WO2010124279A1 - Solar powered variable light attenuating devices and arrangements - Google Patents
Solar powered variable light attenuating devices and arrangements Download PDFInfo
- Publication number
- WO2010124279A1 WO2010124279A1 PCT/US2010/032396 US2010032396W WO2010124279A1 WO 2010124279 A1 WO2010124279 A1 WO 2010124279A1 US 2010032396 W US2010032396 W US 2010032396W WO 2010124279 A1 WO2010124279 A1 WO 2010124279A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- liquid crystal
- photovoltaic cell
- voltage
- control circuit
- Prior art date
Links
- 210000004027 cell Anatomy 0.000 claims abstract description 157
- 239000004973 liquid crystal related substance Substances 0.000 claims abstract description 102
- 210000002858 crystal cell Anatomy 0.000 claims abstract description 81
- 230000004044 response Effects 0.000 claims abstract description 23
- 230000008859 change Effects 0.000 claims abstract description 17
- 238000004891 communication Methods 0.000 claims abstract description 13
- 230000005540 biological transmission Effects 0.000 claims description 50
- 239000000758 substrate Substances 0.000 claims description 23
- 230000003287 optical effect Effects 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 7
- 239000004020 conductor Substances 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 94
- 239000000975 dye Substances 0.000 description 54
- 230000005855 radiation Effects 0.000 description 20
- 239000000463 material Substances 0.000 description 18
- 238000010521 absorption reaction Methods 0.000 description 11
- 239000011521 glass Substances 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000002834 transmittance Methods 0.000 description 4
- 238000000576 coating method Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000007935 neutral effect Effects 0.000 description 3
- 239000002356 single layer Substances 0.000 description 3
- 238000001429 visible spectrum Methods 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000004313 glare Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000013021 overheating Methods 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000000862 absorption spectrum Methods 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000004964 aerogel Substances 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000005281 excited state Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000004438 eyesight Effects 0.000 description 1
- 239000005357 flat glass Substances 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 239000006261 foam material Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 230000005283 ground state Effects 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 239000000382 optic material Substances 0.000 description 1
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 1
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000009420 retrofitting Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 210000000352 storage cell Anatomy 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/137—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
- G02F1/13762—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering containing luminescent or electroluminescent additives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/052—Cooling means directly associated or integrated with the PV cell, e.g. integrated Peltier elements for active cooling or heat sinks directly associated with the PV cells
-
- E—FIXED CONSTRUCTIONS
- E06—DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
- E06B—FIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
- E06B9/00—Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
- E06B9/24—Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
-
- E—FIXED CONSTRUCTIONS
- E06—DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
- E06B—FIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
- E06B9/00—Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
- E06B9/24—Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
- E06B9/26—Lamellar or like blinds, e.g. venetian blinds
- E06B9/264—Combinations of lamellar blinds with roller shutters, screen windows, windows, or double panes; Lamellar blinds with special devices
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/13306—Circuit arrangements or driving methods for the control of single liquid crystal cells
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/137—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
- G02F1/13731—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on a field-induced phase transition
- G02F1/13737—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on a field-induced phase transition in liquid crystals doped with a pleochroic dye
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/054—Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
- H01L31/0547—Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/054—Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
- H01L31/055—Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means where light is absorbed and re-emitted at a different wavelength by the optical element directly associated or integrated with the PV cell, e.g. by using luminescent material, fluorescent concentrators or up-conversion arrangements
-
- E—FIXED CONSTRUCTIONS
- E06—DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
- E06B—FIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
- E06B9/00—Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
- E06B9/24—Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
- E06B2009/2464—Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds featuring transparency control by applying voltage, e.g. LCD, electrochromic panels
-
- E—FIXED CONSTRUCTIONS
- E06—DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
- E06B—FIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
- E06B9/00—Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
- E06B9/24—Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
- E06B2009/2476—Solar cells
-
- E—FIXED CONSTRUCTIONS
- E06—DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
- E06B—FIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
- E06B9/00—Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
- E06B9/24—Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
- E06B9/26—Lamellar or like blinds, e.g. venetian blinds
- E06B9/264—Combinations of lamellar blinds with roller shutters, screen windows, windows, or double panes; Lamellar blinds with special devices
- E06B2009/2643—Screens between double windows
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/13306—Circuit arrangements or driving methods for the control of single liquid crystal cells
- G02F1/13324—Circuits comprising solar cells
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/137—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
- G02F1/13706—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering the liquid crystal having positive dielectric anisotropy
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2202/00—Materials and properties
- G02F2202/04—Materials and properties dye
- G02F2202/046—Materials and properties dye fluorescent
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2203/00—Function characteristic
- G02F2203/48—Variable attenuator
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/52—PV systems with concentrators
Definitions
- Windows such as those used in commercial and residential buildings, have long been a source of energy loss and are therefore associated with significantly increased energy costs.
- an estimated 2.7 quadrillion BTU's of energy utilized to heat and cool buildings in the United States in 2006 (out of estimated total of 10 quadrillion BTU's expended) were attributable to windows, an amount roughly equivalent to the nation's entire Strategic Petroleum Reserve.
- Energy inefficiencies associated with windows include heat loss through the window in cold weather, heat gain through the window in hot weather, or both.
- variable light attenuating devices such as windows
- Such technologies can add energy efficiencies by modulating the amount of sunlight transmission to account for heat gain differences between summer and winter seasons.
- variable light attenuating device may be configured to be solar powered, such that use of an external power source may be reduced or eliminated while providing energy efficiency and other benefits associated with automatic and/or selective variable attenuating or tinting of the optical device, either to a transparent (or low haze) condition or to a translucent (or high haze) condition.
- a solar powered variable light attenuating device includes a non-polarizer based variable light attenuating liquid crystal cell, at least one photovoltaic cell in electrical communication with the liquid crystal cell, and a light concentrator having a light absorbing surface and a light emitting surface optically coupled to the photovoltaic cell.
- the light concentrator is configured so that at least a portion of light impinging on its light absorbing surface is concentrated and directed through its light emitting surface to a photon- absorbing portion of the photovoltaic cell to generate a voltage.
- the photovoltaic cell generated voltage is used to change the liquid crystal cell from a de-energized state to an energized state in response to sunlight directed toward the photovoltaic cell.
- a solar powered variable light attenuating device includes an electrically operable light attenuating layer; a light concentrating layer having a light absorbing surface and a light emitting surface; and at least one photovoltaic cell optically coupled to the light emitting surface of the light concentrating layer, such that at least a portion of light impinging on the light absorbing surface of the light concentrating layer is directed through the light emitting surface toward a photon-absorbing (active) portion of the photovoltaic cell.
- the photovoltaic cell When activated, the photovoltaic cell provides an electric potential that powers the electrically operable light attenuating layer to change it from a de-energized high transmission state to an energized low transmission state.
- a solar powered variable light attenuating device includes at least one photovoltaic cell and a film having first and second conducting layers in electrical communication with the photovoltaic cell through drive circuitry, and a first dye disposed in a host solution disposed between the first and second conducting layers.
- the first dye is configured to be disposed in a high light transmitting orientation when the photovoltaic cell is not supplying power to the first and second conductive layers, and is further being configured to be disposed in a low light transmitting orientation when the photovoltaic cell is supplying power to the first and second conductive layers.
- a variable light attenuating device includes first and second conducting layers, a liquid crystal host solution and a guest dye dispersed therethrough to form a guest-host solution disposed between the first and second conducting layers, and a control circuit configured to supply a variable voltage to the conducting layers.
- the dye is configured to be disposed in a high light transmitting transparent (low haze) orientation when the power circuit is not supplying a voltage to the conducting layers and in a low light transmitting transparent (low haze) orientation when the power circuit is supplying a first driving form (e.g., a first voltage) to the first and second conducting layers.
- the dye is further configured to be disposed in a light diffusing translucent (high haze) orientation when the power circuit is supplying a second driving form or voltage to the first and second conducting layers.
- a variable light attenuating device includes first and second conducting layers, a liquid crystal host solution and a guest dye dispersed therethrough to form a guest-host solution disposed between the first and second conducting layers, and a control circuit configured to supply a variable voltage to the conducting layers.
- the dye is configured to be disposed in a low light transmitting transparent (low haze) orientation when the power circuit is not supplying a voltage to the conducting layers and in a high light transmitting transparent (low haze) orientation when the power circuit is supplying a first driving form or voltage to the first and second conducting layers.
- the dye is further configured to be disposed in a light diffusing translucent (high haze) orientation when the power circuit is supplying a second driving form or voltage to the first and second conducting layers.
- a solar powered variable light attenuating device includes an electrically operable light attenuating layer and at least one photovoltaic cell optically coupled to the light attenuating layer, such that at least a first portion of light impinging on an outer surface of the light attenuating layer is directed toward a photon-absorbing portion of the photovoltaic cell inward of the outer surface of the light attenuating layer.
- the photovoltaic cell is in electrical communication with the electrically operable light attenuating layer and is configured to supply power to change the electrically operable light attenuating layer from a de-energized high transmission state to an energized low transmission state.
- the optical device includes a non-polarizer based variable light attenuating liquid crystal cell; at least one photovoltaic cell electrically connected to said liquid crystal cell; and a light concentrator having a light absorbing surface and a light emitting surface optically coupled to the photovoltaic cell.
- the method includes the steps of: directing at least a portion of sunlight impinging on the light absorbing surface of the light concentrator through the light emitting surface to a photon- absorbing portion of the photovoltaic cell to generate a voltage; and using the generated voltage to change the liquid crystal cell from a de-energized high transmission state to an energized low transmission state in response to sunlight directed toward the photovoltaic cell.
- Figure 1 is an elevational, cross-sectional schematic view of an exemplary liquid crystal cell for use in an electro-optic device
- Figure 2 A is a schematic cross-sectional view of an exemplary non-polarizer based liquid crystal device, shown in a de-energized high light transmitting, transparent ("clear") condition;
- Figure 2B is a schematic cross-sectional view of the device of Figure 2 A, shown in an energized low light-transmitting, transparent ("dark") condition;
- Figure 2C is a schematic cross-sectional view of an exemplary non-polarizer based liquid crystal device, shown in an energized light-diffusing translucent condition;
- Figure 3 is a schematic view of an exemplary solar powered variable light attenuating device
- Figure 4 is a table identifying some examples of luminescent dyes for use with a luminescent concentrator
- Figure 5 is a schematic cross-sectional view of an exemplary luminescent concentrator used with one or more photovoltaic cells
- Figure 6 is a schematic view of an exemplary solar powered variable light attenuating device with a light concentrator
- Figure 7A is a schematic view of another exemplary solar powered variable light attenuating device with a light concentrator
- Figure 7B is a schematic view of an exemplary solar powered variable light attenuating device without a light concentrator
- Figure 8 A is a schematic view of an exemplary single layer light concentrating solar powered variable light attenuating device
- Figure 8B is an elevational, cross-sectional schematic view of an exemplary liquid crystal cell for use in an electro-optic device
- Figure 9 is a schematic cross-sectional view of an exemplary light concentrator coupled to a photovoltaic cell
- Figure 10 is a schematic block diagram of an exemplary solar powered variable light attenuating system
- Figure 1 IA is a schematic view of a window with a solar powered variable light attenuating tinting arrangement, shown in a low lighting condition;
- Figure 1 IB is a schematic view of the window of Figure 1 IA, shown in an intense lighting condition
- Figures 12A and 12B are schematic perspective views of an exemplary solar powered variable light attenuating arrangement
- Figure 13A is a schematic cross-sectional view of a solar powered variable light attenuating device assembled to an outer surface of a window;
- Figure 13B is a schematic cross-sectional view of a solar powered variable light attenuating device assembled to an inner surface of a window;
- Figure 13C is a schematic cross-sectional view of a solar powered variable light attenuating device assembled to an outer surface of an inner pane of a double pane window;
- Figure 13D is a schematic cross-sectional view of a solar powered variable light attenuating device assembled to an inner surface of an outer pane of a double pane window;
- Figure 14 is a schematic cross-sectional view of a solar powered variable light attenuating device kit for assembly with a window.
- the present application contemplates devices, methods and arrangements for efficiently controlling an amount of light transmission (or light absorption/reflection) by an optical device (e.g., a window, visor, or other such light transmitting component), for example, to provide a desired amount of illumination or to permit or reduce solar heating (e.g., in a building).
- an optical device e.g., a window, visor, or other such light transmitting component
- a solar powered variable light attenuating device includes a non- polarizer based variable light attenuating liquid crystal cell and at least one photovoltaic (solar) cell in electrical communication with the liquid crystal cell through a control circuit.
- a photovoltaic cell When light impinges on the photovoltaic cell, it generates a potential to drive the liquid crystal cell to change from a de-energized state to an energized state.
- the device can provide rapid response time upon energization and de-energization, ranging for example from less than 1 second to less than 100 milliseconds.
- the device also includes a light-concentrating layer optically coupled to the photovoltaic cell, such that a portion of light impinging on the light absorbing surface of the light concentrator is concentrated and directed toward a light emitting surface of the light concentrator towards a photon( light)-absorbing (active) portion of the photovoltaic cell to generate the potential required to drive the liquid crystal cell.
- a light-concentrating layer optically coupled to the photovoltaic cell, such that a portion of light impinging on the light absorbing surface of the light concentrator is concentrated and directed toward a light emitting surface of the light concentrator towards a photon( light)-absorbing (active) portion of the photovoltaic cell to generate the potential required to drive the liquid crystal cell.
- the devices described herein may include a control circuit that can be configured to serve various functions.
- One function is to convert the photovoltaic generated direct current (DC) to an alternating current (AC) for operating the liquid crystal cell.
- It can optionally include a battery-type storage unit to store the energy generated by the photovoltaic cell for later use, either to power the liquid crystal cell or some other device.
- the control circuit can also include an external power supply if necessary, e.g. when the power supplied by the photovoltaic cell is not sufficient.
- the control circuit may be configured to automatically control the transmittance of light through the liquid crystal cell in response to the voltage or current generated by the photovoltaic cell, which itself is a function of the amount of outside light detected by the photovoltaic cell.
- control circuit may include a user interface to give the user complete or partial control over the amount of light transmittance (e.g. tinting) of the light attenuating layer, or to provide a combination of the above-described automatic and user control configurations.
- the control circuit can be configured to control the response of the liquid crystal cell to changes in the output of the photovoltaic cell, and/or to set the threshold level for the energized and/or de-energized states of the liquid crystal cell, either automatically or as set by an end user.
- the control circuit may include various other components such as a voltage boost circuitry (e.g., a voltage doubler), and a sensor for the ambient light inside a building (for example so that the device does not darken beyond a certain point no matter how bright the sunlight is outside, or to provide other similar adjustments depending on the amount of inside light).
- a voltage boost circuitry e.g., a voltage doubler
- a sensor for the ambient light inside a building for example so that the device does not darken beyond a certain point no matter how bright the sunlight is outside, or to provide other similar adjustments depending on the amount of inside light.
- the photovoltaic cells may be utilized to fully power a variable light attenuating device, such that no additional external power (e.g. from an electrical power grid) is needed to operate the device.
- the crystal cell of such devices are clear in a de- energized state and tinted or darkened in an energized state, thereby allowing the use of photovoltaic cells to automatically darken the device in response to greater intensity of sunlight (e.g., to minimize glare or reduce solar overheating) and providing a "fail to clear" condition (e.g., in the absence of sufficient solar power). Because of these advantages, the exemplary dichroic guest-host variable light attenuating liquid crystal cell is capable of providing effective electronically controllable variable transmittance without requiring any external power supply.
- the devices described herein may also be used for energy efficiency gains (e.g., reducing transmission of solar radiation into a building during warmer weather, and increasing transmission of solar radiation in colder weather) while avoiding increased energy costs associated with operating the device.
- energy efficiency gains e.g., reducing transmission of solar radiation into a building during warmer weather, and increasing transmission of solar radiation in colder weather
- Such a device may contribute toward a "Zero-Energy Building" design, in which all energy utilized within the building originates from, or is supplanted by, the generation of renewable energy at the building site.
- the inventive features described herein may also be utilized for generating and storing electrical energy in solar cells for other electrical applications, including, for example, storing energy for conversion to light or thermal energy, or for powering other electronic devices.
- the variable light attenuating liquid crystal cell may include mixtures configured to have varying degrees of transmission.
- the difference between the energized and de-energized state is referred to as transmission adjustment (or "transmission swing").
- transmission swing or “transmission swing”
- the mixture has a transmission swing of 85-5%, or any number therebetween, e.g., 75% - 10%, 70%-30%, 60- 15%, etc., or some other suitable transmission swing.
- the transmission can vary between a clear transparent state (high light transmission of e.g., 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50% or any number in between) and a darkened or tinted state (low light transmission of e.g., 5%, 10%, 15%, 20%, 25%, 30%, 35%, or 40% or any number in between) with minimal energy usage.
- the dichroic dyes may be selected to provide a level of transmission that is proportional to the voltage supplied to the conducting layers, such that a greater intensity of light producing a higher voltage will result in a lower light transmission level.
- the dichroic dyes may be selected to provide any desired color, including, for example, neutral, brown, blue and gold, or a combination of such colors to provide any desired hue.
- the liquid crystal host may be selected to provide large dielectric anisotropy (positive or negative), birefringence tuning, wide operating temperatures, compatibility with various additives, and stability to product specification. Examples of liquid crystal material classes for use in a dichroic guest-host variable light attenuating liquid crystal cell include the MLC- 6609 and ZLI-4788 liquid crystal materials from Merck.
- a film including the dichroic guest-host material liquid crystal cell technology for use with a window or other light transmitting device.
- a web-based roll-to-roll system may be utilized to apply and cure (as necessary) each layer or coating, to produce a laminated or plastic film to be applied to the window or other device.
- variable light- attenuating liquid crystal cell 50 comprises spaced apart, opposed transparent substrates 5OA and 50B, wherein each substrate provides corresponding transparent conducting layers 52A and 52B, which are typically formed from indium tin oxide, conductive polymer or other appropriate conductive material. Conducting layers allow for application of a voltage across a gap between the substrates.
- the substrates may be, for example, flat, curved, or doubly curved, for use with various shapes of light transmitting components.
- the material used for the substrates may be glass, or a flexible or rigid plastic material.
- an alignment layer 54 may be disposed on each conducting layer or just one of the conducting layers.
- the alignment layers can align the liquid crystal molecules adjacent to the alignment layers, wherein the molecules are part of the liquid crystal material received between the substrates.
- a gap is typically provided between the substrates and may be maintained by spacers (not shown), as is commonly known in the art. Accordingly, the opposed substrates 5OA, 5OB form a gap 56 which receives a mixture of a liquid crystal or other electro-optic material (such as an electro-chromic material) and dichroic dyes 58.
- An edge seal 60 may be provided around or about the outer periphery of the liquid crystal cell 50 so as to retain the liquid crystal-dye mixture material between the substrates.
- one or both substrates comprise glass or plastic (e.g. polycarbonate, PET, TAC, or other optical grade polymer material).
- a sufficiently rigid carrier 64 may be secured or positioned adjacent one or both substrates 50A, 50B.
- the rigid carrier 64 is provided in polycarbonate or some other optical material for example between 1 and 7 mm in thickness.
- Each conducting layer 52 is connected to a control circuit 59, which typically includes a drive circuit, a power source and an activator.
- the control circuit applies a voltage and/or voltage waveform in an appropriate manner to change the orientation of the liquid crystal material.
- various optical properties e.g., absorption, no absorption, high transmission, low transmission, light-scattering (translucent) and states in between, may be obtained.
- FIGS 2A and 2B One such example is schematically illustrated in Figures 2A and 2B, in which the dichroic dyes 75 and the liquid crystal host material 76 are substantially perpendicular with the substrates 77 in the de-energized condition (Figure 2A), resulting in maximum light transmission, and substantially parallel with the substrates 77 in the fully energized condition (Figure 2B), resulting in minimal light transmission.
- Figure 2C the dichroic dyes 75 are arranged randomly when in the energized condition, resulting in scattering of light or a translucent state with higher haze.
- the device can be configured by appropriate choice of alignment layer and liquid crystal dielectric anisotropy so that Figure 2B represents the de-energized state while Figure 2A demonstrates the energized state.
- the different states of the optical element may be referred to as a "clear” state, where it allows the maximum amount of light through, or a “dark” state, where it allows the minimal amount of light through, or in any state between the fully clear or fully dark states.
- the absorption can be broad-band (i.e. absorbing across the entire visible spectrum) or across a selected band or region of the visible light spectrum. Additionally or alternatively, the optical element may provide protection against UV light.
- a guest-host solution may be configured to provide a translucent state (e.g., "frosted” or "privacy glass") in addition to the above described range of transparent states, or instead of the dark state, in response to a separate electrical signal supplied to the conductive layers 77, for example, by supplying a different electrical driving scheme to the conducting layers which causes a droplet-sized orientation of the dyes 75 and liquid crystal host material 76.
- a control circuit may be configured to supply this different electrical charge (e.g. a second voltage) either automatically or through user manipulation of the control circuit, thereby allowing the user to selectively change the light attenuating device to the translucent state.
- variable light-attenuating liquid crystal cell used in the optical element is configured so that it reverts to the clear state when there is no voltage applied across the liquid crystals, thus preventing the cell from failing in a tinted or darkened (low transmission) condition.
- Another noteworthy feature of the variable light-attenuating liquid crystal cell is that the cell does not utilize polarizers, which reduce light transmission of the device in a clear state.
- dichroic guest-host variable light-attenuating liquid crystal cells examples include but are described in greater detail in U.S. Patent Nos. 6,239,778, 6,690,495, and 7,102,602, and in co-pending U.S. Application Pub. No. 2008/0013000, the entire disclosures of which are incorporated herein by reference. Additionally, many different types of dichroic dyes may be utilized in the dichroic guest-host variable light-attenuating liquid crystal cells described herein and in the above incorporated references.
- FIG. 3 schematically illustrates a solar powered variable light attenuating device 80.
- the device 80 includes an electrically operable variable light attenuating layer 82 in electrical communication with one or more photovoltaic cells 84 through a control circuit 86.
- the photovoltaic cells 84 may be positioned such that the light or photon-absorbing portions 85 of the photovoltaic cells 84 face outward (i.e., facing the sunlight).
- the photovoltaic cells 84 may be provided on, over, adjacent to, or remote from (but still electrically connected with) the variable light attenuating layer 82 and the control circuit 86.
- the intensity of light L impinging on the photovoltaic cells 84 is generally consistent with the intensity of light S impinging on the light attenuating layer 82.
- a greater voltage may be supplied by the photovoltaic cells 84 to the light attenuating layer 82, to energize the light attenuating layer to a low transmission or darkened state.
- low (or no) voltage is supplied by the photovoltaic cells 84 to the light attenuating layer 82, resulting in a clear (de-energized) or nearly clear (minimally energized) state.
- a solar powered variable light attenuating system may utilize photovoltaic cells configured to collect concentrated solar radiation indirectly, for example, to maximize the collection of solar radiation for conversion to an electrical charge while reducing the light absorbing portion areas of the photovoltaic cells (and the vacuum coating of these surfaces), thereby reducing manufacturing and maintenance costs for the system.
- the solar cells may, for example, be shielded from view or may cover a reduced external surface area of an object or structure utilizing the solar cells, for improved aesthetics or minimized risk of damage to the solar cells, hi one embodiment, a light concentrator may be utilized to concentrate and/or redirect sunlight to a photovoltaic cell having a photon- absorbing portion that does not directly face the sunlight, hi one exemplary embodiment, a window or a window attachment may include a light concentrating layer having one or more reflectors (e.g., a light pipe) positioned to direct at least a portion of the impinging sunlight toward one or more photovoltaic cells disposed on or adjacent to the window or window attachment.
- a light concentrator may be utilized to concentrate and/or redirect sunlight to a photovoltaic cell having a photon- absorbing portion that does not directly face the sunlight
- a window or a window attachment may include a light concentrating layer having one or more reflectors (e.g., a light pipe) positioned to direct at least a
- a light concentrating layer or light concentrator of an optical device may include a luminescent solar concentrator that converts incident sunlight to luminescent radiation at wavelengths that are more compatible with, or more efficiently absorbed by, photovoltaic cells.
- concentrating or “concentrator,” it is meant that a wavelength or wavelengths of light impinging on an area are reflected, re-emitted, or otherwise redirected to a relatively smaller area. This may allow for use of smaller photovoltaic cells, which may provide cost savings, and permit less obtrusive use of the photovoltaic cells (e.g., placement of the photovoltaic cells along the edge of the window or window attachment).
- a light transmitting layer includes luminescent dyes selected to absorb primarily blue - ultraviolet light (wavelength of less than 500 nrn) or high energy photons and emit primarily red - infrared light (wavelength greater than 600 nm) or low energy photons for more efficient collection by the photovoltaic cells.
- luminescent dyes selected to absorb primarily blue - ultraviolet light (wavelength of less than 500 nrn) or high energy photons and emit primarily red - infrared light (wavelength greater than 600 nm) or low energy photons for more efficient collection by the photovoltaic cells.
- some light in the red region may also be directed to the photovoltaic cells to give the window a desirable blue tint.
- the luminescent dyes may be configured to be oriented such that a substantial portion of the emitted luminescent light is directed (or "waveguided") laterally outward toward an edge of the light transmitting layer for collection by the photovoltaic cells. Suitable luminescent dyes are known in the art and can be used in the light concentrator layer. Some examples of luminescent dyes are identified in Figure 4. Examples of light concentrators are described in US Pat Application 12/353,459 to Mapel et al., (Publication Number: 2009/0235974).
- Figure 5 schematically illustrates a luminescent concentrator 150 for absorbing sunlight through a light absorbing surface and emitting and directing luminescent light L through a light emitting surface and toward one or more photovoltaic cells 154 optically coupled to one or more edges 151 of the concentrator 150.
- the light emitting surface is substantially perpendicular to the light absorbing surface, hi other embodiments, the light emitting surface may be disposed at different angle with respect to the light absorbing surface, including, for example, a coplanar relationship.
- the exemplary luminescent concentrator includes photoconverting materials, such as luminescent dyes 155 (e.g., phosphorescent or fluorescent dyes), oriented to both absorb solar radiation that passes through its light absorbing surface 156 and emit luminescent light toward its light emitting surface 158 and the photovoltaic cells 154.
- the luminescent dyes 155 may be selected to include an absorption spectrum primarily in the blue and red region of the spectrum where the human eye is photopically less sensitive to provide a neutral tint to the window (or other light transmitting device).
- the luminescent dye may be selected to primarily absorb ultraviolet light, and a small portion of the visible spectrum (e.g., up to about 10%) and emit a red/infrared light, thereby matching a peak efficiency of the solar cells used for power conversion, for more efficient collection by the solar cells, hi the alternative, some light in the red region may also be directed to the photovoltaic cells to give the window a desirable blue tint (e.g., light having a wavelength of > 580 is absorbed).
- the luminescent dye may also be selected for stability, such that it can last several years without degrading or affecting performance.
- Perylene dyes which are known for their UV stability, with certain classes of which being warranted to last for ten years by their manufacturer, BASF.
- the arrangement may utilize dye-sensitized photovoltaic cells for more efficient conversion of the luminescent radiation.
- the luminescent dyes may be distributed in any suitable carrier (e.g., solvents and polymers) to position the dyes for absorbing solar radiation and emitting converted luminescent light.
- a liquid crystalline film may be used as a carrier to orient the absorption and emission dipoles of the luminescent dyes for maximum efficiency.
- the liquid crystal may include low molecular weight materials in a conventional cell configuration.
- a polymeric liquid crystal cell may provide waveguiding for the emitted light. In some embodiments, as shown in Fig.
- a solar powered variable light attenuating device 160 is provided with a film, panel, or other such arrangement 165 having a light attenuating layer 164 optically coupled with a light concentrating layer 162, such that at least a portion of the light impinging on the light concentrating layer 162 also impinges on the light attenuating layer 164.
- the layers 162, 164 may, but need not, be stacked or positioned adjacent to each other, or may be separated by a gap or by a transparent intermediary component.
- the light concentrating layer 162 is positioned outward of the light attenuating layer 164, such that one or more photovoltaic cells 163 optically coupled with the light concentrating layer 162 collect a portion of light that does not pass through the light attenuating layer 164. This may provide for collection of a greater amount of solar energy by the photovoltaic cells, as the amount of solar radiation (including solar radiation converted to luminescent light by luminescent dyes) collected by the photovoltaic cells 163 is not diminished by the light attenuating layer 164.
- a user interface e.g., a display and selectors
- a variable light attenuating device 170 may include a light concentrating layer 172 and photovoltaic cells 173 positioned inward of a light attenuating layer 174, such that any light collected by the photovoltaic cells 173 first passes through the light attenuating layer 174.
- This arrangement may provide for an "equilibrium state" of attenuation that automatically maintains a fixed transmission (i.e., is self-regulating).
- the solar radiation passing through the light attenuating layer 174 to the photovoltaic cells 173 (via the light concentrating layer 172) increases, and the photovoltaic cells 173 may be configured to automatically deliver a voltage to the light attenuating layer 174 to darken the tint (i.e., reduce the transmission of light).
- the photovoltaic cells 173 may be configured to automatically deliver a voltage to the light attenuating layer 174 to darken the tint (i.e., reduce the transmission of light).
- the photovoltaic cells 173 may be configured to automatically deliver a voltage to the light attenuating layer 174 to darken the tint (i.e., reduce the transmission of light).
- the photovoltaic cells 173 may be configured to automatically deliver a voltage to the light attenuating layer 174 to darken the tint (i.e., reduce the transmission of light).
- the photovoltaic cells 173 may be configured to automatically deliver a voltage to the light attenuating layer 174 to darken the tint (i.
- the light attenuating layer 174 will reach an equilibrium state at which a desired level of tinting is maintained with minimal fluctuations, and an excessive supply of voltage from the photovoltaic cells to the light attenuating layer is avoided.
- the device 170 may include a light concentrating layer 172 for directing concentrated light to the photovoltaic cells 173, in another embodiment, as shown in Figure 7B, a variable light attenuating device 170a may be provided without a light concentrator, with the photovoltaic cell 173a being positioned inward of the light attenuating layer 174a for direct collection of solar radiation S.
- a solar powered variable light attenuating device 180 may include at least one liquid crystal cell 185 having a host solution 181 with a first set of dyes 182 (e.g., luminescent dyes) for converting and/or directing sunlight for absorption by a photovoltaic cell 183, and a second set of dyes 184 (e.g., dichroic dyes) for varying the tint of the device 180 in response to a voltage supplied to first and second conducting layers 186.
- the luminescent dyes 182 may, but need not necessarily, be configured to change orientation in response to a voltage supplied to the conducting layers 186 separated by the host solution 181.
- the first set of dyes 284 are used for converting and/or directing sunlight for absorption by a photovoltaic cell 288.
- the second set of dyes 287 in the host solution can be configured to change orientation in response to a voltage supplied to the conducting layers 285.
- Luminescent dyes provided with a light concentrator may be oriented to optimize both absorption of sunlight and emission of luminescent light toward the photovoltaic cells. This may be done, for example, by dispersing the dye in a liquid crystal film or cell. As shown in Figure 5, at least some of the luminescent dyes may be oriented at an angle a with respect to the surface of the light transmitting layer (for example, 45°) such that a substantial portion of the emitted luminescent light L is directed (or "waveguided") laterally outward toward the photovoltaic cell(s) 154.
- an orientation of the dyes 155 that is more conducive to emission of luminescent light toward the photovoltaic cells 154 may be less conducive to absorption of incident sunlight S by the dyes 155.
- an orientation of the dyes 155 that maybe conducive to absorption of sunlight S by the dyes 155 i.e., approaching perpendicular with respect the photovoltaic cells 154, or with angle a approaching 0°
- the luminescent dyes may be provided in a liquid crystal cell configured to provide a low orientational director for a ground state absorption dipole moment, and a high level of orientational director for its excited state emission dipole moment. To that end, a luminescent dye exhibiting such an asymmetry in the order parameter between the absorption and emission moments may be selected.
- the indirect, concentrated collection of light by the photovoltaic cells allows for solar powered variable light attenuating systems in which photon-absorbing portions of the photovoltaic cells face in directions other than outward toward the sunlight (or other light source).
- concentrated solar radiation including converted luminescent light from luminescent dyes 155) may be reflected or "waveguided" toward one or more edges of the device for collection by one or more photovoltaic cells having light absorbing portions that face the edges of the device.
- concentrated solar radiation S may be reflected back outward by a reflector 197 (e.g., an internally reflective surface of a light pipe) toward an outer surface 198 of the light concentrator 192, such that the photovoltaic cells 193 may be positioned with the light absorbing portions 199 facing the outer surface 198 of the light concentrator 192.
- a reflector 197 e.g., an internally reflective surface of a light pipe
- This may allow the photovoltaic cell 193 to be externally covered or shielded, for example, by a window frame or external wall covering, to improve the aesthetic appearance of the arrangement (e.g., for use with a building window).
- FIG. 10 illustrates a schematic block diagram of an exemplary solar powered variable light attenuating system 100 including an optical redirecting and/or concentrating portion
- system 100 may further include a user interface 106 in electrical communication with the controller 104 for selective adjustment of the variable light attenuating liquid crystal cell 103, for example, to override the automatic tinting in response to an electrical charge supplied by the photovoltaic cells 102.
- the system 100 may be configured to be attached to, or to include, a light transmitting component 107, such as, for example, a window glass, lens, or visor.
- an exemplary solar powered light attenuating device 110 includes at least two films 120, 130 or other such layers: a light concentrating outer film 120 ("outer" in the sense that sunlight passes through film 120 before passing through film 130), and an inner film 130 including a variable light attenuating liquid crystal cell inward of an inner surface of the outer film 120.
- the device further includes one or more photovoltaic cells 140 laterally outward of the outer film 120 and in electrical communication with the liquid crystal cell 130 (for example, using wiring, traces, leads, or other such control circuitry 144).
- the exemplary outer film 120 allows a greater transmission of sunlight S to the liquid crystal cell 30, which in turn permits a greater transmission of sunlight through the de- energized (or minimally energized), and therefore clear or minimally tinted, liquid crystal cell 130.
- the outer film 120 redirects a portion of the solar radiation toward the photovoltaic cell(s) 140 (e.g., through luminescent converters and/or through reflective portions, as shown in Figures 5 and 9).
- the photovoltaic cell(s) 140 harvest or collect solar radiation to generate an electrical charge.
- At least a portion of the electrical charge is transmitted (directly or indirectly) to the variable light attenuating liquid crystal cell 130 to energize and darken the liquid crystal cell and reduce light transmission through the window.
- the darkened liquid crystal cell 130 may reduce the transmission of sunlight through the panel.
- FIGS 12A and 12B illustrate a schematic example of a solar powered light attenuating device 200 including an outer light concentrating or light piping panel or film 220, a variable light attenuating liquid crystal cell 230, a series of solar cells 240 optically coupled to the edge of the light concentrating layer 220, and a control circuit 250 electrically connecting the solar cells 240 to the liquid crystal layer 230. While the control circuit 250 may be positioned in any suitable location on or near the window arrangement 200, in the illustrated example, the control circuit 250 is secured to adjacent edges of the light piping layer 220 and the liquid crystal cell 230.
- the control circuit 250 may convert direct current (DC) supplied by the photovoltaic cells 240 to an alternating current (AC) signal (for example, to avoid charge migration) to be supplied to the liquid crystal cell 230 .
- the control circuit 250 may include a low frequency square wave generator, which may operate with as few as three surface mount low profile components, such as an astable multivibrator with a resistor and a capacitor for frequency settings.
- a user operable controller (not shown) may be electrically connected to the control circuit 250 for selective control of the liquid crystal cell 230, for example, to override an automatic tinting (or un-tinting) of the liquid crystal cell.
- VMJ vertical multi-junction
- Additional exemplary solar cell technologies known in the art may also be utilized.
- a solar powered variable light attenuating device may be built into a window, for example, by securing (e.g., by lamination) the device 300a to an outer surface of a window 301a (see Figure 13A), or by securing the device 300b to an inner surface of a window 301b (see Figure 13B), or by securing the device 300c, 300d between panes 308c-d, 309c-d of a double paned window 301c, 301d (see Figures 13C and 13D).
- the device 300a-d may be configured to have a light concentrator positioned outward of a variable light attenuator (e.g., for increased solar power collection by a photovoltaic cell), as shown in Figures 6, 1 IA, 1 IB, and 12 and described above.
- the device 300a-d may be configured to have a light attenuator positioned outward of a light concentrator and solar cell, as shown in Figure 7A, or outward of a solar cell only, as shown in Figure 7B (e.g., for self modulation of the light attenuator and reduced voltage generation).
- a panel or kit 340 may include an outer flange 341 at least partially surrounding a light concentrating film 342 and a variable light attenuating liquid crystal cell 344, with the flange 341 being configured to be fastened (directly or indirectly) to a window 350 or to a window frame, for example, by an adhesive or mechanical fasteners.
- the outer flange may provide additional thickness for supporting associated electronics, such as the photovoltaic cells 343 and/or control circuit 345.
- the flange may be provided in any suitable material, including, for example, an elastomer or foam material.
- the kit may be provided with the light attenuating liquid crystal cell positioned outward of the light concentrating film (as shown in Figure 3), without a light concentrating film (as shown in Figures 3 and 7B), or with a single layer or cell performing both light concentrating and light attenuating functions (as shown in Figure 8).
- optical elements may be assembled with light transmitting portions of a variety of devices and structures using one or more of the inventive features described in the present application.
- inventive features may be used with windows and sunroofs in vehicles or airplanes, as well as with devices such as protective or vision enhancing goggles or glasses or other protective eye shielding devices, such as helmet visors.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Structural Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Optics & Photonics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Civil Engineering (AREA)
- Architecture (AREA)
- Mathematical Physics (AREA)
- Liquid Crystal (AREA)
Abstract
Description
Claims
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA2759857A CA2759857C (en) | 2009-04-24 | 2010-04-26 | Solar powered variable light attenuating devices and arrangements |
CN201080023882.3A CN102449773B (en) | 2009-04-24 | 2010-04-26 | Solar powered variable light attenuating devices and arrangements |
AU2010238629A AU2010238629C1 (en) | 2009-04-24 | 2010-04-26 | Solar powered variable light attenuating devices and arrangements |
US13/265,948 US9130097B2 (en) | 2009-04-24 | 2010-04-26 | Solar powered variable light attenuating devices and arrangements |
EP10767883.1A EP2430662A4 (en) | 2009-04-24 | 2010-04-26 | Solar powered variable light attenuating devices and arrangements |
US14/804,409 US10310349B2 (en) | 2009-04-24 | 2015-07-21 | Variable light attenuating devices and arrangements |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17245509P | 2009-04-24 | 2009-04-24 | |
US61/172,455 | 2009-04-24 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/265,948 A-371-Of-International US9130097B2 (en) | 2009-04-24 | 2010-04-26 | Solar powered variable light attenuating devices and arrangements |
US14/804,409 Continuation-In-Part US10310349B2 (en) | 2009-04-24 | 2015-07-21 | Variable light attenuating devices and arrangements |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010124279A1 true WO2010124279A1 (en) | 2010-10-28 |
Family
ID=43011510
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2010/032396 WO2010124279A1 (en) | 2009-04-24 | 2010-04-26 | Solar powered variable light attenuating devices and arrangements |
Country Status (7)
Country | Link |
---|---|
US (2) | US9130097B2 (en) |
EP (1) | EP2430662A4 (en) |
KR (1) | KR101542484B1 (en) |
CN (1) | CN102449773B (en) |
AU (1) | AU2010238629C1 (en) |
CA (1) | CA2759857C (en) |
WO (1) | WO2010124279A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013003894A1 (en) | 2011-07-01 | 2013-01-10 | Tropiglas Technologies Ltd | A spectrally selective panel |
WO2013082380A1 (en) * | 2011-11-30 | 2013-06-06 | Alphamicron Incorporated | Adaptive liquid crystal structural interface |
JP2016528866A (en) * | 2013-08-19 | 2016-09-15 | トロピグラス テクノロジーズ リミテッド | Electric energy generator |
FR3050838A1 (en) * | 2016-04-29 | 2017-11-03 | Saint Gobain | DOOR OR WINDOW PANEL HAVING VARIABLE LIGHT BROADCAST GLAZING. |
WO2018189394A1 (en) * | 2017-04-13 | 2018-10-18 | Technische Universität Braunschweig | Device for guiding light and production method |
WO2021249803A3 (en) * | 2020-06-10 | 2022-02-10 | Audi Ag | Arrangement for converting light into electrical energy |
Families Citing this family (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BRPI0609816A2 (en) | 2005-03-16 | 2010-04-27 | Hunter Douglas | single rail panel stacking cover for an opening in an architecture |
KR101785901B1 (en) | 2008-11-18 | 2017-11-15 | 헌터더글라스인코포레이티드 | Slatted roller blind |
WO2010078473A2 (en) * | 2009-01-05 | 2010-07-08 | Gustafson Vincent K | Solar energy utilization systems and methods |
CA2658193A1 (en) | 2009-03-12 | 2010-09-12 | Morgan Solar Inc. | Stimulated emission luminescent light-guide solar concentrators |
EP2440967B1 (en) | 2009-06-11 | 2018-03-21 | Switch Materials, Inc. | Variable transmittance optical filter and uses thereof |
KR102060266B1 (en) | 2010-04-16 | 2020-02-11 | 헌터더글라스인코포레이티드 | A process and system for manufacturing a roller blind |
CA3037540C (en) * | 2010-06-08 | 2021-04-06 | Hunter Douglas Inc. | A unitary assembly for an architectural fenestration, providing dynamic solar heat gain control |
CN103534431B (en) | 2011-04-15 | 2016-09-14 | 亨特道格拉斯公司 | Architectural opening covering including thermoforming lath blade |
US9263605B1 (en) | 2011-04-20 | 2016-02-16 | Morgan Solar Inc. | Pulsed stimulated emission luminescent photovoltaic solar concentrator |
CN103683352B (en) * | 2012-09-17 | 2016-01-06 | 华北电力大学 | Aircraft shadow shield photovoltaic system design method |
WO2014078380A1 (en) * | 2012-11-13 | 2014-05-22 | Alphamicron Incorporated | Attachable optical element arrangements and methods |
US9116370B2 (en) * | 2013-02-12 | 2015-08-25 | Alphamicron Incorporated | Liquid crystal light variable device |
CN105103046A (en) | 2013-03-05 | 2015-11-25 | 默克专利股份有限公司 | Device for regulating the passage of optical energy |
WO2015055274A1 (en) | 2013-10-17 | 2015-04-23 | Merck Patent Gmbh | Device for regulating entry of light |
CA2927939A1 (en) * | 2013-12-23 | 2015-07-02 | Novartis Ag | Power source for an accommodating intraocular lens |
CN106030387B (en) * | 2014-02-06 | 2021-09-14 | 默克专利股份有限公司 | Device for regulating light transmission |
KR101864927B1 (en) | 2015-03-31 | 2018-07-04 | 주식회사 엘지화학 | Liquid crystal device |
US9978011B2 (en) * | 2016-03-07 | 2018-05-22 | Astronics Advanced Electronic Systems Corp. | Network system for autonomous data collection |
CA2956655A1 (en) | 2016-06-30 | 2017-12-30 | Hunter Douglas Inc. | Architectural covering and method of manufacturing |
DE102016118416A1 (en) | 2016-09-29 | 2018-03-29 | Thomas Emde | display |
US10423044B2 (en) * | 2017-02-10 | 2019-09-24 | Gentex Corporation | Transparent photovoltaic coating for an electro-chromic device |
JP6807553B2 (en) * | 2017-02-22 | 2021-01-06 | パナソニックIpマネジメント株式会社 | Optical device |
KR102510433B1 (en) * | 2017-03-10 | 2023-03-16 | 다이니폰 인사츠 가부시키가이샤 | Dimming film and dimming system, dimming member |
US11099435B2 (en) * | 2017-10-31 | 2021-08-24 | Lg Chem, Ltd. | Transmittance-variable device |
DE112019000373B4 (en) | 2018-01-10 | 2024-02-15 | Alphamicron Incorporated | Switchable one-way mirror device, method for operating the one-way mirror device and window with the one-way mirror device |
US11287162B2 (en) * | 2018-01-25 | 2022-03-29 | GlowShop, LLC | Solar power system using luminescent paint |
NL2022806B1 (en) * | 2019-03-25 | 2020-10-02 | Univ Eindhoven Tech | A luminescent optical device and a film for use with such a luminescent optical device. |
CN110190807A (en) * | 2019-06-24 | 2019-08-30 | 北京大学深圳研究生院 | A kind of optically focused light splitting photovoltaic system |
JP7468142B2 (en) * | 2020-05-22 | 2024-04-16 | 大日本印刷株式会社 | Light control device |
CN114063285A (en) * | 2020-08-03 | 2022-02-18 | 江苏利君智能科技有限责任公司 | Pixel-based curved surface near-to-eye display method, display and display system |
DE112021003590T5 (en) | 2020-08-31 | 2023-04-20 | Alphamicron Inc. | GRADUATED ELECTRO-OPTICAL DEVICE AND METHOD |
EP4297968A1 (en) * | 2021-04-08 | 2024-01-03 | Apple Inc. | Windows with selective area adjustable haze |
US20220415221A1 (en) * | 2021-06-29 | 2022-12-29 | Christin Paige MINNOTTE | Light sensitive display system |
WO2023116202A1 (en) * | 2021-12-24 | 2023-06-29 | 嘉兴驭光光电科技有限公司 | Near-eye display apparatus, and contrast adjustment method for near-eye display apparatus |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6493128B1 (en) * | 1996-08-20 | 2002-12-10 | Donnelly Corporation | Chromogenic window assembly construction and other chromogenic devices |
US20050007506A1 (en) * | 1997-02-26 | 2005-01-13 | Faris Sadeg M. | Electro-optical glazing structures having reflection and transparent modes of operation |
US20070146910A1 (en) | 2005-12-22 | 2007-06-28 | Solbeam, Inc. | Light steering assemblies |
US20070151600A1 (en) * | 2006-01-04 | 2007-07-05 | Kent State University | Nanoscale discotic liquid crystalline porphyrins |
WO2008075286A2 (en) * | 2006-12-18 | 2008-06-26 | Universidade Do Porto | Smart device for absorbing solar energy and controling sunlight admission |
WO2008155767A2 (en) | 2007-06-20 | 2008-12-24 | T C View Ltd | Methods systems and devices for utilizing directions of light rays |
WO2009141295A1 (en) | 2008-05-21 | 2009-11-26 | Technische Universiteit Eindhoven | Optical device with anisotropic luminescent material |
Family Cites Families (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5942287B2 (en) * | 1972-12-19 | 1984-10-13 | 松下電器産業株式会社 | Hue modulation display device |
US4795248A (en) | 1984-08-31 | 1989-01-03 | Olympus Optical Company Ltd. | Liquid crystal eyeglass |
JPS62118316A (en) | 1985-11-19 | 1987-05-29 | Jiesu:Kk | Sunglasses |
US5172256A (en) | 1988-01-19 | 1992-12-15 | Sethofer Nicholas L | Liquid crystal variable color density lens and eye protective devices incorporating the same |
US5343313A (en) | 1990-03-20 | 1994-08-30 | James L. Fergason | Eye protection system with heads up display |
US5453863A (en) * | 1991-05-02 | 1995-09-26 | Kent State University | Multistable chiral nematic displays |
US6697129B1 (en) * | 1996-02-14 | 2004-02-24 | Semiconductor Energy Laboratory Co., Ltd. | Guest-host mode liquid crystal display device of lateral electric field driving type |
US5943104A (en) * | 1997-03-25 | 1999-08-24 | University Technology Corporation | Liquid crystal eyewear with two identical guest host subcells and tilted homeotropic alignment |
JPH11160659A (en) | 1997-10-03 | 1999-06-18 | Yongli Guanggxue Co Ltd | Protection kit for eyes provided with transparent lens unit having darkening function |
US6239778B1 (en) * | 1998-06-24 | 2001-05-29 | Alphamicron, Inc. | Variable light attentuating dichroic dye guest-host device |
JP2002529356A (en) | 1998-11-09 | 2002-09-10 | ピーピージー・インダストリーズ・オハイオ・インコーポレイテッド | Solar control coatings and coated articles |
US6753047B1 (en) * | 1999-06-10 | 2004-06-22 | Ppg Industries Ohio, Inc. | Electrodes for liquid crystal cells |
US6674504B1 (en) * | 2000-09-29 | 2004-01-06 | Kent Optronics, Inc. | Single layer multi-state ultra-fast cholesteric liquid crystal device and the fabrication methods thereof |
US6917334B2 (en) * | 2002-04-19 | 2005-07-12 | Skycross, Inc. | Ultra-wide band meanderline fed monopole antenna |
JP2004133096A (en) * | 2002-10-09 | 2004-04-30 | Sharp Corp | Liquid crystal optical element and method for manufacturing liquid crystal optical element |
JP2004198505A (en) * | 2002-12-16 | 2004-07-15 | Sony Corp | Dimmer and method for driving the same, and image pickup device |
US7356969B1 (en) * | 2003-05-06 | 2008-04-15 | Electronically Shaded Glass, Inc. | Electronically shaded thin film transparent monochromatic liquid crystal display laminated window shading system |
WO2006088370A2 (en) | 2005-02-16 | 2006-08-24 | Stichting Voor De Technische Wetenschappen | Luminescent object comprising aligned polymers having a specific pretilt angle |
US8446548B2 (en) * | 2006-05-19 | 2013-05-21 | Nlt Technologies, Ltd. | Light source device, display device, terminal device, and transparent/scattering state switching element |
US7567306B2 (en) | 2006-07-14 | 2009-07-28 | Alphamicron, Inc. | Liquid crystal ski goggles and methods of manufacturing the same |
US8203070B2 (en) * | 2006-12-15 | 2012-06-19 | Andrew Homyk | Automated solar tracking system |
US7658979B2 (en) * | 2007-03-19 | 2010-02-09 | Ricoh Company, Ltd. | Liquid crystal alignment film composition, liquid crystal device and display apparatus |
US20090126792A1 (en) * | 2007-11-16 | 2009-05-21 | Qualcomm Incorporated | Thin film solar concentrator/collector |
EP2271964A4 (en) * | 2008-03-18 | 2017-09-20 | Mitsui Chemicals, Inc. | Advanced electro-active optic device |
US7968725B2 (en) * | 2008-07-22 | 2011-06-28 | Janssen Pharmaceutica N.V. | Pyridinyl modulators of γ-secretase |
US20100024805A1 (en) * | 2008-07-29 | 2010-02-04 | Genie Lens Technologies, Llc | Solar panels for concentrating, capturing, and transmitting solar energy in conversion systems |
JP2010237643A (en) * | 2009-03-09 | 2010-10-21 | Fuji Xerox Co Ltd | Display medium, writing device and display device |
-
2010
- 2010-04-26 AU AU2010238629A patent/AU2010238629C1/en active Active
- 2010-04-26 EP EP10767883.1A patent/EP2430662A4/en not_active Withdrawn
- 2010-04-26 CN CN201080023882.3A patent/CN102449773B/en active Active
- 2010-04-26 KR KR1020117028065A patent/KR101542484B1/en active IP Right Grant
- 2010-04-26 WO PCT/US2010/032396 patent/WO2010124279A1/en active Application Filing
- 2010-04-26 CA CA2759857A patent/CA2759857C/en active Active
- 2010-04-26 US US13/265,948 patent/US9130097B2/en active Active
-
2015
- 2015-07-21 US US14/804,409 patent/US10310349B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6493128B1 (en) * | 1996-08-20 | 2002-12-10 | Donnelly Corporation | Chromogenic window assembly construction and other chromogenic devices |
US20050007506A1 (en) * | 1997-02-26 | 2005-01-13 | Faris Sadeg M. | Electro-optical glazing structures having reflection and transparent modes of operation |
US20070146910A1 (en) | 2005-12-22 | 2007-06-28 | Solbeam, Inc. | Light steering assemblies |
US20070153354A1 (en) * | 2005-12-22 | 2007-07-05 | Solbeam, Inc. | Minimizing lensing in electro-optic prisms |
US20070151600A1 (en) * | 2006-01-04 | 2007-07-05 | Kent State University | Nanoscale discotic liquid crystalline porphyrins |
WO2008075286A2 (en) * | 2006-12-18 | 2008-06-26 | Universidade Do Porto | Smart device for absorbing solar energy and controling sunlight admission |
WO2008155767A2 (en) | 2007-06-20 | 2008-12-24 | T C View Ltd | Methods systems and devices for utilizing directions of light rays |
WO2009141295A1 (en) | 2008-05-21 | 2009-11-26 | Technische Universiteit Eindhoven | Optical device with anisotropic luminescent material |
Non-Patent Citations (2)
Title |
---|
OPTICS EXPRESS, vol. 16, no. 26, 22 December 2008 (2008-12-22), pages 21773 - 21792 |
See also references of EP2430662A4 * |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013003894A1 (en) | 2011-07-01 | 2013-01-10 | Tropiglas Technologies Ltd | A spectrally selective panel |
CN103718068A (en) * | 2011-07-01 | 2014-04-09 | 特罗皮格拉斯科技有限公司 | A spectrally selective panel |
EP2726919A1 (en) * | 2011-07-01 | 2014-05-07 | Tropiglas Technologies Ltd | A spectrally selective panel |
EP2726919A4 (en) * | 2011-07-01 | 2015-01-28 | Tropiglas Technologies Ltd | A spectrally selective panel |
US11048030B2 (en) | 2011-07-01 | 2021-06-29 | Tropiglas Technologies Ltd | Spectrally selective panel |
WO2013082380A1 (en) * | 2011-11-30 | 2013-06-06 | Alphamicron Incorporated | Adaptive liquid crystal structural interface |
US9869887B2 (en) | 2011-11-30 | 2018-01-16 | Alphamicron Incorporated | Adaptive liquid crystal structural interface |
JP2016528866A (en) * | 2013-08-19 | 2016-09-15 | トロピグラス テクノロジーズ リミテッド | Electric energy generator |
FR3050838A1 (en) * | 2016-04-29 | 2017-11-03 | Saint Gobain | DOOR OR WINDOW PANEL HAVING VARIABLE LIGHT BROADCAST GLAZING. |
WO2018189394A1 (en) * | 2017-04-13 | 2018-10-18 | Technische Universität Braunschweig | Device for guiding light and production method |
WO2021249803A3 (en) * | 2020-06-10 | 2022-02-10 | Audi Ag | Arrangement for converting light into electrical energy |
Also Published As
Publication number | Publication date |
---|---|
CA2759857C (en) | 2016-04-12 |
CA2759857A1 (en) | 2010-10-28 |
AU2010238629C1 (en) | 2015-03-12 |
CN102449773A (en) | 2012-05-09 |
KR101542484B1 (en) | 2015-08-06 |
US10310349B2 (en) | 2019-06-04 |
AU2010238629A1 (en) | 2011-11-10 |
US20120038841A1 (en) | 2012-02-16 |
CN102449773B (en) | 2015-05-20 |
EP2430662A4 (en) | 2014-10-01 |
US9130097B2 (en) | 2015-09-08 |
EP2430662A1 (en) | 2012-03-21 |
US20150323825A1 (en) | 2015-11-12 |
KR20120031001A (en) | 2012-03-29 |
AU2010238629B2 (en) | 2014-10-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2759857C (en) | Solar powered variable light attenuating devices and arrangements | |
JP5558350B2 (en) | Reflective optical shutter with temperature response switching | |
JP5485170B2 (en) | Absorption-type window shutter with temperature response switching | |
US20080264466A1 (en) | Layer Arrangement for Darkening a Transparent Pane | |
CN113867017B (en) | Multifunctional light modulation device, laminated glass thereof, hollow glass and attached film | |
US11237446B2 (en) | Optical assembly, optical device, and manufacturing method thereof | |
US7356969B1 (en) | Electronically shaded thin film transparent monochromatic liquid crystal display laminated window shading system | |
CN205450829U (en) | From intelligent glass of electricity generation | |
CN113568205A (en) | Composite dimming glass assembly, composite dimming glass system and application thereof | |
KR20180002388U (en) | Multi-functional bipv windows system | |
CN216351643U (en) | Compound dimming glass assembly and compound dimming glass system | |
KR20180011939A (en) | Multi-functional bipv windows system | |
CN102162329A (en) | Auto light-shading system | |
CN209742737U (en) | Self-generating intelligent scientific and technical curtain system | |
CN114734794A (en) | Make things convenient for printing opacity's new energy automobile canopy glass of switching | |
JP2018150686A (en) | Light controlling blind device | |
CN108569110A (en) | A kind of solar powered automotive light-shading board intelligent liquid-crystal optical filtering screen | |
CN208010206U (en) | A kind of hollow light adjustable glass | |
TWM576612U (en) | Glass window apparatus with lighting regulation function | |
Taheri et al. | Guest-host liquid crystal devices for adaptive window application | |
CN203745759U (en) | Solar energy optics module | |
CN213116003U (en) | Intelligent photovoltaic window capable of isolating haze | |
KR20110034354A (en) | Building integrated photovoltaic module attached liquid crystal panel | |
CN220502957U (en) | Dimming film applied to automobile skylight glass | |
CN220848193U (en) | Photochromic heat-insulating intelligent glass curtain wall structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080023882.3 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10767883 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13265948 Country of ref document: US Ref document number: 2759857 Country of ref document: CA |
|
REEP | Request for entry into the european phase |
Ref document number: 2010767883 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010767883 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2010238629 Country of ref document: AU Date of ref document: 20100426 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20117028065 Country of ref document: KR Kind code of ref document: A |