WO2010123329A2 - Injection system having adiabatic means - Google Patents

Injection system having adiabatic means Download PDF

Info

Publication number
WO2010123329A2
WO2010123329A2 PCT/KR2010/002601 KR2010002601W WO2010123329A2 WO 2010123329 A2 WO2010123329 A2 WO 2010123329A2 KR 2010002601 W KR2010002601 W KR 2010002601W WO 2010123329 A2 WO2010123329 A2 WO 2010123329A2
Authority
WO
WIPO (PCT)
Prior art keywords
mold
nozzle
heat transfer
transfer member
channel
Prior art date
Application number
PCT/KR2010/002601
Other languages
French (fr)
Korean (ko)
Other versions
WO2010123329A3 (en
Inventor
송형천
Original Assignee
Song Hyeong-Cheon
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020090035914A external-priority patent/KR100914031B1/en
Application filed by Song Hyeong-Cheon filed Critical Song Hyeong-Cheon
Publication of WO2010123329A2 publication Critical patent/WO2010123329A2/en
Publication of WO2010123329A3 publication Critical patent/WO2010123329A3/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/27Sprue channels ; Runner channels or runner nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/27Sprue channels ; Runner channels or runner nozzles
    • B29C2045/2766Heat insulation between nozzle and mould

Definitions

  • the present invention relates to a system for injection molding
  • the dispensing means for dispensing molten resin and nozzles in the injection system that can reduce the resin loss and improve the molding quality are provided with insulation means in contact with the outer mold and the mold, so that the energy loss due to frequent reheating of the dispensing means and the nozzle And it relates to an injection system that can improve the molding quality by preventing the modification of the melt due to reheating.
  • an injection molding machine is a machine for injecting a synthetic resin in a chip or powder state into a molten state and injecting it into a mold of a certain shape and molding a product according to the mold shape.
  • the synthetic resin melted by the heating heater is injected into the dispensing means by the transfer screw of the injection molding machine and then injected into the mold through the plurality of outlets of the distributing means.
  • An injection molding apparatus has become a popular system for introducing a heat transfer member into a distributing means to maintain a molten state of a resin to reduce resin loss and to improve molding quality.
  • Nissei Jushi Kogyo's patent registration No. 0799809 (January 24, 2008) [Nozzle for injection molding of resin with high temperature dependence of viscosity] forms a nozzle tip in the shape of a cap made of metal having low thermal conductivity, Although a technique of interposing a heat insulating plate made of ceramics or the like is provided at the joint portion of the main body and the nozzle tip, it does not present a solution to the problem that a heat insulating plate made of a weak ceramic material is damaged during distribution and use.
  • Kim Kwan-pyo Patent Registration No. 0761529 (September 18, 2007) [Injection molding machine] has a gate bush made of a low thermal conductivity material to prevent heat transfer to the mold, and a gate bush to prevent the temperature rise of the mold. And a cooling tube having a structure in which a coolant can be distributed between the mold and the mold is introduced.
  • the main technique is to prevent the heat generated from the nozzle from being transferred directly to the injection molding. There is a difference from the technique to solve the problem caused by the situation where the heat of the means and nozzles are lowered due to conduction.
  • Korean Patent Publication No. 194-0013783 discloses that a heat transfer member is mounted on a channel formed in a distribution means main body to maintain a molten state of resin supplied to a mold space through a distribution means.
  • the electric heating heater is embedded in the upper and lower surfaces of the distributing means, and the insertion groove is formed in the upper and lower surfaces of the distributing means to insert the electric heating heater.
  • the press groove is formed by inserting a carver formed with a support groove into the inserted electric heating heater so that the support groove supports the electric heating heater, but the prior art has an insertion groove shape of a distribution means and electric heating inserted into the insertion groove. It is difficult to manufacture the cover exactly for Hita,
  • the support groove of the manufactured cover in accordance with the electric heating heater inserted into the insertion groove of the distribution means, and even if it is inserted, some of the cover is too inserted into the insertion groove so that it may not be further inserted or partially inserted into the insertion groove.
  • the electric heating heater or the cover may be damaged by the insertion method by forceful pressing, and the cover may be protruded from the upper and lower surfaces of the distributing means, and the cover is fixed to the dispensing means only by pressing.
  • the present invention provides a first and second thermal insulation to each of the dispensing means and the dispensing means in contact with the mold and the external mold, in order to prevent melt loss due to energy loss due to frequent reheating of the nozzle and the nozzle and unbalanced overheating due to reheating. It is an object to provide an injection system incorporating a means.
  • the present invention is the first and second heat insulating means is made of a refractory layer attached to the metal surface can be expected to improve the heat conduction blocking performance, in this case is provided with an outer protective portion surrounding the refractory layer to prevent breakage of the refractory layer
  • An object of the present invention is to provide an injection system configured in a form.
  • the present invention is a modification in which the irregularities are formed on the metal surface to strengthen the adhesion of the refractory layer, and the inner one of the outer protective part surrounding the refractory layer is buried in the refractory layer with a relatively low height than the outer one. It is an object of the present invention to provide an injection system related to a modification, which is lower than the refractory layer and can block contact with a mold or an external mold, thereby obtaining an effect of protecting the refractory layer and reducing thermal conductivity.
  • the present invention is made of a flexible outer shell of the heat transfer member for maintaining the constant temperature of the distribution means is easy to insert into the channel of the distribution means body, in particular the channel cross-section of the heat transfer member injected into the channel is made of Deviation is prevented, and the outer surface of the heat transfer member has a rectangular shape to ensure ease of deformation due to pressure. Furthermore, after the heat transfer member is deformed according to the shape of the main body channel, the heat transfer member is put into the main body channel and pressurized.
  • An object of the present invention is to provide a method of mounting a heat transfer member having a higher rate.
  • Distribution means having an inlet and an outlet for dispensing the molten resin supplied from the injection machine and having a heat transfer member;
  • a nozzle provided at an outlet of the distribution means; And a mold in contact with the nozzle and having a space;
  • a first insulating means is provided on a contact surface of the nozzle and the mold, and the first insulating means is a refractory layer wrapped by an outer protective part formed on a metal surface.
  • the first insulation means is formed in the nozzle itself, and alternatively, the first insulation means is a refractory layer provided in an insulation ring arranged between the nozzle and the mold.
  • the refractory layer is arranged on a contact surface with the nozzle or the mold, or both, and further includes an outer mold surrounding the dispensing means, and a second insulating means is provided on the contact surface of the outer mold and the distributing means. It is preferable.
  • the dispensing means in the injection system according to the present invention is formed with a channel having an opening, the main body having an inlet and outlet; And a heat transfer member coupled to the channel of the main body, the heat transfer member including a flexible outer shell that rises above the main body surface without applying an external force upon input into the channel.
  • the channel of the distribution means main body has a cross-sectional light beam shape in cross section
  • the outer shell of the heat transfer member has a rectangular cross section
  • a heating wire is built in the outer shell, and a filler is filled between the outer shell and the heating wire.
  • a heat transfer member having a channel having an opening formed therein, the body having an inlet and an outlet, coupled to a channel of the body, the flexible member including a flexible sheath that rises above the body surface upon introduction into the channel.
  • the heat transfer member After deforming the heat transfer member in accordance with the shape of the main body channel, the heat transfer member is introduced into the main body channel, characterized in that for coupling by pressing.
  • the main body and the heat transfer member After the main body and the heat transfer member are coupled, it is preferable to perform a flattening operation by polishing the exposed surface of the heat transfer member.
  • the injection system according to the present invention introduces the first and second thermal insulation means into each of the nozzle contacting the mold and the distribution means contacting the outer mold, resulting in energy loss due to frequent reheating of the distribution means and the nozzle and due to unbalanced overheating due to reheating. Molten resin denaturation can be prevented.
  • the injection system according to the present invention consists of a refractory layer having the first and second heat insulating means attached to the metal surface can be expected to improve the heat conduction blocking performance, in this case the outer envelope surrounding the refractory layer to prevent breakage of the refractory layer
  • the outer envelope surrounding the refractory layer to prevent breakage of the refractory layer
  • the modification of the irregularities formed on the metal surface to strengthen the adhesion of the refractory layer, and the inner one relative to the height of the outer protective portion surrounding the refractory layer relative to the outer It can be lowered so as to be buried in the refractory layer or lower than the refractory layer to block the contact with the mold or the external mold, thereby achieving the effect of protecting the refractory layer and lowering the thermal conductivity.
  • the injection system according to the present invention is made of a flexible outer shell of the heat transfer member for maintaining the constant temperature of the distribution means is easy to insert into the channel of the main body of the distribution means, in particular the channel cross-section is formed in the upper and lower light shape to the channel The separation of the input heat transfer member is prevented, and the outer surface of the heat transfer member is formed in a quadrangle to ensure ease of deformation due to pressure, and further, after the heat transfer member is deformed according to the shape of the main body channel, the heat transfer member is introduced into the main body channel.
  • FIG. 1 to 3 are schematic cross-sectional schematic views of an injection system according to the invention with thermal insulation means of different embodiments;
  • FIG. 4 is a perspective view associated with the nozzle and the first insulating means shown in FIG.
  • FIG. 5 is a partial cutaway perspective view and cross-sectional views, respectively, of the nozzle and panel member associated with the thermal insulation means in the injection system according to the invention.
  • FIGS. 6 and 7 are cross-sectional views of nozzles and panel members respectively associated with deformed thermal insulation means in the injection system according to the invention.
  • FIG. 8 is an exploded perspective view showing an embodiment of the distribution means according to the present invention.
  • FIG. 9 is an exploded perspective view showing another embodiment of the distributing means according to the present invention.
  • FIG. 10 is a plan view of FIG.
  • FIG. 11 illustrates various implementations of “A” in FIG. 1.
  • FIG. 12 is a view showing various types of heat transfer members.
  • FIG. 13 is a view showing a mounting method of FIG.
  • the same reference numerals in particular, the tens and ones digits, or the same digits, tens, ones, and alphabets refer to members having the same function, and unless otherwise specified, each reference in the drawings.
  • the member referred to may be regarded as a member conforming to these criteria.
  • an injection system according to the present invention is a screw-type piston (not shown, patent publication 1994-0013783 which supplies a large molten synthetic resin).
  • the injection system with heat transfer member has a high initial facility cost, but the injection pressure can be reduced, and there is no loss of synthetic resin due to the resin passage part (also called 'runnerless system' in this respect), and the injection quality is high and the productivity is high.
  • Dispensing means (D) for a large injection system is typically provided with a heat transfer member 20, is provided with an inlet 12 and outlet 13 for the melt resin communication, the mold (M) space (M3) In order to allow the synthetic resin to be filled more quickly, it is common that the outlet is plural.
  • the nozzle N provided for each outlet 13 is not shown, but the heat transfer member is generally provided like the distribution means, and the nozzle is provided with a temperature sensor so that the measured temperature is lower than the lower limit reference value.
  • the heating means of the distribution means and the nozzles are turned on to raise the temperature to the upper limit value so that there is no problem in the flowability and product quality of the synthetic resin.
  • the mold (M) in contact with the nozzle (N) is usually separated from the left and right with respect to the gravity direction when the seal is installed (in this case, the drawing of FIG. 1 is vertical from the injection cylinder (C) to the mold (M) based on the actual gravity direction).
  • the drawing of FIG. 1 is vertical from the injection cylinder (C) to the mold (M) based on the actual gravity direction).
  • the upper cavity M1 corresponds to the fixed side forming the space M3 and the lower core M2 corresponding to the movable side.
  • the core corresponds to a heat insulating means, among which the first heat insulating means is provided at the contact surface of the nozzle N and the mold M, and particularly, as shown in FIGS. 1 and 4.
  • the first insulating means S1 includes a refractory layer Sc attached to the metal surface at a position biased to the end of the nozzle N, and more particularly, a refractory layer Sc filled in an annular groove (not shown) at the nozzle end. It is configured to include.
  • the first heat insulating means S1 may be deformed to be fixedly arranged on the contact surface with the mold M, particularly the upper cavity M1, which is illustrated in FIGS. 5 to 7.
  • a separate panel may be introduced, such as a panel member S2a constituting the second heat insulating means S2, and may be modified to form a refractory layer on the panel.
  • the refractory layer Sc may be arranged at a contact surface with the nozzle (corresponding to [A]), the mold (corresponding to [B]), or both (corresponding to [C]).
  • the term 'metal surface' refers to a corresponding surface of a low conductive member, particularly a metal body, to which a refractory layer is attached, which constitutes a heat insulating means, and in particular, a nozzle N, a panel member S2a, or an insulating ring that is metallic.
  • (R1) means the corresponding surface of (R2).
  • a plate spring having a washer-like shape is formed in order to increase the adhesion between the lower insulation ring R1 and the upper cavity M1 of the mold M (finally, to improve the adhesion between the nozzle N and the mold).
  • Rs1 is introduced to prevent resin leakage (for this, the insulating ring R1 has a spring Rs1 receiving groove formed therein),
  • the insulation ring R1 also has the refractory layer Sc corresponding to the nozzle ([A]) or the mold ([B], respectively. ], Or both of them (corresponding to [C]).
  • the nozzle (N1) has a flat portion (N1) to prevent rotation after the nozzle assembly on the upper flange.
  • a separate insulating ring R2 is introduced between the upper portion of the nozzle N and the outer mold Me, and the refractory layer is also a heat insulating means S1a in the upper insulating ring R2.
  • Sc was introduced (see FIG. 4), and in order to reduce the contact area, contact area reduction grooves R2a were formed (see the in-circuit drawing inverted from the bottom of FIG. 4), and the upper insulation ring ( Plate spring Rs2 is also provided in R2), and the adhesive double of the nozzle N and the upper cavity M1 of the metal mold
  • the introduction of the spring may also be introduced to the panel member S2a constituting the second insulation means S2.
  • the injection system is generally further comprises an outer mold (Me) surrounding the distribution means (D) for support and protection, the lower structure of the outer mold in order to reduce the contact area with the nozzle (N) as possible Can take a variety of structures.
  • a second insulation means is provided at the contact surface of the outer mold Me and the distribution means D, more essentially, at the contact surface of the injection hole 12 of the injection cylinder cylinder C tip and the distribution means D.
  • the second heat insulating means S2 also include a refractory layer Sc, and the refractory layer Sc is a metal surface, in particular, as can be seen in FIGS. It is preferable that the refractory layer is attached to the metal surface of the panel member (S2a) for realistic and easy introduction.
  • the panel member is preferably shaped to have a hollow (not specified) so as to be in communication with the discharge hole of the injection cylinder (C) and the injection hole 12 of the distribution means (D) main body 10, of course, Dispensing means (D) is arranged at the position of the injection port 12 of the main body 10.
  • 'panel member' is not to be construed as a meaning limited to 'shape' meaning the meaning, and it can be referred to as a material irrelevant, and the same applies to the 'insulation ring'.
  • the second heat insulating means has a part connected to the injection molding machine in the form of a nozzle, and can be deformed into a shape introduced into the nozzle.
  • a part called 'nozzle locator C1' is usually a cylinder C and a distribution means D. It is used to connect the injection hole 12 of the main body 10, the locator ring (C2) is arranged at the end of the injection cylinder (C) and the upper mold (Me), the nozzle locator and the outer mold forming a part of the injection molding machine
  • a second insulating means will be located between the nozzle locator and the dispensing means, each component having a molten resin passageway in communication therewith).
  • first or second heat insulating means (S1) (S2), or both of them may be used in particular a zirconium-based ceramic having excellent heat insulating performance, the ceramic adhesion to the metal surface is known thermal spraying ( ⁇ ⁇ , thermal spraying) The method can be used.
  • the refractory layer Sc is preferably wrapped and protected by an outer protective part formed on the metal surface, which is to prevent the fragile ceramics from being damaged during distribution, mounting and use as mentioned above. It is for.
  • the lower end of the nozzle N has upper and lower outer protection parts Sr1 and Sr2 with respect to the refractory layer Sc forming the first heat insulating means S1.
  • upper and lower outer protective parts and intermediate outer protective parts Sr3, and the refractory layer Sc located between the outer protective parts Sr1, Sr2, and Sr3 may be formed by a thermal spraying method. In this case, it is preferable to go through a polishing process for planarization.
  • FIG. 5 are relations between a cross-sectional view and a partially cut perspective view of a panel member having the same shape, respectively.
  • the panel member S2a constituting the second insulation means S2 also includes various outer protection parts Sr1, Sr2, and Sr3.
  • each upper portion (corresponding to the 'lower' based on the installation state of Figure 1, but will be divided into the upper and lower, based on Figure 5) the end of the outer protective portion Forming the tip portion may function to reduce as much as possible the contact area between the metallic panel member and the upper surface of the main body 10 of the distribution means (D).
  • the refractory layer is also introduced to the side surface of the panel member S2a (the part contacting the upper surface of the main body 10 of the distribution means D). It can be in the form of forming an annular groove, and in this case, as shown in [D] and [D], it is preferable that each outer protective part has a form having a tip, and furthermore, as long as there is no problem in breaking the refractory layer. As shown in [C] and [D], the upper inner outer protective part Sr1 may be buried in the refractory layer Sc, thereby contributing to the improvement of thermal insulation performance.
  • [A] shows a modification in which fine concavo-convex Sp is formed in the annular groove of the nozzle N so as to contribute to the improvement of the bonding force of the refractory layer Sc attached thereto.
  • a modified example is shown in which an annular groove (particularly, an outer annular groove) of the panel member S2a may also form fine unevenness Sp to contribute to improving the bonding force of the refractory layer Sc attached thereto.
  • Such fine unevenness can be obtained through a known target corrosion processing process using chemicals such as strong acids or strong bases.
  • the dispensing means having the heat transfer member is mainly composed of a main body and a heat transfer member.
  • the main body 10 is formed with a channel 11 having an opening 111, and comprises an injection port 12 and the discharge port (13).
  • the inlet 12 and the outlet 13 is in communication with each other, it is preferable that the channel has a cross-beam shape in the cross-section.
  • the inlet port of the distribution means is usually one, two outlets, but in the present invention is shown as four outlets, this is one example, not limited to this in various ways in consideration of the size and shape of the molded product, etc. It can be changed.
  • the channel 11 of the main body 10 may be formed on the upper surface, or the channel 11 of the main body 10 may be formed on both the upper and lower surfaces as shown in FIG. 9, and the resin may be melted. It is preferable that the discharge port 13 is formed on the bottom surface of the dispensing means main body 10 for maintaining the state. More preferably, the upper and lower surfaces of the main body 10 may be formed.
  • the distribution means according to the present invention is not limited to the protection range by the position of the channel 11 formed in the main body 10, the resin in the molten state from the supply cylinder (C) to the mold (M, see Fig. 1) It does not exclude the arrangement of the heat transfer member 20 in any form that satisfies the function of the delivery-relay-distribution distribution means.
  • the shape of the channel 11 of the main body 10 may be formed in the form passing through the edge, as shown in Figure 8, in order to maximize the thermal efficiency of the heat transfer member 20, and to minimize the heat loss of Figure 9 And as shown in Figure 10, it is most preferably formed in a shape surrounding the outlet (13).
  • both continuous and discontinuous channels 11 are possible, but considering the ease of manufacture and ease of mounting of the heat transfer member 20, the shape of the continuous channel 11 is most preferable, and the upper and lower surfaces of the main body 10, that is, the injection hole Although the shape of the channel 11 formed in the upper surface of the (12) side and the lower surface of the discharge port 13 side, respectively is preferable, this invention is not restrict
  • the heat transfer member 20 is coupled to the channel 11 of the main body 10, the flexibility that rises above the surface of the main body 10 without applying an external force when the channel 10 is applied, flexible) shell 21.
  • the outer shell 21 preferably has a rectangular cross section, and a heating wire 22 is embedded in the outer shell 21, and a filler 23 is filled between the outer shell 21 and the heating wire 22. It is desirable to have.
  • the flexible shell 21 refers to a material having good thermal conductivity and excellent warpage deformation, and generally adopts copper or aluminum, but is a concept encompassing other applicable alloy or synthetic resin materials.
  • the heat transfer member 20 rises above the surface of the main body 10 in the state in which the external force is not applied when the channel 10 is inserted, after deforming the heat transfer member 20 to the shape of the channel 11.
  • a special external force that is, after the pressurization process using a machine, such as a press after the heat transfer member 20
  • the heat transfer member 20 is pressurized and the heat transfer member 20 is deformed to fit the channel 11 cross-sectional shape.
  • a function of preventing thermal separation of the heat transfer member due to expansion and improving thermal conductivity through expansion of the contact area between the heat transfer member 20 and the wall around the channel 11 is achieved.
  • the height of the heat transfer member 20 is higher than the height of the channel 11 of the main body 10 so that the heat transfer member 20 is more easily inserted into the channel 11. Is preferably higher, and may satisfy various conditions and have various channel shapes and heat transfer member shapes as shown in FIG. 11.
  • the unit volume of the heat transfer member 20 is larger than or equal to the unit volume of the channel 11.
  • the shape of the cross-section is elliptical, circular, semi-circular, or triangular or more (for example, (a) trapezoid square of Figure 12, (b) hexagon of Figure 12) Etc.), and above all, in the present invention, it is preferable that the shape of the cross section is a quadrangle, wherein the quadrangular is a concept encompassing square, rectangular, and trapezoidal shapes (but easily added to the main body channel without any additional processing). It is desirable to have relative appearance and appearance size that can be achieved).
  • the channel 10 of the main body 10 is referred to as a cross-beam shape in which the cross section is inserted into the channel 11 so that the heat transfer member 20 deformed to fit the channel 11 shape is separated from the opening 111 side.
  • the cross-sectional shape of the channel is preferably a trapezoidal shape, where the trapezoidal shape has a length difference between two upper and lower sides and a long side. It refers to an arbitrary shape which forms a short side (it may not have symmetry unlike drawing).
  • the introduction of the filler 23 is primarily intended to reduce the consumption of expensive materials (such as metal (copper, etc.) used for the outer shell), when the shell 21 is a conductor, the electricity of the heating wire 22 It is preferable that the thermal conductivity while blocking the transfer to the shell 21 is a good material, for example, a ceramic material may be used.
  • the method of mounting the heat transfer member according to the present invention includes deforming the heat transfer member 20 to conform to the shape of the main body 10 channel 11, and then transfers the heat transfer member 20 to the main body. It is put in the channel 11 of 10), it is combined by pressing.
  • the heat transfer member 20 is deformed to fit the shape of the channel 11, and inserted into the opening 111 side of the channel 11, (FIG. 13A) (B))
  • the heat transfer member 20 is more fully introduced into the channel 11. ((B)-> (C) or (D) of FIG. 13)
  • the heat transfer member 20, particularly the flexible shell 21 is deformed to match the channel 11 cross-sectional shape, the separation of the heat transfer member 20 is prevented.
  • the deformed sheath 21 is preferably in the form in which the heat transfer member 20 fills the channel 11 of the body 10 tightly.
  • the heat-transfer member 20 that is pressure-deformed is a main body ( 'Filling' the channel 11 of 10) does not mean filling completely without gaps (the difference may occur depending on the press pressure for the deformation of the heat transfer member and the hardness of the shell material, etc.) Deformation of the heat-transfer member shell so as to fit in is not appropriate in terms of cost-effectiveness in consideration of problems such as distributing means body or heat transfer member breakage).
  • the outer shell 21 of the heat-transfer member 20 protruding in shape is not possible so that post-processing (e.g., flattening by polishing the heat-transfer member shell exposed surface) is unnecessary or minimized.
  • post-processing e.g., flattening by polishing the heat-transfer member shell exposed surface
  • the meaning of 'the volume of the heat transfer member is greater than or equal to the volume of the channel' is also close to the concept of assuming a slight tolerance rather than a strict one.
  • the cross-sectional shape of the heat transfer member 20 is a quadrangle, and the channel 11 has a cross-sectional shape where the cross-sectional shape minimizes the difference in length between the long side and the short side.
  • the trapezoid of the shape (the trapezoidal channel shape shown in Fig. 11A) is exaggerated to help understand the ratio of the long side to the short side.
  • the present invention is a heat transfer member of any shape having a volume higher than the channel height and larger than the possible volume of the channel 11 to fill the channel 11 while being easily introduced into the channel 11 and transformed into a device such as a press. 20 and the channel 11 of any shape that prevents the pressure deformation filled heat transfer member 20 from being separated.
  • the outer shell 21 of the heat transfer member 20 Through the relative shape and dimensional characteristics of the channel 11 of the main body 10 and the outer shell 21 of the heat transfer member 20, filling gaps that are insufficient for flattening the joints of the main body 10 and the heat transfer member 20 are filled. Filling with materials (eg gypsum) becomes unnecessary. And the polishing process of the exposed heat transfer member 20, the outer shell 21 is for improving the appearance quality above all, part of the outer shell 21 of the heat transfer member 20 protruding thereon without contacting the main body 10. It is to improve the thermal efficiency by solving the problem of heating until (the heat loss occurs due to unnecessary heating part).
  • the injection hole 12 and the discharge port 13 can be formed through the drilling operation on the upper and lower surfaces of the main body 10, respectively, the injection hole 12 and the discharge port (
  • the through hole 14 connecting 13 to communicate with each other divides the main body 10 into two powders, and forms a groove having a semicircular cross section in each powder, and each groove is connected to each other through the through holes 14. )
  • the first outlet from one of the outer wall of the two facing diagonally (13) and then drilled to the formation position of the outlet 13 located diagonally, and also the two facing outer walls of the adjacent diagonally similarly, so that the two outlets 13 and the inlet 12 located diagonally communicate with each other.
  • a perforated inlet channel fitted to the closure member (15) to ensure the tightness of the [inlet-outlet-through holes.
  • the injection hole 12 and the discharge hole 13 may be formed first, and then the through hole 14 may be formed thereafter.
  • the through hole 14 may be formed first, and the injection hole may be formed after the ease of manufacture.
  • 12 and the outlet 13 is preferably formed to be perforated to communicate with the through hole (14).
  • the molten resin is supplied to the injection hole 12 of the main body 10 through the cylinder C.
  • the molten state is maintained by the heat transfer member 20 while passing through the outlet 13, and is filled in the space M3 formed by the upper and lower molds M to form the mold.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

The present invention relates to a system for injection molding, more particularly to an injection system capable of reducing the loss of resin and improving the molding quality, by providing adiabatic means to joint regions between a molten resin distribution means and an external mold and between a nozzle and a mold, respectively, such that the energy loss due to frequent reheating of the distribution means and the nozzles and the denaturation of the molten resin due to reheating can be avoided to improve the molding quality. The injection system according to the present invention comprises: a distribution means having an inlet and an outlet for distribution of a molten resin supplied from an injector, and a heat transfer means; a nozzle installed at the outlet of the distribution means; and a mold disposed in contact with the nozzle, the mold having a space defined therein, wherein a first adiabatic means is disposed at a contact face between the nozzle and the mold, and the first adiabatic means is a refractory material layer that is surrounded by a boundary protector formed on a metal surface.

Description

단열수단을 구비한 사출시스템Injection system with insulation
본 발명은 사출성형을 위한 시스템에 관한 것으로,The present invention relates to a system for injection molding,
특히 수지 손실을 줄이고 성형품질을 높일 수 있는 사출시스템 중 용융 수지를 분배하는 분배수단 및 노즐 각각이 외부금형 및 금형과 접하는 부위에 단열수단을 구비하고 있어 분배수단과 노즐의 잦은 재가열로 인한 에너지 손실 및 재가열에 따른 용융수지 변성을 방지하여 성형품질을 개선할 수 있도록 한 사출시스템에 관한 것이다.In particular, the dispensing means for dispensing molten resin and nozzles in the injection system that can reduce the resin loss and improve the molding quality are provided with insulation means in contact with the outer mold and the mold, so that the energy loss due to frequent reheating of the dispensing means and the nozzle And it relates to an injection system that can improve the molding quality by preventing the modification of the melt due to reheating.
일반적으로 사출 성형기는 칩 또는 분말 상태의 합성수지를 용융상태로 하여 일정형태의 금형에 주입하고 금형 형상에 맞게 제품을 성형하는 기계로서 In general, an injection molding machine is a machine for injecting a synthetic resin in a chip or powder state into a molten state and injecting it into a mold of a certain shape and molding a product according to the mold shape.
가열히터에 의해서 용융된 합성수지가 사출기의 이송스크류에 의해 분배수단으로 일단 주입된 후 분배수단의 다수의 출구를 거쳐 금형으로 주입되는데,The synthetic resin melted by the heating heater is injected into the dispensing means by the transfer screw of the injection molding machine and then injected into the mold through the plurality of outlets of the distributing means.
분배수단에 전열부재를 도입하여 수지의 용융상태를 유지하여 수지손실을 줄이고 성형품질을 높일 수 있는 시스템이 사출 성형장치의 대세를 이루고 있다.An injection molding apparatus has become a popular system for introducing a heat transfer member into a distributing means to maintain a molten state of a resin to reduce resin loss and to improve molding quality.
그럼에도 가열되어 승온된 부분과 상온을 유지하고 있는 차가운 부분의 온도차이에 따른 열전도로 인한 열손실 문제와, 기준 온도 미만일 경우 전열부재가 켜져서 재가열이 이루어지는데, 온냉 부분 사이의 열전도로 인하여 상대적으로 잦은 재가열이 필요하게 되어 에너지 손실이 발생되며, 또 재가열과 온도편차에 따라 수지가 편중 가열되어 타는 문제가 발생되어 문제를 일으키고, 수지가 연소될 경우 금형의 스페이스와 수지 통로에 가스가 차게 되므로 성형품질에 심각한 문제를 일으키게 된다.Nevertheless, there is a heat loss problem due to heat conduction due to the temperature difference between the heated portion and the cold portion maintaining the room temperature, and when the temperature is lower than the reference temperature, the heating member is turned on to be reheated. Energy regeneration is required due to frequent reheating, and the resin is unilaterally heated due to reheating and temperature drift, causing burning problems, and when the resin is burned, gas is filled in the mold space and the resin passage. Serious problems with quality.
이러한 문제는 사용되는 수지가 범용 플라스틱이 아닌 엔지니어링 플라스틱인 경우 온도 민감성이 높아지게 되므로 더 큰 문제를 야기하게 된다.This problem causes more problems because the temperature sensitivity is increased when the resin used is an engineering plastic rather than a general-purpose plastic.
이러한 문제점을 해결하기 위한 시도로는 대호교역 주식회사 등의 실용신안등록 제0252327호(2001년10월17일) [금형의 노즐장치]에는 노즐의 선단에 단열재(티타늄계의 부싱로 구성)를 도입하고, 노즐 외측에도 단열수단(노즐 보다 강도가 큰 금속재와 일반 금속재를 이중으로 설치하여 구성)을 도입한 기술이 제시되어 있으나, As an attempt to solve this problem, Utility Model Registration No.0252327 (October 17, 2001) of Daeho Trading Co., Ltd. introduced a heat insulating material (consisting of titanium-based bushings) to the tip of the nozzle. In addition, there is a technology that introduces a heat insulating means (consisting of installing a metal material and a general metal material having a greater strength than the nozzle) on the outside of the nozzle,
높은 제조 단가가 우려되며, 무엇보다도 엔지니어링 수지류의 사출 성형시에도 특수 금속재를 사용하므로 노즐 수명을 유지하는 것에 주안점을 두고 있어 차이가 있고, 기본적으로 열전도도가 큰 금속을 사용하여 단열재를 구성하므로 열전도로 인한 항온 유지 저해 문제는 여전히 안고 있게 된다. High manufacturing cost is concerned, and above all, special metal materials are used in the injection molding of engineering resins, so the focus is on maintaining the nozzle life, and there is a difference. The problem of inhibition of constant temperature maintenance due to heat conduction still remains.
또 닛세이 쥬시 고교社의 특허등록 제0799809호(2008년01월24일) [점도의 온도의존성이 높은 수지의 사출성형용 노즐]에는 노즐 팁을 열전도율이 낮은 금속으로 캡형상으로 형성하고, 노즐 본체와 노즐 팁의 합친 부분에, 세라믹 등에 의한 단열판을 개재시킨 기술을 제시하고 있으나, 기본적으로 강도가 약한 세라믹 소재의 단열판이 유통 및 사용 중에 파손되는 문제에 대한 해결방안을 제시하고 있지 않다.In addition, Nissei Jushi Kogyo's patent registration No. 0799809 (January 24, 2008) [Nozzle for injection molding of resin with high temperature dependence of viscosity] forms a nozzle tip in the shape of a cap made of metal having low thermal conductivity, Although a technique of interposing a heat insulating plate made of ceramics or the like is provided at the joint portion of the main body and the nozzle tip, it does not present a solution to the problem that a heat insulating plate made of a weak ceramic material is damaged during distribution and use.
또 김관표의 특허등록 제0761529호(2007년09월18일) [사출성형장치]에는 금형으로의 열전달을 저해하도록 열전도성이 낮은 재질로 이루어진 게이트부시와, 금형의 온도상승을 방지하기 위해 게이트부시와 금형 사이에 마련되고 냉각수가 유통될 수 있는 구조를 갖는 냉각관을 도입한 기술을 제시하고 있는데, 주된 기술이 노즐에서 발생하는 열이 사출물에 직접 전달되는 것을 방지하는 것에 주안점을 두고 있어서, 분배수단 및 노즐의 열이 전도로 인하여 낮아지게 되는 상황으로 인한 문제점을 해결하고자 하는 기술과는 차이가 있다.In addition, Kim Kwan-pyo Patent Registration No. 0761529 (September 18, 2007) [Injection molding machine] has a gate bush made of a low thermal conductivity material to prevent heat transfer to the mold, and a gate bush to prevent the temperature rise of the mold. And a cooling tube having a structure in which a coolant can be distributed between the mold and the mold is introduced. The main technique is to prevent the heat generated from the nozzle from being transferred directly to the injection molding. There is a difference from the technique to solve the problem caused by the situation where the heat of the means and nozzles are lowered due to conduction.
한편, 분배수단을 거쳐 금형의 스페이스로 공급되어지는 수지의 용융상태를 유지할 수 있도록 분배수단 본체에 형성된 채널에 전열부재가 장착되도록 하는 기술 중 특허공개 제1994-0013783호(1994년07월16일) [전기 가열선이 매립된 사출 성형기의 분배수단]에서는, 분배수단의 상,하면에 전기 가열히타를 매립하되, 분배수단의 상,하면에 삽입홈을 형성하여 이에 상기 전기 가열히타를 삽입하고, 지지홈이 형성된 카버를 상기 삽입된 전기 가열히타에 압압하여 삽입시켜 상기 지지홈이 상기 전기 가열히타를 지지하도록 하고 있으나, 선행기술은 분배수단의 삽입홈 형상 및 상기 삽입홈에 삽입된 전기 가열히타에 정확히 맞게 커버를 제조하기가 어렵고,Meanwhile, Korean Patent Publication No. 194-0013783 (July 16, 1994) discloses that a heat transfer member is mounted on a channel formed in a distribution means main body to maintain a molten state of resin supplied to a mold space through a distribution means. In the dispensing means of the injection molding machine in which the electric heating wire is embedded, the electric heating heater is embedded in the upper and lower surfaces of the distributing means, and the insertion groove is formed in the upper and lower surfaces of the distributing means to insert the electric heating heater. The press groove is formed by inserting a carver formed with a support groove into the inserted electric heating heater so that the support groove supports the electric heating heater, but the prior art has an insertion groove shape of a distribution means and electric heating inserted into the insertion groove. It is difficult to manufacture the cover exactly for Hita,
또 제조된 커버의 지지홈을 분배수단의 삽입홈에 삽입된 전기 가열히타에 맞추어 삽입하는 것 또한 어려우며, 또 삽입하였다 하더라도 일부가 삽입홈에 지나치게 삽입되어 더 들어가거나 일부가 삽입홈에 완전히 삽입되지 못하고 분배수단의 상,하면에서 돌출될 수 있음은 물론, 강제 압압에 의한 삽입 방식에 의하여 상기 전기 가열히타나 커버가 손상될 수 있고, 또 상기 커버가 압압에 의해서만 상기 분배수단에 고정되어 있기 때문에 외부의 충격이나, 특히 전기 가열히타의 열팽창에 의하여 분리 이탈될 수 있으며, 또 분배수단의 삽입홈 형상이 변경될 경우 커버 형상이 변경되어야 하는 문제점이 있었다.In addition, it is also difficult to insert the support groove of the manufactured cover in accordance with the electric heating heater inserted into the insertion groove of the distribution means, and even if it is inserted, some of the cover is too inserted into the insertion groove so that it may not be further inserted or partially inserted into the insertion groove. In addition, the electric heating heater or the cover may be damaged by the insertion method by forceful pressing, and the cover may be protruded from the upper and lower surfaces of the distributing means, and the cover is fixed to the dispensing means only by pressing. There is a problem that can be separated and separated by an external impact, in particular thermal expansion of the electric heater, and the cover shape should be changed when the shape of the insertion groove of the distribution means is changed.
이에 본 발명은 분배수단과 노즐의 잦은 재가열로 인한 에너지 손실 및 재가열에 따른 편중된 과열로 인한 용융수지 변성을 방지하기 위하여 금형과 접하는 노즐 및 외부금형과 접하는 분배수단 각각에 제1 및 제2 단열수단을 도입한 사출시스템을 제공하는 것을 목적으로 한다.Accordingly, the present invention provides a first and second thermal insulation to each of the dispensing means and the dispensing means in contact with the mold and the external mold, in order to prevent melt loss due to energy loss due to frequent reheating of the nozzle and the nozzle and unbalanced overheating due to reheating. It is an object to provide an injection system incorporating a means.
또 본 발명은 상기 제1 및 제2 단열수단이 금속면에 부착된 내화물층으로 이루어져 있어 열전도 차단성능 향상을 기대할 수 있고, 이 경우 내화물층 파손 방지를 위하여 상기 내화물층을 감싸는 외곽보호부가 구비된 형태로 구성한 사출시스템을 제공하는 것을 목적으로 한다.In addition, the present invention is the first and second heat insulating means is made of a refractory layer attached to the metal surface can be expected to improve the heat conduction blocking performance, in this case is provided with an outer protective portion surrounding the refractory layer to prevent breakage of the refractory layer An object of the present invention is to provide an injection system configured in a form.
나아가 본 발명은 상기 내화물층의 부착력 강화를 위하여 금속면에 요철을 형성한 변형예와, 내화물층을 감싸는 외곽보호부 중 외곽의 것에 비하여 내측의 것은 높이를 상대적으로 낮게 하여 내화물층에 파묻히거나 내화물층보다 낮아 금형이나 외부금형과의 접촉을 차단할 수 있어 내화물층 보호와 열전도 저하라는 효과를 얻을 수 있는 변형예와 관련된 사출시스템을 제공하는 것을 목적으로 한다. Furthermore, the present invention is a modification in which the irregularities are formed on the metal surface to strengthen the adhesion of the refractory layer, and the inner one of the outer protective part surrounding the refractory layer is buried in the refractory layer with a relatively low height than the outer one. It is an object of the present invention to provide an injection system related to a modification, which is lower than the refractory layer and can block contact with a mold or an external mold, thereby obtaining an effect of protecting the refractory layer and reducing thermal conductivity.
아울러 본 발명은 분배수단의 항온 유지를 위한 전열부재의 외피가 가요성을 갖는 외피로 이루어져 분배수단 본체의 채널에 대한 투입이 용이하고, 특히 채널 단면이 상협하광 형상으로 이루어져 채널에 투입된 전열부재의 이탈이 방지되며, 또한 전열부재의 외피 단면이 사각형으로 이루어져 가압에 따른 변형의 용이성을 확보하고, 나아가 본체 채널의 형상에 맞게 전열부재를 변형한 후, 전열부재를 본체 채널에 투입하고, 가압하여 결합시킴으로써, 열에 의한 팽창이 발생하더라도 채널로부터 전열부재가 이탈되는 것을 방지한 전열부재의 장착방법을 제공하고, 본체와 전열부재의 결합 후 전열부재의 노출면을 연마하는 평탄화 작업을 수행하여 외관 품질 향상을 기대하고 상부 돌출된 전열부재 외피 부분까지 가열해야 하는 문제를 해결하여 열효율을 높인 전열부재의 장착방법을 제공하는 것을 목적으로 한다.In addition, the present invention is made of a flexible outer shell of the heat transfer member for maintaining the constant temperature of the distribution means is easy to insert into the channel of the distribution means body, in particular the channel cross-section of the heat transfer member injected into the channel is made of Deviation is prevented, and the outer surface of the heat transfer member has a rectangular shape to ensure ease of deformation due to pressure. Furthermore, after the heat transfer member is deformed according to the shape of the main body channel, the heat transfer member is put into the main body channel and pressurized. By providing a mounting method of the heat transfer member that prevents the heat transfer member from being separated from the channel even if expansion by heat occurs, and by performing the planarization operation to polish the exposed surface of the heat transfer member after the combination of the main body and the heat transfer member Expect to improve and solve the problem of heating up the outer part of the heating member An object of the present invention is to provide a method of mounting a heat transfer member having a higher rate.
상기와 같은 목적을 달성하기 위하여 본 발명에 따른 사출시스템은Injection system according to the present invention to achieve the above object is
사출기로부터 공급된 용융수지를 분배하도록 주입구와 배출구를 갖고, 전열부재를 구비한 분배수단; 상기 분배수단의 배출구에 구비된 노즐; 및 상기 노즐과 접하고, 스페이스를 갖는 금형;을 포함하여 이루어지되,Distribution means having an inlet and an outlet for dispensing the molten resin supplied from the injection machine and having a heat transfer member; A nozzle provided at an outlet of the distribution means; And a mold in contact with the nozzle and having a space;
상기 노즐과 금형의 접면에는 제1단열수단이 구비되어 있고, 상기 제1단열수단은 금속면에 형성된 외곽보호부에 의하여 감싸져 있는 내화물층인 것을 특징으로 한다.A first insulating means is provided on a contact surface of the nozzle and the mold, and the first insulating means is a refractory layer wrapped by an outer protective part formed on a metal surface.
또 본 발명에 따른 사출시스템에서 상기 제1단열수단은 상기 노즐 자체에 형성되어 있고, 대안적으로 상기 제1단열수단은 상기 노즐과 상기 금형 사이에 배열된 단열링에 구비된 내화물층으로, 상기 내화물층은 상기 노즐 또는 상기 금형, 또는 이 둘 모두와의 접면에 배열된 것이며, 나아가 상기 분배수단을 감싸는 외부금형을 더 포함하며, 상기 외부금형과 분배수단의 접면에는 제2단열수단이 구비된 것이 바람직하다.In addition, in the injection system according to the present invention, the first insulation means is formed in the nozzle itself, and alternatively, the first insulation means is a refractory layer provided in an insulation ring arranged between the nozzle and the mold. The refractory layer is arranged on a contact surface with the nozzle or the mold, or both, and further includes an outer mold surrounding the dispensing means, and a second insulating means is provided on the contact surface of the outer mold and the distributing means. It is preferable.
아울러 본 발명에 따른 사출시스템에서 상기 분배수단은 개구부를 갖는 채널이 형성되어 있고, 주입구와 배출구를 갖는 본체; 및 상기 본체의 채널에 결합되며, 상기 채널에 투입시 외력을 가하지 않은 상태에서 본체 표면 위로 솟게 되는 가요성(可撓性, flexible) 외피를 포함하는 전열부재;를 포함하여 이루어지는 것이 바람직하다.In addition, the dispensing means in the injection system according to the present invention is formed with a channel having an opening, the main body having an inlet and outlet; And a heat transfer member coupled to the channel of the main body, the heat transfer member including a flexible outer shell that rises above the main body surface without applying an external force upon input into the channel.
여기서, 상기 분배수단 본체의 채널은 단면이 상협하광 형상인 것이 바람직하고, 또 상기 전열부재의 외피는 단면이 사각형인 것이 바람직하다.Here, it is preferable that the channel of the distribution means main body has a cross-sectional light beam shape in cross section, and the outer shell of the heat transfer member has a rectangular cross section.
또 상기 외피 내부에는 전열선이 내장되고, 외피와 전열선 사이에는 충진체가 채워져 있는 것이 바람직하다.In addition, it is preferable that a heating wire is built in the outer shell, and a filler is filled between the outer shell and the heating wire.
한편 상기 분배수단에의 전열부재 장착방법은,On the other hand, the heat transfer member mounting method to the distribution means,
개구부를 갖는 채널이 형성되어 있고, 주입구와 배출구를 갖는 본체, 및 상기 본체의 채널에 결합되며, 상기 채널에 투입시 본체 표면 위로 솟게 되는 가요성(可撓性, flexible) 외피를 포함하는 전열부재를 상호 결합함에 있어,A heat transfer member having a channel having an opening formed therein, the body having an inlet and an outlet, coupled to a channel of the body, the flexible member including a flexible sheath that rises above the body surface upon introduction into the channel. In combining together,
상기 본체 채널의 형상에 맞게 상기 전열부재를 변형한 후, 전열부재를 본체 채널에 투입하고, 가압하여 결합시키는 것을 특징으로 한다. 여기서 상기 본체와 상기 전열부재의 결합 후, 전열부재의 노출면을 연마하여 평탄화 작업을 수행하는 것이 바람직하다.After deforming the heat transfer member in accordance with the shape of the main body channel, the heat transfer member is introduced into the main body channel, characterized in that for coupling by pressing. Here, after the main body and the heat transfer member are coupled, it is preferable to perform a flattening operation by polishing the exposed surface of the heat transfer member.
본 발명에 따른 사출시스템은 금형과 접하는 노즐 및 외부금형과 접하는 분배수단 각각에 제1 및 제2 단열수단을 도입하여 분배수단과 노즐의 잦은 재가열로 인한 에너지 손실 및 재가열에 따른 편중된 과열로 인한 용융수지 변성을 방지할 수 있다.The injection system according to the present invention introduces the first and second thermal insulation means into each of the nozzle contacting the mold and the distribution means contacting the outer mold, resulting in energy loss due to frequent reheating of the distribution means and the nozzle and due to unbalanced overheating due to reheating. Molten resin denaturation can be prevented.
또 본 발명에 따른 사출시스템은 상기 제1 및 제2 단열수단이 금속면에 부착된 내화물층으로 이루어져 있어 열전도 차단성능 향상을 기대할 수 있고, 이 경우 내화물층 파손 방지를 위하여 상기 내화물층을 감싸는 외곽보호부가 구비된 형태로 구성하여 내구성을 높이고, 나아가 상기 내화물층의 부착력 강화를 위하여 금속면에 요철을 형성한 변형예와, 내화물층을 감싸는 외곽보호부 중 외곽의 것에 비하여 내측의 것은 높이를 상대적으로 낮게 하여 내화물층에 파묻히거나 내화물층보다 낮아 금형이나 외부금형과의 접촉을 차단할 수 있어 내화물층 보호와 열전도 저하라는 효과를 얻을 수 있다.In addition, the injection system according to the present invention consists of a refractory layer having the first and second heat insulating means attached to the metal surface can be expected to improve the heat conduction blocking performance, in this case the outer envelope surrounding the refractory layer to prevent breakage of the refractory layer In the form provided with a protective part to increase the durability, and furthermore, the modification of the irregularities formed on the metal surface to strengthen the adhesion of the refractory layer, and the inner one relative to the height of the outer protective portion surrounding the refractory layer relative to the outer It can be lowered so as to be buried in the refractory layer or lower than the refractory layer to block the contact with the mold or the external mold, thereby achieving the effect of protecting the refractory layer and lowering the thermal conductivity.
아울러 본 발명에 따른 사출시스템은 분배수단의 항온 유지를 위한 전열부재의 외피가 가요성을 갖는 외피로 이루어져 분배수단 본체의 채널에 대한 투입이 용이하고, 특히 채널 단면이 상협하광 형상으로 이루어져 채널에 투입된 전열부재의 이탈이 방지되며, 또한 전열부재의 외피 단면이 사각형으로 이루어져 가압에 따른 변형의 용이성을 확보하고, 나아가 본체 채널의 형상에 맞게 전열부재를 변형한 후, 전열부재를 본체 채널에 투입하고, 가압하여 결합시킴으로써, 열에 의한 팽창이 발생하더라도 채널로부터 전열부재가 이탈되는 것을 방지한 전열부재의 장착방법을 제공하고, 본체와 전열부재의 결합 후 전열부재의 노출면을 연마하는 평탄화 작업을 수행하여 외관 품질 향상을 기대하고 상부 돌출된 전열부재 외피 부분까지 가열해야 하는 문제를 해결할 수 있다.In addition, the injection system according to the present invention is made of a flexible outer shell of the heat transfer member for maintaining the constant temperature of the distribution means is easy to insert into the channel of the main body of the distribution means, in particular the channel cross-section is formed in the upper and lower light shape to the channel The separation of the input heat transfer member is prevented, and the outer surface of the heat transfer member is formed in a quadrangle to ensure ease of deformation due to pressure, and further, after the heat transfer member is deformed according to the shape of the main body channel, the heat transfer member is introduced into the main body channel. By providing a method of mounting the heat transfer member which prevents the heat transfer member from being separated from the channel even if expansion by heat occurs by pressurizing and bonding, and the flattening operation of polishing the exposed surface of the heat transfer member after the main body and the heat transfer member are combined. Expect to improve the appearance quality and heat up the outer projecting heating element shell I can solve the problem.
도 1 내지 도 3은 서로 다른 구현예의 단열수단을 구비한 본 발명에 따른 사출시스템의 개략적인 전체 단면도.1 to 3 are schematic cross-sectional schematic views of an injection system according to the invention with thermal insulation means of different embodiments;
도 4는 도 1에 도시된 노즐 및 제1단열수단과 관련된 사시도.4 is a perspective view associated with the nozzle and the first insulating means shown in FIG.
도 5는 각각 본 발명에 따른 사출시스템에서 단열수단과 관련된 노즐 및 패널부재의 부분 절개 사시도 및 단면도들.5 is a partial cutaway perspective view and cross-sectional views, respectively, of the nozzle and panel member associated with the thermal insulation means in the injection system according to the invention.
도 6 및 도 7은 각각 본 발명에 따른 사출시스템에서 변형된 단열수단과 관련된 노즐 및 패널부재의 단면도.6 and 7 are cross-sectional views of nozzles and panel members respectively associated with deformed thermal insulation means in the injection system according to the invention.
도 8은 본 발명에 따른 분배수단의 일 구현예를 나타낸 분해사시도. 8 is an exploded perspective view showing an embodiment of the distribution means according to the present invention.
도 9는 본 발명에 따른 분배수단의 다른 구현예를 나타낸 분해사시도.9 is an exploded perspective view showing another embodiment of the distributing means according to the present invention.
도 10은 도 9의 평면도.10 is a plan view of FIG.
도 11은 도 1의 "A"에 대한 다양한 구현예를 나타낸 도면.FIG. 11 illustrates various implementations of “A” in FIG. 1.
도 12는 다양한 형태의 전열부재를 나타낸 도면.12 is a view showing various types of heat transfer members.
도 13은 도 11 중 (가)에 대한 장착방법을 나타낸 도면.FIG. 13 is a view showing a mounting method of FIG.
이하 첨부된 도면을 참고하여 본 발명을 상세히 설명하도록 한다. Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
각 도면에서 동일한 참조부호, 특히 십의 자리 및 일의 자리 수, 또는 십의 자리, 일의 자리 및 알파벳이 동일한 참조부호는 동일한 기능을 갖는 부재를 나타내고, 특별한 언급이 없을 경우 도면의 각 참조부호가 지칭하는 부재는 이러한 기준에 준하는 부재로 파악하면 된다.In each of the drawings, the same reference numerals, in particular, the tens and ones digits, or the same digits, tens, ones, and alphabets refer to members having the same function, and unless otherwise specified, each reference in the drawings. The member referred to may be regarded as a member conforming to these criteria.
본 발명에 따른 사출시스템의 개략적인 전체 단면도인 도 1에서 확인할 수 있는 바와 같이, 본 발명에 따른 사출시스템은 크게 용융된 합성수지를 공급하는 스크류 타입의 피스톤(미도시됨, 특허공개 제1994-0013783호 참조)이 내장된 사출기 실린더(C)와, 사출기로부터 공급된 용융수지를 분배는 분배수단(D), 이 분배수단의 배출구(13)에 구비된 노즐(N), 그리고 스페이스(M3)를 갖는 금형(M), 그리고 단열수단으로 이루어진다.As can be seen in FIG. 1, which is a schematic cross-sectional view of an injection system according to the present invention, an injection system according to the present invention is a screw-type piston (not shown, patent publication 1994-0013783 which supplies a large molten synthetic resin). An injection machine cylinder (C) with a built-in, a dispensing means (D) for dispensing the molten resin supplied from the injection machine, a nozzle (N) provided at an outlet (13) of the dispensing means, and a space (M3). It has a mold (M) which has, and a heat insulation means.
전열부재를 구비한 사출시스템은 초기 시설비용은 크나 사출압력 다운이 가능하고, 수지통로부분으로 인한 합성수지의 손실이 없으며(이러한 점에서 'runnerless system'으로도 불린다), 사출품질이 높고, 생산성이 큰 사출시스템을 위한 분배수단(D)는 통상적으로 전열부재(20)를 구비하고 있으며, 용융수지 소통을 위한 주입구(12)와 배출구(13)가 구비되어 있으며, 금형(M) 스페이스(M3)에 보다 빠르게 합성수지가 충진되도록 하기 위하여 상기 배출구는 복수 개인 것이 일반적이다.The injection system with heat transfer member has a high initial facility cost, but the injection pressure can be reduced, and there is no loss of synthetic resin due to the resin passage part (also called 'runnerless system' in this respect), and the injection quality is high and the productivity is high. Dispensing means (D) for a large injection system is typically provided with a heat transfer member 20, is provided with an inlet 12 and outlet 13 for the melt resin communication, the mold (M) space (M3) In order to allow the synthetic resin to be filled more quickly, it is common that the outlet is plural.
배출구가 복수일 경우, 배출구(13) 마다 구비되는 노즐(N)에는 도시되지는 않았으나 분배수단과 마찬가지로 전열부재가 구비되는 것이 일반적이며, 또 노즐에는 온도센서가 구비되어 측정된 온도가 하한 기준값 미만인 경우 분배수단 및 노즐의 전열부재를 on시켜 온도를 상한 기준값까지 상승시켜 합성수지의 유동성 및 제품 품질에 문제가 없도록 한다.In the case where there are a plurality of outlets, the nozzle N provided for each outlet 13 is not shown, but the heat transfer member is generally provided like the distribution means, and the nozzle is provided with a temperature sensor so that the measured temperature is lower than the lower limit reference value. In this case, the heating means of the distribution means and the nozzles are turned on to raise the temperature to the upper limit value so that there is no problem in the flowability and product quality of the synthetic resin.
상기 노즐(N)과 접하는 금형(M)은 실 설치시 통상 중력방향을 기준으로 좌우로 분리(이 경우 도 1의 도면은 실재 중력방향을 기준으로 사출 실린더(C)에서 금형(M)까지 수직으로 배열된 것이 아나라 좌우로 배열되어야 한다)되거나 상하로 분리(다대 또는 입평 사출기의 경우)되는데,(따라서 본 명세서에서 '상부' 또는 '하부'라는 용어는 도면을 기준으로 한 지칭이다)The mold (M) in contact with the nozzle (N) is usually separated from the left and right with respect to the gravity direction when the seal is installed (in this case, the drawing of FIG. 1 is vertical from the injection cylinder (C) to the mold (M) based on the actual gravity direction). Are arranged side by side, or separated vertically (in the case of multiple or horizontal injection molding machines) (hence the term 'upper' or 'lower' in this specification is a reference to the drawings).
도 1에서는 스페이스(M3)를 형성하는 고정측에 해당하는 상부캐피티(M1) 및 가동측에 해당하는 하부코어(M2)로 구성된 것으로 도시되어 있다.In FIG. 1, it is illustrated that the upper cavity M1 corresponds to the fixed side forming the space M3 and the lower core M2 corresponding to the movable side.
본 발명에 따른 사출시스템에서 핵심은 단열수단에 해당되는데, 이 중 제1단열수단은 노즐(N)과 금형(M)의 접면에 구비되며, 특히 도 1 및 도 4에 도시된 바와 같이, 제1단열수단(S1)은 노즐(N)의 단부에 치우친 위치의 금속면에 부착된 내화물층(Sc), 보다 상세하게는 노즐 단부의 환형 홈(미지칭 됨)에 충진된 내화물층(Sc)을 포함하여 구성된다. In the injection system according to the present invention, the core corresponds to a heat insulating means, among which the first heat insulating means is provided at the contact surface of the nozzle N and the mold M, and particularly, as shown in FIGS. 1 and 4. The first insulating means S1 includes a refractory layer Sc attached to the metal surface at a position biased to the end of the nozzle N, and more particularly, a refractory layer Sc filled in an annular groove (not shown) at the nozzle end. It is configured to include.
그러나 이러한 제1단열수단(S1)은 도 2에서 확인할 수 있는 바와 같이, 금형(M), 특히 상부 캐비티(M1)와의 접면에 고정 배열된 되는 형태로 변형될 수 있는데, 이는 도 5 내지 도 7에 도시된 바와 같이, 마치 제2단열수단(S2)을 이루는 패널부재(S2a)와 같이 별도의 패널을 도입하고, 이 패널에 내화물층을 형성하는 형태로도 변형될 수 있는데, 그 구현예는 도 2에서 확인할 수 있는 바와 같이, 단열링(R1)의 홈에 형성된 내화물층(Sc)으로, 도 2의 상부 [A], [B], [C]에서와 같이, 상기 단열링(R1)은 각각 상기 내화물층(Sc)이 상기 노즐([A]에 해당) 또는 상기 금형([B]에 해당), 또는 이 둘 모두([C]에 해당)와의 접면에 배열된 것일 수 있다.However, as shown in FIG. 2, the first heat insulating means S1 may be deformed to be fixedly arranged on the contact surface with the mold M, particularly the upper cavity M1, which is illustrated in FIGS. 5 to 7. As shown in FIG. 2, a separate panel may be introduced, such as a panel member S2a constituting the second heat insulating means S2, and may be modified to form a refractory layer on the panel. As can be seen in Figure 2, the refractory layer Sc formed in the groove of the insulating ring (R1), as shown in the upper [A], [B], [C] of Figure 2, the insulating ring (R1) The refractory layer Sc may be arranged at a contact surface with the nozzle (corresponding to [A]), the mold (corresponding to [B]), or both (corresponding to [C]).
본 명세서에서 '금속면'이라 함은 단열수단을 이루는 열전도성인 낮은 부재, 특히 내화물층이 부착되는 금속체의 해당 면을 의미하며, 특히 금속성인 노즐(N), 패널부재(S2a) 또는 단열링(R1)(R2)의 해당 면을 의미한다.As used herein, the term 'metal surface' refers to a corresponding surface of a low conductive member, particularly a metal body, to which a refractory layer is attached, which constitutes a heat insulating means, and in particular, a nozzle N, a panel member S2a, or an insulating ring that is metallic. (R1) means the corresponding surface of (R2).
나아가 도 3에는 상기 하부 단열링(R1)과 금형(M)의 상부 캐비티(M1)의 밀착성(결국은 노즐(N)과 금형의 밀착성을 향상시키기 위함임)을 높이기 위하여 와셔 유사 형상의 판스프링(Rs1)들을 도입하여 수지 누출을 방지하는 것을 도모하고 있는데(이를 위하여 단열링(R1)에는 스프링(Rs1) 수용홈이 형성되어 있다),Furthermore, in FIG. 3, a plate spring having a washer-like shape is formed in order to increase the adhesion between the lower insulation ring R1 and the upper cavity M1 of the mold M (finally, to improve the adhesion between the nozzle N and the mold). Rs1) is introduced to prevent resin leakage (for this, the insulating ring R1 has a spring Rs1 receiving groove formed therein),
도 3의 상부 [A], [B], [C]에서와 같이, 역시 상기 단열링(R1)은 각각 상기 내화물층(Sc)이 상기 노즐([A]에 해당) 또는 상기 금형([B]에 해당), 또는 이 둘 모두([C]에 해당)와의 접면에 배열된 것일 수 있다.As shown in the upper parts [A], [B], and [C] of FIG. 3, the insulation ring R1 also has the refractory layer Sc corresponding to the nozzle ([A]) or the mold ([B], respectively. ], Or both of them (corresponding to [C]).
도 4에서 확인할 수 있는 바와 같이, 상기 노즐(N1)은 상부 플렌지에 노즐 조립 후 회전이 방지되도록 평탄부(N1)를 갖는다.As can be seen in Figure 4, the nozzle (N1) has a flat portion (N1) to prevent rotation after the nozzle assembly on the upper flange.
또 도 1, 도 2, 도 4에서는 노즐(N) 상부와 외부금형(Me) 사이에 별도의 단열링(R2)을 도입하고, 이 상부 단열링(R2)에도 단열수단(S1a)으로 내화물층(Sc)을 도입하였으며(도 4 참조), 또 접촉면적을 줄이기 위하여 접촉면적 축소홈(R2a)을 형성하였고(도 4의 하부에서 단열링을 뒤집어 도시한 원 내 도면 참조), 상부 단열링(R2)에도 판스프링(Rs2)이 구비되어 있어 노즐(N)과 금형(M)의 상부 캐비티(M1)와의 밀착성 배가를 도모하고 있다.In addition, in Fig. 1, Fig. 2 and Fig. 4, a separate insulating ring R2 is introduced between the upper portion of the nozzle N and the outer mold Me, and the refractory layer is also a heat insulating means S1a in the upper insulating ring R2. (Sc) was introduced (see FIG. 4), and in order to reduce the contact area, contact area reduction grooves R2a were formed (see the in-circuit drawing inverted from the bottom of FIG. 4), and the upper insulation ring ( Plate spring Rs2 is also provided in R2), and the adhesive double of the nozzle N and the upper cavity M1 of the metal mold | die M is aimed at.
이러한 단열링(R1)(R2)과 판스프링(Rs1)(Rs2)의 도입으로 분배수단(D)과 노즐(N) 사이, 그리고 노즐(N)과 금형(M)의 상부 캐비티(M1) 사이에 배열되어 미세한 공차에도 불구하고 각 부재(D)(N)(M1) 사이의 밀착성이 스프링의 가압에 의하여 향상되어 수지 유입 통로에서 발생될 수 있는 수지 누설 문제를 원천 차단하고 있다. 이러한 스프링의 도입은 제2단열수단(S2)을 이루는 패널부재(S2a)에도 도입될 수 있다.The introduction of the insulating ring (R1) (R2) and the leaf spring (Rs1) (Rs2) between the distribution means (D) and the nozzle (N), and between the nozzle (N) and the upper cavity (M1) of the mold (M). Despite the minute tolerances, the adhesion between the members (D) (N) (M1) is improved by the pressure of the spring to prevent the resin leakage problem that may occur in the resin inflow passage. The introduction of the spring may also be introduced to the panel member S2a constituting the second insulation means S2.
한편, 사출시스템은 지지와 보호를 위하여 상기 분배수단(D)을 감싸는 외부금형(Me)을 더 포함하는 것이 일반적인데, 상기 노즐(N)과의 접촉 면적을 가능한 줄이기 위하여 상기 외부금형의 하부구조물은 다양한 구조를 취할 수 있다.On the other hand, the injection system is generally further comprises an outer mold (Me) surrounding the distribution means (D) for support and protection, the lower structure of the outer mold in order to reduce the contact area with the nozzle (N) as possible Can take a variety of structures.
상기 외부금형(Me)과 분배수단(D)의 접면, 보다 본질적으로는 사출기 실린더(C) 팁(tip)과 분배수단(D)의 주입구(12) 접면에는 제2단열수단이 구비되는 것이 바람직한데, 이러한 제2단열수단(S2)은 역시 내화물층(Sc)을 포함하는 것이 바람직하고, 내화물층(Sc)은 금속면, 특히 도 1 및 도 5에서 확인할 수 있는 바와 같이, 단열수단의 보다 현실적이고 용이한 도입을 위한 패널부재(S2a)의 금속면에 부착된 내화물층인 것이 바람직하다. 특히 상기 패널부재는 사출기 실린더(C)의 토출공과 분배수단(D) 본체(10)의 주입구(12)와 연통될 수 있도록 중공(미(未)지칭됨)을 갖는 형상인 것이 바람직하고, 당연히 분배수단(D) 본체(10)의 주입구(12) 위치에 배열된다.It is preferable that a second insulation means is provided at the contact surface of the outer mold Me and the distribution means D, more essentially, at the contact surface of the injection hole 12 of the injection cylinder cylinder C tip and the distribution means D. However, it is preferable that the second heat insulating means S2 also include a refractory layer Sc, and the refractory layer Sc is a metal surface, in particular, as can be seen in FIGS. It is preferable that the refractory layer is attached to the metal surface of the panel member (S2a) for realistic and easy introduction. In particular, the panel member is preferably shaped to have a hollow (not specified) so as to be in communication with the discharge hole of the injection cylinder (C) and the injection hole 12 of the distribution means (D) main body 10, of course, Dispensing means (D) is arranged at the position of the injection port 12 of the main body 10.
여기서 '패널부재'라는 표현은 그 어의가 뜻하는 '형상'에 국한된 의미로 해석되지 않아야 하며, 소재와도 무관한 지칭이라 할 수 있고, 이러한 사항은 '단열링'에도 동일하게 적용된다.The expression 'panel member' is not to be construed as a meaning limited to 'shape' meaning the meaning, and it can be referred to as a material irrelevant, and the same applies to the 'insulation ring'.
그러나 이러한 제2단열수단은 사출기와 연결된 부품을 노즐 형태로 하고, 이 노즐에 도입되는 형태로 변형될 수 있다.(통상 '노즐 로케이터(C1)'라는 부품이 실린더(C)와 분배수단(D) 본체(10)의 주입구(12)연결을 위하여 사용되며, 사출기 실린더(C) 단부와 외부금형(Me) 상부에는 로케이트링(C2)이 배열되는데, 사출기의 일부를 이루는 노즐 로케이터와 외부금형이 접하며, 이때 제2단열수단은 이 노즐 로케이터와 분배수단 사이에 위치하게 될 것이며, 각 구성요소는 연통되는 용융 수지 통로를 갖는다).However, the second heat insulating means has a part connected to the injection molding machine in the form of a nozzle, and can be deformed into a shape introduced into the nozzle. (A part called 'nozzle locator C1' is usually a cylinder C and a distribution means D. It is used to connect the injection hole 12 of the main body 10, the locator ring (C2) is arranged at the end of the injection cylinder (C) and the upper mold (Me), the nozzle locator and the outer mold forming a part of the injection molding machine A second insulating means will be located between the nozzle locator and the dispensing means, each component having a molten resin passageway in communication therewith).
이상의 제1 또는 제2 단열수단(S1)(S2), 또는 이들 모두는 특히 단열성능이 우수한 지르코늄 계열의 세라믹이 사용될 수 있고, 해당 금속면에의 세라믹 부착은 공지의 용사(溶射, thermal spraying) 공법을 사용할 수 있다.The above-mentioned first or second heat insulating means (S1) (S2), or both of them, may be used in particular a zirconium-based ceramic having excellent heat insulating performance, the ceramic adhesion to the metal surface is known thermal spraying (溶 射, thermal spraying) The method can be used.
나아가 상기 내화물층(Sc)은 금속면에 형성된 외곽보호부에 의하여 감싸여 보호되는 것이 바람직한데, 이는 앞서 언급한 바와 같이 내구성이 약하여 파손되기 쉬운 세라믹이 유통, 장착, 사용 중에 파손되는 것을 방지하기 위한 것이다.Furthermore, the refractory layer Sc is preferably wrapped and protected by an outer protective part formed on the metal surface, which is to prevent the fragile ceramics from being damaged during distribution, mounting and use as mentioned above. It is for.
이를 보다 구체적으로 살펴보면 도 4 및 도 6의 (가)에서와 같이, 노즐(N)의 하단부는 제1단열수단(S1)을 이루는 내화물층(Sc)에 대하여 상하 외곽보호부(Sr1)(Sr2) 또는 상하 외곽보호부와 아울러 중간 외곽보호부(Sr3)로 구성될 수 있고, 상기 외곽보호부(Sr1)(Sr2)(Sr3) 사이에 위치하는 내화물층(Sc)이 용사 공법에 의하여 형성될 경우 추가적으로 평탄화를 위한 연마 공정을 거치는 것이 바람직하다.In more detail, as shown in FIGS. 4 and 6 (a), the lower end of the nozzle N has upper and lower outer protection parts Sr1 and Sr2 with respect to the refractory layer Sc forming the first heat insulating means S1. Or upper and lower outer protective parts and intermediate outer protective parts Sr3, and the refractory layer Sc located between the outer protective parts Sr1, Sr2, and Sr3 may be formed by a thermal spraying method. In this case, it is preferable to go through a polishing process for planarization.
다음으로 도 5의 [가] [나] [다] [라] ([다] 및 [라]는 각각 같은 형태의 패널부재에 대한 단면도 및 부분 절개 사시도의 관계인데, [라]의 부분 절개 사시도에서는 내화물층이 형성되지 않은 형태로 도시되어 있다)에 도시된 바와 같이, 제2단열수단(S2)을 이루는 패널부재(S2a) 역시 다양한 외곽보호부(Sr1)(Sr2)(Sr3)를 구비하고 있으며, [나] 및 [다]에 도시된 바와 같이, 각 상부(도 1의 설치상태를 기준으로 보면 '하부'에 해당하나, 도 5를 기준으로 상하를 구분하기로 한다) 외곽보호부의 단부가 첨단부를 이루는 것이 금속성 패널부재와 분배수단(D) 본체(10) 상면의 접촉 면적을 가능한 줄이는 기능을 할 수 있다.Next, [a], [b], [d], [d] (d) and [d] of FIG. 5 are relations between a cross-sectional view and a partially cut perspective view of a panel member having the same shape, respectively. As shown in FIG. 5, the refractory layer is not formed), the panel member S2a constituting the second insulation means S2 also includes various outer protection parts Sr1, Sr2, and Sr3. And, as shown in [b] and [c], each upper portion (corresponding to the 'lower' based on the installation state of Figure 1, but will be divided into the upper and lower, based on Figure 5) the end of the outer protective portion Forming the tip portion may function to reduce as much as possible the contact area between the metallic panel member and the upper surface of the main body 10 of the distribution means (D).
또 도 5의 [가] [나] [다] [라]에서와 같이, 패널부재(S2a)의 측면(분배수단(D) 본체(10) 상면과 접촉하는 부분)에도 내화물층을 도입하기 위한 환형 홈을 형성하는 형태로 할 수 있고, 이 경우 [다] 및 [라]에 도시된 바와 같이, 각 외곽보호부가 첨단부를 갖는 형태인 것이 바람직하고, 나아가 내화물층 파손에 문제가 없는 한도에서 [다] 및 [라]에서와 같이, 상부 내측 외곽보호부(Sr1)는 내화물층(Sc)에 파묻히는 형태로 하여 단열성능 향상에 기여할 수 있다.In addition, as shown in [a], [b], [d], and [d] of FIG. 5, the refractory layer is also introduced to the side surface of the panel member S2a (the part contacting the upper surface of the main body 10 of the distribution means D). It can be in the form of forming an annular groove, and in this case, as shown in [D] and [D], it is preferable that each outer protective part has a form having a tip, and furthermore, as long as there is no problem in breaking the refractory layer. As shown in [C] and [D], the upper inner outer protective part Sr1 may be buried in the refractory layer Sc, thereby contributing to the improvement of thermal insulation performance.
다음으로 단열성 향상과 관련하여 도 6에서, [가]에는 노즐(N)의 중간 외곽보호부(Sr3)가 내화물층(Sc)에 파묻히는 형태의 변형예가 도시되어 있고, [나]에는 패널부재(S2a)의 중간 외곽보호부(Sr3)가 내화물층(Sc)에 파묻히는 형태(상부 내측 외곽보호부(Sr1) 역시)의 변혀예가 도시되어 있다.Next, in connection with the improvement of thermal insulation in FIG. 6, [a] a modification of the form in which the intermediate outer protective part Sr3 of the nozzle N is buried in the refractory layer Sc is shown, and [b] is a panel member. A variation example of the form in which the middle outer protective part Sr3 of S2a is buried in the refractory layer Sc (also the upper inner outer protective part Sr1) is shown.
이어서 도 7에서, [가]에는 노즐(N)의 환형홈에 미세 요철(Sp)을 형성하여 부착된 내화물층(Sc)의 결합력 향상에 기여할 수 있도록 한 변형예가 도시되어 있고, [나]에는 패널부재(S2a)의 환형홈(특히 외곽 환형홈)에 역시 미세 요철(Sp)을 형성하여 부착된 내화물층(Sc)의 결합력 향상에 기여할 수 있도록 한 변형예가 도시되어 있다.Subsequently, in FIG. 7, [A] shows a modification in which fine concavo-convex Sp is formed in the annular groove of the nozzle N so as to contribute to the improvement of the bonding force of the refractory layer Sc attached thereto. A modified example is shown in which an annular groove (particularly, an outer annular groove) of the panel member S2a may also form fine unevenness Sp to contribute to improving the bonding force of the refractory layer Sc attached thereto.
이러한 미세 요철(Sp)은 강산 또는 강염기 등과 같은 화공약품을 이용한 공지의 타겟 부식 가공 공정을 통하여 얻을 수 있다.Such fine unevenness (Sp) can be obtained through a known target corrosion processing process using chemicals such as strong acids or strong bases.
또 도 7의 [다]에는 부식에 의하여 가공되어 중간 확대 원 내에 비하여 좌측 확대 원내의 상부 중간 외곽보호부(Sr3)가 낮아진 변형예가 도시되어 있으며, 이 경우 단열성 향상을 기대할 수 있다.7 shows a modified example in which the upper middle outer protection portion Sr3 in the left enlarged circle is lower than that in the middle enlarged circle, which is processed by corrosion, and in this case, improved thermal insulation can be expected.
이상의 외곽보호부의 개념 및 내화물층 결합력 강화 수단은 상기 단열링(R1)(R2)에도 동일하게 적용될 수 있다.The concept of the outer protective portion and the refractory layer bonding force reinforcing means can be equally applied to the heat insulation ring (R1) (R2).
다음으로 도 1 및 도 8 이하를 참고하여 본 발명에 따른 사출시스템의 또 다른 핵심을 이루는 분배수단(D)의 전열부재(20)를 살펴보도록 한다.Next, with reference to Figures 1 and 8 to look at the heat transfer member 20 of the distribution means (D) to form another core of the injection system according to the present invention.
본 발명에 따른 사출시스템에서 전열부재를 구비한 분배수단은 크게 본체 및 전열부재로 이루어진다.In the injection system according to the present invention, the dispensing means having the heat transfer member is mainly composed of a main body and a heat transfer member.
각 구성에 대해 살펴보면, 상기 본체(10)는 개구부(111)를 갖는 채널(11)이 형성되어 있고, 주입구(12)와 배출구(13)를 포함하여 이루어진다. 여기서, 상기 주입구(12)와 배출구(13)는 연통되어 있고, 상기 채널은 단면이 상협하광 형상인 것이 바람직하다.Looking at each configuration, the main body 10 is formed with a channel 11 having an opening 111, and comprises an injection port 12 and the discharge port (13). Here, the inlet 12 and the outlet 13 is in communication with each other, it is preferable that the channel has a cross-beam shape in the cross-section.
그리고 통상 분배수단의 주입구는 1개이고, 배출구는 2개이나, 본 발명에서는 배출구가 4개인 것으로 도시하였으나, 이는 하나의 예로써, 이에 한정하지 않고 성형품의 크기나 형상 등을 고려하여 다양하게 변경 및 변경될 수 있는 것이다.In addition, the inlet port of the distribution means is usually one, two outlets, but in the present invention is shown as four outlets, this is one example, not limited to this in various ways in consideration of the size and shape of the molded product, etc. It can be changed.
그리고 도 8에서와 같이 본체(10)의 채널(11)이 상면에 형성되거나, 또는 도 9에서와 같이 본체(10)의 채널(11)이 상면 및 하면 모두에 형성될 수 있고, 수지의 용융상태를 유지하기 위한 분배수단 본체(10)의 가열을 위하여 가능한 배출구(13)가 형성된 하면에 형성되는 것이 바람직하다. 보다 바람직하기로는 본체(10)의 상하면 모두에 형성되는 것이 좋다.8, the channel 11 of the main body 10 may be formed on the upper surface, or the channel 11 of the main body 10 may be formed on both the upper and lower surfaces as shown in FIG. 9, and the resin may be melted. It is preferable that the discharge port 13 is formed on the bottom surface of the dispensing means main body 10 for maintaining the state. More preferably, the upper and lower surfaces of the main body 10 may be formed.
그러나 본 발명에 따른 분배수단은 본체(10)에 형성되는 채널(11) 위치에 의하여 보호범위가 제한되는 것은 아니며, 수지를 용융상태로 공급실린더(C)에서 금형(M, 도 1 참조)으로 전달-중계-분배하는 분배수단의 기능을 충족하는 어떠한 형태의 전열부재(20) 배열도 배제하지 않는다.However, the distribution means according to the present invention is not limited to the protection range by the position of the channel 11 formed in the main body 10, the resin in the molten state from the supply cylinder (C) to the mold (M, see Fig. 1) It does not exclude the arrangement of the heat transfer member 20 in any form that satisfies the function of the delivery-relay-distribution distribution means.
한편, 상기 본체(10)의 채널(11) 형상은 도 8에서와 같이, 가장자리를 지나가는 형태로 형성될 수 있으나, 전열부재(20)의 열효율은 극대화하고, 열손실은 최소화하기 위하여서는 도 9 및 도 10에서와 같이, 배출구(13)를 에워싸는 형태로 형성되는 것이 가장 바람직하다.On the other hand, the shape of the channel 11 of the main body 10 may be formed in the form passing through the edge, as shown in Figure 8, in order to maximize the thermal efficiency of the heat transfer member 20, and to minimize the heat loss of Figure 9 And as shown in Figure 10, it is most preferably formed in a shape surrounding the outlet (13).
그리고 연속 또는 불연속적인 채널(11)이 모두 가능하나 제조 용이성과 전열부재(20)의 장착 용이성을 고려하면 연속적인 채널(11) 형상이 가장 바람직하며, 상기 본체(10) 상면 및 하면, 즉 주입구(12) 측의 상면과 배출구(13) 측의 하면에 각각 형성된 채널(11)의 형상이 동일한 것이 바람직하나, 이러한 바람직한 실시 태양에 의하여 본 발명이 제한되는 것은 아니다.In addition, both continuous and discontinuous channels 11 are possible, but considering the ease of manufacture and ease of mounting of the heat transfer member 20, the shape of the continuous channel 11 is most preferable, and the upper and lower surfaces of the main body 10, that is, the injection hole Although the shape of the channel 11 formed in the upper surface of the (12) side and the lower surface of the discharge port 13 side, respectively is preferable, this invention is not restrict | limited by this preferable embodiment.
상기 전열부재(20)는 상기 본체(10)의 채널(11)에 결합되며, 상기 채널(10)에 투입시 외력을 가하지 않은 상태에서 본체(10) 표면 위로 솟게 되는 가요성(可撓性, flexible) 외피(21)를 포함하여 이루어진다.The heat transfer member 20 is coupled to the channel 11 of the main body 10, the flexibility that rises above the surface of the main body 10 without applying an external force when the channel 10 is applied, flexible) shell 21.
여기서, 상기 외피(21)는 단면이 사각형인 것이 바람직하고, 또 상기 외피(21) 내부에는 전열선(22)이 내장되고, 외피(21)와 전열선(22) 사이에는 충진체(23)가 채워져 있는 것이 바람직하다.Here, the outer shell 21 preferably has a rectangular cross section, and a heating wire 22 is embedded in the outer shell 21, and a filler 23 is filled between the outer shell 21 and the heating wire 22. It is desirable to have.
상기 가요성 외피(21)는 열전도성은 좋으면서도 휨 변형성이 우수한 소재를 의미하며, 통상 구리 또는 알루미늄 소재를 채용하나, 기타 적용 가능한 합금이나 합성수지 소재를 포괄하는 개념이다.The flexible shell 21 refers to a material having good thermal conductivity and excellent warpage deformation, and generally adopts copper or aluminum, but is a concept encompassing other applicable alloy or synthetic resin materials.
그리고 상기 전열부재(20)가 상기 채널(10) 투입시 외력을 가하지 않은 상태에서 본체(10) 표면 위로 솟게 된다는 의미는 상기 전열부재(20)를 상기 채널(11) 형상에 맞게 변형한 후 채널(11) 상부에 위치시킬 경우 상기 전열부재(20)가 전부 또는 일부 삽입되나 별다른 외력을 가하지 않을 경우(즉, 이후 프레스 등의 기계를 이용한 가압 투입 과정을 거치지 않은 경우) 상기 전열부재(20)의 상부가 채널(11) 주위인 본체(10) 표면 위로 돌출된 상태로 머문다는 것을 의미한다.(도 13의 (A) -> 도 13의 (B) 참조)In addition, the heat transfer member 20 rises above the surface of the main body 10 in the state in which the external force is not applied when the channel 10 is inserted, after deforming the heat transfer member 20 to the shape of the channel 11. (11) When the upper portion of the heat transfer member 20 is inserted in whole or in part but does not apply a special external force (that is, after the pressurization process using a machine, such as a press after the heat transfer member 20) Means that the top of the stays protruding over the surface of the body 10 around the channel 11 (see Fig. 13A-> Fig. 13B).
이후 상기 전열부재(20)를 가압 투입하고 채널(11) 단면 형상에 맞게 상기 전열부재(20)가 변형되도록 하는 공정을 통하여 상기 전열부재(20)의 완벽한 투입과, 변형 투입을 통하여 사용 중 가열 팽창으로 인한 전열부재의 이탈방지, 그리고 상기 전열부재(20)와 채널(11) 주변 벽체의 접촉면적 확대를 통한 열전도성 향상이라는 기능이 달성된다.Thereafter, the heat transfer member 20 is pressurized and the heat transfer member 20 is deformed to fit the channel 11 cross-sectional shape. A function of preventing thermal separation of the heat transfer member due to expansion and improving thermal conductivity through expansion of the contact area between the heat transfer member 20 and the wall around the channel 11 is achieved.
그러나 조립 용이성을 고려하면 도 11에 도시된 바와 같이, 상기 전열부재(20)가 채널(11)에 보다 쉽게 삽입되도록 상기 본체(10)의 채널(11) 높이 보다 상기 전열부재(20)의 높이가 더 높은 것이 바람직하고, 이러한 조건을 충족하면서도 도 11에 도시된 바와 같이, 다양한 채널 형상과 전열부재 형상을 가질 수 있다.(나), (라) 해당)However, considering the ease of assembly, as shown in FIG. 11, the height of the heat transfer member 20 is higher than the height of the channel 11 of the main body 10 so that the heat transfer member 20 is more easily inserted into the channel 11. Is preferably higher, and may satisfy various conditions and have various channel shapes and heat transfer member shapes as shown in FIG. 11.
더 나아가 보다 본질적으로는 상기 채널(11)의 단위체적 보다 상기 전열부재(20)의 단위체적이 더 크거나 같다 라는 조건 또한 충족하는 의미인 것이 더 바람직하다.Furthermore, it is more preferable to essentially satisfy the condition that the unit volume of the heat transfer member 20 is larger than or equal to the unit volume of the channel 11.
한편, 상기 전열부재(20) 또는 외피(21)와 관련하여 형상은 단면의 외형이 타원형, 원형, 반원형, 또는 삼각형 이상(예로, 도 12의 (가) 사다리꼴 사각형, 도 12의 (나) 육각형 등)의 다각형 등을 의미하며, 무엇보다도 본 발명에서는 단면의 외형이 사각형인 것이 바람직하고, 여기서 사각형이라 함은 정사각형, 직사각형, 사다리꼴 형상을 포괄하는 개념이다(그러나 별다른 가공 없이 본체 채널에 쉽게 투입할 수 있는 상대적인 외형과 외형 크기를 갖는 것이 바람직하다).On the other hand, in relation to the heat transfer member 20 or the shell 21, the shape of the cross-section is elliptical, circular, semi-circular, or triangular or more (for example, (a) trapezoid square of Figure 12, (b) hexagon of Figure 12) Etc.), and above all, in the present invention, it is preferable that the shape of the cross section is a quadrangle, wherein the quadrangular is a concept encompassing square, rectangular, and trapezoidal shapes (but easily added to the main body channel without any additional processing). It is desirable to have relative appearance and appearance size that can be achieved).
그리고 상기 본체(10)의 채널(10)은 단면이 상협하광 형상이라고 함은 채널(11)에 투입되어 채널(11) 형상에 맞게 변형된 전열부재(20)가 개구부(111) 측으로 이탈되는 것이 방지되는 임의의 형상을 의미하나, 가공 용이성을 위하여 채널의 단면 형상은 '사다리꼴' 형상인 것이 바람직하며, 여기서 사다리꼴 형상이라 함은 상하 두 변(邊)이 길이 차이를 가져 장변(長邊)과 단변(短邊)을 이루는 임의의 형상을 지칭한다(도면과 달리 대칭성을 갖지 않아도 무방하다).In addition, the channel 10 of the main body 10 is referred to as a cross-beam shape in which the cross section is inserted into the channel 11 so that the heat transfer member 20 deformed to fit the channel 11 shape is separated from the opening 111 side. It means any shape to be prevented, but for ease of processing, the cross-sectional shape of the channel is preferably a trapezoidal shape, where the trapezoidal shape has a length difference between two upper and lower sides and a long side. It refers to an arbitrary shape which forms a short side (it may not have symmetry unlike drawing).
그리고 상기 충진체(23)의 도입은 비싼 재료(외피에 사용되는 금속(구리 등) 등)의 소모량을 줄이는 것에 일차적인 목적이 있고, 외피(21)가 전도체인 경우 전열선(22)의 전기가 외피(21)로 전달되는 것을 차단하면서도 열전도성은 좋은 소재인 것이 바람직하고, 그 예로는 세라믹 소재의 것이 사용될 수 있다.And the introduction of the filler 23 is primarily intended to reduce the consumption of expensive materials (such as metal (copper, etc.) used for the outer shell), when the shell 21 is a conductor, the electricity of the heating wire 22 It is preferable that the thermal conductivity while blocking the transfer to the shell 21 is a good material, for example, a ceramic material may be used.
상기와 같은 구성으로 본 발명에 따른 전열부재의 장착방법은, 상기 본체(10) 채널(11)의 형상에 맞게 상기 전열부재(20)를 변형한 후, 상기 전열부재(20)를 상기 본체(10)의 채널(11)에 투입하고, 가압하여 결합시키게 된다. 여기서, 상기 본체(10)와 상기 전열부재(20)의 결합 후, 상기 전열부재(20)의 노출면을 연마하여 평탄화 작업을 수행하는 것이 바람직하다.In the above-described configuration, the method of mounting the heat transfer member according to the present invention includes deforming the heat transfer member 20 to conform to the shape of the main body 10 channel 11, and then transfers the heat transfer member 20 to the main body. It is put in the channel 11 of 10), it is combined by pressing. Here, after coupling the body 10 and the heat transfer member 20, it is preferable to perform a flattening operation by polishing the exposed surface of the heat transfer member 20.
도 13을 참조하여 좀 상세히 장착방법에 대해 살펴보면, 전열부재(20)를 채널(11) 형상에 맞게 변형하고, 채널(11)의 개구부(111) 측으로 끼워 넣은 다음,(도 13의 (A)->(B)) 본체(10)의 채널(11) 형성면 위로 돌출된 외피(21)를 프레스와 같은 기계를 이용하여 가압하면 전열부재(20)가 채널(11)에 보다 완벽하게 투입되면서(도 13의 (B)->(C) 또는 (D)) 채널(11) 단면 형상에 맞게 전열부재(20), 특히 가요성 외피(21)가 변형되므로 전열부재(20)의 이탈이 방지되며, 변형된 외피(21)는 가능한 전열부재(20)가 본체(10)의 채널(11)을 꽉 채우는 형태인 것이 바람직하다.Looking at the mounting method in detail with reference to Figure 13, the heat transfer member 20 is deformed to fit the shape of the channel 11, and inserted into the opening 111 side of the channel 11, (FIG. 13A) (B)) When the outer shell 21 protruding from the channel 11 forming surface of the main body 10 is pressed using a machine such as a press, the heat transfer member 20 is more fully introduced into the channel 11. ((B)-> (C) or (D) of FIG. 13), since the heat transfer member 20, particularly the flexible shell 21, is deformed to match the channel 11 cross-sectional shape, the separation of the heat transfer member 20 is prevented. The deformed sheath 21 is preferably in the form in which the heat transfer member 20 fills the channel 11 of the body 10 tightly.
또 경우에 따라서 상기 채널(11) 외부로 돌출된 외피(21)를 연마하는 평탄 공정이 더 요구될 수 있다.((도 13의 (D)) 여기서 가압 변형된 전열부재(20)가 본체(10)의 채널(11)을 '채운다'라는 의미는 빈틈없이 완벽하게 충진하는 것을 의미하지는 않으며(전열부재 변형을 위한 프레스 압력과 외피 소재의 경도 등에 따라 차이가 발생하겠지만, 특히 채널 하부 양 모서리 부분에 꼭 맞게 전열부재 외피를 변형한다는 것은 분배수단 본체나 전열부재 파손 등의 문제 등을 고려하면 비용대비 효율성 면에서 부적절하다) 가공 완료된 전열부재(20)가 분배수단 사용 중에 본체(10)에서 분리되지 않으면서, 사후 공정(예: 전열부재 외피 노출면 연마에 의한 평탄작업)이 불필요하거나 최소화될 수 있도록 외형상으로 돌출된 전열부재(20)의 외피(21)가 가능한 없다는 정도를 충족함을 의미하고, 이러한 의미에서 '전열부재의 체적이 채널의 체적 보다 더 크거나 같다'라는 의미 또한 엄밀한 것이라기 보다는 미세한 공차 발생을 전제한 개념에 가깝다.In some cases, a flattening process for polishing the outer shell 21 protruding out of the channel 11 may be further required. ((D) of FIG. 13) Here, the heat-transfer member 20 that is pressure-deformed is a main body ( 'Filling' the channel 11 of 10) does not mean filling completely without gaps (the difference may occur depending on the press pressure for the deformation of the heat transfer member and the hardness of the shell material, etc.) Deformation of the heat-transfer member shell so as to fit in is not appropriate in terms of cost-effectiveness in consideration of problems such as distributing means body or heat transfer member breakage). The outer shell 21 of the heat-transfer member 20 protruding in shape is not possible so that post-processing (e.g., flattening by polishing the heat-transfer member shell exposed surface) is unnecessary or minimized. In this sense, the meaning of 'the volume of the heat transfer member is greater than or equal to the volume of the channel' is also close to the concept of assuming a slight tolerance rather than a strict one.
따라서 상기 언급한 상황과 조건을 모두 고려하면 전열부재(20)의 단면 형상은 사각형이고, 채널(11)은 단면 형상이 장변(長邊)과 단변(短邊)의 길이 차이가 최소화된 상협하광 형상의 사다리꼴(도 11의 (가)에 도시된 사다리꼴 채널 형상은 장변과 단변의 비율을 이해를 돕기 위하여 과장되게 도시함)인 것이 가장 바람직하다.Therefore, considering all of the above-mentioned conditions and conditions, the cross-sectional shape of the heat transfer member 20 is a quadrangle, and the channel 11 has a cross-sectional shape where the cross-sectional shape minimizes the difference in length between the long side and the short side. Most preferably, the trapezoid of the shape (the trapezoidal channel shape shown in Fig. 11A) is exaggerated to help understand the ratio of the long side to the short side.
그러나 본 발명은 채널(11)에 투입이 용이하고 프레스와 같은 장치로 변형되면서 채널(11)을 충진할 수 있도록 채널 높이보다 높고 가능한 채널(11) 체적 보다 큰 체적을 갖는 임의 형상의 전열부재(20)와, 가압 변형 충진된 전열부재(20)의 이탈을 방지하는 임의 형상의 채널(11)을 배제하지 않는다.However, the present invention is a heat transfer member of any shape having a volume higher than the channel height and larger than the possible volume of the channel 11 to fill the channel 11 while being easily introduced into the channel 11 and transformed into a device such as a press. 20 and the channel 11 of any shape that prevents the pressure deformation filled heat transfer member 20 from being separated.
이러한 본체(10)의 채널(11)과 전열부재(20) 외피(21)의 상대적인 형상 및 치수 특성을 통하여 본체(10)와 전열부재(20) 결합부 평탄화 작업을 위하여 별도로 부족한 노출 틈새를 충진 물질(예: 석고류)을 이용하여 채우는 작업이 불필요하게 된다. 그리고 노출된 전열부재(20) 외피(21)의 연마가공은 무엇보다도 외관 품질 향상을 위한 것이며, 그 외 본체(10)와 접촉하지 않고 상부에 돌출된 전열부재(20)의 외피(21) 부분까지 가열(불필요한 가열 부분에 해당되어 열손실이 발생된다)해야 하는 문제를 해결하여 열효율을 높이기 위한 것이다.Through the relative shape and dimensional characteristics of the channel 11 of the main body 10 and the outer shell 21 of the heat transfer member 20, filling gaps that are insufficient for flattening the joints of the main body 10 and the heat transfer member 20 are filled. Filling with materials (eg gypsum) becomes unnecessary. And the polishing process of the exposed heat transfer member 20, the outer shell 21 is for improving the appearance quality above all, part of the outer shell 21 of the heat transfer member 20 protruding thereon without contacting the main body 10. It is to improve the thermal efficiency by solving the problem of heating until (the heat loss occurs due to unnecessary heating part).
한편, 본 발명에 따른 분배수단 본체(10)를 제작하는데 있어 주입구(12)와 배출구(13)는 본체(10) 상하면에 각각 천공 작업을 통해 형성할 수 있고, 상기 주입구(12)와 배출구(13)가 상호 연통되도록 연결하는 관통홀(14)은 본체(10)를 두 분체로 나누고 각 분체에 단면이 반원 형태인 홈을 형성하고, 두 분체가 상호 결합되면서 각 홈이 상기 관통홀(14)을 이룰 수 있도록 형성할 수 있으나, 두 분체의 접면에 대한 밀폐성을 보장하기가 어려워, 본 발명에서는 도 8 내지 도 10 및 도 1에서와 같이 대각선의 마주보는 두 외벽 중 하나의 외벽에서부터 최초 배출구(13)를 지나 대각선에 위치한 배출구(13)의 형성 위치까지 천공하고, 또 인접한 대각선의 마주보는 두 외벽 또한 마찬가지로 천공함으로써, 대각선에 위치한 두 배출구(13)와 상기 주입구(12)가 상호 연통되도록 관통홀(14)을 형성하고, 천공된 입구에 밀폐부재(15)를 끼워 넣어 유로[주입구-관통홀-배출구]에 대한 밀폐성을 보장하도록 하였다.On the other hand, in manufacturing the distribution means main body 10 according to the present invention, the injection hole 12 and the discharge port 13 can be formed through the drilling operation on the upper and lower surfaces of the main body 10, respectively, the injection hole 12 and the discharge port ( The through hole 14 connecting 13 to communicate with each other divides the main body 10 into two powders, and forms a groove having a semicircular cross section in each powder, and each groove is connected to each other through the through holes 14. ), But it is difficult to ensure the sealing property of the two surfaces of the contact, in the present invention, as shown in Figs. 8 to 10 and 1 in the present invention the first outlet from one of the outer wall of the two facing diagonally (13) and then drilled to the formation position of the outlet 13 located diagonally, and also the two facing outer walls of the adjacent diagonally similarly, so that the two outlets 13 and the inlet 12 located diagonally communicate with each other.Forming a tonghol 14, a perforated inlet channel fitted to the closure member (15) to ensure the tightness of the [inlet-outlet-through holes.
여기서, 상기 주입구(12)와 배출구(13)를 먼저 형성하고, 이후에 관통홀(14)을 형성할 수도 있으나, 제작의 용이성 차원에서는 상기 관통홀(14)을 먼저 형성하고, 이후에 상기 주입구(12)와 상기 배출구(13)는 상기 관통홀(14)과 연통되도록 천공 형성하는 것이 바람직하다.Here, the injection hole 12 and the discharge hole 13 may be formed first, and then the through hole 14 may be formed thereafter. However, the through hole 14 may be formed first, and the injection hole may be formed after the ease of manufacture. 12 and the outlet 13 is preferably formed to be perforated to communicate with the through hole (14).
상기와 같은 구성의 장착방법으로 이루어진 분배수단을 도 1에서와 같이, 금형(M)에 적용하여, 용융상태의 수지가 실린더(C)를 통해 본체(10)의 주입구(12)로 공급되면, 배출구(13)를 거치면서 전열부재(20)에 의하여 용융상태가 유지되고, 상부 및 하부 금형(M)이 이루는 스페이스(M3)에 충진되어 성형이 이루어지게 된다.As shown in FIG. 1, when the dispensing means having the mounting method of the above configuration is applied to the mold M, the molten resin is supplied to the injection hole 12 of the main body 10 through the cylinder C. The molten state is maintained by the heat transfer member 20 while passing through the outlet 13, and is filled in the space M3 formed by the upper and lower molds M to form the mold.
이상의 설명에서 용사공법, 평탄화(연마), 사출기 종류에 따른 구체 구조 등과 관련된 통상의 공지된 기술을 생략되어 있으나, 당업자라면 용이하게 이를 추측 및 추론하고 재현할 수 있다.In the above description, the conventionally known techniques related to the thermal spraying method, the planarization (polishing), the concrete structure according to the type of injection machine, etc. are omitted, but those skilled in the art can easily infer, infer, and reproduce them.
또 이상에서 본 발명을 설명함에 있어 첨부된 도면을 참조하여 특정 형상과 구조를 갖는 사출시스템을 위주로 설명하였으나 본 발명은 당업자에 의하여 다양한 수정, 변경 및 치환이 가능하고, 이러한 수정, 변경 및 치환은 본 발명의 보호범위에 속하는 것으로 해석되어야 한다.In addition, in the above description of the present invention, the injection system having a specific shape and structure has been described with reference to the accompanying drawings, but the present invention can be variously modified, changed and replaced by those skilled in the art. It should be interpreted as falling within the protection scope of the present invention.

Claims (6)

  1. 사출기로부터 공급된 용융수지를 분배하도록 주입구와 배출구를 갖고, 전열부재를 구비한 분배수단;Distribution means having an inlet and an outlet for dispensing the molten resin supplied from the injection machine and having a heat transfer member;
    상기 분배수단의 배출구에 구비된 노즐; 및A nozzle provided at an outlet of the distribution means; And
    상기 노즐과 접하고, 스페이스를 갖는 금형;A mold in contact with the nozzle and having a space;
    을 포함하여 이루어지되,Including but not limited to,
    상기 노즐과 금형의 접면에는 제1단열수단이 구비되어 있고,A first insulating means is provided on the contact surface of the nozzle and the mold,
    상기 제1단열수단은 금속면에 형성된 외곽보호부에 의하여 감싸져 있는 내화물층인 것을 특징으로 하는 사출시스템.The first heat insulating means is an injection system, characterized in that the refractory layer wrapped by the outer protective portion formed on the metal surface.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 제1단열수단은 상기 노즐 자체에 형성되어 있는 것을 특징으로 하는 사출시스템.The first insulating means is formed in the nozzle itself, characterized in that the injection system.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 제1단열수단은 상기 노즐과 상기 금형 사이에 배열된 단열링에 구비된 내화물층으로,The first insulation means is a refractory layer provided in the insulating ring arranged between the nozzle and the mold,
    상기 내화물층은 상기 노즐 또는 상기 금형, 또는 이 둘 모두와의 접면에 배열된 것을 특징으로 하는 사출시스템.And the refractory layer is arranged in contact with the nozzle or the mold, or both.
  4. 제 1 항에 있어서, The method of claim 1,
    상기 매니폴드를 감싸는 외부금형을 더 포함하며,Further comprising an outer mold surrounding the manifold,
    상기 외부금형과 매니폴드의 접면에는 제2단열수단이 더 구비된 것을 특징으로 하는 사출시스템.Injection system characterized in that the second insulating means is further provided on the contact surface of the outer mold and the manifold.
  5. 제 4 항에 있어서,The method of claim 4, wherein
    상기 제2단열수단은 금속면에 형성된 외곽보호부에 의하여 감싸져 있는 내화물층인 것을 특징으로 하는 사출시스템.The second heat insulating means is injection system, characterized in that the refractory layer wrapped by the outer protective portion formed on the metal surface.
  6. 제 1 항 내지 제 5 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 5,
    상기 분배수단은 개구부를 갖고 단면이 상협하광 형상인 채널이 형성된 본체를 갖고,The distributing means has a main body having an opening and a channel having a cross-sectional light-shaped cross section,
    상기 본체의 채널에는 채널 투입시 외력을 가하지 않은 상태에서 본체 표면 위로 솟게 되는 가요성(可撓性, flexible) 외피를 포함하는 전열부재가 결합되어 있는 것을 특징으로 하는 사출시스템.The channel of the main body is an injection system characterized in that the heat transfer member including a flexible (flexible) sheath that rises above the surface of the main body without applying an external force when the channel is applied.
PCT/KR2010/002601 2009-04-24 2010-04-26 Injection system having adiabatic means WO2010123329A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020090035914A KR100914031B1 (en) 2009-02-23 2009-04-24 Hot runner system
KR10-2009-0035914 2009-04-24

Publications (2)

Publication Number Publication Date
WO2010123329A2 true WO2010123329A2 (en) 2010-10-28
WO2010123329A3 WO2010123329A3 (en) 2011-02-24

Family

ID=43011750

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/002601 WO2010123329A2 (en) 2009-04-24 2010-04-26 Injection system having adiabatic means

Country Status (1)

Country Link
WO (1) WO2010123329A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102785323A (en) * 2012-08-20 2012-11-21 江西科伦医疗器械制造有限公司 Injection moulding process of polypropylene (PP) material pieces for syringe
CN103331874A (en) * 2013-05-30 2013-10-02 麦士德福科技(深圳)有限公司 Hot runner system for three-layer stack mold
CN112208053A (en) * 2019-07-09 2021-01-12 欧特捷实业股份有限公司 Injection molding system and injection molding method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003320558A (en) * 2002-04-26 2003-11-11 Mitsubishi Materials Corp Valve gate type mold assembly
JP2007083582A (en) * 2005-09-22 2007-04-05 Square:Kk Manifold for hot runner type injection-molding die, and heater for manifold
KR20080047407A (en) * 2005-09-21 2008-05-28 미츠비시 쥬고교 가부시키가이샤 Mold, mold temperature regulation method, mold temperature regulation device, injection molding method, injection molding machine, and thermoplastic resin sheet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003320558A (en) * 2002-04-26 2003-11-11 Mitsubishi Materials Corp Valve gate type mold assembly
KR20080047407A (en) * 2005-09-21 2008-05-28 미츠비시 쥬고교 가부시키가이샤 Mold, mold temperature regulation method, mold temperature regulation device, injection molding method, injection molding machine, and thermoplastic resin sheet
JP2007083582A (en) * 2005-09-22 2007-04-05 Square:Kk Manifold for hot runner type injection-molding die, and heater for manifold

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102785323A (en) * 2012-08-20 2012-11-21 江西科伦医疗器械制造有限公司 Injection moulding process of polypropylene (PP) material pieces for syringe
CN102785323B (en) * 2012-08-20 2015-03-11 江西科伦医疗器械制造有限公司 Injection moulding process of polypropylene (PP) material pieces for syringe
CN103331874A (en) * 2013-05-30 2013-10-02 麦士德福科技(深圳)有限公司 Hot runner system for three-layer stack mold
CN112208053A (en) * 2019-07-09 2021-01-12 欧特捷实业股份有限公司 Injection molding system and injection molding method

Also Published As

Publication number Publication date
WO2010123329A3 (en) 2011-02-24

Similar Documents

Publication Publication Date Title
CA2398500C (en) Nozzle for injection molds and nozzle assembly
WO2010123329A2 (en) Injection system having adiabatic means
CA2227085A1 (en) Insulated modular injection nozzle system
US7927094B2 (en) Composite nozzle cap
CN103552211A (en) Edge-gated injection molding apparatus
CA2004683C (en) Multi-gate molding heater assembly
EP2655036B1 (en) Mould with melt distribution manifold
US5720995A (en) Injection molding manifolds with melt connector bushing
KR100914031B1 (en) Hot runner system
EP1436133B1 (en) Gap seal between a nozzle and a mold component in a hot-runner assembly for an injection molding apparatus
KR100946323B1 (en) Injection system
KR20000063840A (en) Manifold of injection molding machine
WO2011099707A2 (en) Nozzle device equipped with a valve for injection molding
CN103181718A (en) Aluminum boiler with compound bottom and manufacturing method thereof
CN103568219B (en) Hot runner manifolds interconnected in common plane
CN214026991U (en) Hot runner system
CN213830140U (en) Dual glue sealing mechanism of thermal nozzle heat insulation ring
CN214026940U (en) Quick assembling and disassembling mechanism of injection mold
CN213830143U (en) Heater-free hot nozzle structure of injection mold
CN211714442U (en) Heat-resistant anti-freezing soft porcelain facing brick
CN219838139U (en) Injection mold hot runner plate structure
CN218941353U (en) Insulating device of heater
CN218557849U (en) Positive and negative hot runner structure
CN215969876U (en) Special material needle valve hot runner forming die
CN213830136U (en) Rear end glue sealing mechanism of hot nozzle of injection mold

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10767343

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10767343

Country of ref document: EP

Kind code of ref document: A2