WO2010125647A1 - 放射性標識薬剤 - Google Patents

放射性標識薬剤 Download PDF

Info

Publication number
WO2010125647A1
WO2010125647A1 PCT/JP2009/058372 JP2009058372W WO2010125647A1 WO 2010125647 A1 WO2010125647 A1 WO 2010125647A1 JP 2009058372 W JP2009058372 W JP 2009058372W WO 2010125647 A1 WO2010125647 A1 WO 2010125647A1
Authority
WO
WIPO (PCT)
Prior art keywords
ligand
complex
target molecule
metal
compound
Prior art date
Application number
PCT/JP2009/058372
Other languages
English (en)
French (fr)
Inventor
泰 荒野
知也 上原
Original Assignee
国立大学法人 千葉大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 千葉大学 filed Critical 国立大学法人 千葉大学
Priority to PCT/JP2009/058372 priority Critical patent/WO2010125647A1/ja
Priority to JP2011511216A priority patent/JP5604680B2/ja
Priority to EP09843991A priority patent/EP2425861A4/en
Priority to US13/266,249 priority patent/US20120065367A1/en
Publication of WO2010125647A1 publication Critical patent/WO2010125647A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/08Peptides, e.g. proteins, carriers being peptides, polyamino acids, proteins
    • A61K51/088Peptides, e.g. proteins, carriers being peptides, polyamino acids, proteins conjugates with carriers being peptides, polyamino acids or proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/0404Lipids, e.g. triglycerides; Polycationic carriers
    • A61K51/0406Amines, polyamines, e.g. spermine, spermidine, amino acids, (bis)guanidines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/08Peptides, e.g. proteins, carriers being peptides, polyamino acids, proteins
    • A61K51/082Peptides, e.g. proteins, carriers being peptides, polyamino acids, proteins the peptide being a RGD-containing peptide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Definitions

  • the present invention relates to a radiolabeled drug having high accumulation at a target site. Specifically, it includes a ligand that is bonded to a compound that binds to a target molecule and forms a multi-coordination complex with a metal and a radionuclide of the metal, and to the target site.
  • the present invention relates to a radiolabeled drug having an increased accumulation property.
  • the present invention relates to a diagnostic or therapeutic radiolabeled drug containing a complex formed from any one metal radionuclide selected from the group consisting of 188 rhenium.
  • the present invention also relates to a ligand for preparing the radiolabeled drug.
  • the present invention relates to a kit comprising a drug containing the ligand and a drug containing a metal radionuclide as separate packaging units.
  • the present invention also relates to a method for increasing the accumulation of a radiolabeled drug at a target site, wherein the radiolabeled drug is used.
  • a radiolabeled drug is a drug containing a compound labeled with a radioisotope nuclide, and is widely used for diagnosis and treatment of diseases, for example, diagnosis and treatment of tumors.
  • radiolabeled drugs By accumulating radiolabeled drugs in specific tissues and cells, highly sensitive diagnosis and effective treatment can be performed, and side effects on normal tissues and cells can be reduced. For example, even when tumor cells have spread and scattered in organs or tissues, effective diagnosis and treatment can be performed without affecting normal tissues and cells.
  • diagnosis and treatment using radiolabeled drugs selection of useful nuclides and drug design for accumulating the drugs in specific tissues and cells have been performed.
  • Technetium- 99m ( 99m Tc) has a half-life (6 hours) suitable for diagnostic imaging and emits only ⁇ -rays of energy (140 KeV) suitable for in vitro measurement of radiation. Also, generator system using the radioactive equilibrium between molybdenum -99 (99 Mo) from the readily available (99 Mo / 99m Tc generator), now radionuclides which have been most widely used in nuclear medicine imaging (RI) It is.
  • 99m Tc formulations (referred to as a ligand derivative) largely antitumor antibody or compound to a target molecule recognition elements such as low molecular weight peptides bound the ligand to form a 99m Tc stable complexes with complex with 99m Tc It is synthesized by a formation reaction.
  • a 99m Tc preparation for example, a complex in which tetradentate N 2 S 2 and pentavalent Tc form a complex at a molar ratio of 1: 1 is known.
  • Non-Patent Documents 1 and 2 Technetium forms stable 6-, 3-, and 2-coordinate complexes in vivo with appropriate monodentate, bidentate or tridentate ligands.
  • ligands that form complexes with technetium at molar ratios of 1: 2, 1: 3, and 1: 6 have also been reported (Non-patent Documents 1, 2, and 4).
  • a recognition element it is not clear whether these ligands form a stable complex with Tc in vivo.
  • Rhenium is the same Group 7 transition element as technetium and has similar chemical properties to technetium. Rhenium is known to have the radioisotopes 186 rhenium ( 186 Re) and 188 rhenium ( 188 Re). Both 186 Re and 188 Re emit high energy ⁇ -rays with half-lives of 90.6 hours and 16.9 hours, respectively. Since high-energy ⁇ -rays are cell killing, 186 Re-labeled drugs have been studied as therapeutics for cancer diseases. For example, 186 Re-labeled hydroxyethylidene diphosphonic acid ( 186 Re-HEDP) has been reported to reduce metastatic bone tumor pain. However, since 186 Re-HEDP has low stability in vivo, it has problems of delayed blood clearance and high accumulation in the stomach.
  • radiolabeled drugs that have high accumulation in specific tissues and cells and that have high stability in vivo.
  • an object of the present invention is to provide a radiolabeled drug that efficiently accumulates on a target and has high stability in a living body, and further provides a diagnosis and treatment using the radiolabeled drug.
  • the inventor has a ligand having a recognition element (monovalent recognition element) having one binding site to a target molecule, which forms a multi-coordination complex with a metal, and the metal. Since the complex formed is a multivalent complex having the same number of recognition elements as the ligand, it obtains a strong binding force with the target molecule. As a result, after the complex formation reaction, a complex-unformed ligand is included. It was thought that high accumulation in peripheral target molecules was achieved even if administered as it was. And in order to achieve the above-mentioned purpose, intensive research was conducted.
  • D-penicillamine (sometimes abbreviated as D-Pen) in which a pentavalent technetium (Tc) and a ligand form a 1: 2 complex (two-coordinate complex), and D 1-Amino-2-methylpropane-2-thiol-N-acetate (hereinafter sometimes abbreviated as AMPT), which has a different coordination group configuration from -Pen, is used as a target molecule recognition element.
  • a c (RGDfK) -bound ligand was synthesized, and the ligand was reacted with 99m Tc.
  • the present invention relates to the following.
  • a ligand bound to a compound that binds to a target molecule which includes a complex that forms a multi-coordination complex with a metal and a radionuclide of the metal, to the target site Radiolabeled drug with increased accumulation.
  • D-penicillamine or 1-amino-2-methyl which is a ligand bound to a compound that binds to the target molecule and forms a bi- or tri-coordinate complex with pentavalent technetium (Tc)
  • Tc pentavalent technetium
  • a diagnostic 99m Tc-labeled drug comprising a complex formed from propane-2-thiol-N-acetate and 99m Tc and having increased accumulation at a target site.
  • the diagnostic 99m Tc-labeled drug wherein the ligand bound to the compound that binds to the target molecule is a ligand bound to cyclic pentapeptide c (RGDfK).
  • RGDfK cyclic pentapeptide c
  • D-penicillamine or 1-amino-2-methyl which is a ligand bound to a compound that binds to the target molecule and forms a bi- or tri-coordinate complex with pentavalent rhenium (Re)
  • a therapeutic 186 Re or 188 Re-labeled drug comprising a complex formed from propane-2-thiol-N-acetate and 186 Re or 188 Re and having increased accumulation at a target site.
  • the therapeutic 186 Re or 188 Re labeled drug wherein the ligand bound to the compound that binds to the target molecule is a ligand bound to cyclic pentapeptide c (RGDfK).
  • RGDfK cyclic pentapeptide c
  • Any one of the above radiolabeled drugs which is a diagnostic or therapeutic radiolabeled drug.
  • Diagnosis with increased accumulation at the target site characterized by being a ligand bound to a compound that binds to the target molecule and forming a multi-coordination complex with the metal.
  • the ligand for preparation of the radiolabeled drug wherein the metal radionuclide is any one metal radionuclide selected from the group consisting of 99m technetium, 186 rhenium, and 188 rhenium.
  • D-penicillamine or 1-amino-2-methylpropane ligand that forms a multi-coordinate complex with metal is a bi- or tri-coordinate complex with pentavalent technetium or rhenium
  • the above-mentioned ligand for preparing a radiolabeled drug, wherein the ligand bound to the compound that binds to the target molecule is a ligand bound to cyclic pentapeptide c (RGDfK).
  • a drug containing a ligand for preparation of any of the above radiolabeled drugs and a drug containing a metal radionuclide that forms a multi-coordination complex with the ligand are included as separate packaging units.
  • a radiolabeled drug comprising a ligand bound to a compound that binds to a target molecule, the complex forming a multicoordination complex with a metal and a radionuclide of the metal.
  • a method for increasing the accumulation of a radiolabeled drug at a target site characterized in that it is used.
  • the metal radionuclide is any one metal radionuclide selected from the group consisting of 99m technetium, 186 rhenium, and 188 rhenium.
  • D-penicillamine or 1-amino-2-methylpropane ligand that forms a multi-coordination complex with metal is a bi- or tri-coordinate complex with pentavalent technetium or rhenium Such a method, which is 2-thiol-N-acetate.
  • the ligand bound to the compound that binds to the target molecule is a ligand bound to cyclic pentapeptide c (RGDfK).
  • the radiolabeled drug according to the present invention is a ligand having a target molecule recognition element (monovalent target molecule recognition element) having one binding site to a target molecule, and forms a multi-coordination complex with a metal. It includes a complex formed by a ligand and a radionuclide of the metal, and this complex is a multivalent complex having the same number of target molecule recognition elements as the ligand forming the complex. Compared to a valent complex, it shows a higher accumulation on the target.
  • a target molecule recognition element monovalent target molecule recognition element
  • the radiolabeled drug according to the present invention it is possible to increase the accumulation of the radiolabeled drug at the target site as compared with the conventional one, and as a result, the uncomplexed ligand is included. Even so, high sensitivity and effect can be provided in diagnostic imaging using radiolabeled drugs and internal radiation therapy such as cancer diseases.
  • 99m Tc-labeled drugs, 186 Re-labeled drugs, and 188 Re-labeled drugs that are efficiently accumulated at the target site and are sufficiently stable in vivo can be provided.
  • the 99m Tc-labeled drug according to the present invention is useful as a diagnostic agent for diagnostic imaging using a radiolabeled drug, and the 186 Re-labeled drug and the 188 Re-labeled drug are useful for internal radiotherapy of cancer.
  • FIG. 1 is a schematic diagram showing the structure of a polyvalent 99m Tc-labeled drug. It is a figure which shows the influence of the ligand density
  • the black square and the black diamond are 99m Tc- (D-Pen) 2 (denoted Tc-99m- (D-Pen) 2 ) and 99m Tc- (AMPT-N-acetate) 2 (Tc- 99m- (indicated as AMPT-N-acetate) 2 ).
  • It is a drawing showing the stability of 99m Tc- (D-Pen-Hx-cRDGfK) 2 in a buffer solution.
  • FIG. 3 is a graph showing the pharmacokinetics of purified 99m Tc- (D-Pen-Hx-cRDGfK) 2 administered to mice in terms of accumulation rate in each organ and each sample.
  • FIG. 3 is a graph showing the pharmacokinetics of purified 99m Tc- (D-Pen-Hx-cRDGfK) 2 administered to mice in terms of accumulation rate in each organ and each sample. The accumulation rate was expressed as the ratio of the radioactivity of each organ or sample to the administered radioactivity (%) divided by the weight of each organ.
  • FIG. 3 is a graph showing the pharmacokinetics of unpurified 99m Tc- (D-Pen-Hx-cRDGfK) 2 administered to mice as an accumulation rate in each organ and each sample.
  • FIG. 3 is a graph showing the pharmacokinetics of unpurified 99m Tc- (D-Pen-Hx-cRDGfK) 2 administered to mice as an accumulation rate in each organ and each sample.
  • the accumulation rate was expressed as the ratio of the radioactivity of each organ or sample to the administered radioactivity (%) divided by the weight of each organ.
  • the present invention includes a complex formed from a ligand that is bound to a target molecule recognition element and forms a multi-coordination complex with a metal, and a radionuclide of the metal.
  • the present invention relates to a radiolabeled drug with increased accumulation.
  • complex means a substance in which a ligand is coordinated around an atom or ion of a metal and a metal-like element.
  • Coordination means that a ligand forms a coordinate bond with a central metal and is arranged around the central metal.
  • the complex is formed by a coordinate bond between a ligand and a metal.
  • a coordinate bond refers to a bond in which two valence electrons participating in one bond are provided from only one atom.
  • Multi-coordination means that a plurality of ligands form a coordination bond with a central metal and are arranged around the central metal.
  • the n-coordination means that the ligand of n molecule forms a coordination bond with the central metal and arranges around the central metal (when the metal is a transition metal, n is generally from 2 9). That is, the multi-coordination complex refers to a complex containing a plurality of ligand molecules and coordinated to a central metal. In the complex, the number of ligands that gather around the central metal to form a coordination bond is called the coordination number.
  • ligand means a compound containing another atom (coordinating atom) coordinated to a central metal in a complex.
  • ligands compounds containing two or more possible coordination atoms are multidentate ligands, one is a monodentate ligand, and two are bidentate. The case of three ligands is called a tridentate ligand.
  • target molecule recognition element means a compound that binds to a target molecule, preferably a compound that specifically binds.
  • To specifically bind to a target molecule means to bind to a target molecule but not to a molecule other than the target molecule or to bind weakly.
  • target molecule recognition elements include proteins, peptides, antibodies, and antibody fragments.
  • the metal that forms the complex is a metal that belongs to a transition metal, and a metal that forms a coordination bond of two or more coordinates with a ligand is used.
  • the charge of the metal atom is not particularly limited, and examples thereof include a metal atom having a monovalent, trivalent, or pentavalent charge.
  • a metal radionuclide is preferably used as the metal. Specific examples of the metal radionuclide include 99m Tc, 186 Re, and 188 Re.
  • the metal radionuclide is not limited to these specific examples, and any metal radionuclide is used as long as it has radiation, radiation dose, and half-life suitable for purposes such as diagnosis using radiolabeled drugs and internal radiation therapy such as cancer diseases. be able to. From the viewpoint of reducing the influence on normal tissues and cells in diagnosis and treatment, short half-life metal radionuclides are preferably used.
  • a compound capable of forming a multi-coordination complex with a metal belonging to the transition metal by a coordinate bond is used.
  • D-penicillamine sometimes abbreviated as D-Pen
  • pentavalent Tc as a compound that can form a multi-coordination complex with 99m Tc by coordination bond
  • 1 -Amino-2-methylpropane-2-thiol-N-acetate hereinafter sometimes referred to as AMPT
  • hydroxamamide these form a divalent complex
  • Thiourea dimethylphosphinoethane, O-phenylenebis (dimethylarsine) (ligands that form trivalent complexes), isonitriles that form 1: 6 complexes with monovalent Tc (hexavalent complexes) Can be included).
  • rhenium is a group 7 transition element similar to technetium, and has chemical properties similar to technetium. Therefore, a ligand that forms a complex with technetium forms a complex similar to rhenium. Therefore, any of the ligands exemplified above can be used as a ligand that forms a complex with 186 Re and 188 Re.
  • the ligand is not limited to these specific examples, and any ligand can be used as long as it is a compound that forms a multi-coordination complex with a metal.
  • the ligand may include a cross-linking compound that binds the ligand and the target molecule recognition element in the molecule.
  • Any compound can be used as the crosslinking compound as long as it can crosslink the target molecule recognition element and the ligand and does not inhibit the binding of the target molecule recognition element to the target molecule, but preferably hexanoic acid.
  • polyethylene glycol The molecular weight of polyethylene glycol is preferably 200 or more, more preferably 400 or more, still more preferably 600 or more, and 1500 or less is appropriate.
  • examples of target molecule recognition elements include proteins, peptides, antibodies, and antibody fragments.
  • Specific examples include proteins that are highly expressed in tissue construction associated with inflammation, tumor cell infiltration, and the like, ligands that bind to proteins that are specifically expressed in tumor cells, antibodies, and Fab fragments of antibodies. More specifically, a cyclic pentapeptide c (RGDfK) having an affinity for integrin, which is highly expressed in neovascular blood vessels of cancer, can be exemplified.
  • receptors for bisphosphonic acid, oligoaspartic acid, oligoglutamic acid, and scanning factor present on the surface of macrophages have an affinity for hydroxyapatite, which is abundant in osteogenic cancer (bone metastasis). And folic acid binding to a folate receptor whose expression is observed in cancer cells and derivatives thereof.
  • the target molecule recognition element is not limited to the exemplified compounds, and any compound that binds to the target molecule can be used.
  • the radiolabeled drug according to the present invention is effective for a complex formed from a ligand that is bound to a target molecule recognition element and forms a multi-coordination complex with a metal and a radionuclide of the metal.
  • the complex has the same number of target molecule recognition elements as the ligand in the complex.
  • the complex is referred to as a polyvalent complex
  • a radiolabeled drug containing the polyvalent complex as an active ingredient is referred to as a polyvalent radiolabeled drug.
  • a complex that is a ligand bound to a target molecule recognition element and includes a ligand that forms a bicoordination complex with a pentavalent metal has two target molecule binding sites in the complex. It is called a divalent complex.
  • a complex that includes a ligand that binds to a target molecule recognition element and forms a tricoordinate complex with a trivalent metal has three target molecule binding sites in the complex. It is called a trivalent complex.
  • a complex that contains a ligand that binds to a target molecule recognition element and forms a six-coordinate complex with a monovalent metal has six target molecule binding sites in the complex. This is called a complex.
  • a compound that has two binding sites for the target molecule exhibits higher affinity and accumulation with the target molecule than a compound that has one binding site for the target molecule (a monovalent compound) Is known (Non-patent Document 3).
  • a bivalent IgG antibody has a binding power to an antigen that is at least 50 to 100 times that of a monovalent Fab fragment, and an IgM of a multivalent antibody has a binding power to 104 times that of IgG. (Avidity).
  • the polyvalent complex shows higher affinity and accumulation with the target molecule than the monovalent complex. Therefore, a radiolabeled drug containing a multivalent complex exhibits high accumulation at the target site.
  • the radiolabeled drug according to the present invention can be used for diagnostic imaging and internal radiotherapy using the radiolabeled drug.
  • the radiolabeled drug according to the present invention is preferably used for diagnosis and treatment of cancer diseases, but the applicable disease is not limited to this disease, and any disease to which image diagnosis or internal radiotherapy is applied. Applicable.
  • the target According to the characteristics of the target to be diagnosed or treated, the target can be diagnosed or treated by selecting a target molecule recognition element that binds to a complex that is an active ingredient of the radiolabeled drug. Can be widely used in the field of diagnosis and therapy.
  • intravenous administration or intraarterial administration can be preferably mentioned.
  • the administration route is not limited to these routes, and any route can be used as long as its action can be effectively expressed after administration of the present radiolabeled drug.
  • the radioactivity intensity of the radiolabeled drug according to the present invention is arbitrary as long as the objective can be achieved by administering the labeled drug and the subject is exposed to the lowest possible clinical dose. is there.
  • the radioactive intensity can be determined with reference to the radioactive intensity used in a general diagnostic method or therapeutic method using a radiolabeled drug.
  • the radiolabeled drug according to the present invention may contain one or more kinds of pharmaceutically acceptable carriers (pharmaceutical carriers) as necessary, in addition to the complex as an active ingredient.
  • pharmaceutically acceptable carriers include acids, bases, buffers, stabilizers, isotonic agents, and preservatives for adjusting pH.
  • the radiolabeled drug according to the present invention is preferably a drug that contains a ligand that binds to a target molecule recognition element and forms a multi-coordination complex with a metal, and a radionuclide of the metal.
  • the drug containing is provided as a kit comprising separate packaging units.
  • the radiolabeled drug according to the present invention includes 99m Tc labeled drug.
  • the 99m Tc-labeled drug according to the present invention includes a 99m Tc complex formed from 99m Tc and a ligand that binds to a target molecule recognition element and forms a multi-coordination complex with technetium. It is characterized by that.
  • the 99m Tc-labeled drug according to the present invention can be preferably used as a diagnostic agent for image diagnosis using a radio-labeled drug because 99m Tc emits only ⁇ rays having an energy suitable for in vitro measurement of radiation.
  • the ligand that forms a 99m Tc complex that is an active ingredient of the 99m Tc-labeled drug according to the present invention is a ligand that is bound to a target molecule recognition element and forms a multi-coordination complex with technetium. It is used for the preparation of a 99m Tc-labeled drug according to the present invention.
  • any compound can be used as long as it can form a multi-coordination complex with 99m Tc through a coordination bond.
  • Tc ligands D-Pen, AMPT, and hydroxamamide that form a 1: 2 complex with pentavalent Tc (these form a divalent complex), a trivalent Tc with 1: 3 Complexing thiourea, dimethylphosphinoethane, and O-phenylenebis (dimethylarsine) (these are ligands that form trivalent complexes), isonitriles that form a 1: 6 complex with monovalent Tc (6 Forming a valence complex).
  • the 99m Tc complex which is an active ingredient of the 99m Tc-labeled drug according to the present invention, is a ligand bonded to a target molecule recognition element, which forms a multi-coordination complex with Tc and 99m Tc. It is a complex.
  • the ligand that forms a multi-coordination complex means a ligand that forms a complex with a coordination number of two or more.
  • the coordination number is preferably 2 to 9 coordination.
  • the coordination number is more preferably 2-6 coordination.
  • technetium is known to form stable 6-, 3-, and 2-coordinate complexes in vivo with monodentate, bidentate, or tridentate ligands (Non-Patent Documents 1 and 2). Therefore, it is even more preferable that the coordination number is 2-coordinate, 3-coordinate, and hexacoordinate.
  • technetium forms a 1: 2 mixed ligand complex consisting of 2- and 3-coordinates with D-Pen or AMPT, and forms a 6-coordinated complex with isonitrile.
  • the 99m Tc complex which is an active ingredient of the 99m Tc-labeled drug according to the present invention, includes a ligand that is bound to the target molecule recognition element and forms a multi-coordination complex with Tc. It has the same number of target molecule recognition elements as the ligand (Fig. 1). That is, this 99m Tc complex has a plurality of target molecule binding sites. In this way, the ligand is bound to the target molecule recognition element and includes a ligand that forms a multi-coordination complex with Tc. As a result, the complex has the same number of target molecule recognition elements as the ligand in the complex.
  • the complex is referred to as a polyvalent Tc complex
  • a 99m Tc-labeled drug containing a polyvalent complex as an active ingredient is referred to as a multivalent Tc-labeled drug.
  • a 99m Tc complex that contains a ligand that binds to a target molecule recognition element and forms a bicoordinate complex with pentavalent Tc has two target molecule binding sites in the complex.
  • a divalent Tc complex referred to as a divalent Tc complex.
  • the 99m Tc complex which is a ligand that binds to the target molecule recognition element and forms a tricoordinate complex with trivalent Tc, has three target molecule binding sites in the complex. It is called a trivalent Tc complex.
  • the 99m Tc complex which is a ligand bound to the target molecule recognition element and forms a six-coordinate complex with monovalent Tc, has six target molecule binding sites in the complex. , Referred to as a hexavalent Tc complex.
  • the complex which is an active ingredient of the 99m Tc-labeled drug according to the present invention is a multivalent complex, and exhibits higher affinity and accumulation with the target molecule as compared with the monovalent complex.
  • the polyvalent 99m Tc-labeled drug according to the present invention exhibits higher accumulation at the target site compared to the conventionally used monovalent 99m Tc-labeled drug, and therefore should be used without purification after production. Can do. Moreover, the polyvalent 9m Tc-labeled drug according to the present invention exhibits sufficient stability in vivo.
  • the use of the polyvalent 99m Tc-labeled drug according to the present invention can increase the accumulation of the radio complex at the target site, and as a result, can provide high sensitivity in the image diagnosis using the radio-labeled drug. .
  • a 2-coordinate 99m Tc complex formed from two D-Pen molecules and 99m Tc bound to c (RGDfK) peptide with affinity for integrin, which is highly expressed in neovascular blood vessels of cancer. It is a bivalent complex having two binding sites for the integrin, which is the target molecule, and increases in the cancer neovascularization, which is the target site, compared to the monovalent 99m Tc complex. Therefore, a 99m Tc-labeled drug containing such a complex can provide high sensitivity in cancer diagnosis.
  • the bicoordinate 99m Tc complex formed from two D-Pen molecules bound to c (RGDfK) peptide and 99m Tc is an unpurified post-manufactured complex. Tumor accumulation equivalent to that of the 99m Tc complex prepared and purified using the same was observed (see Example 2).
  • the divalent 99m Tc complex showed sufficient stability in vivo (see Example 1). From these results, it is clear that 99m Tc-labeled drugs containing such complexes can provide high sensitivity in cancer diagnosis.
  • the 99m Tc-labeled drug according to the present invention can be prepared, for example, by mixing a ligand bound to a target molecule recognition element with pertechnetic acid or a salt thereof containing 99m Tc and a pertechnetate reducing agent.
  • Pertechnetate reducing agents are used to reduce pertechnetate to a low valence state advantageous for the formation of strong chelate compounds.
  • the pertechnetate reducing agent various pharmaceutically acceptable ones can be used, and preferred examples include stannous salt and sodium nitrite.
  • the stannous salt is a salt formed by divalent tin, for example, halide ions such as chloride ions and fluoride ions, inorganic acid residue ions such as sulfate ions and nitrate ions, tartrate ions, acetate ions, A salt formed between organic acid residue ions such as citrate ions.
  • the 99m Tc-labeled drug according to the present invention is prepared by first preparing 99m Tc-GH by adding a 99m Tc solution to a freeze-dried GH-kit, and then reacting the 99m Tc-GH with target molecule recognition. It can be prepared by mixing with a ligand bonded to the device.
  • This kit contains 4 mg of ⁇ -D-glucoheptonic acid and 1.2 ⁇ g of stannous chloride in one vial, and the pH is adjusted to 8 when pertechnetic acid ( 99m TcO4-) is added. .
  • Examples of the ligand bonded to the target molecule recognition element include c (RGDfK) peptide bond D-Pen represented by the following formula (I).
  • the c (RGDfK) peptide bond D-Pen represented by the above formula (I) can be produced using a compound represented by the following formula (II).
  • the ligand represented by the above formula (I) is a ligand formed by crosslinking D-Pen and c (RGDfK) peptide with hexanoic acid.
  • a ligand obtained by cross-linking D-Pen and c (RGDfK) peptide with polyethylene glycol can be preferably exemplified as a ligand bound to a target molecule recognition element.
  • the radiolabeled drug according to the present invention includes 186 Re or 188 Re labeled drug.
  • the 186 Re or 188 Re labeled drug according to the present invention is formed from a ligand bonded to a target molecule recognition element, which forms a multi-coordination complex with rhenium, and 186 Re or 188 Re. It is characterized by including the complex.
  • 186 Re or 188 Re labeling agent according to the present invention because the 186 Re and 188 Re are both emit ⁇ -rays with high energy showing the cytocidal, can be preferably used as an internal radiation therapeutic agent.
  • Rhenium is a Group 7 transition element similar to technetium, and has chemical properties similar to technetium, so the ligand that forms a complex with technetium forms a complex similar to rhenium.
  • the above-mentioned ligand that forms a polycoordinate complex with technetium can be used as the above-mentioned ligand that forms a polycoordinate complex with technetium.
  • the non-radioactive 185/187 Re a stable isotope of rhenium, formed a two-coordinate complex with D-Pen.
  • 185/187 Re formed a two-coordinate complex with D-Pen bound to c (RGDfK) peptide.
  • the ligand is not limited to the ligands exemplified above, and any ligand can be used as long as it is a compound that forms a multi-coordination complex with 186 Re or 188 Re.
  • the complex which is an active ingredient of the 186 Re or 188 Re labeled drug according to the present invention is a multivalent complex, and exhibits higher affinity and accumulation with the target molecule as compared with the monovalent complex.
  • the polyvalent 186 Re or 188 Re-labeled drug according to the present invention exhibits high accumulation at the target site, and thus can exhibit a high effect in internal radiation therapy. Moreover, the multivalent labeling agent according to the present invention exhibits sufficient stability in vivo.
  • a two-coordinate complex formed from D-Pen conjugated with c (RGDfK) peptide having affinity for integrin, which is highly expressed in cancer neovascularization, and 186 Re or 188 Re It is a bivalent complex that has two binding sites for the integrin, which is the target molecule, and it accumulates more in the cancerous neovascularization that is the target site than the monovalent complex.
  • the divalent 186 Re or 188 Re complex is sufficiently stable in vivo as the above divalent 99m Tc complex. Therefore, a radiolabeled drug containing this divalent 186 Re or 188 Re complex as an active ingredient is highly useful as a therapeutic agent for cancer diseases.
  • a ligand bound to a target molecule recognition element is mixed with perrhenic acid or a salt thereof containing 186 Re or 188 Re and a perrhenic acid reducing agent.
  • perrhenic acid reducing agent the compounds exemplified above as the pertechnetic acid reducing agent can be used.
  • a target molecule recognition element As a target molecule recognition element, a cyclic pentapeptide c (RGDfK) having an affinity for integrin, which is highly expressed in cancer new blood vessels, was used, and a ligand to which the peptide was bound was produced. Then, a 2-coordinate 99m Tc complex was produced using the ligand. In addition, the stability and pharmacokinetics of the 99m Tc complex produced were evaluated. Furthermore, the chemical structure of the complex formed by complexing the ligand with 99m Tc was examined using non-radioactive rhenium.
  • the method was performed by changing the linear gradient in%.
  • a JEOL-ALPHA 400 spectrometer (JEOL Ltd.) was used.
  • FAB-MS was measured using a JEOL JMS-HX-110 A mass spectrometer (JEOL Ltd.).
  • MALDI-TO-MS was measured using a Kratos Axima CFR apparatus (Shimadzu Corporation).
  • Cyclo (Arg (Pbf) -Gly-Asp (O t Bu) -D-Phe-Lys) was synthesized by previously reported methods (Haubner R, Wester HJ, Reuning U, Senekowitsch-Schmidtke R, Diefenbach B, Kessler H , Stocklin G, and Schwaiger M. Radiolabeled alpha (v) beta3 integrin antagonists: a new class of tracers for tumor targeting. J Nucl Med 1999: 40: 1061-71). All other reagents were used as they were.
  • S-Trityl-AMPT-N- acetate (S-Trtyl-AMPT-N-Ace) was synthesized as a ligand for S-Trityl-AMPT-N-acetate. This will be described below.
  • Tetrabutyl ammonium [ 185/187 ReOCl 4 ] (13): Tetrabutyl ammonium [ReO 4 ] (1.1 g, 2.2 mmol) was dissolved in ethanol (20 mL), and the reaction solution was saturated with hydrogen chloride gas under ice cooling. After stirring at room temperature for 2 hours, the reaction solution was concentrated to a half volume by a nitrogen stream. Subsequently, it was left in a freezer to obtain pale yellow crystals (0.5 g, 38%).
  • this solution was sequentially diluted with 0.1 M Tris-HCl buffer (pH 9.0) to prepare 2 mM, 0.2 mM, 0.02 mM, 0.01 mM, and 0.002 mM ligand solutions.
  • the product was confirmed by RP-HPLC (Method 1) and CAE.
  • D-Pen was selected as the ligand, and a ligand derivative with c (RGDfK) introduced was prepared and labeled with 99m Tc.
  • RGDfK ligand derivative with c
  • 99m Tc- (D-Pen-Hx-cRDGfK) 2 was accumulated in a tumor using 99m Tc-TMEC- [N-hexanoate- c (Arg-Gly-Asp-D-Phe-Lys)] 2 (hereinafter sometimes abbreviated as 99m Tc-TMEC-RGD 2 ).
  • 99m Tc- (D-Pen-Hx-cRDGfK) 2 was examined for the unpurified sample after synthesis, and 99m Tc-TMEC-RGD 2 was examined for the unpurified sample and the purified sample after synthesis.
  • Tumor model A human glioblastoma cell line (U87MG) was administered subcutaneously to the left thigh of a 4-week-old Balb / c-nu / nu mouse at 5 ⁇ 10 6 cells / mouse. For biodistribution experiments, tumors with a tumor size of about 0.5 g were used.
  • 99m Tc- (D-Pen- Hx-cRDGfK) 2 of manufacturing alpha-D-glucoheptonate and lyophilized GH-kit (3.0 mg) in 99 Mo / 99m Tc Na eluted from generator consisting of stannous chloride [ 99m TcO 4 ] / physiological saline solution 750 ⁇ l (1.58 ⁇ Ci) was added and reacted at room temperature for 20 minutes to obtain a 99m Tc-GH solution with [GH] 4.0 mg / ml.
  • TMEC- [N-hexanoate-c (Arg-Gly-Asp-D-Phe-Lys)] 2 (hereinafter sometimes abbreviated as TMEC-RGD 2 ) (0.7 mg, 0.406 ⁇ mol) was replaced with nitrogen.
  • a 2 mM ligand solution was separately prepared by dissolving in 200 ⁇ l of 0.1 M acetate buffer (pH 3.5). After adding 200 ⁇ l of 99m Tc-GH solution to 200 ⁇ l of the ligand solution and mixing well, the mixture was reacted at 80 ° C. for 1 hour.
  • TMEC-RGD 2 was synthesized using D-Pen (Trt) -O t Bu-N-hexanoate (9) synthesized by the method described in Example 1 as described below.
  • Purified or unpurified 99m Tc-TMEC-RGD 2 samples were each administered at 100 ⁇ l (about 0.5 ⁇ Ci) to 10-week-old Balb / c-nu / nu male tumor-bearing mice via the tail vein.
  • Four animals per group were sacrificed by decapitation 1 hour after administration, and blood, organs of interest and tumor were removed, and the weight and radioactivity of each organ were measured.
  • the accumulation of 99m Tc- (D-Pen-Hx-cRDGfK) 2 in the tumor is similar to that of 99m Tc-TMEC-RGD 2 with the ligand removed, even though it was unpurified containing excess ligand. It was equivalent (the upper part of Table 2).
  • the accumulation ratio of tumor and tissue was also the same or higher for unpurified 99m Tc- (D-Pen-Hx-cRDGfK) 2 compared to purified 99m Tc-TMEC-RGD 2 (lower row of Table 2).
  • 99m Tc- (Pen-RGD) 2 means 99m Tc- (D-Pen-Hx-cRDGfK) 2 .
  • 99m Tc- (D-Pen- Hx-cRDGfK) 2 of 99m Tc-labeled agents of divalent from monovalent ligands are generated by complexation with 99m Tc are in a crude state Since it accumulates efficiently at the target site, it can be used for diagnostic imaging without purification.
  • Pen-PEG 3 -RGD The synthesis of Pen-PEG 3 -RGD was performed as follows. First, the mercapto group of D-Pen was protected with a trityl group and the carboxy group was protected with tert Bu, and ethyl 11-bromo-3,6,9-oxaundecane (ethyl 11-bromo-3, The compound obtained by the reaction with 6,9-oxaundecanate) was subjected to a binding reaction with cyclic RGD peptide c (RGDfK) after hydrolysis of the ethyl ester, and then subjected to a deprotection reaction to obtain the target compound.
  • RGDfK cyclic RGD peptide c
  • the radiolabeled drug according to the present invention greatly contributes to the field of elucidation of pathological conditions, image diagnosis, and drug development.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

【課題】標的に効率的に集積し、かつ、生体内での高い安定性を有する放射性標識薬剤、および該放射性標識薬剤を使用する診断および治療の提供。 【解決手段】標的分子と結合する化合物と結合させた配位子であって金属(例えばテクネチウムやレニウム)と多配位の錯体を形成する配位子と該金属の放射性核種とから形成される錯体を含み、標的部位への集積性が増加した放射性標識薬剤;診断用または治療用の該放射性標識薬剤;前記放射性標識薬剤の調製用配位子;前記配位子を含む薬剤と金属放射性核種を含む薬剤とを、別々の包装単位として含んでなるキット;および、前記放射性標識薬剤を使用することを特徴とする、放射性標識薬剤の標的部位への集積を増加させる方法。

Description

放射性標識薬剤
 本発明は、標的部位への集積性が高い放射性標識薬剤に関する。詳しくは、標的分子と結合する化合物と結合させた配位子であって金属と多配位の錯体を形成する配位子と該金属の放射性核種とから形成される錯体を含み、標的部位への集積性が増加した放射性標識薬剤に関する。より詳しくは、標的分子と結合する化合物と結合させた配位子であってテクネチウム(Tc)またはレニウム(Re)と多配位の錯体を形成する配位子と、99mテクネチウム、186レニウム、および188レニウムからなる群から選ばれるいずれか1の金属放射性核種とから形成される錯体を含む診断用または治療用放射性標識薬剤に関する。また本発明は、前記放射性標識薬剤の調製用配位子に関する。さらに本発明は、前記配位子を含む薬剤と金属放射性核種を含む薬剤とを、別々の包装単位として含んでなるキットに関する。また本発明は、前記放射性標識薬剤を使用することを特徴とする、放射性標識薬剤の標的部位への集積を増加させる方法に関する。
 放射性標識薬剤は、放射性同位元素の核種により標識された化合物を含む薬剤であり、疾患の診断や治療、例えば腫瘍の診断や治療などに広く利用されている。放射性標識薬剤を特定の組織や細胞に集積させることにより、感度の高い診断や有効な治療を行うことができ、また、正常の組織や細胞への副作用を低減することができる。例えば、腫瘍細胞が臓器や組織に転移し、散在しているような場合でも、正常の組織や細胞に影響を与えることなく、有効な診断や治療が行える。放射性標識薬剤を用いた診断や治療においては、有用な核種の選択や、該薬剤を特定の組織や細胞に集積させるための薬剤設計が行われてきた。
 テクネチウム-99m(99mTc)は画像診断に適した半減期(6時間)を有し、放射線の体外計測に適したエネルギー(140KeV)のγ線のみを放射する。また、モリブデン-99(99Mo)との放射平衡を利用したジェネレータシステム(99Mo/99mTcジェネレータ)で容易に入手できることから、現在、核医学画像診断に最も汎用されている放射性核種(RI)である。
 99mTc製剤は、主として抗腫瘍抗体や低分子ペプチドなどの標的分子認識素子に99mTcと安定な錯体を形成する配位子を結合した化合物(配位子誘導体と称する)と99mTcとの錯形成反応により合成される。このような99mTc製剤として、例えば、4座配位子のN2S2と5価のTcとが1:1のモル比で錯体を形成したものが知られている。
 99mTc製剤の作製においては、短時間のうちに極微量の99mTc製剤を高い放射化学的収率で得るために、高濃度の配位子誘導体を使用する。その結果、99mTc標識溶液中には、標的分子認識素子を有する極微量の99mTc標識薬剤の他に大過剰の配位子誘導体が存在し、標的分子との結合を99mTc標識薬剤と競合するため、99mTc標識薬剤の標的への集積を大きく損なう。
 しかし、錯体未形成の配位子誘導体の除去を投与前に無菌的に行うのは容易ではなく、簡便な操作が可能な99mTcの特性を損うこととなる。低濃度においても高い収率で99mTc錯体を与える配位子の検討も進められているが、99mTcが極低濃度であることからその達成は困難とされている。 
 テクネチウムは適切な単座、2座あるいは3座配位子と生体内で安定な6配位、3配位、2配位の錯体を形成する(非特許文献1および2)。実際に、テクネチウムと1:2、1:3および1:6のモル比で錯体を形成する配位子も報告されている(非特許文献1、2および4)。しかし、認識素子を導入した場合でもこれらの配位子がTcと生体内で安定な錯体を生成するかは明らかでない。
 レニウムは、テクネチウムと同じ第7族の遷移元素であり、テクネチウムと類似した化学的性質を有する。レニウムには、放射性同位体である186レニウム(186Re)および188レニウム(188Re)の存在が知られている。186Reおよび188Reはいずれも高エネルギーのβ線を放射し、その半減期はそれぞれ90.6時間および16.9時間である。高エネルギーのβ線は細胞殺傷性を示すため、186Re標識薬剤はがん疾患の治療薬として研究されてきた。例えば、186Re標識ヒドロキシエチリデン ジホスホン酸(186Re-HEDP)の転移性骨腫瘍疼痛緩和作用が報告されている。しかし、186Re-HEDPは生体内での安定性が低いため、血液クリアランスの遅延と胃への高い集積という問題を有する。
 このように、疾患の診断や治療の分野において、特定の組織や細胞への高い集積性を有し、かつ、生体内での高い安定性を有する放射性標識薬剤の開発が求められている。
Wust F, Carlson KE, Katzenellenbogen JA, Spies H, and Johannsen B. Synthesis and binding affinities of new 17 alpha-substituted estradiol-rhenium "n + 1" mixed-ligand and thioether-carbonyl complexes. Steroids 1998: 63: 665-71 Jurisson SS, and Lydon JD. Potential technetium small molecule radiopharmaceuticals. Chem Rev 1999: 99: 2205-18 Mulder A, Huskens J, and Reinhoudt DN. Multivalency in supramolecular chemistry and nanofabrication. Org Biomol Chem 2004: 2: 3409-24 Arano Y. Recent advances in 99mTc radiopharmaceuticals. J Nucl Radiochem Sci 2005: 6: 177-181
 本発明は、上記した従来技術の問題点を解消することを解決すべき課題とした。すなわち、本発明は、標的に効率的に集積し、かつ、生体内での高い安定性を有する放射性標識薬剤を提供し、さらに該放射性標識薬剤を使用する診断および治療の提供を目的とする。
 本発明者は、標的分子への結合部位を1箇所有する認識素子(1価の認識素子)を持つ配位子であって金属と多配位の錯体を形成する配位子と該金属とにより形成される錯体は、配位子と同数の認識素子を有する多価錯体であるため、標的分子と強い結合力を獲得し、その結果、錯形成反応後、錯体未形成の配位子を含んだまま投与しても、末梢の標的分子への高い集積が達成されると考えた。そして、上記目的を達成すべく、鋭意研究を行った。配位子として、5価のテクネチウム(Tc)と配位子とが1:2の錯体(2配位の錯体)を形成するD-ペニシラミン(D-Penと略称することがある)、およびD-Penと配位基の配置が異なる1-アミノ-2-メチルプロパン-2-チオール-N-アセテート(以下、AMPTと略称することがある)を用い、また、標的分子認識素子としてがんの新生血管に高発現が認められるインテグリンに親和性を有する環状ペンタペプチドc(RGDfK)を用いて、c(RGDfK)が結合した配位子を合成し、該配位子と99mTcとを反応させて標的分子認識素子を2箇所有する99mTc錯体(2価錯体)を調製した。そして、この99mTc錯体が、体内動態の検討結果から、生体内でも十分に安定であることを見出した。本99mTc錯体は、標的分子認識素子を2箇所有することから、標的分子認識素子を1箇所有する99mTc錯体と比較して、標的分子との結合力が強く、末梢の標的分子への集積量が高い。さらに本発明においては、上記99mTcの代わりにレニウム(Re)を使用しても、上記同様の錯体を形成し得ることを見出した。本発明はこれらの知見に基づいて達成したものである。
 即ち、本発明は以下に関する。
(1)標的分子と結合する化合物と結合させた配位子であって金属と多配位の錯体を形成する配位子と該金属の放射性核種とから形成される錯体を含み、標的部位への集積性が増加した放射性標識薬剤。
(2)標的分子と結合する化合物と結合させた配位子であって5価のテクネチウム(Tc)と2配位または3配位の錯体を形成するD-ペニシラミンまたは1-アミノ-2-メチルプロパン-2-チオール-N-アセテートと99mTcとから形成される錯体を含み、標的部位への集積性が増加した診断用99mTc標識薬剤。
(3)標的分子と結合する化合物と結合させた配位子が環状ペンタペプチドc(RGDfK)と結合させた配位子である前記診断用99mTc標識薬剤。
(4)標的分子と結合する化合物と結合させた配位子であって5価のレニウム(Re)と2配位または3配位の錯体を形成するD-ペニシラミンまたは1-アミノ-2-メチルプロパン-2-チオール-N-アセテートと186Reまたは188Reとから形成される錯体を含み、標的部位への集積性が増加した治療用186Reまたは188Re標識薬剤。
(5)標的分子と結合する化合物と結合させた配位子が環状ペンタペプチドc(RGDfK)と結合させた配位子である前記治療用186Reまたは188Re標識薬剤。
(6)診断用または治療用放射性標識薬剤である前記いずれかの放射性標識薬剤。
(7)標的分子と結合する化合物と結合させた配位子であって金属と多配位の錯体を形成する配位子であることを特徴とする、標的部位への集積性が増加した診断用または治療用放射性標識薬剤の調製用配位子。
(8)金属放射性核種が、99mテクネチウム、186レニウム、および188レニウムからなる群から選ばれるいずれか1の金属放射性核種である前記の放射性標識薬剤の調製用配位子。
(9)金属と多配位の錯体を形成する配位子が、5価のテクネチウムまたはレニウムと2配位あるいは3配位の錯体を形成するD-ペニシラミンまたは1-アミノ-2-メチルプロパン-2-チオール-N-アセテートである前記の放射性標識薬剤の調製用配位子。
(10)標的分子と結合する化合物と結合させた配位子が環状ペンタペプチドc(RGDfK)と結合させた配位子である前記の放射性標識薬剤の調製用配位子。
(11)前記いずれかの放射性標識薬剤の調製用配位子を含む薬剤と、該配位子と多配位の錯体を形成する金属放射性核種とを含む薬剤とを、別々の包装単位として含んでなるキット。
(12)下式(I):
Figure JPOXMLDOC01-appb-C000003
で示される化合物の製造方法であって、下式(II):
Figure JPOXMLDOC01-appb-C000004
で示される化合物を使用することを特徴とする製造方法。
(13)標的分子と結合する化合物と結合させた配位子であって金属と多配位の錯体を形成する配位子と該金属の放射性核種とから形成される錯体を含む放射性標識薬剤を使用することを特徴とする、放射性標識薬剤の標的部位への集積を増加させる方法。
(14)金属放射性核種が、99mテクネチウム、186レニウム、および188レニウムからなる群から選ばれるいずれか1の金属放射性核種である前記方法。
(15)金属と多配位の錯体を形成する配位子が、5価のテクネチウムまたはレニウムと2配位あるいは3配位の錯体を形成するD-ペニシラミンまたは1-アミノ-2-メチルプロパン-2-チオール-N-アセテートである前記方法。
(16)標的分子と結合する化合物と結合させた配位子が環状ペンタペプチドc(RGDfK)と結合させた配位子である前記方法。
 本発明によれば、標的部位に効率的に集積し、かつ、生体内において十分に安定な放射性標識薬剤を提供できる。本発明に係る放射性標識薬剤は、標的分子への結合部位を1箇所有する標的分子認識素子(1価の標的分子認識素子)を持つ配位子であって金属と多配位の錯体を形成する配位子と該金属の放射性核種とにより形成される錯体を含み、この錯体は錯体を形成する配位子と同数の標的分子認識素子を有する多価錯体であるため、従来使用されていた1価の錯体と比較して、標的に高い集積性を示す。そのため、本発明に係る放射性標識薬剤を使用することにより、標的部位への放射性標識薬剤の集積を従来のものと比較して増加させることができ、その結果、錯体未形成の配位子を含んでいても、放射性標識薬剤を用いた画像診断や、がん疾患などの内部放射線治療において高い感度および効果を提供できる。具体的には例えば、標的部位に効率的に集積し、かつ、生体内において十分に安定な、99mTc標識薬剤、186Re標識薬剤および188Re標識薬剤を提供できる。本発明に係る99mTc標識薬剤は、放射性標識薬剤を用いた画像診断用の診断剤として有用であり、また、186Re標識薬剤および188Re標識薬剤はがんの内部放射線治療に有用である。
多価99mTc標識薬剤の構造を示す模式図である。 テクネチウム錯体生成における配位子濃度の影響を示す図である。図中、黒四角およびは黒ひし形はそれぞれ、配位子としてD-PenおよびAMPT-N-acetate(AMPT-N-Aceと記す)を使用した場合を示す。 99mTc-(D-Pen)2および99mTc-(AMPT-N-acetate)2の、緩衝液中の安定性を示す図である。図中、黒四角およびは黒ひし形はそれぞれ、99mTc-(D-Pen)2(Tc-99m-(D-Pen)2と記す)および99mTc-(AMPT-N-acetate)2(Tc-99m-(AMPT-N-acetate)2と記す)を示す。 99mTc-(D-Pen-Hx-cRDGfK)2の緩衝液中の安定性を示す図面である。 マウスに投与した精製99mTc-(D-Pen-Hx-cRDGfK)2の体内動態を、各臓器や各試料における集積率で示した図である。集積率は各臓器の放射活性の投与放射活性に対する割合(%)を各臓器の重さで除した値で示した。 マウスに投与した精製99mTc-(D-Pen-Hx-cRDGfK)2の体内動態を、各臓器や各試料における集積率で示した図である。集積率は各臓器や各試料の放射活性の投与放射活性に対する割合(%)を各臓器の重さで除した値で示した。 マウスに投与した未精製99mTc-(D-Pen-Hx-cRDGfK)2の体内動態を、各臓器や各試料における集積率で示した図である。集積率は各臓器の放射活性の投与放射活性に対する割合(%)を各臓器の重さで除した値で示した。 マウスに投与した未精製99mTc-(D-Pen-Hx-cRDGfK)2の体内動態を、各臓器や各試料における集積率で示した図である。集積率は各臓器や各試料の放射活性の投与放射活性に対する割合(%)を各臓器の重さで除した値で示した。
 本発明は、標的分子認識素子と結合させた配位子であって金属と多配位の錯体を形成する配位子と該金属の放射性核種とから形成される錯体を含み、標的部位への集積性が増加した放射性標識薬剤に関する。
 用語「錯体」とは、金属および金属類似元素の原子またはイオンを中心にして、配位子が配位した物質を意味する。配位とは、配位子が中心の金属と配位結合を形成して中心金属の周囲に配列することをいう。錯体は、配位子と金属との配位結合により形成される。配位結合とは、1本の結合にあずかる2個の原子価電子が、一方の原子のみから提供されている結合をいう。多配位とは、複数の配位子が中心の金属と配位結合を形成して中心金属の周囲に配列することをいう。n配位とは、n分子の配位子が中心の金属と配位結合を形成して中心金属の周囲に配列することをいう(金属が遷移金属である場合、nは一般的に2から9である)。すなわち、多配位の錯体は、配位子を複数分子含み、中心の金属と配位結合した錯体をいう。錯体において、中心金属の周囲に集まって配位結合をつくる配位子の数を配位数という。
 用語「配位子」とは、錯体中で中心金属に配位結合している他の原子(配位原子)を含む化合物を意味する。配位子には多数の種類があり、2つ以上の可能な配位原子を含む化合物を多座配位子、1つである場合を単座配位子、2つである場合を2座配位子、3つである場合を3座配位子のように称する。
 用語「標的分子認識素子」とは、標的分子に結合する化合物、好ましくは特異的に結合する化合物を意味する。標的分子に特異的に結合するとは、標的分子には結合するが、標的分子以外の分子には結合しないか、弱く結合することをいう。標的分子認識素子として、例えば、タンパク質、ペプチド、抗体、および抗体断片などを挙げることができる。標的分子認識素子を配位子と結合させて金属と錯体を形成させることにより、該錯体を標的分子、すなわち標的部位に結合させることができる。したがって、標的分子認識素子を選択して用いることにより、所望の標的部位に錯体を集積させることができる。
 本発明において、錯体を形成する金属は、遷移金属に属する金属であり、配位子と2配位以上の配位結合を形成する金属が使用される。金属原子の電荷は特に限定されず、例えば、1価、3価、または5価の電荷をもつ金属原子を挙げることができる。金属として、好ましくは金属放射性核種が使用される。金属放射性核種として具体的には、99mTc、186Re、および188Reを好ましく例示できる。金属放射性核種はこれら具体例に限定されず、放射標識薬剤を用いた診断や、がん疾患などの内部放射線治療などの目的に適当な放射線、放射線量、半減期を有する限りにおいていずれも使用することができる。診断および治療において正常の組織や細胞への影響を少なくするという観点から、短半減期金属放射性核種が好ましく使用される。
 本発明において、錯体を形成する配位子は、遷移金属に属する金属と配位結合により多配位の錯体を形成し得る化合物が使用される。例えば、99mTcと配位結合により多配位の錯体を形成し得る化合物として、5価のTcと1:2の錯体を形成するD-ペニシラミン(D-Penと略称することがある)、1-アミノ-2-メチルプロパン-2-チオール-N-アセテート(以下、AMPTと略称することがある)、ヒドロキサムアミド(これらは2価錯体を形成する)、3価のTcと1:3の錯体を形成するチウオウレア、ジメチルフォスフィノエタン、O-フェニレンビス(ジメチルアルシン)(これらは3価錯体を形成する配位子)、1価のTcと1:6の錯体を形成するイソニトリル(6価錯体を形成する)を挙げることができる。一方、レニウムがテクネチウムと同じ第7族の遷移元素であり、テクネチウムと類似した化学的性質を有することから、テクネチウムと錯体を形成する配位子は、レニウムと同様の錯体を形成する。したがって、上記例示した配位子はいずれも、186Reおよび188Reと錯体を形成する配位子として使用できる。配位子はこれら具体例に限定されず、金属と多配位の錯体を形成する化合物である限りにおいていずれも使用することができる。
 配位子は、配位子と標的分子認識素子とを結合させる架橋化合物をその分子内に含むものであり得る。架橋化合物は、標的分子認識素子と配位子とを架橋することができ、かつ、標的分子認識素子の標的分子への結合を阻害しない限りにおいて、いずれの化合物も使用できるが、好ましくはヘキサン酸およびポリエチレングリコールを例示できる。ポリエチレングリコールの分子量は、好ましくは200以上、より好ましくは400以上、さらに好ましくは600以上であって、1500以下が適当である。
 本発明において、標的分子認識素子として、タンパク質、ペプチド、抗体、および抗体断片を例示できる。具体的には、炎症や腫瘍細胞浸潤などに伴う組織構築において高い発現が認められるタンパク質や腫瘍細胞に特異的に発現するタンパク質に結合するリガンド、抗体および抗体のFab断片などを例示できる。より具体的には、がんの新生血管に高発現が認められるインテグリンに親和性を有する環状ペンタペプチドc(RGDfK)を例示できる。そのほか、造骨性のがん(骨転移)に多く存在するヒドロキシアパタイトへの親和性を有するビスフォスフォン酸やオリゴアスパラギン酸、オリゴグルタミン酸、マクロファージの表面に存在する走査因子の受容体と親和性があるペプチド(fMet-Leu-Phe)、がん細胞に発現が認められる葉酸受容体と結合する葉酸とその誘導体などが例示できる。標的分子認識素子は、例示された化合物に限定されず、標的分子に結合する化合物であればいずれを使用することもできる。
 本発明に係る放射性標識薬剤は、標的分子認識素子と結合させた配位子であって金属と多配位の錯体を形成する配位子と該金属の放射性核種とから形成される錯体を有効成分とするものである。このような錯体は、標的分子認識素子と結合させた配位子であって金属と多配位の錯体を形成する配位子を含むため、配位子と同数の標的分子認識素子を有する(図1参照)。すなわち、このような錯体は複数の標的分子結合部位を有する。このように、標的分子認識素子と結合させた配位子であって金属と多配位の錯体を形成する配位子含み、その結果錯体中に配位子と同数の標的分子認識素子を有する錯体を多価錯体と称し、そして多価の錯体を有効成分として含む放射性標識薬剤を多価放射性標識薬剤と称する。例えば、標的分子認識素子と結合させた配位子であって5価金属と2配位の錯体を形成する配位子を含む錯体は、錯体中に2箇所の標的分子結合部位を有し、2価錯体と称する。また、標的分子認識素子と結合させた配位子であって3価金属と3配位の錯体を形成する配位子を含む錯体は、錯体中に3箇所の標的分子結合部位を有し、3価錯体と称する。標的分子認識素子と結合させた配位子であって1価金属と6配位の錯体を形成する配位子を含む錯体は、錯体中に6箇所の標的分子結合部位を有し、6価錯体と称する。
 標的分子への結合部位を2箇所有する化合物(2価の化合物)は標的分子への結合部位を1箇所有する化合物(1価の化合物)に比べて標的分子との高い親和性や集積を示すことが知られている(非特許文献3)。標的分子へ結合する化合物として抗体を例にとると、2価のIgG抗体は、1価のFab断片よりも少なくとも50~100倍、多価抗体のIgMはIgGの104倍の抗原との結合力(avidity)を有する。
 このことから、多価錯体は1価の錯体と比較して、標的分子との高い親和性や集積を示す。したがって、多価錯体を含む放射性標識薬剤は、標的部位に高い集積性を示す。
 本発明に係る放射性標識薬剤は、放射性標識薬剤を用いた画像診断や、内部放射線治療に使用することができる。本発明に係る放射性標識薬剤は、がん疾患の診断や治療に好ましく使用されるが、適用疾患は本疾患に限定されず、画像診断や内部放射線治療が適用される疾患であればいずれにも適用できる。診断や治療の対象となる標的の特性にしたがって、放射性標識薬剤の有効成分である錯体に結合させる標的分子認識素子を選択することにより、該標的の診断や治療が可能であり、本放射性標識薬剤は診断および治療の分野で広く使用できる。
 本発明に係る放射性標識薬剤の投与経路として、静脈内投与あるいは動脈内投与を好ましく挙げることができる。投与経路はこれら経路に限定されず、本放射性標識薬剤の投与後、その作用が有効に発現し得る経路であればいずれも利用できる。
 本発明に係る放射性標識薬剤の放射活性強度は、本標識薬剤を投与したことにより目的を達成し得る強度であり、かつ、被験者の放射線被ばくが可能な限り低い臨床投与量である限りにおいて任意である。放射性強度は、放射性標識薬剤を使用する一般的な診断方法や治療方法で使用されている放射活性強度を参考にして決定できる。
 本発明に係る放射性標識薬剤は、上記錯体を有効成分として含むほか、必要に応じて、1種類または2種類以上の医薬的に許容される担体(医薬用担体)を含むことができる。医薬用担体として、pHを調整するための酸、塩基、緩衝液、安定化剤、等張化剤、保存剤を例示できる。
 本発明に係る放射性標識薬剤は、好ましくは、標的分子認識素子と結合させた配位子であって金属と多配位の錯体を形成する配位子を含む薬剤と、該金属の放射性核種を含む薬剤とを、別々の包装単位として含んでなるキットとして提供される。
 本発明に係る放射性標識薬剤の一態様として、99mTc標識薬剤を挙げることができる。本発明に係る99mTc標識薬剤は、標的分子認識素子と結合させた配位子であってテクネチウムと多配位の錯体を形成する配位子と99mTcとから形成される99mTc錯体を含むことを特徴とする。本発明に係る99mTc標識薬剤は、99mTcが放射線の体外計測に適したエネルギーのγ線のみを放射することから、放射性標識薬剤を用いた画像診断用の診断剤として好ましく使用できる。
 本発明に係る99mTc標識薬剤の有効成分である99mTc錯体を形成する配位子は、標的分子認識素子と結合させた配位子であってテクネチウムと多配位の錯体を形成する配位子であることを特徴とし、本発明に係る99mTc標識薬剤の調製に使用される。本発明において用いられる配位子は、99mTcと配位結合により多配位の錯体を形成し得る化合物であればいずれを使用することもできる。99mTcの配位子として、5価のTcと1:2の錯体を形成するD-Pen、AMPT、およびヒドロキサムアミド(これらは2価錯体を形成する)、3価のTcと1:3の錯体を形成するチオウレア、ジメチルフォスフィノエタン、およびO-フェニレンビス(ジメチルアルシン)(これらは3価錯体を形成する配位子)、1価のTcと1:6の錯体を形成するイソニトリル(6価錯体を形成する)を例示できる。
 本発明に係る99mTc標識薬剤の有効成分である99mTc錯体は、標的分子認識素子と結合させた配位子であってTcと多配位の錯体を形成する配位子と99mTcとの錯体であることを特徴とする。多配位の錯体を形成する配位子とは、2配位以上の配位数で錯体を形成する配位子を意味する。一般に遷移金属の場合、配位数が2~9配位の錯体が知られており、テクネチウムが遷移金属であることから、配位数は2~9配位が好ましい。また、電子的および立体的な安定性の観点から、配位数は2~6配位であることがより好ましい。さらに、テクネチウムが単座、2座あるいは3座配位子と生体内で安定な6配位、3配位、2配位の錯体を形成する(非特許文献1および2)ことが知られていることから、配位数は2配位、3配位、および6配位であることがさらにより好ましい。例えば、テクネチウムは、D-PenまたはAMPTと2配位と3配位からなる1:2の混合配位子錯体を形成し、そしてイソニトリルと6配位の錯体を形成する。
 本発明に係る99mTc標識薬剤の有効成分である99mTc錯体は、標的分子認識素子と結合させた配位子であってTcと多配位の錯体を形成する配位子を含むため、配位子と同数の標的分子認識素子を有する(図1)。すなわち、本99mTc錯体は複数の標的分子結合部位を有する。このように、標的分子認識素子と結合させた配位子であってTcと多配位の錯体を形成する配位子含み、その結果錯体中に配位子と同数の標的分子認識素子を有する錯体を多価Tc錯体と称し、そして多価の錯体を有効成分として含む99mTc標識薬剤を多価Tc標識薬剤と称する。例えば、標的分子認識素子と結合させた配位子であって5価のTcと2配位の錯体を形成する配位子を含む99mTc錯体は、錯体中に2箇所の標的分子結合部位を有し、2価Tc錯体と称する。また、標的分子認識素子と結合させた配位子であって3価のTcと3配位の錯体を形成する配位子を含む99mTc錯体は、錯体中に3箇所の標的分子結合部位を有し、3価Tc錯体と称する。標的分子認識素子と結合させた配位子であって1価のTcと6配位の錯体を形成する配位子を含む99mTc錯体は、錯体中に6箇所の標的分子結合部位を有し、6価Tc錯体と称する。
 本発明に係る99mTc標識薬剤の有効成分である錯体は多価錯体であり、1価の錯体と比較して、標的分子との高い親和性や集積を示す。
 したがって、本発明に係る多価99mTc標識薬剤は、従来使用されていた1価99mTc標識薬剤と比較して、標的部位に高い集積性を示し、そのため、製造後に精製することなく使用することができる。また、本発明に係る多価9mTc標識薬剤は、生体内において十分な安定性を示す。
 このように、本発明に係る多価99mTc標識薬剤の使用により、標的部位への放射性錯体の集積を増加させることができ、その結果、放射性標識薬剤を用いた画像診断において高い感度を提供できる。
 例えば、がんの新生血管に高発現が認められるインテグリンに親和性を有するc(RGDfK)ペプチドを結合させたD-Penの2分子と99mTcとから形成された2配位の99mTc錯体は、標的分子であるインテグリンへの結合部位を2箇所有する2価錯体であり、1価99mTc錯体と比較して、標的部位であるがん新生血管への集積が増加する。したがって、このような錯体を含む99mTc標識薬剤は、がんの診断において高い感度を提供できる。
 実際、c(RGDfK)ペプチドを結合させたD-Penの2分子と99mTcとから形成された2配位の99mTc錯体は製造後の未精製なものでも、従来の4座配位子を用いて作製し精製した99mTc錯体と同等の腫瘍集積性を示した(実施例2参照)。また、この2価99mTc錯体は生体内において十分な安定性を示した(実施例1参照)。これら結果から、このような錯体を含む99mTc標識薬剤は、がんの診断において高い感度を提供できることは明らかである。
 本発明に係る99mTc標識薬剤は、例えば、標的分子認識素子と結合させた配位子を、99mTcを含む過テクネチウム酸またはその塩および過テクネチウム酸還元剤と混合することにより調製できる。過テクネチウム酸還元剤は、過テクネチウム酸塩を強固なキレート化合物の形成に有利な低原子価状態に還元するために使用される。過テクネチウム酸還元剤としては医薬上許容され得る種々のものが使用できるが、好ましいものとして第一スズ塩、亜ニチオン酸ナトリウムを例示できる。第一スズ塩は2価のスズが形成する塩であって、例えば塩化物イオン、フッ化物イオンなどのハロゲン化イオン、硫酸イオン、硝酸イオンなどの無機酸残基イオン、酒石酸イオン、酢酸イオン、クエン酸イオンなどの有機酸残基イオンとの間で形成される塩をいう。
 具体的には、本発明に係る99mTc標識薬剤は、まず凍結乾燥GH-キットに99mTc溶液を加えて反応させることにより99mTc-GHを調製し、次いで99mTc-GHを、標的分子認識素子と結合させた配位子と混合することにより調製できる。本キットは、1バイアル中にα-D-グルコヘプトン酸 4mgと塩化第一スズ 1.2μgとを含み、過テクネチウム酸(99mTcO4-)を加えたときのpHが8になるよう調整したものである。
 標的分子認識素子と結合させた配位子として、下式(I)で示されるc(RGDfK)ペプチド結合D-Penを例示できる。
Figure JPOXMLDOC01-appb-C000005
 上記式(I)で示されるc(RGDfK)ペプチド結合D-Penは、下式(II)で示される化合物を使用して製造できる。
Figure JPOXMLDOC01-appb-C000006
 上記式(I)で示される配位子は、D-Penとc(RGDfK)ペプチドとがヘキサン酸で架橋されてなる配位子である。この他、D-Penとc(RGDfK)ペプチドとをポリエチレングリコールで架橋した配位子も、標的分子認識素子と結合させた配位子として好ましく例示できる。
 本発明に係る放射性標識薬剤の一態様として、186Reまたは188Re標識薬剤を挙げることができる。本発明に係る186Reまたは188Re標識薬剤は、標的分子認識素子と結合させた配位子であってレニウムと多配位の錯体を形成する配位子と186Reまたは188Reとから形成される錯体を含むことを特徴とする。本発明に係る186Reまたは188Re標識薬剤は、186Reおよび188Reがいずれも細胞殺傷性を示す高エネルギーのβ線を放射することから、内部放射線治療剤として好ましく使用できる。
 レニウムは、テクネチウムと同じ第7族の遷移元素であり、テクネチウムと類似した化学的性質を有することから、テクネチウムと錯体を形成する配位子は、レニウムと同様の錯体を形成する。
 したがって、186Reまたは188Re標識薬剤の有効成分である186Re錯体または188Re錯体を形成する配位子として、テクネチウムと多配の錯体を形成する上記配位子を使用できる。実際、レニウムの安定性同位体である非放射性の185/187Reは、D-Penと2配位の錯体を形成した。また、185/187Reは、c(RGDfK)ペプチドを結合させたD-Penと2配位の錯体を形成した。配位子は上記例示した配位子に限定されず、186Reまたは188Reと多配位の錯体を形成する化合物である限りにおいていずれも使用することができる。
 本発明に係る186Reまたは188Re標識薬剤の有効成分である錯体は多価錯体であり、1価の錯体と比較して、標的分子との高い親和性や集積を示す。
 したがって、本発明に係る多価186Reまたは188Re標識薬剤は、標的部位に高い集積性を示し、そのため内部放射線治療において高い効果を示すことができる。また、本発明に係る多価標識薬剤は、生体内において十分な安定性を示す。
 例えば、がんの新生血管に高発現が認められるインテグリンに親和性を有するc(RGDfK)ペプチドを結合させたD-Penと、186Reまたは188Reとから形成された2配位の錯体は、標的分子であるインテグリンへの結合部位を2箇所有する2価錯体であり、1価錯体と比較して、標的部位であるがん新生血管への集積が増加する。また、この2価186Reまたは188Re錯体は、上記2価99mTc錯体と同様に生体内において十分に安定である。したがって、この2価186Reまたは188Re錯体を有効成分として含む放射性標識薬剤は、がん疾患の治療剤として有用性が高い。
 本発明に係る186Reまたは188Re標識薬剤は、例えば、標的分子認識素子と結合させた配位子を、186Reまたは188Reを含む過レニウム酸またはその塩および過レニウム酸還元剤と混合することにより調製できる。過レニウム酸還元剤としては、過テクネチウム酸還元剤として上記例示した化合物を使用することができる。
 以下、実施例を示して本発明をより具体的に説明するが、本発明は以下に示す実施例によって何ら限定されるものではない。
 標的分子認識素子としてがんの新生血管に高発現が認められるインテグリンに親和性を有する環状ペンタペプチドc(RGDfK)を用い、該ペプチドを結合させた配位子を製造した。そして、該配位子を用いて2配位の99mTc錯体を製造した。また、製造した99mTc錯体の安定性および体内動態の評価を行った。さらに、該配位子と99mTcとの錯形成で生成する錯体の化学構造を非放射性のレニウムを用いて検討した。
(実験材料と方法)
1. 一般的方法
 過テクネチウム酸(99mTcO4-)は、富士フイルムRIファーマ株式会社製の99Mo/99mTcジェネレータを用いた。薄層クロマトグラフィー(TLC)には、シリカゲルプレート(Silica gel 60F254、メルク社製)を使用した。セルロースアセテート電気泳動(CAE)はべロナールバッファー(pH8.6)を用い、1mAで30分間泳動した。逆相HPLC(RP-HPLC)カラムはCosmosil 5C18-AR 300カラム(4.6mm×150mm、ナカライテスク株式会社)を使用し、移動相A(0.01M リン酸緩衝液(pH6.0))、移動相B(MeOH)を0-18分 B=0-60%;18-21分 B=60-100%で直線勾配で変化させる方法(方法1)、または0-18分 B=0-60%、18-26分 B=60-100%、26-31分 B=100%で直線勾配で変化させる方法(方法2)で行った。分取用RP-HPLCカラムはCosmosil 5C18 AR 300カラム(20mm×150mm、ナカライテスク株式会社)を使用し、流速5mL/minで0-5分 B=0%、5-45分 B=0-100%で直線勾配で変化させる方法で行った。1H-NMRはJEOL-ALPHA 400スペクトロメーター(日本電子株式会社)を用いた。FAB-MSはJEOL JMS-HX-110 Aマススペクトロメーター(日本電子株式会社)を用いて測定した。MALDI-TO-MSはKratos Axima CFR apparatus(島津製作所)を用いて測定した。Cyclo(Arg(Pbf)-Gly-Asp(OtBu)-D-Phe-Lys)の合成は以前報告された方法(Haubner R, Wester HJ, Reuning U, Senekowitsch-Schmidtke R, Diefenbach B, Kessler H, Stocklin G, and Schwaiger M. Radiolabeled alpha(v)beta3 integrin antagonists: a new class of tracers for tumor targeting. J Nucl Med 1999: 40: 1061-71)に従って合成した。その他の試薬はすべて特級のものをそのまま使用した。
2. S-Trityl-AMPT-N-acetateの合成
 配位子として用いるS-Trityl-AMPT-N-acetate(S-Trt-AMPT-N-Ace)を合成した。以下に説明する。
Figure JPOXMLDOC01-appb-C000007
(実験1)
2,2,5,5-tetrametyl-3,4-dithiahexane-1,6-dial(1)の合成:
 乾燥CCl4(140mL)に溶解したイソブチルアルデヒド(183mL,2.0mol)溶液にS2Cl2(80mL,1.0mol)を50-55℃を維持したまま滴下した。反応時に発生したHClガスはN2ガスにより除去した。反応液を2時間攪拌後、10N NaOH(110mL)をゆっくりと滴下し、pHを10に調節した。ジエチルエーテル(100mL)を加え、有機層をブライン(brine)(100mL)により洗浄した後、MgSO4により乾燥させた。溶媒を留去後、残査を減圧蒸留(bp 113-114℃/6mmHg)により精製し、無色の油状物質を得た。その後冷却することにより結晶として化合物1を得た(105.7g,51.2%)。1H-NMR (CDCl3): δ 1.30 (s, 12H, CH3), 9.00 (s, 2H, CHO); FABMS: m/z 207 [(M + H)+]。
(実験2)
2,2,5,5-tetrametyl-3,4-dithiahexane-1,6-dial bisoxime(2)の合成:
 化合物1(4.12g,20mmol)とヒドロキシルアミン ヒドロクロライド(4.17g,60mmol)を乾燥エタノール(20mL)に溶解した。次いで、その溶液に15N NaOH(3.8mL,57mmol)を滴下した。3時間還流した後、水(100mL)を加えた。ジエチルエーテル(4×20mL)により抽出し、無水Na2SO4により乾燥させた。溶媒を留去した後、粗生成物を油状物質として得た。EtOAc-n-Hexaneにより再結晶を行い、化合物2を無色の結晶として得た(2.48g,52.5%)。1H-NMR (CDCl3): δ 1.30 (s, 12H, CH3), 7.30 (s, 2H, CH=NOH); FABMS: m/z 237 [(M + H)+]。
(実験3)
1-amino-2-methyl-2-(S-trityl)-propanethiol(S-Trityl-AMPT,3)の合成:
 テトラヒドロフラン(THF,12mL)に溶解したLiAlH4(482mg,12mmol)を、THF(8mL)に溶解した化合物2(945mg,4mmol)にゆっくりと滴下した。窒素気流下15時間激しく攪拌しながら還流し、次いで氷上で反応液を0℃に冷却した。酢酸エチル(3.2mL)を加えた後、6N HClを加えpH1.0に調整した。溶媒を留去した後、残査をトリフルオロ酢酸(TFA,11.4mL)に溶解し、次いでトリフェニルメタノール(2.1g,8mmol)を加えた。窒素気流下26時間攪拌後、TFAを窒素気流により留去した。残査をジクロロメタン(DCM,14mL)に溶解した後、3N NaOHにより溶液のpHを10-11に調整した。有機層を分取し、水(3×7mL)、次いで飽和NaHCO3(2×3mL)、ブライン(2×3mL)により洗浄した。有機層を無水Na2SO4で乾燥後、溶媒を留去した。残査を溶出溶媒DCM-MeOH(10:1)とするシリカゲルクロマトグラフィにより精製し、化合物3を薄い茶色の油状物質として得た(234mg,8.4%)。1H-NMR (CDCl3): δ 1.00 (s, 6H, CH3), 1.53 (s, 2H, NH2), 1.76 (s, CH2), 7.26-7.16 (m, 9H, aryl), 7.60-7.63 (d, 6H, aryl); FABMS: m/z 348 [(M + H)+]。
(実験4)
S-Trityl-AMPT-N-acetate (S-Trt-AMPT-N-Ace)の合成:
 化合物3(188mg,0.51mmol)を乾燥DCM(2mL)に溶解し、5N NaOH(0.1mL)を加えた。反応液を窒素気流下1.5時間攪拌後、溶媒を留去した。残査を水に溶解し、6N HClによりpHを2.0に調整した。生じた沈殿をろ取し、0.08N HClにより洗浄し、S-Trt-AMPT-N-Aceを薄灰色結晶として得た(36.2mg,72%)。1H-NMR (CD3OD): 1.20 (s, 6H, CH3), 1.83 (s, 1H, NH), 3.09 (s, 2H, NHCH2CO), 3.25 (s, 2H, SC (CH3)2 CH2NH), 7.12-7.26 (m, 9H, aryl), 7.56-7.60 (d, 5H, aryl); FABMS: m/z 406 [(M + H)+]。
3. D-Pen(Trt)-O t Bu-N-hexanoate(9)の製造
 配位子として用いるD-Pen(Trt)-OtBu-N-hexanoate(9)を合成した。以下説明する。
Figure JPOXMLDOC01-appb-C000008
(実験5)
N, N'-Diisopropyl-O-tert-butylisourea (5)の合成:
 乾燥したナス型フラスコにtert-butanol(2.78g,37.5mmol)を入れ、窒素気流下30℃でジイソプロピルカルボジイミド(DIC,4.08g,32.3mmol)およびCuClを少量加えた。反応溶液を窒素気流下30℃で4日間攪拌した。Poly (4-vinylpyridine)(カチオン交換レジン,0.65g)とDCM(16.5mL)を加え、スラリー状になった溶液をさらに15分間攪拌した。固形物をろ去し、溶出液を留去後、粗結晶を無色透明のオイルとして得た(5.99g,最高92.6%)。この化合物は未精製のまま次の反応に用いた。FABMS: m/z 201 [(M + H)+]。
(実験6)
Fmoc-D-Penicillamine (Trt)-OtBu(6)の合成:
 Fmoc-D-penicillamine (Trt)-OH (500mg,0.815mmol)をDCM(15mL)に溶解し、化合物5(1.142g,5.703mmol)をゆっくりと加えた。窒素気流下、15時間攪拌後、沈殿物をろ去した。ろ液の溶媒を留去後、残査を溶出溶媒n-Hexane-Et2O(2:1)とするシリカゲルクロマトグラフィにより精製し、化合物6を白色固体として得た(520.9mg,95.4%)。1H-NMR (CDCl3): δ 1.00 (s, 3H, CH3), 1.11 (s, 3H, CH3), 1.46 (s, 9H, tBu), 1.54 (brs, 1H, NH), 3.62-3.69 (d, 1H, COCHNH), 4.21-4.43 (m, 3H, CH2CH-fluorenyl), 7.13-7.45 (m, 19H, aryl), 7.53-7.70 (d, 2H, aryl), 7.72-7.83 (d, 2H, aryl); FABMS: m/z 692 [(M + Na)+]。
(実験7)
D-Penicillamine (Trt)-OtBu(7)の合成:
 Fmoc-D-Penicillamine (Trt)-OtBu(500mg,0.746mmol)を乾燥DCM(40mL)に溶解し、次いで1, 8-diazabicyclo [5.4.0] -7-undecene(DBU)(1.14mL,7.46mmol)を加えた。室温で25時間攪拌した後、溶媒を留去した。残査を溶出溶媒n-Hexane-EtOAc(3:1→2:1)とするシリカゲルクロマトグラフィにより精製し、化合物7を無色の油状物質として得た(280.9mg,84.1%)。1H-NMR (CDCl3): δ 1.08(s, 3H, CH3), 1.14 (s, 3H, CH3), 1.28 (s, 9H, tBu), 7.10-7.26 (m, 9H, aryl), 7.55-7.61 (d, 2H, aryl); FABMS: m/z 448 [(M + H)+], 895 [(2M + H)+] 。
(実験8)
Methyl 6-bromohexanoate(4)の合成:
 メタノール(25mL)を-10℃に冷却し、撹拌しながらSOCl2(2.6mL,34mmol)をゆっくりと滴下した。滴下後10分間撹拌した後、6-ブロモヘキサン酸(4.89g,25mmol)を加え、室温で一晩撹拌した。溶媒を減圧留去した。残渣を酢酸エチルに溶解した後、ブライン(3×30mL)で洗浄した。有機層を無水CaSO4で乾燥させた後、溶媒を留去し、化合物4を無色の油状物質として得た(5.13g,98%)。1H-NMR (CD3OD): δ 3.64 (s, 3H, OCH3), (t, 2H, CH2ε), 2.33 (t, 2H, CH2α),(m, 2H, CH2δ),(m, 2H, CH2β), (m, 2H, CH2γ); FABMS: m/z 209 [(M + H)+]。
(実験9)
D-Pen (Trt)-OtBu-N-hexanoate methyl ester(8)の合成:
 活性した4Å モレキュラーシーブ(604.5mg)を乾燥DMF(6mL)に加え、次いで、LiOH・H2O (96.03mg,2.289mmol)を加えた。この懸濁液を10分間激しく撹拌した後、乾燥DMFに溶解した化合物7(476.5mg,1.06mmol)を加え、さらに30分間撹拌した。この懸濁液に化合物4(192.4μL,1.29mmol)を加え、室温で24時間撹拌した。無機物をろ去した後、残渣を少量のDCMにより3回洗浄した。ろ液を水で洗浄し、無水Na2SO4により乾燥させた。溶媒を減圧留去した後残渣をn-Hexane-EtOAc(5:1から3:1まで)を展開溶媒とする中圧シリカゲルカラムクロマトグラフィにより精製し化合物8を無色透明の油状物質として得た(152.4mg,24.8%)。1H NMR (CDCl3): δ 7.08-7.57 (m, 15H, Trt), 3.58 (s, 3H, OMe), 2.57 (s, 1H, COCHNH), 2.36-2.43 (m, 1H, -NH-), 2.22-2.26 (t, 2H, MeOCOCH2), 1.331 (s, 9H, tBu), 1.248-1.667 (m, 6H, CH2 x 3), 0.94 (s, 3H, Me), 0.892 (s, 3H, Me); FABMS: m/z 576 [(M + H)+]。
(実験10)
D-Pen (Trt)-OtBu-N-hexanoate(9)の合成:
 化合物8(326.7mg,0.567mmol)を乾燥エタノール(40mL)と2.5N NaOH(0.91mL,2.27mmol)の混液に溶解した。窒素気流下40℃で3時間反応させた後、DCM(15mL)を加えブライン(15×2mL)で洗浄した。有機層を抽出し、溶媒を減圧留去した。残渣をn-Hexane-EtOAc(1:1)を溶出溶媒とするシリカゲルカラムクロマトグラフィにより粗精製し、粗精製物9を無色透明の油状物質として得た(282mg,88%)。1H NMR (CDCl3): δ 7.60-7.62 (m, 15H, Trt), 2.52 (s, 1H, COCHNH), 2.28-2.31 (m, 3H, MeOCOCH2 and NH), 1.38 (s, 9H, tBu), 1.29-1.66 (m, 6H, CH2), 1.16 (s, 3H, Me), 1.02 (s, 3H, Me); FABMS: m/z 562 [(M + H)+], 584 [(M + Na)+]。
4. D-Pen-N-hexanoate- cRGDfK(11)の製造
 cRGDfKペプチドと結合させた配位子であるD-Pen-N-hexanoate-cRGDfKを、D-Pen (Trt)-OtBu-N-hexanoate(化合物9)を用いて製造した。以下に説明する。
Figure JPOXMLDOC01-appb-C000009
(実験11)
D-Pen (Trt)-OtBu-N-hexanoate- cRGDfK peptide conjugateの合成:
 乾燥DMF(20mL)に溶解した化合物9(23.6mg,0.423mmol)、化合物10(385.5mg,0.423mmol)およびヒドロキシベンゾリアゾール(HOBt,71.23mg,0.465mmol)に乾燥DMF(15mL)に溶解したWSC・HCl(89.19mg,0.465mmol)を氷上ゆっくりと加えた。室温で44時間撹拌した後、溶媒を留去した。残渣をDCM(60mL)に溶解した後5%クエン酸(20mL)、水(20mL)、5% NaHCO3(20mL)、水(20mL)で順次洗浄し、最後に5% クエン酸(20mL)で洗浄した。有機層を減圧流留去した後、残渣を氷零下(CH3Cl-Et2O)により再結晶を行い薄灰色の結晶として保護アミノ酸結合配位子を得た(545.4mg,88.6%)。FABMS: m/z 1459 [(M + 5H)5+]。
(実験12)
D-Pen-N-hexanoate-cRGDfK(11)の合成:
 保護アミノ酸結合配位子(353.1mg,0.252mmol)にTFA、水およびトリエチルシランの混液(90:4.75:4.75, v/v/v, 81mL)を加え、室温で3時間攪拌した。窒素ガスで溶媒を濃縮後、残渣を最少量の水に溶解し、次いで酢酸エチルを加えることで沈殿を生成させた。沈殿をろ取後、沈殿を水、酢酸エチルにより洗浄した。沈殿を分取用RP-HPLCにより精製することにより白色固体として化合物11(35mg,30%)を得た.MALDI-TOF MS: m/z 849 [M], 850 [(M+H)+]。
5. [ 185/187 Re]-(D-Pen-N-acetate-c(RGDfK)) 2 (12)の製造
 cRGDfKペプチドと結合させた配位子であるD-Pen-N-acetate-c(RGDfK)と185/187レニウムとからなる2配位185/187レニウム錯体を製造した。以下に説明する。
Figure JPOXMLDOC01-appb-C000010
(実験13)
 過レニウム酸アンモニウム(3.38mg,12.6μmol)、化合物11(1mg,1.26μmol)および12.5mM NaHCO3(0.2mL,2.52μmol)を加え、密閉した。反応容器に窒素ガスを15分間通した後、0.25M 亜ジオン酸ナトリウム(0.1mL,12.6μmol)溶液を加え、4時間攪拌した。次いで、分析用RP-HPLC(方法2)により分析した。MALDI-TOF MS: m/z 1784 [(M+2H)+]。
6. [ 185/187 Re]-(D-Pen)2 (14)の製造
 D-ペニシラミンおよび185/187レニウムとからなる2配位185/18レニウム錯体を製造した。以下に説明する。
Figure JPOXMLDOC01-appb-C000011
(実験14)
Tetrabutyl ammonium [185/187ReOCl4](13)の製造:
 Tetrabutyl ammonium [ReO4](1.1g,2.2mmol)をエタノール(20mL)に溶解し、氷冷下、反応溶液を塩化水素ガスで飽和した。室温で2時間撹拌した後、窒素気流により反応溶液の体積が半量になるまで濃縮した。続いて冷凍庫中で放置し、淡黄色の結晶を得た(0.5g,38%)。FABMS: m/z 242 [M (TBA)], 243 [(M (TBA)+H)+], IR (KBr): 2962, 2874, 1470, 1380, 1169, 737 cm-1
(実験15)
[185/187Re]-(D-Pen)2(14)の製造:
 エタノール(6mL)にTBA [ReOCl4](50mg,0.085mmol)を溶解し、撹拌下、エチレングリコール(0.43mL)を加えた。そこへ酢酸ナトリウムを反応溶液が濃紫色を呈するまで加えた。続いてD-Penのエタノール溶液(25.4mg(0.171mmol)/1.2mL)を1.2mL加え、室温で2時間撹拌した。1N NaOHで反応溶液のpHを9に調節し、溶媒を減圧留去した。少量のメタノールに溶解し、RP-HPLCで分析(方法1)および精製を行った。生成物量が微量であったため、収率は計算できなかった。1H-NMR (CD3OD): δ 1.212 (s, 3H, Me β), 1.591 (s, 3H, Me β), 1.738 (s, 3H, Me β), 1.997 (s, 3H, Me β), 3.041 (s, 1H, CH α), 3.934 (s, 1H, CH α)。
7.  99m Tc-glucoheptonate( 99m Tc-GH)の製造:
 α-D-グルコヘプトン酸(4.0mg,17.7μmol)およびSnCl2 2H2O 1.2μgからなる凍結乾燥GH-キットに99mTc溶液1.0mL(370MBq,20pmol)を加え、室温で20分間反応させることにより、99mTc-GHを得た。99mTc-GHの生成確認はTLC(アセトン,Rf値=0,生理食塩水,Rf値 1.0)により行った。
8 99m Tc-(D-penicillamine) 2 の製造 
 D-ペニシラミン(D-Pen,1.19mg,8μmol)を窒素置換した0.1M トリス塩酸バッファー(pH9.0)400μLに溶解した。続いて、この溶液を0.1M トリス塩酸バッファー(pH9.0)により順次希釈し、2mM、0.2mM、0.02mM、0.01mM、0.002mMの配位子溶液を調製した。各配位子濃度の溶液100μLに99mTc-GH溶液100μLを加え混和した後、室温で1時間反応させた。99mTc-(D-Pen)2の確認は、RP-HPLC(方法1)およびCAEにより行った。
9 99m Tc-(AMPT-N-acetate) 2 の製造
 S-Trt-AMPT-N-Ace(3.24mg,8μmol)にTFA 200μL(2.6mmol)を加え1分間攪拌した。この溶液にTES 10μL(74μmol)を加え、反応溶液が黄色から無色に変化した事を確認した後、窒素により溶媒を留去した。そこへ窒素置換した0.1M トリス塩酸バッファー(pH9.0)400μLを加えた。続いて、この溶液を0.1M トリス塩酸バッファー(pH9.0)により順次希釈し、2mM、0.2mM、0.02mM、0.01mM、0.002mMの配位子溶液を調製した。各配位子濃度の溶液100μLに99mTc-GH([GH]=4.0mg/mL)100μLを加え十分混和した後、室温で1時間反応させた。生成物の確認はRP-HPLC(方法1)およびCAEにより行った。
10.  99m Tc-(D-Pen-N-Hx-cRGDfK) 2 の製造
 D-Pen-N-hexanoate-cRGDfK(化合物11,0.8mg,1μmol)を窒素置換した0.1M トリス塩酸バッファー(pH9.0)50.5μLに溶解した。続いて、この溶液を0.1M トリス塩酸バッファー(pH9.0)により希釈し2mMの配位子溶液を調製した。配位子溶液100μLに99mTc-GH溶液100μLを加え十分混和した後、室温で1時間反応させた。化合物の生成の確認はRP-HPLC(方法2)により行った。
11. 安定性の検討
 各99mTc標識化合物をRP-HPLC(方法1または方法2)により精製した後、溶媒を減圧留去した。残渣を0.01M リン酸緩衝液(pH6.0)400μLに再溶解させ、この溶液を室温で保存し、1、3、6、24時間後にその放射化学的純度をCAEまたはRP-HPLCで分析した。
12. 動物実験
 未精製状態の99mTc-(D-Pen-N-hexanoate-cRGDfK)2またはRP-HPLCにより精製した99mTc-(D-Pen-N-hexanoate-cRGDfK)2をそれぞれ100μL(約1μCi)ずつ6週齢ddY系雄性マウスに尾静脈投与し、1群3匹とし、投与後10分、1時間、3時間、6時間に屠殺し、採血、解剖し、各臓器の重量と放射活性を測定した。また、投与後6時間までに排泄された尿および糞の放射活性も測定した。
(結果)
1. テクネチウム錯体生成における配位子濃度の影響
 99mTc-(D-Pen)2は、D-Penの濃度が0.01mMまで放射化学的収率95%以上で得られたが、それ以下では、放射化学的収率の低下が認められた(図2)。一方、99mTc-(AMPT-N-acetate)2の場合では、AMPT-N-acetate濃度が0.01mMまでは放射化学的収率90%以上で得られ、それ以下で急激な放射化学的収率の低下が認められた(図2)。
2 99m Tc錯体の緩衝液中の安定性
 99mTc-(D-Pen)2および99mTc-(AMPT-N-acetate)22の緩衝液中の安定性を検討したところ、99mTc-(D-Pen)2の方がより高い安定性を示した(図3)。
 そこで配位子にD-Penを選択し、c(RGDfK)を導入した配位子誘導体を作製し、99mTc標識を行った。得られた99mTc-(D-Pen-N-Hx-cRGDfK)2の緩衝液中の安定性を検討したところ、6時間後においても未変化体として存在した(図4)。すなわち、99mTc-(D-Pen-N-Hx-cRGDfK)2が緩衝液中で安定であることが判明した。
 また、99mTc-(D-Pen-N-Hx-cRGDfK)2の構造を確認するために、非放射性のレニウム(Re)を用いてRe-(D-Pen-Hx-cRDGfK)2を作製した。質量分析により、Reと配位子誘導体とが1:2の錯体を形成していることを認めた。99mTc-(D-Pen-N-Hx-cRGDfK)2とRe-(D-Pen-Hx-cRDGfK)2とはRP-HPLCの保持時間は一致した。(表1)。
Figure JPOXMLDOC01-appb-T000012
 このことから、99mTc-(D-Pen-Hx-cRDGfK)2は、99mTcと配位子誘導体とが1:2の錯体を形成していると考えられる。このように、本薬剤設計が標的への親和性が増強された新たな99mTc放射性医薬品の開発に有用であることを認めた。
3.  99m Tc-(D-Pen-Hx-cRDGfK) 2 の体内動態
 99mTc-(D-Pen-Hx-cRDGfK)2をマウスに投与したところ、精製したものおよび未精製のもののいずれも胃への集積は観察されなかった(図5-AおよびB、並びに図6-AおよびB)。生体内で99mTcが錯体から解離した場合、胃に集積することから、本錯体は生体内においても安定に存在したことを示す。以上の結果は、D-Penを配位子とし、これに標的分子認識素子を結合することにより、生体内で安定な2価の99mTc錯体が得られることを示す。これらの結果はまた、適切な配位子を選択することにより、生体内において十分に安定な多価99mTc標識薬剤が得られることを強く示唆する。
 腫瘍を移植したヌードマウスを用いて、99mTc-(D-Pen-Hx-cRDGfK)2の腫瘍への集積を、従来の4座配位子から作製した99mTc-TMEC-[N-hexanoate- c(Arg-Gly-Asp-D-Phe-Lys)]2(以下、99mTc-TMEC-RGD2と略称することがある)と比較した。99mTc-(D-Pen-Hx-cRDGfK)2は合成後の未精製サンプルについて、また、99mTc-TMEC-RGD2は合成後の未精製サンプルおよび精製サンプルについて集積性の検討を行った。
(実験材料と方法)
1. 腫瘍モデル
 4週齢Balb/c-nu/nuマウスの左大腿部皮下に、ヒト膠芽腫細胞株(glioma cell)U87MGを5 x 106 細胞/1匹投与した。体内分布実験には、腫瘍サイズが約0.5 gのものを使用した。
2.  99m Tc-(D-Pen-Hx-cRDGfK) 2  の製造
 α-D-グルコヘプトン酸と塩化第一スズからなる凍結乾燥GH-kit(3.0 mg)に99Mo/99mTcジェネレータより溶出したNa[99mTcO4]/生理的食塩溶液750μl(1.58μCi)を加え、室温で20分間反応させることにより、[GH] = 4.0 mg/mlの99mTc-GH溶液を得た。また、D-Pen-Hx-cRGDfK(0.8 mg, 0.942μmol)を窒素置換した0.1 M トリス塩酸バッファー(pH 9.0)471μl に溶解させ2 mMの配位子溶液を別途調製した。配位子溶液140μlに99mTc-GH溶液140μlを加え十分混和した後、40℃で40分間反応させた。反応溶液を[Free Ligand] = 0.025 mMとなるよう生理的食塩溶液で40倍に希釈し、未精製投与サンプルとした。
3.  99m Tc-TMEC-RGD 2 の製造
 α-D-グルコヘプトン酸と塩化第一スズからなる凍結乾燥GH-kit(2.0 mg)に99Mo/99mTcジェネレータより溶出したNa[99mTcO4]/生理的食塩溶液500μl(970 μCi)を加え、室温で20分間反応させることにより、[GH] = 4.0 mg/mlの99mTc-GH溶液を得た。また、TMEC-[N-hexanoate- c(Arg-Gly-Asp-D-Phe-Lys)]2(以下、TMEC-RGD2と略称することがある)(0.7 mg, 0.406 μmol)を窒素置換した0.1 M 酢酸バッファー(pH 3.5)200 μlに溶解させて2 mMの配位子溶液を別途調製した。配位子溶液200μlに99mTc-GH溶液200μlを加え十分混和した後、80℃で1時間反応させた。反応溶液の半量(200 μl)をRP-HPLC(mobile phase : A = 10 mM リン酸バッファー(pH 6.0), B = MeOH, gradient system : 0-18分; B = 0-60%, 18-26分; B = 60-100%, 26-31分; B = 100%)に付し、24分の溶出画分を分取、有機溶媒を減圧留去した後、10% エタノール/生理的食塩溶液で希釈し、精製後サンプルとした。また、反応溶液の残る半量(200 μl)を[Free Ligand] = 0.025 mMとなるよう生理的食塩溶液で40倍に希釈し、未精製投与サンプルとした。
 TMEC-RGD2の合成は、実施例1に記載の方法で合成したD-Pen (Trt)-OtBu-N-hexanoate(9)を用いて以下説明するように行った。
Figure JPOXMLDOC01-appb-C000013
(実験1)
TMEC(Trt)2-OtBu-N-hexanoate (15)の合成
 MeOH (9 mL) に溶解した化合物9 (50 mg, 0.089 mmol) を氷冷し、窒素雰囲気下Glyoxal (40 wt. % in H2O, 6.6μL, 0.062 mmol)を加え、続いてNaBH3CN (5.6 mg, 0.089 mmol) を加え40℃で撹拌した。1日おきにGlyoxal (40 wt. % in H2O, 6.6μL, 0.062 mmol) およびNaBH3CN (5.6 mg, 0.089 mmol) を加え、3日間撹拌した。反応溶液に水(5 mL) および5% NaHCO3 (5 mL) を緩徐に加えNaBH3CNを分解した後、MeOHを減圧留去した。残渣をCHCl3 (10 mL)で希釈し、5% NaHCO3 (10 mL) およびbrine (10 mL) により洗浄した。次いでCHCl3層を5% クエン酸 (10 mL) で洗浄した後、水 (10 mL) およびbrine (10 mL) で洗浄した。有機層を減圧濃縮し、残渣をn-Hexane-EtOAc (3 : 1) を溶出溶媒とするシリカゲルカラムクロマトグラフィーにより精製し、化合物15を淡黄色の油状物として得た (24 mg, 47%)。1H-NMR (CDCl3): δ 0.91 (s, 6H, Me x 2), 1.23-1.26 (overlapped, 4H, CH2 x 2), 1.29 (s, 6H, Me x 2), 1.38-1.41 (m, 4H, CH2 x 2), 1.46 (s, 18H, tBu x 2), 1.54-1.62 (m, 4H, CH2 x 2), 2.25 (s, 2H, αCH), 2.28-2.32 (overlapped, 8H, CH2 x 4), 2.52 (brs, 2H, NHCH2), 2.70 (brs, 2H, NHCH2), 7.13-7.57 (m, 30H, aromatic (Trt)); FABMS: m/z 614 [(M + 2K)2+/2], Found 614。MALDI-TOF MS (cynapinic acid as a matrics): 614 [(M + 2K)2+/2], Found 614。ESIMS: m/z 614 [(M + 2K)2+/2]。Found 614。
(実験2)
TMEC(Trt)2-OtBu-[N-hexanoate-c(Arg(Pbf)-Gly-Asp(OtBu)-D-Phe-Lys)]2 (16)の合成
 化合物15 (50 mg, 0.044 mmol)、ECDI (83.4 mg, 0.091 mmol) およびHOBt (14.7 mg, 0.096 mmol)をDMF (1.5 mL) に溶解し、そこへ氷冷撹拌下、WSCI (18.4 mg, 0.096 mmol)のDMF溶液 (1.5 mL) を緩徐に滴下した。室温で48時間撹拌した後、溶媒を減圧留去した。残渣をCH2Cl2 (7 mL) に溶解させ、(a) 5% クエン酸 (7 mL), brine (3 mL)、 (b) 水 (7 mL), brine (7 mL)、 (c) 10% NaHCO3 (8 mL), brine (5 mL)、(d) 水 (10 mL), brine (5 mL)、(e) 5% クエン酸 (10 mL), brine (5 mL) により順次洗浄した。 有機層を無水硫酸ナトリウムにより乾燥させた後、溶媒を減圧濃縮した。残渣を最小量のCHCl3に溶解させた後、少量の Et2Oを加え生成物を沈殿化させた。沈殿をろ取後、少量のEt2Oで洗浄し、化合物16を白灰色固体として得た (106 mg, 82.1%)。次の反応には更なる精製を行わずにそのまま使用した。
(実験3)
TMEC-[N-hexanoate- c(Arg-Gly-Asp-D-Phe-Lys)]2 (17)の合成
 化合物16(106 mg, 0.036 mmol) をTFA/water/triethylsilane (90 : 4.75 : 4.75 (v/v/v), 11.7 mL) に溶解させ、 室温で6時間撹拌した。反応溶液を窒素気流により濃縮し、得られた残渣にEt2O (2 mL)を徐々に加え沈殿化させた。さらにEt2O (2 mL)を加えデカンテーションにより沈殿を3回洗浄した。最後に沈殿のEt2O懸濁溶液を遠心分離 (1000 rpm, 5 min x 2)することで洗浄し、化合物17の粗精製物を灰色の固体として得た。得られた沈殿を分取用RP-HPLC (system 3)により精製し、 凍結乾燥することで化合物17を白色の固体として得た (15.4 mg, 25%)。MALDI-TOF MS: m/z 1723 [(M + H)+], 862 [(M + 2H)2+/2], Found 1723, 862.。
4. 放射性標識剤の腫瘍および臓器への集積の検討
 未精製99mTc-(D-Pen-Hx-cRDGfK)2 サンプルを100μl(約1.1μCi)ずつ10週齢Balb/c-nu/nu系雄性担癌マウスに尾静脈投与した。1群5匹とし、投与1時間後に断頭により屠殺し、血液および関心臓器、腫瘍を摘出後、各臓器の重量と放射活性を測定した。
 精製または未精製の99mTc-TMEC-RGD2サンプルをそれぞれ100μl(約0.5μCi)ずつ10週齢Balb/c-nu/nu系雄性担癌マウスに尾静脈投与した。1群4匹とし、投与後1時間に断頭により屠殺し、血液および関心臓器、腫瘍を摘出後、各臓器の重量と放射活性を測定した。
(結果)
 従来の4座配位子から作製した99mTc-TMEC-RGD2の腫瘍への集積は、過剰の配位子を含んだ未精製な状態では低く、精製により過剰の配位子を除去することで増加した(表2)。この結果から、過剰の配位子が9mTc-TMEC-RGD2の腫瘍への集積を阻害することが確認された。
 一方、99mTc-(D-Pen-Hx-cRDGfK)2 の腫瘍への集積は、過剰の配位子を含んだ未精製なものでも、配位子を除去した99mTc-TMEC-RGD2と同等であった(表2上段)。また、腫瘍と組織との集積比も、未精製な99mTc-(D-Pen-Hx-cRDGfK)2は精製した99mTc-TMEC-RGD2と比較して同等もしくは高かった(表2下段)。なお、表2中、99mTc-(Pen-RGD)299mTc-(D-Pen-Hx-cRDGfK)2 を意味する。
Figure JPOXMLDOC01-appb-T000014
 表2における記号について以下に説明する。
a:投与放射活性に対する各組織1グラムあたりの放射活性の割合(% injected dose/gram tissue)で表示
b:過剰の配位子を除去せずに投与
c:過剰の配位子をHPLCで除去して投与
d:投与放射活性に対する割合(% injected dose)で表示
e:腫瘍と組織の% injected dose/gram tissueから算出
 このように、99mTcとの錯形成により一価の配位子から二価の99mTc標識薬剤が生成している99mTc-(D-Pen-Hx-cRDGfK)2 は、未精製な状態で標的部位に効率的に集積するため、未精製のまま画像診断などに使用できる。
 99mTcとの錯形成により一価の配位子から二価の99mTc標識薬剤が生成する新規薬剤設計に基づき、D-penicillamine (D-Pen) 誘導体、Pen-PEG3-RGDの合成を行った。実施例1で合成したD-Pen-N-hexanoate-cRGDfK(11)では、ペニシラミンとc(RGDfK)とをヘキサン酸で架橋したが、Pen-PEG3-RGDではペニシラミンとc(RGDfK)とをエチレングリコールで架橋した。
 Pen-PEG3-RGDの合成は次のように行った。まず、D-Penのメルカプト基をトリチル基で、そしてカルボキシ基をtertBuでそれぞれ保護し、別途合成したエチル 11-ブロモ-3,6,9-オキサウンデカネート(ethyl 11-bromo-3,6,9-oxaundecanate)との反応により得た化合物について、エチルエステルの加水分解後に環状RGDペプチドc(RGDfK)との結合反応を行い、次いで、脱保護反応を経て目的化合物を得た。
 本発明に係る放射性標識薬剤は、病態の解明や画像診断、さらには医薬品開発の分野に多大に寄与するものである。

Claims (16)

  1. 標的分子と結合する化合物と結合させた配位子であって金属と多配位の錯体を形成する配位子と該金属の放射性核種とから形成される錯体を含み、標的部位への集積性が増加した放射性標識薬剤。
  2. 標的分子と結合する化合物と結合させた配位子であって5価のテクネチウム(Tc)と2配位または3配位の錯体を形成するD-ペニシラミンまたは1-アミノ-2-メチルプロパン-2-チオール-N-アセテートと99mTcとから形成される錯体を含み、標的部位への集積性が増加した診断用99mTc標識薬剤。
  3. 標的分子と結合する化合物と結合させた配位子が環状ペンタペプチドc(RGDfK)と結合させた配位子である請求項2に記載の診断用99mTc標識薬剤。
  4. 標的分子と結合する化合物と結合させた配位子であって5価のレニウム(Re)と2配位または3配位の錯体を形成するD-ペニシラミンまたは1-アミノ-2-メチルプロパン-2-チオール-N-アセテートと186Reまたは188Reとから形成される錯体を含み、標的部位への集積性が増加した治療用186Reまたは188Re標識薬剤。
  5. 標的分子と結合する化合物と結合させた配位子が環状ペンタペプチドc(RGDfK)と結合させた配位子である請求項4に記載の治療用186Reまたは188Re標識薬剤。
  6. 診断用または治療用放射性標識薬剤である請求項1から5のいずれか1項に記載の放射性標識薬剤。
  7. 標的分子と結合する化合物と結合させた配位子であって金属と多配位の錯体を形成する配位子であることを特徴とする、標的部位への集積性が増加した診断用または治療用放射性標識薬剤の調製用配位子。
  8. 金属放射性核種が、99mテクネチウム、186レニウム、および188レニウムからなる群から選ばれるいずれか1の金属放射性核種である請求項7に記載の放射性標識薬剤の調製用配位子。
  9. 金属と多配位の錯体を形成する配位子が、5価のテクネチウムまたはレニウムと2配位あるいは3配位の錯体を形成するD-ペニシラミンまたは1-アミノ-2-メチルプロパン-2-チオール-N-アセテートである請求項8に記載の放射性標識薬剤の調製用配位子。
  10. 標的分子と結合する化合物と結合させた配位子が環状ペンタペプチドc(RGDfK)と結合させた配位子である請求項8または9に記載の放射性標識薬剤の調製用配位子。
  11. 請求項7から11のいずれか1項に記載の放射性標識薬剤の調製用配位子を含む薬剤と、該配位子と多配位の錯体を形成する金属放射性核種とを含む薬剤とを、別々の包装単位として含んでなるキット。
  12. 下式(I):
    Figure JPOXMLDOC01-appb-C000001
    で示される化合物の製造方法であって、下式(II):
    Figure JPOXMLDOC01-appb-C000002
    で示される化合物を使用することを特徴とする製造方法。
  13. 標的分子と結合する化合物と結合させた配位子であって金属と多配位の錯体を形成する配位子と該金属の放射性核種とから形成される錯体を含む放射性標識薬剤を使用することを特徴とする、放射性標識薬剤の標的部位への集積を増加させる方法。
  14. 金属放射性核種が、99mテクネチウム、186レニウム、および188レニウムからなる群から選ばれるいずれか1の金属放射性核種である請求項13に記載の方法。
  15. 金属と多配位の錯体を形成する配位子が、5価のテクネチウムまたはレニウムと2配位あるいは3配位の錯体を形成するD-ペニシラミンまたは1-アミノ-2-メチルプロパン-2-チオール-N-アセテートである請求項14に記載の方法。
  16. 標的分子と結合する化合物と結合させた配位子が環状ペンタペプチドc(RGDfK)と結合させた配位子である請求項14または15に記載の方法。
PCT/JP2009/058372 2009-04-28 2009-04-28 放射性標識薬剤 WO2010125647A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2009/058372 WO2010125647A1 (ja) 2009-04-28 2009-04-28 放射性標識薬剤
JP2011511216A JP5604680B2 (ja) 2009-04-28 2009-04-28 放射性標識薬剤
EP09843991A EP2425861A4 (en) 2009-04-28 2009-04-28 RADIOACTIVELY MARKED SUBSTANCE
US13/266,249 US20120065367A1 (en) 2009-04-28 2009-04-28 Radioactively Labeled Substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/058372 WO2010125647A1 (ja) 2009-04-28 2009-04-28 放射性標識薬剤

Publications (1)

Publication Number Publication Date
WO2010125647A1 true WO2010125647A1 (ja) 2010-11-04

Family

ID=43031814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/058372 WO2010125647A1 (ja) 2009-04-28 2009-04-28 放射性標識薬剤

Country Status (4)

Country Link
US (1) US20120065367A1 (ja)
EP (1) EP2425861A4 (ja)
JP (1) JP5604680B2 (ja)
WO (1) WO2010125647A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012173222A1 (ja) * 2011-06-17 2012-12-20 国立大学法人 千葉大学 ガリウム標識薬剤

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104667306B (zh) * 2015-02-09 2018-02-02 刘丽 99mTc标记RGD多肽三聚体肿瘤显像药剂的化学结构及制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10501531A (ja) * 1994-06-03 1998-02-10 ダイアテック・インコーポレイテッド モノアミン、ジアミド、チオール含有金属キレート剤

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2196222B1 (en) * 2003-10-20 2014-04-23 Universität Zürich Tricarbonyl complexes of rhenium comprising amino acids as bidentate ligands and their use as radiotherapeutic chemotoxic agents.
JP5481673B2 (ja) * 2007-10-29 2014-04-23 国立大学法人 千葉大学 放射性標識薬剤

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10501531A (ja) * 1994-06-03 1998-02-10 ダイアテック・インコーポレイテッド モノアミン、ジアミド、チオール含有金属キレート剤

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
ARANO Y: "Recent advances in 99mTc radiopharmaceuticals", J NUCL RADIOCHEM SCI, vol. 6, 2005, pages 177 - 181
HAUBNER R; WESTER HJ; REUNING U; SENEKOWITSCH-SCHMIDTKE R; DIEFENBACH B; KESSLER H; STOCKLIN G; SCHWAIGER M.: "Radiolabeled alpha (v) beta 3 integrin in antagonists: a new class of tracers for tumor targeting", J. NUCL. MED., vol. 40, 1999, pages 1061 - 71
JURISSON SS; LYDON JD: "Potential technetium small molecule radiopharmaceuticals", CHEM REV, vol. 99, 1999, pages 2205 - 18
MULDER A; HUSKENS J; REINHOUDT DN: "Multivalency in supramolecular chemistry and nanofabrication", ORG BIOMOL CHEM, vol. 2, 2004, pages 3409 - 24
See also references of EP2425861A4
TOMOYA UEHARA ET AL.: "Hyoteki Bunshi eno Shuseki Kojo o Mokuteki to suru Aratana 99mTc Hyoshiki Yakuzai no Sekkei", JAPANESE JOURNAL OF NUCLEAR MEDICINE, vol. 44, no. 3, 30 October 2007 (2007-10-30), pages S185, XP008155226 *
TOMOYA UEHARA ET AL.: "Taka Koka ni yoru Hyoteki Bunshi eno Shuseki Kojo o Mezashita Aratana 99mTc Hyoshiki Yakuzai no Sekkei", JAPANESE JOURNAL OF NUCLEAR MEDICINE, vol. 45, no. 3, 30 September 2008 (2008-09-30), pages S189, XP008155227 *
WUST F; CARLSON KE; KATZENELLENBOGEN JA; SPIES H; JOHANNSEN B: "Synthesis and binding affinities of new 17 alpha-substituted estradiol-rhenium ''n+1'' mixed-ligand and thioether-carbonyl complexes", STEROIDS, vol. 63, 1998, pages 665 - 71, XP004151182, DOI: doi:10.1016/S0039-128X(98)00079-8
YO YOKOYAMA ET AL.: "99mTc Hyoshiki Kagobutsu no Hyoshiki Kagaku to sono Hinshitsu Kanri", JAPANESE JOURNAL OF RADIOLOGICAL TECHNOLOGY, vol. 38, no. 1, January 1982 (1982-01-01), pages 66 - 72, XP008154669 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012173222A1 (ja) * 2011-06-17 2012-12-20 国立大学法人 千葉大学 ガリウム標識薬剤
JPWO2012173222A1 (ja) * 2011-06-17 2015-02-23 国立大学法人 千葉大学 ガリウム標識薬剤

Also Published As

Publication number Publication date
EP2425861A4 (en) 2012-12-19
EP2425861A1 (en) 2012-03-07
US20120065367A1 (en) 2012-03-15
JPWO2010125647A1 (ja) 2012-10-25
JP5604680B2 (ja) 2014-10-15

Similar Documents

Publication Publication Date Title
JP7207740B2 (ja) 放射性薬剤
EP2170075B1 (en) Labeled inhibitors of prostate specific membrane antigen (psma), biological evaluation, and use as imaging agents
JP2021506784A (ja) 鉛またはトリウム放射性核種に連結されたpsma標的化化合物を含む錯体
CN108699108B (zh) 放射性标记药物
EP3856261A1 (en) Labeled inhibitors of prostate specific membrane antigen (psma), their use as imaging agents and pharmaceutical agents for the treatment of psma-expressing cancers
WO2019151384A1 (ja) 放射性医薬
Lee et al. Synthesis and biological evaluation of RGD peptides with the 99m Tc/188 Re chelated iminodiacetate core: Highly enhanced uptake and excretion kinetics of theranostics against tumor angiogenesis
Radford et al. Synthesis and evaluation of Re/99mTc (I) complexes bearing a somatostatin receptor-targeting antagonist and labeled via a novel [N, S, O] clickable bifunctional chelating agent
JP5481673B2 (ja) 放射性標識薬剤
He et al. Initial evaluation of new 99mTc (CO) 3 renal imaging agents having carboxyl-rich thioether ligands and chemical characterization of Re (CO) 3 analogues
Uehara et al. Assessment of 186Re chelate-conjugated bisphosphonate for the development of new radiopharmaceuticals for bones
JP5604680B2 (ja) 放射性標識薬剤
Thieme et al. Synthesis, characterization and biological evaluation of [188Re (N)(cys∼)(PNP)]+/0 mixed-ligand complexes as prototypes for the development of 188Re (N)-based target-specific radiopharmaceuticals
KR20080059159A (ko) 바이오틴 다이아미노유도체 및 이들의 거대고리킬레이트제와의 접합체
Wharton et al. [213Bi] Bi3+/[111In] In3+-neunpa-cycMSH: Theranostic Radiopharmaceutical Targeting Melanoma─ Structural, Radiochemical, and Biological Evaluation
KR20140134365A (ko) NOTA 표지 글루코사민-함유 시클로 RGDfK 유도체, 그 제조방법 및 그것을 포함하는 핵의학 영상 조영제 및 암 치료제
KR102269315B1 (ko) 전립선 암의 영상 또는 치료를 위한 동위원소 표지 화합물
Kelderman et al. Technetium Nitrido Complexes of Tetradentate Thiosemicarbazones: Kit-Based Radiolabeling, Characterization, and In Vivo Evaluation
JP5971867B2 (ja) ガリウム標識薬剤
WO2023227535A1 (en) Functionalized bisaminothiol derivatives, complexes with these bisaminothiol derivatives and use of said complexes as diagnostics and therapeutics
MOLECOLARI Radiofarmaci “metal based” nella cardiologia nucleare e nell’imaging tumorale
Schiller et al. 188Re (III)-” 4+ 1”-MIXED-LIGAND COMPLEXES: STABILITY STUDIES AND LABELING OF BIOMOLECULES
JP2015083546A (ja) 癌の原発巣・骨転移の検査・治療用放射性標識薬剤
Papadopoulos et al. Development of technetium-99m labelled biomarkers for heart metabolism using the Tc-tricarbonyl core
Junnotula Rhenium complexes with O, N, S ligands

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09843991

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011511216

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009843991

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13266249

Country of ref document: US