  • a radionuclide is bound to the compounds represented by the general formulas (I) and (II)
  • only the radionuclide may be bound, or a radionuclide that is bound to another substance may be bound.
  • 99m Tc described above is usually bonded to a labeled compound in the form of a complex, it can be bonded to a compound represented by the general formulas (I) and (II) or a complex containing 99m Tc. Good.
  • Complexes containing 99m Tc include complexes containing 2-hydrazinopyridine (Liu S et al, Bioconjug Chem. 1996 Jan-Feb; 7 (1): 63-71.), N- (2-mercaptoethyl)- Complexes containing 2-[(2-mercaptoethyl) amino] -acetamide (Zhen W et al, J Med Chem. 1999 Jul 29; 42 (15): 2805-15.), 2,2 ′-(1,2 -Ethanediyldiimino) bisethanethiol-containing complexes (Oya S et al, Nucl Med Biol.
  • the compounds represented by the general formulas (I) and (II) may contain a labeling substance in the molecule, or represented by the general formulas (I) and (II).
  • a labeling substance may be bound to the compound.
  • the type of MRI label is not particularly limited, and examples thereof include 19 F.
  • pharmaceutically acceptable salts instead of the compounds represented by the general formulas (I) and (II).
  • pharmaceutically acceptable salts include alkali metal salts (sodium salt, potassium salt, lithium salt), alkaline earth metal salts (calcium salt, magnesium salt), sulfate, hydrochloride, nitrate, phosphate, etc. it can.
  • composition of the present invention can be used for diagnosis of conformational disease.
  • conformation disease means a group of diseases caused by proteins abnormalized by conformational transformation such as A ⁇ , tau protein, prion, etc.
  • AD hereditary cerebral hemorrhage with Down's syndrome and Dutch amyloidosis Illness (hereditary cerebral hemorrhage with amyloidosis—Dutch type: HCHWA-D), Creutzfeldt-Jakob disease (CJD) and bovine spongiform encephalopathy (BSE).
  • diseases to be diagnosed include precursor symptoms of diseases that are generally not recognized as “diseases”. Examples of prodromal symptoms of such diseases include mild cognitive impairment (MCI) seen before the onset of AD.
  • MCI mild cognitive impairment
  • the diagnosis of conformation disease by the composition of the present invention is usually performed by administering the composition of the present invention to a subject to be diagnosed or a laboratory animal, and then taking an image of the brain, and the general formulas (I) and ( II) based on the state (amount, distribution, etc.) of the compound represented by
  • the administration method of the composition of the present invention is not particularly limited and can be appropriately determined according to the type of compound, the type of labeling substance, etc., but is usually intradermal, intraperitoneal, intravenous, arterial, or spinal fluid. It is administered by injection or infusion.
  • the dose of the composition of the present invention is not particularly limited, and can be appropriately determined according to the type of compound, the type of labeling substance, etc. In the case of an adult, it is represented by general formulas (I) and (II).
  • the compound is preferably administered at 10 ⁇ 10 to 10 ⁇ 3 mg per day, more preferably at 10 ⁇ 8 to 10 ⁇ 5 mg.
  • the composition of the present invention since the composition of the present invention is usually administered by injection or infusion, it may contain components usually contained in an injection solution or an infusion solution.
  • Such components include liquid carriers (for example, potassium phosphate buffer, physiological saline, Ringer's solution, distilled water, polyethylene glycol, vegetable oils, ethanol, glycerin, dimethyl sulfoxide, propylene glycol, etc.), antibacterial agents And local anesthetics (eg, procaine hydrochloride, dibucaine hydrochloride, etc.), buffer solutions (eg, Tris-HCl buffer solution, Hepes buffer solution, etc.), osmotic pressure regulators (eg, glucose, sorbitol, sodium chloride, etc.) .
  • liquid carriers for example, potassium phosphate buffer, physiological saline, Ringer's solution, distilled water, polyethylene glycol, vegetable oils, ethanol, glycerin, dimethyl sulfoxide, propylene glycol, etc.
  • BODIPY4 intermediate 100 mg, 0.32 mmol
  • CH 2 Cl 2 35 ml
  • TFA 1 drop of TFA was added.
  • p-chloranil 78 mg, 0.32 mmol was added.
  • Et 3 N 450 ml, 0.32 ⁇ mol
  • Et 2 OBF 3 520 ⁇ l, 0.32 mmol
  • BODIPY5 was obtained as a purple solid by drying under reduced pressure using an evaporator (yield 13.6 mg, 17.0%). The formation of BODIPY5 was confirmed by 1 H-NMR 400 MHz. MS (APCI) could not confirm the generation of BODIPY5.
  • Section staining Tg2576 mice were used as AD model mice. 10 mm frozen brain sections were prepared, and the sections were incubated with 1 mM 50% EtOH solution of BODIPY1 to BODIPY5. At the same time, fluorescent staining with ThS and NIAD-16 was performed on adjacent sections. Subsequently, observation with a fluorescence microscope was performed.
  • Fluorescence micrographs of sections stained with BODIPY3 to BODIPY5, ThS, or NIAD-16 are shown in FIG. As shown in the figure, fluorescent images derived from this compound were confirmed in the sections stained with BODIPY4. This fluorescence image coincided with the fluorescence image of the section stained with ThS. Note that no fluorescence was detected in the sections stained with BODIPY1 and BODIPY2. When normal mouse sections were used, no fluorescence was detected when stained with any of BODIPY3 to BODIPY5, ThS, or NIAD-16.
  • BODIPY4 300 ml, 7.5 mM saline solution containing 30% ethanol was administered to Tg2576 mice (female, 32 months old) from the tail vein. After 30 min, it was killed by decapitation. The brain was removed, embedded in SCEM solution, and frozen by immersion in a dry ice hexane bath. Thereafter, 10 mm frozen brain sections were prepared and observed with a fluorescence microscope. Furthermore, immunostaining with an anti-amyloid antibody was performed using the same section.
  • BODIPY3 and BODIPY4 were examined for fluorescence intensity in the presence and absence of A ⁇ .
  • BODIPY3, BODIPY4 0.3125 ⁇ M 50% EtOH solution (in PBS) or 0.3125 ⁇ M 50% EtOH, and 10 ⁇ g / ml A ⁇ 42 aggregate solution (in PBS) were mixed, incubated at 37 ° C. for 1 h, 0.2 Filtration was performed using a ⁇ m filter, and the fluorescence intensity of the filtrate was measured.
  • Section staining with BODIPY10 Tg2576 mice were used as AD model mice. 10 ⁇ m brain frozen sections were prepared, and the sections were incubated with 1 mM 50% EtOH solution of BODIPY10. At the same time, fluorescent staining with thioflavin S (ThS) was performed on adjacent sections. Subsequently, observation with a fluorescence microscope was performed. A photograph of a section stained with BODIPY10 is shown in FIG. 5 (excitation wavelength: 620/60 nm), and a photograph of a section stained with ThS is shown in FIG. 6 (excitation wavelength: 470/40 nm). As shown in the figure, the fluorescent staining site with ThS and the fluorescent staining site with BODIPY10 coincided. For comparison, a similar experiment was performed using a wild-type mouse brain section, but no fluorescent staining site with BODIPY10 was observed in the wild-type mouse brain section.
  • BODIPY 4 BODIPY 4 in which 5 ′-[4- (dimethylamino) phenyl] -2,2′-bithiophene was introduced at the 8-position of BODIPY, and developed an AD model. Fluorescent staining was performed on mouse brain sections (Non-patent Document 3, Japanese Patent Application No. 2009-107457). At this time, fluorescent staining was performed only when a shorter excitation wavelength (470/40 nm) was used. No image was observed.
  • Fluorescence spectrum BODIPY10 was dissolved in chloroform (1 nM), and the fluorescence spectrum was measured at an excitation wavelength of 600 nm (FIG. 7). The fluorescence wavelength reached its maximum intensity at 612 nm.
  • Section staining with BODIPY11 Tg2576 mice were used as AD model mice. 10 ⁇ m frozen brain sections were prepared, and the sections were incubated with 1 mM 50% EtOH solution of BODIPY11. At the same time, fluorescent staining with ThS was performed on adjacent sections. Subsequently, observation with a fluorescence microscope was performed. A photograph of a section fluorescently stained with BODIPY11 is shown in FIG. 8, and a photograph of a section fluorescently stained with ThS is shown in FIG. As shown in the figure, the fluorescent staining site with ThS coincided with the fluorescent staining site with BODIPY11. From these results, it was suggested that the amyloid binding property was retained even when bromine in BODIPY10 was replaced with iodine.
  • 125 I-BODIPY11 radioactivity accumulation was observed in the cerebral cortex region, and a correlation with ThS fluorescence accumulation site was observed. Therefore, it was suggested that 125 I-BODIPY11 has a binding property to amyloid ⁇ as well as BODIPY11.
  • BODIPY11 showed 0.4% Dose / g brain migration 2 minutes after administration, and then showed radioactivity loss over time. In addition, due to fat solubility, high accumulation in the liver was observed.
  • the excitation maximum wavelength was 606 nm and the fluorescence maximum wavelength was 613 nm, indicating fluorescence characteristics similar to BODIPY10.
  • the wavelength was successfully increased to about 100 nm.
  • UV-1800 manufactured by Shimadzu Corporation
  • RF-5300PC spectrofluorophotometer
  • a ⁇ imaging reagents for the purpose of AD diagnosis, development support for therapeutic agents targeting A ⁇ , and disease state determination using A ⁇ accumulation in AD patients as an index.
  • the ripple effect on the development research of the detector PET, SPECT, optical imaging MRI equipment can be expected.

Abstract

A composition for use in the diagnosis of conformational disease is provided, for the purpose of developing a fluorescent compound having high binding specificity to Aβ, high blood-brain barrier permeability, and an ability to disappear rapidly in areas other than senile plaques in the brain. The composition contains a compound produced by introducing 5'-[4-(dimethylamino)phenyl]-2,2'-bithiophene into position-8 of BODIPY or a compound produced by introducing 2-phenyl-5-propenylthiophene into position-3 of BODIPY.

Description

コンフォメーション病診断用組成物Composition for diagnosing conformation disease
 本発明は、ボロンジピロメテン(borondipyrromethene, BODIPY)誘導体を含有する診断用組成物に関する。本発明の組成物中に含まれる化合物は、アミロイドβ蛋白に特異的に結合し、また、生体イメージングに適正した長波長の蛍光を発するので、アルツハイマー病などのコンフォメーション病の診断に有用である。 The present invention relates to a diagnostic composition containing a boron dipyrromethene (BODIPY) derivative. Since the compound contained in the composition of the present invention specifically binds to amyloid β protein and emits long-wavelength fluorescence suitable for biological imaging, it is useful for diagnosis of conformational diseases such as Alzheimer's disease. .
 近年の急速な高齢化に伴い、アルツハイマー病(AD)をはじめとする痴呆性疾患の増加が大きな社会問題のひとつになっている。現在、ADの臨床診断法には、長谷川式、ADAS、MMSEがあり、いずれもADが疑われる個体の認知機能の低下を定量的に評価する方法が一般的に用いられる。この他画像診断法(MRI,CT等)が補助的に用いられるが、これらの診断法ではADを確定診断するには不十分であり、確定診断には生前における脳の生検、死後脳の病理組織学的検査において、老人斑と神経原繊維の出現を確認することが必要である。したがって、現在の診断方法では、広範な脳障害が生じる前の早期段階でADを診断するのは困難である。これまでにADの生物学的診断マーカーとしていくつかの報告があるが、臨床上実用的なものはいまだ開発されていない。このような状況下、ADの早期診断に対する社会的要求は高く、その早急な開発が強く望まれている。 With the recent rapid aging of society, an increase in dementia diseases such as Alzheimer's disease (AD) has become one of the major social problems. Currently, there are Hasegawa's method, ADAS, and MMSE as clinical diagnostic methods for AD, and all of them generally use a method for quantitatively evaluating the decline in cognitive function of an individual suspected of having AD. Other diagnostic imaging methods (MRI, CT, etc.) are used as supplementary methods, but these diagnostic methods are insufficient for definitive diagnosis of AD. For definitive diagnosis, biopsy of the brain before birth, postmortem brain In histopathological examination, it is necessary to confirm the appearance of senile plaques and neurofibrils. Therefore, with current diagnostic methods, it is difficult to diagnose AD at an early stage before extensive brain damage occurs. To date, there have been several reports as biological diagnostic markers for AD, but clinically practical ones have not yet been developed. Under such circumstances, there is a high social demand for early diagnosis of AD, and its rapid development is strongly desired.
 老人斑はADの最も特徴的な脳病変であり、その主構成成分はβシート構造をとったアミロイドβ蛋白(Aβ)である。体外からの老人斑の画像化はADの有効な診断法の確立につながると考えられるが、画像化には、Aβと特異的に結合するアミロイドイメージングプローブが必要である。これまでに、コンゴーレッドやチオフラビンTから派生した多数のPET又はSPECT用の放射性プローブが開発されてきた。一方、Aβを標的にした蛍光プローブの報告数はわずかであり、脳移行性や蛍光特性の問題などから蛍光プローブの実用化は進んでいない。 Senile plaque is the most characteristic brain lesion of AD, and its main component is amyloid β protein (Aβ) having a β sheet structure. Imaging of senile plaques from outside the body is thought to lead to the establishment of an effective diagnostic method for AD, but imaging requires an amyloid imaging probe that specifically binds to Aβ. To date, a number of radioactive probes for PET or SPECT derived from Congo Red or Thioflavin T have been developed. On the other hand, there are only a few reports of fluorescent probes targeting Aβ, and the practical use of fluorescent probes has not progressed due to problems such as brain migration and fluorescence characteristics.
 最近、Parhiらは、Aβの検出を目的として、蛍光色素であるBODIPYにスチルベン骨格やジフェニルアセチレン骨格を導入した化合物を合成し、これらの化合物が665-680nmの波長の蛍光を発することを報告している(非特許文献1)。 Recently, for the purpose of detecting Aβ, Parhi et al. Synthesized compounds in which a stilbene skeleton or diphenylacetylene skeleton was introduced into BODIPY, a fluorescent dye, and reported that these compounds emit fluorescence with a wavelength of 665-680 nm. (Non-Patent Document 1).
 また、Ojidaらは、AD診断のため、BODIPY、及び 2,2’-ジピコリルアミンと亜鉛の複合体を含むプローブ化合物を合成している(非特許文献2)
 更に、本発明者らは、BODIPYの8位に5’-[4-(ジメチルアミノ)フェニル]-2,2’-ビチオフェンを導入した化合物を合成し、この化合物がアミロイド斑と結合することを確認している(非特許文献3)。
Ojida et al. Synthesized a probe compound containing BODIPY and a complex of 2,2′-dipicolylamine and zinc for AD diagnosis (Non-patent Document 2).
Furthermore, the present inventors synthesized a compound in which 5 ′-[4- (dimethylamino) phenyl] -2,2′-bithiophene was introduced at the 8-position of BODIPY, and found that this compound binds to amyloid plaques. (Non-patent document 3).
 本発明は、以上のような技術的背景のもとになされたものであり、Aβに対する高い結合特異性、高い血液脳関門の透過性、脳内老人斑以外の部位からの速やかな消失性を併せ持つ蛍光化合物を提供することを目的とする。 The present invention has been made based on the technical background as described above, and has high binding specificity for Aβ, high blood-brain barrier permeability, and rapid disappearance from sites other than brain senile plaques. An object is to provide a fluorescent compound possessed together.
 本発明者は、上記課題を解決するため鋭意検討を重ねた結果、以下の(A)及び(B)の知見を得た。 The present inventor obtained the following knowledge (A) and (B) as a result of intensive studies to solve the above-mentioned problems.
(A)有効なアミロイドイメージングプローブの開発には、アミロイド凝集体への結合性、生体投与後の脳移行性が必要である。さらに蛍光性プローブには、生体透過に優れた近赤外光を放出する特性を必要とする。BODIPYは生体内でも安定であること、様々な置換基の修飾が可能であるなどのメリットを有し、蛍光波長の長波長化や放射性プローブやMRIプローブとしての機能を追加することも可能である。さらに、脳移行性には分子のコンパクトであることが必要であるが、BODIPYは他のローダミン、フルオレセインなどの既存の蛍光母核に比べて非常にコンパクトな構造をしていることから、生体投与後の脳移行性についても有利であると考えられる。 (A) The development of an effective amyloid imaging probe requires the ability to bind to amyloid aggregates and to migrate to the brain after administration in vivo. Further, the fluorescent probe needs to have a characteristic of emitting near-infrared light that is excellent in biological transmission. BODIPY is advantageous in that it is stable in vivo and can be modified with various substituents, and it is possible to increase the fluorescence wavelength and add functions as a radioactive probe and MRI probe. . In addition, it is necessary to have a compact molecule for brain migration, but BODIPY has a very compact structure compared to other fluorescent nuclei such as other rhodamines and fluoresceins. It is thought that it is advantageous also about later brain transferability.
 本発明者は、このようなBODIPYのアミロイドイメージングプローブとしての有効性について初めて認識した。また、本発明者は、5’-[4-(ジメチルアミノ)フェニル]-2,2’-ビチオフェンを導入したBODIPY誘導体(以下、「第一のBODIPY誘導体」という)を合成し、それが生体内で血液脳関門の透過性を示し、脳移行後に脳内に存在するAβと実際に結合することを見出した。 The present inventor has recognized for the first time the effectiveness of BODIPY as an amyloid imaging probe. In addition, the present inventors synthesized a BODIPY derivative (hereinafter referred to as “first BODIPY derivative”) into which 5 ′-[4- (dimethylamino) phenyl] -2,2′-bithiophene has been introduced, It has been found that it shows permeability of the blood-brain barrier in the body, and actually binds to Aβ present in the brain after brain transfer.
 上述したように、非特許文献1には、アミロイドイメージングプローブとして用いる目的で、BODIPY誘導体を合成したことが記載されている。しかし、非特許文献1で合成しているのは、BODIPYにスチルベン骨格やジフェニルアセチレン骨格を導入した化合物であり、BODIPYに5’-[4-(ジメチルアミノ)フェニル]-2,2’-ビチオフェンを導入した化合物は合成していない。また、非特許文献1では、合成した化合物が実際にAβと結合するかどうかまでは確認していない。更に、上述したBODIPYのアミロイドイメージングプローブとしての有効性についても非特許文献1は何も言及していない。 As described above, Non-Patent Document 1 describes that a BODIPY derivative was synthesized for use as an amyloid imaging probe. However, what is synthesized in Non-Patent Document 1 is a compound in which a stilbene skeleton or a diphenylacetylene skeleton is introduced into BODIPY, and 5 ′-[4- (dimethylamino) phenyl] -2,2′-bithiophene is introduced into BODIPY. The compound which introduced is not synthesized. In Non-Patent Document 1, it has not been confirmed whether or not the synthesized compound actually binds to Aβ. Furthermore, NPL 1 does not mention anything about the effectiveness of BODIPY as an amyloid imaging probe.
(B)本発明者は、BODIPYの3位に2-フェニル-5-プロペニルチオフェンを導入したBODIPY誘導体(以下、「第二のBODIPY誘導体」という)が、Aβと結合し、また、長波長の蛍光(最大蛍光波長:612nm)を発することを見出した。 (B) The present inventor confirmed that a BODIPY derivative in which 2-phenyl-5-propenylthiophene is introduced at the 3-position of BODIPY (hereinafter referred to as “second BODIPY derivative”) binds to Aβ and has a long wavelength. It was found that it emits fluorescence (maximum fluorescence wavelength: 612 nm).
 ADの診断のための蛍光プローブとしてBODIPYを含む化合物が有用であることは、既に非特許文献1~3で明らかにされている。 It has already been clarified in Non-Patent Documents 1 to 3 that a compound containing BODIPY is useful as a fluorescent probe for diagnosis of AD.
 しかし、非特許文献1に記載されている化合物は、第二のBODIPY誘導体と化学構造が大きく異なる。また、非特許文献1では、合成した化合物が実際にAβと結合するかどうかまでは確認されていない。 However, the compound described in Non-Patent Document 1 is significantly different in chemical structure from the second BODIPY derivative. In Non-Patent Document 1, it has not been confirmed whether the synthesized compound actually binds to Aβ.
 非特許文献2に記載されている化合物も、第二のBODIPY誘導体と化学構造が大きく異なり、しかも、この化合物は、過剰リン酸化したタウタンパク質と強く結合し、Aβとはほとんど結合しない(例えば、Figure 3b及びFigure 4h)。また、発する蛍光の波長も短く(最大蛍光波長:547nm)、生体イメージングに適した近赤外光の波長域から大きく外れる。 The compound described in Non-Patent Document 2 also differs greatly in chemical structure from the second BODIPY derivative, and this compound binds strongly to hyperphosphorylated tau protein and hardly binds to Aβ (for example, Figure 3b and Figure 4h). In addition, the wavelength of emitted fluorescence is short (maximum fluorescence wavelength: 547 nm), which is far from the wavelength range of near infrared light suitable for biological imaging.
 非特許文献3に記載されている化合物は、上述した第一のBODIPY誘導体である。第一のBODIPY誘導体と第二のBODIPY誘導体は、ベンゼン環とチオフェン環を含む化合物をBODIPYに付加している点で共通する。しかし、第一のBODIPY誘導体は、前記化合物がBODIPYの8位(ピロール環上にない炭素)に付加されているのに対し、第二のBODIPY誘導体はBODIPYの3位(ピロール環上の炭素)に付加されている。また、第一のBODIPY誘導体による蛍光は、短波長(470nm)の励起光でしか観察されていない。 The compound described in Non-Patent Document 3 is the first BODIPY derivative described above. The first BODIPY derivative and the second BODIPY derivative are common in that a compound containing a benzene ring and a thiophene ring is added to BODIPY. However, in the first BODIPY derivative, the compound is added to the 8-position of BODIPY (carbon not on the pyrrole ring), whereas the second BODIPY derivative is in the 3-position of BODIPY (carbon on the pyrrole ring). Has been added. Moreover, the fluorescence by the 1st BODIPY derivative | guide_body is observed only with the excitation light of a short wavelength (470 nm).
 以上のことから、第二のBODIPY誘導体が、Aβと結合し、長波長の蛍光を発するということは、全く予測できなかったことである。 From the above, it was unpredictable that the second BODIPY derivative would bind to Aβ and emit long-wave fluorescence.
 本発明者は、上記(A)の知見に基づき、以下の(5)~(14)の発明を完成し、上記(B)の知見に基づき、以下の(1)~(4)及び(14)の発明を完成した。
(1)一般式(II)
The present inventor has completed the following inventions (5) to (14) based on the above knowledge (A), and based on the above knowledge (B), the following (1) to (4) and (14 ) Was completed.
(1) General formula (II)
Figure JPOXMLDOC01-appb-C000005
〔式中、R21は水素原子、フッ素原子、臭素原子、ヨウ素原子、シアノ基、アミノ基、メチルアミノ基、ジメチルアミノ基、ヒドロキシル基、メトキシ基、ジシアノビニル基、-(OCHCHj-F[式中、jは1~10の整数を表す。] で表される基、又は-(OCHCHj-OH [式中、jは1~10の整数を表す。]で表される基を表し、R22は水素原子又はヨウ素原子を表し、R23は水素原子又はメチル基を表し、R24は水素原子又はメチル基を表し、R25は水素原子又はヨウ素原子を表し、R26は水素原子又はメチル基を表し、Xは硫黄原子又は酸素原子を表し、iは0~10の整数を表す[但し、iが0のときは一般式(II)中のジピロメテン骨格とベンゼン環は複素五員環を介さず結合する場合を表す。]。〕
で表される化合物若しくは前記化合物を標識物質で標識した化合物、又はこれらの化合物の医薬上許容される塩を含有するコンフォメーション病診断用組成物。
(2)一般式(II)におけるiが、2又は3である(1)に記載のコンフォメーション病診断用組成物。
(3)一般式(II)におけるR21が、水素原子、フッ素原子、臭素原子、ヨウ素原子、シアノ基、アミノ基、メチルアミノ基、ジメチルアミノ基、ヒドロキシル基、メトキシ基、ジシアノビニル基、2-フルオロエトキシ基、2-(2-フルオロエトキシ)エトキシ基、2-{2-(2-フルオロエトキシ)エトキシ}エトキシ基、2-ヒドロキシエトキシ基、2-(2-ヒドロキシエトキシ)エトキシ基、又は2-{2-(2-ヒドロキシエトキシ)エトキシ}エトキシ基である(1)又は(2)に記載のコンフォメーション病診断用組成物。
(4)一般式(II)におけるR22及びR25が、水素原子である(1)乃至(3)のいずれかに記載のコンフォメーション病診断用組成物。
(5)一般式(I)
Figure JPOXMLDOC01-appb-C000005
[Wherein R 21 represents a hydrogen atom, a fluorine atom, a bromine atom, an iodine atom, a cyano group, an amino group, a methylamino group, a dimethylamino group, a hydroxyl group, a methoxy group, a dicyanovinyl group, — (OCH 2 CH 2 ). j -F [wherein j represents an integer of 1 to 10. A group represented by the formula: — (OCH 2 CH 2 ) j —OH [wherein j represents an integer of 1 to 10. R 22 represents a hydrogen atom or an iodine atom, R 23 represents a hydrogen atom or a methyl group, R 24 represents a hydrogen atom or a methyl group, and R 25 represents a hydrogen atom or an iodine atom. R 26 represents a hydrogen atom or a methyl group, X represents a sulfur atom or an oxygen atom, and i represents an integer of 0 to 10 [provided that when i is 0, dipyrromethene in the general formula (II) The skeleton and the benzene ring represent a case in which they are bonded via a hetero five-membered ring. ]. ]
Or a compound obtained by labeling the compound with a labeling substance, or a pharmaceutically acceptable salt of these compounds.
(2) The composition for diagnosing conformation disease according to (1), wherein i in the general formula (II) is 2 or 3.
(3) R 21 in the general formula (II) is hydrogen atom, fluorine atom, bromine atom, iodine atom, cyano group, amino group, methylamino group, dimethylamino group, hydroxyl group, methoxy group, dicyanovinyl group, 2 -Fluoroethoxy group, 2- (2-fluoroethoxy) ethoxy group, 2- {2- (2-fluoroethoxy) ethoxy} ethoxy group, 2-hydroxyethoxy group, 2- (2-hydroxyethoxy) ethoxy group, or The composition for diagnosing conformation disease according to (1) or (2), which is a 2- {2- (2-hydroxyethoxy) ethoxy} ethoxy group.
(4) The composition for diagnosis of conformation disease according to any one of (1) to (3), wherein R 22 and R 25 in the general formula (II) are hydrogen atoms.
(5) General formula (I)
Figure JPOXMLDOC01-appb-C000006
〔式中、Xは水素原子、フッ素原子、臭素原子、ヨウ素原子、シアノ基、アミノ基、メチルアミノ基、ジメチルアミノ基、ヒドロキシル基、メトキシ基、ジシアノビニル基、-(OCHCH-F[式中、mは1~10の整数を表す。] で表される基、又は一般式(A)
Figure JPOXMLDOC01-appb-C000006
[Wherein, X 1 is a hydrogen atom, a fluorine atom, a bromine atom, an iodine atom, a cyano group, an amino group, a methylamino group, a dimethylamino group, a hydroxyl group, a methoxy group, a dicyanovinyl group, — (OCH 2 CH 2 ). m 1 -F [wherein m represents an integer of 1 to 10. Or a group represented by the general formula (A)
Figure JPOXMLDOC01-appb-C000007
[式中、Yは水素原子、フッ素原子、臭素原子、ヨウ素原子、シアノ基、アミノ基、メチルアミノ基、ジメチルアミノ基、ヒドロキシル基、メトキシ基、ジシアノビニル基、又は-(OCHCH-F〈式中、mは1~10の整数を表す。〉 で表される基を表し、Y及びYは同一又は異なって、水素原子又はトリフルオロメチル基を表す。]
で表される基を表し、X及びXは同一又は異なって、水素原子又はトリフルオロメチル基を表し、R11及びR12は同一又は異なって、水素原子又はメチル基を表し、R13及びR14は水素原子、メチル基、又は一般式(B)
Figure JPOXMLDOC01-appb-C000007
[Wherein Y 1 represents a hydrogen atom, a fluorine atom, a bromine atom, an iodine atom, a cyano group, an amino group, a methylamino group, a dimethylamino group, a hydroxyl group, a methoxy group, a dicyanovinyl group, or — (OCH 2 CH 2 ) in m -F <formula, m represents an integer of 1-10. > Y 2 and Y 3 are the same or different and represent a hydrogen atom or a trifluoromethyl group. ]
X 2 and X 3 are the same or different and represent a hydrogen atom or a trifluoromethyl group, R 11 and R 12 are the same or different and represent a hydrogen atom or a methyl group, R 13 And R 14 represents a hydrogen atom, a methyl group, or a general formula (B)
Figure JPOXMLDOC01-appb-C000008
[式中、Zは水素原子、フッ素原子、臭素原子、ヨウ素原子、シアノ基、アミノ基、メチルアミノ基、ジメチルアミノ基、ヒドロキシル基、メトキシ基、ジシアノビニル基、又は-(OCHCH-F〈式中、mは1~10の整数を表す。〉 で表される基を表し、Z及びZは同一又は異なって、水素原子又はトリフルオロメチル基を表し、kは1~10の整数を表す。]
で表される基を表し、nは0~10の整数を表す[但し、nが0のときは一般式(I)中のジピロメテン骨格とベンゼン環がチオフェン環を介さず直接結合する場合を表す。]。〕
で表される化合物若しくは前記化合物を標識物質で標識した化合物、又はこれらの化合物の医薬上許容される塩を含有するコンフォメーション病診断用組成物。
(6)一般式(I)におけるXが水素原子、フッ素原子、臭素原子、ヨウ素原子、シアノ基、アミノ基、メチルアミノ基、ジメチルアミノ基、ヒドロキシル基、メトキシ基、ジシアノビニル基、又は-(OCHCH-F[式中、mは1~10の整数を表す。] で表される基であり、X及びXが水素原子であり、R11、R12、R13、及びR14は同一又は異なって、水素原子又はメチル基であり、nが1~10の整数である(5)に記載のコンフォメーション病診断用組成物。
(7)一般式(I)におけるXが水素原子であり、X及びXがトリフルオロメチル基であり、R11、R12、R13、及びR14は同一又は異なって、水素原子又はメチル基であり、nは1~10の整数である(5)に記載のコンフォメーション病診断用組成物。
(8)一般式(I)におけるXが水素原子、フッ素原子、臭素原子、ヨウ素原子、シアノ基、アミノ基、メチルアミノ基、ジメチルアミノ基、ヒドロキシル基、メトキシ基、ジシアノビニル基、又は-(OCHCH-F[式中、mは1~10の整数を表す。] で表される基であり、X及びXが水素原子であり、R11及びR12は同一又は異なって、水素原子又はメチル基であり、R13及びR14のいずれか一方が一般式(B)で表される基であり、他方が水素原子又はメチル基であり、nが0であり、一般式(B)におけるZ及びZが水素原子である(5)に記載のコンフォメーション病診断用組成物。
(9)一般式(I)におけるXが水素原子、フッ素原子、臭素原子、ヨウ素原子、シアノ基、アミノ基、メチルアミノ基、ジメチルアミノ基、ヒドロキシル基、メトキシ基、ジシアノビニル基、又は-(OCHCH-F[式中、mは1~10の整数を表す。] で表される基であり、X及びXが水素原子であり、R11及びR12は同一又は異なって、水素原子又はメチル基であり、R13及びR14のいずれか一方が一般式(B)で表される基であり、他方が水素原子又はメチル基であり、nが0であり、一般式(B)におけるZが水素原子であり、Z及びZがトリフルオロメチル基である(5)に記載のコンフォメーション病診断用組成物。
(10)一般式(I)におけるXが水素原子、フッ素原子、臭素原子、ヨウ素原子、シアノ基、アミノ基、メチルアミノ基、ジメチルアミノ基、ヒドロキシル基、メトキシ基、ジシアノビニル基、又は-(OCHCH-F[式中、mは1~10の整数を表す。] で表される基であり、X及びXが水素原子であり、R11及びR12は同一又は異なって、水素原子又はメチル基であり、R13及びR14のいずれか一方が一般式(B)で表される基であり、他方が水素原子又はメチル基であり、nが1~10の整数であり、一般式(B)におけるZ及びZが水素原子である(5)に記載のコンフォメーション病診断用組成物。
(11)一般式(I)におけるXが水素原子であり、X及びXがトリフルオロメチル基であり、R11及びR12は同一又は異なって、水素原子又はメチル基であり、R13及びR14のいずれか一方が一般式(B)で表される基であり、他方が水素原子又はメチル基であり、nが1~10の整数であり、一般式(B)におけるZが水素原子であり、Z及びZがトリフルオロメチル基である(5)に記載のコンフォメーション病診断用組成物。
(12)一般式(I)におけるXが一般式(A)で表される基であり、X及びXが水素原子であり、R11、R12、R13、及びR14は同一又は異なって、水素原子又はメチル基であり、nが0であり、一般式(A)におけるY及びYは水素原子である(5)に記載のコンフォメーション病診断用組成物。
(13)一般式(I)におけるXが一般式(A)で表される基であり、X及びXが水素原子であり、R11、R12、R13、及びR14は同一又は異なって、水素原子又はメチル基であり、nが0であり、一般式(A)におけるYが水素原子であり、Y及びYがトリフルオロメチル基である(5)に記載のコンフォメーション病診断用組成物。
(14)コンフォメーション病が、アルツハイマー病である(1)乃至(13)のいずれかに記載のコンフォメーション病診断用組成物。
Figure JPOXMLDOC01-appb-C000008
[Wherein Z 1 represents a hydrogen atom, a fluorine atom, a bromine atom, an iodine atom, a cyano group, an amino group, a methylamino group, a dimethylamino group, a hydroxyl group, a methoxy group, a dicyanovinyl group, or — (OCH 2 CH 2 ) in m -F <formula, m represents an integer of 1-10. > Z 2 and Z 3 are the same or different and each represents a hydrogen atom or a trifluoromethyl group, and k represents an integer of 1 to 10. ]
N represents an integer of 0 to 10 [where n is 0 represents a case in which the dipyrromethene skeleton in the general formula (I) and the benzene ring are directly bonded without a thiophene ring. . ]. ]
Or a compound obtained by labeling the compound with a labeling substance, or a pharmaceutically acceptable salt of these compounds.
(6) X 1 in the general formula (I) is a hydrogen atom, a fluorine atom, a bromine atom, an iodine atom, a cyano group, an amino group, a methylamino group, a dimethylamino group, a hydroxyl group, a methoxy group, a dicyanovinyl group, or — (OCH 2 CH 2 ) m —F [wherein m represents an integer of 1 to 10. X 2 and X 3 are hydrogen atoms, R 11 , R 12 , R 13 , and R 14 are the same or different and are a hydrogen atom or a methyl group, and n is 1 to The composition for diagnosing conformation disease according to (5), which is an integer of 10.
(7) X 1 in the general formula (I) is a hydrogen atom, X 2 and X 3 are trifluoromethyl groups, and R 11 , R 12 , R 13 , and R 14 are the same or different, and a hydrogen atom Or a composition for diagnosing conformation disease according to (5), wherein the composition is a methyl group and n is an integer of 1 to 10.
(8) X 1 in the general formula (I) is a hydrogen atom, a fluorine atom, a bromine atom, an iodine atom, a cyano group, an amino group, a methylamino group, a dimethylamino group, a hydroxyl group, a methoxy group, a dicyanovinyl group, or — (OCH 2 CH 2 ) m —F [wherein m represents an integer of 1 to 10. X 2 and X 3 are hydrogen atoms, R 11 and R 12 are the same or different, and are a hydrogen atom or a methyl group, and any one of R 13 and R 14 is generally The group represented by the formula (B), the other is a hydrogen atom or a methyl group, n is 0, and Z 2 and Z 3 in the general formula (B) are hydrogen atoms. Composition for diagnosis of conformational disease.
(9) X 1 in the general formula (I) is a hydrogen atom, a fluorine atom, a bromine atom, an iodine atom, a cyano group, an amino group, a methylamino group, a dimethylamino group, a hydroxyl group, a methoxy group, a dicyanovinyl group, or — (OCH 2 CH 2 ) m —F [wherein m represents an integer of 1 to 10. X 2 and X 3 are hydrogen atoms, R 11 and R 12 are the same or different, and are a hydrogen atom or a methyl group, and any one of R 13 and R 14 is generally A group represented by the formula (B), the other is a hydrogen atom or a methyl group, n is 0, Z 1 in the general formula (B) is a hydrogen atom, and Z 2 and Z 3 are trifluoro The composition for conformation disease diagnosis according to (5), which is a methyl group.
(10) X 1 in the general formula (I) is a hydrogen atom, a fluorine atom, a bromine atom, an iodine atom, a cyano group, an amino group, a methylamino group, a dimethylamino group, a hydroxyl group, a methoxy group, a dicyanovinyl group, or — (OCH 2 CH 2 ) m —F [wherein m represents an integer of 1 to 10. X 2 and X 3 are hydrogen atoms, R 11 and R 12 are the same or different, and are a hydrogen atom or a methyl group, and any one of R 13 and R 14 is generally A group represented by the formula (B), the other is a hydrogen atom or a methyl group, n is an integer of 1 to 10, and Z 2 and Z 3 in the general formula (B) are hydrogen atoms (5 ) The composition for diagnosing conformation disease.
(11) X 1 in the general formula (I) is a hydrogen atom, X 2 and X 3 are trifluoromethyl groups, R 11 and R 12 are the same or different and are a hydrogen atom or a methyl group, Any one of 13 and R 14 is a group represented by the general formula (B), the other is a hydrogen atom or a methyl group, n is an integer of 1 to 10, and Z 1 in the general formula (B) The composition for diagnosing conformation disease according to (5), wherein is a hydrogen atom and Z 2 and Z 3 are trifluoromethyl groups.
(12) X 1 in the general formula (I) is a group represented by the general formula (A), X 2 and X 3 are hydrogen atoms, and R 11 , R 12 , R 13 , and R 14 are the same. Or, differently, it is a hydrogen atom or a methyl group, n is 0, and Y 2 and Y 3 in the general formula (A) are hydrogen atoms, The composition for diagnosing conformation disease according to (5).
(13) X 1 in the general formula (I) is a group represented by the general formula (A), X 2 and X 3 are hydrogen atoms, and R 11 , R 12 , R 13 , and R 14 are the same. Or, differently, it is a hydrogen atom or a methyl group, n is 0, Y 1 in the general formula (A) is a hydrogen atom, and Y 2 and Y 3 are trifluoromethyl groups. Composition for diagnosis of conformational disease.
(14) The composition for diagnosing conformation disease according to any one of (1) to (13), wherein the conformation disease is Alzheimer's disease.
 本発明の組成物に含まれる化合物は、Aβと結合し、生体透過性の高い近赤外光に近い波長の蛍光を発する。このため、本発明の診断用組成物により、ADなどのコンフォメーション病の早期かつ正確な診断が可能になる。 The compound contained in the composition of the present invention binds to Aβ and emits fluorescence having a wavelength close to near-infrared light having high biological permeability. For this reason, the diagnostic composition of the present invention enables early and accurate diagnosis of conformational diseases such as AD.
BODIPY3~BODIPY5、ThS、又はNIAD-16で染色したマウスの脳凍結切片の蛍光顕微鏡写真。Fluorescence micrograph of frozen brain sections of mice stained with BODIPY3 to BODIPY5, ThS, or NIAD-16. BODIPY4を投与したTg2576マウスの脳切片の蛍光顕微鏡写真(左)と、同一切片における抗Aβ42抗体による免疫染色写真(右)。A fluorescence micrograph (left) of a brain section of a Tg2576 mouse administered with BODIPY4, and an immunostaining photograph (right) with an anti-Aβ42 antibody in the same section. Aβ存在下及び非存在下におけるBODIPY3の蛍光スペクトルを示す図。The figure which shows the fluorescence spectrum of BODIPY3 in Aβ presence and absence. Aβ存在下及び非存在下におけるBODIPY4の蛍光スペクトルを示す図。The figure which shows the fluorescence spectrum of BODIPY4 in Aβ presence and absence. BODIPY10で蛍光染色したADモデルマウスの脳切片の顕微鏡写真。フィルターとしてBZフィルターCy5(株式会社キーエンス製、励起波長:620/60nm、吸収波長:700/75nm)を使用し、露光時間は1/50秒とした。A micrograph of a brain section of an AD model mouse fluorescently stained with BODIPY10. A BZ filter Cy5 (manufactured by Keyence Corporation, excitation wavelength: 620/60 nm, absorption wavelength: 700/75 nm) was used as a filter, and the exposure time was 1/50 second. ThSで蛍光染色したADモデルマウスの脳切片の顕微鏡写真。フィルターとしてBZフィルターGFPB-BP(株式会社キーエンス製、励起波長:470/40nm、吸収波長:535/50nm)を使用し、露光時間は1/50秒とした。A micrograph of a brain section of an AD model mouse fluorescently stained with ThS. A BZ filter GFPB-BP (manufactured by Keyence Corporation, excitation wavelength: 470/40 nm, absorption wavelength: 535/50 nm) was used as a filter, and the exposure time was 1/50 seconds. BODIPY10の蛍光スペクトル。BODIPY10 fluorescence spectrum. BODIPY11で蛍光染色したADモデルマウスの脳切片の顕微鏡写真。フィルターとしてBZフィルターCy5(株式会社キーエンス製、励起波長:620/60nm、吸収波長:700/75nm)を使用し、露光時間は1/7秒とした。Micrograph of brain section of AD model mouse stained with BODIPY11. A BZ filter Cy5 (manufactured by Keyence Corporation, excitation wavelength: 620/60 nm, absorption wavelength: 700/75 nm) was used as a filter, and the exposure time was 1/7 seconds. ThSで蛍光染色したADモデルマウスの脳切片の顕微鏡写真。フィルターとしてBZフィルターGFPB-BP(株式会社キーエンス製、励起波長:470/40nm、吸収波長:535/50nm)を使用し、露光時間は1/7秒とした。A micrograph of a brain section of an AD model mouse fluorescently stained with ThS. A BZ filter GFPB-BP (manufactured by Keyence Corporation, excitation wavelength: 470/40 nm, absorption wavelength: 535/50 nm) was used as a filter, and the exposure time was 1/7 seconds. ADモデルマウスの脳切片を用いた125I-BODIPY11のオートラジオグラフィーの結果を示す写真。The photograph which shows the result of the autoradiography of 125 I-BODIPY11 using the brain section of AD model mouse. ThSで蛍光染色したADモデルマウスの脳切片の顕微鏡写真。A micrograph of a brain section of an AD model mouse fluorescently stained with ThS. BODIPY11の蛍光スペクトル。BODIPY11 fluorescence spectrum. BODIPY13~17の化学構造を示す図。The figure which shows the chemical structure of BODIPY13-17. BODIPY誘導体のTg2576マウス脳切片における蛍光顕微鏡写真(左)及びその隣接切片におけるThSによる蛍光顕微鏡写真(右)。Fluorescence micrograph of a BODIPY derivative Tg2576 mouse brain section (left) and ThS fluorescence micrograph of the adjacent section (right). BODIPY13をTg2576マウスに投与後の脳切片の蛍光顕微鏡写真(A)及びその隣接切片における抗アミロイド抗体による免疫染色写真(B)。Fluorescence micrograph of brain section after administration of BODIPY13 to Tg2576 mice (A) and immunostaining photograph with anti-amyloid antibody in the adjacent section (B).
 以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
(A)一般式(I)で表される化合物
 一般式(I)で表される化合物には、以下の一般式(Ia)
(A) Compound represented by general formula (I) The compound represented by general formula (I) includes the following general formula (Ia):
Figure JPOXMLDOC01-appb-C000009
〔式中、X、X、R11、R12は一般式(I)と同義であり、Xは水素原子、フッ素原子、臭素原子、ヨウ素原子、シアノ基、アミノ基、メチルアミノ基、ジメチルアミノ基、ヒドロキシル基、メトキシ基、ジシアノビニル基、-(OCHCH-F[式中、mは1~10の整数を表す。] で表される基を表し、R13、R14は水素原子又はメチル基を表し、nは1~10の整数を表す。〕
一般式(Ib)
Figure JPOXMLDOC01-appb-C000009
[Wherein, X 2 , X 3 , R 11 , R 12 have the same meaning as in general formula (I), and X 1 represents a hydrogen atom, a fluorine atom, a bromine atom, an iodine atom, a cyano group, an amino group, a methylamino group. , Dimethylamino group, hydroxyl group, methoxy group, dicyanovinyl group, — (OCH 2 CH 2 ) m —F [wherein, m represents an integer of 1 to 10. Wherein R 13 and R 14 represent a hydrogen atom or a methyl group, and n represents an integer of 1 to 10. ]
Formula (Ib)
Figure JPOXMLDOC01-appb-C000010
〔式中、X、X、R11、R12、Z~Z、kは一般式(I)と同義であり、Xは水素原子、フッ素原子、臭素原子、ヨウ素原子、シアノ基、アミノ基、メチルアミノ基、ジメチルアミノ基、ヒドロキシル基、メトキシ基、ジシアノビニル基、-(OCHCH-F[式中、mは1~10の整数を表す。] で表される基を表し、R14は水素原子又はメチル基を表す。〕
一般式(Ic)
Figure JPOXMLDOC01-appb-C000010
[Wherein, X 2 , X 3 , R 11 , R 12 , Z 1 to Z 3 , k are as defined in the general formula (I), and X 1 represents a hydrogen atom, a fluorine atom, a bromine atom, an iodine atom, a cyano Group, amino group, methylamino group, dimethylamino group, hydroxyl group, methoxy group, dicyanovinyl group, — (OCH 2 CH 2 ) m —F [wherein, m represents an integer of 1 to 10. And R 14 represents a hydrogen atom or a methyl group. ]
Formula (Ic)
Figure JPOXMLDOC01-appb-C000011
〔式中、X、X、R11、R12、Z~Z、kは一般式(I)と同義であり、Xは水素原子、フッ素原子、臭素原子、ヨウ素原子、シアノ基、アミノ基、メチルアミノ基、ジメチルアミノ基、ヒドロキシル基、メトキシ基、ジシアノビニル基、-(OCHCH-F[式中、mは1~10の整数を表す。] で表される基を表し、R14は水素原子又はメチル基を表し、nは1~10の整数を表す。〕
又は一般式(Id)
Figure JPOXMLDOC01-appb-C000011
[Wherein, X 2 , X 3 , R 11 , R 12 , Z 1 to Z 3 , k are as defined in the general formula (I), and X 1 represents a hydrogen atom, a fluorine atom, a bromine atom, an iodine atom, a cyano Group, amino group, methylamino group, dimethylamino group, hydroxyl group, methoxy group, dicyanovinyl group, — (OCH 2 CH 2 ) m —F [wherein, m represents an integer of 1 to 10. Wherein R 14 represents a hydrogen atom or a methyl group, and n represents an integer of 1 to 10. ]
Or general formula (Id)
Figure JPOXMLDOC01-appb-C000012
〔式中、Y~Y、R11、R12は一般式(I)と同義であり、R13、R14は水素原子又はメチル基を表す。〕
で表される化合物が含まれる。
Figure JPOXMLDOC01-appb-C000012
[Wherein Y 1 to Y 3 , R 11 and R 12 have the same meanings as those in formula (I), and R 13 and R 14 represent a hydrogen atom or a methyl group. ]
The compound represented by these is included.
 一般式(Ia)においてXは、好適には、ジメチルアミノ基、メチルアミノ基、アミノ基、メトキシ基、ヒドロキシル基である。但し、一般式(Ia)で表される化合物をMRIプローブとして用いる場合には、Xは、好適には、水素原子である。 In the general formula (Ia), X 1 is preferably a dimethylamino group, a methylamino group, an amino group, a methoxy group, or a hydroxyl group. However, when the compound represented by the general formula (Ia) is used as an MRI probe, X 1 is preferably a hydrogen atom.
 一般式(Ia)においてX及びXは、好適には、水素原子である。但し、一般式(Ia)で表される化合物をMRIプローブとして用いる場合には、X及びXは、好適にはトリフルオロメチル基である。 In the general formula (Ia), X 2 and X 3 are preferably a hydrogen atom. However, when the compound represented by the general formula (Ia) is used as an MRI probe, X 2 and X 3 are preferably a trifluoromethyl group.
 一般式(Ia)においてR11~R14は、好適には、メチル基である。 In the general formula (Ia), R 11 to R 14 are preferably methyl groups.
 一般式(Ia)においてnは、好適には、1~10の整数であり、より好適には、2~5の整数である。 In the general formula (Ia), n is preferably an integer of 1 to 10, more preferably an integer of 2 to 5.
 一般式(Ib)においてXは、好適には、ジメチルアミノ基、メチルアミノ基、アミノ基、メトキシ基、ヒドロキシル基である。 In the general formula (Ib), X 1 is preferably a dimethylamino group, a methylamino group, an amino group, a methoxy group, or a hydroxyl group.
 一般式(Ib)においてX及びXは、好適には、水素原子である。 In the general formula (Ib), X 2 and X 3 are preferably a hydrogen atom.
 一般式(Ib)においてR11、R12、及びR14は、好適には、メチル基である。 In the general formula (Ib), R 11 , R 12 and R 14 are preferably methyl groups.
 一般式(Ib)においてZは、好適には、ジメチルアミノ基、メチルアミノ基、アミノ基、メトキシ基、ヒドロキシル基である。但し、一般式(Ib)で表される化合物をMRIプローブとして用いる場合には、Zは、好適には、水素原子である。 In the general formula (Ib), Z 1 is preferably a dimethylamino group, a methylamino group, an amino group, a methoxy group, or a hydroxyl group. However, when the compound represented by the general formula (Ib) is used as an MRI probe, Z 1 is preferably a hydrogen atom.
 一般式(Ib)においてZ及びZは、好適には、水素原子である。但し、一般式(Ib)で表される化合物をMRIプローブとして用いる場合には、Z及びZは、好適にはトリフルオロメチル基である。 In the general formula (Ib), Z 2 and Z 3 are preferably a hydrogen atom. However, when the compound represented by formula (Ib) is used as an MRI probe, Z 2 and Z 3 are preferably a trifluoromethyl group.
 一般式(Ib)においてkは、好適には、1~10の整数であり、より好適には、2~5の整数である。 In the general formula (Ib), k is preferably an integer of 1 to 10, and more preferably an integer of 2 to 5.
 一般式(Ic)においてXは、好適には、ジメチルアミノ基、メチルアミノ基、アミノ基、メトキシ基、ヒドロキシル基である。但し、一般式(Ic)で表される化合物をMRIプローブとして用いる場合には、Xは、好適には、水素原子である。 In the general formula (Ic), X 1 is preferably a dimethylamino group, a methylamino group, an amino group, a methoxy group, or a hydroxyl group. However, when the compound represented by the general formula (Ic) is used as an MRI probe, X 1 is preferably a hydrogen atom.
 一般式(Ic)においてX及びXは、好適には、水素原子である。但し、一般式(Ic)で表される化合物をMRIプローブとして用いる場合には、X及びXは、好適にはトリフルオロメチル基である。 In the general formula (Ic), X 2 and X 3 are preferably a hydrogen atom. However, when the compound represented by the general formula (Ic) is used as an MRI probe, X 2 and X 3 are preferably a trifluoromethyl group.
 一般式(Ic)においてR11、R12、及びR14は、好適には、メチル基である。 In the general formula (Ic), R 11 , R 12 , and R 14 are preferably a methyl group.
 一般式(Ic)においてZは、好適には、ジメチルアミノ基、メチルアミノ基、アミノ基、メトキシ基、ヒドロキシル基である。但し、一般式(Ic)で表される化合物をMRIプローブとして用いる場合には、Zは、好適には、水素原子である。 In the general formula (Ic), Z 1 is preferably a dimethylamino group, a methylamino group, an amino group, a methoxy group, or a hydroxyl group. However, when the compound represented by the general formula (Ic) is used as an MRI probe, Z 1 is preferably a hydrogen atom.
 一般式(Ic)においてZ及びZは、好適には、水素原子である。但し、一般式(Ic)で表される化合物をMRIプローブとして用いる場合には、Z及びZは、好適にはトリフルオロメチル基である。 In the general formula (Ic), Z 2 and Z 3 are preferably a hydrogen atom. However, when the compound represented by the general formula (Ic) is used as an MRI probe, Z 2 and Z 3 are preferably a trifluoromethyl group.
 一般式(Ic)においてkは、好適には、1~10の整数であり、より好適には、2~5の整数である。 In the general formula (Ic), k is preferably an integer of 1 to 10, more preferably an integer of 2 to 5.
 一般式(Ic)においてnは、好適には、1~10の整数であり、より好適には、2~5の整数である。 In the general formula (Ic), n is preferably an integer of 1 to 10, more preferably an integer of 2 to 5.
 一般式(Id)においてYは、好適には、ジメチルアミノ基、メチルアミノ基、アミノ基、メトキシ基、ヒドロキシル基である。但し、一般式(Id)で表される化合物をMRIプローブとして用いる場合には、Yは、好適には、水素原子である。 In the general formula (Id), Y 1 is preferably a dimethylamino group, a methylamino group, an amino group, a methoxy group, or a hydroxyl group. However, when the compound represented by the general formula (Id) is used as an MRI probe, Y 1 is preferably a hydrogen atom.
 一般式(Id)においてY及びYは、好適には、水素原子である。但し、一般式(Id)で表される化合物をMRIプローブとして用いる場合には、Y及びYは、好適にはトリフルオロメチル基である。 In the general formula (Id), Y 2 and Y 3 are preferably a hydrogen atom. However, when the compound represented by the general formula (Id) is used as an MRI probe, Y 2 and Y 3 are preferably a trifluoromethyl group.
 一般式(Id)においてR11~R14は、好適には、メチル基である。 In the general formula (Id), R 11 to R 14 are preferably methyl groups.
 式:-(OCHCH-Fにおいてmは、好適には1~3である。 In the formula: — (OCH 2 CH 2 ) m —F, m is preferably 1 to 3.
 一般式(I)で表される化合物のうち代表的なものを下表に示す。なお、表中の「Me」はメチル基を表し、「A」は一般式(A)で表される基を表し、「B」は一般式(B)で表される基を表し、「-」は化合物中にその基等が存在しないことを表す。 Typical compounds among the compounds represented by the general formula (I) are shown in the following table. In the table, “Me” represents a methyl group, “A” represents a group represented by the general formula (A), “B” represents a group represented by the general formula (B), “−” "Represents that the group or the like is not present in the compound.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
 上記化合物のうち、好ましい化合物として、Ia-1(BODIPY4)、Ib-1、Ic-1、Id-1を挙げることができる。
Figure JPOXMLDOC01-appb-T000014
Among the above compounds, preferred examples include Ia-1 (BODIPY4), Ib-1, Ic-1, and Id-1.
 一般式(I)で表される化合物は、後述する実施例の記載、及びRurack et al., Molecular swiching in the near infrared (NIR) with a functionalized boron-dipyrromethene dye, Angew. Chem.
Int. Ed. 2001, 40, 385-387などの記載に従って合成することができる。
The compound represented by the general formula (I) is described in Examples described later, and Rurack et al., Molecular switching in the near infrared (NIR) with a functionalized boron-dipyrromethene dye, Angew. Chem.
Int. Ed. 2001, 40, 385-387 and the like.
(B)一般式(II)で表される化合物
 本発明のコンフォメーション病診断用組成物は、上述した一般式(II)で表される化合物若しくは前記化合物を標識物質で標識した化合物、又はこれらの化合物の医薬上許容される塩を含有するものである。
(B) Compound represented by general formula (II) The composition for diagnosing conformation disease of the present invention is a compound represented by the above general formula (II), a compound obtained by labeling the compound with a labeling substance, or these And a pharmaceutically acceptable salt of the compound.
 一般式(II)におけるR21、R22、R25は、ヨウ素原子であってもよいが、このヨウ素原子には、放射性同位体(例えば、123I、125I)も含まれる。 R 21 , R 22 and R 25 in the general formula (II) may be an iodine atom, and the iodine atom also includes a radioisotope (eg, 123 I, 125 I).
 一般式(II)におけるR21は、フッ素原子であってもよいが、このフッ素原子には、放射性同位体(例えば、18F)も含まれる。 R 21 in the general formula (II) may be a fluorine atom, and this fluorine atom includes a radioisotope (for example, 18 F).
 一般式(II)におけるR21は、-(OCHCHj-Fで表される基であってもよいが、この基中のフッ素原子には、放射性同位体(例えば、18F)も含まれる。 R 21 in the general formula (II) may be a group represented by — (OCH 2 CH 2 ) j —F, and the fluorine atom in this group includes a radioisotope (for example, 18 F). Is also included.
 一般式(II)においてR21は、好適には、ジメチルアミノ基、メチルアミノ基、アミノ基、メトキシ基、ヒドロキシル基である。但し、R21を放射性標識する場合は、フッ素原子、ヨウ素原子、又は-(OCHCHj-Fで表される基が好適である。 In the general formula (II), R 21 is preferably a dimethylamino group, a methylamino group, an amino group, a methoxy group, or a hydroxyl group. However, when R 21 is radiolabeled, a fluorine atom, an iodine atom, or a group represented by — (OCH 2 CH 2 ) j —F is preferable.
 一般式(II)におけるR21の位置は、オルト位、メタ位、パラ位のいずれでもよいが、パラ位であることが好ましい。 The position of R 21 in the general formula (II) may be any of the ortho, meta, and para positions, but is preferably the para position.
 一般式(II)においてR22は、好適には、水素原子である。
 一般式(II)においてR23は、好適には、水素原子である。
 一般式(II)においてR24は、好適には、メチル基である。
 一般式(II)においてR25は、好適には、水素原子である。
 一般式(II)においてR26は、好適には、メチル基である。
 一般式(II)においてXは、好適には、硫黄原子である。
 一般式(II)においてiは、好適には、1~10の整数であり、より好適には、1~3の整数である。一般式(II)で表される化合物を蛍光プローブとして使う場合は、iは2又は3であることが好ましい。iが1である化合物より、iが2又は3である化合物の方がHOMO-LUMOギャップが小さく、より長波長の蛍光を発すると予測されるからである。
In the general formula (II), R 22 is preferably a hydrogen atom.
In the general formula (II), R 23 is preferably a hydrogen atom.
In the general formula (II), R 24 is preferably a methyl group.
In the general formula (II), R 25 is preferably a hydrogen atom.
In the general formula (II), R 26 is preferably a methyl group.
In the general formula (II), X is preferably a sulfur atom.
In the general formula (II), i is preferably an integer of 1 to 10, more preferably an integer of 1 to 3. When the compound represented by the general formula (II) is used as a fluorescent probe, i is preferably 2 or 3. This is because a compound in which i is 2 or 3 is predicted to emit longer wavelength fluorescence than a compound in which i is 1 than in a compound in which i is 1.
 式:-(OCHCHj-F及び式:-(OCHCHj-OHにおいてjは、好適には1~3である。 In the formula: — (OCH 2 CH 2 ) j —F and the formula: — (OCH 2 CH 2 ) j —OH, j is preferably 1 to 3.
 一般式(II)で表される化合物のうち代表的なものを下表に示す。なお、表中の「p-」は、パラ位の基であることを表し、「Me」はメチル基を表し、「FX」は2-フルオロエトキシ基を表し、「FX2」は2-(2-フルオロエトキシ)エトキシ基を表し、「FX3」は2-{2-(2-フルオロエトキシ)エトキシ}エトキシ基を表し、「HOX」は2-ヒドロキシエトキシ基を表し、「HOX2」は2-(2-ヒドロキシエトキシ)エトキシ基を表し、「HOX3」は2-{2-(2-ヒドロキシエトキシ)エトキシ}エトキシ基を表す。 Typical compounds among the compounds represented by the general formula (II) are shown in the following table. In the table, “p-” represents a group at the para position, “Me” represents a methyl group, “FX” represents a 2-fluoroethoxy group, and “FX2” represents 2- (2 -Fluoroethoxy) ethoxy group, "FX3" represents 2- {2- (2-fluoroethoxy) ethoxy} ethoxy group, "HOX" represents 2-hydroxyethoxy group, "HOX2" represents 2- ( Represents a 2-hydroxyethoxy) ethoxy group, and “HOX3” represents a 2- {2- (2-hydroxyethoxy) ethoxy} ethoxy group.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
 上記化合物のうちで、好ましい化合物として、II-309(BODPY10)、II-310(BODIPY11)を挙げることができる。
Figure JPOXMLDOC01-appb-T000025
Among the above compounds, preferred compounds include II-309 (BODPY10) and II-310 (BODIPY11).
 一般式(II)で表される化合物は、後述する実施例の記載及びUmezawa K et al., Bright, color-tunable fluorescent dyes in the vis/NIR region: establishment of new “tailor-made” multicolor fluorophores based on borondipyrromethene, Chemistry-A European Journal, 15(5),1096-1106, 2009などの記載に従って合成することができる。(C)コンフォメーション病診断用組成物
 一般式(I)及び(II)で表される化合物は、分子中にBODIPY骨格を含むので、蛍光標識を有するが、更に蛍光以外の標識を付加してもよい。標識の種類は特に限定されないが、放射性標識やMRI用標識が好ましい。放射性標識を付加する場合は、一般式(I)及び(II)で表される化合物が分子中に放射性核種を含むようにしてもよく、また、一般式(I)及び(II)で表される化合物に放射性核種を結合させてもよい。放射性核種の種類は特に限定されず、使用の態様によって適宜決めることができる。例えば、一般式(I)及び(II)で表される化合物をコンピューター断層撮影法(SPECT)による診断に使用する場合はγ線放出核種を使用することができ、陽電子断層撮影法(PET)による診断に使用する場合は陽電子放出核種を使用することができる。γ線放出核種としては、99mTc、111In、67Ga、201Tl、123I、133Xeなどを例示でき、これらの中でも99mTc、123Iが好ましく、99mTcが特に好ましい。陽電子放出核種としては、11C、13N、15O、18F、62Cu、68Ga、76Brなどを例示でき、これらの中でも11C、13N、15O、18Fが好ましく、11Cが特に好ましい。また、一般式(I)及び(II)で表される化合物をヒト以外の動物に投与する場合には、より半減期の長い放射性核種、例えば、125Iなどを使用してもよい。一般式(I)及び(II)で表される化合物に放射性核種を結合させる方法は、各放射性核種において一般的に用いられている方法でよい。また、一般式(I)及び(II)で表される化合物に放射性核種を結合させる場合、放射性核種のみを結合させてもよいが、他の物質と結合した状態の放射性核種を結合させてもよい。前述した99mTcは、通常、錯体の形で被標識化合物に結合させるので、一般式(I)及び(II)で表される化合物に結合させる場合も、99mTcを含む錯体を結合させてもよい。99mTcを含む錯体としては、2-ヒドラジノピリジンを含む錯体(Liu S et al, Bioconjug Chem. 1996 Jan-Feb;7(1):63-71.)、N-(2-メルカプトエチル)-2-〔(2-メルカプトエチル)アミノ〕-アセトアミドを含む錯体(Zhen W et al, J Med Chem. 1999 Jul 29;42(15):2805-15.)、2,2’-(1,2-エタンジイルジイミノ)ビスエタンチオールを含む錯体(Oya S et al, Nucl Med Biol. 1998 Feb;25(2):135-40.)、トリカルボニル錯体(Schibli R et al, Bioconjug Chem. 2000 May-Jun;11(3):345-51)などを例示できる。MRI用標識を付加する場合も、一般式(I)及び(II)で表される化合物が分子中に標識物質を含むようにしてもよく、また、一般式(I)及び(II)で表される化合物に標識物質を結合させてもよい。MRI用標識の種類は特に限定されず、例えば、19Fなどを例示できる。
The compound represented by the general formula (II) is described in Examples described later and Umezawa K et al., Bright, color-tunable fluorescent dyes in the vis / NIR region: establishment of new “tailor-made” multicolor fluorophores based. on borondipyrromethene, Chemistry-A European Journal, 15 (5), 1096-1106, 2009, and the like. (C) Composition for diagnosis of conformation disease The compounds represented by the general formulas (I) and (II) have a BODIPY skeleton in the molecule, and thus have a fluorescent label. Also good. The type of label is not particularly limited, but a radiolabel or an MRI label is preferable. When a radiolabel is added, the compounds represented by the general formulas (I) and (II) may contain a radionuclide in the molecule, and the compounds represented by the general formulas (I) and (II) A radionuclide may be bound to. The kind of radionuclide is not particularly limited, and can be appropriately determined depending on the mode of use. For example, when the compounds represented by the general formulas (I) and (II) are used for diagnosis by computed tomography (SPECT), γ-ray emitting nuclides can be used, and positron emission tomography (PET) is used. When used for diagnosis, positron emitting nuclides can be used. Examples of the γ-ray emitting nuclide include 99m Tc, 111 In, 67 Ga, 201 Tl, 123 I, and 133 Xe. Among these, 99m Tc and 123 I are preferable, and 99m Tc is particularly preferable. Examples of the positron emitting nuclide include 11 C, 13 N, 15 O, 18 F, 62 Cu, 68 Ga, and 76 Br. Among these, 11 C, 13 N, 15 O, and 18 F are preferable, and 11 C Is particularly preferred. In addition, when the compounds represented by the general formulas (I) and (II) are administered to animals other than humans, radionuclides having a longer half-life, such as 125 I, may be used. The method of binding the radionuclide to the compounds represented by the general formulas (I) and (II) may be a method generally used for each radionuclide. In addition, when a radionuclide is bound to the compounds represented by the general formulas (I) and (II), only the radionuclide may be bound, or a radionuclide that is bound to another substance may be bound. Good. Since 99m Tc described above is usually bonded to a labeled compound in the form of a complex, it can be bonded to a compound represented by the general formulas (I) and (II) or a complex containing 99m Tc. Good. Complexes containing 99m Tc include complexes containing 2-hydrazinopyridine (Liu S et al, Bioconjug Chem. 1996 Jan-Feb; 7 (1): 63-71.), N- (2-mercaptoethyl)- Complexes containing 2-[(2-mercaptoethyl) amino] -acetamide (Zhen W et al, J Med Chem. 1999 Jul 29; 42 (15): 2805-15.), 2,2 ′-(1,2 -Ethanediyldiimino) bisethanethiol-containing complexes (Oya S et al, Nucl Med Biol. 1998 Feb; 25 (2): 135-40.), Tricarbonyl complexes (Schibli R et al, Bioconjug Chem. 2000 May -Jun; 11 (3): 345-51). When adding a label for MRI, the compounds represented by the general formulas (I) and (II) may contain a labeling substance in the molecule, or represented by the general formulas (I) and (II). A labeling substance may be bound to the compound. The type of MRI label is not particularly limited, and examples thereof include 19 F.
 一般式(I)及び(II)で表される化合物の代わりに、医薬上許容される塩を使用することも可能である。医薬上許容される塩としては、アルカリ金属塩(ナトリウム塩、カリウム塩、リチウム塩)、アルカリ土類金属塩(カルシウム塩、マグネシウム塩)、硫酸塩、塩酸塩、硝酸塩、リン酸塩などを例示できる。 It is also possible to use pharmaceutically acceptable salts instead of the compounds represented by the general formulas (I) and (II). Examples of pharmaceutically acceptable salts include alkali metal salts (sodium salt, potassium salt, lithium salt), alkaline earth metal salts (calcium salt, magnesium salt), sulfate, hydrochloride, nitrate, phosphate, etc. it can.
 本発明の組成物は、コンフォメーション病の診断に用いることができる。ここで、「コンフォメーション病」とは、Aβ、タウ蛋白、プリオンなどコンフォメーション変換によって異常化したタンパク質が原因の疾患群を意味し、ADのほか、ダウン症候群、オランダ型アミロイドーシスを伴う遺伝性脳出血症(hereditary
cerebral hemorrhage with amyloidosis─Dutch type: HCHWA-D)、クロイツフェルト・ヤコブ病(CJD)やウシ海綿状脳症(BSE)などが含まれる。また、診断対象となる疾患には、一般には「疾患」と認識されない疾患の前駆症状も含まれる。このような疾患の前駆症状としては、ADの発症前にみられる軽度認知障害(MCI)などを例示できる。
The composition of the present invention can be used for diagnosis of conformational disease. Here, “conformation disease” means a group of diseases caused by proteins abnormalized by conformational transformation such as Aβ, tau protein, prion, etc. In addition to AD, hereditary cerebral hemorrhage with Down's syndrome and Dutch amyloidosis Illness (hereditary
cerebral hemorrhage with amyloidosis—Dutch type: HCHWA-D), Creutzfeldt-Jakob disease (CJD) and bovine spongiform encephalopathy (BSE). In addition, diseases to be diagnosed include precursor symptoms of diseases that are generally not recognized as “diseases”. Examples of prodromal symptoms of such diseases include mild cognitive impairment (MCI) seen before the onset of AD.
 本発明の組成物によるコンフォメーション病の診断は、通常、本発明の組成物を診断対象者又は実験動物などに投与し、その後、脳の画像を撮影し、画像における一般式(I)及び(II)で表される化合物の状態(量、分布等)に基づいて行う。本発明の組成物の投与方法は特に限定されず、化合物の種類、標識物質の種類などに応じて適宜決めることができるが、通常は、皮内、腹腔内、静脈、動脈、又は脊髄液への注射又は点滴等によって投与する。本発明の組成物の投与量は特に限定されず、化合物の種類、標識物質の種類などに応じて適宜決めることができるが、成人の場合、一般式(I)及び(II)で表される化合物を1日当たり10-10~10-3mg投与するのが好ましく、10-8~10-5mg投与するのが更に好ましい。 The diagnosis of conformation disease by the composition of the present invention is usually performed by administering the composition of the present invention to a subject to be diagnosed or a laboratory animal, and then taking an image of the brain, and the general formulas (I) and ( II) based on the state (amount, distribution, etc.) of the compound represented by The administration method of the composition of the present invention is not particularly limited and can be appropriately determined according to the type of compound, the type of labeling substance, etc., but is usually intradermal, intraperitoneal, intravenous, arterial, or spinal fluid. It is administered by injection or infusion. The dose of the composition of the present invention is not particularly limited, and can be appropriately determined according to the type of compound, the type of labeling substance, etc. In the case of an adult, it is represented by general formulas (I) and (II). The compound is preferably administered at 10 −10 to 10 −3 mg per day, more preferably at 10 −8 to 10 −5 mg.
 上記のように本発明の組成物は、通常、注射又は点滴によって投与するので、注射液や点滴液に通常含まれる成分を含んでいてもよい。このような成分としては、液体担体(例えば、リン酸カリウム緩衝液、生理食塩水、リンゲル液、蒸留水、ポリエチレングリコール、植物性油脂、エタノール、グリセリン、ジメチルスルホキサイド、プロピレングリコールなど)、抗菌剤、局所麻酔剤(例えば、塩酸プロカイン、塩酸ジブカインなど)、緩衝液(例えば、トリス-塩酸緩衝液、ヘペス緩衝液など)、浸透圧調節剤(例えば、グルコース、ソルビトール、塩化ナトリウムなど)を例示できる。 As described above, since the composition of the present invention is usually administered by injection or infusion, it may contain components usually contained in an injection solution or an infusion solution. Such components include liquid carriers (for example, potassium phosphate buffer, physiological saline, Ringer's solution, distilled water, polyethylene glycol, vegetable oils, ethanol, glycerin, dimethyl sulfoxide, propylene glycol, etc.), antibacterial agents And local anesthetics (eg, procaine hydrochloride, dibucaine hydrochloride, etc.), buffer solutions (eg, Tris-HCl buffer solution, Hepes buffer solution, etc.), osmotic pressure regulators (eg, glucose, sorbitol, sodium chloride, etc.) .
 以下、実施例により本発明を更に詳細に説明する。 Hereinafter, the present invention will be described in more detail with reference to examples.
〔実施例1〕 8位に置換基を導入したBODIPY誘導体の合成
(1)BODIPY1の合成
[Example 1] Synthesis of a BODIPY derivative having a substituent introduced at the 8-position (1) Synthesis of BODIPY1
Figure JPOXMLDOC01-appb-C000026
 N2気流下、4-ヨードベンズアルデヒド(243 mg,1.1 mmol)、ジメチルピロール(217 μl(d=0.92), 2.1 mmol) をCH2Cl(40 ml) に溶解し、TFAを1滴加えた。TLCで原料のスポットが消えたことを確認した後、p-クロラニル(258 mg, 1.1 mmol) を加えた。30 min室温で反応させた後、Et3N (1.5 ml, 11 mmol)、Et2OBF3(1.7 ml, 11 mmol)を加え、さらに30 min室温で反応させた。蒸留水を加え、反応を停止した。CH3Cl3で分液抽出を行い、有機層をMgSO4で乾燥させた。中圧クロマトを用いてヘキサン:酢酸エチル=6:1で精製し、さらに中圧クロマトを用いてヘキサン:酢酸エチル=9:1で単離した。エバポレーターを用いて減圧乾燥することにより褐色固体としてBODIPY1を得た(収量 227 mg, 収率48.6%)。1H-NMR 400MHz及びMS(APCI)でBODIPY1の生成を確認できた。
Figure JPOXMLDOC01-appb-C000026
4-Niodobenzaldehyde (243 mg, 1.1 mmol) and dimethylpyrrole (217 μl (d = 0.92), 2.1 mmol) were dissolved in CH 2 Cl 2 (40 ml) under N 2 stream, and 1 drop of TFA was added. . After confirming that the raw material spots had disappeared by TLC, p-chloranil (258 mg, 1.1 mmol) was added. After reacting at room temperature for 30 min, Et 3 N (1.5 ml, 11 mmol) and Et 2 OBF 3 (1.7 ml, 11 mmol) were added, and further reacted at room temperature for 30 min. Distilled water was added to stop the reaction. Liquid separation extraction was performed with CH 3 Cl 3 , and the organic layer was dried with MgSO 4 . The mixture was purified with hexane: ethyl acetate = 6: 1 using medium pressure chromatography, and further isolated with hexane: ethyl acetate = 9: 1 using medium pressure chromatography. BODIPY1 was obtained as a brown solid by drying under reduced pressure using an evaporator (yield 227 mg, yield 48.6%). The production of BODIPY1 was confirmed by 1 H-NMR 400 MHz and MS (APCI).
(2)BODIPY2の合成 (2) Synthesis of BODIPY2
Figure JPOXMLDOC01-appb-C000027
 N2気流下、4-(ジメチルアミノ)ベンズアルデヒド( 144 mg, 0.97 mmol)、ジメチルピロール (200 μl(d=0.92), 1.93 mmol) をCH2Cl(40
ml) に溶解し、TFAを1滴加えた。TLCで原料のスポットが消えたことを確認した後、p-クロラニル (236 mg, 0.97 mmol) を加えた。30 min室温で反応させた後、Et3N (1.3 ml, 11 mmol)、Et2OBF3 (1.2 ml, 11 mmol)を加え、さらに30 min室温で反応させた。蒸留水を加え、反応を停止した。CH3Cl3で分液抽出を行い、有機層をMgSO4で乾燥させた。中圧クロマトを用いてヘキサン:酢酸エチル=7:3で単離した。エバポレーターを用いて減圧乾燥することにより褐色固体としてBODIPY2を得た(収量 132 mg, 収率37.0%)。1H-NMR 400MHz及びMS(APCI)でBODIPY2の生成を確認できた。
Figure JPOXMLDOC01-appb-C000027
Under N 2 stream, 4- (dimethylamino) benzaldehyde (144 mg, 0.97 mmol) and dimethylpyrrole (200 μl (d = 0.92), 1.93 mmol) were added to CH 2 Cl 2 (40
1) of TFA was added. After confirming the disappearance of the raw material spot by TLC, p-chloranil (236 mg, 0.97 mmol) was added. After reacting at room temperature for 30 min, Et 3 N (1.3 ml, 11 mmol) and Et 2 OBF 3 (1.2 ml, 11 mmol) were added, and further reacted at room temperature for 30 min. Distilled water was added to stop the reaction. Liquid separation extraction was performed with CH 3 Cl 3 , and the organic layer was dried with MgSO 4 . Isolated using medium pressure chromatography with hexane: ethyl acetate = 7: 3. BODIPY2 was obtained as a brown solid by drying under reduced pressure using an evaporator (yield 132 mg, yield 37.0%). The formation of BODIPY2 was confirmed by 1 H-NMR 400 MHz and MS (APCI).
(3)BODIPY3の合成 (3) Synthesis of BODIPY3
Figure JPOXMLDOC01-appb-C000028
 N2気流下、5-ブロモ-2,2’-ビチオフェン-5’-カルボアルデヒド (287 mg, 1.1 mmol)、ジメチルピロール(217 μl(d=0.92), 2.1 mol)をCH2Cl2(40 ml)に溶解し、TFAを1滴加えた。TLCで原料のスポットが消えたことを確認した後、p-クロラニル(258 mg, 1.1 mmol)を加えた。30 min室温で反応させた後、Et3N (1.5 ml, 11 mmol)、Et2OBF3(1.7 ml, 1.1 mmol)を加え、さらに30 min室温で反応させた。蒸留水を加え、反応を停止した。CH3Cl3で分液抽出を行い、有機層をMgSO4で乾燥させた。中圧クロマトを用いてヘキサン:酢酸エチル=7:3で精製し、さらに中圧クロマトを用いてヘキサン:酢酸エチル=6:1で単離した。エバポレーターを用いて減圧乾燥することにより褐色固体としてBODIPY3を得た(収量 123 mg, 収率26.1%)。1H-NMR 400MHz及びMS(APCI)でBODIPY3の生成を確認できた。
Figure JPOXMLDOC01-appb-C000028
Under N 2 stream, 5-bromo-2,2'-bithiophene-5'-carbaldehyde (287 mg, 1.1 mmol) and dimethylpyrrole (217 μl (d = 0.92), 2.1 mol) were added to CH 2 Cl 2 (40 ml) and 1 drop of TFA was added. After confirming the disappearance of the raw material spot by TLC, p-chloranil (258 mg, 1.1 mmol) was added. After reacting at room temperature for 30 min, Et 3 N (1.5 ml, 11 mmol) and Et 2 OBF 3 (1.7 ml, 1.1 mmol) were added, and further reacted at room temperature for 30 min. Distilled water was added to stop the reaction. Liquid separation extraction was performed with CH 3 Cl 3 , and the organic layer was dried with MgSO 4 . The mixture was purified with hexane: ethyl acetate = 7: 3 using medium pressure chromatography, and further isolated with hexane: ethyl acetate = 6: 1 using medium pressure chromatography. BODIPY3 was obtained as a brown solid by drying under reduced pressure using an evaporator (yield 123 mg, yield 26.1%). The formation of BODIPY3 was confirmed by 1 H-NMR 400 MHz and MS (APCI).
(4)BODIPY4の合成 (4) Synthesis of BODIPY4
Figure JPOXMLDOC01-appb-C000029
 N2気流下、5-ブロモ-2,2’-ビチオフェン-5’-カルボアルデヒド (200 mg, 0.73 mmol)、4-(ジメチルアミノ)フェニルボロン酸(121 mg, 0.73 mmol)、Pd(PPh3)4 (15 mg, 0.013 mmol) をジオキサン (5 ml) に溶解した。ついで2M Na2CO(5 ml) を加え、一晩還流した。ついでエバポレーターを用いて、溶媒留去し、残渣をCHCl3で分液抽出を行って、有機層をMgSO4で乾燥させた。さらに、エバポレーターを用いて減圧乾燥させ、酢酸エチルにて再結晶を行い、褐色固体としてBODIPY4中間体を得た(収量136 mg, 収率59.2%)。1H-NMR 400MHz及びMS(APCI)でBODIPY4中間体の生成を確認できた。
Figure JPOXMLDOC01-appb-C000029
Under N 2 stream, 5-bromo-2,2'-bithiophene-5'-carbaldehyde (200 mg, 0.73 mmol), 4- (dimethylamino) phenylboronic acid (121 mg, 0.73 mmol), Pd (PPh 3 ) 4 (15 mg, 0.013 mmol) was dissolved in dioxane (5 ml). Then 2M Na 2 CO 3 (5 ml) was added and refluxed overnight. Subsequently, the solvent was distilled off using an evaporator, the residue was subjected to liquid separation extraction with CHCl 3 , and the organic layer was dried over MgSO 4 . Furthermore, it was dried under reduced pressure using an evaporator and recrystallized with ethyl acetate to obtain BODIPY4 intermediate as a brown solid (yield 136 mg, yield 59.2%). 1 H-NMR 400 MHz and MS (APCI) confirmed the formation of BODIPY4 intermediate.
Figure JPOXMLDOC01-appb-C000030
 N2気流下、BODIPY4中間体(100 mg, 0.32 mmol)、ジメチルピロール (66 μl(d=0.92), 0.64 mmol) をCH2Cl(35 ml) に溶解し、TFAを1滴加えた。TLCで原料のスポットが消えたことを確認した後、p-クロラニル(78 mg, 0.32  mmol)を加えた。30 min室温で反応させた後、Et3N (450 ml, 0.32 μmol)、Et2OBF3
(520 μl, 0.32 mmol) を加え、さらに30 min室温で反応させた。蒸留水を加え、反応を停止した。CH3Cl3で分液抽出を行い、有機層をMgSO4で乾燥させた。中圧クロマトを用いて精製し、さらに中圧クロマトを用いてヘキサン:酢酸エチル=4:1で単離した。エバポレーターを用いて減圧乾燥することによりオレンジ色固体としてBODIPY4を得た(収量 15 mg, 収率9.7%)。1H-NMR 400MHz及びMS(APCI)でBODIPY4の生成を確認できた。
Figure JPOXMLDOC01-appb-C000030
Under N 2 stream, BODIPY4 intermediate (100 mg, 0.32 mmol) and dimethylpyrrole (66 μl (d = 0.92), 0.64 mmol) were dissolved in CH 2 Cl 2 (35 ml), and 1 drop of TFA was added. After confirming the disappearance of the raw material spot by TLC, p-chloranil (78 mg, 0.32 mmol) was added. After reacting at room temperature for 30 min, Et 3 N (450 ml, 0.32 μmol), Et 2 OBF 3
(520 μl, 0.32 mmol) was added, and the mixture was further reacted at room temperature for 30 min. Distilled water was added to stop the reaction. Liquid separation extraction was performed with CH 3 Cl 3 , and the organic layer was dried with MgSO 4 . The product was purified using medium pressure chromatography and further isolated with hexane: ethyl acetate = 4: 1 using medium pressure chromatography. BODIPY4 was obtained as an orange solid by drying under reduced pressure using an evaporator (yield 15 mg, yield 9.7%). The formation of BODIPY4 was confirmed by 1 H-NMR 400 MHz and MS (APCI).
(5)BODIPY5の合成
 N2気流下、BODIPY1 (62 mg, 0.14 mmol)、4-(ジメチルアミノ)ベンズアルデヒド (25 mg, 0.17 mmol) をトルエン (35 ml) に溶解した。氷酢酸(0.15 ml)、ピペリジン(0.18 ml) を加えた。molecular sieves(3 Å) を少量加えた。一晩還流した。ついでエバポレーターを用いて、溶媒留去し、中圧クロマトを用いヘキサン:酢酸エチル=4:1を2回行うことにより単離した。エバポレーターを用いて減圧乾燥することにより紫色固体としてBODIPY5を得た(収率 13.6 mg, 17.0%)。1H-NMR 400MHzでBODIPY5の生成を確認できた。MS(APCI)ではBODIPY5の生成を確認できなかった。
(5) Synthesis of BODIPY5 BODIPY1 (62 mg, 0.14 mmol) and 4- (dimethylamino) benzaldehyde (25 mg, 0.17 mmol) were dissolved in toluene (35 ml) under N 2 stream. Glacial acetic acid (0.15 ml) and piperidine (0.18 ml) were added. A small amount of molecular sieves (3 Å) was added. Refluxed overnight. Subsequently, the solvent was distilled off using an evaporator, and isolation was performed by performing hexane: ethyl acetate = 4: 1 twice using medium pressure chromatography. BODIPY5 was obtained as a purple solid by drying under reduced pressure using an evaporator (yield 13.6 mg, 17.0%). The formation of BODIPY5 was confirmed by 1 H-NMR 400 MHz. MS (APCI) could not confirm the generation of BODIPY5.
Figure JPOXMLDOC01-appb-C000031
(6)切片染色
 Tg2576マウスをADモデルマウスとして用いた。10 mmの脳凍結切片を作製し、BODIPY1~BODIPY5の1 mMの50% EtOH溶液で切片をインキュベートした。同時に隣接切片においてThS、NIAD-16による蛍光染色を行った。続いて蛍光顕微鏡による観察を行った。
Figure JPOXMLDOC01-appb-C000031
(6) Section staining Tg2576 mice were used as AD model mice. 10 mm frozen brain sections were prepared, and the sections were incubated with 1 mM 50% EtOH solution of BODIPY1 to BODIPY5. At the same time, fluorescent staining with ThS and NIAD-16 was performed on adjacent sections. Subsequently, observation with a fluorescence microscope was performed.
 BODIPY3~BODIPY5、ThS、又はNIAD-16で染色した切片の蛍光顕微鏡写真を図1に示す。図に示すように、BODIPY4で染色した切片には、この化合物に由来する蛍光像が確認された。また、この蛍光像は、ThSで染色した切片の蛍光像と一致した。なお、BODIPY1及びBODIPY2で染色した切片では全く蛍光が検出されなかった。また、ノーマルマウスの切片を用いた場合は、BODIPY3~BODIPY5、ThS、NIAD-16のいずれで染色した場合も蛍光が検出されなかった。 Fluorescence micrographs of sections stained with BODIPY3 to BODIPY5, ThS, or NIAD-16 are shown in FIG. As shown in the figure, fluorescent images derived from this compound were confirmed in the sections stained with BODIPY4. This fluorescence image coincided with the fluorescence image of the section stained with ThS. Note that no fluorescence was detected in the sections stained with BODIPY1 and BODIPY2. When normal mouse sections were used, no fluorescence was detected when stained with any of BODIPY3 to BODIPY5, ThS, or NIAD-16.
(7)Ex vivoでの蛍光染色
<方法>
 Tg2576マウス(メス、32ヶ月齢)にBODIPY4 (300 ml、30%エタノールを含む生理食塩水の7.5 mM溶液)を尾静脈より投与した。30 min後、断頭により屠殺した。脳を取り出し、SCEM溶液に包埋し、ドライアイスヘキサンバスに浸して凍結させた。その後10 mmの脳凍結切片を作製し、蛍光顕微鏡による観察を行った。さらに、同一切片を用いて、抗アミロイド抗体による免疫染色を行った。
(7) Ex vivo fluorescence staining <Method>
BODIPY4 (300 ml, 7.5 mM saline solution containing 30% ethanol) was administered to Tg2576 mice (female, 32 months old) from the tail vein. After 30 min, it was killed by decapitation. The brain was removed, embedded in SCEM solution, and frozen by immersion in a dry ice hexane bath. Thereafter, 10 mm frozen brain sections were prepared and observed with a fluorescence microscope. Furthermore, immunostaining with an anti-amyloid antibody was performed using the same section.
<結果>
 BODIPY4をマウスに投与した後,脳切片の蛍光観察を行った結果、BODIPY4に由来する多数の蛍光像が観察された(図2左)。また同一切片を用いた抗アミロイド抗体による免疫染色の結果、蛍光像と一致する部分にアミロイド斑の存在が確認された(図2右)。従って、生体に投与されたBODIPY4は、血液脳関門を透過すること、および、脳移行後に脳内アミロイド斑への結合性を有することが示された。
<Result>
After BODIPY4 was administered to mice, the brain sections were subjected to fluorescence observation. As a result, many fluorescent images derived from BODIPY4 were observed (left side of FIG. 2). In addition, as a result of immunostaining with an anti-amyloid antibody using the same section, the presence of amyloid plaques was confirmed in a portion coinciding with the fluorescence image (right in FIG. 2). Therefore, it was shown that BODIPY4 administered to the living body permeates the blood brain barrier and has a binding property to amyloid plaques in the brain after translocation to the brain.
(8)アミロイドβ42凝集体を用いたインビトロ結合実験
<方法>
 BODIPY3とBODIPY4について、Aβ存在下、非存在下での蛍光強度について検討を行った。BODIPY3、BODIPY4の0.3125 μM 50% EtOH 溶液(in PBS)あるいは、0.3125 μM 50% EtOH、および10 μg/ml のAβ42凝集体溶液(in PBS)を混和し、37℃で1 hインキュベートした後、0.2 μmのフィルターを用いろ過し、ろ液の蛍光強度を測定した。
(8) In vitro binding experiment using amyloid β42 aggregate <Method>
BODIPY3 and BODIPY4 were examined for fluorescence intensity in the presence and absence of Aβ. BODIPY3, BODIPY4 0.3125 μM 50% EtOH solution (in PBS) or 0.3125 μM 50% EtOH, and 10 μg / ml Aβ42 aggregate solution (in PBS) were mixed, incubated at 37 ° C. for 1 h, 0.2 Filtration was performed using a μm filter, and the fluorescence intensity of the filtrate was measured.
<結果>
 BODIPY3ではAβ存在下、非存在下でのろ液に蛍光強度の変化が見られなかった(図3)。このため、この濃度において、BODIPY3はAβへの結合性は認められないことが示唆された。
<Result>
With BODIPY3, no change in fluorescence intensity was observed in the filtrate in the presence or absence of Aβ (FIG. 3). Therefore, it was suggested that BODIPY3 does not bind to Aβ at this concentration.
 一方で、BODIPY4については、Aβが存在することでろ液の蛍光強度が減少した(図4)。この結果は、BODIPY4がAβに結合し、フィルター上に残ったためと考えられた。また本検討結果は、モデルマウス脳切片を用いた蛍光染色実験の結果を反映すると考えられた。 On the other hand, for BODIPY4, the fluorescence intensity of the filtrate decreased due to the presence of Aβ (FIG. 4). This result was thought to be because BODIPY4 bound to Aβ and remained on the filter. The results of this study were considered to reflect the results of fluorescent staining experiments using model mouse brain slices.
〔実施例2〕 3位に置換基を導入したBODIPY誘導体の合成(1)
(1)BODIPY10の合成
[Example 2] Synthesis of a BODIPY derivative having a substituent introduced at the 3-position (1)
(1) Synthesis of BODIPY10
Figure JPOXMLDOC01-appb-C000032
 N2気流下、5-ホルミル-2-チオフェンボロン酸(420 mg, 3.2 mmol)と1-ブロモ-4-ヨードベンゼン(907 mg, 3.2 mg)をPd(PPh3)4(100 mg)と共にジオキサン(15 ml) に溶解した。ついで2M Na2CO(15 ml) を加え、一晩還流した。エバポレーターを用いて、溶媒留去し、残渣をCHCl3で分液抽出を行って、有機層をMgSO4で乾燥させた。さらに、エバポレーターを用いて減圧乾燥させ、残渣をCHCl3に溶解し、中圧クロマトを用いてヘキサン:酢酸エチル=7:3で単離した。エバポレーターを用いて減圧乾燥することにより、化合物3を褐色固体として得た(収量 429.9 mg, 収率50.2%)。1H-NMR 400MHz及びMS(APCI)で化合物3の生成を確認できた。
Figure JPOXMLDOC01-appb-C000032
Under N 2 stream, 5-formyl-2-thiopheneboronic acid (420 mg, 3.2 mmol) and 1-bromo-4-iodobenzene (907 mg, 3.2 mg) together with Pd (PPh 3 ) 4 (100 mg) in dioxane (15 ml). Then 2M Na 2 CO 3 (15 ml) was added and refluxed overnight. The solvent was distilled off using an evaporator, the residue was subjected to liquid separation extraction with CHCl 3 , and the organic layer was dried over MgSO 4 . Furthermore, it was dried under reduced pressure using an evaporator, the residue was dissolved in CHCl 3 , and isolated with hexane: ethyl acetate = 7: 3 using medium pressure chromatography. Compound 3 was obtained as a brown solid by drying under reduced pressure using an evaporator (yield 429.9 mg, yield 50.2%). Formation of Compound 3 was confirmed by 1 H-NMR 400 MHz and MS (APCI).
 化合物3(429.9 mg, 1.61 mmol)をMeOH 10 mlに溶解し、氷浴上で冷却しながらNaBH4(60 mg, 3.2 mmol)を加えた。室温で30分間撹拌した後、エバポレーターを用いて、溶媒留去した。残渣をCHCl3に溶解し、中圧クロマトを用いてヘキサン:酢酸エチル=7:3で単離した。エバポレーターを用いて減圧乾燥することにより、化合物4を褐色固体として得た(収量 419.3 mg, 収率98.0%)。1H-NMR 400MHz及びMS(APCI)で化合物4の生成を確認できた。 Compound 3 (429.9 mg, 1.61 mmol) was dissolved in 10 ml of MeOH, and NaBH 4 (60 mg, 3.2 mmol) was added while cooling on an ice bath. After stirring at room temperature for 30 minutes, the solvent was distilled off using an evaporator. The residue was dissolved in CHCl 3 and isolated with hexane: ethyl acetate = 7: 3 using medium pressure chromatography. Compound 4 was obtained as a brown solid by drying under reduced pressure using an evaporator (yield 419.3 mg, yield 98.0%). Formation of compound 4 was confirmed by 1 H-NMR 400 MHz and MS (APCI).
 化合物4 (419 mg, 1.58 mmol)とPh3PHBr (533 mg)をCHCl3 7 ml に溶解し、15分間還流した。室温に戻した後、ジエチルエーテルを加え、結晶を析出させた。桐山ロートで結晶をろ取し、乾燥させ、化合物5を白色結晶として得た(783 mg, 96.5%)。 Compound 4 (419 mg, 1.58 mmol) and Ph 3 PHBr (533 mg) were dissolved in 7 ml of CHCl 3 and refluxed for 15 minutes. After returning to room temperature, diethyl ether was added to precipitate crystals. The crystals were collected by filtration with a Kiriyama funnel and dried to obtain Compound 5 as white crystals (783 mg, 96.5%).
Figure JPOXMLDOC01-appb-C000033
 化合物5(100 mg, 0.195 mmol)をMeOH 2 mlに溶解した後、MeONa 100 μlを加えた。MeOH 250 μlに溶解した2-ホルミルピロール(18.5 mg, 0.195 mmol)を加え、一晩還流した。ドライアイス-ヘキサンバスで冷却し、結晶をろ取し、化合物6を白色結晶として得た(14.1 mg, 21.9%)。1H-NMR 400MHz及びMS(APCI)で化合物6の生成を確認できた。
Figure JPOXMLDOC01-appb-C000033
Compound 5 (100 mg, 0.195 mmol) was dissolved in 2 ml of MeOH, and then 100 μl of MeONa was added. 2-Formylpyrrole (18.5 mg, 0.195 mmol) dissolved in 250 μl of MeOH was added and refluxed overnight. The mixture was cooled in a dry ice-hexane bath, and the crystals were collected by filtration to give compound 6 as white crystals (14.1 mg, 21.9%). Formation of compound 6 was confirmed by 1 H-NMR 400 MHz and MS (APCI).
Figure JPOXMLDOC01-appb-C000034
 N2気流下、3,5-ジメチルピロール-2-カルボキシアルデヒド(5 mg, 0.042 mmol)と化合物6 (14 mg, 0.042 mmol) をCH2Cl(4 ml) に溶解した。氷浴上で冷却し、POCl3(6.4 mg, 0.042 mmol)を加え、室温で一晩撹拌した。氷浴上で冷却し、Et3N (58 μl)、Et2OBF3(53 μl)を加え、さらに30分室温で反応させた。蒸留水を加え、反応を停止した。CH3Cl3で分液抽出を行い、有機層をMgSO4で乾燥させた。中圧クロマトを用いてヘキサン:酢酸エチル=3:1で単離した。エバポレーターを用いて減圧乾燥することによりBODIPY10を褐色固体として得た(収量 11.8 mg, 収率 58.0%)。1H-NMR 400MHz及びMS(APCI)でBODIPY10生成を確認できた。
Figure JPOXMLDOC01-appb-C000034
Under a N 2 stream, 3,5-dimethylpyrrole-2-carboxaldehyde (5 mg, 0.042 mmol) and compound 6 (14 mg, 0.042 mmol) were dissolved in CH 2 Cl 2 (4 ml). Was cooled on an ice bath, POCl 3 (6.4 mg, 0.042 mmol) and the mixture was stirred overnight at room temperature. The mixture was cooled on an ice bath, Et 3 N (58 μl) and Et 2 OBF 3 (53 μl) were added, and the mixture was further reacted at room temperature for 30 minutes. Distilled water was added to stop the reaction. Liquid separation extraction was performed with CH 3 Cl 3 , and the organic layer was dried with MgSO 4 . Isolated with hexane: ethyl acetate = 3: 1 using medium pressure chromatography. BODIPY10 was obtained as a brown solid by drying under reduced pressure using an evaporator (yield 11.8 mg, yield 58.0%). BODIPY10 production was confirmed by 1 H-NMR 400 MHz and MS (APCI).
(2)BODIPY10による切片染色
 Tg2576マウスをADモデルマウスとして用いた。10μmの脳凍結切片を作製し、BODIPY10の1 mMの50% EtOH溶液で切片をインキュベートした。同時に隣接切片においてチオフラビンS(ThS)による蛍光染色を行った。続いて蛍光顕微鏡による観察を行った。BODIPY10で蛍光染色した切片の写真を図5(励起波長:620/60nm)に、ThSで蛍光染色した切片の写真を図6(励起波長:470/40nm)にそれぞれ示す。図に示すように、ThSによる蛍光染色部位とBODIPY10による蛍光染色部位が一致した。比較のため、野生型マウス脳切片を用いて同様の実験を行ったが、野生型マウス脳切片においてはBODIPY10による蛍光染色部位は観察されなかった。
(2) Section staining with BODIPY10 Tg2576 mice were used as AD model mice. 10 μm brain frozen sections were prepared, and the sections were incubated with 1 mM 50% EtOH solution of BODIPY10. At the same time, fluorescent staining with thioflavin S (ThS) was performed on adjacent sections. Subsequently, observation with a fluorescence microscope was performed. A photograph of a section stained with BODIPY10 is shown in FIG. 5 (excitation wavelength: 620/60 nm), and a photograph of a section stained with ThS is shown in FIG. 6 (excitation wavelength: 470/40 nm). As shown in the figure, the fluorescent staining site with ThS and the fluorescent staining site with BODIPY10 coincided. For comparison, a similar experiment was performed using a wild-type mouse brain section, but no fluorescent staining site with BODIPY10 was observed in the wild-type mouse brain section.
 なお、本発明者らは、以前に、BODIPYの8位に5’-[4-(ジメチルアミノ)フェニル]-2,2’-ビチオフェンを導入したBODIPY誘導体(BODIPY 4)を合成し、ADモデルマウスの脳切片の蛍光染色を行ったが(非特許文献3、特願2009-107457号明細書)、このときは、今回よりも短い励起波長(470/40nm)を用いた場合にしか蛍光染色像は観察されなかった。 In addition, the present inventors previously synthesized a BODIPY derivative (BODIPY 4) in which 5 ′-[4- (dimethylamino) phenyl] -2,2′-bithiophene was introduced at the 8-position of BODIPY, and developed an AD model. Fluorescent staining was performed on mouse brain sections (Non-patent Document 3, Japanese Patent Application No. 2009-107457). At this time, fluorescent staining was performed only when a shorter excitation wavelength (470/40 nm) was used. No image was observed.
(3)蛍光スペクトル
 BODIPY10をクロロホルムに溶かし(1nM)、励起波長600nmで、蛍光スペクトルを測定した(図7)。蛍光波長は、612nmで最大強度となった。
(3) Fluorescence spectrum BODIPY10 was dissolved in chloroform (1 nM), and the fluorescence spectrum was measured at an excitation wavelength of 600 nm (FIG. 7). The fluorescence wavelength reached its maximum intensity at 612 nm.
(4)BODIPY11の合成 (4) Synthesis of BODIPY11
Figure JPOXMLDOC01-appb-C000035
 N2気流下、BODIPY10(103 mg, 0.21 mmol) をジオキサン (8 ml)に溶かし、 (Bu3Sn)2 (1 ml), Pd(PPh3)4(10 mg)、NEt3(8 ml)を加え、一晩還流した。エバポレーターを用いて、溶媒留去し、残渣をCHCl3で分液抽出を行い、有機層をMgSO4で乾燥させた。さらに、エバポレーターを用いて減圧乾燥させ、残渣をCHCl3に溶解し、中圧クロマトを用いてヘキサン:酢酸エチル=3:1で単離した。エバポレーターを用いて減圧乾燥することにより得た結晶をヘキサンで洗い、化合物7を青色固体として得た(収量 7.0 mg, 収率17%)。
Figure JPOXMLDOC01-appb-C000035
Under N 2 stream, BODIPY10 (103 mg, 0.21 mmol) was dissolved in dioxane (8 ml), (Bu 3 Sn) 2 (1 ml), Pd (PPh 3 ) 4 (10 mg), NEt 3 (8 ml) And refluxed overnight. The solvent was distilled off using an evaporator, the residue was subjected to liquid separation extraction with CHCl 3 , and the organic layer was dried over MgSO 4 . Furthermore, it was dried under reduced pressure using an evaporator, the residue was dissolved in CHCl 3 , and isolated with hexane: ethyl acetate = 3: 1 using medium pressure chromatography. Crystals obtained by drying under reduced pressure using an evaporator were washed with hexane to obtain Compound 7 as a blue solid (yield 7.0 mg, 17%).
Figure JPOXMLDOC01-appb-C000036
 化合物7(25 mg, 0.036 mmol)をCHCl3(5 ml)に溶解し、I2(92 mg in CHCl3)を加え、室温で1時間攪拌した。飽和NaHSO3水溶液1 mlで反応の進行を止めた。CHCl3で分液抽出を行い、有機層をMgSO4で乾燥させた。さらに、エバポレーターを用いて減圧乾燥させ、残渣をCHCl3に溶解し、中圧クロマトを用いてヘキサン:酢酸エチル=3:1で単離した。エバポレーターを用いて減圧乾燥させ、BODIPY11を青色固体として得た(収量 4.0 mg, 収率20%)。
Figure JPOXMLDOC01-appb-C000036
Compound 7 (25 mg, 0.036 mmol) was dissolved in CHCl 3 (5 ml), I 2 (92 mg in CHCl 3 ) was added, and the mixture was stirred at room temperature for 1 hour. The reaction was stopped with 1 ml of saturated NaHSO 3 aqueous solution. Liquid separation extraction was performed with CHCl 3 , and the organic layer was dried with MgSO 4 . Furthermore, it was dried under reduced pressure using an evaporator, the residue was dissolved in CHCl 3 , and isolated with hexane: ethyl acetate = 3: 1 using medium pressure chromatography. BODIPY11 was obtained as a blue solid by drying under reduced pressure using an evaporator (yield 4.0 mg, yield 20%).
Figure JPOXMLDOC01-appb-C000037
 化合物7(1 mg/mL)のエタノール溶液50 μLと1 N HCl 50μL、Na125I
(1-5 μL, 5 mCi/50 μL)をガラスバイアルにいれ、最後に過酸化水素水50 μL (3% W/V)を加えた。5分間室温で放置した後、飽和NaHSO3水溶液100 μLを加えることにより、反応を停止させた。飽和NaHCO3水溶液で中和した後、酢酸エチルで抽出した(1 mL )。Na2SO4を入れたパスツールピペットに通して脱水した。窒素で酢酸エチルを蒸発させた後、残渣をエタノールに溶解し、逆相HPLCで精製した。125I-BODIPY11を分取し、分取した溶液から酢酸エチルで抽出した。窒素でさらに酢酸エチルを蒸発させ、125I-BODIPY11を得た(放射化学的収率 25%、放射化学的純度 99%以上)。
Figure JPOXMLDOC01-appb-C000037
50 μL of Compound 7 (1 mg / mL) in ethanol, 50 μL of 1 N HCl, Na 125 I
(1-5 μL, 5 mCi / 50 μL) was placed in a glass vial, and finally 50 μL of hydrogen peroxide (3% W / V) was added. After leaving at room temperature for 5 minutes, the reaction was stopped by adding 100 μL of saturated aqueous NaHSO 3 solution. The mixture was neutralized with saturated aqueous NaHCO 3 and extracted with ethyl acetate (1 mL). It dehydrated through a Pasteur pipette containing Na 2 SO 4 . After evaporation of ethyl acetate with nitrogen, the residue was dissolved in ethanol and purified by reverse phase HPLC. 125 I-BODIPY11 was fractionated and extracted from the fractionated solution with ethyl acetate. Further evaporation of ethyl acetate with nitrogen gave 125 I-BODIPY11 (radiochemical yield 25%, radiochemical purity> 99%).
(5)BODIPY11による切片染色
 Tg2576マウスをADモデルマウスとして用いた。10 μmの脳凍結切片を作製し、BODIPY11の1 mMの50% EtOH溶液で切片をインキュベートした。同時に隣接切片においてThSによる蛍光染色を行った。続いて蛍光顕微鏡による観察を行った。BODIPY11で蛍光染色した切片の写真を図8に、ThSで蛍光染色した切片の写真を図9にそれぞれ示す。図に示すように、ThSによる蛍光染色部位とBODIPY11による蛍光染色部位が一致した。この結果より、BODIPY10の臭素をヨウ素に置換しても、アミロイド結合性は保持していることが示唆された。
(5) Section staining with BODIPY11 Tg2576 mice were used as AD model mice. 10 μm frozen brain sections were prepared, and the sections were incubated with 1 mM 50% EtOH solution of BODIPY11. At the same time, fluorescent staining with ThS was performed on adjacent sections. Subsequently, observation with a fluorescence microscope was performed. A photograph of a section fluorescently stained with BODIPY11 is shown in FIG. 8, and a photograph of a section fluorescently stained with ThS is shown in FIG. As shown in the figure, the fluorescent staining site with ThS coincided with the fluorescent staining site with BODIPY11. From these results, it was suggested that the amyloid binding property was retained even when bromine in BODIPY10 was replaced with iodine.
(6)オートラジオグラフィ
 Tg2576マウスをADモデルマウスとして用いた。10 μmの脳凍結切片を作製し、125I-BODIPY11の50000 cpm/100 μlで2時間インキュベートしたのち、飽和炭酸リチウム50%EtOHでの3分間の切片洗浄を2回行い、さらに50%EtOHで3分間の切片洗浄を2回行い、30秒間蒸留水で洗った。切片をイメージングプレートに2時間露光させ、BAS-5000(富士フイルム社製)により画像収集と解析を行った。この結果を図10に示す。また、隣接切片についてThSによる蛍光染色を行い、蛍光顕微鏡で観察した。この結果を図11に示す。図に示すように、大脳皮質領域に125I-BODIPY11の放射能集積が観察され、ThSの蛍光集積部位と相関が見られた。したがって、125I-BODIPY11もBODIPY11同様、アミロイドβへの結合性を有することが示唆された。
(6) Autoradiography Tg2576 mice were used as AD model mice. After preparing 10 μm brain frozen sections and incubating with 50000 cpm / 100 μl of 125 I-BODIPY11 for 2 hours, washing the sections with saturated lithium carbonate 50% EtOH twice for 3 minutes, and further with 50% EtOH. The section was washed twice for 3 minutes and washed with distilled water for 30 seconds. The sections were exposed to an imaging plate for 2 hours, and images were collected and analyzed using BAS-5000 (manufactured by FUJIFILM Corporation). The result is shown in FIG. Further, the adjacent sections were fluorescently stained with ThS and observed with a fluorescent microscope. The result is shown in FIG. As shown in the figure, 125 I-BODIPY11 radioactivity accumulation was observed in the cerebral cortex region, and a correlation with ThS fluorescence accumulation site was observed. Therefore, it was suggested that 125 I-BODIPY11 has a binding property to amyloid β as well as BODIPY11.
(7)体内分布実験
 125I-BODIPY11を20 %EtOH生理食塩水で希釈した。5週齢ddYマウス雄性を1群あたり5匹用い、尾静脈より1匹あたり0.21 μCi (100 μl)を投与し、 2、10、30、60分後に断頭、採血後、臓器を取り出し、γカウンターで放射能を測定した。この結果を表14に示す。
(7) Biodistribution experiment 125 I-BODIPY11 was diluted with 20% EtOH physiological saline. Five 5-week-old male ddY mice per group were administered 0.21 μCi (100 μl) per mouse via the tail vein. After 2, 10, 30, 60 minutes, decapitation, blood sampling, organ removal, γ counter The radioactivity was measured with The results are shown in Table 14.
Figure JPOXMLDOC01-appb-T000038
 BODIPY11は、投与2分後に0.4% Dose/gの脳移行性が認められ、その後経時的な放射能消失を示した。また脂溶性のため、肝臓への高い集積が認められた。
Figure JPOXMLDOC01-appb-T000038
BODIPY11 showed 0.4% Dose / g brain migration 2 minutes after administration, and then showed radioactivity loss over time. In addition, due to fat solubility, high accumulation in the liver was observed.
(8)蛍光スペクトル
 蛍光光度計を用いて、BODIPY11のクロロホルム溶液(0.25μM)の蛍光スペクトルを測定した(図12)。
(8) Fluorescence Spectrum Using a fluorometer, the fluorescence spectrum of a BODIPY11 chloroform solution (0.25 μM) was measured (FIG. 12).
 励起最大波長は606 nm、蛍光最大波長は613 nmとなり、BODIPY10と類似した蛍光特性を示した。また、特願2009-107457号明細書に含まれる化合物(構造式は下記の通り)の蛍光波長526 nmと比較すると、約100 nmの長波長化に成功した The excitation maximum wavelength was 606 nm and the fluorescence maximum wavelength was 613 nm, indicating fluorescence characteristics similar to BODIPY10. In addition, compared with the fluorescence wavelength of 526 nm of the compound (structural formula is as follows) included in the specification of Japanese Patent Application No. 2009-107457, the wavelength was successfully increased to about 100 nm.
Figure JPOXMLDOC01-appb-C000039
〔実施例3〕 3位に置換基を導入したBODIPY誘導体の合成(2)
(1)BODIPY誘導体の合成
 常法に従い、BODIPY13、14、15、16、17を合成した(図13)。機器分析の結果は以下の通りである。
Figure JPOXMLDOC01-appb-C000039
[Example 3] Synthesis of a BODIPY derivative having a substituent introduced at the 3-position (2)
(1) Synthesis of BODIPY Derivatives BODIPY13, 14, 15, 16, 17 were synthesized according to a conventional method (FIG. 13). The results of the instrumental analysis are as follows.
BODIPY13
1H-NMR (400 MHz, CDCl3) δ 2.23 (s, 3H), 3.09 (s, 6H), 6.42 (q, 1H), 6.73 (m, 3H), 6.42 (d, 1H), 6.84 (d, 1H), 7.06 (s, 1H), 7.36 (d, J = 16.6 Hz, 1H), 7.46 (d, J = 16.5 Hz, 1H), 7.54 (d, J = 8.8 Hz, 2H), 7.60(s,1H).
BODIPY14
1H-NMR (400 MHz, CDCl3)δ 2.38 (s, 3H), 6.52 (m, 1H), 7.04 (s, 1H), 7.11 (d, 1H), 7.61-7.68 (m, 7H), 7.71(s, 1H).
BODIPY15
1H-NMR (400 MHz, CDCl3)δ 2.31 (s, 3H), 3.02 (s, 6H), 6.43 (q, 1H), 6.72 (m, 3H), 6.86 (d, J = 15.4 Hz, 2H), 7.10 (s, 1H), 7.14 (d, J = 3.7 Hz, 1H), 7.20 (d, J = 3.9 Hz, 1H), 7.36 (s,1H),  7.47 (d, J = 15.9 Hz, 1H), 7.53 (d, J = 8.8 Hz, 2H), 7.65(s, 1H).
BODIPY16
1H-NMR (400 MHz, CDCl3) δ 2.25 (s, 1H), 2.28 (s, 3H), 2.56 (s, 3H), 3.02 (s, 6H), 6.67 (m, 3H), 6.95 (s, 1H), 7.21 (d, 1H), 7.23 (d, J=16.6 Hz, 1H), 7.42 (d, J = 16.1 Hz, 1H), 7.49 (d, 2H).
BODIPY17
1H-NMR (400 MHz, CDCl3)δ 2.29 (s, 6H), 3.03 (s, 12H), 6.64 (d, 2H), 6.37 (d, 2H), 6.87 (s, 1H), 7.21 (d, 2H), 7.47-7.54 (m, 6H).
(2)BODIPY誘導体の蛍光特性の評価
 BODIPY誘導体をクロロホルムに溶解し、最大吸収波長および励起蛍光波長を測定した(表15)。最大吸収波長の測定には紫外可視分光光度計(島津製作所社製 UV-1800)、励起蛍光波長の測定には分光蛍光光度計 (島津製作所社製 RF-5300PC)を用いた。
BODIPY13
1 H-NMR (400 MHz, CDCl 3 ) δ 2.23 (s, 3H), 3.09 (s, 6H), 6.42 (q, 1H), 6.73 (m, 3H), 6.42 (d, 1H), 6.84 (d , 1H), 7.06 (s, 1H), 7.36 (d, J = 16.6 Hz, 1H), 7.46 (d, J = 16.5 Hz, 1H), 7.54 (d, J = 8.8 Hz, 2H), 7.60 (s , 1H).
BODIPY14
1 H-NMR (400 MHz, CDCl 3 ) δ 2.38 (s, 3H), 6.52 (m, 1H), 7.04 (s, 1H), 7.11 (d, 1H), 7.61-7.68 (m, 7H), 7.71 (s, 1H).
BODIPY15
1 H-NMR (400 MHz, CDCl 3 ) δ 2.31 (s, 3H), 3.02 (s, 6H), 6.43 (q, 1H), 6.72 (m, 3H), 6.86 (d, J = 15.4 Hz, 2H ), 7.10 (s, 1H), 7.14 (d, J = 3.7 Hz, 1H), 7.20 (d, J = 3.9 Hz, 1H), 7.36 (s, 1H), 7.47 (d, J = 15.9 Hz, 1H ), 7.53 (d, J = 8.8 Hz, 2H), 7.65 (s, 1H).
BODIPY16
1 H-NMR (400 MHz, CDCl 3 ) δ 2.25 (s, 1H), 2.28 (s, 3H), 2.56 (s, 3H), 3.02 (s, 6H), 6.67 (m, 3H), 6.95 (s , 1H), 7.21 (d, 1H), 7.23 (d, J = 16.6 Hz, 1H), 7.42 (d, J = 16.1 Hz, 1H), 7.49 (d, 2H).
BODIPY17
1 H-NMR (400 MHz, CDCl 3 ) δ 2.29 (s, 6H), 3.03 (s, 12H), 6.64 (d, 2H), 6.37 (d, 2H), 6.87 (s, 1H), 7.21 (d , 2H), 7.47-7.54 (m, 6H).
(2) Evaluation of fluorescence characteristics of BODIPY derivative The BODIPY derivative was dissolved in chloroform, and the maximum absorption wavelength and the excitation fluorescence wavelength were measured (Table 15). An ultraviolet-visible spectrophotometer (UV-1800 manufactured by Shimadzu Corporation) was used for measurement of the maximum absorption wavelength, and a spectrofluorophotometer (RF-5300PC manufactured by Shimadzu Corporation) was used for measurement of the excitation fluorescence wavelength.
Figure JPOXMLDOC01-appb-T000040
(3)マウス切片上アミロイド斑への結合性の評価
 アミロイド前駆タンパク質を過剰産生するTg2576マウスから凍結脳切片 (10 μm)を作製し、切片上にBODIPY誘導体の0.5-1.0 mMの50%エタノール水溶液を滴下し、6-10分間、室温で静置した。また隣接脳切片に対しアミロイド斑の蛍光染色薬であるチオフラビンS (ThS) を滴下し、3-5分間静置した。蛍光顕微鏡で蛍光像を観察したところ、BODIPY13、14、15、16による染色箇所とThSによる染色箇所が一致していることを確認した。しかし、BODIPY17を用いた場合、アミロイド斑への結合は認められなかった(図14)。
Figure JPOXMLDOC01-appb-T000040
(3) Evaluation of binding to amyloid plaques on mouse sections Frozen brain sections (10 μm) were prepared from Tg2576 mice overproducing amyloid precursor protein, and 0.5-1.0 mM 50% ethanol aqueous solution of BODIPY derivatives on the sections Was dropped and allowed to stand at room temperature for 6-10 minutes. Moreover, thioflavin S (ThS), which is a fluorescent stain for amyloid plaques, was dropped onto adjacent brain sections and allowed to stand for 3-5 minutes. When the fluorescence image was observed with a fluorescence microscope, it was confirmed that the stained spots with BODIPY13, 14, 15, 16 and the stained spots with ThS coincided. However, when BODIPY17 was used, binding to amyloid plaques was not observed (FIG. 14).
(4)投与後脳切片作製による脳移行検討実験
 25ヶ月齢のTg2576雌性マウス、25ヶ月齢のddY雌性マウス各1匹に、BODIPY13を200 μL (133 μM, 10% エタノール生理食塩水)を投与し、1時間後に屠殺、脳を取り出し、ドライアイスヘキサンバスで凍結し、10 μmの凍結切片を作製後、蛍光顕微鏡で観察した。さらに、隣接切片を免疫染色により染色し、アミロイド斑の存在を確認した。その結果、BODIPY13による蛍光像とAβ42抗体による免疫染色箇所が一致した。この結果によりBODIPY13が脳へ移行し、アミロイド斑に対し結合することが示された(図15)。
(4) Brain transfer study by preparation of brain slices after administration 200 μL of BODIPY13 (133 μM, 10% ethanol saline) was administered to each 25-month-old Tg2576 female mouse and 25-month-old ddY female mouse After 1 hour, the mice were sacrificed, the brains were taken out, frozen in a dry ice hexane bath, 10 μm frozen sections were prepared, and observed with a fluorescence microscope. Further, adjacent sections were stained by immunostaining to confirm the presence of amyloid plaques. As a result, the fluorescence image by BODIPY13 and the immunostaining site by Aβ42 antibody coincided. This result showed that BODIPY13 migrated to the brain and bound to amyloid plaques (FIG. 15).
 ADの診断を目的としたAβのイメージング試薬の開発、Aβを標的とする治療薬の開発支援、AD患者のAβの蓄積を指標とした病状判定、などに利用できる。また、その検出器(PET,SPECT,光イメージングMRI装置)の開発研究への波及効果も期待できる。 It can be used for the development of Aβ imaging reagents for the purpose of AD diagnosis, development support for therapeutic agents targeting Aβ, and disease state determination using Aβ accumulation in AD patients as an index. In addition, the ripple effect on the development research of the detector (PET, SPECT, optical imaging MRI equipment) can be expected.
 本明細書は、本願の優先権の基礎である日本国特許出願(特願2009-107457号及び特願2009-222156号)の明細書および/または図面に記載されている内容を包含する。また、本明細書で引用した全ての刊行物、特許および特許出願をそのまま参考として本明細書にとり入れるものとする。 This specification includes the contents described in the specification and / or drawings of the Japanese patent applications (Japanese Patent Application Nos. 2009-107457 and 2009-222156) which are the basis of the priority of the present application. In addition, all publications, patents, and patent applications cited in this specification are incorporated herein by reference as they are.

Claims (14)

  1.  一般式(II)
    Figure JPOXMLDOC01-appb-C000001
    〔式中、R21は水素原子、フッ素原子、臭素原子、ヨウ素原子、シアノ基、アミノ基、メチルアミノ基、ジメチルアミノ基、ヒドロキシル基、メトキシ基、ジシアノビニル基、-(OCHCHj-F[式中、jは1~10の整数を表す。] で表される基、又は-(OCHCHj-OH [式中、jは1~10の整数を表す。]で表される基を表し、R22は水素原子又はヨウ素原子を表し、R23は水素原子又はメチル基を表し、R24は水素原子又はメチル基を表し、R25は水素原子又はヨウ素原子を表し、R26は水素原子又はメチル基を表し、Xは硫黄原子又は酸素原子を表し、iは0~10の整数を表す[但し、iが0のときは一般式(II)中のジピロメテン骨格とベンゼン環は複素五員環を介さず結合する場合を表す。]。〕
    で表される化合物若しくは前記化合物を標識物質で標識した化合物、又はこれらの化合物の医薬上許容される塩を含有するコンフォメーション病診断用組成物。
    Formula (II)
    Figure JPOXMLDOC01-appb-C000001
    [Wherein R 21 represents a hydrogen atom, a fluorine atom, a bromine atom, an iodine atom, a cyano group, an amino group, a methylamino group, a dimethylamino group, a hydroxyl group, a methoxy group, a dicyanovinyl group, — (OCH 2 CH 2 ). j -F [wherein j represents an integer of 1 to 10. A group represented by the formula: — (OCH 2 CH 2 ) j —OH [wherein j represents an integer of 1 to 10. R 22 represents a hydrogen atom or an iodine atom, R 23 represents a hydrogen atom or a methyl group, R 24 represents a hydrogen atom or a methyl group, and R 25 represents a hydrogen atom or an iodine atom. R 26 represents a hydrogen atom or a methyl group, X represents a sulfur atom or an oxygen atom, and i represents an integer of 0 to 10 [provided that when i is 0, dipyrromethene in the general formula (II) The skeleton and the benzene ring represent a case in which they are bonded via a hetero five-membered ring. ]. ]
    Or a compound obtained by labeling the compound with a labeling substance, or a pharmaceutically acceptable salt of these compounds.
  2.  一般式(II)におけるiが、2又は3である請求項1に記載のコンフォメーション病診断用組成物。 The composition for diagnosing conformation disease according to claim 1, wherein i in the general formula (II) is 2 or 3.
  3.  一般式(II)におけるR21が、水素原子、フッ素原子、臭素原子、ヨウ素原子、シアノ基、アミノ基、メチルアミノ基、ジメチルアミノ基、ヒドロキシル基、メトキシ基、ジシアノビニル基、2-フルオロエトキシ基、2-(2-フルオロエトキシ)エトキシ基、2-{2-(2-フルオロエトキシ)エトキシ}エトキシ基、2-ヒドロキシエトキシ基、2-(2-ヒドロキシエトキシ)エトキシ基、又は2-{2-(2-ヒドロキシエトキシ)エトキシ}エトキシ基である請求項1又は2に記載のコンフォメーション病診断用組成物。 R 21 in the general formula (II) is hydrogen atom, fluorine atom, bromine atom, iodine atom, cyano group, amino group, methylamino group, dimethylamino group, hydroxyl group, methoxy group, dicyanovinyl group, 2-fluoroethoxy. Group, 2- (2-fluoroethoxy) ethoxy group, 2- {2- (2-fluoroethoxy) ethoxy} ethoxy group, 2-hydroxyethoxy group, 2- (2-hydroxyethoxy) ethoxy group, or 2- { The composition for diagnosing conformation disease according to claim 1 or 2, which is a 2- (2-hydroxyethoxy) ethoxy} ethoxy group.
  4.  一般式(II)におけるR22及びR25が、水素原子である請求項1乃至3のいずれか一項に記載のコンフォメーション病診断用組成物。 The composition for diagnosing conformation disease according to any one of claims 1 to 3, wherein R 22 and R 25 in the general formula (II) are hydrogen atoms.
  5.  一般式(I)
    Figure JPOXMLDOC01-appb-C000002
    〔式中、Xは水素原子、フッ素原子、臭素原子、ヨウ素原子、シアノ基、アミノ基、メチルアミノ基、ジメチルアミノ基、ヒドロキシル基、メトキシ基、ジシアノビニル基、-(OCHCH-F[式中、mは1~10の整数を表す。] で表される基、又は一般式(A)
    Figure JPOXMLDOC01-appb-C000003
    [式中、Yは水素原子、フッ素原子、臭素原子、ヨウ素原子、シアノ基、アミノ基、メチルアミノ基、ジメチルアミノ基、ヒドロキシル基、メトキシ基、ジシアノビニル基、又は-(OCHCH-F〈式中、mは1~10の整数を表す。〉 で表される基を表し、Y及びYは同一又は異なって、水素原子又はトリフルオロメチル基を表す。]
    で表される基を表し、X及びXは同一又は異なって、水素原子又はトリフルオロメチル基を表し、R11及びR12は同一又は異なって、水素原子又はメチル基を表し、R13及びR14は水素原子、メチル基、又は一般式(B)
    Figure JPOXMLDOC01-appb-C000004
    [式中、Zは水素原子、フッ素原子、臭素原子、ヨウ素原子、シアノ基、アミノ基、メチルアミノ基、ジメチルアミノ基、ヒドロキシル基、メトキシ基、ジシアノビニル基、又は-(OCHCH-F〈式中、mは1~10の整数を表す。〉 で表される基を表し、Z及びZは同一又は異なって、水素原子又はトリフルオロメチル基を表し、kは1~10の整数を表す。]
    で表される基を表し、nは0~10の整数を表す[但し、nが0のときは一般式(I)中のジピロメテン骨格とベンゼン環がチオフェン環を介さず直接結合する場合を表す。]。〕
    で表される化合物若しくは前記化合物を標識物質で標識した化合物、又はこれらの化合物の医薬上許容される塩を含有するコンフォメーション病診断用組成物。
    Formula (I)
    Figure JPOXMLDOC01-appb-C000002
    [Wherein, X 1 is a hydrogen atom, a fluorine atom, a bromine atom, an iodine atom, a cyano group, an amino group, a methylamino group, a dimethylamino group, a hydroxyl group, a methoxy group, a dicyanovinyl group, — (OCH 2 CH 2 ). m 1 -F [wherein m represents an integer of 1 to 10. Or a group represented by the general formula (A)
    Figure JPOXMLDOC01-appb-C000003
    [Wherein Y 1 represents a hydrogen atom, a fluorine atom, a bromine atom, an iodine atom, a cyano group, an amino group, a methylamino group, a dimethylamino group, a hydroxyl group, a methoxy group, a dicyanovinyl group, or — (OCH 2 CH 2 ) in m -F <formula, m represents an integer of 1-10. > Y 2 and Y 3 are the same or different and represent a hydrogen atom or a trifluoromethyl group. ]
    X 2 and X 3 are the same or different and represent a hydrogen atom or a trifluoromethyl group, R 11 and R 12 are the same or different and represent a hydrogen atom or a methyl group, R 13 And R 14 represents a hydrogen atom, a methyl group, or a general formula (B)
    Figure JPOXMLDOC01-appb-C000004
    [Wherein Z 1 represents a hydrogen atom, a fluorine atom, a bromine atom, an iodine atom, a cyano group, an amino group, a methylamino group, a dimethylamino group, a hydroxyl group, a methoxy group, a dicyanovinyl group, or — (OCH 2 CH 2 ) in m -F <formula, m represents an integer of 1-10. > Z 2 and Z 3 are the same or different and each represents a hydrogen atom or a trifluoromethyl group, and k represents an integer of 1 to 10. ]
    Wherein n represents an integer of 0 to 10 [where n is 0 represents a case where the dipyrromethene skeleton in the general formula (I) and the benzene ring are directly bonded without a thiophene ring. . ]. ]
    Or a compound obtained by labeling the compound with a labeling substance, or a pharmaceutically acceptable salt of these compounds.
  6.  一般式(I)におけるXが水素原子、フッ素原子、臭素原子、ヨウ素原子、シアノ基、アミノ基、メチルアミノ基、ジメチルアミノ基、ヒドロキシル基、メトキシ基、ジシアノビニル基、又は-(OCHCH-F[式中、mは1~10の整数を表す。] で表される基であり、X及びXが水素原子であり、R11、R12、R13、及びR14は同一又は異なって、水素原子又はメチル基であり、nが1~10の整数である請求項5に記載のコンフォメーション病診断用組成物。 X 1 in the general formula (I) is a hydrogen atom, a fluorine atom, a bromine atom, an iodine atom, a cyano group, an amino group, a methylamino group, a dimethylamino group, a hydroxyl group, a methoxy group, a dicyanovinyl group, or — (OCH 2 CH 2 ) m -F [wherein m represents an integer of 1 to 10. X 2 and X 3 are hydrogen atoms, R 11 , R 12 , R 13 , and R 14 are the same or different and are a hydrogen atom or a methyl group, and n is 1 to The composition for diagnosing conformation disease according to claim 5, which is an integer of 10.
  7.  一般式(I)におけるXが水素原子であり、X及びXがトリフルオロメチル基であり、R11、R12、R13、及びR14は同一又は異なって、水素原子又はメチル基であり、nは1~10の整数である請求項5に記載のコンフォメーション病診断用組成物。 X 1 in the general formula (I) is a hydrogen atom, X 2 and X 3 are trifluoromethyl groups, and R 11 , R 12 , R 13 , and R 14 are the same or different and are each a hydrogen atom or a methyl group The composition for diagnosing conformation disease according to claim 5, wherein n is an integer of 1 to 10.
  8.  一般式(I)におけるXが水素原子、フッ素原子、臭素原子、ヨウ素原子、シアノ基、アミノ基、メチルアミノ基、ジメチルアミノ基、ヒドロキシル基、メトキシ基、ジシアノビニル基、又は-(OCHCH-F[式中、mは1~10の整数を表す。] で表される基であり、X及びXが水素原子であり、R11及びR12は同一又は異なって、水素原子又はメチル基であり、R13及びR14のいずれか一方が一般式(B)で表される基であり、他方が水素原子又はメチル基であり、nが0であり、一般式(B)におけるZ及びZが水素原子である請求項5に記載のコンフォメーション病診断用組成物。 X 1 in the general formula (I) is a hydrogen atom, a fluorine atom, a bromine atom, an iodine atom, a cyano group, an amino group, a methylamino group, a dimethylamino group, a hydroxyl group, a methoxy group, a dicyanovinyl group, or — (OCH 2 CH 2 ) m -F [wherein m represents an integer of 1 to 10. X 2 and X 3 are hydrogen atoms, R 11 and R 12 are the same or different, and are a hydrogen atom or a methyl group, and any one of R 13 and R 14 is generally The group represented by the formula (B), the other is a hydrogen atom or a methyl group, n is 0, and Z 2 and Z 3 in the general formula (B) are hydrogen atoms. Composition for diagnosis of conformational disease.
  9.  一般式(I)におけるXが水素原子、フッ素原子、臭素原子、ヨウ素原子、シアノ基、アミノ基、メチルアミノ基、ジメチルアミノ基、ヒドロキシル基、メトキシ基、ジシアノビニル基、又は-(OCHCH-F[式中、mは1~10の整数を表す。] で表される基であり、X及びXが水素原子であり、R11及びR12は同一又は異なって、水素原子又はメチル基であり、R13及びR14のいずれか一方が一般式(B)で表される基であり、他方が水素原子又はメチル基であり、nが0であり、一般式(B)におけるZが水素原子であり、Z及びZがトリフルオロメチル基である請求項5に記載のコンフォメーション病診断用組成物。 X 1 in the general formula (I) is a hydrogen atom, a fluorine atom, a bromine atom, an iodine atom, a cyano group, an amino group, a methylamino group, a dimethylamino group, a hydroxyl group, a methoxy group, a dicyanovinyl group, or — (OCH 2 CH 2 ) m -F [wherein m represents an integer of 1 to 10. X 2 and X 3 are hydrogen atoms, R 11 and R 12 are the same or different, and are a hydrogen atom or a methyl group, and any one of R 13 and R 14 is generally A group represented by the formula (B), the other is a hydrogen atom or a methyl group, n is 0, Z 1 in the general formula (B) is a hydrogen atom, and Z 2 and Z 3 are trifluoro The composition for diagnosing conformation disease according to claim 5, which is a methyl group.
  10.  一般式(I)におけるXが水素原子、フッ素原子、臭素原子、ヨウ素原子、シアノ基、アミノ基、メチルアミノ基、ジメチルアミノ基、ヒドロキシル基、メトキシ基、ジシアノビニル基、又は-(OCHCH-F[式中、mは1~10の整数を表す。] で表される基であり、X及びXが水素原子であり、R11及びR12は同一又は異なって、水素原子又はメチル基であり、R13及びR14のいずれか一方が一般式(B)で表される基であり、他方が水素原子又はメチル基であり、nが1~10の整数であり、一般式(B)におけるZ及びZが水素原子である請求項5に記載のコンフォメーション病診断用組成物。 X 1 in the general formula (I) is a hydrogen atom, a fluorine atom, a bromine atom, an iodine atom, a cyano group, an amino group, a methylamino group, a dimethylamino group, a hydroxyl group, a methoxy group, a dicyanovinyl group, or — (OCH 2 CH 2 ) m -F [wherein m represents an integer of 1 to 10. X 2 and X 3 are hydrogen atoms, R 11 and R 12 are the same or different, and are a hydrogen atom or a methyl group, and any one of R 13 and R 14 is generally A group represented by the formula (B), the other is a hydrogen atom or a methyl group, n is an integer of 1 to 10, and Z 2 and Z 3 in the general formula (B) are hydrogen atoms. 5. The composition for diagnosing conformation disease according to 5.
  11.  一般式(I)におけるXが水素原子であり、X及びXがトリフルオロメチル基であり、R11及びR12は同一又は異なって、水素原子又はメチル基であり、R13及びR14のいずれか一方が一般式(B)で表される基であり、他方が水素原子又はメチル基であり、nが1~10の整数であり、一般式(B)におけるZが水素原子であり、Z及びZがトリフルオロメチル基である請求項5に記載のコンフォメーション病診断用組成物。 X 1 in the general formula (I) is a hydrogen atom, X 2 and X 3 are trifluoromethyl groups, R 11 and R 12 are the same or different and are a hydrogen atom or a methyl group, R 13 and R 13 14 is a group represented by the general formula (B), the other is a hydrogen atom or a methyl group, n is an integer of 1 to 10, and Z 1 in the general formula (B) is a hydrogen atom The composition for diagnosing conformation disease according to claim 5, wherein Z 2 and Z 3 are trifluoromethyl groups.
  12.  一般式(I)におけるXが一般式(A)で表される基であり、X及びXが水素原子であり、R11、R12、R13、及びR14は同一又は異なって、水素原子又はメチル基であり、nが0であり、一般式(A)におけるY及びYは水素原子である請求項5に記載のコンフォメーション病診断用組成物。 X 1 in the general formula (I) is a group represented by the general formula (A), X 2 and X 3 are hydrogen atoms, and R 11 , R 12 , R 13 , and R 14 are the same or different. The composition for diagnosing conformation disease according to claim 5, wherein n is 0, and Y 2 and Y 3 in the general formula (A) are hydrogen atoms.
  13.  一般式(I)におけるXが一般式(A)で表される基であり、X及びXが水素原子であり、R11、R12、R13、及びR14は同一又は異なって、水素原子又はメチル基であり、nが0であり、一般式(A)におけるYが水素原子であり、Y及びYがトリフルオロメチル基である請求項5に記載のコンフォメーション病診断用組成物。 X 1 in the general formula (I) is a group represented by the general formula (A), X 2 and X 3 are hydrogen atoms, and R 11 , R 12 , R 13 , and R 14 are the same or different. The conformational disease according to claim 5, wherein n is 0, Y 1 in the general formula (A) is a hydrogen atom, and Y 2 and Y 3 are trifluoromethyl groups. Diagnostic composition.
  14.  コンフォメーション病が、アルツハイマー病である請求項1乃至13のいずれか一項に記載のコンフォメーション病診断用組成物。 The composition for diagnosing conformation disease according to any one of claims 1 to 13, wherein the conformation disease is Alzheimer's disease.
PCT/JP2010/056538 2009-04-27 2010-04-12 Composition for diagnosis of conformational disease WO2010125907A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-107457 2009-04-27
JP2009107457 2009-04-27
JP2009222156 2009-09-28
JP2009-222156 2009-09-28

Publications (1)

Publication Number Publication Date
WO2010125907A1 true WO2010125907A1 (en) 2010-11-04

Family

ID=43032060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/056538 WO2010125907A1 (en) 2009-04-27 2010-04-12 Composition for diagnosis of conformational disease

Country Status (1)

Country Link
WO (1) WO2010125907A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013012754A1 (en) * 2011-07-15 2013-01-24 University Of Southern California Boron-based dual imaging probes, compositions and methods for rapid aqueous f-18 labeling, and imaging methods using same
WO2014013205A1 (en) * 2012-07-19 2014-01-23 Centre National De La Recherche Scientifique Boronated thienyldipyrromethene fluorescent compounds and uses thereof
WO2016143699A1 (en) * 2015-03-06 2016-09-15 国立研究開発法人科学技術振興機構 Boron-dipyrrin complex and pharmaceutical product containing same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006020156A2 (en) * 2004-07-15 2006-02-23 The General Hospital Corporation Heterocyclic dye compounds for in vivo imaging and diagnosis of alzheimer’s disease

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006020156A2 (en) * 2004-07-15 2006-02-23 The General Hospital Corporation Heterocyclic dye compounds for in vivo imaging and diagnosis of alzheimer’s disease

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
OJIDA, A. ET AL.: "Fluorescent BODIPY-Based Zn(II) Complex as a Molecular Probe for Selective Detection of Neurofibrillary Tangles in the Brains of Alzheimer's Disease Patients", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 131, no. 18, 15 April 2009 (2009-04-15), pages 6543 - 6548 *
PARHI, A.K. ET AL.: "Synthesis of fluorescent probes based on stilbenes and diphenylacetylenes targeting p-amyloid plaques", TETRAHEDRON LETTERS, vol. 49, no. 21, 2008, pages 3395 - 3399, XP022622249, DOI: doi:10.1016/j.tetlet.2008.03.130 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013012754A1 (en) * 2011-07-15 2013-01-24 University Of Southern California Boron-based dual imaging probes, compositions and methods for rapid aqueous f-18 labeling, and imaging methods using same
US9987380B2 (en) 2011-07-15 2018-06-05 University Of Southern California Boron-based dual imaging probes, compositions and methods for rapid aqueous F-18 labeling, and imaging methods using same
EP3418283A1 (en) * 2012-07-19 2018-12-26 Centre National De La Recherche Scientifique Boronated thienyldipyrromethene fluorescent compounds and uses thereof
WO2014013205A1 (en) * 2012-07-19 2014-01-23 Centre National De La Recherche Scientifique Boronated thienyldipyrromethene fluorescent compounds and uses thereof
FR2993565A1 (en) * 2012-07-19 2014-01-24 Centre Nat Rech Scient FLUORESCENT COMPOUNDS OF THE TYPE THIENYLDIPYRROMETHENE BOUNDES AND USES THEREOF.
CN104684918A (en) * 2012-07-19 2015-06-03 科学研究国家中心 Boronated thienyldipyrromethene fluorescent compounds and uses thereof
US20150171328A1 (en) * 2012-07-19 2015-06-18 Centre National De La Recherche Scientifique Fluorescent compounds of the boron thienyldipyrromethene type, and their use
JP2015524800A (en) * 2012-07-19 2015-08-27 サントレ ナティオナル ド ラ ルシェルシェ シアンティフィク Boron thienyldipyrromethene-type fluorescent compounds and their use
US10566551B2 (en) 2012-07-19 2020-02-18 Centre National De La Recherche Scientifique Fluorescent compounds of the boron thienyldipyrromethene type, and their use
WO2016143699A1 (en) * 2015-03-06 2016-09-15 国立研究開発法人科学技術振興機構 Boron-dipyrrin complex and pharmaceutical product containing same
EP3266765A4 (en) * 2015-03-06 2018-09-05 Japan Science and Technology Agency Boron-dipyrrin complex and pharmaceutical product containing same
US10188671B2 (en) 2015-03-06 2019-01-29 Japan Science And Technology Agency Boron-dipyrrin complex and medicament containing the same
JPWO2016143699A1 (en) * 2015-03-06 2017-12-28 国立研究開発法人科学技術振興機構 Dipyrine boron complex and pharmaceutical containing the same

Similar Documents

Publication Publication Date Title
Sato et al. Fluoro-substituted and 13C-labeled styrylbenzene derivatives for detecting brain amyloid plaques
Ono et al. Push–pull benzothiazole derivatives as probes for detecting β-amyloid plaques in Alzheimer’s brains
JP6140090B2 (en) Compounds and compositions for detection and treatment of Alzheimer&#39;s disease and related diseases
EP2767532B1 (en) Novel compound for imaging tau protein accumulated in the brain
Ono et al. Novel chalcones as probes for in vivo imaging of β-amyloid plaques in Alzheimer’s brains
Cui et al. Radioiodinated benzimidazole derivatives as single photon emission computed tomography probes for imaging of β-amyloid plaques in Alzheimer's disease
JP4831421B2 (en) Compositions and methods for non-invasive imaging of soluble β-amyloid
Cui et al. Synthesis and evaluation of novel benzothiazole derivatives based on the bithiophene structure as potential radiotracers for β-amyloid plaques in Alzheimer’s disease
Ono et al. Development of novel β-amyloid probes based on 3, 5-diphenyl-1, 2, 4-oxadiazole
EP2023919A2 (en) Compounds and amyloid probes thereof for therapeutic and imaging uses
BRPI0707283A2 (en) compound, use of a compound, pharmaceutical composition, in vivo method for measuring amyloid deposits in a patient, and method for preventing and / or treating a disease
WO2011045415A2 (en) New imaging agents and their use for the diagnostic in vivo of neurodegenerative diseases, notably alzheimer&#39;s disease and derivative diseases
JPWO2005016888A1 (en) Probes for amyloid-accumulating diseases, amyloid stains, therapeutic and preventive agents for amyloid-accumulate diseases, and diagnostic probes and stains for neurofibrillary tangles
BRPI0808503A2 (en) COMPOUND AND USE OF A COMPOUND
BRPI0806621A2 (en) compound, use of a compound, pharmaceutical composition, and in vivo method to measure amyloid deposits in an individual
JPWO2009054496A1 (en) Novel amyloid affinity compound
Fuchigami et al. Synthesis and evaluation of ethyleneoxylated and allyloxylated chalcone derivatives for imaging of amyloid β plaques by SPECT
CA2764366C (en) Imaging of myelin basic protein
JPWO2008065785A1 (en) Novel amyloid affinity compound
CA2500358A1 (en) Probes for diseases in which amyloid accumulates, agents for staining amyloid, drugs for treatment and prophylaxis of diseases with accumulated amyloid, and probes for diagnosis of neurofibrillary tangles and agents for staining neurofibrillary tangles
Watanabe et al. Synthesis and characterization of novel phenylindoles as potential probes for imaging of β-amyloid plaques in the brain
WO2010125907A1 (en) Composition for diagnosis of conformational disease
JPWO2009004914A1 (en) PET probe having alkoxy groups substituted with fluorine and hydroxy groups
JPWO2010101298A1 (en) Fluorescent MRI probe
JPWO2008068974A1 (en) Diagnostic composition containing aurone derivatives

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10769606

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10769606

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP