WO2010124582A1 - 抽油机系统及其省电控制方法 - Google Patents

抽油机系统及其省电控制方法 Download PDF

Info

Publication number
WO2010124582A1
WO2010124582A1 PCT/CN2010/072034 CN2010072034W WO2010124582A1 WO 2010124582 A1 WO2010124582 A1 WO 2010124582A1 CN 2010072034 W CN2010072034 W CN 2010072034W WO 2010124582 A1 WO2010124582 A1 WO 2010124582A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
current
control
work
drag
Prior art date
Application number
PCT/CN2010/072034
Other languages
English (en)
French (fr)
Inventor
郝双晖
郝明晖
Original Assignee
浙江关西电机有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江关西电机有限公司 filed Critical 浙江关西电机有限公司
Publication of WO2010124582A1 publication Critical patent/WO2010124582A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/008Monitoring of down-hole pump systems, e.g. for the detection of "pumped-off" conditions
    • E21B47/009Monitoring of walking-beam pump systems
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/12Methods or apparatus for controlling the flow of the obtained fluid to or in wells
    • E21B43/121Lifting well fluids
    • E21B43/126Adaptations of down-hole pump systems powered by drives outside the borehole, e.g. by a rotary or oscillating drive
    • E21B43/127Adaptations of walking-beam pump systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B47/00Pumps or pumping installations specially adapted for raising fluids from great depths, e.g. well pumps
    • F04B47/02Pumps or pumping installations specially adapted for raising fluids from great depths, e.g. well pumps the driving mechanisms being situated at ground level
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/20Arrangements for starting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/28Arrangements for controlling current

Definitions

  • the invention relates to a pumping system and a control method thereof for an oil field, in particular to a pumping unit system and a power saving control method thereof.
  • Pumping units are one of the most widely used oil-mining machines, and they are also the major consumers of oil fields. Their electricity consumption accounts for about 40% of the total electricity consumption of the oil fields, and the overall efficiency is very low.
  • the beam pumping unit includes a motor drag system, a four-bar linkage mechanism and a boring head.
  • the motor drives the speed reducer through the belt drive, and drives the four-bar linkage mechanism to realize the swinging of the hammer head up and down.
  • the head drives the sucker rod to make the downhole piston pump reciprocate up and down to complete the pumping work.
  • the load changes greatly and changes periodically. Specifically, when the pumping unit is in operation, the balance weights on the crank of the four-bar linkage are at different positions at different times, and therefore, the pulling force of the sucker rod is different. Since the pulling force on the pumping unit is for the motor, it is the load of the motor. Due to the change of the motor load, the torque required by the motor also changes accordingly, and the sucker rod and the balance weight block drive the motor to rotate, that is, the motor is driven by the load, so that the motor performs negative work, Power generation status.
  • the traction motor used on the pumping unit has a three-phase asynchronous motor, a permanent magnet synchronous motor, an asynchronous motor controlled by a frequency converter, and the like.
  • Three-phase asynchronous motors are most widely used in pumping units, but their low efficiency, low overload capacity and high energy consumption are gradually being replaced by other energy-saving motors.
  • the efficiency of the permanent magnet synchronous motor is high, but the load of the pumping unit changes greatly, so that the rotor magnetic field and the stator magnetic field are not synchronized, and the permanent magnet synchronous motor is easy to demagnetize.
  • the frequency converter is an energy-saving method that is used more frequently on the pumping unit.
  • the asynchronous motor controlled by the inverter can adjust the motor speed and reduce the starting torque to realize the soft start of the motor, but the efficiency of the asynchronous motor is not high, the overload capability is low, and the frequency conversion is When operating at frequencies below 20 Hz, the efficiency is lower, so the energy consumption is still higher.
  • the drag motor used on the pumping unit has the phenomenon of doing negative work or power generation during operation. This is determined by the load of the pumping unit.
  • the current motor cannot avoid this phenomenon.
  • the electricity they send back to the grid which can not be used to pollute the grid.
  • some motors use a frequency converter, and the electricity generated by the motor is consumed by the inverter through the resistor, so that this part of the electric energy is wasted.
  • the patent applications with patent numbers 02243532.8, 03214443.1, 200520090313.7 and 200720049142.2 respectively introduce the frequency converter, although the frequency converter can be used to adjust the motor speed and reduce the starting torque to achieve soft start of the motor, but Still can not solve the problem of high energy consumption due to negative work. Summary of the invention
  • the technical problem to be solved by the present invention is that, in view of the deficiencies of the prior art, a pumping unit system and a power saving control method thereof are provided, which solves the problem of negative work due to the motor in the running process, thereby reducing energy consumption and improving the overall situation. Efficiency and overload capability.
  • the present invention provides a pumping unit system including a drag motor, a transmission component, a counterweight, and a sucker rod, and the drag motor drives the sucker rod to reciprocate up and down by a transmission member, the pumping unit
  • the system further includes a control module.
  • the shaft of the drag motor is provided with a position detecting module, and the power input side of the motor is provided with a current sensor, and the control module receives the information representing the position of the drag motor and the current sensor output by the position detecting module.
  • the motor current information is output, and the closed motor control is realized for the drag motor, and the work state of the motor is judged during the running of the motor, and the motor is turned off when the negative work is performed.
  • control module includes a data processing unit and a motor driving unit, and the data processing unit receives the input command signal, the motor current signal collected by the current sensor, and the motor position information output by the position detecting module, and is processed by data processing.
  • a control signal is given to the motor drive unit, and the motor drive unit outputs a suitable voltage to the motor according to the control signal, thereby achieving precise control of the motor.
  • the data processing unit includes a motor running control subunit and a power saving control subunit
  • the power saving control subunit calculates according to the information of the position of the drag motor output by the position detecting module and the motor current signal output by the current sensor, and determines The working state of the motor, if it is doing positive work, sends a command to the motor running control subunit, and the motor running control subunit controls the motor driving unit to drive the motor to work; if doing negative work, sends a shutdown command to the motor driving unit, shutting down The output of the motor drive unit.
  • the motor running control subunit further includes a mechanical ring control subunit, a current loop control subunit, and a PWM control signal generating subunit; the mechanical loop control subunit is based on the received command signal and the motor shaft outputted by the position detecting module The rotation angle is calculated to obtain a current command, and is output to the current loop control subunit; the current loop control subunit obtains a three-phase voltage according to the received current command and the current signal output by the current sensor. And comparing the signal to the PWM control signal; the PWM control signal generating sub-unit generates a six-way PWM signal with a certain sequence according to the received duty control signal of the three-phase voltage, respectively acting on the motor Drive unit.
  • the motor driving unit includes six power switching tubes, the switching tubes are connected in series in two groups, three groups are connected in parallel between the DC power supply lines, and the control end of each switching tube is generated by the PWM control signal.
  • the control of the PWM signal output by the element, the two switching tubes in each group are time-divisionally turned on.
  • the invention also provides a power saving control method applied to a pumping unit, wherein when the pumping unit is working, detecting the working state of the drag motor, determining whether the motor performs negative work, and if performing negative work, stopping the Drag the motor to supply power.
  • the power saving control method applied to the pumping unit specifically includes the following steps:
  • Step S100 when the pumping unit is working, detecting the working state of the drag motor, determining whether the motor performs negative work, and if yes, moving to the next step, if not performing negative work, controlling the motor to run at a constant speed according to the set speed;
  • Step S200 stopping supplying power to the motor
  • Step S300 detecting the rotation speed of the motor, if the rotation speed is too low, supplying power to the motor, and controlling the motor to run at a constant speed according to the set rotation speed;
  • Step S400 determining whether the rotation speed reaches the maximum rotation speed, if the maximum rotation speed has been reached, then moving to the next step;
  • Step S500 controlling the motor to run at the maximum rotation speed;
  • Step S600 determining whether the motor performs negative work, if doing negative work, returning to step S500; if doing positive work, returning to step S200.
  • step S100 the specific steps of detecting the work state of the drag motor are as follows:
  • Step S101 obtaining a magnitude and a direction of a rotation speed of the motor by a position detecting module located on the motor shaft;
  • Step S102 obtaining a torque of the motor by a motor current signal output by the current sensor located at the input end of the motor power source;
  • Step S103 determining whether the direction of the torque and the rotation speed are consistent. If they are consistent, the positive work is performed, and if they are inconsistent, the negative work is performed.
  • step S101 the magnitude and direction of the rotational speed of the motor are obtained by calculating the difference between the position difference measured twice and the corresponding position.
  • step S102 specifically includes the following steps:
  • Step S1021 converting the three-phase current outputted by the current sensor into the d-axis and the q-axis current of the motor; in step S1022, multiplying the q-axis current by the torque coefficient to obtain the torque of the motor.
  • the pumping unit system of the embodiment of the invention and the power saving control method applied to the pumping unit achieve the following advantages: 1. Energy saving.
  • the control module can detect and control the torque and speed of the motor in real time. When the motor is doing negative work, the motor can be turned off, and the sucker rod and the balance weight can move freely to drive the motor. At this time, if the motor speed is too high, run.
  • the motor controls the motor below the maximum speed; if the motor speed is lower than the set speed, the motor is run and the motor is controlled to run at the set speed.
  • the motor adopts permanent magnet AC synchronous motor, which has high efficiency and further reduces energy consumption.
  • the servo controller can control the rotor magnetic field of the motor and the stator magnetic field to be completely synchronized, so that the permanent magnet motor is not easy to demagnetize.
  • Stepless speed regulation The motor speed can be adjusted freely from zero to the highest speed.
  • the speed range is very wide, which makes it easy to adjust the pumping stroke.
  • the acceleration during the starting process can be arbitrarily set to realize the soft start of the pumping unit, which can effectively reduce the motor current (ie torque) during the starting process, so that the electrical and mechanical systems during the starting process are free from any impact, achieving a large inertia.
  • the mechanical load is truly flexible and smooth to start.
  • Figure 1 is a schematic view of the structure of the pumping unit
  • Figure 2 is a schematic diagram of the motor drag system control
  • Figure 3 is a schematic diagram of the control structure of the data processing unit in the motor drag system.
  • FIG. 4 is a structural schematic diagram of a motor operation control subunit in a data processing unit in another motor drag system
  • FIG. 5 is a block diagram of a mechanical ring
  • Figure 6 is a block diagram of the mechanical ring in the case of only the speed loop
  • Figure 7 is a block diagram of the current loop
  • Figure 8 is a block diagram of a PWM signal generating module
  • Figure 9 is an IPM schematic diagram
  • Figure 10 is a control flow chart of the power saving mode of the pumping unit servo drag system
  • Figure 11 is a state transition diagram of the power saving mode motor of the pumping unit servo drag system. detailed description
  • FIG. 1 is a schematic view of the structure of the pumping unit system
  • Figure 2 is a schematic diagram of the control of the motor drag system.
  • the pumping unit system includes a drag motor 2, a transmission member 3, a counterweight 4, and a sucker rod 5, and the drag motor 1 drives the sucker rod 5 to reciprocate up and down through the transmission member 2.
  • the sucker rod 5 is balanced by a counterweight 4.
  • the pumping unit system further comprises a control module 1 which, in the specific implementation, can be embodied in the form of a control box, as shown in FIG.
  • Drag the shaft of the motor A position detecting module is provided, and a current sensor is arranged on the power input side of the motor, and the control module 1 receives the information representing the position of the drag motor output by the position detecting module and the motor current information output by the current sensor, and implements a closed loop on the drag motor. Control, and judge the working state of the motor during the running of the motor, and turn off the motor when doing negative work.
  • the control module comprises a data processing unit and a motor drive unit.
  • the data processing unit can be implemented as an MCU, and the motor drive unit is an IPM module.
  • the MCU receives the input command signal, the input current signal of the drag motor collected by the current sensor, and the information representing the position of the drag motor output by the position detecting module.
  • the PWM signal is output to the IPM, and the IPM outputs the three-phase voltage according to the PWM signal.
  • the motor thus achieving precise control of the motor.
  • the whole system is a closed-loop control system with a short control period (a control period of only a few tens of microseconds), fast response and high precision.
  • the data processing unit in the embodiment of the present invention includes a motor running control subunit and a power saving control subunit, as shown in FIG. 3, the data processing unit in the motor dragging system includes a motor running control subunit and a power saving control subroutine.
  • the control structure schematic diagram of the unit, the power-saving control sub-unit performs calculation according to the information representing the angle of the drag motor output by the position detecting module and the motor current signal output by the current sensor, and judges the working state of the motor, and if the positive power is performed, the command is issued.
  • the motor running control subunit controls the motor driving unit to drive the motor to work; if doing negative work, send a shutdown command to the motor drive unit, such as the signal EN, to turn off the output of the motor drive unit (ie IPM) .
  • the position detection module directly outputs the angle information of the motor, so that it can be received through a synchronization port.
  • the motor running control subunit includes a mechanical loop control subunit, a current loop control subunit, and a PWM control signal generating subunit, that is, a PWM signal generating module.
  • the mechanical ring control subunit obtains a current command according to the received command signal (including the setting command and the instruction sent by the power saving control subunit) and the rotation angle of the motor shaft output by the position detecting module, and outputs the current command to the current command.
  • the current loop control subunit ;
  • the current loop control subunit obtains a duty control signal of the three-phase voltage according to the received current command and the current signal output by the current sensor, and outputs the duty control signal to the PWM control signal;
  • the PWM control signal generating sub-unit generates a six-way PWM signal having a certain order according to the received duty control signal of the three-phase voltage, and respectively acts on the motor driving unit.
  • FIG. 4 is a structural schematic diagram of a motor operation control subunit in a data processing unit in a motor drag system.
  • the controller includes a signal processing circuit for processing a voltage signal from the position detection module; other parts and FIG. The same, therefore, the description will not be repeated here.
  • Figure 5 is a block diagram of a mechanical ring. As shown in Fig. 5, the mechanical ring calculates the current command and transmits it to the current loop through the control calculation according to the angle command and the angle feedback of the encoder.
  • the mechanical ring consists of a position loop and a speed loop, a position loop output speed command, and a speed loop output current command.
  • the angle command is an instruction set by the control program or calculated according to the set command.
  • the encoder detects the angular position signal of the motor shaft and transmits the angle signal to the MCU through the synchronous port communication, and the MCU obtains angle feedback.
  • the angle command subtracts the angle feedback to obtain the angle error.
  • the PID controller controls the angle through the PID controller to obtain the speed command.
  • the PID control of the angle is called the position loop, and the position loop outputs the speed command, which is transmitted to the speed loop.
  • the angle feedback is obtained by the differentiator, the speed command is subtracted from the speed feedback, and the speed error is obtained.
  • the PID controller controls the speed to obtain the current command ⁇ .
  • the PID control of speed is called the speed loop.
  • the current command is the output of the speed loop, also the output of the mechanical loop, and the mechanical output current command ⁇ is given to the current loop.
  • FIG. 6 is a block diagram of a mechanical ring with only a speed loop.
  • the speed command is an instruction set by the control program.
  • the encoder detects the angular position signal of the motor shaft, and transmits the angle signal to the MCU through the synchronous port communication.
  • the MCU obtains the angle feedback, and the angle feedback obtains the speed feedback through the differentiator.
  • the speed command is subtracted from the speed feedback to obtain the speed error.
  • the PID controller controls the speed through the PID controller to obtain the current command -re/ .
  • the PID control of speed is called the speed loop.
  • the current command is the output of the speed loop, also the output of the mechanical loop, and the mechanical change output current command ⁇ is given to the current loop.
  • Figure 7 is a block diagram of the current loop.
  • the current loop is based on the current command output from the mechanical loop and the current feedback of the current sensor. After the control calculation, the three-phase voltage duty cycle applied to the PWM signal generating module is generated.
  • the current sensor can be three or two. When there are three current sensors, each current sensor detects the magnitude of one phase current in the three phases of the motor 11, V, and W. The current sensor transmits the detected three-phase current signal to the CPU, and the CPU samples the analog signal into a digital signal through A/D sampling to obtain the three-phase current of the motor. Under normal circumstances, the sum of the three-phase currents of the drag motor is zero. When there is some abnormality in the drag motor, such as dragging the motor leakage, the sum of the three-phase currents is not zero. When the current sensor fails or the current A/D sampling fault occurs, the sum of the three-phase current values obtained by the CPU may not be zero. It can be used as a basis for system detection, and the alarm will be issued in time when the above fault occurs.
  • the magnitude of the two-phase current in the motor 1, the V, and the W phases is detected.
  • the current sensor transmits the detected two-phase current signal to the CPU, and the CPU performs A/D sampling to convert the analog signal into a digital signal to obtain the two-phase current of the drag motor. Since the sum of the three-phase currents of the drag motor is zero, the magnitude of the third phase current can be calculated according to the magnitude of the two-phase current. In this way, only two current sensors can be used to satisfy the drag motor system. The need for the system reduces costs.
  • the current command for the mechanical output is K, which is the current command for the q-axis.
  • the signal output by the current sensor is transmitted to the MCU, and is sampled by A/D to obtain current feedback. If the current sensor is three, the three-phase current feedback fl is directly obtained. If the current sensor is two, the two-phase current feedback is directly obtained, and the other phase current feedback is calculated according to the sum of the three-phase current feedback is zero.
  • the three-phase current feedback fl , Ib - fi , Ic - fi are transformed by 3->2 to obtain the d, q-axis current feedback rf - the d-axis current command K is generally controlled to zero.
  • the d, q axis current feedback is subtracted from the d, q axis current feedback, and the d, q axis current error and _ OT are obtained.
  • the PID controller controls the d and q axis currents respectively by the PID controller to obtain d, q.
  • the command voltage ", after 2->3 conversion, obtains the three-phase command voltage
  • the three-phase duty cycle is the output of the current loop and is passed to the PWM signal generation module.
  • 3->2 Transforms the three-phase current of the motor that is fed back by the current sensor. After coordinate transformation, it is converted into d, q-axis current.
  • fl , ⁇ is the feedback three-phase current, which corresponds to ⁇ - , , Ic in the current loop block diagram.
  • Drag the electrical angle of the motor, where: ⁇ is the number of poles of the drag motor, ⁇ is the mechanical mechanism of the drag motor
  • is the angle feedback in the control block diagram, obtained by the angle solving algorithm
  • the 3->2 transformation converts the d, q-axis voltage to the drag motor's ⁇ , q-axis voltage, which corresponds to d - re in the current loop block diagram.
  • the corresponding angle is the electric angle of the drag motor.
  • FIG 8 is a block diagram of a PWM signal generating module.
  • the PWM signal generation module calculates three according to the current loop
  • the control cycle and dead time are set when the control program is written, and generally do not change during the running of the program.
  • the reason for setting the dead zone is that the IGBT of the upper and lower bridge arms of the same phase in the IPM cannot be turned on at the same time. At the same time, the IGBT will be damaged when it is turned on. Therefore, there must be a turn-off dead zone to ensure that the IGBTs of the upper and lower bridge arms of the same phase are not turned on at the same time.
  • FIG. 9 is an IPM schematic.
  • IGBTs power switch tubes
  • the six IGBTs can be divided into three groups, corresponding to the three phases of 11, V and W, and each phase has two IGBTs, which are called upper and lower arms respectively.
  • the voltage between the PN is the bus voltage of the controller, and the AC input to the controller is rectified and filtered to be converted into DC.
  • P and N are the positive and negative poles of DC respectively.
  • the PWM signal generation module generates six PWM signals to control the six IGBTs inside the IPM. Taking the U phase as an example, if PWM_U is a turn-on signal, the U-phase upper arm is turned on, and the U-phase output potential is P-pole potential.
  • PWM_U (overlined) is a turn-on signal
  • U-phase The bridge arm is turned on, and the potential of the U phase output is the N pole potential.
  • PWM_U and PWM_U are off, current flows through the freewheeling diode.
  • the current flows to the motor, the current flows from the N pole to the motor through the freewheeling diode of the lower arm, and the potential of the U phase potential is the N pole potential; when the current flows from the motor, the current passes through the freewheeling diode of the upper arm. From the motor to the P pole, the potential of the U phase output is the P pole potential.
  • the invention also provides a power saving control method applied to a pumping unit, wherein when the pumping unit is working, detecting the working state of the drag motor, determining whether the motor performs negative work, and if performing negative work, stopping the Drag the motor to supply power.
  • FIG. 10 is a control flow chart of the power saving mode of the pumping unit servo drag system. As shown in FIG. 10, the power saving control method used on the pumping unit specifically includes the following steps:
  • Step S000 controlling the motor to run at a constant speed according to the set speed
  • Step S100 when the pumping unit is working, detecting the working state of the drag motor, determining whether the motor performs negative work, and if so, moving to the next step, if not doing negative work, then turning to S000;
  • Step S200 turning off the IPM, stopping supplying power to the motor
  • Step S300 detecting the rotation speed of the motor. If the rotation speed is too low, supplying power to the motor, returning to step S000, and controlling the motor to run at a constant speed according to the set rotation speed;
  • Step S400 determining whether the rotation speed reaches the maximum rotation speed, if the maximum rotation speed has been reached, then moving to the next step;
  • Step S500 controlling the motor to run at the maximum rotation speed;
  • step S600 it is judged whether the motor performs negative work. If the negative work is performed, the process returns to step S500; if the positive work is performed, the process returns to step S200.
  • step SIOO the specific steps of detecting the work state of the drag motor are as follows: First, the magnitude and direction of the rotational speed of the motor are obtained by the position detecting module located on the motor shaft;
  • the torque of the motor is obtained by the motor current signal output from the current sensor on the input side of the motor power supply; determine whether the direction of the torque and the speed are the same. If they are the same, do the positive work. If they are inconsistent, do the negative work.
  • the magnitude and direction of the rotational speed of the motor are obtained by calculating the position difference measured twice in succession and the time interval of the corresponding position.
  • the torque of the motor is obtained by converting the three-phase current output from the current sensor into the d-axis and q-axis current of the motor, and multiplying the q-axis current by the torque coefficient to obtain the torque of the motor.
  • Figure 11 is a state transition diagram of the power saving mode motor of the pumping unit servo drag system. As shown in Figure 11, there are three states for dragging the motor: Set the speed running state, the shutdown state, and the maximum speed running state. In the actual pumping system, the drag motor is operated at the set speed for most or all of the time, which is related to the pumping load. If the load drag motor is running and the motor is doing negative work, the motor is turned off and the state of the motor is switched to the off state. In the off state, if the motor speed is lower than the set speed, the motor is controlled to switch to the set speed running state; if the motor speed is higher than the maximum speed, the motor is controlled to run to the highest speed running state. In the maximum speed operation state, if the motor does positive work, it switches to the off state.
  • the position information of the motor is obtained by the position detecting module, and the position detecting module may be a photoelectric encoder or a magnetoelectric encoder, and the processing circuit for outputting signals of the sensing elements in the encoder may be located.
  • the encoder itself can also be located in the control module of the system. Accurately detecting the position of the motor shaft through the encoder can accurately detect the work of the motor.

Description

抽油机系统及其省电控制方法
技术领域
本发明涉及一种应于油田的抽油系统及其控制方法, 尤其是一种抽油机系统及其 省电控制方法。 背景技术
抽油机, 尤其是游梁式抽油机是应用最普遍的石油开采机械之一, 也是油田耗电 大户, 其用电量约占油田总用电量的 40 %, 且总体效率很低。
游梁式抽油机包括电机拖动系统、 四连杆机构和驴头, 游梁式抽油机工作时, 电 机通过皮带传动驱动减速器, 带动四连杆机构实现驴头上下摆动, 由驴头带动抽油杆 使井下活塞泵做上下往复运动完成抽油工作。
油田抽油机在工作时, 负载变化大, 且呈周期性变化。 具体来说, 抽油机在运行 时, 位于四连杆机构曲柄上的平衡配重块在不同时刻处于不同的位置, 因此, 抽油杆 的拉力也就不同。 由于抽油机上受到的拉力对于电机而言为, 其为电机的负载。 由于 电机负载的变化, 电机所需要的转矩也相应地发生变化, 并且会出现抽油杆和平衡配 重块带动电机转的情况, 即由负载来拖动电机, 从而电机做负功, 处于发电状态。
目前, 在抽油机上使用的拖动电机有三相异步电机、 永磁同步电机、 变频器控制 的异步电机等等。 三相异步电机在抽油机上应用最多, 但是其效率低、 过载能力低, 能耗高, 目前正在逐步被其他节能电机取代。 永磁同步电机的效率较高, 但是抽油机 负载变化大, 使转子磁场和定子磁场不同步, 永磁同步电机容易退磁。 变频器是目前 抽油机上使用较多的一种节能方式, 变频器控制的异步电机能调节电机转速、 降低启 动力矩, 实现电机软启动, 但是异步电机的效率不高, 过载能力低, 并且变频器工作 在 20Hz以下频率时, 效率更低, 因此能耗仍较高。
目前, 抽油机上使用的拖动电机在运行过程中都存在做负功即发电的现象, 这是 由抽油机的负载决定的, 目前的电机都无法避免这个现象。 对于普通电机, 其发出的 电回馈到电网, 因不能被利用从而对电网产生污染。 另外有些电机使用了变频器, 通 过变频器将电机发出的电通过电阻消耗掉, 使这部分电能被浪费掉。 专利号为 02243532.8、 03214443.1、 200520090313.7和 200720049142.2的专利申请分别介绍了 变频器, 虽然使用变频器可以调节电机转速、 降低启动力矩, 实现电机软启动, 但是 仍然不能解决由于做负功带来的能耗高的问题。 发明内容
本发明要解决的技术问题在于, 针对现有技术的不足, 提供一种抽油机系统及其 省电控制方法, 解决由于电机在运行过程中做负功的问题, 从而降低耗能, 提高总体 效率和过载能力。
为此, 本发明提供了一种抽油机系统, 包括拖动电机、 传动部件、 配重和抽油杆, 所述拖动电机通过传动部件带动抽油杆上下往复运动, 所述抽油机系统还包括控制模 块, 拖动电机的轴上设有位置检测模块, 电机的电源输入侧设有电流传感器, 所述控 制模块接收所述位置检测模块输出的代表拖动电机位置的信息和电流传感器输出的电 机电流信息, 对拖动电机实现闭环控制, 并且在电机运行过程中判断电机的做功状态, 在做负功时关断电机。
具体地, 所述控制模块包括数据处理单元、 电机驱动单元, 所述数据处理单元接 收输入的指令信号、 电流传感器采集的电机电流信号和位置检测模块输出的电机位置 的信息, 经过数据处理, 输出控制信号给所述的电机驱动单元, 所述电机驱动单元根 据所述的控制信号输出合适的电压给电机, 从而实现对电机的精确控制。
另外, 所述数据处理单元包括电机运行控制子单元和省电控制子单元, 省电控制 子单元根据位置检测模块输出的代表拖动电机位置的信息和电流传感器输出的电机电 流信号进行计算, 判断电机的做功状态, 如果做正功, 则发指令给电机运行控制子单 元, 由电机运行控制子单元控制电机驱动单元驱动电机工作; 如果做负功, 向电机驱 动单元发送关断指令, 关断电机驱动单元的输出。
所述电机运行控制子单元进一步包括机械环控制子单元、 电流环控制子单元和 PWM控制信号产生子单元;所述机械环控制子单元根据接收到的指令信号和位置检测 模块输出的电机轴的旋转角度, 经过运算得到电流指令, 并输出给所述的电流环控制 子单元;所述电流环控制子单元根据接收到的电流指令和电流传感器输出的电流信号, 经过运算得到三相电压的占空比控制信号,并输出给所述的 PWM控制信号;所述 PWM 控制信号产生子单元根据接收到的三相电压的占空比控制信号, 生成具有一定顺序的 六路 PWM信号, 分别作用于电机驱动单元。
此外, 所述电机驱动单元包括六个功率开关管, 所述开关管每两个串联成一组, 三组并联连接在直流供电线路之间, 每一开关管的控制端受 PWM控制信号产生子单 元输出的 PWM信号的控制, 每一组中的两个开关管分时导通。
本发明还提供了一种应用在抽油机上的省电控制方法, 其中, 在抽油机工作时, 检测拖动电机的做功状态, 判断电机是否做负功, 如果做负功, 则停止向拖动电机供 电。
所述应用在抽油机上的省电控制方法具体包括如下步骤:
步骤 S100, 在抽油机工作时, 检测拖动电机的做功状态, 判断电机是否做负功, 如果是, 则转向下一步骤, 如果不做负功, 则控制电机按设定转速匀速运行;
步骤 S200, 则停止向电机供电;
步骤 S300 , 检测电机的转速, 如果转速过低, 则向电机供电, 控制电机按设定转 速匀速运行;
步骤 S400, 判断转速是否达到最高转速, 如果已达到最高转速, 则转向下一步骤; 步骤 S500, 控制电机在该最高转速运行;
步骤 S600, 判断电机是否做负功, 如果做负功, 返回步骤 S500 ; 如果做正功, 则返回步骤 S200。
其中, 在步骤 S100中, 检测拖动电机的做功状态的具体步骤如下:
步骤 S101 , 通过位于电机轴上的位置检测模块获得电机的转速的大小和方向; 步骤 S102, 通过位于电机电源输入侧的电流传感器输出的电机电流信号获得电机 的转矩;
步骤 S103 , 判断转矩和转速的方向是否一致, 如果一致, 则做正功, 如果不一致, 做负功。
在步骤 S101中,电机的转速的大小和方向通过计算连续两次测得的位置差及对应 位置的时间间隔得到。
另外, 在步骤 S102中, 步骤 S102具体包括如下步骤:
步骤 S1021, 将电流传感器输出的三相电流转换为电机的 d轴和 q轴电流; 步骤 S1022, 将 q轴电流乘以矩转系数得到电机的转矩。
本发明实施例的抽油机系统及应用在抽油机上的省电控制方法实现了以下优点: 1. 节能。 控制模块能实时检测和控制电机的转矩和转速, 当电机做负功时可以关 断电机, 让抽油杆和平衡配重块自由运动带动电机转, 此时如果电机转速过高, 则运 行电机, 控制电机在最高转速以下; 如果电机转速低于设定转速则运行电机, 控制电 机在设定转速运行。 通过这种电机做负功时关断的控制方式, 可以减少电机做负功, 实现节能。 电机采用永磁交流同步电机, 电机的效率高, 进一步降低能耗, 同时伺服 控制器能控制电机的转子磁场和定子磁场完全同步, 使永磁电机不容易退磁。
2. 无级调速。 电机转速可以在零至最高速之间任意调节, 调速范围十分宽泛, 方 便调节抽油机冲次。
3. 软启动。 可任意设定启动过程中的加速度, 实现抽油机的软启动, 可以有效降 低启动过程中的电机电流(即转矩), 使启动过程中电气和机械系统不受任何冲击, 实 现了大惯量机械负载真正意义上的柔性、 平滑启动。
4. 过载能力强, 一般来说, 短时间可以达到三倍过载, 在抽油机启动时可以提供 大转矩, 并与软启动结合, 解决以往抽油机电机 "大马拉小车" 问题, 降低抽油机选 配电机的功率。 附图说明
图 1是抽油机系统结构的示意图;
图 2是电机拖动系统控制简图;
图 3是电机拖动系统中数据处理单元的控制结构原理图。
图 4是另一电机拖动系统中数据处理单元中电机运行控制子单元的结构原理图; 图 5是机械环的框图;
图 6是只有速度环的情况下的机械环的框图;
图 7是电流环的框图;
图 8是 PWM信号产生模块的框图;
图 9是 IPM原理图;
图 10是抽油机伺服拖动系统省电模式的控制流程图; 以及
图 11是抽油机伺服拖动系统省电模式电机状态转换图。 具体实施方式
下面参照附图具体说明本发明的实施例。
图 1是抽油机系统的结构示意图, 图 2是电机拖动系统控制简图。 如图 1所示, 抽油机系统包括拖动电机 2、 传动部件 3、 配重 4和抽油杆 5, 拖动电机 1通过传动部 件 2带动抽油杆 5上下往复运动。 抽油杆 5由配重 4来平衡。 抽油机系统还包括控制 模块 1, 在具体实施时, 可以实施为一控制箱的形式, 如图 1所示。 拖动电机的轴上 设有位置检测模块, 电机的电源输入侧设有电流传感器, 该控制模块 1接收所述位置 检测模块输出的代表拖动电机位置的信息和电流传感器输出的电机电流信息, 对拖动 电机实现闭环控制, 并且在电机运行过程中判断电机的做功状态, 在做负功时关断电 机。
如图 2所示, 控制模块包括数据处理单元和电机驱动单元组成, 具体来说, 所述 数据处理单元可以实施为 MCU, 所述电机驱动单元为 IPM模块。 MCU接收输入的指 令信号、 电流传感器采集的拖动电机输入电流信号和位置检测模块输出的代表拖动电 机位置的信息, 经过数据处理, 输出 PWM信号给 IPM, IPM根据 PWM信号输出三 相电压给电机, 从而实现对电机的精确控制。 整个系统是一个闭环的控制系统, 控制 周期短 (一个控制周期只有几十个微秒), 响应快, 精度高。
另外, 本发明实施例中的数据处理单元包括电机运行控制子单元和省电控制子单 元, 如图 3所示, 为电机拖动系统中数据处理单元包括电机运行控制子单元和省电控 制子单元的控制结构原理图, 省电控制子单元根据位置检测模块输出的代表拖动电机 角度的信息和电流传感器输出的电机电流信号进行计算, 判断电机的做功状态, 如果 做正功, 则发指令给电机运行控制子单元, 由电机运行控制子单元控制电机驱动单元 驱动电机工作; 如果做负功, 向电机驱动单元发送关断指令, 如信号 EN, 关断电机驱 动单元 (即 IPM) 的输出。 其中, 位置检测模块直接输出的是电机的角度信息, 因此, 通过一同步口接收即可。
电机运行控制子单元包含机械环控制子单元、 电流环控制子单元和 PWM控制信 号产生子单元, 即 PWM信号产生模块。
所述机械环控制子单元根据接收到的指令信号 (包括设定指令和省电控制子单元 发来的指令) 和位置检测模块输出的电机轴的旋转角度, 经过运算得到电流指令, 并 输出给所述的电流环控制子单元;
所述电流环控制子单元根据接收到的电流指令和电流传感器输出的电流信号, 经 过运算得到三相电压的占空比控制信号, 并输出给所述的 PWM控制信号;
所述 PWM控制信号产生子单元根据接收到的三相电压的占空比控制信号, 生成 具有一定顺序的六路 PWM信号, 分别作用于电机驱动单元。
图 4是电机拖动系统中数据处理单元中电机运行控制子单元的结构原理图,此时, 控制器中包括用于处理来自于位置检测模块的电压信号的信号处理电路; 其他部分与 图 3相同, 因此, 在此不再重复说明。 图 5是机械环的框图。 如图 5所示, 机械环根据角度指令和编码器的角度反馈, 经过控制计算, 计算出电流指令, 传递给电流环。 机械环包含位置环和速度环, 位置 环输出速度指令, 速度环输出电流指令。
角度指令为控制程序设定的指令或者根据设定指令计算出来。 编码器检测电机转 轴的角度位置信号, 并将角度信号通过同步口通讯传递给 MCU, MCU得到角度反馈。 角度指令减去角度反馈, 得到角度误差, 通过 PID控制器对角度进行 PID控制, 得到 速度指令, 角度的 PID控制叫做位置环, 位置环输出的是速度指令, 传递给速度环。 角度反馈通过微分器得到速度反馈,速度指令减去速度反馈,得到速度误差,通过 PID 控制器对速度进行 PID控制, 得到电流指令 κ。 速度的 PID控制叫做速度环。 电流 指令为速度环的输出, 也为机械环的输出, 机械换输出电流指令 κ给电流环。
图 6是只有速度环的情况下的机械环的框图。 在有些情况下, 不需对拖动电机进 行位置控制, 只需要进行速度控制, 因此机械环中没有位置环, 只有速度环。 速度指 令为控制程序设定的指令。 编码器检测电机转轴的角度位置信号, 并将角度信号通过 同步口通讯传递给 MCU, MCU得到角度反馈, 角度反馈通过微分器得到速度反馈。 速度指令减去速度反馈, 得到速度误差, 通过 PID控制器对速度进行 PID控制, 得到 电流指令 -re/。 速度的 PID控制叫做速度环。 电流指令为速度环的输出, 也为机械环 的输出, 机械换输出电流指令 κ给电流环。
图 7是电流环的框图。 电流环根据机械环输出的电流指令和电流传感器的电流反 馈, 经过控制计算, 产生加给 PWM信号产生模块的三相电压占空比。
电流传感器可以为 3个或者 2个。 电流传感器为 3个时, 每一个电流传感器分别 检测电机 11、 V、 W三相中一相电流的大小。 电流传感器将检测的三相电流信号传递 给 CPU, CPU经过 A/D采样, 将模拟信号转换为数字信号, 从而获得电机的三相电流 大小。 正常情况下拖动电机的三相电流之和为零, 当拖动电机出现某些异常时, 如拖 动电机漏电,三相电流之和不为零。当电流传感器出现故障或者电流 A/D采样故障时, 也可能造成 CPU获得的三相电流值之和不为零, 可以以此作为一个项系统检测依据, 出现上述故障时及时报警。
电流传感器为 2个时, 检测电机1;、 V、 W三相中两相电流的大小。 电流传感器 将检测的两相电流信号传递给 CPU, CPU经过 A/D采样,将模拟信号转换为数字信号, 获得拖动电机的两相电流大小。 由于拖动电机的三相电流之和为零, 所以根据两相电 流大小, 可以计算出第三相电流大小。 这样只用两个电流传感器就能满足拖动电机系 统的需要, 降低了成本。
机械输出的电流指令为 K, 为 q轴的电流指令。 电流传感器输出的信号传递给 MCU, 经过 A/D采样, 得到电流反馈。 如果电流传感器为三个, 则直接得到三相电流 反馈 fl , 如果电流传感器为两个, 则得到直接得到两相电流反馈, 另 一相电流反馈根据三相电流反馈之和为零,计算得到。三相电流反馈 flIb- fi , Ic - fi 经过 3->2变换, 得到 d, q轴的电流反馈 rf - 一般将 d轴的电流指令 K控 制为 0。 分别将 d, q轴的电流指令减去 d, q轴的电流反馈, 得到 d, q轴的电流误差 和 _OT, 通过 PID控制器分别对 d, q轴电流进行 PID控制, 得到 d, q轴的指 令电压^ _re/, 。 指令电压 《, 经过 2->3 变换, 得到三相指令电压,
U
即为三相电压占空比 6—占空比 U —占空比
比, 三相占空比为电流环的输出, 传递 给 PWM信号产生模块。
上述 3->2变换的公式为: )
Figure imgf000009_0001
3->2 变换将电流传感器反馈的拖动电机三相电流, 经过坐标变换, 变换为 d, q 轴电流。式中 fl, ^为反馈的三相电流,在电流环框图中对应为 α- , , Ic 。 式中 ^, 为变换后的 d, q轴电流, 在电流环框图中对应为 式中 t ^为 θ = ρ χ θΓ
拖动电机的电角度, 其中: Ρ为拖动电机的极对数, ^为拖动电机的机械
, ^为控制框图中的角度反馈, 通过角度求解算法得到
2->3变换的公式为:
Figure imgf000009_0002
υΑ U
3->2变换将 d, q轴电压转换为拖动电机的 为 ά, q轴电 压, 在电流环框图中对应为 d-re , 。 为计算出来的需加给拖 动电机的三相电压, 在电流环框图中对应为 式中 ^为拖 动电机的电角度。
图 8是 PWM信号产生模块的框图。 PWM信号产生模块根据电流环计算出来的三 相电压占空比, 以及控制程序设定的控制周期和死区时间, 产生六路 PWM信号, 传 递给 IPM, 控制 IPM内部的六个 IGBT。 控制周期和死区时间是在编写控制程序的时 候设定好的, 一般在程序运行的过程中不作改变。 设置死区的原因是 IPM内部同一相 上下桥臂 IGBT不能同时导通, 同时导通则会损坏 IGBT, 因此必须有一个关断死区, 保证同一相上下桥臂 IGBT不会同时导通。
图 9是 IPM原理图。 IPM内部有六个功率开关管 (IGBT), 六个 IGBT可以分为三 组, 分别对应 11、 V、 W三相, 每一相有两个 IGBT, 分别称之为上、 下桥臂。 PN之 间的电压为控制器的母线电压, 输入到控制器的交流电, 经过整流、 滤波变换为直流 电, P、 N分别为直流电的正负极。 PWM信号产生模块产生的六路 PWM信号, 分别 控制 IPM内部的六个 IGBT。 以 U相为例, 如果 PWM_U为导通信号, 则 U相上桥臂 导通, U相输出的电势为 P极电势, 如果 PWM_U (带上划线的) 为导通信号, 则 U 相下桥臂导通, U相输出的电势为 N极电势。 当 PWM_U 和 PWM_U (带上划线的) 都为关断时, 电流通过续流二极管流动。 当电流流向电机时, 电流通过下桥臂的续流 二极管从 N极流向电机, 此时 U相电势输出的电势为 N极电势; 当电流从电机流出 时,电流通过上桥臂的续流二极管从电机流向 P极,此时 U相输出的电势为 P极电势。
本发明还提供了一种应用在抽油机上的省电控制方法, 其中, 在抽油机工作时, 检测拖动电机的做功状态, 判断电机是否做负功, 如果做负功, 则停止向拖动电机供 电。
图 10是抽油机伺服拖动系统省电模式的控制流程图。 如图 10所示, 用在抽油机 上的省电控制方法具体包括如下步骤:
步骤 S000, 控制电机按设定转速匀速运行;
步骤 S100, 在抽油机工作时, 检测拖动电机的做功状态, 判断电机是否做负功, 如果是, 则转向下一步骤, 如果不做负功, 则转向 S000;
步骤 S200, 关断 IPM, 停止向电机供电;
步骤 S300, 检测电机的转速, 如果转速过低, 则向电机供电, 返回步骤 S000, 控制电机按设定转速匀速运行;
步骤 S400, 判断转速是否达到最高转速, 如果已达到最高转速, 则转向下一步骤; 步骤 S500, 控制电机在该最高转速运行;
步骤 S600, 判断电机是否做负功, 如果做负功, 返回步骤 S500; 如果做正功, 则返回步骤 S200。 其中, 在步骤 SIOO中, 检测拖动电机的做功状态的具体步骤如下: 首先, 通过位 于电机轴上的位置检测模块获得电机的转速的大小和方向;
通过位于电机电源输入侧的电流传感器输出的电机电流信号获得电机的转矩; 判断转矩和转速的方向是否一致, 如果一致, 则做正功, 如果不一致, 做负功。 其中, 电机的转速的大小和方向通过计算连续两次测得的位置差及对应位置的时 间间隔得到。
另外, 电机的转矩通过如下方法获得, 将电流传感器输出的三相电流转换为电机 的 d轴和 q轴电流, 将 q轴电流乘以矩转系数便得到电机的转矩。
图 11是抽油机伺服拖动系统省电模式电机状态转换图。 如图 11所示, 拖动电机 共有三种状态: 设定转速运行状态、 关断状态、 最高转速运行状态。 在实际的抽油系 统中, 拖动电机大部分或者全部时间都工作在设定转速运行状态, 这和抽油机负载有 关。 如果负载拖动电机运行, 电机做负功, 则关断电机, 电机的状态转换到关断状态。 在关断状态下, 如果电机转速低于设定转速, 则控制运行电机, 转换到设定转速运行 状态; 如果电机转速高于最高转速, 则控制电机运行, 转换到最高转速运行状态。 在 最高转速运行状态下, 如果电机做正功, 则转换到关断状态。
在本发明中, 电机的位置信息通过位置检测模块获得, 所述的位置检测模块可以 为光电式编码器, 也可以为磁电式编码器, 对于编码器中感应元件输出信号的处理电 路可以位于编码器本身, 也可以位于系统的控制模块中。 通过编码器精确地采集电机 轴的位置信息, 可以精确地检测到电机的做功情况。
以上参照附图详细描述了本发明的实施例, 然而本发明并不局限于所述实施例, 而是在不脱离权利要求书的范围的情况下, 可以做出各种变化和改进。

Claims

权利要求书
1. 一种抽油机系统, 包括拖动电机、 传动部件、 配重和抽油杆, 所述拖动电机通 过传动部件带动抽油杆上下往复运动, 其特征在于, 还包括控制模块, 拖动电机的轴 上设有位置检测模块, 电机的电源输入侧设有电流传感器, 所述控制模块接收所述位 置检测模块输出的代表拖动电机位置的信息和电流传感器输出的电机电流信息, 对拖 动电机实现闭环控制, 并且在电机运行过程中判断电机的做功状态, 在做负功时关断 电机。
2. 如权利要求 1所述的抽油机系统, 其特征在于, 所述控制模块包括数据处理单 元、 电机驱动单元, 所述数据处理单元接收输入的指令信号、 电流传感器采集的电机 电流信号和位置检测模块输出的电机位置的信息, 经过数据处理, 输出控制信号给所 述的电机驱动单元, 所述电机驱动单元根据所述的控制信号输出合适的电压给电机, 从而实现对电机的精确控制。
3. 如权利要求 2所述的抽油机系统, 其特征在于, 所述数据处理单元包括电机运 行控制子单元和省电控制子单元, 省电控制子单元根据位置检测模块输出的代表拖动 电机位置的信息和电流传感器输出的电机电流信号进行计算, 判断电机的做功状态, 如果做正功, 则发指令给电机运行控制子单元, 由电机运行控制子单元控制电机驱动 单元驱动电机工作; 如果做负功, 向电机驱动单元发送关断指令, 关断电机驱动单元 的输出。
4. 如权利要求 3所述的抽油机系统, 其特征在于, 所述电机运行控制子单元进一 步包括机械环控制子单元、 电流环控制子单元和 PWM控制信号产生子单元;
所述机械环控制子单元根据接收到的指令信号和位置检测模块输出的电机轴的旋 转角度, 经过运算得到电流指令, 并输出给所述的电流环控制子单元;
所述电流环控制子单元根据接收到的电流指令和电流传感器输出的电流信号, 经 过运算得到三相电压的占空比控制信号, 并输出给所述的 PWM控制信号;
所述 PWM控制信号产生子单元根据接收到的三相电压的占空比控制信号, 生成 具有一定顺序的六路 PWM信号, 分别作用于电机驱动单元。
5. 如权利要求 2所述的抽油机系统, 其特征在于, 所述电机驱动单元包括六个功 率开关管, 所述开关管每两个串联成一组, 三组并联连接在直流供电线路之间, 每一 开关管的控制端受 PWM控制信号产生子单元输出的 PWM信号的控制, 每一组中的 两个开关管分时导通。
6. 一种应用在抽油机上的省电控制方法, 其特征在于, 在抽油机工作时, 检测拖 动电机的做功状态, 判断电机是否做负功, 如果做负功, 则停止向拖动电机供电。
7. 如权利要求 6所述的省电控制方法, 其特征在于, 具体包括如下步骤: 步骤 S100, 在抽油机工作时, 检测拖动电机的做功状态, 判断电机是否做负功, 如果是, 则转向下一步骤, 如果不做负功, 则控制电机按设定转速匀速运行;
步骤 S200, 则停止向电机供电;
步骤 S300 , 检测电机的转速, 如果转速过低, 则向电机供电, 控制电机按设定转 速匀速运行;
步骤 S400, 判断转速是否达到最高转速, 如果已达到最高转速, 则转向下一步骤; 步骤 S500, 控制电机在该最高转速运行;
步骤 S600, 判断电机是否做负功, 如果做负功, 返回步骤 S500 ; 如果做正功, 则返回步骤 S200。
8. 如权利要求 6所述的省电控制方法, 其特征在于, 在步骤 S100中, 检测拖动 电机的做功状态的具体步骤如下:
步骤 S101 , 通过位于电机轴上的位置检测模块获得电机的转速的大小和方向; 步骤 S102, 通过位于电机电源输入侧的电流传感器输出的电机电流信号获得电机 的转矩;
步骤 S103 , 判断转矩和转速的方向是否一致, 如果一致, 则做正功, 如果不一致, 做负功。
9. 如权利要求 8所述的省电控制方法, 其特征在于, 在步骤 S101 中, 电机的转 速的大小和方向通过计算连续两次测得的位置差及对应位置的时间间隔得到。
10. 如权利要求 8所述的省电控制方法, 其特征在于, 在步骤 S102中, 步骤 S102 具体包括如下步骤:
步骤 S1021, 将电流传感器输出的三相电流转换为电机的 d轴和 q轴电流; 步骤 S1022, 将 q轴电流乘以矩转系数得到电机的转矩。
PCT/CN2010/072034 2009-04-30 2010-04-22 抽油机系统及其省电控制方法 WO2010124582A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910137770.XA CN101876239B (zh) 2009-04-30 2009-04-30 一种抽油机系统
CN200910137770.X 2009-04-30

Publications (1)

Publication Number Publication Date
WO2010124582A1 true WO2010124582A1 (zh) 2010-11-04

Family

ID=43018900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/072034 WO2010124582A1 (zh) 2009-04-30 2010-04-22 抽油机系统及其省电控制方法

Country Status (2)

Country Link
CN (1) CN101876239B (zh)
WO (1) WO2010124582A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106208896A (zh) * 2016-07-20 2016-12-07 大庆油田有限责任公司 抽油机非常规工作制度下的电机驱动方法与系统
CN106855703A (zh) * 2017-03-03 2017-06-16 河南威盛电气有限公司 基于物联网的抽油机智能测控终端
CN107288637A (zh) * 2017-08-12 2017-10-24 西安煤矿机械有限公司 一种大倾角采煤机拖动控制装置及控制方法
CN108868703A (zh) * 2018-06-27 2018-11-23 秦皇岛润麒自控设备有限公司 一种无需载荷传感器实现自动调参的抽油机自控设备
CN113982538A (zh) * 2021-11-17 2022-01-28 燕山大学 一种游梁式抽油机柔性变频调压闭环节能控制系统及方法
CN114172418A (zh) * 2021-11-30 2022-03-11 中国第一汽车股份有限公司 一种电机电流传感器状态检测系统和方法
CN114607317A (zh) * 2020-11-23 2022-06-10 中国石油天然气股份有限公司 抽油机监测装置和方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102158154A (zh) * 2011-03-11 2011-08-17 张静 游梁式抽油机智能节电调速控制装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1543054A (zh) * 2003-11-07 2004-11-03 哈尔滨工业大学 抽油机的电机控制装置及应用该装置的丝杠传动式抽油机
CN101174813A (zh) * 2007-10-15 2008-05-07 李晓军 抽油机节能控制方法
CN201118518Y (zh) * 2007-10-15 2008-09-17 李晓军 抽油机自动跟踪节能控制装置
CN201134785Y (zh) * 2007-12-29 2008-10-15 马建红 Pwm电机控制器
CN201144675Y (zh) * 2007-08-24 2008-11-05 北京嘉捷恒信能源技术有限责任公司 发电态能量再利用电液压节能游梁式抽油机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1543054A (zh) * 2003-11-07 2004-11-03 哈尔滨工业大学 抽油机的电机控制装置及应用该装置的丝杠传动式抽油机
CN201144675Y (zh) * 2007-08-24 2008-11-05 北京嘉捷恒信能源技术有限责任公司 发电态能量再利用电液压节能游梁式抽油机
CN101174813A (zh) * 2007-10-15 2008-05-07 李晓军 抽油机节能控制方法
CN201118518Y (zh) * 2007-10-15 2008-09-17 李晓军 抽油机自动跟踪节能控制装置
CN201134785Y (zh) * 2007-12-29 2008-10-15 马建红 Pwm电机控制器

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106208896A (zh) * 2016-07-20 2016-12-07 大庆油田有限责任公司 抽油机非常规工作制度下的电机驱动方法与系统
CN106855703A (zh) * 2017-03-03 2017-06-16 河南威盛电气有限公司 基于物联网的抽油机智能测控终端
CN107288637A (zh) * 2017-08-12 2017-10-24 西安煤矿机械有限公司 一种大倾角采煤机拖动控制装置及控制方法
CN107288637B (zh) * 2017-08-12 2023-03-10 西安煤矿机械有限公司 一种大倾角采煤机拖动控制装置及控制方法
CN108868703A (zh) * 2018-06-27 2018-11-23 秦皇岛润麒自控设备有限公司 一种无需载荷传感器实现自动调参的抽油机自控设备
CN114607317A (zh) * 2020-11-23 2022-06-10 中国石油天然气股份有限公司 抽油机监测装置和方法
CN113982538A (zh) * 2021-11-17 2022-01-28 燕山大学 一种游梁式抽油机柔性变频调压闭环节能控制系统及方法
CN113982538B (zh) * 2021-11-17 2022-08-19 燕山大学 一种游梁式抽油机柔性变频调压闭环节能控制系统及方法
CN114172418A (zh) * 2021-11-30 2022-03-11 中国第一汽车股份有限公司 一种电机电流传感器状态检测系统和方法
CN114172418B (zh) * 2021-11-30 2024-03-15 中国第一汽车股份有限公司 一种电机电流传感器状态检测系统和方法

Also Published As

Publication number Publication date
CN101876239B (zh) 2014-01-15
CN101876239A (zh) 2010-11-03

Similar Documents

Publication Publication Date Title
WO2010124582A1 (zh) 抽油机系统及其省电控制方法
CN100486093C (zh) 风力发电用全功率型交直交变流器的控制结构
CN100590961C (zh) 电动机控制装置、洗衣机、空调及电动油泵
AU2012208179B2 (en) Power conversion apparatus
CN102710188B (zh) 一种无刷直流电机的直接转矩控制方法和装置
CN105790660B (zh) 超高速永磁同步电机转速自适应鲁棒控制系统及方法
CN102055401B (zh) 三相感应电动机单调节回路间接转矩控制系统及其方法
CN101207352B (zh) 游梁式抽油机断续供电下电源软投入控制方法及控制装置
CN103916062B (zh) 一种基于dsp的矢量控制电动执行器
CN102780433A (zh) 一种基于电流控制的无刷直流电机瞬时转矩控制方法
CN101272114B (zh) 直流电动机变频控制装置
CN104753410A (zh) 一种基于合成电流控制的无刷直流电机瞬时转矩控制方法
CN108390602B (zh) 一种混合励磁同步电机直接预测功率控制方法
CN201937536U (zh) 一种三相感应电动机单调节回路间接转矩控制装置
CN110530083B (zh) 一种压缩机电机控制方法、装置及空调器
CN101320958B (zh) 半桥逆变器拖动多台电机异步同时实现转子变频调速系统
CN102064753A (zh) 交流永磁同步电机控制器
CN204492623U (zh) 快速门的交流永磁同步伺服电机控制系统
CN106655914A (zh) 一种抑制无刷直流电机转矩脉动控制系统及其转矩脉动抑制方法
CN102355175B (zh) 一种感应电机刹车控制方法
CN103427730A (zh) 永磁无刷直流电机转矩脉动抑制系统及方法
CN100589318C (zh) 一个逆变器拖动四台电机异步同时实现转子变频调速系统
CN103066914B (zh) 高功率因数感应电动机直接功率控制系统
CN102684578A (zh) 一种电机转矩直接控制系统
CN208158473U (zh) 一种无刷直流电机控制系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10769271

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10769271

Country of ref document: EP

Kind code of ref document: A1