WO2010125852A1 - Semiconductor device - Google Patents
Semiconductor device Download PDFInfo
- Publication number
- WO2010125852A1 WO2010125852A1 PCT/JP2010/053397 JP2010053397W WO2010125852A1 WO 2010125852 A1 WO2010125852 A1 WO 2010125852A1 JP 2010053397 W JP2010053397 W JP 2010053397W WO 2010125852 A1 WO2010125852 A1 WO 2010125852A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- memory
- semiconductor device
- address
- memory cell
- data
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F12/00—Accessing, addressing or allocating within memory systems or architectures
- G06F12/02—Addressing or allocation; Relocation
- G06F12/0223—User address space allocation, e.g. contiguous or non contiguous base addressing
- G06F12/023—Free address space management
- G06F12/0238—Memory management in non-volatile memory, e.g. resistive RAM or ferroelectric memory
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/02—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
- G11C11/16—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
- G11C11/165—Auxiliary circuits
- G11C11/1659—Cell access
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/02—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
- G11C11/16—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
- G11C11/165—Auxiliary circuits
- G11C11/1675—Writing or programming circuits or methods
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
- G11C13/0002—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
- G11C13/0004—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising amorphous/crystalline phase transition cells
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C5/00—Details of stores covered by group G11C11/00
- G11C5/02—Disposition of storage elements, e.g. in the form of a matrix array
- G11C5/025—Geometric lay-out considerations of storage- and peripheral-blocks in a semiconductor storage device
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C5/00—Details of stores covered by group G11C11/00
- G11C5/06—Arrangements for interconnecting storage elements electrically, e.g. by wiring
- G11C5/063—Voltage and signal distribution in integrated semi-conductor memory access lines, e.g. word-line, bit-line, cross-over resistance, propagation delay
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C7/00—Arrangements for writing information into, or reading information out from, a digital store
- G11C7/22—Read-write [R-W] timing or clocking circuits; Read-write [R-W] control signal generators or management
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2212/00—Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
- G06F2212/10—Providing a specific technical effect
- G06F2212/1028—Power efficiency
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2212/00—Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
- G06F2212/10—Providing a specific technical effect
- G06F2212/1052—Security improvement
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2212/00—Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
- G06F2212/72—Details relating to flash memory management
- G06F2212/7201—Logical to physical mapping or translation of blocks or pages
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2212/00—Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
- G06F2212/72—Details relating to flash memory management
- G06F2212/7208—Multiple device management, e.g. distributing data over multiple flash devices
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C2207/00—Indexing scheme relating to arrangements for writing information into, or reading information out from, a digital store
- G11C2207/22—Control and timing of internal memory operations
- G11C2207/2227—Standby or low power modes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D10/00—Energy efficient computing, e.g. low power processors, power management or thermal management
Definitions
- the present invention relates to a semiconductor device having a resistance change type memory cell, and particularly to a technique for realizing a low power consumption and secure semiconductor device.
- Dynamic type random access memory is being miniaturized in order to achieve high integration, but it is difficult to manufacture a capacitor that secures a sufficient signal amount.
- a resistance change type memory in which a memory cell is configured using a resistance change element that can operate even if it is finely formed instead of a capacitor, and the magnitude of the resistance value corresponds to logic information 1 and 0 Has been devised.
- a phase change memory a Resistive RAM (ReRAM), a solid electrolyte memory, and a magnetic RAM (MRAM) have been devised.
- ReRAM Resistive RAM
- MRAM magnetic RAM
- Non-Patent Document 1 describes a phase change memory
- Non-Patent Document 2 describes a ReRAM
- Non-Patent Document 3 describes a solid electrolyte memory
- Non-Patent Document 4 describes an MRAM.
- a preferable point common to all the resistance change elements is that the stored logic information is non-volatile so as to be retained for 10 years or more unless rewriting operation is performed. Therefore, it is expected that the resistance change type memory can reduce the power consumption in the memory cell array during standby as compared with a DRAM that requires a refresh operation to hold information.
- DRAM is used not only for PCs and servers, but also for mobile devices and digital home appliances. It keeps power consumption low during both operation and standby, extending the driving time in battery-powered devices and the global environment. It is also desired for conservation.
- the phase change memory has a structure in which a chalcogenide film is sandwiched between the upper electrode UL and the lower electrode LL.
- the chalcogenide film is controlled to be in an amorphous state or a crystalline state by heat transmitted from the LL. Heat generation efficiency can be improved by reducing the area of LL.
- the chalcogenide film immediately above LL is in an amorphous state, the resistance between UL and LL is large, and when in a crystalline state, the resistance between UL and LL is small.
- FIG. 2B shows the current-voltage characteristics of the phase change memory, with the horizontal axis representing the potential difference V1 between UL and LL and the vertical axis representing the current I1 flowing from LL to UL.
- the direction of V1 is the same between the case of rewriting from the low resistance state (ON state) to the high resistance state (OFF state) and the case of rewriting from the OFF state to the ON state, and the sizes are different. High power when rewriting from ON to OFF.
- FIG. 3A shows a structure example of a solid electrolyte memory
- FIG. 3B shows a ReRAM
- FIG. 4 shows an example of a structure of an MRAM.
- FIG. 4B shows a typical current-voltage characteristic of each memory shown in FIGS.
- the horizontal axis of the graph is the current I1 between UL and LL
- the vertical axis is the electrical resistance R1 between UL and LL.
- the direction of current is different between when rewriting from the OFF state to the ON state and when rewriting from the ON state to the OFF state. For example, when a current is passed from LL to UL, it is turned on, and when a current is passed from LL to UL, it is turned off.
- the solid electrolyte memory has a structure in which a solid electrolyte membrane EL that is a compound of oxygen (O), sulfur (S), selenium (Se), and tellurium (Te) is sandwiched between UL and LL. Have. By applying an electric field from the UL to the LL direction to the EL, a metal conductive path is formed and turned on. On the other hand, when the electric field in the LL to UL direction is applied, the conductive path disappears and is turned off. Information is recorded using the magnitude of the resistance value between UL and LL.
- the solid electrolyte memory also has a second form in which EL has a multilayer structure. The above structure has better controllability of metal ions than the structure of FIG.
- the solid electrolyte memory operates in a small area at the atomic level, and has a feature of excellent scaling. High power when rewriting from ON to OFF.
- the ReRAM has a structure in which, for example, a perovskite type manganese oxide is sandwiched between UL and LL.
- a perovskite type manganese oxide is sandwiched between UL and LL.
- the fact that the resistance value changes corresponding to the change in the state of the defect level in the material is used for recording.
- the state is OFF, and when the electrons are captured, the state is ON. High rewriting power.
- the MRAM is a memory having a structure in which a magnetic film, a tunnel film, and a magnetic film are sandwiched between UL and LL, and the magnitude of the tunnel current flowing between UL and LL is used for recording.
- the magnetization directions of the two magnetic films sandwiching the tunnel film are parallel, they are in the ON state, and when they are antiparallel, they are in the OFF state.
- a magnetic field is generated near the MRAM element to reverse the magnetization in the magnetic film. Since the current required to generate the magnetic field is large, the rewriting power is large.
- the resistance change type memory is characterized in that the standby power is small, but in order to take advantage of this, it is desirable that the leakage power of the unused circuit portion is as small as possible. Furthermore, as described above, since the resistance change type memory has a large rewriting power, it is preferable to reduce the leakage power of the circuit portion not involved in the rewriting as much as possible in order to reduce the peak power during operation of the entire memory chip.
- a resistance change type memory instead of the DRAM from the viewpoint of power consumption reduction.
- security information remains on the memory even when the power is turned off, there is a risk of being stolen by a third party.
- Sex is conceivable.
- MMU memory management unit
- a method of overwriting meaningless information is effective.
- the semiconductor device has a mechanism for converting a logical address and a physical address in a chip or on a memory controller, and performs defragmentation in the chip by the above mechanism, thereby causing a specific area (for example, a memory on the chip). An unused area is created in the entire bank), and power supply to the unused area is stopped. Further, each bit line or the like is provided with a batch erase driver.
- the effects obtained by the representative embodiments of the invention disclosed in the present application will be briefly described.
- the memory power consumption during operation and standby can be reduced.
- data can be erased at a time with low power consumption, and the load on the system can be reduced and a secure memory can be realized.
- FIG. 1 is a block diagram showing a configuration example of a main part of a semiconductor device according to a first embodiment of the present invention.
- (A), (b) is explanatory drawing which shows the structural example and operation example of a well-known resistance change type memory element.
- (A), (b) is explanatory drawing which shows the structural example and operation example of a well-known resistance change type memory element.
- (A), (b) is explanatory drawing which shows the structural example and operation example of a well-known resistance change type memory element.
- (A) is the schematic diagram which showed the example of the state of each memory bank in the memory part of FIG. 1,
- (b) is explanatory drawing which showed the effect corresponding to (a).
- FIG. 2 is a diagram illustrating a configuration example of an address conversion table in the memory unit of FIG. 1.
- (A)-(c) is explanatory drawing which shows an example of a respectively different data movement method, when defragmenting using the memory part of FIG. (A)
- (b) is a figure which shows the example of a circuit structure of the principal part of the memory cell array in the memory part of FIG. 1, and the operation example at the time of batch erase operation.
- (A) to (c) are schematic diagrams illustrating layout configuration examples of a semiconductor chip including the memory unit of FIG. FIG.
- FIG. 11 is a schematic diagram illustrating a layout configuration example of a memory bank in FIG. 10. It is a block diagram which shows the example of a structure of a part of control circuit in FIG. It is a circuit diagram which shows the structural example of the bank control circuit in FIG. (A)-(c) is a block diagram which shows the structural example of the memory cell array in FIG.
- FIG. 11 is a block diagram illustrating a more detailed configuration example of a memory bank and an input / output circuit in FIG. 10.
- FIG. 16 is a circuit diagram showing a detailed configuration example of a sub memory cell array in FIG. 15.
- FIG. 16 is a circuit diagram illustrating a configuration example of a sense amplifier in FIG. 15.
- FIG. 16 is a circuit diagram illustrating a configuration example of a sub word driver row in FIG. 15.
- FIG. 16 is a circuit diagram illustrating a configuration example of a row control circuit in FIG. 15.
- FIG. 16 is a circuit diagram illustrating a configuration example of an array control circuit in FIG. 15.
- FIG. 23 is a waveform diagram showing an operation example when information stored in a memory cell is read using the circuits shown in FIGS. 19 to 22;
- FIG. 23 is a waveform diagram showing an operation example when information is written in a memory cell using the circuits shown in FIGS.
- FIG. 18 is a waveform diagram showing a first control sequence when performing batch erasure on the sub memory cell array of FIG. 17. It is a wave form diagram which shows the 2nd control sequence different from FIG.
- FIG. 18 is a plan view showing a layout configuration example of main parts when the memory cell of FIG. 18A or FIG. 18C is applied to the sub memory cell array of FIG. 17;
- (A) to (c) are cross-sectional views showing examples of different structures between A and A ′ in FIG.
- the semiconductor device by Embodiment 2 of this invention it is a block diagram which shows the structural example of the principal part.
- the constituent elements are not necessarily indispensable unless otherwise specified and apparently essential in principle. Needless to say.
- the shapes, positional relationships, etc. of the components, etc. when referring to the shapes, positional relationships, etc. of the components, etc., the shapes are substantially the same unless otherwise specified, or otherwise apparent in principle. And the like are included. The same applies to the above numerical values and ranges.
- each functional block of the embodiment are not particularly limited, but are formed on a semiconductor substrate such as single crystal silicon by a known integrated circuit technology such as a CMOS (complementary MOS transistor).
- CMOS complementary MOS transistor
- MOS Metal Oxide Semiconductor
- MISFET Metal Insulator Semiconductor Field Effect Transistor
- PMOS transistor P-channel MOS transistor
- NMOS transistor N-channel MOS transistor
- FIG. 1 is a block diagram showing a configuration example of a main part of a semiconductor device according to the first embodiment of the present invention.
- FIG. 1 shows a memory unit MB included in the semiconductor device, and this memory unit MB is mainly provided with an address conversion mechanism.
- the addresses A0 to An are input to the row address buffer XAB and the column address buffer YAB.
- the address conversion circuit ATC receives addresses from XAB and YAB, and acquires real addresses from the address conversion table ATT using these as logical addresses. The ATC sends this real address to the row decode circuit XDEC and the column decode circuit YDEC.
- a memory cell array MCA in a predetermined memory bank (for example, BANK0) is accessed, and data DQ0 to DQn are exchanged with the outside through the input / output buffer I / OB.
- the MCA includes a plurality of resistance change type memory elements.
- the ATC grasps the usage status of each BANK, and controls the supply of power to the unused BANK via the bank control circuit BCC.
- the BCC is configured to be able to control the presence or absence of power supply independently for each BANK.
- FIG. 5A is a schematic diagram showing an example of the state of each memory bank in the memory unit MB of FIG. 1, and FIG. 5B is an explanatory diagram showing an effect corresponding to FIG. 5A. is there.
- the memory unit MB shown in FIG. 5A includes 8BANK as an example, and can set a normal mode in which all BANKs are turned on and a low power mode in which power is partially turned on. Yes.
- the power supply of 4BANK is turned off as an example of the low power mode, but the number can be increased or decreased depending on the BANK power supply control.
- the memory unit MB stops the power supply to the amplifier circuit, the decode circuit, the driver circuit, and the like via the bank control circuit BCC with a switch. As shown in FIG. 5B, in the low power mode, the leakage power can be reduced as compared with the normal mode, and the power consumption of the entire memory unit can be reduced.
- FIGS. 6A to 6C are explanatory diagrams showing an operation example of the defragmentation function provided in the memory unit MB of FIG.
- FIG. 6A shows an operation of erasing a part of the address space and automatically rewriting data existing at the end of the address space to the erased address.
- the load on the external system side can be reduced by providing the automatic defragmentation function in the address conversion circuit ATC in the memory unit MB, for example, instead of using a command from the external system.
- the real address where the data actually exists on the memory cell array MCA changes, the logical address-real address (physical address) conversion is performed by the address conversion table ATT, and the real address information indicated by the logical address is rewritten.
- the location of the data as seen from the external system does not change.
- Another feature is that defragmentation is performed so that the real address space is used locally and the location of data is biased.
- an unused memory bank in this case, BANKn
- the power can be cut off or erased at once. As a result, lower power consumption and improved security of the memory unit MB are expected.
- a conversion method between a logical address and a real address (physical address) can be applied to this embodiment, including a new method that will appear in the future. Since the resistance change type memory element has no limit on the number of rewrites, it is not destroyed even if rewrite concentrates on the same element. Similarly, there is a flash memory as a memory that performs logical address-physical address conversion. Since the memory has a limited number of rewrites, the address conversion is performed in order to average the number of cell rewrites, which is opposite to the purpose of address conversion (that is, localization) performed in this embodiment. .
- FIG. 6B is a diagram showing that the defragmentation operation is controlled from the external system side.
- FIG. 6C shows a case where defragmentation is performed in order to move data to the batch erase area or the power shutdown area.
- the real address space is managed by being divided into a plurality of batch erase regions (memory banks in this example).
- Each batch erase area is composed of a plurality (four in this example) of block areas (for example, pages).
- security information and system log information scattered in the real address space are centrally moved, and these pieces of information are targeted for batch erase as needed.
- a specific management method for example, a method of setting a flag for relevant information and identifying and managing the flag at the time of address conversion can be considered.
- the address conversion circuit ATC or an external system monitors access to each data (each block area), and the memory that performs power shutdown for data that has been determined to have little access Move to the bank. Since the data is not frequently accessed, the power supply to the memory bank in which the data is placed is not shut down, so that the latency is not lowered. Further, since the resistance change type memory is non-volatile, there is no fear that data will be lost even if the power source of the memory bank is cut off. When access is made, the memory bank is turned on so that it can be read and written.
- FIG. 7 is a diagram showing a configuration example of the address conversion table ATT in the memory unit MB of FIG.
- the address translation table ATT is referenced and updated by the address translation circuit ATC or an external system (such as OS), and has at least a logical address entry, a physical address (real address) entry, and a data flag entry.
- the logical address entry and the physical address entry hold the relationship between the logical address and the physical address for each block area (for example, page).
- the data flag entry becomes, for example, “1” when data is written to the corresponding physical address, and becomes “0” when nothing is written.
- the address conversion table ATT has, for each block area, an access protection entry indicating that it is a protection area or security information, and an access counter entry for managing access frequency. Also good.
- the data flag entry By referring to the data flag entry, it is possible to detect a physical address that is not used, and it is possible to perform defragmentation using an area having a flag of “0” as a data movement destination. At this time, the data flag entry corresponding to the physical address of the data movement source is returned to ‘0’.
- data flag entries corresponding to successive physical address spaces are continuously set to “1” (that is, used data is localized). Then, as an opposite effect, an area where data flag entries corresponding to consecutive physical address spaces respectively become “0” is generated (that is, unused data is localized).
- the power supply is shut down by localizing the used data (unused data). Can increase the possible area. Further, for example, by performing batch erasure on the area where the power can be cut off before the power is cut off, the data that is the transfer source is actually erased, leading to an improvement in security.
- the data in which the entry is made is It is sufficient to erase the area at once. Furthermore, when defragmenting based on the access frequency, it is only necessary to localize data with a low access frequency by referring to the access counter entry and to shut off the power supply to that area.
- FIGS. 8A to 8C are explanatory diagrams showing examples of different data movement methods when defragmenting is performed using the memory unit MB of FIG.
- FIG. 8A shows the data flow when defragmenting between different memory banks, such as from the memory bank BANKn to BANKm.
- Each BANK includes a memory cell array MCA, a sense amplifier SA, and a main amplifier MA.
- Data read from the BANKn MCA is amplified and transferred in the order of SA and MA, and is latched by the data buffer DB.
- the latch information is written to the MCA via the BANKm MA and SA.
- Data transfer may be performed sequentially according to the order of addresses, or may be performed simultaneously by a plurality of bits using a plurality of SAs, MAs, and DBs. When it is performed sequentially, it takes time, but the peak power can be kept low.
- a plurality of bits simultaneously as an example, if the defragment unit is a word line, a plurality of SAs and MAs can be used at the same time, and the time required for defragmentation can be shortened.
- FIG. 8B shows the data flow when defragmenting within the same memory bank.
- Information of MCAn is read by SAn and latched in MA. Data is written from SAm to MCAm using the latch information.
- FIG. 8C shows the data flow when defragmenting within the same memory cell array MCA. Data in the memory cell MCn is once latched in SA, and the latch information is written in MCm.
- FIGS. 9A and 9B are diagrams showing a circuit configuration example of a main part of the memory cell array MCA in the memory unit MB of FIG. 1 and an operation example at the time of batch erase operation.
- FIG. 9A shows the electrical characteristics of the resistance change memory element.
- the horizontal axis represents current
- the vertical axis represents resistance.
- the batch erase in the resistance change type memory element may be performed by writing the OFF state to all the memory cells. Since the resistance value is high in the OFF state, the current flowing at the end of rewriting can be reduced. In addition, batch erasing can be performed with smaller power consumption.
- an erasing operation can be executed for a plurality of memory cells at a time within the range of the current driving capability of the driver, and a high-speed batch erasing operation can be performed.
- the memory cell array MCA includes a plurality of word lines WL arranged in parallel to each other, a plurality of bit lines BL and source lines SL extending in a direction crossing the word lines WL, and a plurality of memory cells arranged at intersections thereof. Consists of MC.
- the memory cell MC includes a resistance change type memory element and a memory cell transistor having a drain connected to one end thereof and a gate connected to a corresponding WL.
- BL and SL are arranged in parallel, BL is connected to the other end of the resistance change type memory element, and SL is connected to the source of the memory cell transistor.
- the memory cell array MCA includes a bit line batch erase driver BMED at one end of each BL, and a source line batch erase driver SMED at one end of each SL.
- Each BMED is configured by, for example, one PMOS transistor having a source connected to the power supply voltage VDD and a drain connected to BL, and is turned on / off in accordance with a bit line batch erase signal BMES.
- Each SMED is configured by, for example, one NMOS transistor having a source connected to the ground voltage VSS and a drain connected to SL, and the ON / OFF of the SMED is controlled according to the source line batch erase signal SMES.
- BMES and SMES are driven ON, and BMED and SMED are activated. While the BMES and SMES are ON, the plurality of WLs are activated in order.
- the rewrite current can be reduced, so that a plurality of WLs can be activated at a time.
- the number of WLs that can be activated at one time is determined by the amount of current that can flow through BL and SL. However, caution is required because the peak power increases when too many WLs are activated. If the batch erasing operation is performed by the above method, the number of times of charging / discharging BMES and SMES can be reduced, and the power consumption can be reduced.
- the batch erasure may be performed autonomously at a constant cycle by providing a timer in the memory unit MB, or may be performed at the timing of data movement, or when managed by the OS.
- the OS may be performed in cooperation with the system at the timing of page replacement as an example.
- FIGS. 10A to 10C are schematic views showing layout configuration examples of the semiconductor chip provided with the memory unit MB of FIG. 1, respectively.
- the semiconductor chip CHIP shown in FIGS. 10A to 10C is roughly divided into, for example, a control circuit CNTL, an input / output circuit DQC, an address conversion table ATT, and a memory bank BANK.
- the control circuit CNTL receives a clock, an address, and a control signal from outside the CHIP, and determines the operation mode of the CHIP, predecodes the address, and the like.
- the input / output circuit DQC includes an input / output buffer and the like, and receives write data from the outside of the CHIP and outputs read data to the outside of the CHIP.
- one BANK is assigned as ATT.
- ATT a method of assigning ATTs
- FIG. 10B a method of assigning a part of plural BANKs as shown in FIG.
- the method of address decoding and the like is simplified in the method of FIG. 10A.
- the ATT area can be reduced, and in order to increase the actually usable chip capacity, FIG.
- the assignment method of 10 (b) or FIG. 10 (c) is preferable.
- a part of BANK is ATT, it is preferable to provide ATT near the CNTL in order to shorten the access time.
- FIG. 11 is a schematic diagram showing a layout configuration example of the memory bank BANK in FIG.
- a plurality of memory cell arrays MCA are arranged in an array, and a sub word driver column SWDA, a sense amplifier column SAA, and a row control circuit XP are arranged around each MCA.
- a column decode circuit YDEC, an array control circuit ACC, and a main amplifier row MAA are arranged in parallel with the sense amplifier row SAA, and a row decode circuit XDEC is arranged in parallel with the sub word driver row SWDA.
- a bank control circuit BCC is arranged at the intersection of MAA and XDEC.
- FIG. 12 is a block diagram showing a configuration example of a part of the control circuit CNTL in FIG.
- the voltage generation circuit VG generates, for example, a memory cell write voltage VBH, a peripheral circuit power supply voltage VDD, a ground voltage VSS, a word line boost voltage VPP, a negative voltage VKK, and a read driver control voltage SAPG.
- the timing control signal generation circuit TCG includes a column selection enable signal YSE, a sense amplifier enable source signal SAE0, a read enable signal RE, a peripheral circuit power source control source signal PSSb0, a write enable signal WE, a word line enable source signal WLE0, and a batch erase signal MEST. Is generated.
- An address (logical address) from the outside of the memory is input to the address conversion circuit ATC in CNTL.
- the ATC refers to the address conversion table ATT and outputs a real address (physical address). Further, when PSSb0 is 'L', the chip power shut-off mechanism does not work.
- FIG. 13 is a circuit diagram showing a configuration example of the bank control circuit BCC in FIG. BCC is a circuit that controls power supply to a driver circuit and an amplifier circuit included in the memory bank BANK.
- the bank peripheral circuit power supply voltage VDDb, the bank memory cell write voltage VBHb, and the bank word line boost voltage VPPb are supplied from VDD, VBH, and VPP via the power switch PSW, respectively.
- PSW is composed of a PMOS transistor, and its gate is controlled by the AND logic of the peripheral circuit power source control source signal PSSb0 and the mat selection inversion signal MSB.
- MSB is a signal that becomes ‘L’ when the row address of the corresponding memory bank is decoded.
- the memory cell array selection signal MCAS becomes ‘H’ when the row address of the corresponding memory cell array MCA is decoded, and the peripheral circuit power supply control signal PSSb is generated by the inverted signal.
- the power source of the memory bank is cut off.
- the memory bank to which the unused data is allocated can maintain the power-off state, and the power consumption can be reduced.
- the PSSb is used when power is shut off in units of the memory cell array MCA in the corresponding memory bank itself although power is supplied to the corresponding memory bank itself.
- FIGS. 14A to 14C are block diagrams showing a configuration example of the memory cell array MCA in FIG.
- a local bit line selection switch row LBLSA is arranged beside the sub memory cell array SMCA, and the local source line selection switch row LSLSA is placed on the opposite side across the SMCA so as to face LBLSA. Is placed.
- the bit lines and source lines can be hierarchized, and the cell occupancy of the chip can be increased.
- the SMCA is divided into two parts, LBLSA and LSLSA are arranged on one side of each SMCA and the other side facing each other, and the LSLSA of the two SMCAs are arranged adjacent to each other. ing. Note that LBLSA and LSLSA in FIG. 14B may be interchanged so that two LBLSAs are adjacent to each other.
- FIG. 14C is a diagram in which the configuration example shown in FIG. 14B is repeated a plurality of times.
- FIG. 15 is a block diagram showing a more detailed configuration example of the memory bank BANK and the input / output circuit DQC in FIG.
- the DQC includes, for example, a data buffer DB and a verify control circuit VCTL that controls data movement in BANK units as shown in FIG.
- BANK includes a sub memory cell array SMCA, a local bit line selection switch column LBLSA, a local source line selection switch column LSLSA, a main amplifier column MAA, a sense amplifier column SAA, a row control circuit XP, and a sub word driver column SWDA.
- SMCA, LBLSA, and LSLSA have a configuration corresponding to FIG.
- the main amplifier row MAA includes a plurality of main amplifiers MA, and MA and VCTL are connected by a global input / output line GIO.
- the row control circuit XP includes a main input / output gate RGC, and MA and RGC are connected by a main input / output line MIO.
- the sense amplifier array SAA includes a plurality of sense amplifiers SA, and SA and RGC are connected by a local input / output line LIO.
- the SA has a structure shared by adjacent memory cell arrays MCA adjacent to each other. With the above structure, the area of the SAA can be reduced.
- LBLSA includes a plurality of local bit line selection switches LBLS, and SA and LBLS are connected by a global bit line GBL.
- the LSLSA arranged opposite to the LBLSA across the SMCA includes a plurality of local source line selection switches LSLS, and the LSLS is connected to the same SA as the paired LBLS by the global source line GSL.
- the SMCA extends in a direction intersecting with a plurality of word lines WL arranged in parallel with each other, a plurality of local bit lines LBL and local source lines LSL arranged in parallel with each other, and each WL and each LBL (and LSL) includes a plurality of memory cells MC arranged at intersections with each other, a bit line batch erase driver BMED connected to one end of each LBL, and a source line batch erase driver SMED connected to one end of each LSL. Is done.
- Each WL is driven by each sub word driver SWD included in the SWDA.
- Each LBL is connected to the SA via the corresponding LBLS and can be driven by the corresponding BMED.
- Each LSL is connected to the SA via the corresponding LSLS and can be driven by the corresponding SMED.
- XP includes a batch erase driver drive circuit MESD.
- the MESD collectively drives a plurality of BMDED and SMED included in the corresponding SMCA by a bit line batch erase signal BMES and a source line batch erase signal SMES extending in the same direction as WL.
- each SWD included in the SWDA is shared by SMCA adjacent vertically. With the above structure, the area of the SWDA can be reduced, and the WL having two SMCA lengths is driven from the center, so that the WL can be driven at high speed.
- 16A and 16B are circuit diagrams showing detailed configuration examples of the local bit line selection switch row LBLSA and the local source line selection switch row LSLSA in FIG.
- LBLSA shown in FIG. 16A
- a predetermined bit line selection signal BLS is selected via the column decode circuit YDEC
- a predetermined switch in the corresponding local bit line selection switch LBLS is selected
- the connected local bit line LBL is connected to the global bit line GBL.
- the power supply voltage accompanying the control of this switch is supplied via the power supply switch PSW, and on / off of the PMOS transistor constituting the PSW is controlled by the peripheral circuit power supply control signal PSSb described in FIG.
- one GBL is assigned to eight LBLs.
- the number is not limited to eight, but various such as four, two, and sixteen. Examples are possible.
- FIG. 17 is a circuit diagram showing a detailed configuration example of the sub memory cell array SMCA in FIG.
- the sub memory cell array SMCA is a memory cell arranged at a desired intersection of m word lines WL, n local bit lines LBL, n local source lines LSL, WL and LBL (and LSL).
- bit line batch erase signal BMED arranged at a desired intersection of bit line batch erase signals BMES and LBL
- source line batch erase driver SMED arranged at a desired intersection of source line batch erase signals SMES and LSL Composed.
- Each MC is composed of a memory cell transistor composed of an NMOS transistor and a resistance change type memory element having one end connected to its drain. The other end of the memory element is connected to the corresponding LBL, and the source of the memory cell transistor is connected to the corresponding LSL.
- the memory element has electrical characteristics as shown in FIG. 2 (b) and FIG. 4 (b).
- the arrow shown in the memory element indicates the direction of the current that flows to change the memory cell to the logic value “1” state.
- a current is passed from LBL to LSL, and the potential difference between LBL and LSL exceeds the low resistance (ON) threshold voltage.
- a current is passed from LBL to LSL, and it is turned OFF when the potential difference between LBL and LSL exceeds the high resistance (OFF) threshold voltage.
- the resistance change type memory element having the electrical characteristics as shown in FIG.
- FIGS. 18A to 18D are circuit diagrams showing various configuration examples of the memory cell MC in FIG.
- the gate of the memory cell transistor is G
- the source is S
- the drain is D.
- the gate G is connected to the WL
- the drain D is connected to the LBL
- the source S is connected to the resistance change type memory element
- the memory element is arranged so that the resistance is reduced when a current flows from the LBL to the LSL.
- the gate G is WLm
- the source S is LSL
- the drain D is connected to the resistance change memory element
- the memory element is arranged so that the resistance is reduced when a current flows from LBL to LSL.
- the gate G is connected to the WL, the source S is connected to the resistance change memory element, the drain D is connected to the LBL, and the memory element is arranged so as to reduce the resistance when a current is passed from the LSL to the LBL.
- the gate G is WLm, the source S is LSL, the drain D is connected to the resistance change type memory element, and the memory element is arranged so that the resistance is reduced when a current flows from LSL to LBL. .
- FIG. 19 is a circuit diagram showing a configuration example of the sense amplifier SA in FIG.
- the sense amplifier SA shown in FIG. 19 includes a read unit RAMP, a write unit WAMP (U / L), and a local input / output line switch IOG.
- RAMP and IOG are shared by the write unit WAMPU that drives the global bit line GBLU above the sense amplifier and the write unit WAMPL that drives the global bit line GBLL below the sense amplifier.
- the RAMP is shared by the upper and lower memory cell arrays, which is useful for reducing the area of the sense amplifier circuit.
- WAMP and RAMP are connected by an active high sense amplifier out signal line SAOt and a global bit line GBL.
- IOG and RAMP are connected by SAOt and SAOb.
- IOG and WAMP are connected by SAOt.
- the read unit RAMP includes, for example, a read switch RSW (U / L), two read drivers RD, a cross couple CC, a precharge circuit PCC, and a read reference circuit RRC.
- the RRC is composed of, for example, two MOS transistors and a reference load REF, and is controlled by a read enable signal RET and a word line enable signal WLE.
- RSWU is controlled by an upper memory cell read enable line RETU.
- RSWL is controlled by a lower memory cell read enable line RETL.
- CC is controlled by a sense amplifier enable signal SAE.
- RD is controlled by a read current control line SAPG.
- PCC is controlled by a sense amplifier equalize signal SAEQ.
- PCC is a precharge circuit for charging SAOt and SAOb to VBH during standby, and is controlled by SAEQ.
- the sense amplifier equalize signal SAEQ changes from low to high and precharge ends.
- a read current is passed through the memory cell.
- the read current is determined by a PMOS load (RD) whose gate potential is controlled by the power supply voltages VDD and SAPG.
- RETU When reading memory cells above SA, RETU is selected, and when reading memory cells below SA, RETL is selected.
- the read current flows from the power supply VDD via the load PMOS, through the sense node SN, and to the global bit line selected by RETU or RETL.
- the reference current flows from VDD through the load PMOS, through the reference sense node SNREF, and through the reference load REF simulating a current path to the memory cell to the ground voltage VSS.
- the resistance value of the memory cell to be read is high, that is, when the logic value is “0”, the potential of SN becomes higher than the potential of SNREF. This is because the voltage drop at the memory cell is larger than the voltage drop at REF.
- the potential difference between SN and SNREF is amplified by SAOt to voltage VBH and SAOb to VSS by the cross latch activated by sense amplifier enable SAE.
- SAE sense amplifier enable
- SAOt is amplified to VSS and SAOb is amplified to VBH in the cross couple.
- Memory information read to SAOt and SAOb by column selection line YS is read to local input / output lines LIOt and LIOb.
- FIG. 20 is a circuit diagram showing a configuration example of the sub word driver array SWDA in FIG.
- the SWDA is arranged around the memory cell array MCA, and the word line WL in the memory cell array MCA is driven from one of the upper and lower SWDAs, so the sub word driver SWD included in one SWDA. May be half of the number of WLs included in the MCA.
- the SWD is composed of one PMOS transistor and two NMOS transistors.
- the PMOS transistor has a gate connected to the main word line MWLB, a source connected to the sub word driver selection line FX, and a drain connected to the word line WL.
- One of the NMOS transistors has a gate connected to MWLB, a source equal to or lower than VSS, a negative voltage VKK, and a drain connected to WL.
- the other of the NMOS transistors has a gate connected to an inverted subword driver selection line FXB, a source connected to VKK, and a drain connected to WL.
- FIG. 21 is a circuit diagram showing a configuration example of the row control circuit XP in FIG. XP is a main input for connecting the equalizing circuit REQ for precharging the local input / output lines LIOt and LIOb, the bit line selection signal driver BLSD, the source line selection signal driver SLSD, LIOt (LIOb) and the main input / output line MIOt (MIOb).
- REQ is composed of, for example, three PMOS transistors, and charges LIOt and LIOb to voltage VBH when sense amplifier equalize signal SAEQ is turned off.
- the RGC is composed of, for example, two NMOS transistors and connects LIOt and MIOt, and LIOb and MIOb when SAEQ is turned on.
- BLSD generates a bit line selection signal BLS by a read enable signal RET, a write enable signal WET, and a column address decode signal FY.
- BLS bit line selection signal
- WET write enable signal
- FY column address decode signal
- the SLSD generates a source line selection signal SLS by a read enable signal RET, a write enable signal WET, and a column address decode signal FY.
- YSD drives the column selection line YS from the column selection enable signal YSE and the column predecode signal CF.
- a circuit configuration that takes the AND logic of YSE and CF and outputs YS can be considered.
- MESD generates a source line batch erase signal SMES and a bit line batch erase signal BMES from the active high batch erase signal MEST.
- FXD generates a sub word driver selection line FX from the inverted sub word driver selection line FXB.
- FXB the 'H' side power supply of all NOT logic circuits (inverter circuits) is controlled by a power switch PSW.
- the source of PSW is connected to VDDb and the gate is connected to the peripheral circuit power supply control signal PSSb.
- FIG. 22 is a circuit diagram showing a configuration example of the array control circuit ACC in FIG.
- the ACC generates a signal group for controlling the sense amplifier from the timing signal generated by the control circuit CNTL shown in FIG.
- the ACC includes a sense amplifier equalize signal SAEQ from the mat selection inversion signal MSB, a sense amplifier enable signal SAE from the MSB and the sense amplifier enable source signal SAE0, a read enable signal RET for controlling the sense amplifier from the read enable signal RE, and a word line.
- a word line enable signal WLE is generated from the enable source signal WLE0
- a write enable signal WET for controlling the sense amplifier is generated from the write enable signal WE.
- SAEQ is generated by inverting MSB.
- SAE is generated by taking the AND logic of the inverted signal of MSB and SAE0.
- RET is generated by taking the AND logic of the inverted signal of MSB and RE.
- WLE is generated by taking the AND logic of the inverted signal of MSB and WLE0.
- WET is generated by taking the AND logic of the inverted signal of MSB and WE.
- FIG. 23 is a waveform diagram showing an operation example when information stored in a memory cell is read using the circuits shown in FIGS.
- the standby state the sense node SN and the reference sense node SNREF in FIG. 19 are charged to VDD.
- the sense amplifier out signal line SAO and the local input / output line LIO are charged to VBH.
- SAEQ and RET created by ACC shown in FIG. 22 are charged from VSS to VDD.
- the word line WL and the bit line selection signal BLS are charged from the negative voltage VKK lower than the ground potential to the boost voltage VPP at the timing when the RET and the word line enable signal WLE are synchronized.
- the memory cell specified by the input address is selected, and a read current flows.
- the reference sense node SNREF decreases from VDD toward the reference potential set by the reference load.
- the reference potential is set to VDD / 2
- the read margin can be set large.
- the sense node SN changes according to the resistance state of the memory cell.
- the memory cell is in a low resistance state, that is, in an ON state, the potential is close to VSS, and when the memory cell is in a high resistance state, that is, in an OFF state, the potential is not much lower than VDD.
- the potentials of the sense amplifier out signal lines SAOt and SAOb do not drop much from VBH when the memory cell is in the ON state, and drop toward VSS when the memory cell is in the OFF state according to the potentials of SN and SNREF. Go.
- the sense amplifier enable signal SAE is turned ON at the timing when the SN state becomes a steady state. Then, if the state of SAOt is ON according to the state of the memory cell, it is charged to VBH, and if it is OFF, it is charged to VSS.
- the column selection signal YS is charged from VKK to VPP, and the memory information is stored in the local input / output line LIO. Is output.
- WL and BLS change from VPP to VKK, then SAE decreases from VDD to VSS, SAEQ and RET decrease from VDD to VSS, and WLE decreases from VPP to VKK.
- SN and SNREF become VDD, SAOt and SAOb are precharged to VBH, return to the standby state, and the read operation ends.
- FIG. 24 is a waveform diagram showing an operation example when information is written in the memory cell using the circuits shown in FIGS.
- the standby state is the same as the state described in FIG.
- the sense amplifier equalization signal SAEQ changes from VSS to VDD in synchronization with the timing generated by the control circuit CNTL shown in FIG. 12, and the equalization of the sense amplifier is completed.
- the word line WL rises from the negative voltage VKK lower than VSS to the boosted voltage VPP, preparation for writing information into the memory cell is completed.
- the sense amplifier out signal line SAO starts to be charged to a desired level by the local input / output line LIO that is charged according to the information to be written.
- the sense amplifier enable signal changes from VSS to VDD, the latch portion of the sense amplifier is turned ON, and the write information is latched.
- SAO writes the ON state, it is determined as VBH, and when the OFF state is written, it is determined as VSS. .
- the writing unit of the sense amplifier When the write enable signal WET changes from VSS to VDD, the writing unit of the sense amplifier is turned on, and VBH is output when writing the ON state to the global bit line GBL, and VSS is output when writing the OFF state. Thereby, desired digital information is written in the memory cell.
- the PRE command is input in synchronization with the clock, the word line WL changes from VPP to VKK, and in response, SAE changes from VDD to VSS. Thereafter, SAEQ changes from VSS to VDD, and at the same time, SAO is precharged to VBH. Thus, the standby state is restored and the write operation is completed.
- the information to be defragmented is controlled by the control shown in FIG. Is read and the information is written to a new real address by the control shown in FIG.
- the information to be defragmented is read by the control shown in FIG. 23, and the new real address is obtained by the control shown in FIG. This information is written in
- FIG. 25 (a) and 25 (b) are waveform diagrams showing different sequences when the low power mode and the normal mode are switched in the memory unit MB of FIG.
- FIG. 25A is a sequence for performing power control for the entire memory bank
- FIG. 25B is a sequence for performing power control for the sense amplifier SA and the sub word driver SWD.
- the waveform of FIG. 25A will be described with reference to FIG. If the initial state is the low power mode, then the peripheral circuit power source control source signal PSSb0 and the mat selection inversion signal MSB are VDD. When the MSB is discharged to VSS from this state, it shifts to the normal mode. In response, bank peripheral circuit power supply voltage VDDb is charged from VSS to peripheral circuit power supply voltage VDD, and bank memory cell write voltage VBHb is charged from VSS to memory cell write voltage VBH. Subsequently, a waveform when the normal mode is changed to the low power mode will be described. Since the low power mode is used, PSSb0 remains charged to VDD.
- the initial state is the low power mode described in FIG. 25A, and the voltage levels of the MSB, VDDb, and VBHb at that time are the same as those in FIG.
- MCAS memory cell array selection signal
- VDDb and VBHb are charged to VDD and VBH.
- PSSb is discharged from VDD to VSS.
- FIGS. 16 and 21 only the power supply to the driver related to the selected memory cell array is performed, and the normal mode is entered. Since only the power source of the driver of the selected memory cell array is supplied, it is possible to reduce the power consumption when active.
- FIG. 26 is a waveform diagram showing a first control sequence when batch erasure is performed on the sub memory cell array SMCA of FIG.
- the batch erase signal MEST is charged from VSS to VDD
- the bit line batch erase signal BMES is discharged from VDD to VSS
- the source line batch erase signal SMES is charged from VSS to VDD.
- the local bit line LBL is charged from VSS to VDD
- the local source line LSL is clamped to VSS.
- the word lines WL are pulse-driven one after another from VKK to VPP.
- MEST is discharged to VSS.
- BMES is charged from VSS to VDD
- SMES is discharged from VDD to VSS
- LBL is discharged from VDD to VSS, and batch erasure is completed.
- FIG. 27 is a waveform diagram showing a second control sequence different from FIG.
- the second control sequence shown in FIG. 27 is similar in operation to MEST, BMES, SMES, LBL, and LSL as compared to the first control sequence shown in FIG. 26, but is different in the number of WLs activated at one time. ing. For example, activation is simultaneously performed in units of k + 1 from WL0 to WLk at a time. Thus, by simultaneously activating a plurality of WLs within the range allowed by the current driving capability of the driver, the time required for batch erasing can be shortened.
- FIG. 28 is a plan view showing a layout configuration example of main parts when the memory cell MC of FIG. 18A or FIG. 18C is applied to the sub memory cell array SMCA of FIG.
- a dummy word line DWL is provided for every two word lines WL.
- the bit line contact BLC is shared by two memory cells MC arranged adjacent to each other in the direction in which the local bit line LBL extends between the dummy word lines DWL.
- the local bit line LBL and the local source line LSL are formed in parallel, but have different layer heights.
- a portion surrounded by a dotted square represents a 1-bit memory cell MC, and its cell area is 6F2 when the process node is F, which is the same level as the cell area of the latest DRAM.
- the resistance change type memory element is easier to manufacture than the DRAM capacitor, and the 1T1R type memory can be manufactured even in a fine process in which the 1T1C type DRAM is difficult to manufacture.
- FIG. 29A shows an example in which the local bit line LBL is arranged in a layer above the local source line LSL
- FIG. 29B shows a resistance change type in which LBL is a layer below the LSL.
- FIG. 29C shows an example in which LBL is arranged in a layer below LSL and the resistance change type memory element MD is arranged in a layer below LBL.
- STI formed below the dummy word line DWL is an insulating film for element isolation
- SLC is a source line contact
- SUB is a semiconductor substrate
- the structure shown in FIG. 29B is considered to improve the yield because there are few manufacturing processes in the layer above the resistance change type memory element MD.
- FIG. 30 is a block diagram showing a configuration example of main parts of the semiconductor device according to the second embodiment of the present invention.
- the semiconductor device shown in FIG. 30 has the above-described address conversion function (address conversion circuit ATC and address conversion table ATT) provided in a memory controller provided outside the memory chip.
- the feature is that.
- the address conversion table ATT in the memory controller may not be composed of resistance change elements.
- the bank control circuit BCC described above and each circuit for batch erasure as described in FIG. 17 and the like are provided in the memory chip. Since the address space output from the memory controller to the memory chip is localized by the defragmentation function described above, the memory chip can cut off the power supply of the memory bank that is not accessed using the BCC. Note that when performing batch erase, for example, a command or address for batch erase may be separately issued from the memory controller to the memory chip, and the memory chip may be operated in response thereto.
- the semiconductor device of the present invention is a technology that is particularly useful when applied to a memory chip having a resistance change type memory, and is not limited to this, and is an on-chip incorporated in a logic chip such as a microprocessor or a DSP (Digital Signal Processor). It can also be applied to a chip memory or the like.
- a logic chip such as a microprocessor or a DSP (Digital Signal Processor). It can also be applied to a chip memory or the like.
- PSW Power switch RAMP Read unit RD Read driver RE Read enable signal REB Inverted read enable signal REF Reference load circuit REQ Equalize circuit RET Read enable signal
- RGC Main input / output gate RRC Read reference circuit
- RSW read switch SA sense amplifier SAA sense amplifier array SAE0 Sense amplifier enable source signal SAEQ Sense amplifier equalize signal SAOb Inverted sense amplifier out signal line SAOt Sense amplifier out signal line SAPG Read driver control voltage SLC Source line contact SLS Source line selection signal SMCA Sub memory cell array SMED Source line batch erase driver SMES Source Line batch erase signal SN Sense node SNREF Referen SENSE NODE STI Isolation film for element isolation SUB Semiconductor substrate SWD Sub word driver SWDA Sub word driver array UL Upper electrode VBH Memory cell write voltage VBHb Bank memory cell write voltage VDD Peripheral circuit power supply voltage VDDb Bank peripheral circuit power supply voltage VKK Negative power supply VPP Word line boost voltage VPPb Bank word line boost voltage VSS Ground voltage WAMP Write unit WE Write enable signal WE
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Semiconductor Memories (AREA)
- Read Only Memory (AREA)
- Mram Or Spin Memory Techniques (AREA)
Abstract
In order to reduce memory power consumption during operation and standby, a memory block (MB) including a variable resistance memory element comprises: an address transformation circuit (ATC) for performing a conversion between a logical address and a physical address on the basis of an address transformation table (ATT); and a bank control circuit (BCC) for individually controlling the power supplies to memory banks (BANK). The ATC performs the address conversion, for example, so that external memory accesses are localized to a specific BANK. Consequently, an unused BANK can be secured and the power supply to the periphery circuit of the unused BANK can be blocked through the BCC.
Description
本発明は、抵抗変化型メモリセルを有する半導体装置に関し、特に、低消費電力かつセキュアな半導体装置を実現する技術に関する。
The present invention relates to a semiconductor device having a resistance change type memory cell, and particularly to a technique for realizing a low power consumption and secure semiconductor device.
ダイナミック型ランダムアクセスメモリ(DRAM)は高集積化するために製造ルールの微細化が進んでいるが、十分な信号量を確保するキャパシタの製造が困難となってきている。更なる微細化を進めるため、キャパシタに代わり微細に形成しても動作可能である抵抗変化素子を用いてメモリセルを構成し、抵抗値の大小を論理情報1、0に対応させる抵抗変化型メモリが考案されている。抵抗変化型メモリの例として、相変化メモリ、Resistive RAM(ReRAM)、固体電解質メモリ、マグネティックRAM(MRAM)、が考案されている。非特許文献1では相変化メモリについて、非特許文献2ではReRAMについて、非特許文献3では固体電解質メモリについて、非特許文献4にはMRAMについて、それぞれ記載されている。
Dynamic type random access memory (DRAM) is being miniaturized in order to achieve high integration, but it is difficult to manufacture a capacitor that secures a sufficient signal amount. In order to advance further miniaturization, a resistance change type memory in which a memory cell is configured using a resistance change element that can operate even if it is finely formed instead of a capacitor, and the magnitude of the resistance value corresponds to logic information 1 and 0 Has been devised. As examples of the resistance change type memory, a phase change memory, a Resistive RAM (ReRAM), a solid electrolyte memory, and a magnetic RAM (MRAM) have been devised. Non-Patent Document 1 describes a phase change memory, Non-Patent Document 2 describes a ReRAM, Non-Patent Document 3 describes a solid electrolyte memory, and Non-Patent Document 4 describes an MRAM.
上記すべての抵抗変化素子に共通する好ましい点は、書き換え動作を行わない限り、記憶した論理情報が10年以上にわたって保持される不揮発性を有することである。このため、抵抗変化型メモリは、情報保持のためにリフレッシュ動作を必要とするDRAMと比較して、待機時のメモリセルアレーにおける消費電力を小さくできることが期待される。DRAMが使用される分野はPCやサーバだけでなく、モバイル機器やデジタル家電にも拡大しており、動作時、待機時共に消費電力を低く抑えることが、バッテリ駆動装置における駆動時間伸長や地球環境保全のためにも望まれている。
A preferable point common to all the resistance change elements is that the stored logic information is non-volatile so as to be retained for 10 years or more unless rewriting operation is performed. Therefore, it is expected that the resistance change type memory can reduce the power consumption in the memory cell array during standby as compared with a DRAM that requires a refresh operation to hold information. DRAM is used not only for PCs and servers, but also for mobile devices and digital home appliances. It keeps power consumption low during both operation and standby, extending the driving time in battery-powered devices and the global environment. It is also desired for conservation.
図2~図4は、一般的に知られている抵抗変化型メモリ素子の構成例および動作例を示す説明図である。図2(a)に示すように、相変化メモリは、上部電極ULと下部電極LLの間にカルコゲナイド膜を挟みこんだ構造を持つ。LLから伝わる熱によりカルコゲナイド膜を非晶質状態や結晶状態に制御する。LLの面積を小さくすることで、発熱効率を向上することができる。LL直上のカルコゲナイド膜が非晶質状態の場合にはULとLL間の抵抗が大きく、結晶状態の場合はULとLL間の抵抗が小さい。図2(b)には、横軸にULとLL間の電位差V1、縦軸にLLからULへ流れる電流I1をとり、相変化メモリの電流電圧特性を示す。低抵抗状態(ON状態)から高抵抗状態(OFF状態)に書き換える場合と、OFF状態からON状態に書き換える場合とでV1の向きは同じであり、大きさは異なる。ON状態からOFF状態に書き換える時の電力が大きい。
2 to 4 are explanatory diagrams showing a configuration example and an operation example of a generally known resistance change type memory element. As shown in FIG. 2A, the phase change memory has a structure in which a chalcogenide film is sandwiched between the upper electrode UL and the lower electrode LL. The chalcogenide film is controlled to be in an amorphous state or a crystalline state by heat transmitted from the LL. Heat generation efficiency can be improved by reducing the area of LL. When the chalcogenide film immediately above LL is in an amorphous state, the resistance between UL and LL is large, and when in a crystalline state, the resistance between UL and LL is small. FIG. 2B shows the current-voltage characteristics of the phase change memory, with the horizontal axis representing the potential difference V1 between UL and LL and the vertical axis representing the current I1 flowing from LL to UL. The direction of V1 is the same between the case of rewriting from the low resistance state (ON state) to the high resistance state (OFF state) and the case of rewriting from the OFF state to the ON state, and the sizes are different. High power when rewriting from ON to OFF.
図3(a)は固体電解質メモリ、図3(b)はReRAM、図4はMRAMについての構造例をそれぞれ示している。図4(b)は、図3と図4に示した各メモリの代表的な電流電圧特性を示すものである。図4(b)において、グラフの横軸はULとLL間の電流I1、縦軸はULとLL間の電気抵抗R1である。OFF状態からON状態に書き換える場合と、ON状態からOFF状態に書き換える場合とで電流方向が異なる。例えば、LLからULに電流を流した場合にON状態になり、LLからULに電流を流した場合にはOFF状態になる。
3A shows a structure example of a solid electrolyte memory, FIG. 3B shows a ReRAM, and FIG. 4 shows an example of a structure of an MRAM. FIG. 4B shows a typical current-voltage characteristic of each memory shown in FIGS. In FIG. 4B, the horizontal axis of the graph is the current I1 between UL and LL, and the vertical axis is the electrical resistance R1 between UL and LL. The direction of current is different between when rewriting from the OFF state to the ON state and when rewriting from the ON state to the OFF state. For example, when a current is passed from LL to UL, it is turned on, and when a current is passed from LL to UL, it is turned off.
図3(a)に示すように、固体電解質メモリは酸素(O)、硫黄(S)、セレン(Se)、テルル(Te)の化合物である固体電解質膜ELをULとLLにより挟んだ構造を持つ。ELにULからLL方向の電界を加えることで金属の導電パスが形成され、ON状態になる。一方、LLからUL方向の電界を加えることで、前記導電パスが消失し、OFF状態になる。ULとLL間の抵抗値の大小を用いて情報を記録する。固体電解質メモリにはELを多層構造とした第2の形態も存在する。上記構造は図3(a)の構造と比較して金属イオンの制御性がよい。固体電解質メモリは動作が原子レベルの小さい領域で行われており、スケーリングに優れるという特徴を持つ。ON状態からOFF状態に書き換える時の電力が大きい。
As shown in FIG. 3A, the solid electrolyte memory has a structure in which a solid electrolyte membrane EL that is a compound of oxygen (O), sulfur (S), selenium (Se), and tellurium (Te) is sandwiched between UL and LL. Have. By applying an electric field from the UL to the LL direction to the EL, a metal conductive path is formed and turned on. On the other hand, when the electric field in the LL to UL direction is applied, the conductive path disappears and is turned off. Information is recorded using the magnitude of the resistance value between UL and LL. The solid electrolyte memory also has a second form in which EL has a multilayer structure. The above structure has better controllability of metal ions than the structure of FIG. The solid electrolyte memory operates in a small area at the atomic level, and has a feature of excellent scaling. High power when rewriting from ON to OFF.
図3(b)に示すように、ReRAMは、たとえばペロブスカイト型マンガン酸化物などをULとLLで挟み込んだ構造をもつ。たとえば前記材料中の欠陥準位の状態が変化することに対応して抵抗値が変化することを記録に用いる。欠陥準位に電子が捕獲されていない場合はOFF状態、捕獲されている場合はON状態となる。書き換え電力が大きい。
As shown in FIG. 3B, the ReRAM has a structure in which, for example, a perovskite type manganese oxide is sandwiched between UL and LL. For example, the fact that the resistance value changes corresponding to the change in the state of the defect level in the material is used for recording. When electrons are not captured at the defect level, the state is OFF, and when the electrons are captured, the state is ON. High rewriting power.
図4(a)に示すように、MRAMは、磁性膜、トンネル膜、磁性膜をULとLLで挟み込んだ構造をもち、ULとLL間に流れるトンネル電流の大小を記録に用いるメモリである。トンネル膜を挟む2つの磁性膜の磁化方向が平行の場合はON状態、反平行の場合はOFF状態となる。書き換え時にはMRAM素子付近で磁界を発生させ、磁性膜中の磁化を反転させる。磁界を発生させるために必要な電流が大きいため、書き換え電力が大きい。
As shown in FIG. 4A, the MRAM is a memory having a structure in which a magnetic film, a tunnel film, and a magnetic film are sandwiched between UL and LL, and the magnitude of the tunnel current flowing between UL and LL is used for recording. When the magnetization directions of the two magnetic films sandwiching the tunnel film are parallel, they are in the ON state, and when they are antiparallel, they are in the OFF state. When rewriting, a magnetic field is generated near the MRAM element to reverse the magnetization in the magnetic film. Since the current required to generate the magnetic field is large, the rewriting power is large.
図2から図4を用いて説明したとおり、電流を流すことにより書き換えを行う抵抗変化型メモリは様々な種類が考案されているが、書き換え電力が大きいことが共通課題である。これはメモリチップにおいて動作時電力が大きくなってしまうことを意味する。
As described with reference to FIGS. 2 to 4, various types of resistance change type memories that perform rewriting by passing a current have been devised, but a common problem is high rewriting power. This means that operating power is increased in the memory chip.
一方、製造コスト低減、動作速度向上のため、メモリの製造ルールは微細化している。これに伴いMOSトランジスタのゲート絶縁膜が薄くなるため、論理回路、スイッチ回路のリーク電力が大きくなってきていることも課題である。抵抗変化型メモリは、スタンバイ電力が小さいことが特徴であるが、これを生かすためには、使用していない回路部分のリーク電力はできるだけ小さいほうが望ましい。更に、上記の通り、抵抗変化型メモリは、書き換え電力が大きいため、書き換えに関与しない回路部分のリーク電力はできる限り削減したほうが、メモリチップ全体としての動作時ピーク電力削減のために好ましい。
On the other hand, memory manufacturing rules have been miniaturized in order to reduce manufacturing costs and improve operating speed. As a result, the gate insulating film of the MOS transistor becomes thinner, and the leakage power of the logic circuit and the switch circuit is also increasing. The resistance change type memory is characterized in that the standby power is small, but in order to take advantage of this, it is desirable that the leakage power of the unused circuit portion is as small as possible. Furthermore, as described above, since the resistance change type memory has a large rewriting power, it is preferable to reduce the leakage power of the circuit portion not involved in the rewriting as much as possible in order to reduce the peak power during operation of the entire memory chip.
また、DRAMの代わりに抵抗変化型メモリを適用することは、消費電力削減の観点では好ましいが、一方でセキュリティ情報が電源を切った状態でもメモリ上に残るため、第3者に盗みとられる危険性が考えられる。例えば、MMU(メモリ管理ユニット)でアドレス変換を行い、論理アドレスのエントリを消去することでデータ消去を行う不揮発メモリが存在するが、実際のチップ上にデータが残った状態となるため、セキュリティ情報を読み出される危険性は消えない。上記を解決するためには、意味のない情報を上書きする方法が有効であるが、チップ上にランダムに存在する情報に対して、次々と上書き動作を行うことは消費電力の増大を招き好ましくない。そこで、できるだけ消費電力を抑えつつ、かつ高速にデータを上書きできるような一括消去機能を抵抗変化型メモリに組み込むことが有益と考えられる。
In addition, it is preferable to use a resistance change type memory instead of the DRAM from the viewpoint of power consumption reduction. However, since security information remains on the memory even when the power is turned off, there is a risk of being stolen by a third party. Sex is conceivable. For example, there is a non-volatile memory in which data is erased by performing address conversion by an MMU (memory management unit) and erasing a logical address entry, but data remains on an actual chip. The danger of being read out does not disappear. In order to solve the above, a method of overwriting meaningless information is effective. However, it is not preferable to perform overwriting operations one after another on information that is randomly present on the chip, resulting in an increase in power consumption. . Therefore, it is considered beneficial to incorporate a batch erasing function into the resistance change memory so that data can be overwritten at high speed while suppressing power consumption as much as possible.
さらに、サーバやデータセンタ等の大規模システムにおいては、装置の連続稼働時間が長いため、断片化された不要データがメモリに蓄積して性能低下を招くという問題がおきている。抵抗変化型メモリがDRAMの代わりに適用された場合、電源遮断時でもメモリ情報が失われないため、システム上で稼動するタスクは電源遮断があっても途切れることはない。これは不要データが益々蓄積しやすくなることを意味する。更に、上記断片化された不要データを検索して消去していく作業自体はシステム負荷となる。自動的に一括消去マップを作製し、短時間で一括消去が行われることが大規模システムの負荷低減、長時間連続稼動に向けて重要と考えられる。
Furthermore, in a large-scale system such as a server or a data center, since the continuous operation time of the apparatus is long, there is a problem in that fragmented unnecessary data accumulates in a memory, resulting in performance degradation. When the resistance change type memory is applied instead of the DRAM, the memory information is not lost even when the power is shut down, so that the task operating on the system is not interrupted even when the power is shut off. This means that unnecessary data is more likely to accumulate. Furthermore, the operation itself of searching for and deleting the fragmented unnecessary data is a system load. It is important to automatically create a batch erase map and perform batch erase in a short time to reduce the load on large-scale systems and to operate continuously for a long time.
本発明は、このようなことを鑑みてなされたものであり、本発明の前記並びにその他の目的と新規な特徴は、本明細書の記述及び添付図面から明らかになるであろう。
The present invention has been made in view of the above, and the above and other objects and novel features of the present invention will become apparent from the description of the present specification and the accompanying drawings.
本願において開示される発明のうち、代表的な実施の形態の概要を簡単に説明すれば、次のとおりである。
Among the inventions disclosed in the present application, the outline of a typical embodiment will be briefly described as follows.
本実施の形態による半導体装置は、チップ内、もしくはメモリコントローラ上に論理アドレスと物理アドレスを変換する機構を有し、上記機構によりチップ内でデフラグを実行することでチップ上の特定領域(例えばメモリバンク全体)に未使用領域を作り出し、上記未使用領域の電源供給を止めることを特徴とする。更に、個々のビット線等に一括消去用のドライバを備えることを特徴とする。
The semiconductor device according to the present embodiment has a mechanism for converting a logical address and a physical address in a chip or on a memory controller, and performs defragmentation in the chip by the above mechanism, thereby causing a specific area (for example, a memory on the chip). An unused area is created in the entire bank), and power supply to the unused area is stopped. Further, each bit line or the like is provided with a batch erase driver.
本願において開示される発明のうち、代表的な実施の形態によって得られる効果を簡単に説明すると、動作時および待機時のメモリ消費電力を低減可能になる。また、低消費電力でデータの一括消去が実現でき、システムの負荷を低減すると共にセキュアなメモリを実現可能になる。
The effects obtained by the representative embodiments of the invention disclosed in the present application will be briefly described. The memory power consumption during operation and standby can be reduced. In addition, data can be erased at a time with low power consumption, and the load on the system can be reduced and a secure memory can be realized.
以下の実施の形態においては便宜上その必要があるときは、複数のセクションまたは実施の形態に分割して説明するが、特に明示した場合を除き、それらは互いに無関係なものではなく、一方は他方の一部または全部の変形例、詳細、補足説明等の関係にある。また、以下の実施の形態において、要素の数等(個数、数値、量、範囲等を含む)に言及する場合、特に明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではなく、特定の数以上でも以下でも良い。
In the following embodiment, when it is necessary for the sake of convenience, the description will be divided into a plurality of sections or embodiments. However, unless otherwise specified, they are not irrelevant, and one is the other. Some or all of the modifications, details, supplementary explanations, and the like are related. Further, in the following embodiments, when referring to the number of elements (including the number, numerical value, quantity, range, etc.), especially when clearly indicated and when clearly limited to a specific number in principle, etc. Except, it is not limited to the specific number, and may be more or less than the specific number.
さらに、以下の実施の形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。同様に、以下の実施の形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に明らかにそうでないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。このことは、上記数値および範囲についても同様である。
Further, in the following embodiments, the constituent elements (including element steps and the like) are not necessarily indispensable unless otherwise specified and apparently essential in principle. Needless to say. Similarly, in the following embodiments, when referring to the shapes, positional relationships, etc. of the components, etc., the shapes are substantially the same unless otherwise specified, or otherwise apparent in principle. And the like are included. The same applies to the above numerical values and ranges.
また、実施の形態の各機能ブロックを構成する回路素子は、特に制限されないが、公知のCMOS(相補型MOSトランジスタ)等の集積回路技術によって、単結晶シリコンのような半導体基板上に形成される。なお、実施の形態では、MISFET(Metal Insulator Semiconductor Field Effect Transistor)の一例としてMOS(Metal Oxide Semiconductor)トランジスタを用いる。図面において、Pチャネル型MOSトランジスタ(PMOSトランジスタ)にはゲートに丸印の記号を付すことで、Nチャネル型MOSトランジスタ(NMOSトランジスタ)と区別することとする。図面にはMOSトランジスタの基板電位の接続は特に明記していないが、MOSトランジスタが正常動作可能な範囲であれば、その接続方法は特に限定しない。
The circuit elements constituting each functional block of the embodiment are not particularly limited, but are formed on a semiconductor substrate such as single crystal silicon by a known integrated circuit technology such as a CMOS (complementary MOS transistor). . In the embodiment, a MOS (Metal Oxide Semiconductor) transistor is used as an example of a MISFET (Metal Insulator Semiconductor Field Effect Transistor). In the drawing, a P-channel MOS transistor (PMOS transistor) is distinguished from an N-channel MOS transistor (NMOS transistor) by adding a circle symbol to the gate. Although the connection of the substrate potential of the MOS transistor is not particularly specified in the drawing, the connection method is not particularly limited as long as the MOS transistor can operate normally.
以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一の部材には原則として同一の符号を付し、その繰り返しの説明は省略する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiment, and the repetitive description thereof will be omitted.
(実施の形態1)
図1は、本発明の実施の形態1による半導体装置において、その主要部の構成例を示すブロック図である。図1には、半導体装置内に含まれるメモリ部MBが示されており、このメモリ部MBは、アドレス変換機構を備えていることが主要な特徴となっている。図1のMBにおいて、アドレスA0~Anは、行アドレスバッファXABと列アドレスバッファYABに入力される。アドレス変換回路ATCは、XAB,YABからのアドレスを受け、これを論理アドレスとしてアドレス変換テーブルATTから実アドレスを取得する。ATCは、この実アドレスを行デコード回路XDECと列デコード回路YDECに送る。 (Embodiment 1)
FIG. 1 is a block diagram showing a configuration example of a main part of a semiconductor device according to the first embodiment of the present invention. FIG. 1 shows a memory unit MB included in the semiconductor device, and this memory unit MB is mainly provided with an address conversion mechanism. In the MB of FIG. 1, the addresses A0 to An are input to the row address buffer XAB and the column address buffer YAB. The address conversion circuit ATC receives addresses from XAB and YAB, and acquires real addresses from the address conversion table ATT using these as logical addresses. The ATC sends this real address to the row decode circuit XDEC and the column decode circuit YDEC.
図1は、本発明の実施の形態1による半導体装置において、その主要部の構成例を示すブロック図である。図1には、半導体装置内に含まれるメモリ部MBが示されており、このメモリ部MBは、アドレス変換機構を備えていることが主要な特徴となっている。図1のMBにおいて、アドレスA0~Anは、行アドレスバッファXABと列アドレスバッファYABに入力される。アドレス変換回路ATCは、XAB,YABからのアドレスを受け、これを論理アドレスとしてアドレス変換テーブルATTから実アドレスを取得する。ATCは、この実アドレスを行デコード回路XDECと列デコード回路YDECに送る。 (Embodiment 1)
FIG. 1 is a block diagram showing a configuration example of a main part of a semiconductor device according to the first embodiment of the present invention. FIG. 1 shows a memory unit MB included in the semiconductor device, and this memory unit MB is mainly provided with an address conversion mechanism. In the MB of FIG. 1, the addresses A0 to An are input to the row address buffer XAB and the column address buffer YAB. The address conversion circuit ATC receives addresses from XAB and YAB, and acquires real addresses from the address conversion table ATT using these as logical addresses. The ATC sends this real address to the row decode circuit XDEC and the column decode circuit YDEC.
これにより、所定のメモリバンク(例えばBANK0)のメモリセルアレーMCAがアクセスされ、入出力バッファI/OBを通して外部との間でデータDQ0~DQnのやり取りが行われる。MCAは、図2~図4で述べたように、複数の抵抗変化型のメモリ素子によって構成される。また、ATCは、各BANKの使用状況を把握し、使用していないBANKについてはバンク制御回路BCCを介して電源供給の制御を行う。BCCは、各BANK毎に独立に電源供給有無を制御可能な構成となっている。詳細は後述するが、実アドレスの使用状況により、BANKの電源制御、一括消去制御、ならびにデータの移動を行うデフラグを実現することで、低消費電力かつ高速動作可能なメモリを実現できる。
Thereby, a memory cell array MCA in a predetermined memory bank (for example, BANK0) is accessed, and data DQ0 to DQn are exchanged with the outside through the input / output buffer I / OB. As described in FIGS. 2 to 4, the MCA includes a plurality of resistance change type memory elements. In addition, the ATC grasps the usage status of each BANK, and controls the supply of power to the unused BANK via the bank control circuit BCC. The BCC is configured to be able to control the presence or absence of power supply independently for each BANK. Although details will be described later, a memory that can operate at low power consumption and at high speed can be realized by realizing BANK power supply control, batch erase control, and defragmentation that moves data according to the usage status of the real address.
図5(a)は、図1のメモリ部MBにおける各メモリバンクの状態例を示した模式図であり、図5(b)は、図5(a)に対応する効果を示した説明図である。図5(a)に示すメモリ部MBは、一例として8BANKを備えており、すべてのBANKに電源が入っているノーマルモードと、部分的に電源が入っているロウパワーモードを設定可能となっている。この例では、ロウパワーモードの一例として4BANKの電源をOFFとしているが、BANKの電源制御に応じてその数を多くすることも、少なくすることもできる。BANKの電源をOFFするために、メモリ部MBは、バンク制御回路BCCを介してアンプ回路、デコード回路、ドライバ回路などへの電源供給をスイッチにより停止する。図5(b)に示すとおり、上記ロウパワーモードではノーマルモードと比較してリーク電力を削減可能でありメモリ部全体の消費電力を低減することができる。
FIG. 5A is a schematic diagram showing an example of the state of each memory bank in the memory unit MB of FIG. 1, and FIG. 5B is an explanatory diagram showing an effect corresponding to FIG. 5A. is there. The memory unit MB shown in FIG. 5A includes 8BANK as an example, and can set a normal mode in which all BANKs are turned on and a low power mode in which power is partially turned on. Yes. In this example, the power supply of 4BANK is turned off as an example of the low power mode, but the number can be increased or decreased depending on the BANK power supply control. In order to turn off the power of the BANK, the memory unit MB stops the power supply to the amplifier circuit, the decode circuit, the driver circuit, and the like via the bank control circuit BCC with a switch. As shown in FIG. 5B, in the low power mode, the leakage power can be reduced as compared with the normal mode, and the power consumption of the entire memory unit can be reduced.
図6(a)~(c)は、図1のメモリ部MBが備えるデフラグ機能の動作例を示す説明図である。図6(a)は、アドレス空間のある一部を消去し、アドレス空間末尾に存在するデータを、消去したアドレスに自動で書き換える動作を示したものである。外部システムからのコマンドによるものではなく、例えばメモリ部MB内のアドレス変換回路ATC等に上記自動デフラグ機能を備えることで、外部システム側の負荷を下げることができる。メモリセルアレーMCA上でデータが実在する実アドレスが変化するが、アドレス変換テーブルATTによって論理アドレス-実アドレス(物理アドレス)変換が行われており、論理アドレスが指し示す実アドレスの情報が書き換えられるので、外部システムからみたデータの所在は変化しない。また、実アドレス空間を局所的に使い、データの所在を偏らせるようにデフラグを行うことが特徴となっている。上記のようにデフラグを行うことで、未使用メモリバンク(ここではBANKn)を作り出し、その部分を電源遮断したり、一括消去することが可能となる。これにより、メモリ部MBの低消費電力化やセキュリティの向上が見込まれる。
FIGS. 6A to 6C are explanatory diagrams showing an operation example of the defragmentation function provided in the memory unit MB of FIG. FIG. 6A shows an operation of erasing a part of the address space and automatically rewriting data existing at the end of the address space to the erased address. The load on the external system side can be reduced by providing the automatic defragmentation function in the address conversion circuit ATC in the memory unit MB, for example, instead of using a command from the external system. Although the real address where the data actually exists on the memory cell array MCA changes, the logical address-real address (physical address) conversion is performed by the address conversion table ATT, and the real address information indicated by the logical address is rewritten. The location of the data as seen from the external system does not change. Another feature is that defragmentation is performed so that the real address space is used locally and the location of data is biased. By performing defragmentation as described above, an unused memory bank (in this case, BANKn) can be created, and the power can be cut off or erased at once. As a result, lower power consumption and improved security of the memory unit MB are expected.
アドレス変換は、連続する複数のメモリアドレスが含まれるブロック領域を単位として管理を行う例えばページング方式、セグメンテーション方式などの様々な方式が知られているが、本実施の形態におけるアドレス変換は、方式を特別に限定しない。論理アドレス-実アドレス(物理アドレス)間の変換方式は、今後現れる新たな方式も含めて、本実施の形態に適用可能である。抵抗変化型のメモリ素子は、書き換え回数に制限がないため、同一素子に書き換えが集中しても破壊されない。同じく論理アドレス-物理アドレス変換を行うメモリとしてフラッシュメモリが存在する。上記メモリは書き換え回数に制限があるため、セルの書き換え回数を平均化するために上記アドレス変換を行っており、本実施の形態で行うアドレス変換の目的(すなわち局在化)とは正反対である。
For address conversion, various methods such as a paging method and a segmentation method for performing management in units of block areas including a plurality of continuous memory addresses are known. There is no special limitation. A conversion method between a logical address and a real address (physical address) can be applied to this embodiment, including a new method that will appear in the future. Since the resistance change type memory element has no limit on the number of rewrites, it is not destroyed even if rewrite concentrates on the same element. Similarly, there is a flash memory as a memory that performs logical address-physical address conversion. Since the memory has a limited number of rewrites, the address conversion is performed in order to average the number of cell rewrites, which is opposite to the purpose of address conversion (that is, localization) performed in this embodiment. .
図6(b)は、デフラグ動作を外部システム側から制御して行うことを示す図である。オペレーティングシステムOSからの制御でデフラグを行うことで、更にチップ動作に柔軟性を持たせることが可能となる。
FIG. 6B is a diagram showing that the defragmentation operation is controlled from the external system side. By performing defragmentation under the control of the operating system OS, it is possible to give more flexibility to the chip operation.
図6(c)は、一括消去領域、または、電源遮断領域にデータを移動するためにデフラグを行う場合について示すものである。まず、一括消去領域にデータを移動する場合について説明する。一括消去に伴うデフラグ動作では、実アドレス空間が、複数の一括消去領域(この例ではメモリバンク)に分割して管理される。各一括消去領域は、複数(この例では4個)のブロック領域(例えばページ等)によって構成される。この一括消去領域には、実アドレス空間上で点在するセキュリティ情報やシステムのログ情報などが集中して移動させられ、これらの情報は、必要に応じて一括消去の対象とされる。具体的な管理方法としては、該当する情報にフラグを立て、アドレス変換時に当該フラグを識別して管理する方法が一例として考えられる。一括消去領域に情報を局在化させることで消去にかかる電力と時間を削減可能となる。また、一括消去用のアドレスマップを外部システムで作る際の負荷を低減することが可能となる。
FIG. 6C shows a case where defragmentation is performed in order to move data to the batch erase area or the power shutdown area. First, a case where data is moved to the batch erase area will be described. In the defragmentation operation associated with batch erase, the real address space is managed by being divided into a plurality of batch erase regions (memory banks in this example). Each batch erase area is composed of a plurality (four in this example) of block areas (for example, pages). In this batch erase area, security information and system log information scattered in the real address space are centrally moved, and these pieces of information are targeted for batch erase as needed. As a specific management method, for example, a method of setting a flag for relevant information and identifying and managing the flag at the time of address conversion can be considered. By localizing information in the batch erase area, it is possible to reduce the power and time required for erase. In addition, it is possible to reduce the load when an address map for batch erasing is created by an external system.
次に、電源遮断領域にデータを移動する場合について説明する。電源遮断に伴うデフラグ動作では、アドレス変換回路ATC、もしくは外部システム(OS等)が、各データ(各ブロック領域)に対するアクセスを監視し、アクセスが少ないと判断されたデータを、電源遮断を行うメモリバンクに移動する。上記データは頻繁なアクセスがないため、当該データが置かれたメモリバンクの電源遮断を行ってもレイテンシの低下にはつながらない。また、抵抗変化型メモリは不揮発であるため、メモリバンクの電源を遮断してもデータが失われる心配はない。アクセスが行われた場合にはメモリバンクの電源をONし、読み書き可能な状況にする。
Next, the case where data is moved to the power shutdown area will be described. In the defragmentation operation that accompanies power shutdown, the address conversion circuit ATC or an external system (such as an OS) monitors access to each data (each block area), and the memory that performs power shutdown for data that has been determined to have little access Move to the bank. Since the data is not frequently accessed, the power supply to the memory bank in which the data is placed is not shut down, so that the latency is not lowered. Further, since the resistance change type memory is non-volatile, there is no fear that data will be lost even if the power source of the memory bank is cut off. When access is made, the memory bank is turned on so that it can be read and written.
図7は、図1のメモリ部MBにおけるアドレス変換テーブルATTの構成例を示す図である。上記アドレス変換テーブルATTは、アドレス変換回路ATC、もしくは外部システム(OS等)によって参照および更新され、少なくとも論理アドレスエントリ、物理アドレス(実アドレス)エントリ、データフラグエントリを持つ。論理アドレスエントリや物理アドレスエントリは、ブロック領域(例えばページ等)毎の論理アドレスと物理アドレスの関係を保持する。データフラグエントリは、例えば、対応する物理アドレスにデータが書き込まれた際に‘1’となり、何も書き込まれていない場合には‘0’となる。アドレス変換テーブルATTは、その他にも、ブロック領域毎に、自身が保護領域であることを示す、またはセキュリティ情報であることを示すアクセス保護エントリや、アクセス頻度を管理するアクセスカウンタエントリを持たせても良い。
FIG. 7 is a diagram showing a configuration example of the address conversion table ATT in the memory unit MB of FIG. The address translation table ATT is referenced and updated by the address translation circuit ATC or an external system (such as OS), and has at least a logical address entry, a physical address (real address) entry, and a data flag entry. The logical address entry and the physical address entry hold the relationship between the logical address and the physical address for each block area (for example, page). The data flag entry becomes, for example, “1” when data is written to the corresponding physical address, and becomes “0” when nothing is written. In addition, the address conversion table ATT has, for each block area, an access protection entry indicating that it is a protection area or security information, and an access counter entry for managing access frequency. Also good.
上記のデータフラグエントリを参照することで使用されていない物理アドレスを検知することができ、フラグが‘0’の領域をデータの移動先としてデフラグを行うことが可能となる。この際には、データの移動元の物理アドレスに対応するデータフラグエントリは‘0’に戻される。実際にデフラグを行う際には、連続する物理アドレス空間にそれぞれ対応するデータフラグエントリが連続して‘1’となるようにデータの移動を行う(すなわち、使用データを局在化する)。そうすると、その反対の作用として連続する物理アドレス空間にそれぞれ対応するデータフラグエントリが連続して‘0’となる領域が生成されることになり(すなわち未使用データが局在化され)、この領域を、一括消去の対象や、電源遮断の対象とすることができる。特に、メモリ部MBに対してアクセスを行うシステムが、MBが備える物理アドレス空間内の一部しか使用しないような場合には、使用データ(未使用データ)を局在化することで、電源遮断が可能な領域を増やすことができる。さらに、例えば、この電源遮断が可能な領域に対して、電源遮断を行う前に、一括消去を行っておくことで、移動元となったデータが実際に消去され、セキュリティの向上にも繋がる。
By referring to the data flag entry, it is possible to detect a physical address that is not used, and it is possible to perform defragmentation using an area having a flag of “0” as a data movement destination. At this time, the data flag entry corresponding to the physical address of the data movement source is returned to ‘0’. When actual defragmentation is performed, data is moved so that data flag entries corresponding to successive physical address spaces are continuously set to “1” (that is, used data is localized). Then, as an opposite effect, an area where data flag entries corresponding to consecutive physical address spaces respectively become “0” is generated (that is, unused data is localized). Can be a target of batch erasure or a power-off target. In particular, when the system that accesses the memory unit MB uses only a part of the physical address space of the MB, the power supply is shut down by localizing the used data (unused data). Can increase the possible area. Further, for example, by performing batch erasure on the area where the power can be cut off before the power is cut off, the data that is the transfer source is actually erased, leading to an improvement in security.
また、図6(c)に示したように、セキュリティ情報等を積極的に抽出して一括消去するデフラグを行う際には、アクセス保護エントリを参照して当該エントリが行われているデータを局在化し、その領域を一括消去すればよい。さらに、アクセス頻度に基づいてデフラグを行う際には、アクセスカウンタエントリを参照することでアクセス頻度が少ないデータを局在化し、その領域の電源遮断を行えばよい。
Also, as shown in FIG. 6C, when defragmenting to positively extract security information or the like and delete it at once, referring to the access protection entry, the data in which the entry is made is It is sufficient to erase the area at once. Furthermore, when defragmenting based on the access frequency, it is only necessary to localize data with a low access frequency by referring to the access counter entry and to shut off the power supply to that area.
図8(a)~(c)は、図1のメモリ部MBを用いてデフラグを行う場合において、それぞれ異なるデータ移動方法の一例を示す説明図である。図8(a)は、メモリバンクBANKnからBANKmへといったように、異なるメモリバンク間でデフラグする場合のデータの流れを示している。各BANKは、メモリセルアレーMCAと、センスアンプSAと、メインアンプMAを含む。BANKnのMCAから読み出されたデータはSA、MAの順番で増幅、転送され、データバッファDBでラッチされる。上記ラッチ情報をBANKmのMA、SAを介してMCAに書き込む。データ転送はアドレスの順番に従いシーケンシャルに行っても良いし、複数SA、MA、DBを用いて複数ビット同時に行っても良い。シーケンシャルに行う場合、時間がかかるが、ピーク電力を低く抑えることが可能である。複数ビットを同時に行う場合、一例として、デフラグ単位をワード線とすれば、複数SA、MAを同時に使うことができ、デフラグにかかる時間を短縮可能となる。
FIGS. 8A to 8C are explanatory diagrams showing examples of different data movement methods when defragmenting is performed using the memory unit MB of FIG. FIG. 8A shows the data flow when defragmenting between different memory banks, such as from the memory bank BANKn to BANKm. Each BANK includes a memory cell array MCA, a sense amplifier SA, and a main amplifier MA. Data read from the BANKn MCA is amplified and transferred in the order of SA and MA, and is latched by the data buffer DB. The latch information is written to the MCA via the BANKm MA and SA. Data transfer may be performed sequentially according to the order of addresses, or may be performed simultaneously by a plurality of bits using a plurality of SAs, MAs, and DBs. When it is performed sequentially, it takes time, but the peak power can be kept low. When performing a plurality of bits simultaneously, as an example, if the defragment unit is a word line, a plurality of SAs and MAs can be used at the same time, and the time required for defragmentation can be shortened.
図8(b)には同一メモリバンク内でデフラグする場合のデータの流れを示している。MCAnの情報はSAnによって読み出され、MAにラッチされる。上記ラッチ情報を用いてSAmからMCAmにデータが書き込まれる。上記デフラグ動作により、データが記憶されていないMCAを作ることが可能であり、上記MCAの電源を切ることで消費電力を下げることが可能となる。一例としてMCAに隣接するSAやサブワードドライバ回路などの電源を切ることが可能となる。図8(c)には、同一メモリセルアレーMCA内でデフラグする場合のデータの流れを示している。メモリセルMCnのデータをSAに一旦ラッチし、上記ラッチ情報をMCmに書き込む。上記デフラグにより、一例として、一括消去ブロックを纏めることが可能となり、一括消去にかかる時間を短縮できる利点が考えられる。
FIG. 8B shows the data flow when defragmenting within the same memory bank. Information of MCAn is read by SAn and latched in MA. Data is written from SAm to MCAm using the latch information. By the defragmentation operation, an MCA in which no data is stored can be created, and power consumption can be reduced by turning off the power of the MCA. As an example, it is possible to turn off the power of the SA adjacent to the MCA and the sub word driver circuit. FIG. 8C shows the data flow when defragmenting within the same memory cell array MCA. Data in the memory cell MCn is once latched in SA, and the latch information is written in MCm. By the above defragmentation, as one example, it is possible to collect batch erase blocks, and there is an advantage that the time required for batch erase can be shortened.
図9(a)、(b)は、図1のメモリ部MBにおけるメモリセルアレーMCAの主要部の回路構成例ならびに一括消去動作時の動作例を示す図である。図9(a)は、抵抗変化型メモリ素子の電気特性を示している。図の横軸は電流を、縦軸は抵抗値を示す。抵抗変化型メモリ素子における一括消去は、一例としてOFF状態をすべてのメモリセルに書き込めばよい。OFF状態は抵抗値が高いため、書き換え終了時点で流れる電流を小さくすることができる。これにより小さい消費電力で一括消去が可能となる。また、1メモリセルあたりの消去電力が小さくなることで、ドライバの電流駆動力の範囲で、一度に複数のメモリセルについて消去動作を実行でき、高速な一括消去動作が可能となる。
FIGS. 9A and 9B are diagrams showing a circuit configuration example of a main part of the memory cell array MCA in the memory unit MB of FIG. 1 and an operation example at the time of batch erase operation. FIG. 9A shows the electrical characteristics of the resistance change memory element. In the figure, the horizontal axis represents current, and the vertical axis represents resistance. For example, the batch erase in the resistance change type memory element may be performed by writing the OFF state to all the memory cells. Since the resistance value is high in the OFF state, the current flowing at the end of rewriting can be reduced. In addition, batch erasing can be performed with smaller power consumption. Further, since the erasing power per memory cell is reduced, an erasing operation can be executed for a plurality of memory cells at a time within the range of the current driving capability of the driver, and a high-speed batch erasing operation can be performed.
図9(b)を用いて、一括消去動作の実現方法を主要な回路構成と共に説明する。当該メモリセルアレーMCAは、それぞれ平行に配置された複数のワード線WLと、それと交差する方向に延伸する複数のビット線BLおよびソース線SLと、これらの交点にそれぞれ配置された複数のメモリセルMCを含んで構成される。メモリセルMCは、抵抗変化型メモリ素子と、その一端にドレインが接続され、対応するWLにゲートが接続されるメモリセルトランジスタによって構成される。BLとSLは、それぞれ平行に配置され、BLは、抵抗変化型メモリ素子の他端に、SLは、メモリセルトランジスタのソースにそれぞれ接続される。
A method for realizing the batch erase operation will be described together with the main circuit configuration using FIG. The memory cell array MCA includes a plurality of word lines WL arranged in parallel to each other, a plurality of bit lines BL and source lines SL extending in a direction crossing the word lines WL, and a plurality of memory cells arranged at intersections thereof. Consists of MC. The memory cell MC includes a resistance change type memory element and a memory cell transistor having a drain connected to one end thereof and a gate connected to a corresponding WL. BL and SL are arranged in parallel, BL is connected to the other end of the resistance change type memory element, and SL is connected to the source of the memory cell transistor.
さらに、当該メモリセルアレーMCAは、各BLの一端にビット線一括消去ドライバBMEDを備え、各SLの一端にソース線一括消去ドライバSMEDを備えている。各BMEDは、例えばソースが電源電圧VDDに接続され、ドレインがBLに接続される1つのPMOSトランジスタによって構成され、ビット線一括消去信号BMESに応じてそのオン・オフが制御される。各SMEDは、例えばソースが接地電圧VSSに接続され、ドレインがSLに接続される1つのNMOSトランジスタによって構成され、ソース線一括消去信号SMESに応じてそのオン・オフが制御される。上記のようにBMESとSMESを備えることで、1つのセンスアンプを複数のBLとSLで共有するアレー構成であっても、個々のBLおよびSLに対して一括消去が可能となり、全体としてチップ面積を縮小可能となる。
Further, the memory cell array MCA includes a bit line batch erase driver BMED at one end of each BL, and a source line batch erase driver SMED at one end of each SL. Each BMED is configured by, for example, one PMOS transistor having a source connected to the power supply voltage VDD and a drain connected to BL, and is turned on / off in accordance with a bit line batch erase signal BMES. Each SMED is configured by, for example, one NMOS transistor having a source connected to the ground voltage VSS and a drain connected to SL, and the ON / OFF of the SMED is controlled according to the source line batch erase signal SMES. By providing BMES and SMES as described above, even with an array configuration in which one sense amplifier is shared by a plurality of BLs and SLs, batch erasure can be performed for each BL and SL. Can be reduced.
一括消去動作は、まず、BMESとSMESをON駆動し、BMEDとSMEDを活性化する。BMESとSMESがON駆動している間、複数のWLを順番に活性化していく。一括消去として図9(a)に示すようにOFF状態を書き込んでいく場合、書き換え電流を小さくできるため、一度に複数のWLを活性化することもできる。一度に活性化できるWLの本数はBLおよびSLに流すことができる電流量により決まる。ただし、あまり多数本のWLを活性化するとピーク電力が増大するため、注意を要する。上記方法で一括消去動作を行えばBMESおよびSMESの充放電回数を少なくすることができ、消費電力を小さくすることが可能である。更にWLを順番に活性化していく簡単な動作ですむため、高速な一括消去動作を実現できる。一括消去は、例えば、メモリ部MB内にタイマを設け、自律的に一定周期で行っても良いし、データ移動を行うタイミングで併せて行ってもよいし、あるいは、OSによって管理される場合には、OSが、一例としてページ入れ替えをするタイミングでシステムと協調して行っても良い。
In the batch erase operation, first, BMES and SMES are driven ON, and BMED and SMED are activated. While the BMES and SMES are ON, the plurality of WLs are activated in order. When the OFF state is written as batch erase as shown in FIG. 9A, the rewrite current can be reduced, so that a plurality of WLs can be activated at a time. The number of WLs that can be activated at one time is determined by the amount of current that can flow through BL and SL. However, caution is required because the peak power increases when too many WLs are activated. If the batch erasing operation is performed by the above method, the number of times of charging / discharging BMES and SMES can be reduced, and the power consumption can be reduced. Furthermore, since a simple operation of sequentially activating WLs is required, a high-speed batch erase operation can be realized. For example, the batch erasure may be performed autonomously at a constant cycle by providing a timer in the memory unit MB, or may be performed at the timing of data movement, or when managed by the OS. The OS may be performed in cooperation with the system at the timing of page replacement as an example.
図10(a)~(c)は、それぞれ、図1のメモリ部MBを備えた半導体チップのレイアウト構成例を示す概略図である。図10(a)~(c)に示す半導体チップCHIPは、例えば、制御回路CNTLと、入出力回路DQCと、アドレス変換テーブルATTと、メモリバンクBANKに大別して構成される。制御回路CNTLは、クロック、アドレス、制御信号がCHIP外から入力され、CHIPの動作モードの決定やアドレスのプリデコード等を行う。入出力回路DQCは、入出力バッファ等を備え、CHIP外部からライトデータが入力され、CHIP外部へリードデータを出力する。
10 (a) to 10 (c) are schematic views showing layout configuration examples of the semiconductor chip provided with the memory unit MB of FIG. 1, respectively. The semiconductor chip CHIP shown in FIGS. 10A to 10C is roughly divided into, for example, a control circuit CNTL, an input / output circuit DQC, an address conversion table ATT, and a memory bank BANK. The control circuit CNTL receives a clock, an address, and a control signal from outside the CHIP, and determines the operation mode of the CHIP, predecodes the address, and the like. The input / output circuit DQC includes an input / output buffer and the like, and receives write data from the outside of the CHIP and outputs read data to the outside of the CHIP.
図10(a)の例では、ATTとして1個のBANKが割り当てられている。その他にもATTの割り当て方として、図10(b)に示すようにBANKの一部をATTとして割り当てる方法、図10(c)に示すように複数のBANKの一部を割り当てる方法もある。アドレスのデコードなどの方式が単純化するのは図10(a)の方式であるが、アドレス変換の方法によってはATTの領域が小さくできるため、実使用可能なチップ容量を増大させるためには図10(b)や図10(c)の割り当て方が好ましい場合も考えられる。BANKの一部をATTとする場合には、CNTLに近い部分にATTを設けるほうが、アクセス時間を短くするために好ましい。
In the example of FIG. 10A, one BANK is assigned as ATT. In addition, as a method of assigning ATTs, there are a method of assigning a part of BANK as ATT as shown in FIG. 10B and a method of assigning a part of plural BANKs as shown in FIG. The method of address decoding and the like is simplified in the method of FIG. 10A. However, depending on the method of address conversion, the ATT area can be reduced, and in order to increase the actually usable chip capacity, FIG. There may be a case where the assignment method of 10 (b) or FIG. 10 (c) is preferable. When a part of BANK is ATT, it is preferable to provide ATT near the CNTL in order to shorten the access time.
図11は、図10におけるメモリバンクBANKのレイアウト構成例を示す概略図である。メモリバンクBANKには、複数のメモリセルアレーMCAがアレー状に配置され、各MCAの周囲にはサブワードドライバ列SWDA、センスアンプ列SAA、行制御回路XPが配置される。また、メモリバンクBANKの外周には、センスアンプ列SAAと平行に列デコード回路YDEC、アレー制御回路ACC、メインアンプ列MAAが配置され、サブワードドライバ列SWDAと平行に行デコード回路XDECが配置される。MAAとXDECが交わる部分にはバンク制御回路BCCが配置される。
FIG. 11 is a schematic diagram showing a layout configuration example of the memory bank BANK in FIG. In the memory bank BANK, a plurality of memory cell arrays MCA are arranged in an array, and a sub word driver column SWDA, a sense amplifier column SAA, and a row control circuit XP are arranged around each MCA. Further, on the outer periphery of the memory bank BANK, a column decode circuit YDEC, an array control circuit ACC, and a main amplifier row MAA are arranged in parallel with the sense amplifier row SAA, and a row decode circuit XDEC is arranged in parallel with the sub word driver row SWDA. . A bank control circuit BCC is arranged at the intersection of MAA and XDEC.
図12は、図10における制御回路CNTLの一部の構成例を示すブロック図である。図12において、電圧発生回路VGは、例えば、メモリセル書込み電圧VBH、周辺回路電源電圧VDD、接地電圧VSS、ワード線昇圧電圧VPP、負電圧VKK、読出しドライバ制御電圧SAPGを生成する。タイミングコントロール信号発生回路TCGは、列選択イネーブル信号YSE、センスアンプイネーブル元信号SAE0、リードイネーブル信号RE、周辺回路電源制御元信号PSSb0、ライトイネーブル信号WE、ワード線イネーブル元信号WLE0、一括消去信号MESTを生成する。メモリ外部からのアドレス(論理アドレス)はCNTL中のアドレス変換回路ATCに入力される。これを受けて、ATCは、アドレス変換テーブルATTを参照し、実アドレス(物理アドレス)を出力する。また、PSSb0が‘L’の場合にはチップの電源遮断機構は働かない。
FIG. 12 is a block diagram showing a configuration example of a part of the control circuit CNTL in FIG. In FIG. 12, the voltage generation circuit VG generates, for example, a memory cell write voltage VBH, a peripheral circuit power supply voltage VDD, a ground voltage VSS, a word line boost voltage VPP, a negative voltage VKK, and a read driver control voltage SAPG. The timing control signal generation circuit TCG includes a column selection enable signal YSE, a sense amplifier enable source signal SAE0, a read enable signal RE, a peripheral circuit power source control source signal PSSb0, a write enable signal WE, a word line enable source signal WLE0, and a batch erase signal MEST. Is generated. An address (logical address) from the outside of the memory is input to the address conversion circuit ATC in CNTL. In response to this, the ATC refers to the address conversion table ATT and outputs a real address (physical address). Further, when PSSb0 is 'L', the chip power shut-off mechanism does not work.
図13は、図11におけるバンク制御回路BCCの構成例を示す回路図である。BCCは、メモリバンクBANKに含まれるドライバ回路、アンプ回路への電源供給をコントロールする回路である。例えば、バンク用周辺回路電源電圧VDDb、バンク用メモリセル書込み電圧VBHb、およびバンク用ワード線昇圧電圧VPPbは、それぞれ、VDD、VBH、およびVPPから電源スイッチPSWを介して供給される。PSWは、PMOSトランジスタで構成され、周辺回路電源制御元信号PSSb0とマット選択反転信号MSBのAND論理によってゲートが制御される。MSBは、対応するメモリバンクの行アドレスがデコードされた時に‘L’となる信号である。メモリセルアレー選択信号MCASは、対応するメモリセルアレーMCAの行アドレスがデコードされた時に‘H’となり、その反転信号によって周辺回路電源制御信号PSSbが生成される。
FIG. 13 is a circuit diagram showing a configuration example of the bank control circuit BCC in FIG. BCC is a circuit that controls power supply to a driver circuit and an amplifier circuit included in the memory bank BANK. For example, the bank peripheral circuit power supply voltage VDDb, the bank memory cell write voltage VBHb, and the bank word line boost voltage VPPb are supplied from VDD, VBH, and VPP via the power switch PSW, respectively. PSW is composed of a PMOS transistor, and its gate is controlled by the AND logic of the peripheral circuit power source control source signal PSSb0 and the mat selection inversion signal MSB. MSB is a signal that becomes ‘L’ when the row address of the corresponding memory bank is decoded. The memory cell array selection signal MCAS becomes ‘H’ when the row address of the corresponding memory cell array MCA is decoded, and the peripheral circuit power supply control signal PSSb is generated by the inverted signal.
これにより、PSSb0とMSBが‘H’の期間(すなわち対応するメモリバンクが選択されていない期間)は、当該メモリバンクの電源が遮断されることになる。前述したように、デフラグ機能を用いることで使用データ(未使用データ)を局在化できるため、未使用データが割り当てられたメモリバンクは電源遮断状態を維持でき、低消費電力化が図れる。なお、PSSbは、対応するメモリバンク自体には電源が供給されるが、その中のメモリセルアレーMCAの単位で電源遮断を行う際に用いる。
Thus, during the period when PSSb0 and MSB are 'H' (that is, the period when the corresponding memory bank is not selected), the power source of the memory bank is cut off. As described above, since the used data (unused data) can be localized by using the defragmentation function, the memory bank to which the unused data is allocated can maintain the power-off state, and the power consumption can be reduced. The PSSb is used when power is shut off in units of the memory cell array MCA in the corresponding memory bank itself although power is supplied to the corresponding memory bank itself.
図14(a)~(c)は、図11におけるメモリセルアレーMCAの構成例を示すブロック図である。図14(a)に示す構成例では、サブメモリセルアレーSMCAの横にローカルビット線選択スイッチ列LBLSAが配置され、LBLSAと対向してSMCAをはさんで反対側にローカルソース線選択スイッチ列LSLSAが配置される。上記構造により、ビット線、およびソース線を階層化することが可能となり、チップのセル占有率を増大させることができる。図14(b)に示す構成例では、SMCAが2分割され、各SMCAの一辺および対向する他辺に、それぞれ、LBLSAおよびLSLSAが配置され、2個のSMCAのLSLSAが隣接するように配置されている。なお、図14(b)におけるLBLSAとLSLSAを入れ替えて、2個のLBLSAが隣接するように配置してもよい。
FIGS. 14A to 14C are block diagrams showing a configuration example of the memory cell array MCA in FIG. In the configuration example shown in FIG. 14A, a local bit line selection switch row LBLSA is arranged beside the sub memory cell array SMCA, and the local source line selection switch row LSLSA is placed on the opposite side across the SMCA so as to face LBLSA. Is placed. With the above structure, the bit lines and source lines can be hierarchized, and the cell occupancy of the chip can be increased. In the configuration example shown in FIG. 14B, the SMCA is divided into two parts, LBLSA and LSLSA are arranged on one side of each SMCA and the other side facing each other, and the LSLSA of the two SMCAs are arranged adjacent to each other. ing. Note that LBLSA and LSLSA in FIG. 14B may be interchanged so that two LBLSAs are adjacent to each other.
図14(c)は、図14(b)に示した構成例を複数回繰り返したものである。図14(b)や(c)のような構造をとることで、LSLSAやLBLSAの制御信号を効率よく配線することが可能となり、チップ面積を縮小することができる。また、SMCAを小さい単位とすることで、ビット線やソース線を短くすることができるため、配線の寄生抵抗や寄生容量による遅延や消費電力増大を少なくすることができる。ただし、この場合にはセル占有率がかえって低下する可能性も考慮して1つのSMCAのサイズを選ばなければならない。
FIG. 14C is a diagram in which the configuration example shown in FIG. 14B is repeated a plurality of times. By adopting the structure as shown in FIGS. 14B and 14C, it becomes possible to efficiently route control signals for LSLSA and LBLSA, and the chip area can be reduced. Further, by setting SMCA as a small unit, the bit line and the source line can be shortened, so that the delay and increase in power consumption due to the parasitic resistance and parasitic capacitance of the wiring can be reduced. However, in this case, the size of one SMCA must be selected in consideration of the possibility that the cell occupancy rate decreases.
図15は、図10におけるメモリバンクBANKおよび入出力回路DQCのより詳細な構成例を示すブロック図である。DQCは、例えば、データバッファDBと、図8(a)に示したようなBANK単位でのデータ移動を制御するベリファイ制御回路VCTLを含む。また、BANKは、サブメモリセルアレーSMCA、ローカルビット線選択スイッチ列LBLSA、ローカルソース線選択スイッチ列LSLSA、メインアンプ列MAA、センスアンプ列SAA、行制御回路XP、およびサブワードドライバ列SWDAを含んで構成される。ここでは、SMCA、LBLSAおよびLSLSAが、図14(a)に対応した構成となっている。
FIG. 15 is a block diagram showing a more detailed configuration example of the memory bank BANK and the input / output circuit DQC in FIG. The DQC includes, for example, a data buffer DB and a verify control circuit VCTL that controls data movement in BANK units as shown in FIG. BANK includes a sub memory cell array SMCA, a local bit line selection switch column LBLSA, a local source line selection switch column LSLSA, a main amplifier column MAA, a sense amplifier column SAA, a row control circuit XP, and a sub word driver column SWDA. Composed. Here, SMCA, LBLSA, and LSLSA have a configuration corresponding to FIG.
メインアンプ列MAAには複数のメインアンプMAが含まれ、MAとVCTLはグローバル入出力線GIOで接続される。行制御回路XPにはメイン入出力ゲートRGCが含まれ、MAとRGCはメイン入出力線MIOにより接続される。センスアンプ列SAAには複数のセンスアンプSAが含まれ、SAとRGCはローカル入出力線LIOにより接続される。SAは、隣接する両隣のメモリセルアレーMCAで共有される構造をもつ。上記構造によりSAAの面積を縮小可能である。LBLSAは複数のローカルビット線選択スイッチLBLSを含み、SAとLBLSはグローバルビット線GBLで接続される。SMCAを挟んでLBLSAと対向して配置されたLSLSAは複数のローカルソース線選択スイッチLSLSを含み、LSLSは、対となるLBLSと同一のSAとグローバルソース線GSLで接続される。
The main amplifier row MAA includes a plurality of main amplifiers MA, and MA and VCTL are connected by a global input / output line GIO. The row control circuit XP includes a main input / output gate RGC, and MA and RGC are connected by a main input / output line MIO. The sense amplifier array SAA includes a plurality of sense amplifiers SA, and SA and RGC are connected by a local input / output line LIO. The SA has a structure shared by adjacent memory cell arrays MCA adjacent to each other. With the above structure, the area of the SAA can be reduced. LBLSA includes a plurality of local bit line selection switches LBLS, and SA and LBLS are connected by a global bit line GBL. The LSLSA arranged opposite to the LBLSA across the SMCA includes a plurality of local source line selection switches LSLS, and the LSLS is connected to the same SA as the paired LBLS by the global source line GSL.
SMCAは、それぞれ平行に配置された複数のワード線WLと、それと交差する方向に延伸し、それぞれ平行に配置された複数のローカルビット線LBLならびにローカルソース線LSLと、各WLと各LBL(およびLSL)との交点に配置された複数のメモリセルMCと、各LBLの一端に接続されたビット線一括消去ドライバBMEDと、各LSLの一端に接続されたソース線一括消去ドライバSMEDを含んで構成される。各WLは、SWDAに含まれる各サブワードドライバSWDによって駆動される。各LBLは、対応するLBLSを介してSAに接続されると共に、対応するBMEDによっても駆動可能となっている。各LSLは、対応するLSLSを介してSAに接続されると共に、対応するSMEDによっても駆動可能となっている。また、XPには、一括消去ドライバ駆動回路MESDが備わっている。MESDは、対応するSMCAに含まれる複数のBMEDおよびSMEDを、それぞれWLと同一方向に延伸するビット線一括消去信号BMESおよびソース線一括消去信号SMESによって一括して駆動する。
The SMCA extends in a direction intersecting with a plurality of word lines WL arranged in parallel with each other, a plurality of local bit lines LBL and local source lines LSL arranged in parallel with each other, and each WL and each LBL (and LSL) includes a plurality of memory cells MC arranged at intersections with each other, a bit line batch erase driver BMED connected to one end of each LBL, and a source line batch erase driver SMED connected to one end of each LSL. Is done. Each WL is driven by each sub word driver SWD included in the SWDA. Each LBL is connected to the SA via the corresponding LBLS and can be driven by the corresponding BMED. Each LSL is connected to the SA via the corresponding LSLS and can be driven by the corresponding SMED. Further, XP includes a batch erase driver drive circuit MESD. The MESD collectively drives a plurality of BMDED and SMED included in the corresponding SMCA by a bit line batch erase signal BMES and a source line batch erase signal SMES extending in the same direction as WL.
なお、ここでは、1本のLBLに1つのBMED、1本のLSLに1つのSMEDという構成について説明したが、一括消去時の電流駆動能力を向上させるために、複数のBMEDおよびSMEDを接続しても良い。上記構成を採用することで、一括消去のスピードを向上させることが可能となる。また、SWDAに含まれる各SWDは、上下に隣接するSMCAで共有される。上記構造によりSWDAの面積を縮小可能となり、SMCAの2個分の長さのWLをその中央から駆動するため、WLを高速に駆動することができる。
Here, the configuration of one BMED for one LBL and one SMED for one LSL has been described. However, in order to improve the current drive capability during batch erase, a plurality of BMEDs and SMEDs are connected. May be. By adopting the above configuration, it is possible to improve the batch erase speed. In addition, each SWD included in the SWDA is shared by SMCA adjacent vertically. With the above structure, the area of the SWDA can be reduced, and the WL having two SMCA lengths is driven from the center, so that the WL can be driven at high speed.
図16(a)、(b)は、図15におけるローカルビット線選択スイッチ列LBLSAならびにローカルソース線選択スイッチ列LSLSAの詳細な構成例を示す回路図である。図16(a)に示すLBLSAは、列デコード回路YDECを介して所定のビット線選択信号BLSが選択されると、対応するローカルビット線選択スイッチLBLS内の所定のスイッチが選択され、当該スイッチに接続されたローカルビット線LBLがグローバルビット線GBLに接続される構成となっている。また、このスイッチの制御に伴う電源電圧は、電源スイッチPSWを介して供給され、PSWを構成するPMOSトランジスタのオン・オフが図13で述べた周辺回路電源制御信号PSSbによって制御される。前述したデフラグ機能によって、未使用となったアレー部分の電源供給をPSSbを用いて遮断することで低消費電力化が図れる。なお、図16(a)の例では、8本のLBLに対して1本のGBLを割り当てる構成となっているが、勿論、8本にこだわらず、4本、2本、16本といった様々な例が考えられる。上記のような構成とすることで、多ビット同時書換えに対応できる。
16A and 16B are circuit diagrams showing detailed configuration examples of the local bit line selection switch row LBLSA and the local source line selection switch row LSLSA in FIG. In the LBLSA shown in FIG. 16A, when a predetermined bit line selection signal BLS is selected via the column decode circuit YDEC, a predetermined switch in the corresponding local bit line selection switch LBLS is selected, The connected local bit line LBL is connected to the global bit line GBL. Further, the power supply voltage accompanying the control of this switch is supplied via the power supply switch PSW, and on / off of the PMOS transistor constituting the PSW is controlled by the peripheral circuit power supply control signal PSSb described in FIG. With the above-described defragmentation function, power consumption can be reduced by shutting off the power supply to the unused array portion using PSSb. In the example of FIG. 16 (a), one GBL is assigned to eight LBLs. Of course, the number is not limited to eight, but various such as four, two, and sixteen. Examples are possible. By adopting the configuration as described above, it is possible to cope with multi-bit simultaneous rewriting.
図16(b)に示すLSLSAは、列デコード回路YDECを介して所定のソース線選択信号SLSが選択されると、対応するローカルソース線選択スイッチLSLS内の所定のスイッチが選択され、当該スイッチに接続されたローカルソース線LSLがグローバルソース線GSLに接続される構成となっている。また、このスイッチの制御に伴う電源電圧は、電源スイッチPSWを介して供給され、PSWを構成するPMOSトランジスタのオン・オフが図13で述べた周辺回路電源制御信号PSSbによって制御される。前述したデフラグ機能によって、未使用となったアレー部分の電源供給をPSSbを用いて遮断することで低消費電力化が図れる。なお、図16(b)の例では、8本のLSLに対して1本のGSLを割り当てる構成となっているが、勿論、8本にこだわらず、4本、2本、16本といった様々な例が考えられる。上記のような構成とすることで、多ビット同時書換えに対応できる。
In the LSLSA shown in FIG. 16B, when a predetermined source line selection signal SLS is selected via the column decode circuit YDEC, a predetermined switch in the corresponding local source line selection switch LSLS is selected, The connected local source line LSL is connected to the global source line GSL. Further, the power supply voltage accompanying the control of this switch is supplied via the power supply switch PSW, and on / off of the PMOS transistor constituting the PSW is controlled by the peripheral circuit power supply control signal PSSb described in FIG. With the above-described defragmentation function, power consumption can be reduced by shutting off the power supply to the unused array portion using PSSb. In the example of FIG. 16 (b), one GSL is assigned to eight LSLs. Of course, the number is not limited to eight, but various such as four, two, and sixteen. Examples are possible. By adopting the configuration as described above, it is possible to cope with multi-bit simultaneous rewriting.
図17は、図15におけるサブメモリセルアレーSMCAの詳細な構成例を示す回路図である。サブメモリセルアレーSMCAは、m本のワード線WLと、n本のローカルビット線LBLと、n本のローカルソース線LSLと、WLとLBL(およびLSL)の所望の交点に配置されるメモリセルMCと、ビット線一括消去信号BMESとLBLの所望の交点に配置されるビット線一括消去ドライバBMEDと、ソース線一括消去信号SMESとLSLの所望の交点に配置されるソース線一括消去ドライバSMEDから構成される。各MCは、NMOSトランジスタからなるメモリセルトランジスタと、そのドレインに一端が接続された抵抗変化型のメモリ素子によって構成される。メモリ素子の他端は対応するLBLに接続され、メモリセルトランジスタのソースは対応するLSLに接続される。
FIG. 17 is a circuit diagram showing a detailed configuration example of the sub memory cell array SMCA in FIG. The sub memory cell array SMCA is a memory cell arranged at a desired intersection of m word lines WL, n local bit lines LBL, n local source lines LSL, WL and LBL (and LSL). From MC, bit line batch erase signal BMED arranged at a desired intersection of bit line batch erase signals BMES and LBL, and source line batch erase driver SMED arranged at a desired intersection of source line batch erase signals SMES and LSL Composed. Each MC is composed of a memory cell transistor composed of an NMOS transistor and a resistance change type memory element having one end connected to its drain. The other end of the memory element is connected to the corresponding LBL, and the source of the memory cell transistor is connected to the corresponding LSL.
メモリ素子は、前述した図2(b)や図4(b)に示すような電気特性を備えている。メモリ素子に示した矢印は、メモリセルを論理値‘1’状態に変化させるために流す電流の向きを示している。図2(b)に示す電流電圧特性を示す抵抗変化型メモリ素子を用いたメモリセルでは、LBLからLSLに電流を流し、LBLとLSLの電位差が低抵抗化(ON)しきい電圧を超えた場合にON状態となり、LBLからLSLに電流を流し、LBLとLSLの電位差が高抵抗化(OFF)しきい電圧を超えた場合にOFF状態となる。一方、図4(b)に示すような電気特性を示す抵抗変化型メモリ素子を用いたメモリセルでは、LBLからLSLに電流を流し、LBLとLSLの電位差がONしきい電圧を超えた場合にON状態となり、逆にLSLからLBLに電流を流し、LSLとLBLの電位差がOFFしきい電圧を超えた場合にOFF状態となる。
The memory element has electrical characteristics as shown in FIG. 2 (b) and FIG. 4 (b). The arrow shown in the memory element indicates the direction of the current that flows to change the memory cell to the logic value “1” state. In the memory cell using the resistance change type memory element having the current-voltage characteristics shown in FIG. 2B, a current is passed from LBL to LSL, and the potential difference between LBL and LSL exceeds the low resistance (ON) threshold voltage. In this case, a current is passed from LBL to LSL, and it is turned OFF when the potential difference between LBL and LSL exceeds the high resistance (OFF) threshold voltage. On the other hand, in the memory cell using the resistance change type memory element having the electrical characteristics as shown in FIG. 4B, when a current flows from LBL to LSL and the potential difference between LBL and LSL exceeds the ON threshold voltage, On the other hand, when the current flows from LSL to LBL and the potential difference between LSL and LBL exceeds the OFF threshold voltage, the OFF state is entered.
図18(a)~(d)は、図15におけるメモリセルMCの各種構成例を示した回路図である。図18において、メモリセルトランジスタのゲートをG、ソースをS、ドレインをDとする。図18(a)では、ゲートGがWL、ドレインDがLBL、ソースSが抵抗変化型メモリ素子にそれぞれ接続され、メモリ素子はLBLからLSLに電流が流れると低抵抗化するように配置される。図18(b)では、ゲートGがWLm、ソースSがLSL、ドレインDが抵抗変化型メモリ素子に接続され、メモリ素子はLBLからLSLに電流が流れると低抵抗化するように配置される。図18(c)では、ゲートGがWL、ソースSが抵抗変化型メモリ素子、ドレインDがLBLに接続され、メモリ素子はLSLからLBLに電流を流すと低抵抗化するように配置される。図18(d)では、ゲートGがWLm、ソースSがLSL、ドレインDが抵抗変化型メモリ素子に接続され、メモリ素子はLSLからLBLに電流が流れると低抵抗化するように配置されている。
FIGS. 18A to 18D are circuit diagrams showing various configuration examples of the memory cell MC in FIG. In FIG. 18, the gate of the memory cell transistor is G, the source is S, and the drain is D. In FIG. 18A, the gate G is connected to the WL, the drain D is connected to the LBL, the source S is connected to the resistance change type memory element, and the memory element is arranged so that the resistance is reduced when a current flows from the LBL to the LSL. . In FIG. 18B, the gate G is WLm, the source S is LSL, the drain D is connected to the resistance change memory element, and the memory element is arranged so that the resistance is reduced when a current flows from LBL to LSL. In FIG. 18C, the gate G is connected to the WL, the source S is connected to the resistance change memory element, the drain D is connected to the LBL, and the memory element is arranged so as to reduce the resistance when a current is passed from the LSL to the LBL. In FIG. 18D, the gate G is WLm, the source S is LSL, the drain D is connected to the resistance change type memory element, and the memory element is arranged so that the resistance is reduced when a current flows from LSL to LBL. .
図19は、図15におけるセンスアンプSAの構成例を示す回路図である。図19に示すセンスアンプSAは、読み出し部RAMPと書込み部WAMP(U/L)と、ローカル入出力線スイッチIOGから構成される。RAMPとIOGは、センスアンプの上側のグローバルビット線GBLUを駆動する書込み部WAMPUとセンスアンプ下部のグローバルビット線GBLLを駆動する書込み部WAMPLとで共有される。RAMPを上下のメモリセルアレーで共有する構造をとっており、センスアンプ回路の面積低減に役立つ。WAMPとRAMPは、アクティブハイのセンスアンプアウト信号線SAOtとグローバルビット線GBLで接続される。IOGとRAMPは、SAOtとSAObで接続される。IOGとWAMPはSAOtで接続される。
FIG. 19 is a circuit diagram showing a configuration example of the sense amplifier SA in FIG. The sense amplifier SA shown in FIG. 19 includes a read unit RAMP, a write unit WAMP (U / L), and a local input / output line switch IOG. RAMP and IOG are shared by the write unit WAMPU that drives the global bit line GBLU above the sense amplifier and the write unit WAMPL that drives the global bit line GBLL below the sense amplifier. The RAMP is shared by the upper and lower memory cell arrays, which is useful for reducing the area of the sense amplifier circuit. WAMP and RAMP are connected by an active high sense amplifier out signal line SAOt and a global bit line GBL. IOG and RAMP are connected by SAOt and SAOb. IOG and WAMP are connected by SAOt.
読み出し部RAMPは、例えば、リードスイッチRSW(U/L)、2つのリードドライバRD、クロスカップルCC、プリチャージ回路PCC、読出しリファレンス回路RRCから構成される。RRCは、例えば2個のMOSトランジスタとリファレンス負荷REFから構成され、リードイネーブル信号RET、ワード線イネーブル信号WLEで制御される。RSWUは、上部メモリセルリードイネーブル線RETUで制御される。RSWLは、下部メモリセルリードイネーブル線RETLで制御される。CCはセンスアンプイネーブル信号SAEで制御される。RDは読み出し電流制御線SAPGで制御される。PCCはセンスアンプイコライズ信号SAEQによって制御される。PCCはスタンバイ時にSAOtおよびSAObをVBHに充電するためのプリチャージ回路であり、SAEQによって制御される。
The read unit RAMP includes, for example, a read switch RSW (U / L), two read drivers RD, a cross couple CC, a precharge circuit PCC, and a read reference circuit RRC. The RRC is composed of, for example, two MOS transistors and a reference load REF, and is controlled by a read enable signal RET and a word line enable signal WLE. RSWU is controlled by an upper memory cell read enable line RETU. RSWL is controlled by a lower memory cell read enable line RETL. CC is controlled by a sense amplifier enable signal SAE. RD is controlled by a read current control line SAPG. PCC is controlled by a sense amplifier equalize signal SAEQ. PCC is a precharge circuit for charging SAOt and SAOb to VBH during standby, and is controlled by SAEQ.
以下に読み出し時のRAMPの動作について説明する。まず、センスアンプイコライズ信号SAEQがロウからハイになりプリチャージが終了する。次に、読み出し電流をメモリセルに流す。読み出し電流は、電源電圧VDDとSAPGによりゲート電位を制御されるPMOS負荷(RD)によって決定される。SA上部のメモリセルを読み出す場合、RETUが選択され、SA下部のメモリセルを読み出す場合、RETLが選択される。読み出し電流は電源VDDから負荷PMOSを経由し、センスノードSNを通って、RETUもしくはRETLによって選択されたグローバルビット線に流れる。リファレンス用の電流はVDDから負荷PMOSを経由し、リファレンスセンスノードSNREFを通って、メモリセルへの電流経路を模擬したリファレンス負荷REFを通って接地電圧VSSに流れる。読み出すメモリセルの抵抗値が高い場合、すなわち論理値‘0’の場合、SNの電位はSNREFの電位より高くなる。これはメモリセルでの電圧降下がREFでの電圧降下よりも大きいためである。
The operation of RAMP at the time of reading will be described below. First, the sense amplifier equalize signal SAEQ changes from low to high and precharge ends. Next, a read current is passed through the memory cell. The read current is determined by a PMOS load (RD) whose gate potential is controlled by the power supply voltages VDD and SAPG. When reading memory cells above SA, RETU is selected, and when reading memory cells below SA, RETL is selected. The read current flows from the power supply VDD via the load PMOS, through the sense node SN, and to the global bit line selected by RETU or RETL. The reference current flows from VDD through the load PMOS, through the reference sense node SNREF, and through the reference load REF simulating a current path to the memory cell to the ground voltage VSS. When the resistance value of the memory cell to be read is high, that is, when the logic value is “0”, the potential of SN becomes higher than the potential of SNREF. This is because the voltage drop at the memory cell is larger than the voltage drop at REF.
SNとSNREFの電位差は、センスアンプイネーブルSAEによって活性化されるクロスラッチによってSAOtが電圧VBHに、SAObがVSSに増幅される。読み出すメモリセルの抵抗値が低い場合、すなわち論理値‘1’の場合、SNの電位はSNREFの電位よりも低くなる。これはメモリセルでの電圧降下がREFでの電圧降下よりも小さいためである。SNとSNREFの電位差は、前記クロスカップルにおいてSAOtがVSS、SAObがVBHに増幅される。列選択線YSによってSAOtおよびSAObに読み出されたメモリ情報は、ローカル入出力線LIOtおよびLIObに読み出される。
The potential difference between SN and SNREF is amplified by SAOt to voltage VBH and SAOb to VSS by the cross latch activated by sense amplifier enable SAE. When the resistance value of the memory cell to be read is low, that is, when the logical value is “1”, the potential of SN is lower than the potential of SNREF. This is because the voltage drop at the memory cell is smaller than the voltage drop at REF. In the potential difference between SN and SNREF, SAOt is amplified to VSS and SAOb is amplified to VBH in the cross couple. Memory information read to SAOt and SAOb by column selection line YS is read to local input / output lines LIOt and LIOb.
以下に書込み回路WAMPの動作について説明する。メモリセルを高抵抗状態にする場合、すなわち論理値‘0’に書き込む場合、列選択線YSが選択されると、LIOtによってSAOtが接地電位に向かって充電され、LIObによってSAObがVBHに向かって充電される。RETはロウであるので、SNおよびSNREFはVDDに近い電位に充電されており、SAEがONするとクロスラッチによりSAOtがVSSに、SAObがVBHに充電される。アクティブハイのライトイネーブル信号WETとアクティブロウのライトイネーブル信号WEBがアクティベートされると、SAOtがロウなのでWAMPによりGBLがVSSに充電される。GSLの電位を例えばVBHに設定すると、GSLからGBLに電流が流れる。この結果、メモリセルに論理値‘0’が書き込まれる。
The operation of the write circuit WAMP will be described below. When the memory cell is brought into a high resistance state, that is, when writing to the logic value “0”, when the column selection line YS is selected, SAOt is charged toward the ground potential by LIOt, and SAOb is directed toward VBH by LIOb. Charged. Since RET is low, SN and SNREF are charged to a potential close to VDD. When SAE is turned ON, SAOt is charged to VSS and SAOb is charged to VBH by the cross latch. When the active high write enable signal WET and the active low write enable signal WEB are activated, since SAOt is low, GBL is charged to VSS by WAMP. When the potential of GSL is set to, for example, VBH, a current flows from GSL to GBL. As a result, the logical value “0” is written in the memory cell.
メモリセルを低抵抗状態にする場合、すなわち論理値‘1’に書き込む場合、列選択線YSが選択されると、LIOtによってSAOtがVBHに向かって充電され、LIObによってSAObがVSSに向かって充電される。RETはロウであるので、SNおよびSNREFはVDDに近い電位に充電されており、SAEがONするとクロスラッチによりSAOtがVBHに、SAObがVSSに充電される。アクティブハイのライトイネーブル信号WETとアクティブロウのライトイネーブル信号WEBがアクティベートされると、SAOtがハイなのでWAMPによりGBLがVBHに充電される。GSLの電位を例えばVBH/2に設定すると、GBLからGSLに電流が流れる。これによってメモリセルに論理値‘1’が書き込まれる。
When the memory cell is put into a low resistance state, that is, when writing to the logic value “1”, when the column selection line YS is selected, SAOt is charged toward VBH by LIOt, and SAOb is charged toward VSS by LIOb. Is done. Since RET is low, SN and SNREF are charged to a potential close to VDD. When SAE is turned on, SAOt is charged to VBH and SAOb is charged to VSS by the cross latch. When the active high write enable signal WET and the active low write enable signal WEB are activated, since SAOt is high, GBL is charged to VBH by WAMP. When the potential of GSL is set to, for example, VBH / 2, a current flows from GBL to GSL. As a result, a logical value “1” is written in the memory cell.
図20は、図15におけるサブワードドライバ列SWDAの構成例を示す回路図である。図15に示すように、SWDAはメモリセルアレーMCAの周辺に配置され、メモリセルアレーMCA内のワード線WLは上下のいずれかのSWDAから駆動されるため、片方のSWDAに含まれるサブワードドライバSWDの数は、MCAに含まれるWLの数の半数でよい。SWDは、1つのPMOSトランジスタと2つのNMOSトランジスタから構成される。上記PMOSトランジスタは、ゲートがメインワード線MWLBに接続され、ソースがサブワードドライバ選択線FXに接続され、ドレインがワード線WLに接続される。上記NMOSトランジスタの内の一方は、ゲートがMWLB、ソースがVSSと等しいかそれより低い負電圧VKK、ドレインがWLに接続される。上記NMOSトランジスタの内の他方は、ゲートが反転サブワードドライバ選択線FXB、ソースがVKK、ドレインがWLに接続される。
FIG. 20 is a circuit diagram showing a configuration example of the sub word driver array SWDA in FIG. As shown in FIG. 15, the SWDA is arranged around the memory cell array MCA, and the word line WL in the memory cell array MCA is driven from one of the upper and lower SWDAs, so the sub word driver SWD included in one SWDA. May be half of the number of WLs included in the MCA. The SWD is composed of one PMOS transistor and two NMOS transistors. The PMOS transistor has a gate connected to the main word line MWLB, a source connected to the sub word driver selection line FX, and a drain connected to the word line WL. One of the NMOS transistors has a gate connected to MWLB, a source equal to or lower than VSS, a negative voltage VKK, and a drain connected to WL. The other of the NMOS transistors has a gate connected to an inverted subword driver selection line FXB, a source connected to VKK, and a drain connected to WL.
図21は、図15における行制御回路XPの構成例を示す回路図である。XPは、ローカル入出力線LIOt,LIObをプリチャージするイコライズ回路REQ、ビット線選択信号ドライバBLSD、ソース線選択信号ドライバSLSD、LIOt(LIOb)とメイン入出力線MIOt(MIOb)を接続するメイン入出力ゲートRGC、ソース線選択信号ドライバSLSD、列選択線ドライバYSD、一括消去ドライバ駆動回路MESD、サブワードドライバ選択線ドライバFXDから構成される。REQは、例えば3個のPMOSトランジスタで構成され、センスアンプイコライズ信号SAEQがOFFするとLIOtおよびLIObを電圧VBHに充電する。RGCは、例えば2個のNMOSトランジスタから構成され、SAEQがONするとLIOtとMIOt、およびLIObとMIObを接続する。
FIG. 21 is a circuit diagram showing a configuration example of the row control circuit XP in FIG. XP is a main input for connecting the equalizing circuit REQ for precharging the local input / output lines LIOt and LIOb, the bit line selection signal driver BLSD, the source line selection signal driver SLSD, LIOt (LIOb) and the main input / output line MIOt (MIOb). The output gate RGC, source line selection signal driver SLSD, column selection line driver YSD, batch erase driver drive circuit MESD, and sub word driver selection line driver FXD. REQ is composed of, for example, three PMOS transistors, and charges LIOt and LIOb to voltage VBH when sense amplifier equalize signal SAEQ is turned off. The RGC is composed of, for example, two NMOS transistors and connects LIOt and MIOt, and LIOb and MIOb when SAEQ is turned on.
BLSDは、リードイネーブル信号RETとライトイネーブル信号WETと列アドレスデコード信号FYによってビット線選択信号BLSを生成する。例えば、RETとWETのOR論理とFYのAND論理をとってBLSを生成する回路構成が考えられる。SLSDは、リードイネーブル信号RETとライトイネーブル信号WETと列アドレスデコード信号FYによってソース線選択信号SLSを生成する。例えばRETとWETのOR論理とFYのAND論理をとってSLSを生成する回路構成が考えられる。YSDは、列選択イネーブル信号YSEと列プリデコード信号CFから列選択線YSを駆動する。例えばYSEとCFのAND論理を取ってYSを出力する回路構成が考えられる。
BLSD generates a bit line selection signal BLS by a read enable signal RET, a write enable signal WET, and a column address decode signal FY. For example, a circuit configuration in which BLS is generated by taking the OR logic of RET and WET and the AND logic of FY can be considered. The SLSD generates a source line selection signal SLS by a read enable signal RET, a write enable signal WET, and a column address decode signal FY. For example, a circuit configuration that generates an SLS by taking the OR logic of RET and WET and the AND logic of FY can be considered. YSD drives the column selection line YS from the column selection enable signal YSE and the column predecode signal CF. For example, a circuit configuration that takes the AND logic of YSE and CF and outputs YS can be considered.
MESDは、アクティブハイの一括消去信号MESTからソース線一括消去信号SMESとビット線一括消去信号BMESを生成する。例えばMESTの2段のNOT論理を取ってSMESを出力し、MESTのNOT論理をとってBMESを出力する回路構成が考えられる。FXDは、反転サブワードドライバ選択線FXBからサブワードドライバ選択線FXを生成する。例えば、FXBと同じ数のNOT論理回路から構成される。このFXDにおいて、すべてのNOT論理回路(インバータ回路)の‘H’側電源は、電源スイッチPSWにより制御される。PSWは、ソースがVDDbに接続され、ゲートは周辺回路電源制御信号PSSbに接続される。前述したデフラグ機能によって、未使用となったアレー部分のサブワードドライバ選択線は、PSWにより電源供給が遮断されるため、消費電力を削減することができる。
MESD generates a source line batch erase signal SMES and a bit line batch erase signal BMES from the active high batch erase signal MEST. For example, a circuit configuration in which the MEST two-stage NOT logic is output and SMES is output, and the MEST NOT logic is output and BMES is output is conceivable. FXD generates a sub word driver selection line FX from the inverted sub word driver selection line FXB. For example, it is composed of the same number of NOT logic circuits as FXB. In this FXD, the 'H' side power supply of all NOT logic circuits (inverter circuits) is controlled by a power switch PSW. The source of PSW is connected to VDDb and the gate is connected to the peripheral circuit power supply control signal PSSb. With the above-described defragmentation function, the power supply of the sub-word driver selection line in the array portion that has not been used is cut off by the PSW, so that power consumption can be reduced.
図22は、図15におけるアレーコントロール回路ACCの構成例を示す回路図である。ACCは、図12に示した制御回路CNTLで生成されたタイミング信号からセンスアンプを制御する信号群を生成する。ACCは、マット選択反転信号MSBからセンスアンプイコライズ信号SAEQを、MSBとセンスアンプイネーブル元信号SAE0からセンスアンプイネーブル信号SAEを、リードイネーブル信号REからセンスアンプ制御用のリードイネーブル信号RETを、ワード線イネーブル元信号WLE0からワード線イネーブル信号WLEを、ライトイネーブル信号WEからセンスアンプ制御用のライトイネーブル信号WETをそれぞれ生成する。例えばSAEQはMSBを反転することで生成される。SAEは、MSBの反転信号とSAE0のAND論理をとって生成される。RETはMSBの反転信号とREのAND論理をとって生成される。WLEはMSBの反転信号とWLE0のAND論理をとって生成される。WETはMSBの反転信号とWEのAND論理をとって生成される。
FIG. 22 is a circuit diagram showing a configuration example of the array control circuit ACC in FIG. The ACC generates a signal group for controlling the sense amplifier from the timing signal generated by the control circuit CNTL shown in FIG. The ACC includes a sense amplifier equalize signal SAEQ from the mat selection inversion signal MSB, a sense amplifier enable signal SAE from the MSB and the sense amplifier enable source signal SAE0, a read enable signal RET for controlling the sense amplifier from the read enable signal RE, and a word line. A word line enable signal WLE is generated from the enable source signal WLE0, and a write enable signal WET for controlling the sense amplifier is generated from the write enable signal WE. For example, SAEQ is generated by inverting MSB. SAE is generated by taking the AND logic of the inverted signal of MSB and SAE0. RET is generated by taking the AND logic of the inverted signal of MSB and RE. WLE is generated by taking the AND logic of the inverted signal of MSB and WLE0. WET is generated by taking the AND logic of the inverted signal of MSB and WE.
図23は、図19~図22に示す回路を用いて、メモリセルに記憶されている情報を読み出す場合の動作例を示す波形図である。まず、スタンバイ状態について説明する。スタンバイ状態では、図19のセンスノードSNとリファレンスセンスノードSNREFはVDDに充電されている。センスアンプアウト信号線SAOとローカル入出力線LIOはVBHに充電されている。クロックCLKと同期してACTコマンドが入力されると、図22に示すACCで作られるSAEQとRETがVSSからVDDに充電される。RETとワード線イネーブル信号WLEを同期したタイミングでワード線WLとビット線選択信号BLSが接地電位よりも低い負電圧VKKから昇圧電圧VPPに充電される。その結果、入力アドレスによって指定されたメモリセルが選択され、読み出し電流が流れる。
FIG. 23 is a waveform diagram showing an operation example when information stored in a memory cell is read using the circuits shown in FIGS. First, the standby state will be described. In the standby state, the sense node SN and the reference sense node SNREF in FIG. 19 are charged to VDD. The sense amplifier out signal line SAO and the local input / output line LIO are charged to VBH. When an ACT command is input in synchronization with the clock CLK, SAEQ and RET created by ACC shown in FIG. 22 are charged from VSS to VDD. The word line WL and the bit line selection signal BLS are charged from the negative voltage VKK lower than the ground potential to the boost voltage VPP at the timing when the RET and the word line enable signal WLE are synchronized. As a result, the memory cell specified by the input address is selected, and a read current flows.
WLEがVKKからVPPに充電されるとリファレンスセンスノードSNREFがVDDからリファレンス負荷によって設定されたリファレンス電位に向かって下がっていく。リファレンス電位を例えばVDD/2となるように設定すると読み出しマージンを大きく設定することができる。読み出し電流が流れると、センスノードSNがメモリセルの抵抗状態に応じて変化する。メモリセルが低抵抗状態、すなわちON状態の場合、VSSに近い電位になり、メモリセルが高抵抗状態、すなわちOFF状態の場合、VDDからあまり下がらない電位になる。このとき、SNとSNREFの電位に応じてセンスアンプアウト信号線SAOtとSAObの電位が、メモリセルがON状態の場合VBHからあまり下がらず、メモリセルがOFF状態の場合、VSSに向かって下がっていく。SNの状態が定常状態になるタイミングでセンスアンプイネーブル信号SAEがONする。すると、SAOtの状態がメモリセルの状態に応じてONならVBHに、OFFならVSSに充電される。
When WLE is charged from VKK to VPP, the reference sense node SNREF decreases from VDD toward the reference potential set by the reference load. When the reference potential is set to VDD / 2, for example, the read margin can be set large. When the read current flows, the sense node SN changes according to the resistance state of the memory cell. When the memory cell is in a low resistance state, that is, in an ON state, the potential is close to VSS, and when the memory cell is in a high resistance state, that is, in an OFF state, the potential is not much lower than VDD. At this time, the potentials of the sense amplifier out signal lines SAOt and SAOb do not drop much from VBH when the memory cell is in the ON state, and drop toward VSS when the memory cell is in the OFF state according to the potentials of SN and SNREF. Go. The sense amplifier enable signal SAE is turned ON at the timing when the SN state becomes a steady state. Then, if the state of SAOt is ON according to the state of the memory cell, it is charged to VBH, and if it is OFF, it is charged to VSS.
このようにして、メモリセルの状態がセンスアンプの読み出し部でラッチされた状態で、READコマンドが入力されると、列選択信号YSがVKKからVPPに充電され、ローカル入出力線LIOにメモリ情報が出力される。その後PREコマンドが入力されると、WLとBLSがVPPからVKKになり、その後SAEがVDDからVSSに下がり、SAEQ、RETがVDDからVSSに、WLEがVPPからVKKに下がる。その結果、SNとSNREFがVDDになり、SAOtとSAObがVBHにプリチャージされ、スタンバイ状態に戻り、読み出し動作が終了する。
In this way, when the READ command is input while the memory cell state is latched by the read section of the sense amplifier, the column selection signal YS is charged from VKK to VPP, and the memory information is stored in the local input / output line LIO. Is output. When a PRE command is subsequently input, WL and BLS change from VPP to VKK, then SAE decreases from VDD to VSS, SAEQ and RET decrease from VDD to VSS, and WLE decreases from VPP to VKK. As a result, SN and SNREF become VDD, SAOt and SAOb are precharged to VBH, return to the standby state, and the read operation ends.
図24は、図19~図22に示す回路を用いて、メモリセルに情報を書き込む場合の動作例を示す波形図である。スタンバイ状態は図23で説明した状態と同じである。クロックCLKと同期してACTコマンドが入力されると、図12に記載の制御回路CNTLで生成されたタイミングに同期してセンスアンプイコライズ信号SAEQがVSSからVDDになり、センスアンプのイコライズが終了する。ワード線WLがVSSより低い負電圧VKKから昇圧電圧VPPにあがるとメモリセルに情報を書き込む準備が整う。列選択線YSが選択されると、書込みを行うセンスアンプが決定し、書き込みを行う情報に応じて充電されたローカル入出力線LIOによりセンスアンプアウト信号線SAOが所望のレベルに充電され始める。センスアンプイネーブル信号がVSSからVDDになると、センスアンプのラッチ部分がONし、書込み情報がラッチされ、SAOがON状態を書く場合にはVBHに、OFF状態を書く場合にはVSSに確定される。
FIG. 24 is a waveform diagram showing an operation example when information is written in the memory cell using the circuits shown in FIGS. The standby state is the same as the state described in FIG. When the ACT command is input in synchronization with the clock CLK, the sense amplifier equalization signal SAEQ changes from VSS to VDD in synchronization with the timing generated by the control circuit CNTL shown in FIG. 12, and the equalization of the sense amplifier is completed. . When the word line WL rises from the negative voltage VKK lower than VSS to the boosted voltage VPP, preparation for writing information into the memory cell is completed. When the column selection line YS is selected, a sense amplifier that performs writing is determined, and the sense amplifier out signal line SAO starts to be charged to a desired level by the local input / output line LIO that is charged according to the information to be written. When the sense amplifier enable signal changes from VSS to VDD, the latch portion of the sense amplifier is turned ON, and the write information is latched. When SAO writes the ON state, it is determined as VBH, and when the OFF state is written, it is determined as VSS. .
ライトイネーブル信号WETがVSSからVDDになると、センスアンプの書込み部がONし、グローバルビット線GBLに対してON状態を書き込む場合にはVBHを、OFF状態を書き込む場合にはVSSを出力する。これにより、メモリセルには所望のデジタル情報が書き込まれる。PREコマンドがクロックと同期して入力されると、ワード線WLがVPPからVKKになり、これを受けてSAEがVDDからVSSになる。その後SAEQがVSSからVDDになり、これと同時にSAOがVBHにプリチャージされる。こうしてスタンバイ状態に戻り、書込み動作が終了する。
When the write enable signal WET changes from VSS to VDD, the writing unit of the sense amplifier is turned on, and VBH is output when writing the ON state to the global bit line GBL, and VSS is output when writing the OFF state. Thereby, desired digital information is written in the memory cell. When the PRE command is input in synchronization with the clock, the word line WL changes from VPP to VKK, and in response, SAE changes from VDD to VSS. Thereafter, SAEQ changes from VSS to VDD, and at the same time, SAO is precharged to VBH. Thus, the standby state is restored and the write operation is completed.
図6(a)に示した自動デフラグと、図6(c)に示した一括消去ブロックへのデフラグでは、アドレス変換テーブルATTのエントリが参照された後、図23に示す制御によりデフラグ対象の情報が読み出され、図24に示す制御により新たな実アドレスに当該情報が書き込まれる。図6(b)に示した外部システムからのコマンドによるデフラグでは、デフラグコマンドが入力された後、図23に示す制御によりデフラグ対象の情報が読み出され、図24に示す制御により新たな実アドレスに当該情報が書き込まれる。
In the automatic defragmentation shown in FIG. 6A and the defragmentation to the batch erase block shown in FIG. 6C, after the entry of the address conversion table ATT is referred to, the information to be defragmented is controlled by the control shown in FIG. Is read and the information is written to a new real address by the control shown in FIG. In the defragmentation by the command from the external system shown in FIG. 6B, after the defragmentation command is input, the information to be defragmented is read by the control shown in FIG. 23, and the new real address is obtained by the control shown in FIG. This information is written in
図25(a)、(b)は、図1のメモリ部MBにおいて、ロウパワーモードとノーマルモードを切り替える際のそれぞれ異なるシーケンスを示した波形図である。図25(a)は、メモリバンク全体の電源制御を行うシーケンスであり、図25(b)は、センスアンプSA周りと、サブワードドライバSWDの電源制御を行うシーケンスである。
25 (a) and 25 (b) are waveform diagrams showing different sequences when the low power mode and the normal mode are switched in the memory unit MB of FIG. FIG. 25A is a sequence for performing power control for the entire memory bank, and FIG. 25B is a sequence for performing power control for the sense amplifier SA and the sub word driver SWD.
まず、図13を参照して、図25(a)の波形について説明する。初期状態をロウパワーモードとすると、このとき、周辺回路電源制御元信号PSSb0とマット選択反転信号MSBはVDDになっている。この状態からMSBがVSSに放電されるとノーマルモードに移行する。これを受けて、バンク用周辺回路電源電圧VDDbがVSSから周辺回路電源電圧VDDに充電され、バンク用メモリセル書込み電圧VBHbがVSSからメモリセル書込み電圧VBHに充電される。続いて、ノーマルモードからロウパワーモードに移るときの波形について説明する。ロウパワーモードを用いるので、PSSb0はVDDに充電されたままの状態である。MSBがVSSからVDDに充電されると、PSSb0とMSBのAND論理が取られる。これにより、VDDbとVBHbがVSSに放電され、ロウパワーモードに移行する。VDDbとVBHbを放電するドライバが存在しない場合は、VDDbとVBHbは自然に放電される。これによって、MSBで選択されないメモリバンクの電源供給が遮断される。
First, the waveform of FIG. 25A will be described with reference to FIG. If the initial state is the low power mode, then the peripheral circuit power source control source signal PSSb0 and the mat selection inversion signal MSB are VDD. When the MSB is discharged to VSS from this state, it shifts to the normal mode. In response, bank peripheral circuit power supply voltage VDDb is charged from VSS to peripheral circuit power supply voltage VDD, and bank memory cell write voltage VBHb is charged from VSS to memory cell write voltage VBH. Subsequently, a waveform when the normal mode is changed to the low power mode will be described. Since the low power mode is used, PSSb0 remains charged to VDD. When MSB is charged from VSS to VDD, the AND logic of PSSb0 and MSB is taken. As a result, VDDb and VBHb are discharged to VSS and shift to the low power mode. When there is no driver for discharging VDDb and VBHb, VDDb and VBHb are naturally discharged. As a result, power supply to memory banks not selected by the MSB is cut off.
次に、図13を参照して、図25(b)の波形について説明する。初期状態は、図25(a)で述べたロウパワーモードであり、そのときのMSB、VDDb、VBHbの電圧レベルは図25(a)と同じである。メモリセルアレー選択信号MCASがVSSからVDDに充電されると、その前にMSBが必然的に選択されているのでVDDbおよびVBHbはVDDおよびVBHに充電された状態である。MCASがVDDに充電されるとPSSbはVDDからVSSに放電される。これにより、図16や図21に示すように、選択されたメモリセルアレーに関係するドライバへの電源供給のみが行われ、ノーマルモードに移行する。選択メモリセルアレーのドライバの電源のみが供給されるため、アクティブ時の消費電力を最低限まで下げることが可能となる。
Next, the waveform of FIG. 25B will be described with reference to FIG. The initial state is the low power mode described in FIG. 25A, and the voltage levels of the MSB, VDDb, and VBHb at that time are the same as those in FIG. When the memory cell array selection signal MCAS is charged from VSS to VDD, since MSB is inevitably selected before that, VDDb and VBHb are charged to VDD and VBH. When MCAS is charged to VDD, PSSb is discharged from VDD to VSS. As a result, as shown in FIGS. 16 and 21, only the power supply to the driver related to the selected memory cell array is performed, and the normal mode is entered. Since only the power source of the driver of the selected memory cell array is supplied, it is possible to reduce the power consumption when active.
図26は、図17のサブメモリセルアレーSMCAに対して一括消去を行う場合の第1制御シーケンスを示す波形図である。図21において、一括消去信号MESTがVSSからVDDに充電されると、ビット線一括消去信号BMESがVDDからVSSに放電され、ソース線一括消去信号SMESがVSSからVDDに充電される。これにより、図17において、ローカルビット線LBLがVSSからVDDに充電され、ローカルソース線LSLがVSSにクランプされる。この状態で図26に示すように、ワード線WLを1本ずつ次々とVKKからVPPにパルス駆動していく。一括消去ブロックに含まれるすべてのWLをパルス駆動した後、MESTをVSSに放電する。これによりBMESがVSSからVDDに充電され、SMESがVDDからVSSに放電される。これを受けてLBLがVDDからVSSに放電され、一括消去が終了する。
FIG. 26 is a waveform diagram showing a first control sequence when batch erasure is performed on the sub memory cell array SMCA of FIG. In FIG. 21, when the batch erase signal MEST is charged from VSS to VDD, the bit line batch erase signal BMES is discharged from VDD to VSS, and the source line batch erase signal SMES is charged from VSS to VDD. Accordingly, in FIG. 17, the local bit line LBL is charged from VSS to VDD, and the local source line LSL is clamped to VSS. In this state, as shown in FIG. 26, the word lines WL are pulse-driven one after another from VKK to VPP. After all the WLs included in the batch erase block are pulse-driven, MEST is discharged to VSS. As a result, BMES is charged from VSS to VDD, and SMES is discharged from VDD to VSS. In response to this, LBL is discharged from VDD to VSS, and batch erasure is completed.
図27は、図26とは異なる第2制御シーケンスを示す波形図である。図27に示す第2制御シーケンスは、図26の第1制御シーケンスと比較して、MEST、BMES、SMES、LBL、およびLSLの動作は同様であるが、一度に活性化するWLの本数が異なっている。例えば、一度にWL0からWLkのk+1本を単位として同時に活性化する。このようにドライバの電流駆動能力が許す範囲でWLを複数本同時に活性化することで、一括消去にかかる時間を短縮可能となる。
FIG. 27 is a waveform diagram showing a second control sequence different from FIG. The second control sequence shown in FIG. 27 is similar in operation to MEST, BMES, SMES, LBL, and LSL as compared to the first control sequence shown in FIG. 26, but is different in the number of WLs activated at one time. ing. For example, activation is simultaneously performed in units of k + 1 from WL0 to WLk at a time. Thus, by simultaneously activating a plurality of WLs within the range allowed by the current driving capability of the driver, the time required for batch erasing can be shortened.
図28は、図17のサブメモリセルアレーSMCAに図18(a)または図18(c)のメモリセルMCを適用した場合の主要部のレイアウト構成例を示す平面図である。図28に示すSMCAでは、2本のワード線WLごとにダミーワード線DWLが備わっている。これにより、メモリセルトランジスタのソース・ドレイン領域となる拡散層N+のマスクを簡略にすることが可能となる。ビット線コンタクトBLCは、ダミーワード線DWLの間でローカルビット線LBLが延伸する方向に隣接配置された2個のメモリセルMCで共有される。ローカルビット線LBLとローカルソース線LSLは、平行に形成されるが、レイヤーの高さが異なる。点線の四角で囲まれた部分は1ビットのメモリセルMCをあらわしており、そのセル面積は、プロセスノードをFとすると6F2となり、最新のDRAMのセル面積と同等レベルである。しかし、抵抗変化型メモリ素子は、DRAMのキャパシタに比べて製造が容易であり、1T1C型DRAMが製造困難な微細プロセスにおいても1T1R型メモリは製造が可能である。
FIG. 28 is a plan view showing a layout configuration example of main parts when the memory cell MC of FIG. 18A or FIG. 18C is applied to the sub memory cell array SMCA of FIG. In the SMCA shown in FIG. 28, a dummy word line DWL is provided for every two word lines WL. As a result, the mask of the diffusion layer N + that becomes the source / drain region of the memory cell transistor can be simplified. The bit line contact BLC is shared by two memory cells MC arranged adjacent to each other in the direction in which the local bit line LBL extends between the dummy word lines DWL. The local bit line LBL and the local source line LSL are formed in parallel, but have different layer heights. A portion surrounded by a dotted square represents a 1-bit memory cell MC, and its cell area is 6F2 when the process node is F, which is the same level as the cell area of the latest DRAM. However, the resistance change type memory element is easier to manufacture than the DRAM capacitor, and the 1T1R type memory can be manufactured even in a fine process in which the 1T1C type DRAM is difficult to manufacture.
図29(a)~(c)は、図28におけるA-A’間のそれぞれ異なる構造例を示す断面図である。図29(a)は、ローカルビット線LBLがローカルソース線LSLよりも上のレイヤーに配置される例であり、図29(b)は、LBLがLSLよりも下のレイヤーで、かつ抵抗変化型メモリ素子MDがLBLよりも上のレイヤーに配置される例である。図29(c)は、LBLがLSLよりも下のレイヤーで、かつ抵抗変化型メモリ素子MDがLBLよりも下のレイヤーに配置される例である。なお、図29(a)~(c)において、ダミーワード線DWLの下部に形成されるSTIは素子分離用の絶縁膜であり、SLCはソース線コンタクトであり、SUBは半導体基板であり、CONTはコンタクトである。図29(b)に示す構造は、抵抗変化型メモリ素子MDよりも上のレイヤーにおける製造プロセスが少ないため、歩留まりが向上すると考えられる。
29 (a) to 29 (c) are cross-sectional views showing examples of different structures between A and A 'in FIG. FIG. 29A shows an example in which the local bit line LBL is arranged in a layer above the local source line LSL, and FIG. 29B shows a resistance change type in which LBL is a layer below the LSL. This is an example in which the memory element MD is arranged in a layer above the LBL. FIG. 29C shows an example in which LBL is arranged in a layer below LSL and the resistance change type memory element MD is arranged in a layer below LBL. 29A to 29C, STI formed below the dummy word line DWL is an insulating film for element isolation, SLC is a source line contact, SUB is a semiconductor substrate, and CONT Is a contact. The structure shown in FIG. 29B is considered to improve the yield because there are few manufacturing processes in the layer above the resistance change type memory element MD.
(実施の形態2)
図30は、本発明の実施の形態2による半導体装置において、その主要部の構成例を示すブロック図である。図30に示す半導体装置は、図1に示した半導体装置と比較して、前述したアドレス変換機能(アドレス変換回路ATCおよびアドレス変換テーブルATT)が、メモリチップ外に設けられたメモリコントローラに備わっている点が特徴となっている。上記構成を用いることで、メモリチップの構造を簡素化できると共に、メモリチップの記憶容量を増大させることが可能となる。メモリコントローラ内のアドレス変換テーブルATTは、抵抗変化型素子で構成されなくてもよい。ただし、不揮発性を有するメモリ素子で構成されることが望ましい。ATTを不揮発化することで、メモリコントローラの電源を切ってもアドレス変換情報が保持される利点がある。また、スタンバイ時の消費電力を減らすことができる利点もある。 (Embodiment 2)
FIG. 30 is a block diagram showing a configuration example of main parts of the semiconductor device according to the second embodiment of the present invention. Compared to the semiconductor device shown in FIG. 1, the semiconductor device shown in FIG. 30 has the above-described address conversion function (address conversion circuit ATC and address conversion table ATT) provided in a memory controller provided outside the memory chip. The feature is that. By using the above configuration, the structure of the memory chip can be simplified, and the storage capacity of the memory chip can be increased. The address conversion table ATT in the memory controller may not be composed of resistance change elements. However, it is desirable to be composed of a non-volatile memory element. By making the ATT non-volatile, there is an advantage that the address translation information is retained even when the memory controller is turned off. In addition, there is an advantage that power consumption during standby can be reduced.
図30は、本発明の実施の形態2による半導体装置において、その主要部の構成例を示すブロック図である。図30に示す半導体装置は、図1に示した半導体装置と比較して、前述したアドレス変換機能(アドレス変換回路ATCおよびアドレス変換テーブルATT)が、メモリチップ外に設けられたメモリコントローラに備わっている点が特徴となっている。上記構成を用いることで、メモリチップの構造を簡素化できると共に、メモリチップの記憶容量を増大させることが可能となる。メモリコントローラ内のアドレス変換テーブルATTは、抵抗変化型素子で構成されなくてもよい。ただし、不揮発性を有するメモリ素子で構成されることが望ましい。ATTを不揮発化することで、メモリコントローラの電源を切ってもアドレス変換情報が保持される利点がある。また、スタンバイ時の消費電力を減らすことができる利点もある。 (Embodiment 2)
FIG. 30 is a block diagram showing a configuration example of main parts of the semiconductor device according to the second embodiment of the present invention. Compared to the semiconductor device shown in FIG. 1, the semiconductor device shown in FIG. 30 has the above-described address conversion function (address conversion circuit ATC and address conversion table ATT) provided in a memory controller provided outside the memory chip. The feature is that. By using the above configuration, the structure of the memory chip can be simplified, and the storage capacity of the memory chip can be increased. The address conversion table ATT in the memory controller may not be composed of resistance change elements. However, it is desirable to be composed of a non-volatile memory element. By making the ATT non-volatile, there is an advantage that the address translation information is retained even when the memory controller is turned off. In addition, there is an advantage that power consumption during standby can be reduced.
また、前述したバンク制御回路BCCや、図17等で述べたような一括消去用の各回路は、メモリチップ内に設けられる。前述したデフラグ機能により、メモリコントローラからメモリチップに出力されるアドレス空間が局在化されるため、メモリチップは、BCCを用いてアクセスが行われないメモリバンクの電源供給を遮断することができる。なお、一括消去を行う際には、例えば、メモリコントローラからメモリチップに向けて、一括消去用のコマンドやアドレスを別途発行し、それを受けてメモリチップが動作するように構成すればよい。
Further, the bank control circuit BCC described above and each circuit for batch erasure as described in FIG. 17 and the like are provided in the memory chip. Since the address space output from the memory controller to the memory chip is localized by the defragmentation function described above, the memory chip can cut off the power supply of the memory bank that is not accessed using the BCC. Note that when performing batch erase, for example, a command or address for batch erase may be separately issued from the memory controller to the memory chip, and the memory chip may be operated in response thereto.
以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
As described above, the invention made by the present inventor has been specifically described based on the embodiment. However, the present invention is not limited to the embodiment, and various modifications can be made without departing from the scope of the invention.
本発明の半導体装置は、抵抗変化型メモリを備えたメモリチップに適用して特に有益な技術であり、これに限らず、マイクロプロセッサやDSP(Digital Signal Processor)等のロジックチップに内蔵されるオンチップメモリ等に対しても適用可能である。
The semiconductor device of the present invention is a technology that is particularly useful when applied to a memory chip having a resistance change type memory, and is not limited to this, and is an on-chip incorporated in a logic chip such as a microprocessor or a DSP (Digital Signal Processor). It can also be applied to a chip memory or the like.
A0~An アドレス
ACC アレー制御回路
ATC アドレス変換回路
ATT アドレス変換テーブル
BANK メモリバンク
BCC バンク制御回路
BLC ビット線コンタクト
BLS ビット線選択信号
BMED ビット線一括消去ドライバ
BMES ビット線一括消去信号
CC クロスカップル
CF 列プリデコード信号
CNTL 制御回路
CONT 拡散層コンタクト
DB データバッファ
DQ0~DQn データ
DQC 入出力回路
DWL ダミーワード線
EL 固体電解質
FX サブワードドライバ選択信号
FXB 反転サブワードドライバ選択信号
FY 列デコード信号
GBL グローバルビット線
GSL グローバルソース線
I/O CTL 入出力制御回路
I/OB 入出力バッファ
IOG 入出力ゲート
LBL ローカルビット線
LBLS ローカルビット線選択スイッチ
LBLSA ローカルビット線選択スイッチ列
LBLSA ローカルビット線選択スイッチ列
LIO ローカル入出力線
LIOb 反転ローカル入出力線
LIOt ローカル入出力線
LL 下部電極
LSL ローカルソース線
LSLS ローカルソース線選択スイッチ
LSLSA ローカルソース線選択スイッチ列
LSLSA ローカルソース線選択スイッチ列
MA メインアンプ
MAA メインアンプ列
MB メモリ部
MCA メモリセルアレー
MCAS メモリセルアレー選択信号
MD 抵抗変化型メモリ素子
MEST 一括消去信号
MSB マット選択反転信号
MWLB 反転メインワード線
Metal 金属原子
N+ 拡散層
PCC プリチャージ回路
PSSb 周辺回路電源制御信号
PSSb0 周辺回路電源制御元信号
PSW 電源スイッチ
RAMP 読み出し部
RD リードドライバ
RE リードイネーブル信号
REB 反転リードイネーブル信号
REF リファレンス負荷回路
REQ イコライズ回路
RET リードイネーブル信号
RGC メイン入出力ゲート
RRC 読出しリファレンス回路
RSW リードスイッチ
SA センスアンプ
SAA センスアンプアレー
SAE0 センスアンプイネーブル元信号
SAEQ センスアンプイコライズ信号
SAOb 反転センスアンプアウト信号線
SAOt センスアンプアウト信号線
SAPG 読出しドライバ制御電圧
SLC ソース線コンタクト
SLS ソース線選択信号
SMCA サブメモリセルアレー
SMED ソース線一括消去ドライバ
SMES ソース線一括消去信号
SN センスノード
SNREF リファレンスセンスノード
STI 素子分離用絶縁膜
SUB 半導体基板
SWD サブワードドライバ
SWDA サブワードドライバアレー
UL 上部電極
VBH メモリセル書込み電圧
VBHb バンク用メモリセル書込み電圧
VDD 周辺回路電源電圧
VDDb バンク用周辺回路電源電圧
VKK 負電源
VPP ワード線昇圧電圧
VPPb バンク用ワード線昇圧電圧
VSS 接地電圧
WAMP 書き込み部
WE ライトイネーブル信号
WEB 反転ライトイネーブル信号
WET ライトイネーブル信号
WLE ワード線イネーブル信号
WLE0 ワード線イネーブル元信号
XAB 行アドレスバッファ
XDEC Xデコード回路
XP 行制御回路
YAB 列アドレスバッファ
YDEC Yデコード回路
YS 列選択信号
YSE 列選択イネーブル信号 A0 to An address ACC array control circuit ATC address conversion circuit ATT address conversion table BANK memory bank BCC bank control circuit BLC bit line contact BLS bit line selection signal BMED bit line batch erase driver BMES bit line batch erase signal CC cross couple CF column pre Decode signal CNTL Control circuit CONT Diffusion layer contact DB Data buffer DQ0 to DQn Data DQC I / O circuit DWL Dummy word line EL Solid electrolyte FX Subword driver selection signal FXB Inverted subword driver selection signal FY Column decode signal GBL Global bit line GSL Global source line I / O CTL I / O control circuit I / OB I / O buffer IOG I / O gate LBL Local bit line LBLS Local bit line selection switch LBLSA Local bit line selection switch row LBLSA Local bit line selection switch row LIO Local I / O line LIOb Inverted local I / O line LIOt Local I / O line LL Lower electrode LSL Local source line LSLS Local source line selection switch LSLSA Local Source line selection switch row LSLSA Local source line selection switch row MA main amplifier MAA main amplifier row MB memory unit MCA memory cell array MCAS memory cell array selection signal MD resistance change type memory element MEST batch erase signal MSB mat selection inversion signal MWLB inversion main Word line Metal Metal atom N + Diffusion layer PCC Precharge circuit PSSb Peripheral circuit power supply control signal PSSb0 Peripheral circuit power supply control source No. PSW Power switch RAMP Read unit RD Read driver RE Read enable signal REB Inverted read enable signal REF Reference load circuit REQ Equalize circuit RET Read enable signal RGC Main input / output gate RRC Read reference circuit RSW read switch SA sense amplifier SAA sense amplifier array SAE0 Sense amplifier enable source signal SAEQ Sense amplifier equalize signal SAOb Inverted sense amplifier out signal line SAOt Sense amplifier out signal line SAPG Read driver control voltage SLC Source line contact SLS Source line selection signal SMCA Sub memory cell array SMED Source line batch erase driver SMES Source Line batch erase signal SN Sense node SNREF Referen SENSE NODE STI Isolation film for element isolation SUB Semiconductor substrate SWD Sub word driver SWDA Sub word driver array UL Upper electrode VBH Memory cell write voltage VBHb Bank memory cell write voltage VDD Peripheral circuit power supply voltage VDDb Bank peripheral circuit power supply voltage VKK Negative power supply VPP Word line boost voltage VPPb Bank word line boost voltage VSS Ground voltage WAMP Write unit WE Write enable signal WEB Inverted write enable signal WET Write enable signal WLE Word line enable signal WLE0 Word line enable source signal XAB Row address buffer XDEC X decode circuit XP Row control circuit YAB Column address buffer YDEC Y decode circuit YS Column selection signal YSE Column selection enable signal
ACC アレー制御回路
ATC アドレス変換回路
ATT アドレス変換テーブル
BANK メモリバンク
BCC バンク制御回路
BLC ビット線コンタクト
BLS ビット線選択信号
BMED ビット線一括消去ドライバ
BMES ビット線一括消去信号
CC クロスカップル
CF 列プリデコード信号
CNTL 制御回路
CONT 拡散層コンタクト
DB データバッファ
DQ0~DQn データ
DQC 入出力回路
DWL ダミーワード線
EL 固体電解質
FX サブワードドライバ選択信号
FXB 反転サブワードドライバ選択信号
FY 列デコード信号
GBL グローバルビット線
GSL グローバルソース線
I/O CTL 入出力制御回路
I/OB 入出力バッファ
IOG 入出力ゲート
LBL ローカルビット線
LBLS ローカルビット線選択スイッチ
LBLSA ローカルビット線選択スイッチ列
LBLSA ローカルビット線選択スイッチ列
LIO ローカル入出力線
LIOb 反転ローカル入出力線
LIOt ローカル入出力線
LL 下部電極
LSL ローカルソース線
LSLS ローカルソース線選択スイッチ
LSLSA ローカルソース線選択スイッチ列
LSLSA ローカルソース線選択スイッチ列
MA メインアンプ
MAA メインアンプ列
MB メモリ部
MCA メモリセルアレー
MCAS メモリセルアレー選択信号
MD 抵抗変化型メモリ素子
MEST 一括消去信号
MSB マット選択反転信号
MWLB 反転メインワード線
Metal 金属原子
N+ 拡散層
PCC プリチャージ回路
PSSb 周辺回路電源制御信号
PSSb0 周辺回路電源制御元信号
PSW 電源スイッチ
RAMP 読み出し部
RD リードドライバ
RE リードイネーブル信号
REB 反転リードイネーブル信号
REF リファレンス負荷回路
REQ イコライズ回路
RET リードイネーブル信号
RGC メイン入出力ゲート
RRC 読出しリファレンス回路
RSW リードスイッチ
SA センスアンプ
SAA センスアンプアレー
SAE0 センスアンプイネーブル元信号
SAEQ センスアンプイコライズ信号
SAOb 反転センスアンプアウト信号線
SAOt センスアンプアウト信号線
SAPG 読出しドライバ制御電圧
SLC ソース線コンタクト
SLS ソース線選択信号
SMCA サブメモリセルアレー
SMED ソース線一括消去ドライバ
SMES ソース線一括消去信号
SN センスノード
SNREF リファレンスセンスノード
STI 素子分離用絶縁膜
SUB 半導体基板
SWD サブワードドライバ
SWDA サブワードドライバアレー
UL 上部電極
VBH メモリセル書込み電圧
VBHb バンク用メモリセル書込み電圧
VDD 周辺回路電源電圧
VDDb バンク用周辺回路電源電圧
VKK 負電源
VPP ワード線昇圧電圧
VPPb バンク用ワード線昇圧電圧
VSS 接地電圧
WAMP 書き込み部
WE ライトイネーブル信号
WEB 反転ライトイネーブル信号
WET ライトイネーブル信号
WLE ワード線イネーブル信号
WLE0 ワード線イネーブル元信号
XAB 行アドレスバッファ
XDEC Xデコード回路
XP 行制御回路
YAB 列アドレスバッファ
YDEC Yデコード回路
YS 列選択信号
YSE 列選択イネーブル信号 A0 to An address ACC array control circuit ATC address conversion circuit ATT address conversion table BANK memory bank BCC bank control circuit BLC bit line contact BLS bit line selection signal BMED bit line batch erase driver BMES bit line batch erase signal CC cross couple CF column pre Decode signal CNTL Control circuit CONT Diffusion layer contact DB Data buffer DQ0 to DQn Data DQC I / O circuit DWL Dummy word line EL Solid electrolyte FX Subword driver selection signal FXB Inverted subword driver selection signal FY Column decode signal GBL Global bit line GSL Global source line I / O CTL I / O control circuit I / OB I / O buffer IOG I / O gate LBL Local bit line LBLS Local bit line selection switch LBLSA Local bit line selection switch row LBLSA Local bit line selection switch row LIO Local I / O line LIOb Inverted local I / O line LIOt Local I / O line LL Lower electrode LSL Local source line LSLS Local source line selection switch LSLSA Local Source line selection switch row LSLSA Local source line selection switch row MA main amplifier MAA main amplifier row MB memory unit MCA memory cell array MCAS memory cell array selection signal MD resistance change type memory element MEST batch erase signal MSB mat selection inversion signal MWLB inversion main Word line Metal Metal atom N + Diffusion layer PCC Precharge circuit PSSb Peripheral circuit power supply control signal PSSb0 Peripheral circuit power supply control source No. PSW Power switch RAMP Read unit RD Read driver RE Read enable signal REB Inverted read enable signal REF Reference load circuit REQ Equalize circuit RET Read enable signal RGC Main input / output gate RRC Read reference circuit RSW read switch SA sense amplifier SAA sense amplifier array SAE0 Sense amplifier enable source signal SAEQ Sense amplifier equalize signal SAOb Inverted sense amplifier out signal line SAOt Sense amplifier out signal line SAPG Read driver control voltage SLC Source line contact SLS Source line selection signal SMCA Sub memory cell array SMED Source line batch erase driver SMES Source Line batch erase signal SN Sense node SNREF Referen SENSE NODE STI Isolation film for element isolation SUB Semiconductor substrate SWD Sub word driver SWDA Sub word driver array UL Upper electrode VBH Memory cell write voltage VBHb Bank memory cell write voltage VDD Peripheral circuit power supply voltage VDDb Bank peripheral circuit power supply voltage VKK Negative power supply VPP Word line boost voltage VPPb Bank word line boost voltage VSS Ground voltage WAMP Write unit WE Write enable signal WEB Inverted write enable signal WET Write enable signal WLE Word line enable signal WLE0 Word line enable source signal XAB Row address buffer XDEC X decode circuit XP Row control circuit YAB Column address buffer YDEC Y decode circuit YS Column selection signal YSE Column selection enable signal
Claims (20)
- 複数の第1メモリセルを有する第1メモリ領域と、
前記複数の第1メモリセルと同じ構成となる複数の第2メモリセルを有し、前記第1メモリ領域と同一の半導体チップ上に形成された第2メモリ領域と、
前記第1メモリ領域に対する電源供給有無と前記第2メモリ領域に対する電源供給有無とを独立に制御する電源制御回路と、
外部から入力された論理アドレスを、前記第1および前記第2メモリ領域の物理アドレスに変換するアドレス変換回路と、
前記論理アドレスと前記物理アドレスとの対応関係を保持し、前記アドレス変換回路によって読み書きされるアドレス変換テーブルとを備え、
前記アドレス変換回路は、さらに、前記第1メモリ領域内から未書き込み状態である前記第1メモリセルを検出し、前記第2メモリ領域内から書き込み状態である前記第2メモリセルを検出し、前記書き込み状態である前記第2メモリセルのデータを前記未書き込み状態である前記第1メモリセルに移動する制御を行い、この移動に応じて前記アドレス変換テーブルの内容を更新するデフラグ機能を有することを特徴とする半導体装置。 A first memory region having a plurality of first memory cells;
A plurality of second memory cells having the same configuration as the plurality of first memory cells, and a second memory region formed on the same semiconductor chip as the first memory region;
A power control circuit for independently controlling power supply to the first memory area and power supply to the second memory area;
An address conversion circuit for converting a logical address input from the outside into a physical address of the first and second memory areas;
Holding a correspondence relationship between the logical address and the physical address, and comprising an address conversion table read and written by the address conversion circuit;
The address conversion circuit further detects the first memory cell in an unwritten state from within the first memory region, and detects the second memory cell in a written state from within the second memory region, It has a defragmentation function that controls to move the data of the second memory cell in the written state to the first memory cell in the unwritten state and updates the contents of the address conversion table in accordance with this movement. A featured semiconductor device. - 請求項1記載の半導体装置において、
前記複数の第1メモリセルおよび前記複数の第2メモリセルのそれぞれは、不揮発性メモリセルであることを特徴とする半導体装置。 The semiconductor device according to claim 1,
Each of the plurality of first memory cells and the plurality of second memory cells is a nonvolatile memory cell. - 請求項2記載の半導体装置において、
前記第1メモリ領域および前記第2メモリ領域は、それぞれメモリバンクであることを特徴とする半導体装置。 The semiconductor device according to claim 2,
The semiconductor device, wherein each of the first memory area and the second memory area is a memory bank. - 請求項3記載の半導体装置において、
前記半導体チップ上には、さらに、前記第1メモリ領域または前記第2メモリ領域と外部との間のアクセスデータが一時的に保持されるデータバッファが形成され、
前記デフラグ機能は、前記データバッファを介して前記データを移動する制御を行うことを特徴とする半導体装置。 The semiconductor device according to claim 3.
A data buffer for temporarily holding access data between the first memory area or the second memory area and the outside is formed on the semiconductor chip,
The semiconductor device according to claim 1, wherein the defragmentation function controls to move the data through the data buffer. - 請求項2記載の半導体装置において、
前記第1メモリ領域および前記第2メモリ領域は、それぞれ同一メモリバンク内の異なるメモリアレーであることを特徴とする半導体装置。 The semiconductor device according to claim 2,
The semiconductor device, wherein the first memory area and the second memory area are different memory arrays in the same memory bank. - 請求項5記載の半導体装置において、
前記半導体チップ上には、さらに、
前記第1メモリセルのデータを増幅する第1センスアンプと、
前記第2メモリセルのデータを増幅する第2センスアンプと、
前記第1センスアンプまたは前記第2センスアンプのデータを更に増幅するメインアンプ回路とが形成され、
前記デフラグ機能は、前記メインアンプ回路を介して前記データを移動する制御を行うことを特徴とする半導体装置。 The semiconductor device according to claim 5.
On the semiconductor chip, further
A first sense amplifier for amplifying data of the first memory cell;
A second sense amplifier for amplifying data of the second memory cell;
A main amplifier circuit for further amplifying data of the first sense amplifier or the second sense amplifier;
The semiconductor device according to claim 1, wherein the defragmenting function performs control to move the data through the main amplifier circuit. - 請求項1記載の半導体装置において、
前記アドレス変換テーブルは、連続する複数のメモリアドレスが含まれるブロック領域を単位として前記論理アドレスと前記物理アドレスの対応関係を保持し、さらに、前記物理アドレスが前記未書き込み状態か前記書き込み状態かを表すフラグを有することを特徴とする半導体装置。 The semiconductor device according to claim 1,
The address conversion table holds a correspondence relationship between the logical address and the physical address in units of block areas including a plurality of consecutive memory addresses, and further indicates whether the physical address is in the unwritten state or the written state. A semiconductor device having a flag to represent. - 請求項2記載の半導体装置において、さらに、
前記第1メモリ領域内の前記複数の第1メモリセルまたは前記第2メモリ領域内の前記複数の第2メモリセルに対して一括して同一のデータを書き込む一括消去制御回路を有することを特徴とする半導体装置。 3. The semiconductor device according to claim 2, further comprising:
A batch erase control circuit for writing the same data to the plurality of first memory cells in the first memory region or the plurality of second memory cells in the second memory region collectively. Semiconductor device. - 複数の第1メモリセルを有する第1メモリ領域と、
前記複数の第1メモリセルと同じ構成となる複数の第2メモリセルを有し、前記第1メモリ領域と同一の半導体チップ上に形成された第2メモリ領域と、
前記第1メモリ領域に対する電源供給有無と前記第2メモリ領域に対する電源供給有無とを独立に制御する電源制御回路とを有することを特徴とする半導体装置。 A first memory region having a plurality of first memory cells;
A plurality of second memory cells having the same configuration as the plurality of first memory cells, and a second memory region formed on the same semiconductor chip as the first memory region;
A semiconductor device comprising: a power supply control circuit that independently controls power supply / non-supply to the first memory area and power supply / non-supply to the second memory area. - 請求項9記載の半導体装置において、
前記複数の第1メモリセルおよび前記複数の第2メモリセルのそれぞれは、不揮発性メモリセルであることを特徴とする半導体装置。 The semiconductor device according to claim 9.
Each of the plurality of first memory cells and the plurality of second memory cells is a nonvolatile memory cell. - 請求項10記載の半導体装置において、
前記第1メモリ領域および前記第2メモリ領域は、それぞれメモリバンクであることを特徴とする半導体装置。 The semiconductor device according to claim 10.
The semiconductor device, wherein each of the first memory area and the second memory area is a memory bank. - 請求項10記載の半導体装置において、
前記第1メモリ領域および前記第2メモリ領域は、それぞれ同一メモリバンク内の異なるメモリアレーであることを特徴とする半導体装置。 The semiconductor device according to claim 10.
The semiconductor device, wherein the first memory area and the second memory area are different memory arrays in the same memory bank. - それぞれが複数の不揮発性メモリセルを有する第1および第2メモリ領域と、
前記第1メモリ領域内の前記複数の不揮発性メモリセルまたは前記第2メモリ領域内の前記複数の不揮発性メモリセルに対して一括して同一のデータを書き込む一括消去制御回路と、
外部から入力された論理アドレスを、前記第1および前記第2メモリ領域の物理アドレスに変換するアドレス変換回路と、
前記論理アドレスと前記物理アドレスとの対応関係を保持し、前記アドレス変換回路によって読み書きされるアドレス変換テーブルとを備え、
前記アドレス変換回路は、前記第1メモリ領域内から未書き込み状態である前記不揮発性メモリセルを検出し、前記第2メモリ領域内から書き込み状態である前記不揮発性メモリセルを検出し、前記書き込み状態である前記第2メモリ領域内の前記不揮発性メモリセルのデータを前記未書き込み状態である前記第1メモリ領域内の前記不揮発性メモリセルに移動する制御を行い、この移動に応じて前記アドレス変換テーブルの内容を更新するデフラグ機能を有することを特徴とする半導体装置。 First and second memory regions each having a plurality of non-volatile memory cells;
A batch erase control circuit that writes the same data to the plurality of nonvolatile memory cells in the first memory region or the plurality of nonvolatile memory cells in the second memory region in a batch;
An address conversion circuit for converting a logical address input from the outside into a physical address of the first and second memory areas;
Holding a correspondence relationship between the logical address and the physical address, and comprising an address conversion table read and written by the address conversion circuit;
The address conversion circuit detects the non-volatile memory cell in an unwritten state from the first memory area, detects the non-volatile memory cell in a write state from the second memory area, and Control is performed to move the data of the nonvolatile memory cell in the second memory area to the nonvolatile memory cell in the first memory area in the unwritten state, and the address conversion is performed according to the movement A semiconductor device having a defragmenting function for updating contents of a table. - 請求項13記載の半導体装置において、
前記複数の不揮発性メモリセルのそれぞれは、抵抗変化型のメモリ素子を含むことを特徴とする半導体装置。 The semiconductor device according to claim 13.
Each of the plurality of nonvolatile memory cells includes a resistance change type memory element. - 請求項14記載の半導体装置において、
前記一括消去制御回路は、前記抵抗変化型のメモリ素子を高抵抗状態に書き込むことを特徴とする半導体装置。 The semiconductor device according to claim 14.
The batch erase control circuit writes the resistance change type memory element in a high resistance state. - 請求項13記載の半導体装置において、
前記第1および前記第2メモリ領域のそれぞれは、複数のワード線、前記複数のワード線と交差する方向に延伸する複数のビット線および複数のソース線、前記複数のワード線と前記複数のビット線および前記複数のソース線との交点に配置された前記複数の不揮発性メモリセルを含み、
前記複数の不揮発性メモリセルのそれぞれは、
一端が前記複数のビット線のいずれか又は前記複数のソース線のいずれかに接続された抵抗変化型のメモリ素子と、
前記複数のワード線のいずれかによってオン・オフが制御され、一端が前記メモリ素子の他端に接続され、他端が前記複数のソース線のいずれか又は前記複数のビット線のいずれかに接続されたメモリセルトランジスタとを有し、
前記第1および前記第2メモリ領域のそれぞれは、さらに、
オン駆動された際に前記複数のビット線に同時に第1電圧を印加する複数の第1スイッチと、
オン駆動された際に前記複数のソース線に同時に第2電圧を印加する複数の第2スイッチと、
前記複数の第1スイッチおよび前記複数の第2スイッチをオン駆動した状態で、前記複数のワード線を活性化させることで前記第1メモリ領域全体または前記第2メモリ領域全体に同一のデータを書き込む一括消去機能とを有することを特徴とする半導体装置。 The semiconductor device according to claim 13.
Each of the first and second memory regions includes a plurality of word lines, a plurality of bit lines and a plurality of source lines extending in a direction intersecting with the plurality of word lines, the plurality of word lines and the plurality of bits. A plurality of nonvolatile memory cells disposed at intersections of a line and the plurality of source lines;
Each of the plurality of nonvolatile memory cells includes:
A resistance change type memory element having one end connected to one of the plurality of bit lines or one of the plurality of source lines;
On / off is controlled by one of the plurality of word lines, one end is connected to the other end of the memory element, and the other end is connected to one of the plurality of source lines or one of the plurality of bit lines. A memory cell transistor,
Each of the first and second memory areas further includes:
A plurality of first switches for simultaneously applying a first voltage to the plurality of bit lines when driven on;
A plurality of second switches for simultaneously applying a second voltage to the plurality of source lines when driven on;
With the plurality of first switches and the plurality of second switches turned on, the plurality of word lines are activated to write the same data to the entire first memory area or the entire second memory area. A semiconductor device having a batch erase function. - 請求項13記載の半導体装置において、
前記アドレス変換テーブルは、連続する複数のメモリアドレスが含まれるブロック領域を単位として前記論理アドレスと前記物理アドレスの対応関係を保持し、前記物理アドレスが前記未書き込み状態か前記書き込み状態かを表すフラグを有することを特徴とする半導体装置。 The semiconductor device according to claim 13.
The address conversion table holds a correspondence relationship between the logical address and the physical address in units of block areas including a plurality of continuous memory addresses, and indicates whether the physical address is in the unwritten state or the written state A semiconductor device comprising: - それぞれが、複数のワード線、前記複数のワード線と交差する方向に延伸する複数のビット線および複数のソース線、前記複数のワード線と前記複数のビット線および前記複数のソース線との交点に配置された複数の不揮発性メモリセルを含んだ第1および第2メモリ領域を備え、
前記複数の不揮発性メモリセルのそれぞれは、
一端が前記複数のビット線のいずれか又は前記複数のソース線のいずれかに接続された抵抗変化型のメモリ素子と、
前記複数のワード線のいずれかによってオン・オフが制御され、一端が前記メモリ素子の他端に接続され、他端が前記複数のソース線のいずれか又は前記複数のビット線のいずれかに接続されたメモリセルトランジスタとを有し、
前記第1および前記第2メモリ領域のそれぞれは、さらに、
オン駆動された際に前記複数のビット線に同時に第1電圧を印加する複数の第1スイッチと、
オン駆動された際に前記複数のソース線に同時に第2電圧を印加する複数の第2スイッチと、
前記複数の第1スイッチおよび前記複数の第2スイッチをオン駆動した状態で、前記複数のワード線を活性化させることで前記第1メモリ領域全体または前記第2メモリ領域全体に同一のデータを書き込む一括消去機能とを有することを特徴とする半導体装置。 Each of a plurality of word lines, a plurality of bit lines and a plurality of source lines extending in a direction intersecting with the plurality of word lines, an intersection of the plurality of word lines and the plurality of bit lines and the plurality of source lines First and second memory regions including a plurality of nonvolatile memory cells disposed in
Each of the plurality of nonvolatile memory cells includes:
A resistance change type memory element having one end connected to one of the plurality of bit lines or one of the plurality of source lines;
On / off is controlled by one of the plurality of word lines, one end is connected to the other end of the memory element, and the other end is connected to one of the plurality of source lines or one of the plurality of bit lines. A memory cell transistor,
Each of the first and second memory areas further includes:
A plurality of first switches for simultaneously applying a first voltage to the plurality of bit lines when driven on;
A plurality of second switches for simultaneously applying a second voltage to the plurality of source lines when driven on;
With the plurality of first switches and the plurality of second switches turned on, the plurality of word lines are activated to write the same data to the entire first memory area or the entire second memory area. A semiconductor device having a batch erase function. - 請求項18記載の半導体装置において、
前記一括消去機能は、前記抵抗変化型のメモリ素子を高抵抗状態に書き込むことを特徴とする半導体装置。 The semiconductor device according to claim 18.
The batch erasing function writes the resistance change type memory element in a high resistance state. - 請求項19記載の半導体装置において、
前記一括消去機能は、前記複数のワード線を数本単位で順次活性化させることを特徴とする半導体装置。 The semiconductor device according to claim 19, wherein
The batch erase function sequentially activates the plurality of word lines in units of several.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011511340A JP5337239B2 (en) | 2009-04-27 | 2010-03-03 | Semiconductor device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009107529 | 2009-04-27 | ||
JP2009-107529 | 2009-04-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010125852A1 true WO2010125852A1 (en) | 2010-11-04 |
Family
ID=43032006
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/053397 WO2010125852A1 (en) | 2009-04-27 | 2010-03-03 | Semiconductor device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5337239B2 (en) |
WO (1) | WO2010125852A1 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013005364A1 (en) * | 2011-07-06 | 2013-01-10 | パナソニック株式会社 | Semiconductor storage device |
JP2013031012A (en) * | 2011-07-28 | 2013-02-07 | Toshiba Corp | Pll |
JP2013250791A (en) * | 2012-05-31 | 2013-12-12 | Toshiba Corp | Program, calculation processing device, memory management method, and calculator |
WO2016043272A1 (en) * | 2014-09-19 | 2016-03-24 | 株式会社 東芝 | Memory system and cache memory |
JP2017501504A (en) * | 2014-01-02 | 2017-01-12 | クアルコム,インコーポレイテッド | System and method for defragmenting memory |
US9818467B2 (en) | 2016-03-10 | 2017-11-14 | Toshiba Memory Corporation | Semiconductor memory device |
US10170181B2 (en) | 2016-10-10 | 2019-01-01 | Samsung Electronics Co., Ltd. | Variable resistance memory device including bidirectional switch, memory system including the same, and operating method thereof |
CN117095719A (en) * | 2023-08-25 | 2023-11-21 | 广州市粤港澳大湾区前沿创新技术研究院 | Control circuit and memory |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006012267A (en) * | 2004-06-24 | 2006-01-12 | Mitsubishi Electric Corp | Memory device |
JP2007507776A (en) * | 2003-10-04 | 2007-03-29 | シンビアン ソフトウェア リミテッド | Memory management using defragmentation in computer equipment |
JP2008052781A (en) * | 2006-08-22 | 2008-03-06 | Sharp Corp | Semiconductor memory |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6349812A (en) * | 1986-08-19 | 1988-03-02 | Fujitsu Ltd | Memory control system |
JP4124635B2 (en) * | 2002-12-05 | 2008-07-23 | シャープ株式会社 | Semiconductor memory device and memory cell array erasing method |
JP2008171478A (en) * | 2007-01-09 | 2008-07-24 | Sony Corp | Semiconductor memory device and sense amplifier circuit |
JP2009026382A (en) * | 2007-07-19 | 2009-02-05 | Hitachi Ltd | Semiconductor memory device |
-
2010
- 2010-03-03 WO PCT/JP2010/053397 patent/WO2010125852A1/en active Application Filing
- 2010-03-03 JP JP2011511340A patent/JP5337239B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007507776A (en) * | 2003-10-04 | 2007-03-29 | シンビアン ソフトウェア リミテッド | Memory management using defragmentation in computer equipment |
JP2006012267A (en) * | 2004-06-24 | 2006-01-12 | Mitsubishi Electric Corp | Memory device |
JP2008052781A (en) * | 2006-08-22 | 2008-03-06 | Sharp Corp | Semiconductor memory |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103548086A (en) * | 2011-07-06 | 2014-01-29 | 松下电器产业株式会社 | Semiconductor storage device |
JPWO2013005364A1 (en) * | 2011-07-06 | 2015-02-23 | パナソニック株式会社 | Semiconductor memory device |
US9230640B2 (en) | 2011-07-06 | 2016-01-05 | Panasonic Corporation | Ground circuitry for semiconductor memory device |
WO2013005364A1 (en) * | 2011-07-06 | 2013-01-10 | パナソニック株式会社 | Semiconductor storage device |
JP2013031012A (en) * | 2011-07-28 | 2013-02-07 | Toshiba Corp | Pll |
US9471131B2 (en) | 2012-05-31 | 2016-10-18 | Kabushiki Kaisha Toshiba | Apparatus and machine for reducing power consumption of memory including a plurality of segment areas, method therefore and non-transitory computer readable medium |
JP2013250791A (en) * | 2012-05-31 | 2013-12-12 | Toshiba Corp | Program, calculation processing device, memory management method, and calculator |
CN103455129A (en) * | 2012-05-31 | 2013-12-18 | 株式会社东芝 | Computer readable medium and computation processing apparatus |
JP2017501504A (en) * | 2014-01-02 | 2017-01-12 | クアルコム,インコーポレイテッド | System and method for defragmenting memory |
JP2016062503A (en) * | 2014-09-19 | 2016-04-25 | 株式会社東芝 | Memory system and cache memory |
WO2016043272A1 (en) * | 2014-09-19 | 2016-03-24 | 株式会社 東芝 | Memory system and cache memory |
US9792972B2 (en) | 2014-09-19 | 2017-10-17 | Kabushiki Kaisha Toshiba | Memory system and cache memory |
US9818467B2 (en) | 2016-03-10 | 2017-11-14 | Toshiba Memory Corporation | Semiconductor memory device |
US10170181B2 (en) | 2016-10-10 | 2019-01-01 | Samsung Electronics Co., Ltd. | Variable resistance memory device including bidirectional switch, memory system including the same, and operating method thereof |
CN117095719A (en) * | 2023-08-25 | 2023-11-21 | 广州市粤港澳大湾区前沿创新技术研究院 | Control circuit and memory |
CN117095719B (en) * | 2023-08-25 | 2024-06-11 | 广州市粤港澳大湾区前沿创新技术研究院 | Control circuit and memory |
Also Published As
Publication number | Publication date |
---|---|
JP5337239B2 (en) | 2013-11-06 |
JPWO2010125852A1 (en) | 2012-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5337239B2 (en) | Semiconductor device | |
JP5222619B2 (en) | Semiconductor device | |
JP3920851B2 (en) | Semiconductor memory device | |
KR100944058B1 (en) | Semiconductor memory device | |
JP7137477B2 (en) | data caching | |
CN111383676A (en) | Memory device, memory system and related method | |
CN106898371B (en) | Three-dimensional memory reading circuit and word line and bit line voltage configuration method thereof | |
TWI788042B (en) | Sense amplifier and semiconductor memory device | |
TW201013697A (en) | Semiconductor memory device and driving method thereof | |
KR20140023748A (en) | Semiconductor apparatus | |
CN107039055B (en) | Semiconductor device having single-ended main I/O line | |
US11238934B2 (en) | Nonvolatile memory device | |
JP5363644B2 (en) | Semiconductor device | |
US8942045B2 (en) | Memory apparatus and methods | |
JP3913451B2 (en) | Semiconductor memory device | |
JP2013140667A (en) | Semiconductor device | |
Aziza | Embedded memories | |
KR102360213B1 (en) | Resistive Memory Device reducing chip size and Operating Method thereof | |
US20240055043A1 (en) | Sub-word line driver having common gate boosted voltage | |
US11853178B2 (en) | Storage system | |
US20240087640A1 (en) | Semiconductor device | |
US20240087632A1 (en) | Ferroelectric random-access memory with enhanced lifetime, density, and performance | |
JP2010027201A (en) | Dynamic ram and semiconductor device | |
TW201624485A (en) | Resistance random access memory | |
CN118366510A (en) | Word line driving circuit and memory |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10769552 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011511340 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10769552 Country of ref document: EP Kind code of ref document: A1 |