WO2010124431A1 - 中继小区上行信号调度方法、发射方法及设备 - Google Patents

中继小区上行信号调度方法、发射方法及设备 Download PDF

Info

Publication number
WO2010124431A1
WO2010124431A1 PCT/CN2009/071480 CN2009071480W WO2010124431A1 WO 2010124431 A1 WO2010124431 A1 WO 2010124431A1 CN 2009071480 W CN2009071480 W CN 2009071480W WO 2010124431 A1 WO2010124431 A1 WO 2010124431A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink
subframe
uplink signal
mbsfn subframe
value
Prior art date
Application number
PCT/CN2009/071480
Other languages
English (en)
French (fr)
Inventor
刘德平
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN200980119205.9A priority Critical patent/CN102301779B/zh
Priority to PCT/CN2009/071480 priority patent/WO2010124431A1/zh
Publication of WO2010124431A1 publication Critical patent/WO2010124431A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network

Definitions

  • the present invention relates to communication technologies, and in particular, to a method, a transmitting method and a device for scheduling uplink signals of a relay cell.
  • downlink communication services can be classified into two categories: unicast service and MBMS (Multimedia Broadcast Multicast Service).
  • the MBMS service can be transmitted using the same carrier together with the unicast service, or can be transmitted using a separate carrier.
  • the mode in which the MBMS service and the unicast service use the same carrier for transmission is called MC (Mixed Carrier) mode.
  • the unicast service, the MBMS service transmitted in the single cell transmission mode, and the MBMS service transmitted in the MBSFN are time division multiplexed. It is a sub-frame time division multiplexing, that is, one subframe is used for MBMS service transmission in unicast service and single cell transmission mode, or used for MBSFN service transmission. A subframe for transmitting MBMS services in MBSFN mode is called an MBSFN subframe.
  • the frame structure of an MBSFN subframe usually consists of two parts: a control signaling symbol portion and a data symbol portion.
  • the control signaling symbol part of the MBSFN subframe is transmitted in a unicast manner, occupying the first one or two OFDM (Orthogonal Frequency Division Multiplexing) symbols in the time domain, and the control signaling symbol part includes: PDCCH (Physical Downlink Control) Channel (Physical Control Format Indicator Channel) and PCFICH (Physical Control Format Indicator Channel), where the CFI (Control Format Indicator) is used to indicate that the PDCCH in the subframe is in the time domain. A total of several OFDM symbols are occupied.
  • the data symbol portion of the MBSFN subframe is used to deliver MBMS related data in MBSFN mode.
  • all UEs (User Equipment), that is, including support and A UE that does not support the MBSFN transmission mode will receive the control signaling symbol part of the MBSFN subframe, and for the remaining data symbol part, only the UE that supports the MBSFN transmission mode will receive the UE, and the UE that does not support the MBSFN transmission mode will This part will be ignored.
  • User Equipment User Equipment
  • relay stations are increasingly being used to relay data between base stations and UEs.
  • the relay station has basic transceivers that store data wirelessly received from the base station and then forward it to the user terminal, and vice versa.
  • the relay station does not have a wired connection with the backbone network.
  • LTE-A Long Term Evolution-Advanced, Rel-10
  • the relay station is introduced for reasons such as high data rate, temporary network deployment, and throughput of cell boundaries.
  • the relay station introduced in the LTE-A system has the following features:
  • the relay station appears to the UE as an independent cell with its own Cell ID, which is the same as the definition of LTE Rel-8, and transmits its own synchronization channel and reference signal.
  • the relay station is an LTE Rel-8 eNB; for LTE-A UEs, the relay station may be different from the LTE Rel-8 eNB, allowing further performance enhancement.
  • the relay station communicates with the eNB (Evolved Base Station) and the UE at the downlink frequency and the uplink frequency respectively: the eNB to the relay station uses the downlink frequency, and the relay station to the UE The frequency used for transmission is the same; the transmission from the relay station to the eNB uses the uplink frequency, and the frequency used by the UE to the relay station is the same.
  • the eNB Evolved Base Station
  • the relay station In order to avoid interference, at any one time, at the same time, the relay station only communicates with one of the eNB and the UE. For example, when the relay station receives data from the eNB, the relay station does not transmit data to the UE. In a specific implementation, some gaps may be created in the transmission of the relay station and the UE, in which the relay station does not send data to the UE, and the UE serves all the relay stations including the UE of Rel-8. The UE, and the UE also knows that the relay station will not transmit data within these discontinuities.
  • the downlink discontinuity in the prior art is implemented by configuring the foregoing MBSFN subframe on the link between the relay station and the UE, specifically: the relay station configures some subframes as MBSFN subframes, In these subframes, the UE that does not support the MBSFN transmission mode only receives the first control signaling symbol portion of the subframe, and considers that the data after the control signaling symbol portion of the MBSFN subframe is an MBMS service, and is no longer received, and thus There is no corresponding HARQ feedback.
  • the relay station stops transmitting signals at the downlink frequency and converts to receive the signal of the eNB on the downlink frequency.
  • a timing of the uplink and downlink transmission in the existing LTE Rel-8 system is: the eNB indicates the downlink data transmitted by the current subframe and the UE in the n+4th uplink subsection in the control signaling symbol part of the nth downlink subframe.
  • Uplink data transmitted by the frame for the feedback information of whether the downlink data of the nth downlink subframe is correct, the UE also feeds back in the n+4th uplink subframe; similarly, for the n+4th uplink subframe
  • the eNB also simultaneously feeds back the control signaling symbol part in the n+8th downlink subframe.
  • the uplink subframe corresponding to the frame and delayed by 4 frames is implemented.
  • the relay station stops receiving the uplink signal transmitted by the UE on the uplink frequency, and then transmits the signal to the eNB on the same frequency.
  • the UE has some other information to be fed back in the uplink subframe of the downlink MBSFN subframe and delayed by 4 frames.
  • the LTE Rel-8 uplink uses the synchronous HARQ mechanism, that is, when the uplink data transmission error occurs and needs to be retransmitted, the UE will continue to transmit the retransmission data by delaying the uplink subframe of the last 8 frames of the data transmission; For example, other signals transmitted in the uplink subframe, such as SR, CQI, etc., are transmitted in a certain period, and the UE periodically transmits.
  • the UE may still send the retransmitted uplink data or SR, CQI, etc., and at this time, the relay station does not receive the uplink sent by the UE. Subframe.
  • uplink data transmission has no meaning, which not only wastes power resources, but also causes unnecessary interference to neighboring cells.
  • control signaling for notifying the UE to stop uplink is added in the downlink control signaling of the control signaling symbol portion of these MBSFN subframes, but this processing method will undoubtedly bring additional signals.
  • the cost is increased, and the number of blind detections of the control channel is increased, which is likely to cause false detection.
  • An embodiment of the present invention provides a method and a device for scheduling uplink cell uplink signals to reduce signaling overhead.
  • Another embodiment of the present invention provides a method and a device for transmitting uplink signal of a relay cell, in a section
  • the transmission power of the provincial UE is reduced, and inter-cell interference is reduced.
  • the relay station determines that the control format indication CFI of the physical control format indication channel PCFICH of the MBSFN subframe is invalid after the uplink station is unable to receive the uplink signal in the uplink subframe corresponding to the MBSFN subframe of the MBBN subframe.
  • the MBSFN subframe is transmitted.
  • the UE receives the MBSFN subframe
  • the uplink subframe corresponding to the MBSFN subframe stops transmitting the uplink signal.
  • the relay station provided by the embodiment of the present invention includes: after receiving the uplink signal normally, setting the CFI value of the PCFICH of the MBSFN subframe to an invalid value; and the first transmitting unit, configured to transmit the MBSFN subframe.
  • a receiving unit configured to receive an MBSFN subframe
  • a parsing unit configured to parse the physical control format indication channel PCFICH of the MBSFN subframe; a second transmitting unit, configured to transmit an uplink signal, and the CFI value of the control format indication in the parsing unit parsing the PCFICH When the value is invalid, the uplink signal is stopped in the uplink subframe corresponding to the MBSFN subframe.
  • the CFI value of the PCFICH in the MBSFN subframe is invalid, indicating that the UE cannot transmit in the uplink subframe corresponding to the downlink MBSFN subframe.
  • the uplink signal does not add any signaling overhead.
  • the UE receives the MBSFN subframe and parses the PCFICH in the MBSFN subframe. If the CFI value in the PCFICH is an invalid value, the UE stops transmitting in the uplink subframe corresponding to the MBSFN subframe. Uplink signal. Therefore, the UE can be instructed to stop receiving the uplink signal in the uplink subframe of the uplink signal transmitted by the UE, and save the UE's transmit power, and also reduce unnecessary cells, without adding any signaling overhead. Interference. DRAWINGS
  • FIG. 1 is a flowchart of a method for scheduling an uplink signal of a relay cell according to an embodiment of the present invention
  • FIG. 2 is a flowchart of a method for transmitting an uplink signal of a relay cell according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a relay station according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a user equipment according to an embodiment of the present invention.
  • the relay cell uplink signal scheduling method and device provided by the embodiment of the present invention are directed to the problem in the prior art.
  • the relay station indicates whether the UE can be in the MBSFN by setting the CFI value of the PCFICH in the MBSFN subframe.
  • the uplink subframe corresponding to the subframe normally transmits the uplink signal. Specifically, if the uplink subframe UE corresponding to the MBSFN subframe does not normally transmit the uplink signal, the CFI is set to an invalid value that is unlikely to occur in the frame.
  • the CFI value of the PCFICH in the MBSFN subframe can be set normally according to the prior art: the number of symbols occupied by the PDCCH, the limitation of the high layer signaling, and the like.
  • the UE receives the MBSFN subframe, and parses the PCFICH in the MBSFN subframe, if the CFI value in the PCFICH is an invalid value, Then, the UE stops transmitting the uplink signal in the uplink subframe corresponding to the MBSFN subframe.
  • the UE performs the normal processing according to the prior art. For example, the number of symbols occupied by the PDCCH is determined according to the CFI value, and the PDCCH is detected. Therefore, the transmission power of the UE can be saved and unnecessary inter-cell interference can be reduced without adding any signaling overhead.
  • the PCFICH occupies 2 bits and has four states.
  • the PDCCH channel usually occupies only the first one or two symbols.
  • the CFI value of the PCFICH indicates only one or two symbols, that is, only two states are used to identify the PDCCH channel.
  • the number of symbols That is to say, in the MBSFN subframe, the effective value of the content CFI of the PCFICH is only 1 or 2.
  • the UE is indicated by means of the CFI value of the PCFICH in the MBSFN subframe:
  • the current effective value is 1 or 2, and the UE processes normally as described above;
  • the part other than the control signaling symbol portion of the MBSFN subframe is the relay station and the UE transmission.
  • a gap is provided for the relay station and the eNB to transmit time.
  • the UE cannot transmit the uplink signal in the uplink subframe corresponding to the MBSFN subframe. In this case, the UE may not detect the downlink MB SFN subframe.
  • PDCCH the signal is stopped in the corresponding uplink subframe.
  • FIG. 1 it is a flowchart of a method for scheduling an uplink signal of a relay cell according to an embodiment of the present invention.
  • Step 101 The relay station sets the CFI value of the PCFICH of the MBSFN subframe according to whether the relay station can normally receive the uplink signal in the uplink subframe corresponding to the MBSFN subframe.
  • the CFI has 2 bits and can represent four states, one of which is the reserved state.
  • the effective value of the CFI of the PCFICH may be 1 or 2.
  • the relay station can normally receive the uplink signal according to whether the relay station can normally receive the uplink signal in the uplink subframe corresponding to the MBSFN subframe, and set the CFI value in the PCFICH of the MBSFN subframe, that is, the CFI value is used. Indicates whether the UE can normally transmit an uplink signal in an uplink subframe corresponding to the current MBSFN subframe, so that the UE can determine whether to transmit an uplink signal in the corresponding uplink subframe according to the CFI value.
  • the CFI value is set to an invalid value of 3 or 4.
  • the CFI value is normally set as described above.
  • the relay station stops receiving the uplink signal transmitted by the UE on the uplink frequency, and transmits the signal to the eNB on the same frequency.
  • the uplink and downlink services may be asymmetric. In fact, when the relay station communicates with the eNB, only the downlink data from the network side is required, and the downlink communication of the eNB to the relay station is required; Uplink data, that is, uplink communication from the relay station to the eNB. Therefore, according to the existing mechanism, all uplink subframes corresponding to the MBSFN subframe are used as the relay station and the eNB.
  • the time unit of communication that is, intermittent, may cause waste of resources.
  • the relay station if the relay station does not need to upload data to the network side in the uplink subframe corresponding to the MBSFN subframe, the uplink signal transmitted by the UE may be normally received, and the MBSFN is normally set by using the foregoing manner.
  • the CFI value of the PCFICH in the subframe can be easily realized.
  • Step 102 Transmit the MBSFN subframe.
  • the uplink cell scheduling method of the relay cell needs to increase any signaling overhead by the value of the CFI.
  • the solution of the embodiment of the present invention may indicate that the uplink subframe corresponding to the MBSFN subframe is normal.
  • the uplink signal is transmitted.
  • the scheme does not waste the uplink resources, and the scheme may also need to transmit data to the uplink.
  • Step 201 The UE receives an MBSFN subframe.
  • Step 202 Parse the PCFICH of the MBSFN subframe.
  • Step 203 If the value of the CFI in the PCFICH is an invalid value, stop transmitting the uplink signal in the uplink subframe corresponding to the MBSFN subframe.
  • the UE of the relay cell can know whether the uplink signal can be normally transmitted in the uplink subframe corresponding to the MBSFN subframe according to the CFI value of the PCFICH in the MBSFN subframe. In this way, even if there is uplink data that needs to be retransmitted in the corresponding uplink subframe, or a signal that needs to be periodically transmitted, or some other system configuration needs to transmit, the uplink data transmitted by the UE cannot be normally received in the corresponding uplink subframe relay station. Therefore, the UE does not need to perform transmission, thereby avoiding waste of power resources and causing unnecessary interference to neighboring cells.
  • the method may further include the following steps:
  • the UE stops detecting the PDCCH in the MBSFN subframe.
  • the UE processes normally.
  • the UE may further perform one of the following processes, as the uplink signal that the UE needs to transmit may be multiple.
  • the uplink signal that stops transmitting is uplink retransmission data, it may be delayed to retransmit to the next subframe of the same HARQ process;
  • the uplink signal that is to be transmitted is to be periodically transmitted, for example, the SR, the CQL uplink measurement pilot, the random access signal, etc.
  • the uplink signal corresponding to the next period may be delayed to transmit the uplink signal;
  • the uplink signal that stops transmitting is a temporarily scheduled signal, it can wait for the uplink signal to be transmitted again in the next scheduling.
  • the relay station indicates, by using the CFI value of the PCFICH in the MBSFN subframe, whether the UE can normally transmit the uplink signal in the uplink subframe corresponding to the MBSFN, so that no uplink is added. Signaling overhead.
  • the UE receives the MBSFN subframe, and parses the CFI value of the PCFICH in the MBSFN subframe. If the CFI value of the PCFICH is an invalid value, the UE is in the uplink subframe corresponding to the MBSFN subframe. Stop transmitting the upstream signal. Therefore, the UE can be instructed to stop receiving the uplink signal in the uplink subframe of the uplink signal transmitted by the UE, and save the UE's transmit power, and also reduce unnecessary cells, without adding any signaling overhead. Interference.
  • the embodiment of the present invention further provides a relay station, as shown in FIG. 3, which is a schematic structural diagram of the relay station.
  • the relay station includes: a setting unit 301 and a first transmitting unit 302.
  • the CFI of the PCFICH of the MBSFN subframe is set to an invalid value after the ', ', , , , , , and humans can receive the uplink signal normally.
  • the first transmitting unit 302 is configured to transmit the MBSFN subframe.
  • the CFI has 2 bits and can represent four states, one of which is reserved. State.
  • the effective value of the CFI of the PCFICH may be 1 or 2.
  • the relay station sets the value of the CFI in the PCFICH of the MBSFN subframe according to whether the uplink subframe corresponding to the MBSFN subframe can receive the uplink signal normally, that is,
  • the CFI value can be set normally; if the uplink subframe corresponding to the MBSFN subframe is in the uplink subframe, the relay station cannot receive the uplink normally. Signal, then set the CFI value to an invalid value of 3 or 4.
  • the setting unit 301 is further configured to: when the current relay station can receive the uplink signal normally in the uplink subframe corresponding to the MBSFN subframe, set the CFI value to a valid value. .
  • the relay station in the embodiment of the present invention by setting the CFI value of the PCFICH in the MBSFN subframe, indicates whether it can normally receive the uplink signal transmitted by the UE in the uplink subframe corresponding to the MBSFN subframe, without adding any signaling overhead. If the uplink subframe relay station corresponding to a certain MBSFN subframe does not need to be uploaded to the network side, it can be easily implemented by setting the CFI value normally.
  • An embodiment of the present invention further provides a UE, as shown in FIG. 4, which is a schematic structural diagram of the UE.
  • the UE includes: a receiving unit 401, a parsing unit 402, and a second transmitting unit 403. among them:
  • a receiving unit 401 configured to receive an MBSFN subframe
  • the parsing unit 402 is configured to parse the PCFICH of the MBSFN subframe
  • a second transmitting unit 403 configured to transmit an uplink signal, and stop transmitting in an uplink subframe corresponding to the MBSFN subframe, when the parsing unit parses the control format in the PCFICH to indicate that the CFI value is an invalid value.
  • Uplink signal configured to transmit an uplink signal, and stop transmitting in an uplink subframe corresponding to the MBSFN subframe, when the parsing unit parses the control format in the PCFICH to indicate that the CFI value is an invalid value.
  • the UE in the embodiment of the present invention can learn whether the uplink signal can be normally transmitted in the uplink subframe corresponding to the MBSFN subframe according to the CFI value of the PCFICH in the MBSFN subframe. In this way, even if there is uplink data that needs to be retransmitted in the corresponding uplink subframe, or a signal that needs to be periodically transmitted, or Other systems need to transmit signals. Since the corresponding uplink subframe relay station cannot receive the uplink data transmitted by the UE normally, the UE does not need to transmit, thereby avoiding waste of power resources and not causing neighboring cells. Necessary interference.
  • the method further includes: a detecting unit 404, configured to detect a PDCCH in the MBSFN subframe, and the CFI value in the PCFICH parsed by the parsing unit 402 is an invalid value. At the same time, the detection of the PDCCH in the MBSFN subframe is stopped. If the CFI value in the PCFICH is a valid value, the detecting unit 404 performs normal processing.
  • the second transmitting unit 403 may separately perform the following processing, as the uplink signal that the UE needs to transmit may be multiple.
  • the uplink signal that stops transmitting is uplink retransmission data, delaying to the next subframe of the same hybrid automatic repeat request HARQ process retransmits the uplink signal;
  • the uplink signal that stops transmitting is an uplink signal that needs to be periodically transmitted, delaying to transmit the uplink signal to the corresponding uplink subframe in the next week;
  • the uplink signal that stops transmitting is a temporarily scheduled signal, the uplink signal is retransmitted while waiting for the next scheduling.
  • the UE receives the MBSFN subframe, and parses the CFI value of the PCFICH in the MBSFN subframe. If the CFI value of the PCFICH is an invalid value, the UE stops in the uplink subframe corresponding to the MBSFN subframe. The uplink signal is transmitted. Therefore, the UE can be instructed to stop receiving the uplink signal in the uplink subframe of the uplink signal transmitted by the UE, and save the UE's transmit power, and also reduce unnecessary cells, without adding any signaling overhead. Interference.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)

Description

中继小区上行信号调度方法、 发射方法及设备 技术领域
本发明涉及通信技术, 具体涉及一种中继小区上行信号调度方法、发射方 法及设备。
背景技术
在 LTE Rel-8 ( Long Term Evolution Release 8 , 长期演进版本 8 ) 系统中, 下行通信业务可以分为两大类: 单播业务和 MBMS ( Multimedia Broadcast Multicast Service, 多媒体广播组播业务)。 MBMS业务可以和单播业务共同使 用相同载波进行传输, 也可以使用一个独立的载波进行传输。 MBMS 业务与 单播业务使用相同的载波进行传输的模式称为 MC ( Mixed Carrier, 混合载波 ) 模式。
在 MC模式下, 单播业务、 以单小区传输方式发送的 MBMS业务, 和以 MBSFN ( Multi-Broadcast Single Frequency Network, 多媒体广播同频网)方式 发送的 MBMS业务, 时分复用, 该复用具体是子帧级时分复用, 即一个子帧 要么用于单播业务和单小区传输方式的 MBMS业务传输, 要么用于 MBSFN 业务传输。 用于以 MBSFN方式传输 MBMS业务的子帧叫做 MBSFN子帧。
MBSFN子帧的帧结构通常包括两部分: 控制信令符号部分和数据符号部 分。
MBSFN子帧中的控制信令符号部分以单播方式传输, 在时域上占用最前 面的 1个或 2个 OFDM ( Orthogonal Frequency Division Multiplexing )符号, 控制信令符号部分包括: PDCCH ( Physical Downlink Control Channel , 物理下 行控制信道)和 PCFICH ( Physical Control Format Indicator Channel, 物理控制 格式指示信道), 其中, PCFICH的内容 CFI ( Control Format Indicator, 控制格 式指示)用于指示本子帧中的 PDCCH在时域上共占用几个 OFDM符号。
MBSFN子帧中的数据符号部分则用于以 MBSFN方式传递 MBMS相关的 数据。
对于 UE来说, 所有 UE ( User Equipment, 用户设备 ), 也即包括支持及 不支持 MBSFN传输方式的 UE, 都会接收 MBSFN子帧中的控制信令符号部 分, 而对于其余的数据符号部分, 则只有支持 MBSFN传输方式的 UE才会接 收, 不支持 MBSFN传输方式的 UE, 则会忽略该部分。
在无线通信系统中,中继站越来越多地被用于中转基站与 UE之间的数据。 中继站有基本的收发设备,存储从基站无线接收的数据, 然后将其转发至用户 终端 , 反之亦然。 中继站不与骨干网进行有线连接。 在 LTE-A ( Long Term Evolution- Advanced, 长期演进项目增强, 即 Rel-10 ) 系统中, 为了高数据速 率、 临时布网、 小区边界的吞吐量等因素考虑引入中继站。 LTE-A系统中引入 的中继站具有以下特征:
■ 网络与中继站的链路和网络直接与 UE的链路共享相同的频率;
■ 中继站在 UE看来是一个独立的小区,有自己的小区标识(Physical Cell ID ) , 该标识与 LTE Rel-8的定义相同, 发射自己的同步信道和参考信号等;
■ 对于 LTE Rel-8的 UE ,中继站是一个 LTE Rel-8的 eNB;对于 LTE-A UE , 中继站可以不同于 LTE Rel-8 eNB , 允许进一步性能增强。
在 LTE-A FDD ( Frequency Division Duplex, 频分双工) 系统中, 中继站 分别在下行频率和上行频率与 eNB (演进基站)和 UE通信: eNB到中继站的 传输使用下行频率, 和中继站到 UE 的传输使用的频率相同; 中继站到 eNB 的传输使用上行频率, 和 UE到中继站的传输使用的频率相同。
为了避免干扰, 在任何一个频率上, 在同一时间, 中继站只与 eNB和 UE 中的一方进行通信, 比如, 当中继站从 eNB接收数据的时候, 中继站不给 UE 发射数据。在具体实现时,可以在中继站和 UE的传输中创造一些间断(gap ), 在这些间断内, 中继站不会向 UE发送数据, 该 UE为包括 Rel-8的 UE在内 的所有被该中继站服务的 UE, 并且 UE也知道中继站在这些间断内不会传输 数据。
鉴于前述介绍中 MBSFN子帧的特点,现有技术中下行的间断通过在中继 站与 UE的链路上配置上述的 MBSFN子帧来实现, 具体为: 中继站配置某些 子帧为 MBSFN子帧, 在这些子帧中, 不支持 MBSFN传输方式的 UE只接收 该子帧最前面的控制信令符号部分,认为该 MBSFN子帧内控制信令符号部分 之后的数据是 MBMS业务, 不再接收, 因而也就没有相应的 HARQ反馈。 实 际上中继站在后续的时间符号里,停止在下行频率发射信号,转为在下行频率 上接收 eNB的信号。
现有的 LTE Rel-8系统中上下行传输的一种时序是: eNB在第 n个下行子 帧的控制信令符号部分指示当前子帧发射的下行数据和 UE在第 n+4个上行子 帧发射的上行数据; 对于第 n个下行子帧的下行数据是否正确的反馈信息, UE也同时在第 n+4个上行子帧中反馈; 类似地, 对于第 n+4个上行子帧的上 行数据是否正确的反馈信息, eNB也同时在第 n+8个下行子帧中的控制信令 符号部分反馈。 帧对应的、 延迟 4帧的上行子帧来实现。 相应地, 与该 MBSFN子帧对应的延 迟 4帧的上行子帧, 中继站停止接收 UE在上行频率上发射的上行信号, 转而 在同一频率上向 eNB发射信号。
然而, LTE Rel-8系统中, UE在下行 MBSFN子帧对应的、 延迟 4帧的上 行子帧,会有一些其他信息需要反馈。比如, LTE Rel-8 上行釆用同步的 HARQ 机制, 即上行数据传输发生错误需要重传的时候, UE会默认在上次发射此数 据的延迟 8帧的上行子帧继续发射重传数据; 再比如, 其他一些在上行子帧发 射的信号如 SR、 CQI等是以某种周期发射的, UE会周期发射。 也就是说, 在 这些情况下, 在与某 MBSFN子帧对应的上行子帧, UE仍然可能发送重传的 上行数据或者 SR、 CQI等, 而此时, 中继站并不会接收 UE发送的该上行子 帧。 显然, 这样的上行数据传输没有意义, 这样不仅会浪费功率资源, 而且会 造成对邻小区不必要的干扰。
为此,现有技术中通常釆用在这些 MBSFN子帧的控制信令符号部分的下 行控制信令中增加通知 UE上行停发的控制信令,但这种处理方式无疑会带来 额外的信令开销, 而且会增加控制信道盲检测的次数, 容易造成误检。 发明内容
本发明实施例一方面提供一种中继小区上行信号调度方法及设备,以减少 信令开销。
本发明实施例另一方面提供一种中继小区上行信号发射方法及设备,以节 省 UE的发射功率, 降低小区间干扰。
本发明实施例提供的一种中继小区上行信号调度方法, 包括:
中继站确定在与多媒体广播同频网 MBSFN子帧对应的上行子帧内本中 继站不能够正常接收上行信号后,设置所述 MBSFN子帧的物理控制格式指示 信道 PCFICH的控制格式指示 CFI取值为无效值;
发射所述 MBSFN子帧。
本发明实施例提供的一种中继小区上行信号发射方法, 包括:
UE接收 MBSFN子帧;
解析所述 MBSFN子帧的物理控制格式指示信道 PCFICH;
如果所述 PCFICH 中的控制格式指示 CFI取值为无效值, 则在与所述
MBSFN子帧对应的上行子帧停止发射上行信号。
本发明实施例提供的一种中继站, 包括: 正常接收上行信号后,设置所述 MBSFN子帧的 PCFICH的 CFI取值为无效值; 第一发射单元, 用于发射所述 MBSFN子帧。
本发明实施例提供的一种用户设备, 包括:
接收单元, 用于接收 MBSFN子帧;
解析单元,用于解析所述 MBSFN子帧的物理控制格式指示信道 PCFICH; 第二发射单元,用于发射上行信号,并在所述解析单元解析到所述 PCFICH 中的控制格式指示 CFI取值为无效值时,在与所述 MBSFN子帧对应的上行子 帧停止发射上行信号。
本发明实施例的方法及设备,在中继站侧 ,中继站在需要时 ,通过 MBSFN 子帧中 PCFICH的 CFI取值为无效值, 来指示 UE不可以在与本下行 MBSFN 子帧对应的上行子帧发射上行信号, 从而不会增加任何信令开销。 相应地, 在 UE侧, UE接收 MBSFN子帧, 解析所述 MBSFN子帧中的 PCFICH, 如果 PCFICH中的 CFI取值为无效值 , 则 UE在与所述 MBSFN子帧对应的上行子 帧停止发射上行信号。 从而可以在不增加任何信令开销的情况下, 指示 UE在 中继站不能正常接收 UE发射的上行信号的上行子帧, 停止发射上行信号, 节 省了 UE的发射功率, 同时也降低了不必要的小区间干扰。 附图说明
图 1是本发明实施例中继小区上行信号调度方法的流程图;
图 2是本发明实施例中继小区上行信号发射方法的流程图;
图 3是本发明实施例中继站的一种结构示意图;
图 4是本发明实施例用户设备的一种结构示意图。
具体实施方式
为了使本技术领域的人员更好地理解本发明实施例的方案,下面结合附图 和实施方式对本发明实施例作进一步的详细说明。
本发明实施例提供的中继小区上行信号调度方法及设备,针对现有技术中 存在的问题, 在中继站侧, 中继站通过设置 MBSFN子帧中 PCFICH的 CFI 取值来指示 UE是否可以在与该 MBSFN子帧对应的上行子帧正常发射上行信 号。 具体地, 如果与本 MBSFN子帧对应的上行子帧 UE不可以正常发射上行 信号, 则将 CFI设置为本帧不可能出现的无效值。 当然, 如果可以正常发射, 则可以直接依据现有技术正常设置 MBSFN子帧中 PCFICH的 CFI的取值: PDCCH占用的符号数量、 高层信令的限制等等。
相应地, 本发明实施例提供的中继小区上行信号发射方法及设备, 在 UE 侧, UE接收 MBSFN子帧,解析所述 MBSFN子帧中的 PCFICH,如果 PCFICH 中的 CFI取值为无效值, 则 UE在与所述 MBSFN子帧对应的上行子帧停止发 射上行信号。 当然, 如果 PCFICH中的 CFI取值为本帧可能出现的有效值, UE依据现有技术正常处理, 比如, 根据 CFI取值判断 PDCCH占用的符号数 量, 检测 PDCCH。 从而可以在不增加任何信令开销的情况下, 节省 UE的发 射功率, 降低不必要的小区间干扰。
在现有 LTE Rel-8中, PCFICH占用 2比特, 有四个状态。 对于 MBSFN 子帧来说,其中的 PDCCH信道通常只占用前 1个或者 2个符号,此时 PCFICH 的 CFI取值仅指示 1个或者 2个符号, 即只有两个状态用于标识 PDCCH信道 所占用的符号个数。 也就是说, 在 MBSFN子帧中, PCFICH的内容 CFI的有 效取值仅为 1或者 2。
在本发明实施例中 , 借助于 MBSFN子帧中 PCFICH的 CFI取值对 UE进 行指示: 现的有效值 1或者 2 , UE如前所述正常处理;
如果在本 MBSFN子帧中 PCFICH的 CFI取值为在本 MBSFN子帧不可能 出现的 3或者预留状态 4 , 则表示本 MBSFN子帧的控制信令符号部分以外的 部分是中继站与 UE传输中的一个间断( gap ),为中继站和 eNB传输提供时间, 相应地, 与本 MBSFN子帧对应的上行子帧, UE不能发射上行信号, 此时, UE可以不检测本下行 MB SFN子帧中的 PDCCH ,在对应的上行子帧停发信号。
为了清楚起见, 下面分别从中继站侧和 UE侧分别对本发明实施例进行详 细说明。
如图 1所示, 是本发明实施例中继小区上行信号调度方法的流程图。
步骤 101 , 中继站根据本中继站在与某 MBSFN子帧对应的上行子帧内是 否可以正常接收上行信号, 设置所述 MBSFN子帧的 PCFICH的 CFI取值。
现有标准协议中 CFI有 2个比特,可以表示四种状态,其中一个是预留状 态。 在 MBSFN子帧中, PCFICH的 CFI的有效值可以是 1或 2。
在本发明实施例中, 中继站根据本中继站在与某 MBSFN子帧对应的上行 子帧内是否可以正常接收上行信号, 设置所述 MBSFN子帧的 PCFICH 中的 CFI取值, 即通过 CFI取值来指示 UE在与本 MBSFN子帧对应的上行子帧是 否可以正常发射上行信号,以使 UE可以根据 CFI取值来决定在相应上行子帧 是否发射上行信号。
具体地, 如果在与本 MBSFN子帧对应的上行子帧, 中继站不能正常接收 上行信号, 则设置所述 CFI取值为无效值 3或 4。 当然, 如果在与本 MBSFN 子帧对应的上行子帧, 中继站可以正常接收上行信号,如前所述正常设置所述 CFI取值。
另外, 如背景技术所述, 通常在与某 MBSFN子帧对应的上行子帧, 中继 站会停止接收 UE在上行频率上发射的上行信号, 转为在同一频率上向 eNB 发射信号。 但是上下行业务可能是不对称的, 实际上会出现以下情况: 中继站 与 eNB进行通信时, 只有来自于网络侧的下发数据, 需要 eNB到中继站的下 行通信; 并不一定有上传回网络侧的上行数据, 即中继站到 eNB的上行通信, 因此,按照现有机制,与 MBSFN子帧对应的上行子帧全部都作为中继站与 eNB 通信的时间单元, 即间断, 有可能会造成资源的浪费。
而通过本发明实施例的方法, 如果与某 MBSFN子帧对应的上行子帧内, 中继站没有数据需要向网络侧上传, 可以正常接收 UE发射的上行信号, 通过 如前所述正常设置所述 MBSFN子帧中 PCFICH的 CFI取值即可简单实现。
步骤 102, 发射所述 MBSFN子帧。
可见,本发明实施例中继小区上行信号调度方法, 中继站通过 CFI取值来 需增加任何信令开销。 并且, 针对上下行业务不对称的情况, 比如, 下行数据 远远大于上行数据, 通过本发明实施例的方案, 可以通过 CFI取值来指示 UE 在与本 MBSFN 子帧对应的上行子帧可以正常发射上行信号, 相比于将每个 MBSFN子帧对应的上行子帧都作为间断的方案来说, 该方案不会造成上行资 源的浪费, 并且, 该方案也可以由中继站在需要上行传输数据给 eNB时, 通 行信号。 ― 、口
如图 2所示, 是本发明实施例中继小区上行信号发射方法的流程图。 步骤 201 , UE接收 MBSFN子帧。
步骤 202 , 解析所述 MBSFN子帧的 PCFICH。
步骤 203 ,如果所述 PCFICH中的 CFI取值为无效值,则在与所述 MBSFN 子帧对应的上行子帧停止发射上行信号。
中继小区的 UE根据 MBSFN子帧中 PCFICH的 CFI取值, 即可获知是否 可以在与该 MBSFN子帧对应的上行子帧正常发射上行信号。 这样, 即使在相 应上行子帧有需要重传的上行数据, 或者需要周期性发射的信号, 或者其它一 些系统配置需要发射的信号, 由于在该相应上行子帧中继站不能正常接收 UE 发射的上行数据, 因此, UE也无需进行发射, 从而避免了功率资源的浪费, 也不会造成对邻小区不必要的干扰。
在该实施例中, 所述方法还可进一步包括以下步骤:
如果所述 PCFICH中 CFI取值为无效值,则所述 UE停止检测所述 MBSFN 子帧中的 PDCCH。
如果所述 PCFICH中的 CFI取值为有效值, 则所述 UE正常处理。 由于 UE需要发射的上行信号可能有多种, 因此, 针对不同的上行信号, 在本发明实施例中, UE还可进一步做以下处理中的一个:
如果停止发射的上行信号是上行重传数据, 可以延迟到同一 HARQ过程 的下一子帧重新发射;
如果停止发射的上行信号是需要周期性发送的, 比如 SR、 CQL 上行测 量导频、 随机接入信号等, 可以延迟到下一周期相对应的上行子帧再发射所述 上行信号;
如果停止发射的上行信号是临时调度的信号,则可以等待下次调度时再发 射所述上行信号。
可见, 利用本发明实施例的方法, 在中继站侧, 中继站通过某 MBSFN子 帧中 PCFICH的 CFI取值来指示 UE在与该 MBSFN对应的上行子帧是否可以 正常发射上行信号, 从而不会增加任何信令开销。 相应地, 在 UE侧, UE接 收 MBSFN子帧,解析所述 MBSFN子帧中 PCFICH的 CFI取值,如果 PCFICH 的 CFI取值为无效值, 则 UE在与所述 MBSFN子帧对应的上行子帧停止发射 上行信号。 从而可以在不增加任何信令开销的情况下, 指示 UE在中继站不能 正常接收 UE发射的上行信号的上行子帧, 停止发射上行信号, 节省了 UE的 发射功率, 同时也降低了不必要的小区间干扰。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分步骤 是可以通过程序来指令相关的硬件来完成,所述的程序可以存储于一计算机可 读取存储介质中, 所述的存储介质, 如: ROM/RAM、 磁碟、 光盘等。
本发明实施例还提供了一种中继站, 如图 3所示,是该中继站的一种结构 示意图。
在该实施例中, 所述中继站包括: 设置单元 301和第一发射单元 302。 其 中: 、 ' 、 人 、 、: 、 人 、 能够正常接收上行信号后,设置所述 MBSFN子帧的 PCFICH的 CFI取值为无 效值。
第一发射单元 302, 用于发射所述 MBSFN子帧。
现有标准协议中 CFI有 2个比特,可以表示四种状态,其中一个是预留状 态。 在 MBSFN子帧中, PCFICH的 CFI的有效值可以是 1或 2。
在本发明实施例中, 中继站根据与某 MBSFN子帧对应的上行子帧是否可 以正常接收上行信号设置所述 MBSFN子帧的 PCFICH中的 CFI取值,即通过
具体地, 如果在与本 MBSFN子帧对应的上行子帧, 中继站可以正常接收 上行信号, 可以正常设置所述 CFI取值; 如果在与本 MBSFN子帧对应的上行 子帧, 中继站不能正常接收上行信号, 则设置所述 CFI取值为无效值 3或 4。
为此, 在本发明实施例中, 所述设置单元 301 进一步用于确定在与所述 MBSFN子帧对应的上行子帧内本中继站能够正常接收上行信号时, 设置所述 CFI取值为有效值。
所述中继站对中继小区上行信号的调度过程可参照前面本发明实施例中 继小区上行信号的调度方法中的描述, 在此不再赘述。
本发明实施例的中继站,通过设置 MBSFN子帧中 PCFICH的 CFI取值来 指示其是否可以在与该 MBSFN子帧对应的上行子帧正常接收 UE发射的上行 信号, 不会增加任何信令开销。 如果与某 MBSFN子帧对应的上行子帧中继站 没有数据需要向网络侧上传, 可以通过正常设置所述 CFI取值来简单实现。
本发明实施例还提供了一种 UE, 如图 4所示, 是该 UE的一种结构示意 图。
在该实施例中, 所述 UE包括: 接收单元 401、 解析单元 402和第二发射 单元 403。 其中:
接收单元 401 , 用于接收 MBSFN子帧;
解析单元 402 , 用于解析所述 MBSFN子帧的 PCFICH;
第二发射单元 403 , 用于发射上行信号, 并在所述解析单元解析到所述 PCFICH中的控制格式指示 CFI取值为无效值时, 在与所述 MBSFN子帧对应 的上行子帧停止发射上行信号。
本发明实施例的 UE, 根据 MBSFN子帧中 PCFICH的 CFI取值, 即可获 知是否可以在与该 MBSFN子帧对应的上行子帧正常发射上行信号。 这样, 即 使在相应上行子帧有需要重传的上行数据, 或者需要周期性发射的信号, 或者 其它一些系统配置需要发射的信号,由于在该相应上行子帧中继站不能正常接 收 UE发射的上行数据, 因此, UE也无需进行发射, 从而避免了功率资源的 浪费, 也不会造成对邻小区不必要的干扰。
在本发明实施例的 UE中, 还可进一步包括: 检测单元 404, 用于检测所 述 MBSFN子帧中的 PDCCH, 并在所述解析单元 402解析到所述 PCFICH中 的 CFI取值为无效值时, 停止检测所述 MBSFN子帧中的 PDCCH。 如果所述 PCFICH中的 CFI取值为有效值, 则检测单元 404进行正常处理。
由于 UE需要发射的上行信号可能有多种, 因此, 针对不同的上行信号, 在本发明实施例中, 所述第二发射单元 403 , 还可分别进行以下处理:
如果停止发射的上行信号是上行重传数据,则延迟到同一混合自动重传请 求 HARQ过程的下一子帧重新发射所述上行信号; 或者
如果停止发射的上行信号是需要周期性发送的上行信号 ,则延迟到下一周 期相对应的上行子帧再发射所述上行信号; 或者
如果停止发射的上行信号是临时调度的信号,则等待下次调度时再发射所 述上行信号。
所述 UE对中继小区上行信号的发送过程可参照前面本发明实施例中继小 区上行信号的发送方法中的描述, 在此不再赘述。
本发明实施例中, UE接收 MBSFN子帧 ,解析所述 MBSFN子帧中 PCFICH 的 CFI取值, 如果 PCFICH的 CFI取值为无效值, 则 UE在与所述 MBSFN子 帧对应的上行子帧停止发射上行信号。从而可以在不增加任何信令开销的情况 下, 指示 UE在中继站不能正常接收 UE发射的上行信号的上行子帧, 停止发 射上行信号, 节省了 UE的发射功率, 同时也降低了不必要的小区间干扰。
以上对本发明实施例进行了详细介绍,本文中应用了具体实施方式对本发 明进行了阐述, 以上实施例的说明只是用于帮助理解本发明的方法及设备; 同 时, 对于本领域的一般技术人员, 依据本发明的思想, 在具体实施方式及应用 范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims

权 利 要 求
1、 一种中继小区上行信号调度方法, 其特征在于, 包括:
中继站确定在与多媒体广播同频网 MBSFN子帧对应的上行子帧内本中 继站不能够正常接收上行信号后,设置所述 MBSFN子帧的物理控制格式指示 信道 PCFICH的控制格式指示 CFI取值为无效值;
发射所述 MBSFN子帧。
2、 根据权利要求 1所述的方法, 其特征在于, 所述发射 MBSFN子帧之 前, 进一步包括:
中继站确定在与 MBSFN子帧对应的上行子帧内本中继站能够正常接收 上行信号时, 设置所述 MBSFN子帧的 PCFICH的 CFI取值为有效值。
3、 一种中继小区上行信号发射方法, 其特征在于, 包括:
用户设备 UE接收 MBSFN子帧;
解析所述 MBSFN子帧的物理控制格式指示信道 PCFICH;
如果所述 PCFICH 中的控制格式指示 CFI取值为无效值, 则在与所述 MBSFN子帧对应的上行子帧停止发射上行信号。
4、 根据权利要求 3所述的方法, 其特征在于, 所述方法还包括: 如果所述 PCFICH中 CFI取值为无效值,则停止检测所述 MBSFN子帧中 的 PDCCH。
5、 根据权利要求 3所述的方法, 其特征在于, 所述 CFI取值为无效值包 括: 所述 CFI取值为 3或 4。
6、 根据权利要求 3至 5任一项所述的方法, 其特征在于, 所述方法还包 括以下任意一个:
如果停止发射的上行信号是上行重传数据,则延迟到同一混合自动重传请 求 HARQ过程的下一子帧重新发射所述上行信号;
如果停止发射的上行信号是需要周期性发送的上行信号,则延迟到下一周 期相对应的上行子帧再发射所述上行信号;
如果停止发射的上行信号是临时调度的信号,则等待下次调度时再发射所 述上行信号。
7、 一种中继站, 其特征在于, 包括: 正常接收上行信号后,设置所述 MBSFN子帧的 PCFICH的 CFI取值为无效值; 第一发射单元, 用于发射所述 MBSFN子帧。
8、 根据权利要求 7所述的中继站, 其特征在于, 所述设置单元进一步包 括:
用于确定在与所述 MBSFN子帧对应的上行子帧内本中继站能够正常接 收上行信号时, 设置所述 CFI取值为有效值。
9、 一种用户设备, 其特征在于, 包括:
接收单元, 用于接收 MBSFN子帧;
解析单元,用于解析所述 MBSFN子帧的物理控制格式指示信道 PCFICH; 第二发射单元,用于发射上行信号,并在所述解析单元解析到所述 PCFICH 中的控制格式指示 CFI取值为无效值时,在与所述 MBSFN子帧对应的上行子 帧停止发射上行信号。
10、 根据权利要求 9所述的用户设备, 其特征在于, 还包括:
检测单元, 用于检测所述 MBSFN子帧中的分组专用控制信道 PDCCH, 并在所述解析单元解析到所述 PCFICH中 CFI取值为无效值时,停止检测所述 MBSFN子帧中的 PDCCH。
11、 根据权利要求 9或 10所述的用户设备, 其特征在于,
所述第二发射单元,还用于如果停止发射的上行信号是上行重传数据, 则 延迟到同一混合自动重传请求 HARQ过程的下一子帧重新发射所述上行信号; 或,如果停止发射的上行信号是需要周期性发送的上行信号, 则延迟到下一周 期相对应的上行子帧再发射所述上行信号; 或,如果停止发射的上行信号是临 时调度的信号, 则等待下次调度时再发射所述上行信号。
PCT/CN2009/071480 2009-04-27 2009-04-27 中继小区上行信号调度方法、发射方法及设备 WO2010124431A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN200980119205.9A CN102301779B (zh) 2009-04-27 2009-04-27 中继小区上行信号调度方法、发射方法及设备
PCT/CN2009/071480 WO2010124431A1 (zh) 2009-04-27 2009-04-27 中继小区上行信号调度方法、发射方法及设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2009/071480 WO2010124431A1 (zh) 2009-04-27 2009-04-27 中继小区上行信号调度方法、发射方法及设备

Publications (1)

Publication Number Publication Date
WO2010124431A1 true WO2010124431A1 (zh) 2010-11-04

Family

ID=43031652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/071480 WO2010124431A1 (zh) 2009-04-27 2009-04-27 中继小区上行信号调度方法、发射方法及设备

Country Status (2)

Country Link
CN (1) CN102301779B (zh)
WO (1) WO2010124431A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102176692A (zh) * 2011-01-30 2011-09-07 电信科学技术研究院 上行数据传输的处理方法和设备
CN103201972A (zh) * 2010-11-08 2013-07-10 三星电子株式会社 在无线通信系统中接收不同形式子帧的方法和装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015180146A1 (zh) * 2014-05-30 2015-12-03 华为技术有限公司 一种小区噪声估计方法、系统及相关设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008105074A1 (ja) * 2007-02-27 2008-09-04 Panasonic Corporation 無線中継システムおよび中継装置
CN101309523A (zh) * 2008-06-23 2008-11-19 中兴通讯股份有限公司 一种传输物理下行控制信道信号的方法
CN101345984A (zh) * 2007-07-12 2009-01-14 大唐移动通信设备有限公司 一种控制信道传输格式的指示方法及系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7406349B2 (en) * 2004-08-09 2008-07-29 Cardiac Pacemakers, Inc. Dynamic telemetry link selection for an implantable device
CN101184076B (zh) * 2007-12-18 2012-06-06 中兴通讯股份有限公司 一种移动宽带系统中多播单频网子帧结构及其发送方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008105074A1 (ja) * 2007-02-27 2008-09-04 Panasonic Corporation 無線中継システムおよび中継装置
CN101345984A (zh) * 2007-07-12 2009-01-14 大唐移动通信设备有限公司 一种控制信道传输格式的指示方法及系统
CN101309523A (zh) * 2008-06-23 2008-11-19 中兴通讯股份有限公司 一种传输物理下行控制信道信号的方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103201972A (zh) * 2010-11-08 2013-07-10 三星电子株式会社 在无线通信系统中接收不同形式子帧的方法和装置
US9420585B2 (en) 2010-11-08 2016-08-16 Samsung Electronics Co., Ltd. Method and apparatus of receiving different types of subframes in mobile communication system
US9426805B2 (en) 2010-11-08 2016-08-23 Samsung Electronics Co., Ltd. Method and apparatus of receiving different types of subframes in mobile communication system
US9432992B2 (en) 2010-11-08 2016-08-30 Samsung Electronics Co., Ltd. Method and device for receiving a subframe in different forms in a wireless communication system
US9456445B2 (en) 2010-11-08 2016-09-27 Samsung Electronics Co., Ltd. Method and apparatus of receiving different types of subframes in mobile communication system
US9462584B2 (en) 2010-11-08 2016-10-04 Samsung Electronics Co., Ltd. Method and apparatus of receiving different types of subframes in mobile communication system
US9578641B2 (en) 2010-11-08 2017-02-21 Samsung Electronics Co., Ltd. Method and apparatus of receiving different types of subframes in mobile communication system
US9942897B2 (en) 2010-11-08 2018-04-10 Samsung Electronics Co., Ltd. Method and apparatus of receiving different types of subframes in mobile communication system
US10448394B2 (en) 2010-11-08 2019-10-15 Samsung Electronics Co., Ltd. Method and apparatus of receiving different types of subframes in mobile communication system
CN102176692A (zh) * 2011-01-30 2011-09-07 电信科学技术研究院 上行数据传输的处理方法和设备

Also Published As

Publication number Publication date
CN102301779A (zh) 2011-12-28
CN102301779B (zh) 2013-11-06

Similar Documents

Publication Publication Date Title
US20210336728A1 (en) Advanced feedback in sidelink
TWI499328B (zh) 用於支援無線通訊系統中的中繼操作的技術
CN102264039B (zh) 一种实现半持续调度传输的方法及装置
KR102041189B1 (ko) 무선 통신 시스템에서 mbms 서비스를 수신하는 단말이 mbsfn 서브프레임에서 반영구적 스케쥴링 을 처리하는 방법 및 장치
EP2538734B1 (en) Method and device for scheduling multiple sub-frames
US9203564B2 (en) Data transmission via a relay station in a wireless communication system
CN101998263B (zh) 业务承载方法及装置、业务数据的接收方法及接收端
KR20180071260A (ko) 레이턴시 감소를 가진 플렉서블 시간 분할 듀플렉싱 (tdd) 서브프레임 구조
WO2014047927A1 (zh) 控制信息发送方法、接收方法和设备
WO2010124465A1 (zh) 一种上行信号的处理方法、基站和用户终端
WO2011100886A1 (zh) 支持embms业务的方法、mcch修改通知发送方法及装置
WO2013135094A1 (zh) 一种集群业务传输方法及装置
WO2012163170A1 (zh) 一种数据传输的方法及装置
JP6224743B2 (ja) 無線通信システムにおける中継方法およびノード
WO2017036328A1 (zh) 发送、接收低时延业务的配置信息的方法和装置
CN102573096B (zh) 回传链路上的半持续调度方法、接收方法、系统及装置
WO2010124431A1 (zh) 中继小区上行信号调度方法、发射方法及设备
US20100302987A1 (en) Mobile communication system, base station apparatus, user apparatus and method
CN101790193A (zh) 混合自动重传请求的控制方法、系统、发送及接收端设备
WO2011020234A1 (zh) 在无线中继网络中用于控制数据重传的方法及装置
WO2011079718A1 (zh) 基站、中继节点、中继子帧配置信息的通知方法及系统
CN116803155A (zh) 用于管理drx和wus操作以接收mbs服务的方法和系统
WO2010121411A1 (zh) 数据传输方法及装置
WO2012152176A1 (zh) 一种新增回程子帧的配置方法及系统
WO2012019494A1 (zh) 一种时分双工系统的中继链路harq传输方法及装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980119205.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09843843

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09843843

Country of ref document: EP

Kind code of ref document: A1