WO2010122826A1 - Sheet for vacuum molding - Google Patents

Sheet for vacuum molding Download PDF

Info

Publication number
WO2010122826A1
WO2010122826A1 PCT/JP2010/050802 JP2010050802W WO2010122826A1 WO 2010122826 A1 WO2010122826 A1 WO 2010122826A1 JP 2010050802 W JP2010050802 W JP 2010050802W WO 2010122826 A1 WO2010122826 A1 WO 2010122826A1
Authority
WO
WIPO (PCT)
Prior art keywords
vacuum forming
mol
base material
sheet
chamber
Prior art date
Application number
PCT/JP2010/050802
Other languages
French (fr)
Japanese (ja)
Inventor
豊 関根
陸男 清水
Original Assignee
リケンテクノス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リケンテクノス株式会社 filed Critical リケンテクノス株式会社
Publication of WO2010122826A1 publication Critical patent/WO2010122826A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J167/00Adhesives based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Adhesives based on derivatives of such polymers
    • C09J167/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/002Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2791/00Shaping characteristics in general
    • B29C2791/004Shaping under special conditions
    • B29C2791/006Using vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/08Deep drawing or matched-mould forming, i.e. using mechanical means only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/14Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor using multilayered preforms or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • B32B2307/518Oriented bi-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/734Dimensional stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2419/00Buildings or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2451/00Decorative or ornamental articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2509/00Household appliances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/10Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet
    • C09J2301/16Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet by the structure of the carrier layer
    • C09J2301/162Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet by the structure of the carrier layer the carrier being a laminate constituted by plastic layers only
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2427/00Presence of halogenated polymer
    • C09J2427/006Presence of halogenated polymer in the substrate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2433/00Presence of (meth)acrylic polymer
    • C09J2433/006Presence of (meth)acrylic polymer in the substrate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2467/00Presence of polyester
    • C09J2467/006Presence of polyester in the substrate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2469/00Presence of polycarbonate
    • C09J2469/006Presence of polycarbonate in the substrate

Definitions

  • the present invention relates to a sheet for vacuum forming, and more specifically, it is excellent in vacuum formability, initial tackiness, and initial adhesion, and the laminated substrate is also three-dimensional even in a metal substrate such as magnesium or aluminum.
  • the present invention relates to a vacuum forming sheet excellent in heat-resistant adhesiveness (85 ° C. ⁇ 5 days) in a coated molded product.
  • a decorative laminated sheet made of a soft thermoplastic resin having a design property at the time of molding processing is provided, and the decorative laminated sheet is bonded to the surface of the molded product, thereby providing a coated molded product having a design property.
  • Many methods have been proposed to obtain
  • the decorative laminated sheet is made of a thermoplastic resin that can follow the three-dimensional deformation during thermoforming, so there are no problems such as cracking, tearing or peeling of the coating film during molding, and there is no painting process So work environment and productivity are excellent.
  • Patent Document 4 discloses a vehicle window frame panel in which a surface of an aluminum window frame panel is coated with a synthetic resin sheet having a pressure-sensitive adhesive layer having a mesh-like communication groove formed on the surface thereof by vacuum lamination molding.
  • a vehicle window frame panel manufacturing method comprising a fourth step of pressurizing the synthetic resin decorative sheet so as to conform to the shape.
  • a synthetic resin sheet is formed by laminating a surface sheet having abrasion resistance on the surface of a base material sheet made of a polyolefin sheet laminated in two to three layers, and on the back surface of the base material sheet.
  • a surface plate structure in furniture which is provided with an adhesive, and the synthetic resin sheet is integrally adhered over the surface side and side surface side of a base member in furniture such as a table.
  • the heat resistance of 85 ° C. ⁇ 5 days required for home appliance use, automotive interior use, etc., for the three-dimensional coated decorative molded product created using an adhesive or adhesive as described in the above prior art When the test is performed, there is a problem that the adhesive layer is drowned and does not have heat-resistant adhesiveness.
  • the laminated base material is a metallic base material such as magnesium or aluminum, it is inferior to the above-mentioned heat-resistant adhesiveness, and a sufficiently satisfying one has not been obtained. There was also room for improvement in vacuum moldability, initial tackiness, and initial adhesion.
  • the object of the present invention is excellent in vacuum moldability, initial tackiness, and initial adhesion, and even when the laminated substrate is a metal substrate such as magnesium or aluminum,
  • the object is to provide a vacuum forming sheet excellent at 85 ° C. ⁇ 5 days).
  • the present invention is as follows. 1. It is a sheet for vacuum forming having an adhesive layer (I) on the lower surface of the surface layer film (A),
  • the surface layer film (a) is an acrylic resin film (A), a biaxially stretched copolymer polyethylene terephthalate film (B), an unstretched amorphous polyethylene terephthalate resin film (C), a polyvinyl chloride resin film ( D) or a polycarbonate-based resin film (E), and the adhesive layer (a) is added to 100 parts by mass of the following thermoplastic saturated copolymer polyester resin, 0.1 to 5.0 mass of a nitrogen-containing heterocyclic compound.
  • Thermoplastic saturated copolyester resin an acid component composed of 40 to 70 mol% terephthalic acid and 30 to 60 mol% sebacic acid (however, the total of the acid components is 100 mol%), 1,4-butanediol 40 A glycol component composed of ⁇ 90 mol% and ethylene glycol 10-60 mol% (however, the total of the glycol components is 100 mol%).
  • thermoplastic saturated copolyester resin has a peak top melting point of 85 to 115 ° C. 3.
  • a backer layer (c) is provided between the surface layer film (a) and the adhesive layer (a). 4).
  • the backer layer (c) is an unstretched amorphous polyethylene terephthalate resin film (F) or a polyvinyl chloride resin film (G). 5).
  • the unstretched amorphous polyethylene terephthalate resin film (C) comprises an acid component composed of terephthalic acid, and a glycol component composed of 60 to 90 mol% ethylene glycol and 10 to 40 mol% cyclohexanedimethanol (however, the glycol component) 8.
  • the vacuum forming sheet as described in any one of 1 to 7 above, wherein the total is 100 mol%).
  • the unstretched amorphous polyethylene terephthalate resin film (F) comprises an acid component composed of terephthalic acid, and a glycol component composed of 60 to 90 mol% ethylene glycol and 10 to 40 mol% cyclohexanedimethanol (provided that the glycol component described above) (5) is a sheet for vacuum forming as described in (4) above. 10. 10. The vacuum forming sheet as described in any one of 1 to 9 above, which is used for vacuum forming by the following vacuum forming method.
  • Vacuum forming method The vacuum forming sheet according to any one of 1 to 9 described above and a laminated base material on which the vacuum forming sheet is laminated are arranged opposite to each other, and the first side is placed on the laminated base material side by the vacuum forming sheet.
  • the second chamber is hermetically partitioned from each other on the opposite side, the first chamber and the second chamber are decompressed, and the vacuum forming sheet is heated and softened, and then the vacuum forming sheet And the laminated base material are brought into contact with each other, and thereafter, the decompression of the second chamber is released, and the vacuum forming sheet is placed on the outer surface of the laminated base material by the differential pressure between the first chamber and the second chamber.
  • Vacuum forming method that adheres and laminates. 11.
  • a second chamber is partitioned airtightly on the opposite side, the first chamber and the second chamber are depressurized, and the vacuum forming sheet is heated and softened, and then the vacuum forming sheet and the laminated base The material is brought into contact, and then the reduced pressure in the second chamber is released, and the vacuum forming sheet is adhered and laminated on the outer surface of the laminated substrate by the differential pressure between the first chamber and the second chamber.
  • a vacuum forming method A vacuum forming method comprising heating the laminated base material to 60 ° C. to 100 ° C. during the step of bringing the vacuum forming sheet into contact with the laminated base material. 14 14. The vacuum forming method according to 13, wherein the laminated base material is a magnesium base material or an aluminum base material.
  • the type of the surface layer film (a) is specified, the composition of the thermoplastic saturated copolymer polyester resin in the adhesive layer (A), and the amounts of nitrogen-containing heterocyclic compound, talc and polyisocyanate used are specified. Therefore, it is excellent in vacuum formability, initial tackiness, and initial adhesion. Furthermore, even when the laminated base material is a metal base material such as magnesium or aluminum, the heat-resistant adhesiveness in the three-dimensional coated molded product ( A sheet for vacuum forming excellent in (85 ° C. ⁇ 5 days) can be provided. In addition, the vacuum formed product of the vacuum forming sheet of the present invention and a magnesium base material or an aluminum base material has good adhesion between them. In particular, in the vacuum molding method of the present invention, when the laminated base material is heated to 60 ° C. to 100 ° C. and both are adhered and laminated, the adhesion can be further enhanced.
  • FIG. 1 is a cross-sectional view for explaining the configuration of the vacuum forming sheet of the present invention.
  • the sheet for vacuum forming 1 of the present invention has an adhesive layer (A) on the lower surface of the surface layer film (A), and a backer between the surface layer film (A) and the adhesive layer (A) as necessary. It has a layer (c).
  • the surface layer film (a) in the present invention includes an acrylic resin film (A), a biaxially stretched copolymer polyethylene terephthalate film (B), an unstretched amorphous polyethylene terephthalate resin film (C), and a polyvinyl chloride resin. It must be a film (D) or a polycarbonate resin film (E). If it is a film other than these, the effects of the present invention cannot be achieved.
  • the acrylic resin film (A) examples include polymethyl methacrylate, polyethyl methacrylate, polybutyl methacrylate, polyacrylonitrile, or a film made of a copolymer having a (meth) acrylate unit and a styrene unit or a urethane structure. Can do. Furthermore, a mixed resin of the acrylic resin and the thermoplastic polyurethane resin, a mixed resin of the acrylic resin and acrylic rubber, or the like can be used. In the present invention, the acrylic resin, a mixed resin of an acrylic resin and a thermoplastic polyurethane resin, a mixed resin of an acrylic resin and an acrylic rubber, or the like is formed by, for example, a casting method or a calendar method.
  • an unstretched acrylic resin film can be obtained.
  • the above-mentioned unstretched film may be used as the acrylic resin film, and in the case of a stretchable acrylic resin, stretching obtained by uniaxial or biaxial stretching treatment by a conventionally known method.
  • a film may be used.
  • a biaxially stretched copolymer polyethylene terephthalate film (B) is a resin film obtained by using two or more kinds of acid components and / or glycol components.
  • the dicarboxylic acid component is terephthalic acid.
  • An isophthalic acid copolymerized amorphous polyethylene terephthalate resin having a glycol component of ⁇ 40 mol% and ethylene glycol can be mentioned.
  • isophthalic acid copolymerized amorphous polyethylene terephthalate resin is particularly preferable from the viewpoint of biaxial stretchability, three-dimensional formability, hairline processability, embossability, and the like.
  • a film forming method such as a known tenter method or a tube method can be applied.
  • the unstretched amorphous polyethylene terephthalate resin film (C) As the unstretched amorphous polyethylene terephthalate resin film (C), at least terephthalic acid is used as an acid component, ethylene glycol is used as a glycol component, and an amorphous polyethylene terephthalate resin obtained by reacting them is obtained by known means.
  • the film-formed one can be mentioned.
  • the unstretched amorphous polyethylene terephthalate resin film (C) is composed of an acid component composed of terephthalic acid, 60 to 90 mol% of ethylene glycol and 10 to 40 mol% of cyclohexanedimethanol.
  • a film of an amorphous polyethylene terephthalate resin composed of a glycol component (however, the total of the glycol components is 100 mol%) is preferable.
  • any film produced from a hard, semi-rigid or soft composition mainly composed of a known vinyl chloride resin can be used.
  • the polycarbonate resin film (E) a dihydric phenol and phosgene are used as raw materials, a polycarbonate resin obtained by an interfacial polycondensation method, or a dihydric phenol and a carbonate precursor such as diphenyl carbonate as raw materials, and a transesterification method.
  • the film of the polycarbonate-type resin obtained by is mentioned.
  • the polycarbonate-based resin a resin obtained by using 2,2-bis (4-hydroxyphenyl) propane (bisphenol A) is usually used as a dihydric phenol.
  • flame retardant polycarbonate resin obtained by using a mixture of bisphenol A and 2,2-bis (3,5-dibromo-4-hydroxyphenyl) propane (tetrabromobisphenol A) is used as the dihydric phenol.
  • tetrabromobisphenol A 2,2-bis (3,5-dibromo-4-hydroxyphenyl) propane
  • a bisphenol A-based polycarbonate-polyorganosiloxane copolymer can also be used as a polycarbonate-based resin with improved impact resistance and flame retardancy.
  • the thickness of the surface layer film (a) is preferably 25 ⁇ m to 250 ⁇ m, more preferably 50 ⁇ m to 150 ⁇ m.
  • Adhesive layer (I) In the adhesive layer (a) in the present invention, 0.1 to 5.0 parts by mass of a nitrogen-containing heterocyclic compound and 2 to 15 parts by mass of talc are blended with 100 parts by mass of the following thermoplastic saturated copolymer polyester resin. In addition, 0.5 to 2.0 equivalents of polyisocyanate is blended and cured with respect to the thermoplastic saturated copolyester resin.
  • Thermoplastic saturated copolyester resin an acid component composed of 40 to 70 mol% terephthalic acid and 30 to 60 mol% sebacic acid (however, the total of the acid components is 100 mol%), 1,4-butanediol 40 A glycol component composed of ⁇ 90 mol% and ethylene glycol 10-60 mol% (however, the total of the glycol components is 100 mol%).
  • thermoplastic saturated copolymer polyester resin includes an acid component composed of 45 to 65 mol% terephthalic acid candy and 35 to 55 mol% sebacic acid (the total of the acid components is 100 mol%), 1,4- A glycol component comprising 50 to 80 mol% of butanediol and 20 to 50 mol% of ethylene glycol (however, the total of the glycol components is 100 mol%).
  • the peak top melting point of the thermoplastic saturated copolyester resin is preferably 85 to 115 ° C. Within this melting point range, there is an effect of improving all of initial tackiness, initial adhesion, and heat-resistant adhesion.
  • the peak top melting point refers to a peak top position in a melting curve drawn when a differential scanning calorimeter (DSC) is used and the measurement sample is heated at a rate of 20 ° C. per minute according to JIS K7122.
  • the peak top melting point can be adjusted by changing the blending ratio of the acid component.
  • the adhesive layer (a) in the present invention 0.1 to 5.0 parts by mass of a nitrogen-containing heterocyclic compound and 2 to 15 parts by mass of talc are blended with the thermoplastic saturated copolymer polyester resin, and This is one obtained by blending 0.5 to 2.0 equivalents of polyisocyanate with respect to the plastic saturated copolyester resin and curing.
  • Examples of the nitrogen-containing heterocyclic compound include a compound having a triazole ring, a compound having a pyrrole ring, a compound having a pyrazole ring, a compound having a thiazole ring, and a compound having an imidazole ring.
  • a triazole compound which is a compound having a triazole ring or an imidazole compound which is a compound having an imidazole ring is preferable because it is excellent in the effect of improving adhesion to a metal laminate substrate, particularly a magnesium substrate. More preferably, the triazole compound is benzotriazole and the imidazole compound is imidazole.
  • the oxazoline compound is not included in the nitrogen-containing heterocyclic compound described above.
  • the nitrogen-containing heterocyclic compound is presumed to be excellent in the ability to form a complex with a metal, particularly magnesium, in a metal laminate substrate, and to enhance the adhesion.
  • the talc may be natural talc, synthetic talc or modified talc, and the particle size thereof is, for example, 1 to 10 ⁇ m.
  • Polyisocyanates include tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate (MDI), 1,5-naphthylene diisocyanate, tolidine diisocyanate, 1,6-hexamethylene diisocyanate, isophorone diisocyanate, xylylene diisocyanate (XDI) Hydrogenated XDI, triisocyanate, tetramethylxylene diisocyanate (TMXDI), 1,6,11-undecane triisocyanate, 1,8-diisocyanate methyloctane, lysine ester triisocyanate, 1,3,6-hexamethylene triisocyanate, Bicycloheptane triisocyanate etc. are mentioned. Of these, hexamethylene diisocyanate is preferably used in terms of excellent initial tackiness, initial adhesion, and heat-resistant adhesiveness.
  • the adhesive layer (I) in the present invention comprises 0.1 to 5.0 parts by mass of a nitrogen-containing heterocyclic compound and 2 to 15 parts by mass of talc in 100 parts by mass of a thermoplastic saturated copolymer polyester resin. Blended, and 0.5 to 2.0 equivalents of polyisocyanate is blended with the thermoplastic saturated copolyester resin and cured.
  • the nitrogen-containing heterocyclic compound is less than 0.1 parts by mass or more than 5.0 parts by mass, the initial adhesion and the heat resistant adhesiveness are deteriorated.
  • the talc is less than 2 parts by mass, the initial adhesiveness and the heat-resistant adhesiveness are deteriorated.
  • the equivalent of polyisocyanate as used in the field of this invention can be calculated
  • thermoplastic saturated copolymer polyester resin 0.5 to 3.5 parts by mass of a nitrogen-containing heterocyclic compound and 5 to 10 parts by mass of talc are blended with 100 parts by mass of the thermoplastic saturated copolymer polyester resin, and the thermoplastic saturated copolymer polyester is used. More preferably, 0.8 to 1.6 equivalents of polyisocyanate is added to the resin.
  • the adhesive layer (a) of the present invention 0.5 to 2.0 equivalents of a carbodiimide compound or an oxazoline compound is further added to the thermoplastic saturated copolymer polyester resin on the metal laminate substrate, particularly on the surface. It is excellent in the effect of improving the adhesiveness with the magnesium base material which the phosphate surface treatment was performed, and is preferable. Further, the blending ratio of the carbodiimide compound or oxazoline compound is preferably 0.7 to 1.6 equivalents.
  • Examples of the carbodiimide compound include compounds represented by the formula — (N ⁇ C ⁇ N—R—) n—.
  • n represents an integer of 1 or more, and R represents an organic bond unit.
  • R can be either aliphatic, alicyclic, or aromatic.
  • n is usually an appropriate integer selected from 1 to 50.
  • Examples of the oxazoline compound used in the present invention include 1,2-ethylenebisoxazoline, 2-cyclohexyl-2-oxazoline, 2- (2′-cyclohexenyl) -2-oxazoline, 2-oxazoline, 2-methyl-2- Examples include oxazoline, 2-ethyl-2-oxazoline, 2-isopropyl-2-oxazoline, and 2-n-propyl-2-oxazoline. These oxazoline compounds may be used alone or in combination of two or more. Moreover, the polymer of the said oxazoline compound may be sufficient. As what is marketed as an oxazoline compound, "Epocross series" (made by Nippon Shokubai Co., Ltd.) etc.
  • the equivalent of the carbodiimide compound and oxazoline compound as referred to in the present invention can be determined from the number of carbodiimide groups or oxazoline groups with respect to the number of carboxyl groups of the thermoplastic saturated copolymer polyester resin.
  • the thickness of the adhesive layer (a) after curing is preferably 5 ⁇ m to 50 ⁇ m, and more preferably 10 ⁇ m to 40 ⁇ m.
  • a backer layer (c) can be provided between the surface layer film (a) and the adhesive layer (b). Due to the presence of the backer layer (c), the vacuum formability is increased and this is preferable.
  • the backer layer (c) is not particularly limited, but is preferably an unstretched amorphous polyethylene terephthalate resin film (F) or a polyvinyl chloride resin film (G) from the viewpoint of vacuum moldability.
  • the unstretched amorphous polyethylene terephthalate resin film (F) includes an acid component composed of terephthalic acid and a glycol component composed of 60 to 90 mol% ethylene glycol and 10 to 40 mol% cyclohexanedimethanol (however, the glycol component) Is preferably 100% by mole).
  • the polyvinyl chloride resin film (G) any film produced from a hard, semi-rigid, or soft composition mainly composed of a known vinyl chloride resin can be used.
  • the thickness of the backer layer (c) is preferably 50 ⁇ m to 300 ⁇ m, more preferably 100 ⁇ m to 200 ⁇ m.
  • the vacuum forming sheet of the present invention can be prepared, for example, as follows. That is, a thermoplastic saturated copolymer polyester resin is dissolved in an organic solvent such as methyl ethyl ketone, and a predetermined amount of a nitrogen-containing heterocyclic compound, talc and polyisocyanate compound, and a carbodiimide compound or an oxazoline compound as necessary are added to the paint.
  • the coating material can be prepared by applying the coating material on the surface layer film (a) by a known coating method and curing it.
  • the surface layer film (a) and the backer layer (c) are laminated by, for example, heat lamination or dry lamination, and the paint is applied to the backer layer (c) by a known coating method. It can be prepared by applying and curing. Needless to say, known additives such as weathering agents, antistatic agents and fillers can be added to the surface layer film (a), the adhesive layer (a) and the backer layer (c) as necessary.
  • the vacuum forming using the vacuum forming sheet of the present invention is not particularly limited, but it is preferable to form by the methods described in Patent Documents 1 to 3, for example. That is, the vacuum forming sheet of the present invention and the laminated base material on which the vacuum forming sheet is laminated are arranged opposite to each other, and the first chamber on the laminated base material side and the second on the opposite side by the vacuum forming sheet. And the first chamber and the second chamber are depressurized and the vacuum forming sheet is heated and softened, and then the vacuum forming sheet and the laminated base material are brought into contact with each other.
  • FIG. 2 is a diagram for explaining an example of the vacuum forming method.
  • the vacuum forming sheet 10 and the laminated base material 12 are arranged opposite to each other so that the adhesive layer (a) is in contact with the laminated base material 12 in the vacuum forming machine, and are laminated by the vacuum forming sheet 10.
  • a first chamber 14 is partitioned on the substrate side, and a second chamber 16 is partitioned airtightly on the opposite side. Subsequently, the first chamber 14 and the second chamber 16 are decompressed by the vacuum pump 18 and the vacuum forming sheet 10 is heated and softened. Heat softening is performed by turning on the heater 20.
  • FIG. 2 is a diagram for explaining an example of the vacuum forming method.
  • the vacuum forming sheet 10 and the laminated base material 12 are arranged opposite to each other so that the adhesive layer (a) is in contact with the laminated base material 12 in the vacuum forming machine, and are laminated by the vacuum forming sheet 10.
  • a first chamber 14 is partitioned on the substrate side, and
  • the table 24 in the first chamber 14 is raised by the driving device 22, and the vacuum forming sheet 10 and the laminated base material 12 are brought into contact with each other.
  • the reduced pressure in the second chamber 16 is released, and the vacuum forming sheet is adhered and laminated on the outer surface of the laminated base material by the differential pressure between the first chamber 14 and the second chamber 16 to obtain a molded product.
  • the vacuum molding machine is opened by the driving device 26, and the molded product is taken out.
  • the laminated substrate is preferably a metal substrate, particularly a magnesium substrate or an aluminum substrate in terms of adhesion.
  • the laminated substrate in the step of bringing the vacuum forming sheet into contact with the laminated substrate, the laminated substrate is heated to 60 ° C. to 100 ° C., preferably 70 to 90 ° C.
  • the adhesion between the sheet and the laminated substrate can be further enhanced. In particular, this effect is further enhanced when a magnesium base or an aluminum base is used.
  • the vacuum forming of the vacuum forming sheet and the laminated base material of the present invention is not limited to the above method.
  • Example 1 Synthesis of Thermoplastic Saturated Copolyester Resin As the resulting resin has the resin composition (1) shown in Table 1 below, the acid component is terephthalic acid, sebacic acid, the glycol component is 1,4-butanediol, ethylene glycol was added in an appropriate amount and heated in the presence of a catalyst (tetrabutyl titanate) to synthesize a thermoplastic saturated copolymer polyester resin (hereinafter sometimes simply referred to as copolymer polyester resin).
  • a catalyst tetrabutyl titanate
  • the said 4 types of monomer composition in a thermoplastic saturated copolyester resin was confirmed by NMR. NMR confirmation was also performed in the following examples and comparative examples.
  • thermoplastic saturated copolymer polyester resin obtained above was dissolved in a solvent (methyl ethyl ketone) to obtain a paint having a solid content of 30% by mass.
  • polyisocyanate manufactured by Nippon Polyurethane, “Coronate HX” (hexamethylene diisocyanate), solid content 100%
  • the adhesive layer (A) forming coating is added. It was.
  • PET-G (1) manufactured by Riken Technos Co., Ltd., product names “SET470, FZ25871”, unstretched amorphous polyethylene terephthalate resin film, acid component comprising terephthalic acid, and ethylene glycol It was composed of a glycol component consisting of 70 mol% and cyclohexane dimethanol 30 mol% (thickness 150 ⁇ m).
  • Lamination of the surface layer film (a) and the backer layer (c) was performed by thermal lamination.
  • the adhesive layer (ii) forming coating material was coated on the backer layer (iii) with a knife coater, and the thickness after curing was 20 ⁇ m.
  • Vacuum forming Vacuum forming was performed by the vacuum forming method shown in FIGS. Table 1 shows the surface temperature (molding temperature) of the surface layer film (a) during molding.
  • Mg (1) magnesium casing, phosphoric acid surface treatment (chemical conversion treatment) has been completed.
  • the body was warmed to 70 ° C).
  • the size of the casing is a rectangle having a height of 5 mm, a depth of 200 mm, and a width of 280 mm.
  • Vacuum formability NGF-0912 type manufactured by Fuse Vacuum Co., Ltd.
  • the vacuum formability was evaluated using a double-sided vacuum forming machine.
  • Double-circle The followable
  • The followability to the substrate shape is good, but the end wrapping property is poor.
  • delta The followable
  • X The sheet is torn and cannot be sufficiently molded.
  • Initial tackiness The initial tackiness was evaluated based on the feeling when the finger was pressed firmly against the cured adhesive layer surface and then peeled off. ⁇ : There is a sticky feeling. ⁇ : Feels somewhat sticky. ⁇ : No stickiness.
  • Initial adhesion Initial adhesion was evaluated by forcibly peeling the sheet immediately after vacuum forming. A: Sheet material breaks. ⁇ : The sheet is peeled while being stretched. (Triangle
  • Example 2 In Example 1, PVC (1) (manufactured by Riken Technos Co., Ltd., product name “S12040, FC13477”, polyvinyl chloride resin, thickness 150 ⁇ m) was used as the backer layer (c) at the molding temperature shown in Table 1. Example 1 was repeated except that vacuum forming was performed. The results are shown in Table 1.
  • Example 3 In Example 1, copolymerized PET (1) (Teijin DuPont Films, Teflex FT, terephthalic acid as an acid component, naphthalenedicarboxylic acid, ethylene glycol as a glycol component, as a surface layer film (a) Example 1 was repeated except that a biaxially stretched copolymer polyethylene terephthalate resin film (thickness 50 ⁇ m) was used and vacuum molding was performed at the molding temperature shown in Table 1. The results are shown in Table 1.
  • Example 4 In Example 1, as the surface layer film (a), PC (1) (product name: Asahi Glass, trade name Lexan film 8010, 112 clear, polycarbonate film, thickness 100 ⁇ m) was used, and vacuum forming was performed at the molding temperature shown in Table 1. Example 1 was repeated except that. The results are shown in Table 1.
  • PC (1) product name: Asahi Glass, trade name Lexan film 8010, 112 clear, polycarbonate film, thickness 100 ⁇ m
  • Example 5 In Example 1, as the surface layer film (a), PET-G (2) (manufactured by Riken Technos Co., Ltd., trade name SET241 FZ025, unstretched amorphous polyethylene terephthalate resin film, acid component consisting of terephthalic acid, and ethylene It is composed of a glycol component composed of 70 mol% of glycol and 30 mol% of cyclohexanedimethanol. A thickness of 100 ⁇ m is used, and Al (1) (aluminum housing without chemical conversion treatment. Example 1 except that the aluminum molding was heated to 70 ° C. during the step of bringing the vacuum forming sheet into contact with the aluminum casing, and vacuum molding was performed at the molding temperature shown in Table 1. Was repeated. The results are shown in Table 1.
  • Example 1 Example 1 was repeated except that the surface layer film (a), the laminated base material, and the molding temperature were changed as shown in Table 2 without providing the backer layer (c). The results are shown in Table 2.
  • acrylic (2) is manufactured by Sumitomo Chemical Co., Ltd., trade name: Technoloy S001, acrylic resin film, and thickness: 125 ⁇ m.
  • PET-G (3) is manufactured by Riken Technos Co., Ltd., trade name SET329 FZ93266, unstretched amorphous polyethylene terephthalate resin film, acid component consisting of terephthalic acid, 70 mol% of ethylene glycol and 30 mol of cyclohexanedimethanol % Glycol component, and has a thickness of 150 ⁇ m.
  • PVC (2) is manufactured by Riken Technos Co., Ltd., trade name S12138 FC25847, a polyvinyl chloride resin film, and a thickness of 150 ⁇ m.
  • PC (2) is manufactured by Asahi Glass, trade name Lexan film FR765 black, polycarbonate resin film, thickness 180 ⁇ m.
  • Example 10-13 Example 1, Example 1 was repeated except that the resin structures (2) to (5) shown in Table 3 were employed instead of the resin structure (1). The results are shown in Table 3.
  • Example 14-20 Example 1 was repeated except that the amount or type of the nitrogen-containing heterocyclic compound was changed as shown in Tables 4 and 5. The results are shown in Tables 4 and 5.
  • the nitrogen-containing heterocyclic compound (2) is Tolyltriazole manufactured by Three Bond Co., Ltd.
  • the nitrogen-containing heterocyclic compound (3) is imidazole manufactured by Nippon Synthetic Chemical Industry Co., Ltd.
  • the nitrogen-containing heterocyclic compound (4) is 2-phenylimidazole manufactured by Shikoku Kasei.
  • the nitrogen-containing heterocyclic compound (5) is pyridine manufactured by Daicel Chemical Industries, Ltd.
  • Example 21-22 Example 1, Example 1 was repeated except that the blending ratio of talc was changed as shown in Table 6. The results are shown in Table 6.
  • Example 23 In Example 1, Example 1 was repeated except that 1.2 equivalent of the oxazoline compound was used instead of the carbodiimide compound. The results are shown in Table 6.
  • EPOCROS WS-500 manufactured by Nippon Shokubai Co., Ltd. was used.
  • Example 1 Example 1 was repeated except that the blending ratio of the carbodiimide compound was changed as shown in Table 6. The results are shown in Table 6.
  • Example 26-27 In Example 1, Example 1 was repeated except that the blending ratio of polyisocyanate was changed as shown in Table 7. The results are shown in Table 7.
  • Example 28 In Example 1, Example 1 was repeated except that A-PET (1) was used as the backer layer (c). The results are shown in Table 7.
  • A-PET (1) is a product name A-PET sheet general type, compound name, unstretched polyethylene terephthalate sheet, 150 ⁇ m in thickness, manufactured by Teijin Chemicals.
  • Example 29 In Example 7, Example 7 was repeated except that A-PET (2) was used as the surface layer film (a). The results are shown in Table 7.
  • A-PET (2) is Teijin Chemicals, trade name A-PET sheet black, compound name unstretched polyethylene terephthalate sheet, thickness 150 ⁇ m.
  • Example 1 Example 1 was repeated except that the laminated base material was changed as shown in Table 8. The results are shown in Table 8.
  • Mg (2) to (5) are as follows.
  • the magnesium casing was heated to 65 ° C. during the step of bringing the vacuum forming sheet and the magnesium casing into contact with each other.
  • Mg (5) Magnesium case, phosphoric acid surface treatment (chemical conversion treatment) finished.
  • the magnesium casing was heated to 90 ° C. during the step of bringing the vacuum forming sheet and the magnesium casing into contact with each other.
  • Example 34 the laminated base material was made of Al (2) (aluminum casing. No chemical conversion treatment. During the vacuum forming, the aluminum casing was heated during the process of contacting the vacuum forming sheet and the aluminum casing. Example 5 was repeated except that the changes were made as shown in Table 8. The results are shown in Table 8.
  • Example 1 biaxial PET (1) (trade name: Emblet S50, biaxially stretched polyethylene terephthalate film, thickness: 50 ⁇ m, manufactured by Unitika Co., Ltd.) was used as the surface layer film (a), and the molding temperature was set in Table 9.
  • Example 1 was repeated except that the changes were made as shown in FIG. The results are shown in Table 9.
  • Example 2 In Example 1, without providing a backer layer (C), a PBT (1) (polybutylene terephthalate resin [trade name Toraycon 1200S, manufactured by Toray Industries, Inc.] is mounted as a surface layer film (A) with a 600 mm wide T-die. Using a 40 mm extruder (made by Ikegai Co., Ltd.), embossed pattern 200 mesh, temperature conditions were cylinder temperature 270 ° C., die temperature 270 ° C., film forming speed 10 m / min. Example 1 was repeated except that the molding temperature was changed as shown in Table 9. The results are shown in Table 9.
  • PBT (1) polybutylene terephthalate resin [trade name Toraycon 1200S, manufactured by Toray Industries, Inc.] is mounted as a surface layer film (A) with a 600 mm wide T-die.
  • embossed pattern 200 mesh temperature conditions were cylinder temperature 270 ° C., die temperature 270 ° C., film forming speed 10 m /
  • Example 1 Example 1 was repeated except that the resin structures (6) to (8) shown in Table 9 were used instead of the resin structure (1). The results are shown in Table 9.
  • Example 1 Example 1 was repeated except that the blending ratio of the nitrogen-containing heterocyclic compound (1) was changed as shown in Table 10. The results are shown in Table 10.
  • Example 1 Example 1 was repeated except that the blending ratio of talc was changed as shown in Table 10. The results are shown in Table 10.
  • Example 1 Example 1 was repeated except that the blending ratio of polyisocyanate was changed as shown in Table 11. The results are shown in Table 11.
  • Example 1 Comparative Example 12 In Example 1, Example 1 was repeated except that the adhesive layer (I) was changed to the pressure-sensitive adhesive (1).
  • the results are shown in Table 11.
  • the pressure-sensitive adhesive (1) is a product name of Liquidine AR-2037 manufactured by Big Technos Co., Ltd., paint composition: acrylate copolymer.
  • Example 1 specifies the type of surface layer film (a), the composition of the thermoplastic saturated copolymer polyester resin in the adhesive layer (a), and the amounts of nitrogen-containing heterocyclic compound, talc and polyisocyanate used. Is set to a specific range, so it has excellent vacuum formability, initial tackiness, and initial adhesion, and even when the laminated base material is a metal base material such as magnesium, the heat-resistant adhesiveness in a three-dimensional coated molded product A vacuum forming sheet excellent in (85 ° C. ⁇ 5 days) could be provided. Moreover, the vacuum formability could be improved by providing the backer layer (c).
  • Example 2 was an example in which the backer layer (c) was PVC (1), and showed the same performance as Example 1.
  • Example 3 was an example in which the surface layer film (a) was copolymerized PET (1), and showed the same performance as Example 1.
  • Example 4 was an example in which the surface layer film (a) was PC (1), and showed the same performance as Example 1.
  • Example 5 was an example in which the surface layer film (a) was made of PET-G (2) and the laminated base material was made of Al (1), and showed the same performance as in Example 1.
  • -Example 6 is an example in which the surface layer film (a) is made of acrylic (2) and the backer layer (c) is not provided, and the same performance as in Example 1 except that the vacuum formability was evaluated as o. showed that.
  • Example 7 is an example in which the surface layer film (a) was made of PET-G (3) and the backer layer (c) was not provided, and was the same as Example 1 except that the vacuum moldability was good. Showed the performance.
  • Example 8 is an example in which the surface layer film (a) is PVC (2), the backer layer (c) is not provided, and the laminated base material is Al (1). Except this, the same performance as in Example 1 was exhibited.
  • -Example 9 is an example in which the surface layer film (a) is PC (2) and the backer layer (c) is not provided, and the same performance as in Example 1 except that the vacuum formability was evaluated as ⁇ . showed that.
  • Example 10 was the example which made the copolymer polyester resin into the resin structure (2), and showed the same performance as Example 1.
  • -Example 11 is the example which made the copolymer polyester resin the resin structure (3), and heat-resistant adhesiveness (85 degreeC x 5 days) became (triangle
  • Example 12 is an example in which the copolymerized polyester resin has a resin configuration (4). The initial tackiness and initial adhesion were evaluated as ⁇ , and the heat resistance (85 ° C. ⁇ 5 days) was evaluated as ⁇ . Otherwise, the same performance as in Example 1 was exhibited.
  • Example 13 was the example which made the copolyester resin the resin structure (5), and showed the same performance as Example 1.
  • -Example 14 is the example which made the compounding ratio of the nitrogen-containing heterocyclic compound (1) 0.2 mass part, and initial stage adhesiveness and heat-resistant adhesiveness (85 degreeC x 5 days) became (triangle
  • -Example 15 is the example which made the mixture ratio of nitrogen-containing heterocyclic compound (1) 1.0 mass part, and initial stage adhesiveness and heat-resistant adhesiveness (85 degreeC x 5 days) became (circle) evaluation. Otherwise, the same performance as in Example 1 was exhibited.
  • Example 16 was an example in which the blending ratio of the nitrogen-containing heterocyclic compound (1) was 4.5 parts by mass, and the initial adhesion and heat-resistant adhesion (85 ° C. ⁇ 5 days) were evaluated as ⁇ . Otherwise, the same performance as in Example 1 was exhibited.
  • -Example 17 is an example which uses a nitrogen-containing heterocyclic compound (2), and initial stage adhesiveness and heat-resistant adhesiveness (85 degreeC x 5 days) became (circle) evaluation. Otherwise, the same performance as in Example 1 was exhibited.
  • -Example 18 is an example using a nitrogen-containing heterocyclic compound (3), and showed the same performance as Example 1.
  • -Example 19 is an example using a nitrogen-containing heterocyclic compound (4), and initial adhesiveness and heat-resistant adhesiveness (85 degreeC x 5 days) became (circle) evaluation. Otherwise, the same performance as in Example 1 was exhibited.
  • -Example 20 is an example which uses a nitrogen-containing heterocyclic compound (5), and initial adhesiveness and heat-resistant adhesiveness (85 degreeC x 5 days) became (triangle
  • -Example 21 is the example which made the blending ratio of talc 3 mass parts, and initial adhesiveness and heat-resistant adhesiveness (85 degreeC x 5 days) became (triangle
  • Example 22 is the example which made the blending ratio of talc 13 mass parts, and initial tack property and heat-resistant adhesiveness (85 degreeC x 5 days) became (triangle
  • -Example 23 was the example which used the oxazoline compound instead of the carbodiimide compound, and showed the same performance as Example 1.
  • -Example 24 is the example which made the compounding ratio of the carbodiimide compound 0.3 equivalent, and initial stage adhesiveness and heat-resistant adhesiveness (85 degreeC x 5 days) became (circle) evaluation. Otherwise, the same performance as in Example 1 was exhibited.
  • -Example 25 is the example which made the mixing
  • -Example 26 is the example which made the blending ratio of polyisocyanate 0.7 equivalent, and heat-resistant adhesiveness (85 degreeC x 5 days) became (DELTA) evaluation. Otherwise, the same performance as in Example 1 was exhibited.
  • -Example 27 is the example which made the compounding ratio of polyisocyanate 1.8 equivalent, and initial stage tack property, initial stage adhesiveness, and heat-resistant adhesiveness (85 degreeC x 5 days) became (triangle
  • Example 28 was an example in which A-PET (1) was used for the backer layer (c), and the vacuum formability and heat resistant adhesiveness (85 ° C. ⁇ 5 days) were evaluated as ⁇ . Otherwise, the same performance as in Example 1 was exhibited.
  • Example 29 is an example in which A-PET (2) was used for the surface layer film (a) and the backer layer (c) was not provided, and the vacuum formability and heat resistant adhesiveness (85 ° C. ⁇ 5 days) were ⁇ It became evaluation. Otherwise, the same performance as in Example 1 was exhibited.
  • Example 30 was an example in which the base material was Mg (2), and the initial adhesion and heat-resistant adhesion (85 ° C.
  • Example 31 was an example in which the base material was Mg (3), and the initial adhesion and heat-resistant adhesion (85 ° C. ⁇ 5 days) were evaluated as “good”. Otherwise, the same performance as in Example 1 was exhibited.
  • -Example 32 was the example which made the base material Mg (4), and showed the same performance as Example 1.
  • -Example 33 was the example which made the base material Mg (5), and showed the same performance as Example 1.
  • the base material was Al (2), and the initial adhesion and heat-resistant adhesion (85 ° C. ⁇ 5 days) were evaluated as ⁇ . Otherwise, the same performance as in Example 1 was exhibited.
  • Comparative Example 1 is an example in which the surface layer film (a) is biaxial PET (1), and is outside the scope of the present invention, so vacuum formability, initial adhesion, heat resistant adhesiveness (85 ° C. ⁇ 5 days) Became x evaluation.
  • Comparative Example 2 is an example in which the surface layer film (a) is PBT (1) and the backer layer (c) is not provided, and is outside the scope of the present invention. Therefore, vacuum formability, initial adhesion, heat-resistant adhesion The property (85 ° C x 5 days) was evaluated as x.
  • Comparative Example 3 is an example in which a copolymerized polyester resin is used as the resin configuration (6), and is outside the scope of the present invention, so that the heat resistant adhesiveness (85 ° C.
  • Comparative Example 4 is an example in which the copolymerized polyester resin has a resin configuration (7), and is outside the scope of the present invention, so that the initial tackiness, initial adhesion, and heat resistant adhesiveness (85 ° C. ⁇ 5 days) are ⁇ It became evaluation.
  • Comparative Example 5 is an example in which the copolymerized polyester resin is made into a resin configuration (8) and is outside the scope of the present invention, so that the heat resistant adhesiveness (85 ° C. ⁇ 5 days) was evaluated as x.
  • Comparative Example 6 is an example in which the blending ratio of the nitrogen-containing heterocyclic compound (1) is 0.05 parts by mass, and is outside the scope of the present invention.
  • Comparative Example 7 is an example in which the blending ratio of the nitrogen-containing heterocyclic compound (1) is 5.5 parts by mass, and is outside the scope of the present invention. Therefore, the initial adhesion and heat-resistant adhesiveness (85 ° C. ⁇ 5 days) ) Became x evaluation.
  • Comparative Example 8 is an example in which the blending ratio of talc is 1 part by mass, and is outside the scope of the present invention, so the initial adhesion and heat-resistant adhesiveness (85 ° C. ⁇ 5 days) were evaluated as x.
  • Comparative Example 9 is an example in which the blending ratio of talc is 17 parts by mass, and is outside the scope of the present invention, so that the initial tackiness and initial adhesion are ⁇ evaluated, and the heat resistant adhesiveness (85 ° C. ⁇ 5 days) is ⁇ Evaluated.
  • Comparative Example 10 was an example in which the blending ratio of polyisocyanate was 0.3 equivalent and was outside the scope of the present invention, so the heat resistant adhesiveness (85 ° C. ⁇ 5 days) was evaluated as x.
  • Comparative Example 11 is an example in which the blending ratio of the polyisocyanate is 2.2 equivalents, and is outside the scope of the present invention, so that the initial tackiness, initial adhesion, and heat resistant adhesiveness (85 ° C.
  • Comparative Example 12 was an example in which the pressure-sensitive adhesive (1) was used for the adhesive layer (I), and was outside the scope of the present invention, so the heat resistant adhesiveness (85 ° C. ⁇ 5 days) was evaluated as x.
  • the vacuum forming sheet of the present invention is useful for obtaining a three-dimensional coated molded product for home appliance use, automobile interior use, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

Provided is a sheet for vacuum molding, which is excellent in terms of vacuum moldability, initial tackiness, and initial close adhesion, and is excellent in terms of the heat-resistant adhesion of a three-dimensional coated molded article. The sheet for vacuum molding has an adhesive layer (b) on the bottom surface of a surface film (a), wherein (a) is, for instance, acrylic resin film (a) and (b) is obtained by adding 0.1 to 5.0 parts by mass of a nitrogen-containing heterocyclic compound and 2 to 15 parts by mass of talc to 100 parts by mass of the thermoplastic saturated copolyester resin represented below and then adding 0.5 to 2.0 equivalents with respect to the thermoplastic saturated copolyester resin and curing. The polyester resin comprises an acid component having 40 to 70 mol% of terephthalic acid and 30 to 60 mol% of sebacic acid, and a glycol component having 40 to 90 mol% of 1,4-butanediol and 10 to 60 mol% of ethylene glycol.

Description

真空成型用シートVacuum forming sheet
 本発明は、真空成型用シートに関するものであり、詳しくは、真空成型性、初期タック性、初期密着性に優れ、さらに積層基材が、マグネシウムやアルミニウムなどの金属製基材においても、三次元被覆成型品での耐熱接着性(85℃×5日)に優れた真空成型用シートに関するものである。 The present invention relates to a sheet for vacuum forming, and more specifically, it is excellent in vacuum formability, initial tackiness, and initial adhesion, and the laminated substrate is also three-dimensional even in a metal substrate such as magnesium or aluminum. The present invention relates to a vacuum forming sheet excellent in heat-resistant adhesiveness (85 ° C. × 5 days) in a coated molded product.
 従来、装飾用途の自動車内外装部品、家電用部品、建材用部品などは、射出成型、真空成型やインモールド成型等の成型加工を施した後、成型品表面をスプレー塗装などで塗料を塗布し、乾燥・加熱硬化させ、成型品の表面保護や着色、装飾等の意匠性を付与する。しかし、この様な塗装は、揮発性有機溶剤の排出に対する作業環境の問題や、成型品ごとの塗布、乾燥、加熱硬化等の作業工程と生産設備が必要となり、生産性が低い問題がある。 Conventionally, automotive interior / exterior parts, home appliance parts, building material parts, etc. for decorative purposes have been subjected to molding such as injection molding, vacuum molding and in-mold molding, and then the surface of the molded product is applied by spray coating or the like. , Dried and heat-cured to impart design properties such as surface protection, coloring and decoration of the molded product. However, such a coating has a problem of low productivity because it requires a work environment problem with respect to the discharge of the volatile organic solvent and a work process and production equipment such as coating, drying, and heat curing for each molded product.
 これに対して、近年、成型加工時に意匠性を有する軟質な熱可塑性樹脂からなる加飾用積層シートを供し、成型品表面に該加飾用積層シートを貼り合わせ、意匠性を有する被覆成型品を得る方法が数多く提案されている。加飾用積層シートは熱成型時の立体変形に追従できるような熱可塑性樹脂で構成されているので、成型時の塗膜の割れや破れ、剥離を生じるなどの問題はなく、塗装工程がないので作業環境や生産性に優れる。 On the other hand, in recent years, a decorative laminated sheet made of a soft thermoplastic resin having a design property at the time of molding processing is provided, and the decorative laminated sheet is bonded to the surface of the molded product, thereby providing a coated molded product having a design property. Many methods have been proposed to obtain The decorative laminated sheet is made of a thermoplastic resin that can follow the three-dimensional deformation during thermoforming, so there are no problems such as cracking, tearing or peeling of the coating film during molding, and there is no painting process So work environment and productivity are excellent.
 真空成型法を採用して上記の被覆成型品を得る方法としては、例えば下記の特許文献1~3に開示されている。 As a method of obtaining the above-mentioned coated molded product by employing the vacuum molding method, for example, the following patent documents 1 to 3 are disclosed.
 また、下記の特許文献4には、表面にメッシュ状の連通溝を形成してなる粘着剤層を有する合成樹脂シートを真空ラミネート成形によりアルミニウム製窓枠パネルの表面に被覆する車両用窓枠パネルの製造方法であって、第一の成形室と第二の成形室とを有する真空成形機の両方の成形室を略真空状態にする第1工程、加熱により該合成樹脂製化粧シートを軟化させる第2工程、第二の成形室内に配置されたアルミニウム製窓枠パネルに軟化した該合成樹脂製化粧シートを被せる第3工程、第一の成形室内の気圧を上昇させ該アルミニウム製窓枠パネルの形状に沿うよう該合成樹脂製化粧シートを加圧する第4工程からなることを特徴とする車両用窓枠パネルの製造方法が開示されている。 Patent Document 4 below discloses a vehicle window frame panel in which a surface of an aluminum window frame panel is coated with a synthetic resin sheet having a pressure-sensitive adhesive layer having a mesh-like communication groove formed on the surface thereof by vacuum lamination molding. A first step of placing both molding chambers of a vacuum molding machine having a first molding chamber and a second molding chamber in a substantially vacuum state, and softening the synthetic resin decorative sheet by heating 2nd process, 3rd process of covering the softened synthetic resin decorative sheet on the aluminum window frame panel disposed in the second molding chamber, and increasing the pressure in the first molding chamber to increase the pressure of the aluminum window frame panel. A vehicle window frame panel manufacturing method is disclosed, comprising a fourth step of pressurizing the synthetic resin decorative sheet so as to conform to the shape.
 また、下記の特許文献5には、合成樹脂シートは、2~3層に積層したポリオレフィンシートからなる基材シートの表面には耐摩耗性を有する表面シートを積層し、基材シートの裏面に粘着剤を施してなり、該合成樹脂シートをテーブル等の家具におけるベース部材の表面側および側面側にわたって一体的に粘着したことを特徴とする家具における表面板構造が開示されている。 Further, in Patent Document 5 below, a synthetic resin sheet is formed by laminating a surface sheet having abrasion resistance on the surface of a base material sheet made of a polyolefin sheet laminated in two to three layers, and on the back surface of the base material sheet. There is disclosed a surface plate structure in furniture, which is provided with an adhesive, and the synthetic resin sheet is integrally adhered over the surface side and side surface side of a base member in furniture such as a table.
 しかしながら、上記従来技術に記載したような、接着剤または粘着剤を使用して作成した三次元被覆加飾成型品を家電製品用途、自動車内装用途等に必要とされる85℃×5日の耐熱試験を行なった場合、接着剤層が捲れてしまい耐熱接着性がもたないという問題がある。特に積層基材が、マグネシウムやアルミニウムなどの金属製基材の場合、上記の耐熱接着性に劣り、十分満足するものが得られていないのが現状である。また、真空成型性、初期タック性、初期密着性にも改善の余地があった。 However, the heat resistance of 85 ° C. × 5 days required for home appliance use, automotive interior use, etc., for the three-dimensional coated decorative molded product created using an adhesive or adhesive as described in the above prior art When the test is performed, there is a problem that the adhesive layer is drowned and does not have heat-resistant adhesiveness. In particular, when the laminated base material is a metallic base material such as magnesium or aluminum, it is inferior to the above-mentioned heat-resistant adhesiveness, and a sufficiently satisfying one has not been obtained. There was also room for improvement in vacuum moldability, initial tackiness, and initial adhesion.
特公昭56-45768号公報Japanese Patent Publication No. 56-45768 特許第3016518号公報Japanese Patent No. 3016518 特許第3733564号公報Japanese Patent No. 3733564 特開2004-237510号公報JP 2004-237510 A 特開2000-157346号公報JP 2000-157346 A
 したがって本発明の目的は、真空成型性、初期タック性、初期密着性に優れ、さらに積層基材が、マグネシウムやアルミニウムなどの金属製基材においても、三次元被覆成型品での耐熱接着性(85℃×5日)に優れた真空成型用シートを提供することにある。 Therefore, the object of the present invention is excellent in vacuum moldability, initial tackiness, and initial adhesion, and even when the laminated substrate is a metal substrate such as magnesium or aluminum, The object is to provide a vacuum forming sheet excellent at 85 ° C. × 5 days).
 本発明は、以下のとおりである。
 1.表層フィルム(ア)の下面に接着剤層(イ)を有する真空成型用シートであって、
 前記表層フィルム(ア)が、アクリル系樹脂フィルム(A)、二軸延伸共重合ポリエチレンテレフタレート系フィルム(B)、未延伸非晶性ポリエチレンテレフタレート系樹脂フィルム(C)、ポリ塩化ビニル系樹脂フィルム(D)またはポリカーボネート系樹脂フィルム(E)であり、かつ
 前記接着剤層(イ)が、下記の熱可塑性飽和共重合ポリエステル樹脂100質量部に、含窒素複素環化合物0.1~5.0質量部およびタルク2~15質量部を配合し、かつ該熱可塑性飽和共重合ポリエステル樹脂に対しポリイソシアネート0.5~2.0当量を配合し硬化したものであることを特徴とする真空成型用シート。
 熱可塑性飽和共重合ポリエステル樹脂:テレフタル酸40~70モル%、およびセバシン酸30~60モル%からなる酸成分(ただし、前記酸成分の合計は100モル%)と、1,4-ブタンジオール40~90モル%およびエチレングリコール10~60モル%からなるグリコール成分(ただし、前記グリコール成分の合計は100モル%)とから構成される。
 2.前記熱可塑性飽和共重合ポリエステル樹脂のピークトップ融点が、85~115℃であることを特徴とする前記1に記載の真空成型用シート。
 3.前記表層フィルム(ア)と前記接着剤層(イ)との間にバッカー層(ウ)を有することを特徴とする前記1または2に記載の真空成型用シート。
 4.前記バッカー層(ウ)が、未延伸非晶性ポリエチレンテレフタレート系樹脂フィルム(F)またはポリ塩化ビニル系樹脂フィルム(G)であることを特徴とする前記3に記載の真空成型用シート。
 5.前記接着剤層(イ)が、前記熱可塑性飽和共重合ポリエステル樹脂に、さらにカルボジイミド化合物またはオキサゾリン化合物0.5~2.0当量を配合したものであることを特徴とする前記1に記載の真空成型用シート。
 6.前記含窒素複素環化合物が、トリアゾール系化合物またはイミダゾール系化合物であることを特徴とする前記1に記載の真空成型用シート。
 7.前記トリアゾール系化合物が、ベンゾトリアゾールであり、前記イミダゾール系化合物が、イミダゾールであることを特徴とする前記6に記載の真空成型用シート。
 8.前記未延伸非晶性ポリエチレンテレフタレート系樹脂フィルム(C)が、テレフタル酸からなる酸成分と、エチレングリコール60~90モル%およびシクロヘキサンジメタノール10~40モル%からなるグリコール成分(ただし、前記グリコール成分の合計は100モル%)とから構成されることを特徴とする前記1~7のいずれかに記載の真空成型用シート。
 9.前記未延伸非晶性ポリエチレンテレフタレート系樹脂フィルム(F)が、テレフタル酸からなる酸成分と、エチレングリコール60~90モル%およびシクロヘキサンジメタノール10~40モル%からなるグリコール成分(ただし、前記グリコール成分の合計は100モル%)とから構成されることを特徴とする前記4に記載の真空成型用シート。
 10.下記の真空成型方法により真空成型を行なうために用いられる、前記1~9のいずれかに記載の真空成型用シート。
 真空成型方法:前記1~9のいずれかに記載の真空成型用シートと、前記真空成型用シートを積層する積層基材とを対向配置し、前記真空成型用シートにより積層基材側に第一の室を、反対側に第二の室を互いに気密に区画し、前記第一の室および前記第二の室を減圧し、かつ前記真空成型用シートを加熱軟化した後、前記真空成型用シートと前記積層基材とを接触させ、この後に前記第二の室の減圧を解除して前記第一の室と前記第二の室の差圧により前記真空成型用シートを積層基材の外表面に密着積層する真空成型方法。
 11.前記1~10のいずれかに記載の真空成型用シートと、マグネシウム基材またはアルミニウム基材とを真空成型により積層せしめてなることを特徴とする成型品。
 12.前記マグネシウム基材の表面にリン酸塩表面処理が施されていることを特徴とする前記11に記載の成型品。
 13.前記1~10のいずれかに記載の真空成型用シートと、前記真空成型用シートを積層する積層基材とを対向配置し、前記真空成型用シートにより積層基材側に第一の室を、反対側に第二の室を互いに気密に区画し、前記第一の室および前記第二の室を減圧し、かつ前記真空成型用シートを加熱軟化した後、前記真空成型用シートと前記積層基材とを接触させ、この後に前記第二の室の減圧を解除して前記第一の室と前記第二の室の差圧により前記真空成型用シートを積層基材の外表面に密着積層する真空成型方法であって、
 前記真空成型用シートと前記積層基材とを接触させる工程の際に、前記積層基材を60℃~100℃に加温することを特徴とする真空成型方法。
 14.前記積層基材が、マグネシウム基材またはアルミニウム基材であることを特徴とする前記13に記載の真空成型方法。
The present invention is as follows.
1. It is a sheet for vacuum forming having an adhesive layer (I) on the lower surface of the surface layer film (A),
The surface layer film (a) is an acrylic resin film (A), a biaxially stretched copolymer polyethylene terephthalate film (B), an unstretched amorphous polyethylene terephthalate resin film (C), a polyvinyl chloride resin film ( D) or a polycarbonate-based resin film (E), and the adhesive layer (a) is added to 100 parts by mass of the following thermoplastic saturated copolymer polyester resin, 0.1 to 5.0 mass of a nitrogen-containing heterocyclic compound. Part and talc 2 to 15 parts by mass, and 0.5 to 2.0 equivalents of polyisocyanate is blended and cured with respect to the thermoplastic saturated copolymer polyester resin, and the sheet for vacuum forming .
Thermoplastic saturated copolyester resin: an acid component composed of 40 to 70 mol% terephthalic acid and 30 to 60 mol% sebacic acid (however, the total of the acid components is 100 mol%), 1,4-butanediol 40 A glycol component composed of ˜90 mol% and ethylene glycol 10-60 mol% (however, the total of the glycol components is 100 mol%).
2. 2. The vacuum forming sheet as described in 1 above, wherein the thermoplastic saturated copolyester resin has a peak top melting point of 85 to 115 ° C.
3. 3. The vacuum forming sheet as described in 1 or 2 above, wherein a backer layer (c) is provided between the surface layer film (a) and the adhesive layer (a).
4). 4. The vacuum forming sheet as described in 3 above, wherein the backer layer (c) is an unstretched amorphous polyethylene terephthalate resin film (F) or a polyvinyl chloride resin film (G).
5). 2. The vacuum according to 1 above, wherein the adhesive layer (a) is obtained by further blending 0.5 to 2.0 equivalents of a carbodiimide compound or an oxazoline compound with the thermoplastic saturated copolyester resin. Molding sheet.
6). 2. The sheet for vacuum forming according to 1 above, wherein the nitrogen-containing heterocyclic compound is a triazole compound or an imidazole compound.
7). The sheet for vacuum forming as described in 6 above, wherein the triazole compound is benzotriazole and the imidazole compound is imidazole.
8). The unstretched amorphous polyethylene terephthalate resin film (C) comprises an acid component composed of terephthalic acid, and a glycol component composed of 60 to 90 mol% ethylene glycol and 10 to 40 mol% cyclohexanedimethanol (however, the glycol component) 8. The vacuum forming sheet as described in any one of 1 to 7 above, wherein the total is 100 mol%).
9. The unstretched amorphous polyethylene terephthalate resin film (F) comprises an acid component composed of terephthalic acid, and a glycol component composed of 60 to 90 mol% ethylene glycol and 10 to 40 mol% cyclohexanedimethanol (provided that the glycol component described above) (5) is a sheet for vacuum forming as described in (4) above.
10. 10. The vacuum forming sheet as described in any one of 1 to 9 above, which is used for vacuum forming by the following vacuum forming method.
Vacuum forming method: The vacuum forming sheet according to any one of 1 to 9 described above and a laminated base material on which the vacuum forming sheet is laminated are arranged opposite to each other, and the first side is placed on the laminated base material side by the vacuum forming sheet. The second chamber is hermetically partitioned from each other on the opposite side, the first chamber and the second chamber are decompressed, and the vacuum forming sheet is heated and softened, and then the vacuum forming sheet And the laminated base material are brought into contact with each other, and thereafter, the decompression of the second chamber is released, and the vacuum forming sheet is placed on the outer surface of the laminated base material by the differential pressure between the first chamber and the second chamber. Vacuum forming method that adheres and laminates.
11. 11. A molded product obtained by laminating the vacuum forming sheet according to any one of 1 to 10 above and a magnesium base material or an aluminum base material by vacuum forming.
12 12. The molded article according to 11 above, wherein the surface of the magnesium base is subjected to a phosphate surface treatment.
13. The vacuum forming sheet according to any one of 1 to 10 above and a laminated base material on which the vacuum forming sheet is laminated are arranged to face each other, and the first chamber is formed on the laminated base material side by the vacuum forming sheet. A second chamber is partitioned airtightly on the opposite side, the first chamber and the second chamber are depressurized, and the vacuum forming sheet is heated and softened, and then the vacuum forming sheet and the laminated base The material is brought into contact, and then the reduced pressure in the second chamber is released, and the vacuum forming sheet is adhered and laminated on the outer surface of the laminated substrate by the differential pressure between the first chamber and the second chamber. A vacuum forming method,
A vacuum forming method comprising heating the laminated base material to 60 ° C. to 100 ° C. during the step of bringing the vacuum forming sheet into contact with the laminated base material.
14 14. The vacuum forming method according to 13, wherein the laminated base material is a magnesium base material or an aluminum base material.
 本発明では、表層フィルム(ア)の種類を特定するとともに、接着剤層(イ)における熱可塑性飽和共重合ポリエステル樹脂の組成と、含窒素複素環化合物、タルクおよびポリイソシアネートの使用量とを特定の範囲に設定したので、真空成型性、初期タック性、初期密着性に優れ、さらに積層基材が、マグネシウムやアルミニウムなどの金属製基材においても、三次元被覆成型品での耐熱接着性(85℃×5日)に優れた真空成型用シートを提供することができる。また、本発明の真空成型用シートと、マグネシウム基材またはアルミニウム基材との真空成型品は、両者の密着性が良好である。とくに本発明の真空成型方法において、積層基材を60℃~100℃に加温して両者を密着積層した場合、密着性をさらに高めることができる。 In the present invention, the type of the surface layer film (a) is specified, the composition of the thermoplastic saturated copolymer polyester resin in the adhesive layer (A), and the amounts of nitrogen-containing heterocyclic compound, talc and polyisocyanate used are specified. Therefore, it is excellent in vacuum formability, initial tackiness, and initial adhesion. Furthermore, even when the laminated base material is a metal base material such as magnesium or aluminum, the heat-resistant adhesiveness in the three-dimensional coated molded product ( A sheet for vacuum forming excellent in (85 ° C. × 5 days) can be provided. In addition, the vacuum formed product of the vacuum forming sheet of the present invention and a magnesium base material or an aluminum base material has good adhesion between them. In particular, in the vacuum molding method of the present invention, when the laminated base material is heated to 60 ° C. to 100 ° C. and both are adhered and laminated, the adhesion can be further enhanced.
本発明の真空成型用シートの構成を説明するための断面図である。It is sectional drawing for demonstrating the structure of the sheet | seat for vacuum forming of this invention. 本発明の真空成型用シートに好適に適用される真空成型方法の一例を説明するための図である。It is a figure for demonstrating an example of the vacuum forming method applied suitably for the sheet | seat for vacuum forming of this invention. 本発明の真空成型用シートに好適に適用される真空成型方法の一例を説明するための図である。It is a figure for demonstrating an example of the vacuum forming method applied suitably for the sheet | seat for vacuum forming of this invention.
 以下、本発明をさらに詳しく説明する。図1は、本発明の真空成型用シートの構成を説明するための断面図である。本発明の真空成型用シート1は、表層フィルム(ア)の下面に接着剤層(イ)を有し、必要に応じて、表層フィルム(ア)と接着剤層(イ)との間にバッカー層(ウ)を有する。 Hereinafter, the present invention will be described in more detail. FIG. 1 is a cross-sectional view for explaining the configuration of the vacuum forming sheet of the present invention. The sheet for vacuum forming 1 of the present invention has an adhesive layer (A) on the lower surface of the surface layer film (A), and a backer between the surface layer film (A) and the adhesive layer (A) as necessary. It has a layer (c).
表層フィルム(ア)
 本発明における表層フィルム(ア)は、アクリル系樹脂フィルム(A)、二軸延伸共重合ポリエチレンテレフタレート系フィルム(B)、未延伸非晶性ポリエチレンテレフタレート系樹脂フィルム(C)、ポリ塩化ビニル系樹脂フィルム(D)またはポリカーボネート系樹脂フィルム(E)である必要がある。これら以外のフィルムであると、本発明の効果を奏することができない。
Surface film (A)
The surface layer film (a) in the present invention includes an acrylic resin film (A), a biaxially stretched copolymer polyethylene terephthalate film (B), an unstretched amorphous polyethylene terephthalate resin film (C), and a polyvinyl chloride resin. It must be a film (D) or a polycarbonate resin film (E). If it is a film other than these, the effects of the present invention cannot be achieved.
 アクリル系樹脂フィルム(A)としては、例えばポリメチルメタクリレート、ポリエチルメタクリレート、ポリブチルメタクリレート、ポリアクリロニトリル、あるいは(メタ)アクリレート単位とスチレン単位やウレタン構造を有する共重合体などからなるフィルムを挙げることができる。さらには、前記のアクリル系樹脂と熱可塑性ポリウレタン樹脂との混合樹脂、あるいは前記のアクリル系樹脂とアクリルゴムとの混合樹脂などを用いることもできる。本発明においては、前記のアクリル系樹脂、アクリル系樹脂と熱可塑性ポリウレタン樹脂との混合樹脂、アクリル系樹脂とアクリルゴムとの混合樹脂などを、例えばキャスティング法やカレンダー法などにより製膜することにより、無延伸アクリル系樹脂フィルムを得ることができる。本発明においては、アクリル系樹脂フィルムとして、前記の無延伸フィルムを用いてもよいし、延伸可能なアクリル系樹脂の場合は、従来公知の方法で一軸又は二軸延伸処理して得られた延伸フィルムを用いてもよい。 Examples of the acrylic resin film (A) include polymethyl methacrylate, polyethyl methacrylate, polybutyl methacrylate, polyacrylonitrile, or a film made of a copolymer having a (meth) acrylate unit and a styrene unit or a urethane structure. Can do. Furthermore, a mixed resin of the acrylic resin and the thermoplastic polyurethane resin, a mixed resin of the acrylic resin and acrylic rubber, or the like can be used. In the present invention, the acrylic resin, a mixed resin of an acrylic resin and a thermoplastic polyurethane resin, a mixed resin of an acrylic resin and an acrylic rubber, or the like is formed by, for example, a casting method or a calendar method. An unstretched acrylic resin film can be obtained. In the present invention, the above-mentioned unstretched film may be used as the acrylic resin film, and in the case of a stretchable acrylic resin, stretching obtained by uniaxial or biaxial stretching treatment by a conventionally known method. A film may be used.
 二軸延伸共重合ポリエチレンテレフタレート系フィルム(B)とは、酸成分および/またはグリコール成分を2種類以上使用して得られる樹脂のフィルムであり、その例としては、ジカルボン酸成分がテレフタル酸であり、グリコール成分がエチレングリコール60~90モル%とネオペンチルグリコール10~40モル%であるネオペンチルグリコール共重合非晶性ポリエチレンテレフタレート系樹脂、ジカルボン酸成分がテレフタル酸60~98モル%とイソフタル酸2~40モル%であり、グリコール成分がエチレングリコールであるイソフタル酸共重合非晶性ポリエチレンテレフタレート系樹脂などを挙げることができる。
 これらの中では、二軸延伸性、三次元成形性、ヘアライン加工性、エンボス加工性などの観点から、特にイソフタル酸共重合非晶性ポリエチレンテレフタレート系樹脂が好適である。
 二軸延伸共重合ポリエチレンテレフタレート系フィルム(B)を得るには、公知のテンター法およびチューブ法などの製膜法を適用できる。
A biaxially stretched copolymer polyethylene terephthalate film (B) is a resin film obtained by using two or more kinds of acid components and / or glycol components. For example, the dicarboxylic acid component is terephthalic acid. A neopentyl glycol copolymerized amorphous polyethylene terephthalate resin having a glycol component of 60 to 90 mol% of ethylene glycol and 10 to 40 mol% of neopentyl glycol, and a dicarboxylic acid component of 60 to 98 mol% of terephthalic acid and isophthalic acid 2 An isophthalic acid copolymerized amorphous polyethylene terephthalate resin having a glycol component of ˜40 mol% and ethylene glycol can be mentioned.
Among these, isophthalic acid copolymerized amorphous polyethylene terephthalate resin is particularly preferable from the viewpoint of biaxial stretchability, three-dimensional formability, hairline processability, embossability, and the like.
In order to obtain the biaxially stretched copolymer polyethylene terephthalate film (B), a film forming method such as a known tenter method or a tube method can be applied.
 未延伸非晶性ポリエチレンテレフタレート系樹脂フィルム(C)としては、少なくとも酸成分としてテレフタル酸、グリコール成分としてエチレングリコールを用い、これらを反応させて得られる非晶性ポリエチレンテレフタレート系樹脂を公知の手段により製膜したものが挙げられる。
 中でも、本発明の効果の点から、未延伸非晶性ポリエチレンテレフタレート系樹脂フィルム(C)は、テレフタル酸からなる酸成分と、エチレングリコール60~90モル%およびシクロヘキサンジメタノール10~40モル%からなるグリコール成分(ただし、前記グリコール成分の合計は100モル%)とから構成された非晶性ポリエチレンテレフタレート系樹脂のフィルムが好ましい。
As the unstretched amorphous polyethylene terephthalate resin film (C), at least terephthalic acid is used as an acid component, ethylene glycol is used as a glycol component, and an amorphous polyethylene terephthalate resin obtained by reacting them is obtained by known means. The film-formed one can be mentioned.
Among these, from the viewpoint of the effect of the present invention, the unstretched amorphous polyethylene terephthalate resin film (C) is composed of an acid component composed of terephthalic acid, 60 to 90 mol% of ethylene glycol and 10 to 40 mol% of cyclohexanedimethanol. A film of an amorphous polyethylene terephthalate resin composed of a glycol component (however, the total of the glycol components is 100 mol%) is preferable.
 ポリ塩化ビニル系樹脂フィルム(D)としては、公知の塩化ビニル系樹脂を主成分とする硬質、半硬質、又は軟質の組成物から製造されたフィルムをいずれも使用することができる。 As the polyvinyl chloride resin film (D), any film produced from a hard, semi-rigid or soft composition mainly composed of a known vinyl chloride resin can be used.
 ポリカーボネート系樹脂フィルム(E)としては、二価フェノールとホスゲンを原料とし、界面重縮合法により得られるポリカーボネート系樹脂、あるいは二価フェノールとジフェニルカーボネートなどのカーボネート前駆体とを原料とし、エステル交換法により得られるポリカーボネート系樹脂のフィルムが挙げられる。
 このポリカーボネート系樹脂としては、通常二価フェノールとして、2,2-ビス(4-ヒドロキシフェニル)プロパン(ビスフェノールA)を用いて得られる樹脂が使用される。
また、二価フェノールとして、ビスフェノールAと2,2-ビス(3,5-ジブロモ-4-ヒドロキシフェニル)プロパン(テトラブロモビスフェノールA)との混合物を用いて得られる難燃性ポリカーボネート系樹脂を使用することもできる。さらに、耐衝撃性および難燃性を向上させたポリカーボネート系樹脂として、ビスフェノールA系ポリカーボネート-ポリオルガノシロキサン共重合体を使用することもできる。
As the polycarbonate resin film (E), a dihydric phenol and phosgene are used as raw materials, a polycarbonate resin obtained by an interfacial polycondensation method, or a dihydric phenol and a carbonate precursor such as diphenyl carbonate as raw materials, and a transesterification method. The film of the polycarbonate-type resin obtained by is mentioned.
As the polycarbonate-based resin, a resin obtained by using 2,2-bis (4-hydroxyphenyl) propane (bisphenol A) is usually used as a dihydric phenol.
In addition, flame retardant polycarbonate resin obtained by using a mixture of bisphenol A and 2,2-bis (3,5-dibromo-4-hydroxyphenyl) propane (tetrabromobisphenol A) is used as the dihydric phenol. You can also Furthermore, a bisphenol A-based polycarbonate-polyorganosiloxane copolymer can also be used as a polycarbonate-based resin with improved impact resistance and flame retardancy.
 表層フィルム(ア)の厚さは、25μm~250μmが好ましく、50μm~150μmがさらに好ましい。 The thickness of the surface layer film (a) is preferably 25 μm to 250 μm, more preferably 50 μm to 150 μm.
接着剤層(イ)
 本発明における接着剤層(イ)は、下記の熱可塑性飽和共重合ポリエステル樹脂100質量部に、含窒素複素環化合物0.1~5.0質量部およびタルク2~15質量部を配合し、かつ該熱可塑性飽和共重合ポリエステル樹脂に対しポリイソシアネート0.5~2.0当量を配合し硬化したものである。
 熱可塑性飽和共重合ポリエステル樹脂:テレフタル酸40~70モル%、およびセバシン酸30~60モル%からなる酸成分(ただし、前記酸成分の合計は100モル%)と、1,4-ブタンジオール40~90モル%およびエチレングリコール10~60モル%からなるグリコール成分(ただし、前記グリコール成分の合計は100モル%)とから構成される。
Adhesive layer (I)
In the adhesive layer (a) in the present invention, 0.1 to 5.0 parts by mass of a nitrogen-containing heterocyclic compound and 2 to 15 parts by mass of talc are blended with 100 parts by mass of the following thermoplastic saturated copolymer polyester resin. In addition, 0.5 to 2.0 equivalents of polyisocyanate is blended and cured with respect to the thermoplastic saturated copolyester resin.
Thermoplastic saturated copolyester resin: an acid component composed of 40 to 70 mol% terephthalic acid and 30 to 60 mol% sebacic acid (however, the total of the acid components is 100 mol%), 1,4-butanediol 40 A glycol component composed of ˜90 mol% and ethylene glycol 10-60 mol% (however, the total of the glycol components is 100 mol%).
 上記の酸成分のいずれか一つでも上記割合の範囲から外れてしまうと、初期タック性、初期密着性、耐熱接着性のすべてを同時に満足することができない。 If any one of the above acid components falls outside the above range, all of the initial tackiness, initial adhesion, and heat resistant adhesion cannot be satisfied at the same time.
 さらに好ましい熱可塑性飽和共重合ポリエステル樹脂は、テレフタル酸 45~65モル%、およびセバシン酸35~55モル%からなる酸成分(ただし、前記酸成分の合計は100モル%)と、1,4-ブタンジオール50~80モル%およびエチレングリコール20~50モル%からなるグリコール成分(ただし、前記グリコール成分の合計は100モル%)とから構成される。 A more preferable thermoplastic saturated copolymer polyester resin includes an acid component composed of 45 to 65 mol% terephthalic acid candy and 35 to 55 mol% sebacic acid (the total of the acid components is 100 mol%), 1,4- A glycol component comprising 50 to 80 mol% of butanediol and 20 to 50 mol% of ethylene glycol (however, the total of the glycol components is 100 mol%).
 また、熱可塑性飽和共重合ポリエステル樹脂のピークトップ融点は、85~115℃であるのが好ましい。この融点範囲であると、初期タック性、初期密着性、耐熱接着性のすべてを向上させる効果がある。
 ピークトップ融点は、示差走査熱量計(DSC)を用い、測定試料をJIS K7122に準じ、毎分20℃の速度で昇温させたときに描かれる融解曲線におけるピークトップ位置を指す。
 ピークトップ融点は、酸成分の配合割合を変更することにより調整することができる。
The peak top melting point of the thermoplastic saturated copolyester resin is preferably 85 to 115 ° C. Within this melting point range, there is an effect of improving all of initial tackiness, initial adhesion, and heat-resistant adhesion.
The peak top melting point refers to a peak top position in a melting curve drawn when a differential scanning calorimeter (DSC) is used and the measurement sample is heated at a rate of 20 ° C. per minute according to JIS K7122.
The peak top melting point can be adjusted by changing the blending ratio of the acid component.
 本発明における接着剤層(イ)は、上記の熱可塑性飽和共重合ポリエステル樹脂に、含窒素複素環化合物0.1~5.0質量部およびタルク2~15質量部を配合し、かつ該熱可塑性飽和共重合ポリエステル樹脂に対しポリイソシアネート0.5~2.0当量を配合し硬化したものである。 In the adhesive layer (a) in the present invention, 0.1 to 5.0 parts by mass of a nitrogen-containing heterocyclic compound and 2 to 15 parts by mass of talc are blended with the thermoplastic saturated copolymer polyester resin, and This is one obtained by blending 0.5 to 2.0 equivalents of polyisocyanate with respect to the plastic saturated copolyester resin and curing.
 含窒素複素環化合物としては、トリアゾール環を有する化合物、ピロール環を有する化合物、ピラゾール環を有する化合物、チアゾール環を有する化合物、イミダゾール環を有する化合物等が挙げられる。中でも、トリアゾール環を有する化合物であるトリアゾール系化合物またはイミダゾール環を有する化合物であるイミダゾール系化合物が、金属製積層基材、とくにマグネシウム基材との密着性を高める効果に優れ、好ましい。さらに好ましくは、トリアゾール系化合物が、ベンゾトリアゾール、イミダゾール系化合物がイミダゾールである形態である。 なお、本明細書において、オキサゾリン化合物は上記でいう含窒素複素環化合物には含まれないものとする。
 含窒素複素環化合物は、金属製積層基材における金属、とくにマグネシウムとの錯体形成能に優れ、上記密着性を高めるものと推測される。
Examples of the nitrogen-containing heterocyclic compound include a compound having a triazole ring, a compound having a pyrrole ring, a compound having a pyrazole ring, a compound having a thiazole ring, and a compound having an imidazole ring. Among them, a triazole compound which is a compound having a triazole ring or an imidazole compound which is a compound having an imidazole ring is preferable because it is excellent in the effect of improving adhesion to a metal laminate substrate, particularly a magnesium substrate. More preferably, the triazole compound is benzotriazole and the imidazole compound is imidazole. In the present specification, the oxazoline compound is not included in the nitrogen-containing heterocyclic compound described above.
The nitrogen-containing heterocyclic compound is presumed to be excellent in the ability to form a complex with a metal, particularly magnesium, in a metal laminate substrate, and to enhance the adhesion.
 タルクとしては、天然タルク、合成タルクまたは変性タルクのいずれであってもよく、その粒径は、例えば1~10μmである。
 タルクを添加することにより、接着剤層(イ)にかかる応力が分散され、面での接着性が高まり、接着強度が向上するという効果を奏する。タルクを添加しない場合は、接着剤層(イ)にかかる応力が一点集中し、界面破壊しやすく、接着強度が低下する。
The talc may be natural talc, synthetic talc or modified talc, and the particle size thereof is, for example, 1 to 10 μm.
By adding talc, the stress applied to the adhesive layer (a) is dispersed, the adhesion on the surface is increased, and the adhesive strength is improved. When talc is not added, the stress applied to the adhesive layer (a) is concentrated at one point, the interface is easily broken, and the adhesive strength is reduced.
 ポリイソシアネートとしては、トリレンジイソシアネート、4,4'-ジフェニルメタンジイソシアネート(MDI)、1,5-ナフチレンジイソシアネート、トリジンジイソシネート、1,6-ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、キシリレンジイソシアネート(XDI)、水添XDI、トリイソシアネート、テトラメチルキシレンジイソシアネート(TMXDI)、1,6,11-ウンデカントリイソシアネート、1,8-ジイソシアネートメチルオクタン、リジンエステルトリイソシアネート、1,3,6-ヘキサメチレントリイソシアネート、ビシクロヘプタントリイソシアネート等が挙げられる。なかでも、初期タック性、初期密着性、耐熱接着性が優れるという点で、ヘキサメチレンジイソシアネートが好ましく用いられる。 Polyisocyanates include tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate (MDI), 1,5-naphthylene diisocyanate, tolidine diisocyanate, 1,6-hexamethylene diisocyanate, isophorone diisocyanate, xylylene diisocyanate (XDI) Hydrogenated XDI, triisocyanate, tetramethylxylene diisocyanate (TMXDI), 1,6,11-undecane triisocyanate, 1,8-diisocyanate methyloctane, lysine ester triisocyanate, 1,3,6-hexamethylene triisocyanate, Bicycloheptane triisocyanate etc. are mentioned. Of these, hexamethylene diisocyanate is preferably used in terms of excellent initial tackiness, initial adhesion, and heat-resistant adhesiveness.
 本発明における接着剤層(イ)は、上記のように、熱可塑性飽和共重合ポリエステル樹脂100質量部に、含窒素複素環化合物0.1~5.0質量部およびタルク2~15質量部を配合し、かつ該熱可塑性飽和共重合ポリエステル樹脂に対しポリイソシアネート0.5~2.0当量を配合し、硬化したものである。
 含窒素複素環化合物が0.1質量部未満または5.0質量部超では、初期密着性および耐熱接着性が悪化する。
 タルクが2質量部未満では、初期密着性および耐熱接着性が悪化し、逆に15質量部を超えると、耐熱接着性が悪化し、初期タック性、初期密着性も低下する傾向にある。
 ポリイソシアネートが0.5当量未満では、耐熱接着性が悪化する。逆に2.0当量を超えると、初期タック性、初期密着性、耐熱接着性がいずれも悪化する。
 なお本発明でいうポリイソシアネートの当量は、ポリイソシアネート中のNCO%と、熱可塑性飽和共重合ポリエステル樹脂の水酸基価(KOHmg/g)から計算によって求めることができる。
As described above, the adhesive layer (I) in the present invention comprises 0.1 to 5.0 parts by mass of a nitrogen-containing heterocyclic compound and 2 to 15 parts by mass of talc in 100 parts by mass of a thermoplastic saturated copolymer polyester resin. Blended, and 0.5 to 2.0 equivalents of polyisocyanate is blended with the thermoplastic saturated copolyester resin and cured.
When the nitrogen-containing heterocyclic compound is less than 0.1 parts by mass or more than 5.0 parts by mass, the initial adhesion and the heat resistant adhesiveness are deteriorated.
When the talc is less than 2 parts by mass, the initial adhesiveness and the heat-resistant adhesiveness are deteriorated. Conversely, when it exceeds 15 parts by mass, the heat-resistant adhesiveness is deteriorated and the initial tackiness and initial adhesiveness tend to be lowered.
When the polyisocyanate is less than 0.5 equivalent, the heat resistant adhesiveness deteriorates. Conversely, when it exceeds 2.0 equivalents, initial tackiness, initial adhesion, and heat-resistant adhesiveness all deteriorate.
In addition, the equivalent of polyisocyanate as used in the field of this invention can be calculated | required by calculation from NCO% in polyisocyanate and the hydroxyl value (KOHmg / g) of a thermoplastic saturated copolyester resin.
 また本発明では、熱可塑性飽和共重合ポリエステル樹脂100質量部に、含窒素複素環化合物0.5~3.5質量部およびタルク5~10質量部を配合し、かつ該熱可塑性飽和共重合ポリエステル樹脂に対しポリイソシアネート0.8~1.6当量を配合するのがさらに好ましい。 In the present invention, 0.5 to 3.5 parts by mass of a nitrogen-containing heterocyclic compound and 5 to 10 parts by mass of talc are blended with 100 parts by mass of the thermoplastic saturated copolymer polyester resin, and the thermoplastic saturated copolymer polyester is used. More preferably, 0.8 to 1.6 equivalents of polyisocyanate is added to the resin.
 また本発明の接着剤層(イ)において、熱可塑性飽和共重合ポリエステル樹脂に、さらにカルボジイミド化合物またはオキサゾリン化合物0.5~2.0当量を配合するのが、金属製積層基材、とくに表面にリン酸塩表面処理が施されたマグネシウム基材との密着性を高める効果に優れ、好ましい。
 さらに好ましいカルボジイミド化合物またはオキサゾリン化合物の上記配合割合は、0.7~1.6当量である。
In addition, in the adhesive layer (a) of the present invention, 0.5 to 2.0 equivalents of a carbodiimide compound or an oxazoline compound is further added to the thermoplastic saturated copolymer polyester resin on the metal laminate substrate, particularly on the surface. It is excellent in the effect of improving the adhesiveness with the magnesium base material which the phosphate surface treatment was performed, and is preferable.
Further, the blending ratio of the carbodiimide compound or oxazoline compound is preferably 0.7 to 1.6 equivalents.
 カルボジイミド化合物としては、式-(N=C=N-R-)n-で表される化合物が挙げられる。
 式中、nは1以上の整数を示し、Rは有機系結合単位を示す。例えば、Rは脂肪族、脂環族、芳香族のいずれかであることができる。また、nは、通常、1~50の間で適当な整数が選択される。
Examples of the carbodiimide compound include compounds represented by the formula — (N═C═N—R—) n—.
In the formula, n represents an integer of 1 or more, and R represents an organic bond unit. For example, R can be either aliphatic, alicyclic, or aromatic. In addition, n is usually an appropriate integer selected from 1 to 50.
 具体的には、ビス(ジプロピルフェニル)カルボジイミド、ポリ(4,4'-ジフェニルメタンカルボジイミド)、ポリ(p-フェニレンカルボジイミド)、ポリ(m-フェニレンカルボジイミド)、ポリ(トリルカルボジイミド)、ポリ(ジイソプロピルフェニレンカルボジイミド)、ポリ(メチル-ジイソプロピルフェニレンカルボジイミド)、ポリ(トリイソプロピルフェニレンカルボジイミド)等、および、これらの単量体が、カルボジイミド化合物として挙げられる。これらのカルボジイミド化合物は、単独で使用しても、あるいは、2種以上組み合わせて使用してもよい。カルボジイミド化合物として市販されているものとしては、「カルボジライトシリーズ」(日清紡績株式会社製)等を好適に用いることができる。 Specifically, bis (dipropylphenyl) carbodiimide, poly (4,4′-diphenylmethanecarbodiimide), poly (p-phenylenecarbodiimide), poly (m-phenylenecarbodiimide), poly (tolylcarbodiimide), poly (diisopropylphenylene) Carbodiimide), poly (methyl-diisopropylphenylene carbodiimide), poly (triisopropylphenylene carbodiimide), and the like, and monomers thereof are listed as carbodiimide compounds. These carbodiimide compounds may be used alone or in combination of two or more. As what is marketed as a carbodiimide compound, "Carbodilite series" (made by Nisshinbo Industries, Inc.) etc. can be used conveniently.
 本発明に用いられるオキサゾリン化合物としては、1,2-エチレンビスオキサゾリン、2-シクロヘキシル-2-オキサゾリン、2-(2'-シクロヘキセニル)-2-オキサゾリン、2-オキサゾリン、2-メチル-2-オキサゾリン、2-エチル-2-オキサゾリン、2-イソプロピル-2-オキサゾリン、2-n-プロピル-2-オキサゾリン等が挙げられる。これらのオキサゾリン化合物は、単独で使用しても、あるいは、2種以上組み合わせて使用してもよい。また、上記オキサゾリン化合物の重合体であってもよい。オキサゾリン化合物として市販されているものとしては、「エポクロスシリーズ」(株式会社日本触媒製)等を好適に用いることができる。
 なお本発明でいうカルボジイミド化合物およびオキサゾリン化合物の当量は、熱可塑性飽和共重合ポリエステル樹脂のカルボキシル基の数に対する、カルボジイミド基またはオキサゾリン基の数から求めることができる。
Examples of the oxazoline compound used in the present invention include 1,2-ethylenebisoxazoline, 2-cyclohexyl-2-oxazoline, 2- (2′-cyclohexenyl) -2-oxazoline, 2-oxazoline, 2-methyl-2- Examples include oxazoline, 2-ethyl-2-oxazoline, 2-isopropyl-2-oxazoline, and 2-n-propyl-2-oxazoline. These oxazoline compounds may be used alone or in combination of two or more. Moreover, the polymer of the said oxazoline compound may be sufficient. As what is marketed as an oxazoline compound, "Epocross series" (made by Nippon Shokubai Co., Ltd.) etc. can be used conveniently.
In addition, the equivalent of the carbodiimide compound and oxazoline compound as referred to in the present invention can be determined from the number of carbodiimide groups or oxazoline groups with respect to the number of carboxyl groups of the thermoplastic saturated copolymer polyester resin.
 接着剤層(イ)の硬化後の厚さは、5μm~50μmが好ましく、10μm~40μmがさらに好ましい。 The thickness of the adhesive layer (a) after curing is preferably 5 μm to 50 μm, and more preferably 10 μm to 40 μm.
 また本発明では、表層フィルム(ア)と前記接着剤層(イ)との間にバッカー層(ウ)を設けることができる。バッカー層(ウ)の存在により、真空成型性が高まり好ましいものとなる。 In the present invention, a backer layer (c) can be provided between the surface layer film (a) and the adhesive layer (b). Due to the presence of the backer layer (c), the vacuum formability is increased and this is preferable.
 バッカー層(ウ)としては、とくに制限されないが、未延伸非晶性ポリエチレンテレフタレート系樹脂フィルム(F)またはポリ塩化ビニル系樹脂フィルム(G)であることが、真空成型性の観点から好ましい。 The backer layer (c) is not particularly limited, but is preferably an unstretched amorphous polyethylene terephthalate resin film (F) or a polyvinyl chloride resin film (G) from the viewpoint of vacuum moldability.
 未延伸非晶性ポリエチレンテレフタレート系樹脂フィルム(F)としては、テレフタル酸からなる酸成分と、エチレングリコール60~90モル%およびシクロヘキサンジメタノール10~40モル%からなるグリコール成分(ただし、前記グリコール成分の合計は100モル%)とから構成されるフィルムが好ましい。
 また、ポリ塩化ビニル系樹脂フィルム(G)としては、公知の塩化ビニル系樹脂を主成分とする硬質、半硬質、又は軟質の組成物から製造されたフィルムをいずれも使用することができる。
The unstretched amorphous polyethylene terephthalate resin film (F) includes an acid component composed of terephthalic acid and a glycol component composed of 60 to 90 mol% ethylene glycol and 10 to 40 mol% cyclohexanedimethanol (however, the glycol component) Is preferably 100% by mole).
In addition, as the polyvinyl chloride resin film (G), any film produced from a hard, semi-rigid, or soft composition mainly composed of a known vinyl chloride resin can be used.
 バッカー層(ウ)の厚さは、50μm~300μmが好ましく、100μm~200μmがさらに好ましい。 The thickness of the backer layer (c) is preferably 50 μm to 300 μm, more preferably 100 μm to 200 μm.
 本発明の真空成型用シートは、例えば次のようにして調製することができる。すなわち、熱可塑性飽和共重合ポリエステル樹脂をメチルエチルケトンのような有機溶剤に溶解させ、そこに所定量の含窒素複素環化合物、タルクおよびポリイソシアネート化合物、必要に応じてカルボジイミド化合物またはオキサゾリン化合物を加え、塗料とし、該塗料を表層フィルム(ア)上に公知のコーティング法により塗布し、硬化させることにより調製することができる。
 バッカー層(ウ)を設ける場合は、表層フィルム(ア)とバッカー層(ウ)とを例えば熱ラミネートあるいはドライラミネートによって積層させ、このバッカー層(ウ)上に、上記塗料を公知のコーティング法により塗布し、硬化させることにより調製することができる。
 なお、表層フィルム(ア)、接着剤層(イ)、バッカー層(ウ)には、必要に応じて耐候剤、帯電防止剤、充填剤等の公知の添加剤を添加できることは勿論である。
The vacuum forming sheet of the present invention can be prepared, for example, as follows. That is, a thermoplastic saturated copolymer polyester resin is dissolved in an organic solvent such as methyl ethyl ketone, and a predetermined amount of a nitrogen-containing heterocyclic compound, talc and polyisocyanate compound, and a carbodiimide compound or an oxazoline compound as necessary are added to the paint. The coating material can be prepared by applying the coating material on the surface layer film (a) by a known coating method and curing it.
When the backer layer (c) is provided, the surface layer film (a) and the backer layer (c) are laminated by, for example, heat lamination or dry lamination, and the paint is applied to the backer layer (c) by a known coating method. It can be prepared by applying and curing.
Needless to say, known additives such as weathering agents, antistatic agents and fillers can be added to the surface layer film (a), the adhesive layer (a) and the backer layer (c) as necessary.
 本発明の真空成型用シートを用いた真空成型は、とくにその方法を制限するものではないが、例えば上記特許文献1~3に記載の方法によって成型するのが好ましい。すなわち、本発明の真空成型用シートと、前記真空成型用シートを積層する積層基材とを対向配置し、前記真空成型用シートにより積層基材側に第一の室を、反対側に第二の室を互いに気密に区画し、前記第一の室および前記第二の室を減圧し、かつ前記真空成型用シートを加熱軟化した後、前記真空成型用シートと前記積層基材とを接触させ、この後に前記第二の室の減圧を解除して前記第一の室と前記第二の室の差圧により前記真空成型用シートを積層基材の外表面に密着積層する真空成型方法である。当該方法は公知であるので、以下、簡単に説明する。 The vacuum forming using the vacuum forming sheet of the present invention is not particularly limited, but it is preferable to form by the methods described in Patent Documents 1 to 3, for example. That is, the vacuum forming sheet of the present invention and the laminated base material on which the vacuum forming sheet is laminated are arranged opposite to each other, and the first chamber on the laminated base material side and the second on the opposite side by the vacuum forming sheet. And the first chamber and the second chamber are depressurized and the vacuum forming sheet is heated and softened, and then the vacuum forming sheet and the laminated base material are brought into contact with each other. Then, the vacuum forming method of releasing the decompression of the second chamber and then laminating the vacuum forming sheet on the outer surface of the laminated substrate by the differential pressure between the first chamber and the second chamber. . Since this method is known, it will be briefly described below.
 図2は、上記真空成型方法の一例を説明するための図である。
 図2に示すように、真空成型機内で真空成型用シート10と積層基材12とを、接着剤層(イ)が積層基材12と接するように対向配置し、真空成型用シート10により積層基材側に第一の室14を、反対側に第二の室16を互いに気密に区画する。続いて、第一の室14および第二の室16を真空ポンプ18により減圧し、かつ、真空成型用シート10を加熱軟化させる。加熱軟化は、ヒータ20を点灯することにより行なう。
 次に図3に示すように、駆動装置22によって第一の室14内のテーブル24を上昇させ、真空成型用シート10と積層基材12とを接触させる。次に、第二の室16の減圧を解除して第一の室14と第二の室16の差圧により前記真空成型用シートを積層基材の外表面に密着積層し、成型品を得る。その後、駆動装置26によって真空成型機を開放し、成型品を取り出す。
FIG. 2 is a diagram for explaining an example of the vacuum forming method.
As shown in FIG. 2, the vacuum forming sheet 10 and the laminated base material 12 are arranged opposite to each other so that the adhesive layer (a) is in contact with the laminated base material 12 in the vacuum forming machine, and are laminated by the vacuum forming sheet 10. A first chamber 14 is partitioned on the substrate side, and a second chamber 16 is partitioned airtightly on the opposite side. Subsequently, the first chamber 14 and the second chamber 16 are decompressed by the vacuum pump 18 and the vacuum forming sheet 10 is heated and softened. Heat softening is performed by turning on the heater 20.
Next, as shown in FIG. 3, the table 24 in the first chamber 14 is raised by the driving device 22, and the vacuum forming sheet 10 and the laminated base material 12 are brought into contact with each other. Next, the reduced pressure in the second chamber 16 is released, and the vacuum forming sheet is adhered and laminated on the outer surface of the laminated base material by the differential pressure between the first chamber 14 and the second chamber 16 to obtain a molded product. . Thereafter, the vacuum molding machine is opened by the driving device 26, and the molded product is taken out.
 上記積層基材としては、本発明では、金属製基材、とくにマグネシウム基材またはアルミニウム基材が、密着性の点で好ましい。
 また本発明によれば、真空成型用シートと積層基材とを接触させる工程の際に、積層基材を60℃~100℃、好ましくは70~90℃に加温することにより、真空成型用シートと積層基材との密着性をさらに高めることができる。とくにこの効果は、マグネシウム基材またはアルミニウム基材を使用したときにさらに高まる。
 なお、本発明の真空成型用シートと積層基材との真空成型は、上記方法に限定されるものではない。
In the present invention, the laminated substrate is preferably a metal substrate, particularly a magnesium substrate or an aluminum substrate in terms of adhesion.
Further, according to the present invention, in the step of bringing the vacuum forming sheet into contact with the laminated substrate, the laminated substrate is heated to 60 ° C. to 100 ° C., preferably 70 to 90 ° C. The adhesion between the sheet and the laminated substrate can be further enhanced. In particular, this effect is further enhanced when a magnesium base or an aluminum base is used.
In addition, the vacuum forming of the vacuum forming sheet and the laminated base material of the present invention is not limited to the above method.
 以下、実施例および比較例により本発明をさらに説明するが、本発明はこれらの例に限定されるものではない。 Hereinafter, the present invention will be further described with reference to examples and comparative examples, but the present invention is not limited to these examples.
実施例1
熱可塑性飽和共重合ポリエステル樹脂の合成
 得られる樹脂が下記表1の樹脂構成(1)を有するように、酸成分として、テレフタル酸、セバシン酸、グリコール成分として、1,4-ブタンジオール、エチレングリコールを適当量配合し、触媒(テトラブチルチタネート)の存在下、加熱し、熱可塑性飽和共重合ポリエステル樹脂(以下、単に共重合ポリエステル樹脂ということがある)を合成した。なお、熱可塑性飽和共重合ポリエステル樹脂における上記4種のモノマー組成は、NMRにより確認した。NMRの確認は、以下の実施例および比較例でも行った。
Example 1
Synthesis of Thermoplastic Saturated Copolyester Resin As the resulting resin has the resin composition (1) shown in Table 1 below, the acid component is terephthalic acid, sebacic acid, the glycol component is 1,4-butanediol, ethylene glycol Was added in an appropriate amount and heated in the presence of a catalyst (tetrabutyl titanate) to synthesize a thermoplastic saturated copolymer polyester resin (hereinafter sometimes simply referred to as copolymer polyester resin). In addition, the said 4 types of monomer composition in a thermoplastic saturated copolyester resin was confirmed by NMR. NMR confirmation was also performed in the following examples and comparative examples.
接着剤層(イ)形成用塗料の調製
 上記で得られた熱可塑性飽和共重合ポリエステル樹脂を溶剤(メチルエチルケトン)に溶解し、固形分30質量%の塗料とした。この塗料に含窒素複素環化合物(1)((株)スリーボンド製ベンゾトリアゾール)、タルク(日本タルク(株)製、P-6、粒子径D50=4.0μm)、カルボジイミド化合物(日清紡績(株)製、カルボジライトV-03)、ポリイソシアネート(日本ポリウレタン製、「コロネートHX」(ヘキサメチレンジイソシアネート)、固形分100%)を表1に記載の量で加え、接着剤層(イ)形成用塗料とした。
Preparation of paint for forming adhesive layer (ii) The thermoplastic saturated copolymer polyester resin obtained above was dissolved in a solvent (methyl ethyl ketone) to obtain a paint having a solid content of 30% by mass. Nitrogen-containing heterocyclic compound (1) (benzotriazole manufactured by Three Bond Co., Ltd.), talc (manufactured by Nippon Talc Co., Ltd., P-6, particle size D50 = 4.0 μm), carbodiimide compound (Nisshinbo Co., Ltd.) ), Carbodilite V-03), polyisocyanate (manufactured by Nippon Polyurethane, “Coronate HX” (hexamethylene diisocyanate), solid content 100%) is added in the amounts shown in Table 1, and the adhesive layer (A) forming coating is added. It was.
真空成型用シートの調製
 表層フィルム(ア)として、アクリル樹脂フィルム(1)(住友化学工業(株)製、「テクノロイS001」、ポリメタクリル酸メチル、厚さ50μm、引張弾性率1300MPa、鉛筆硬度 H)を用いた。
 またバッカー層(ウ)として、PET-G(1)(リケンテクノス(株)製、製品名「SET470、FZ25871」、未延伸非晶性ポリエチレンテレフタレート系樹脂フィルム、テレフタル酸からなる酸成分と、エチレングリコール70モル%およびシクロヘキサンジメタノール30モル%からなるグリコール成分とから構成される。厚さ150μm)を用いた。
 表層フィルム(ア)とバッカー層(ウ)との積層は、熱ラミネートにより行なった。
 また、バッカー層(ウ)上に、上記接着剤層(イ)形成用塗料を、ナイフコーターによりコーティングし、硬化後の厚さを20μmとした。
Preparation of Vacuum Forming Sheet As a surface layer film (a), acrylic resin film (1) (manufactured by Sumitomo Chemical Co., Ltd., “Technoloy S001”, polymethyl methacrylate, thickness 50 μm, tensile elastic modulus 1300 MPa, pencil hardness H ) Was used.
Also, as the backer layer (c), PET-G (1) (manufactured by Riken Technos Co., Ltd., product names “SET470, FZ25871”, unstretched amorphous polyethylene terephthalate resin film, acid component comprising terephthalic acid, and ethylene glycol It was composed of a glycol component consisting of 70 mol% and cyclohexane dimethanol 30 mol% (thickness 150 μm).
Lamination of the surface layer film (a) and the backer layer (c) was performed by thermal lamination.
Moreover, the adhesive layer (ii) forming coating material was coated on the backer layer (iii) with a knife coater, and the thickness after curing was 20 μm.
真空成型
 図2~3に示した真空成型法により、真空成型を行なった。成型時の表層フィルム(ア)の表面温度(成型温度)を表1に示した。また、積層基材としては、Mg(1)(マグネシウム筐体、リン酸表面処理(化成処理)済み。真空成型時、真空成型用シートとマグネシウム筐体とを接触させる工程の際に、マグネシウム筐体を70℃に加温した)を用いた。
 なお以下の実施例および比較例において、筐体のサイズは、いずれも高さ5mm、奥行200mm、幅280mmの矩形である。
Vacuum forming Vacuum forming was performed by the vacuum forming method shown in FIGS. Table 1 shows the surface temperature (molding temperature) of the surface layer film (a) during molding. In addition, as the laminated base material, Mg (1) (magnesium casing, phosphoric acid surface treatment (chemical conversion treatment) has been completed. In the process of contacting the vacuum forming sheet and the magnesium casing during vacuum forming, The body was warmed to 70 ° C).
In the following examples and comparative examples, the size of the casing is a rectangle having a height of 5 mm, a depth of 200 mm, and a width of 280 mm.
評価
 以下の評価を行なった。
 真空成型性:布施真空(株)製 NGF-0912型 両面真空成形機により、真空成型性を評価した。
 ◎: 基材形状への追従性が良好で、端部巻き込み性も良好である。
 ○: 基材形状への追従性は良好であるが、端部巻き込み性が甘い。
 △: 基材形状への追従性および端部巻き込み性が甘く、浮きが見られる場合がある。
 ×: シートの破れが発生し、十分に成形ができない。
初期タック性:硬化後の接着層面に指を強く押し当ててから剥離する際の感覚により、初期タック性を評価した。
 ○: べたつき感がある。
 △: 多少のべたつきを感じる。
 ×: 全くべたつきがない。
 初期密着性:真空成形直後にシートの強制剥離を行うことにより、初期密着性を評価した。
 ◎: シート材破となる。
 ○: シートが伸ばされながら剥離する。
 △: シートが伸ばされずに多少の剥離抵抗を保ちながら剥離する。
 ×: シートが伸ばされずに十分な剥離抵抗がないまま剥離する。
 耐熱接着性(85℃×5日間):
 真空成形品を85℃に設定したギアオーブン中に5日間放置した後、膨れおよび端部の剥離の確認を行い、かつ、シートの強制剥離を行うことにより、耐熱接着性を評価した。
 ◎: 膨れおよび端部の剥離もなく、かつ、強制剥離でシート材破となる。
 ○: 膨れおよび端部の剥離もなく、かつ、強制剥離でシートが伸ばされながら剥離する。
 △: わずかに膨れあるいは端部の剥離が認められ、かつ、強制剥離でシートが伸ばされずに多少の剥離抵抗を保ちながら剥離する。
 ×: 明らかに膨れあるいは端部の剥離が認められる、または、強制剥離でシートが十分な剥離抵抗がないまま剥離する。
Evaluation The following evaluation was performed.
Vacuum formability: NGF-0912 type manufactured by Fuse Vacuum Co., Ltd. The vacuum formability was evaluated using a double-sided vacuum forming machine.
(Double-circle): The followable | trackability to a base-material shape is favorable and an edge part winding property is also favorable.
◯: The followability to the substrate shape is good, but the end wrapping property is poor.
(Triangle | delta): The followable | trackability to a base-material shape and edge part winding property are sweet, and a float may be seen.
X: The sheet is torn and cannot be sufficiently molded.
Initial tackiness: The initial tackiness was evaluated based on the feeling when the finger was pressed firmly against the cured adhesive layer surface and then peeled off.
○: There is a sticky feeling.
Δ: Feels somewhat sticky.
×: No stickiness.
Initial adhesion: Initial adhesion was evaluated by forcibly peeling the sheet immediately after vacuum forming.
A: Sheet material breaks.
○: The sheet is peeled while being stretched.
(Triangle | delta): It peels, maintaining some peeling resistance, without a sheet | seat being extended.
X: The sheet is not stretched and peeled without sufficient peeling resistance.
Heat-resistant adhesiveness (85 ° C x 5 days):
After the vacuum molded product was left in a gear oven set at 85 ° C. for 5 days, the swelling and edge peeling were confirmed, and the sheet was forcibly peeled to evaluate the heat resistant adhesion.
(Double-circle): There is no swelling and peeling of an edge part, and it becomes a sheet material breakage by forced peeling.
○: There is no swelling and peeling of the edge, and peeling is performed while the sheet is stretched by forced peeling.
Δ: Slight swelling or peeling at the end is observed, and the sheet is peeled while maintaining some peeling resistance without being stretched by forced peeling.
X: Swelling or peeling of the edge is clearly observed, or the sheet peels off without sufficient peeling resistance by forced peeling.
 結果を表1に示す。 The results are shown in Table 1.
実施例2
 実施例1において、バッカー層(ウ)として、PVC(1)(リケンテクノス(株)製、製品名「S12040、FC13477」、ポリ塩化ビニル樹脂、厚さ150μm)を用い、表1に示す成型温度で真空成型を行なったこと以外は、実施例1を繰り返した。結果を表1に示す。
Example 2
In Example 1, PVC (1) (manufactured by Riken Technos Co., Ltd., product name “S12040, FC13477”, polyvinyl chloride resin, thickness 150 μm) was used as the backer layer (c) at the molding temperature shown in Table 1. Example 1 was repeated except that vacuum forming was performed. The results are shown in Table 1.
実施例3
 実施例1において、表層フィルム(ア)として、共重合PET(1)(帝人デュポンフィルム(株)製、テフレックスFT、酸成分として、テレフタル酸、およびナフタレンジカルボン酸、グリコール成分としてエチレングリコールからなる二軸延伸共重合ポリエチレンテレフタレート系樹脂フィルム、厚さ50μm)を用い、表1に示す成型温度で真空成型を行なったこと以外は、実施例1を繰り返した。結果を表1に示す。
Example 3
In Example 1, copolymerized PET (1) (Teijin DuPont Films, Teflex FT, terephthalic acid as an acid component, naphthalenedicarboxylic acid, ethylene glycol as a glycol component, as a surface layer film (a) Example 1 was repeated except that a biaxially stretched copolymer polyethylene terephthalate resin film (thickness 50 μm) was used and vacuum molding was performed at the molding temperature shown in Table 1. The results are shown in Table 1.
実施例4
 実施例1において、表層フィルム(ア)として、PC(1)(旭硝子製、商品名 レキサンフィルム8010、112クリア、ポリカーボネートフィルム、厚さ100μm)を用い、表1に示す成型温度で真空成型を行なったこと以外は、実施例1を繰り返した。結果を表1に示す。
Example 4
In Example 1, as the surface layer film (a), PC (1) (product name: Asahi Glass, trade name Lexan film 8010, 112 clear, polycarbonate film, thickness 100 μm) was used, and vacuum forming was performed at the molding temperature shown in Table 1. Example 1 was repeated except that. The results are shown in Table 1.
実施例5
 実施例1において、表層フィルム(ア)として、PET-G(2)(リケンテクノス(株)製、商品名 SET241 FZ025、未延伸非晶性ポリエチレンテレフタレート系樹脂フィルム、テレフタル酸からなる酸成分と、エチレングリコール70モル%およびシクロヘキサンジメタノール30モル%からなるグリコール成分とから構成される。厚さ100μm)を用い、かつ積層基材としてAl(1)(アルミニウム筐体。化成処理なし。真空成型時、真空成型用シートとアルミニウム筐体とを接触させる工程の際に、アルミニウム筐体を70℃に加温した)を用い、表1に示す成型温度で真空成型を行なったこと以外は、実施例1を繰り返した。結果を表1に示す。
Example 5
In Example 1, as the surface layer film (a), PET-G (2) (manufactured by Riken Technos Co., Ltd., trade name SET241 FZ025, unstretched amorphous polyethylene terephthalate resin film, acid component consisting of terephthalic acid, and ethylene It is composed of a glycol component composed of 70 mol% of glycol and 30 mol% of cyclohexanedimethanol. A thickness of 100 μm is used, and Al (1) (aluminum housing without chemical conversion treatment. Example 1 except that the aluminum molding was heated to 70 ° C. during the step of bringing the vacuum forming sheet into contact with the aluminum casing, and vacuum molding was performed at the molding temperature shown in Table 1. Was repeated. The results are shown in Table 1.
実施例6~9
 実施例1において、バッカー層(ウ)を設けずに、表層フィルム(ア)、積層基材、成型温度を表2に示す様に変更したこと以外は、実施例1を繰り返した。結果を表2に示す。
 なお表2において、アクリル(2)とは、住友化学工業(株)製、商品名 テクノロイ S001、アクリル樹脂フィルム、厚さ125μmである。
 PET-G(3)とは、リケンテクノス(株)製、商品名 SET329 FZ93266、未延伸非晶性ポリエチレンテレフタレート系樹脂フィルム、テレフタル酸からなる酸成分と、エチレングリコール70モル%およびシクロヘキサンジメタノール30モル%からなるグリコール成分とから構成され、厚さ150μmである。
 PVC(2)とは、リケンテクノス(株)製、商品名 S12138 FC25847、ポリ塩化ビニル樹脂フィルム、厚さ150μmである。
 PC(2)とは、旭硝子製、商品名 レキサンフィルムFR765 黒、ポリカーボネート樹脂フィルム、厚さ180μmである。
Examples 6-9
In Example 1, Example 1 was repeated except that the surface layer film (a), the laminated base material, and the molding temperature were changed as shown in Table 2 without providing the backer layer (c). The results are shown in Table 2.
In Table 2, acrylic (2) is manufactured by Sumitomo Chemical Co., Ltd., trade name: Technoloy S001, acrylic resin film, and thickness: 125 μm.
PET-G (3) is manufactured by Riken Technos Co., Ltd., trade name SET329 FZ93266, unstretched amorphous polyethylene terephthalate resin film, acid component consisting of terephthalic acid, 70 mol% of ethylene glycol and 30 mol of cyclohexanedimethanol % Glycol component, and has a thickness of 150 μm.
PVC (2) is manufactured by Riken Technos Co., Ltd., trade name S12138 FC25847, a polyvinyl chloride resin film, and a thickness of 150 μm.
PC (2) is manufactured by Asahi Glass, trade name Lexan film FR765 black, polycarbonate resin film, thickness 180 μm.
実施例10~13
 実施例1において、樹脂構成(1)の替わりに、表3に示す樹脂構成(2)~(5)を採用したこと以外は、実施例1を繰り返した。結果を表3に示す。
Examples 10-13
In Example 1, Example 1 was repeated except that the resin structures (2) to (5) shown in Table 3 were employed instead of the resin structure (1). The results are shown in Table 3.
実施例14~20
 実施例1において、含窒素複素環化合物の量または種類を、表4および表5に示すように変更したこと以外は、実施例1を繰り返した。結果を表4および表5に示す。
 なお、含窒素複素環化合物(2)とは、(株)スリーボンド製、トリルトリアゾールである。
 含窒素複素環化合物(3)とは、日本合成化学工業(株)製、イミダゾールである。
含窒素複素環化合物(4)とは、四国化成製、2-フェニルイミダゾールである。
含窒素複素環化合物(5)とは、ダイセル化学工業(株)製、ピリジンである。
Examples 14-20
In Example 1, Example 1 was repeated except that the amount or type of the nitrogen-containing heterocyclic compound was changed as shown in Tables 4 and 5. The results are shown in Tables 4 and 5.
The nitrogen-containing heterocyclic compound (2) is Tolyltriazole manufactured by Three Bond Co., Ltd.
The nitrogen-containing heterocyclic compound (3) is imidazole manufactured by Nippon Synthetic Chemical Industry Co., Ltd.
The nitrogen-containing heterocyclic compound (4) is 2-phenylimidazole manufactured by Shikoku Kasei.
The nitrogen-containing heterocyclic compound (5) is pyridine manufactured by Daicel Chemical Industries, Ltd.
実施例21~22
 実施例1において、タルクの配合割合を表6に示すように変更したこと以外は、実施例1を繰り返した。結果を表6に示す。
Examples 21-22
In Example 1, Example 1 was repeated except that the blending ratio of talc was changed as shown in Table 6. The results are shown in Table 6.
実施例23
 実施例1において、カルボジイミド化合物の替わりに、オキサゾリン化合物を1.2当量使用したこと以外は、実施例1を繰り返した。結果を表6に示す。
 なお、オキサゾリン化合物としては、(株)日本触媒製 エポクロス WS-500を使用した。
Example 23
In Example 1, Example 1 was repeated except that 1.2 equivalent of the oxazoline compound was used instead of the carbodiimide compound. The results are shown in Table 6.
As the oxazoline compound, EPOCROS WS-500 manufactured by Nippon Shokubai Co., Ltd. was used.
実施例24~25
 実施例1において、カルボジイミド化合物の配合割合を表6に示すように変更したこと以外は、実施例1を繰り返した。結果を表6に示す。
Examples 24-25
In Example 1, Example 1 was repeated except that the blending ratio of the carbodiimide compound was changed as shown in Table 6. The results are shown in Table 6.
実施例26~27
 実施例1において、ポリイソシアネートの配合割合を表7に示すように変更したこと以外は、実施例1を繰り返した。結果を表7に示す。
Examples 26-27
In Example 1, Example 1 was repeated except that the blending ratio of polyisocyanate was changed as shown in Table 7. The results are shown in Table 7.
実施例28
 実施例1において、バッカー層(ウ)として、A-PET(1)を用いたこと以外は、実施例1を繰り返した。結果を表7に示す。
 なお、A-PET(1)とは、帝人化成製、商品名 A-PETシート 一般タイプ、化合物名 無延伸ポリエチレンテレフタレートシート、厚さ150μmである。
Example 28
In Example 1, Example 1 was repeated except that A-PET (1) was used as the backer layer (c). The results are shown in Table 7.
A-PET (1) is a product name A-PET sheet general type, compound name, unstretched polyethylene terephthalate sheet, 150 μm in thickness, manufactured by Teijin Chemicals.
実施例29
 実施例7において、表層フィルム(ア)としてA-PET(2)を用いたこと以外は、実施例7を繰り返した。結果を表7に示す。
 なお、A-PET(2)とは、帝人化成製、商品名A-PETシート 黒、化合物名 無延伸ポリエチレンテレフタレートシート、厚さ150μmである。
Example 29
In Example 7, Example 7 was repeated except that A-PET (2) was used as the surface layer film (a). The results are shown in Table 7.
A-PET (2) is Teijin Chemicals, trade name A-PET sheet black, compound name unstretched polyethylene terephthalate sheet, thickness 150 μm.
実施例30~33
 実施例1において、積層基材を表8に示すように変更したこと以外は、実施例1を繰り返した。結果を表8に示す。
 なお、Mg(2)~(5)は以下の通りである。
 Mg(2):マグネシウム筐体、リン酸表面処理(化成処理)済み。真空成型時、真空成型用シートとマグネシウム筐体とを接触させる工程の際に、マグネシウム筐体の加温は行なっていない。
 Mg(3):マグネシウム筐体、リン酸表面処理(化成処理)済み。真空成型時、真空成型用シートとマグネシウム筐体とを接触させる工程の際に、マグネシウム筐体を55℃に加温した。
 Mg(4):マグネシウム筐体、リン酸表面処理(化成処理)済み。真空成型時、真空成型用シートとマグネシウム筐体とを接触させる工程の際に、マグネシウム筐体を65℃に加温した。
 Mg(5):マグネシウム筐体、リン酸表面処理(化成処理)済み。真空成型時、真空成型用シートとマグネシウム筐体とを接触させる工程の際に、マグネシウム筐体を90℃に加温した。
Examples 30-33
In Example 1, Example 1 was repeated except that the laminated base material was changed as shown in Table 8. The results are shown in Table 8.
Mg (2) to (5) are as follows.
Mg (2): Magnesium case, phosphoric acid surface treatment (chemical conversion treatment) completed. At the time of vacuum forming, the magnesium casing is not heated during the step of bringing the vacuum forming sheet into contact with the magnesium casing.
Mg (3): Magnesium case, phosphoric acid surface treatment (chemical conversion treatment) completed. During the vacuum forming, the magnesium casing was heated to 55 ° C. during the step of bringing the vacuum forming sheet and the magnesium casing into contact with each other.
Mg (4): Magnesium housing, phosphoric acid surface treatment (chemical conversion treatment) completed. During vacuum forming, the magnesium casing was heated to 65 ° C. during the step of bringing the vacuum forming sheet and the magnesium casing into contact with each other.
Mg (5): Magnesium case, phosphoric acid surface treatment (chemical conversion treatment) finished. During the vacuum molding, the magnesium casing was heated to 90 ° C. during the step of bringing the vacuum forming sheet and the magnesium casing into contact with each other.
実施例34
 実施例5において、積層基材をAl(2)(アルミニウム筐体。化成処理なし。真空成型時、真空成型用シートとアルミニウム筐体とを接触させる工程の際に、アルミニウム筐体の加温は行なっていない)表8に示すように変更したこと以外は、実施例5を繰り返した。結果を表8に示す。
Example 34
In Example 5, the laminated base material was made of Al (2) (aluminum casing. No chemical conversion treatment. During the vacuum forming, the aluminum casing was heated during the process of contacting the vacuum forming sheet and the aluminum casing. Example 5 was repeated except that the changes were made as shown in Table 8. The results are shown in Table 8.
比較例1
 実施例1において、表層フィルム(ア)として二軸PET(1)(ユニチカ(株)製、商品名 エンブレットS50、二軸延伸ポリエチレンテレフタレートフィルム、厚さ50μm)を使用し、成型温度を表9に示すように変更したこと以外は、実施例1を繰り返した。結果を表9に示す。
Comparative Example 1
In Example 1, biaxial PET (1) (trade name: Emblet S50, biaxially stretched polyethylene terephthalate film, thickness: 50 μm, manufactured by Unitika Co., Ltd.) was used as the surface layer film (a), and the molding temperature was set in Table 9. Example 1 was repeated except that the changes were made as shown in FIG. The results are shown in Table 9.
比較例2
 実施例1において、バッカー層(ウ)を設けずに、表層フィルム(ア)としてPBT(1)(ポリブチレンテレフタレート樹脂〔東レ(株)製、商品名 トレコン1200S〕を600mm幅のTダイを装着した40mm押出機〔(株)池貝製〕で、エンボスパターン200メッシュ、温度条件はシリンダー温度270℃、ダイス温度270℃、製膜速度10m/minで厚さ100μmに製膜した)を使用し、成型温度を表9に示すように変更したこと以外は、実施例1を繰り返した。結果を表9に示す。
Comparative Example 2
In Example 1, without providing a backer layer (C), a PBT (1) (polybutylene terephthalate resin [trade name Toraycon 1200S, manufactured by Toray Industries, Inc.] is mounted as a surface layer film (A) with a 600 mm wide T-die. Using a 40 mm extruder (made by Ikegai Co., Ltd.), embossed pattern 200 mesh, temperature conditions were cylinder temperature 270 ° C., die temperature 270 ° C., film forming speed 10 m / min. Example 1 was repeated except that the molding temperature was changed as shown in Table 9. The results are shown in Table 9.
比較例3~5
 実施例1において、樹脂構成(1)の替わりに、表9に示す樹脂構成(6)~(8)を採用したこと以外は、実施例1を繰り返した。結果を表9に示す。
Comparative Examples 3-5
In Example 1, Example 1 was repeated except that the resin structures (6) to (8) shown in Table 9 were used instead of the resin structure (1). The results are shown in Table 9.
比較例6~7
 実施例1において、含窒素複素環化合物(1)の配合割合を表10に示すように変更したこと以外は、実施例1を繰り返した。結果を表10に示す。
Comparative Examples 6-7
In Example 1, Example 1 was repeated except that the blending ratio of the nitrogen-containing heterocyclic compound (1) was changed as shown in Table 10. The results are shown in Table 10.
比較例8~9
 実施例1において、タルクの配合割合を表10に示すように変更したこと以外は、実施例1を繰り返した。結果を表10に示す。
Comparative Examples 8-9
In Example 1, Example 1 was repeated except that the blending ratio of talc was changed as shown in Table 10. The results are shown in Table 10.
比較例10~11
 実施例1において、ポリイソシアネートの配合割合を表11に示すように変更したこと以外は、実施例1を繰り返した。結果を表11に示す。
Comparative Examples 10-11
In Example 1, Example 1 was repeated except that the blending ratio of polyisocyanate was changed as shown in Table 11. The results are shown in Table 11.
比較例12
 実施例1において、接着剤層(イ)を、粘着剤(1)に変更したこと以外は、実施例1を繰り返した。結果を表11に示す。
 なお、粘着剤(1)とは、ビックテクノス(株)製、商品名 リキダイン AR-2037 、塗料組成:アクリル酸エステル共重合体である。
Comparative Example 12
In Example 1, Example 1 was repeated except that the adhesive layer (I) was changed to the pressure-sensitive adhesive (1). The results are shown in Table 11.
The pressure-sensitive adhesive (1) is a product name of Liquidine AR-2037 manufactured by Big Technos Co., Ltd., paint composition: acrylate copolymer.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 表1~11の結果から、以下の事項が導き出される。
・実施例1は、表層フィルム(ア)の種類を特定するとともに、接着剤層(イ)における熱可塑性飽和共重合ポリエステル樹脂の組成と、含窒素複素環化合物、タルクおよびポリイソシアネートの使用量とを特定の範囲に設定したので、真空成型性、初期タック性、初期密着性に優れ、さらに積層基材が、マグネシウムのような金属製基材においても、三次元被覆成型品での耐熱接着性(85℃×5日)に優れた真空成型用シートを提供することができた。また、バッカー層(ウ)を設けたことにより、真空成型性を向上させることができた。
・実施例2は、バッカー層(ウ)をPVC(1)にした例で、実施例1と同様の性能を示した。
・実施例3は、表層フィルム(ア)を共重合PET(1)にした例で、実施例1と同様の性能を示した。
・実施例4は、表層フィルム(ア)をPC(1)にした例で、実施例1と同様の性能を示した。
・実施例5は、表層フィルム(ア)をPET-G(2)にし、積層基材をAl(1)にした例で、実施例1と同様の性能を示した。
・実施例6は、表層フィルム(ア)をアクリル(2)にして、バッカー層(ウ)を設けなかった例で、真空成型性が○評価であったこと以外、実施例1と同様の性能を示した。
・実施例7は、表層フィルム(ア)をPET-G(3)にして、バッカー層(ウ)を設けなかった例で、真空成型性が○評価であったこと以外、実施例1と同様の性能を示した。・実施例8は、表層フィルム(ア)をPVC(2)にして、バッカー層(ウ)を設けず、積層基材をAl(1)にした例で、真空成型性が○評価であったこと以外、実施例1と同様の性能を示した。
・実施例9は、表層フィルム(ア)をPC(2)にして、バッカー層(ウ)を設けなかった例で、真空成型性が○評価であったこと以外、実施例1と同様の性能を示した。
・実施例10は、共重合ポリエステル樹脂を樹脂構成(2)にした例で、実施例1と同様の性能を示した。
・実施例11は、共重合ポリエステル樹脂を樹脂構成(3)にした例で、耐熱接着性(85℃×5日)が△評価になった。それ以外は実施例1と同様の性能を示した。
・実施例12は、共重合ポリエステル樹脂を樹脂構成(4)にした例で、初期タック性、初期密着性が△評価、耐熱性(85℃×5日)が○評価になった。それ以外は実施例1と同様の性能を示した。
・実施例13は、共重合ポリエステル樹脂を樹脂構成(5)にした例で、実施例1と同様の性能を示した。
・実施例14は、含窒素複素環化合物(1)の配合割合を0.2質量部にした例で、初期密着性、耐熱接着性(85℃×5日)が△評価になった。それ以外は実施例1と同様の性能を示した。
・実施例15は、含窒素複素環化合物(1)の配合割合を1.0質量部にした例で、初期密着性、耐熱接着性(85℃×5日)が○評価になった。それ以外は実施例1と同様の性能を示した。
・実施例16は、含窒素複素環化合物(1)の配合割合を4.5質量部にした例で、初期密着性、耐熱接着性(85℃×5日)が△評価になった。それ以外は実施例1と同様の性能を示した。
・実施例17は、含窒素複素環化合物(2)を使用した例で、初期密着性、耐熱接着性(85℃×5日)が○評価になった。それ以外は実施例1と同様の性能を示した。
・実施例18は、含窒素複素環化合物(3)を使用した例で、実施例1と同様の性能を示した。
・実施例19は、含窒素複素環化合物(4)を使用した例で、初期密着性、耐熱接着性(85℃×5日)が○評価になった。それ以外は実施例1と同様の性能を示した。
・実施例20は、含窒素複素環化合物(5)を使用した例で、初期密着性、耐熱接着性(85℃×5日)が△評価になった。それ以外は実施例1と同様の性能を示した。
・実施例21は、タルクの配合割合を3質量部にした例で、初期密着性、耐熱接着性(85℃×5日)が△評価になった。それ以外は実施例1と同様の性能を示した。
・実施例22は、タルクの配合割合を13質量部にした例で、初期タック性、耐熱接着性(85℃×5日)が△評価になった。それ以外は実施例1と同様の性能を示した。
・実施例23は、カルボジイミド化合物の代わりにオキサゾリン化合物を使用した例で、実施例1と同様の性能を示した。
・実施例24は、カルボジイミド化合物の配合割合を0.3当量にした例で、初期密着性、耐熱接着性(85℃×5日)が○評価になった。それ以外は実施例1と同様の性能を示した。
・実施例25は、カルボジイミド化合物の配合割合を2.2当量にした例で、初期密着性、耐熱接着性(85℃×5日)が○評価になった。それ以外は実施例1と同様の性能を示した。
・実施例26は、ポリイソシアネートの配合割合を0.7当量にした例で、耐熱接着性(85℃×5日)が△評価になった。それ以外は実施例1と同様の性能を示した。
・実施例27は、ポリイソシアネートの配合割合を1.8当量にした例で、初期タック性、初期密着性、耐熱接着性(85℃×5日)が△評価になった。それ以外は実施例1と同様の性能を示した。
・実施例28は、バッカー層(ウ)にA-PET(1)を使用した例で、真空成型性、耐熱接着性(85℃×5日)が△評価になった。それ以外は実施例1と同様の性能を示した。
・実施例29は、表層フィルム(ア)にA-PET(2)を使用し、バッカー層(ウ)を設けなかった例で、真空成型性、耐熱接着性(85℃×5日)が△評価になった。それ以外は実施例1と同様の性能を示した。
・実施例30は、基材をMg(2)にした例で、初期密着性、耐熱接着性(85℃×5日)が△評価になった。それ以外は実施例1と同様の性能を示した。
・実施例31は、基材をMg(3)にした例で、初期密着性、耐熱接着性(85℃×5日)が○評価になった。それ以外は実施例1と同様の性能を示した。
・実施例32は、基材をMg(4)にした例で、実施例1と同様の性能を示した。
・実施例33は、基材をMg(5)にした例で、実施例1と同様の性能を示した。
・実施例34は、基材をAl(2)にした例で、初期密着性、耐熱接着性(85℃×5日)が△評価になった。それ以外は実施例1と同様の性能を示した。
From the results in Tables 1 to 11, the following matters are derived.
-Example 1 specifies the type of surface layer film (a), the composition of the thermoplastic saturated copolymer polyester resin in the adhesive layer (a), and the amounts of nitrogen-containing heterocyclic compound, talc and polyisocyanate used. Is set to a specific range, so it has excellent vacuum formability, initial tackiness, and initial adhesion, and even when the laminated base material is a metal base material such as magnesium, the heat-resistant adhesiveness in a three-dimensional coated molded product A vacuum forming sheet excellent in (85 ° C. × 5 days) could be provided. Moreover, the vacuum formability could be improved by providing the backer layer (c).
Example 2 was an example in which the backer layer (c) was PVC (1), and showed the same performance as Example 1.
Example 3 was an example in which the surface layer film (a) was copolymerized PET (1), and showed the same performance as Example 1.
Example 4 was an example in which the surface layer film (a) was PC (1), and showed the same performance as Example 1.
Example 5 was an example in which the surface layer film (a) was made of PET-G (2) and the laminated base material was made of Al (1), and showed the same performance as in Example 1.
-Example 6 is an example in which the surface layer film (a) is made of acrylic (2) and the backer layer (c) is not provided, and the same performance as in Example 1 except that the vacuum formability was evaluated as o. showed that.
-Example 7 is an example in which the surface layer film (a) was made of PET-G (3) and the backer layer (c) was not provided, and was the same as Example 1 except that the vacuum moldability was good. Showed the performance. Example 8 is an example in which the surface layer film (a) is PVC (2), the backer layer (c) is not provided, and the laminated base material is Al (1). Except this, the same performance as in Example 1 was exhibited.
-Example 9 is an example in which the surface layer film (a) is PC (2) and the backer layer (c) is not provided, and the same performance as in Example 1 except that the vacuum formability was evaluated as ◯. showed that.
-Example 10 was the example which made the copolymer polyester resin into the resin structure (2), and showed the same performance as Example 1.
-Example 11 is the example which made the copolymer polyester resin the resin structure (3), and heat-resistant adhesiveness (85 degreeC x 5 days) became (triangle | delta) evaluation. Otherwise, the same performance as in Example 1 was exhibited.
Example 12 is an example in which the copolymerized polyester resin has a resin configuration (4). The initial tackiness and initial adhesion were evaluated as Δ, and the heat resistance (85 ° C. × 5 days) was evaluated as ○. Otherwise, the same performance as in Example 1 was exhibited.
-Example 13 was the example which made the copolyester resin the resin structure (5), and showed the same performance as Example 1.
-Example 14 is the example which made the compounding ratio of the nitrogen-containing heterocyclic compound (1) 0.2 mass part, and initial stage adhesiveness and heat-resistant adhesiveness (85 degreeC x 5 days) became (triangle | delta) evaluation. Otherwise, the same performance as in Example 1 was exhibited.
-Example 15 is the example which made the mixture ratio of nitrogen-containing heterocyclic compound (1) 1.0 mass part, and initial stage adhesiveness and heat-resistant adhesiveness (85 degreeC x 5 days) became (circle) evaluation. Otherwise, the same performance as in Example 1 was exhibited.
Example 16 was an example in which the blending ratio of the nitrogen-containing heterocyclic compound (1) was 4.5 parts by mass, and the initial adhesion and heat-resistant adhesion (85 ° C. × 5 days) were evaluated as Δ. Otherwise, the same performance as in Example 1 was exhibited.
-Example 17 is an example which uses a nitrogen-containing heterocyclic compound (2), and initial stage adhesiveness and heat-resistant adhesiveness (85 degreeC x 5 days) became (circle) evaluation. Otherwise, the same performance as in Example 1 was exhibited.
-Example 18 is an example using a nitrogen-containing heterocyclic compound (3), and showed the same performance as Example 1.
-Example 19 is an example using a nitrogen-containing heterocyclic compound (4), and initial adhesiveness and heat-resistant adhesiveness (85 degreeC x 5 days) became (circle) evaluation. Otherwise, the same performance as in Example 1 was exhibited.
-Example 20 is an example which uses a nitrogen-containing heterocyclic compound (5), and initial adhesiveness and heat-resistant adhesiveness (85 degreeC x 5 days) became (triangle | delta) evaluation. Otherwise, the same performance as in Example 1 was exhibited.
-Example 21 is the example which made the blending ratio of talc 3 mass parts, and initial adhesiveness and heat-resistant adhesiveness (85 degreeC x 5 days) became (triangle | delta) evaluation. Otherwise, the same performance as in Example 1 was exhibited.
-Example 22 is the example which made the blending ratio of talc 13 mass parts, and initial tack property and heat-resistant adhesiveness (85 degreeC x 5 days) became (triangle | delta) evaluation. Otherwise, the same performance as in Example 1 was exhibited.
-Example 23 was the example which used the oxazoline compound instead of the carbodiimide compound, and showed the same performance as Example 1.
-Example 24 is the example which made the compounding ratio of the carbodiimide compound 0.3 equivalent, and initial stage adhesiveness and heat-resistant adhesiveness (85 degreeC x 5 days) became (circle) evaluation. Otherwise, the same performance as in Example 1 was exhibited.
-Example 25 is the example which made the mixing | blending ratio of the carbodiimide compound 2.2 equivalent, and initial stage adhesiveness and heat-resistant adhesiveness (85 degreeC x 5 days) became (circle) evaluation. Otherwise, the same performance as in Example 1 was exhibited.
-Example 26 is the example which made the blending ratio of polyisocyanate 0.7 equivalent, and heat-resistant adhesiveness (85 degreeC x 5 days) became (DELTA) evaluation. Otherwise, the same performance as in Example 1 was exhibited.
-Example 27 is the example which made the compounding ratio of polyisocyanate 1.8 equivalent, and initial stage tack property, initial stage adhesiveness, and heat-resistant adhesiveness (85 degreeC x 5 days) became (triangle | delta) evaluation. Otherwise, the same performance as in Example 1 was exhibited.
Example 28 was an example in which A-PET (1) was used for the backer layer (c), and the vacuum formability and heat resistant adhesiveness (85 ° C. × 5 days) were evaluated as Δ. Otherwise, the same performance as in Example 1 was exhibited.
Example 29 is an example in which A-PET (2) was used for the surface layer film (a) and the backer layer (c) was not provided, and the vacuum formability and heat resistant adhesiveness (85 ° C. × 5 days) were Δ It became evaluation. Otherwise, the same performance as in Example 1 was exhibited.
Example 30 was an example in which the base material was Mg (2), and the initial adhesion and heat-resistant adhesion (85 ° C. × 5 days) were evaluated as Δ. Otherwise, the same performance as in Example 1 was exhibited.
Example 31 was an example in which the base material was Mg (3), and the initial adhesion and heat-resistant adhesion (85 ° C. × 5 days) were evaluated as “good”. Otherwise, the same performance as in Example 1 was exhibited.
-Example 32 was the example which made the base material Mg (4), and showed the same performance as Example 1.
-Example 33 was the example which made the base material Mg (5), and showed the same performance as Example 1.
In Example 34, the base material was Al (2), and the initial adhesion and heat-resistant adhesion (85 ° C. × 5 days) were evaluated as Δ. Otherwise, the same performance as in Example 1 was exhibited.
・比較例1は、表層フィルム(ア)を二軸PET(1)にした例で、本発明の範囲外であるため、真空成型性、初期密着性、耐熱接着性(85℃×5日)が×評価になった。
・比較例2は、表層フィルム(ア)をPBT(1)にして、バッカー層(ウ)を設けなかった例で、本発明の範囲外であるため、真空成型性、初期密着性、耐熱接着性(85℃×5日)が×評価になった。
・比較例3は、共重合ポリエステル樹脂を樹脂構成(6)にした例で、本発明の範囲外であるため、耐熱接着性(85℃×5日)が×評価になった。
・比較例4は、共重合ポリエステル樹脂を樹脂構成(7)にした例で、本発明の範囲外であるため、初期タック性、初期密着性、耐熱接着性(85℃×5日)が×評価になった。・比較例5は、共重合ポリエステル樹脂を樹脂構成(8)にした例で、本発明の範囲外であるため、耐熱接着性(85℃×5日)が×評価になった。
・比較例6は、含窒素複素環化合物(1)の配合割合を0.05質量部にした例で、本発明の範囲外であるため、初期密着性、耐熱接着性(85℃×5日)が×評価になった。
・比較例7は、含窒素複素環化合物(1)の配合割合を5.5質量部にした例で、本発明の範囲外であるため、初期密着性、耐熱接着性(85℃×5日)が×評価になった。
・比較例8は、タルクの配合割合を1質量部にした例で、本発明の範囲外であるため、初期密着性、耐熱接着性(85℃×5日)が×評価になった。
・比較例9は、タルクの配合割合を17質量部にした例で、本発明の範囲外であるため、初期タック性、初期密着性が△評価、耐熱接着性(85℃×5日)が×評価になった。
・比較例10は、ポリイソシアネ-トの配合割合を0.3当量にした例で、本発明の範囲外であるため、耐熱接着性(85℃×5日)が×評価になった。
・比較例11は、ポリイソシアネ-トの配合割合を2.2当量にした例で、本発明の範囲外であるため、初期タック性、初期密着性、耐熱接着性(85℃×5日)が×評価になった。
・比較例12は、接着剤層(イ)に粘着剤(1)を使用した例で、本発明の範囲外であるため、耐熱接着性(85℃×5日)が×評価になった。
Comparative Example 1 is an example in which the surface layer film (a) is biaxial PET (1), and is outside the scope of the present invention, so vacuum formability, initial adhesion, heat resistant adhesiveness (85 ° C. × 5 days) Became x evaluation.
Comparative Example 2 is an example in which the surface layer film (a) is PBT (1) and the backer layer (c) is not provided, and is outside the scope of the present invention. Therefore, vacuum formability, initial adhesion, heat-resistant adhesion The property (85 ° C x 5 days) was evaluated as x.
Comparative Example 3 is an example in which a copolymerized polyester resin is used as the resin configuration (6), and is outside the scope of the present invention, so that the heat resistant adhesiveness (85 ° C. × 5 days) was evaluated as x.
Comparative Example 4 is an example in which the copolymerized polyester resin has a resin configuration (7), and is outside the scope of the present invention, so that the initial tackiness, initial adhesion, and heat resistant adhesiveness (85 ° C. × 5 days) are × It became evaluation. Comparative Example 5 is an example in which the copolymerized polyester resin is made into a resin configuration (8) and is outside the scope of the present invention, so that the heat resistant adhesiveness (85 ° C. × 5 days) was evaluated as x.
Comparative Example 6 is an example in which the blending ratio of the nitrogen-containing heterocyclic compound (1) is 0.05 parts by mass, and is outside the scope of the present invention. Therefore, the initial adhesion and heat-resistant adhesiveness (85 ° C. × 5 days ) Became x evaluation.
Comparative Example 7 is an example in which the blending ratio of the nitrogen-containing heterocyclic compound (1) is 5.5 parts by mass, and is outside the scope of the present invention. Therefore, the initial adhesion and heat-resistant adhesiveness (85 ° C. × 5 days) ) Became x evaluation.
Comparative Example 8 is an example in which the blending ratio of talc is 1 part by mass, and is outside the scope of the present invention, so the initial adhesion and heat-resistant adhesiveness (85 ° C. × 5 days) were evaluated as x.
Comparative Example 9 is an example in which the blending ratio of talc is 17 parts by mass, and is outside the scope of the present invention, so that the initial tackiness and initial adhesion are Δ evaluated, and the heat resistant adhesiveness (85 ° C. × 5 days) is × Evaluated.
Comparative Example 10 was an example in which the blending ratio of polyisocyanate was 0.3 equivalent and was outside the scope of the present invention, so the heat resistant adhesiveness (85 ° C. × 5 days) was evaluated as x.
Comparative Example 11 is an example in which the blending ratio of the polyisocyanate is 2.2 equivalents, and is outside the scope of the present invention, so that the initial tackiness, initial adhesion, and heat resistant adhesiveness (85 ° C. × 5 days) are × Evaluated.
Comparative Example 12 was an example in which the pressure-sensitive adhesive (1) was used for the adhesive layer (I), and was outside the scope of the present invention, so the heat resistant adhesiveness (85 ° C. × 5 days) was evaluated as x.
 本発明の真空成型用シートは、家電製品用途、自動車内装用途等の三次元被覆成型品を得るのに有用である。 The vacuum forming sheet of the present invention is useful for obtaining a three-dimensional coated molded product for home appliance use, automobile interior use, and the like.
 1 真空成型用シート
 ア 表層フィルム
 イ 接着剤層
 ウ バッカー層
 10 真空成型用シート
 12 積層基材
 14 第一の室
 16 第二の室
 18 真空ポンプ
 20 ヒータ
 22,26 駆動装置
 24 テーブル
DESCRIPTION OF SYMBOLS 1 Vacuum forming sheet a Surface layer film B Adhesive layer C Backer layer 10 Vacuum forming sheet 12 Laminated substrate 14 First chamber 16 Second chamber 18 Vacuum pump 20 Heater 22, 26 Drive device 24 Table

Claims (14)

  1.  表層フィルム(ア)の下面に接着剤層(イ)を有する真空成型用シートであって、
     前記表層フィルム(ア)が、アクリル系樹脂フィルム(A)、二軸延伸共重合ポリエチレンテレフタレート系フィルム(B)、未延伸非晶性ポリエチレンテレフタレート系樹脂フィルム(C)、ポリ塩化ビニル系樹脂フィルム(D)またはポリカーボネート系樹脂フィルム(E)であり、かつ
     前記接着剤層(イ)が、下記の熱可塑性飽和共重合ポリエステル樹脂100質量部に、含窒素複素環化合物0.1~5.0質量部およびタルク2~15質量部を配合し、かつ該熱可塑性飽和共重合ポリエステル樹脂に対しポリイソシアネート0.5~2.0当量を配合し硬化したものであることを特徴とする真空成型用シート。
     熱可塑性飽和共重合ポリエステル樹脂:テレフタル酸40~70モル%、およびセバシン酸30~60モル%からなる酸成分(ただし、前記酸成分の合計は100モル%)と、1,4-ブタンジオール40~90モル%およびエチレングリコール10~60モル%からなるグリコール成分(ただし、前記グリコール成分の合計は100モル%)とから構成される。
    It is a sheet for vacuum forming having an adhesive layer (I) on the lower surface of the surface layer film (A),
    The surface layer film (a) is an acrylic resin film (A), a biaxially stretched copolymer polyethylene terephthalate film (B), an unstretched amorphous polyethylene terephthalate resin film (C), a polyvinyl chloride resin film ( D) or a polycarbonate-based resin film (E), and the adhesive layer (a) is added to 100 parts by mass of the following thermoplastic saturated copolymer polyester resin, 0.1 to 5.0 mass of a nitrogen-containing heterocyclic compound. Part and talc 2 to 15 parts by mass, and 0.5 to 2.0 equivalents of polyisocyanate is blended and cured with respect to the thermoplastic saturated copolymer polyester resin, and the sheet for vacuum forming .
    Thermoplastic saturated copolyester resin: an acid component composed of 40 to 70 mol% terephthalic acid and 30 to 60 mol% sebacic acid (however, the total of the acid components is 100 mol%), 1,4-butanediol 40 A glycol component composed of ˜90 mol% and ethylene glycol 10-60 mol% (however, the total of the glycol components is 100 mol%).
  2.  前記熱可塑性飽和共重合ポリエステル樹脂のピークトップ融点が、85~115℃であることを特徴とする請求項1に記載の真空成型用シート。 2. The vacuum forming sheet according to claim 1, wherein a peak top melting point of the thermoplastic saturated copolyester resin is 85 to 115 ° C.
  3.  前記表層フィルム(ア)と前記接着剤層(イ)との間にバッカー層(ウ)を有することを特徴とする請求項1または2に記載の真空成型用シート。 3. The vacuum forming sheet according to claim 1, further comprising a backer layer (c) between the surface layer film (a) and the adhesive layer (a).
  4.  前記バッカー層(ウ)が、未延伸非晶性ポリエチレンテレフタレート系樹脂フィルム(F)またはポリ塩化ビニル系樹脂フィルム(G)であることを特徴とする請求項3に記載の真空成型用シート。 The sheet for vacuum forming according to claim 3, wherein the backer layer (c) is an unstretched amorphous polyethylene terephthalate resin film (F) or a polyvinyl chloride resin film (G).
  5.  前記接着剤層(イ)が、前記熱可塑性飽和共重合ポリエステル樹脂に、さらにカルボジイミド化合物またはオキサゾリン化合物0.5~2.0当量を配合したものであることを特徴とする請求項1に記載の真空成型用シート。 2. The adhesive layer (a) according to claim 1, wherein 0.5 to 2.0 equivalents of a carbodiimide compound or an oxazoline compound is further added to the thermoplastic saturated copolymer polyester resin. Vacuum forming sheet.
  6.  前記含窒素複素環化合物が、トリアゾール系化合物またはイミダゾール系化合物であることを特徴とする請求項1に記載の真空成型用シート。 The vacuum forming sheet according to claim 1, wherein the nitrogen-containing heterocyclic compound is a triazole compound or an imidazole compound.
  7.  前記トリアゾール系化合物が、ベンゾトリアゾールであり、前記イミダゾール系化合物が、イミダゾールであることを特徴とする請求項6に記載の真空成型用シート。 The vacuum forming sheet according to claim 6, wherein the triazole compound is benzotriazole, and the imidazole compound is imidazole.
  8.  前記未延伸非晶性ポリエチレンテレフタレート系樹脂フィルム(C)が、テレフタル酸からなる酸成分と、エチレングリコール60~90モル%およびシクロヘキサンジメタノール10~40モル%からなるグリコール成分(ただし、前記グリコール成分の合計は100モル%)とから構成されることを特徴とする請求項1~7のいずれかに記載の真空成型用シート。 The unstretched amorphous polyethylene terephthalate resin film (C) comprises an acid component composed of terephthalic acid, and a glycol component composed of 60 to 90 mol% ethylene glycol and 10 to 40 mol% cyclohexanedimethanol (however, the glycol component) The vacuum forming sheet according to any one of claims 1 to 7, wherein the total is 100 mol%.
  9.  前記未延伸非晶性ポリエチレンテレフタレート系樹脂フィルム(F)が、テレフタル酸からなる酸成分と、エチレングリコール60~90モル%およびシクロヘキサンジメタノール10~40モル%からなるグリコール成分(ただし、前記グリコール成分の合計は100モル%)とから構成されることを特徴とする請求項4に記載の真空成型用シート。 The unstretched amorphous polyethylene terephthalate resin film (F) comprises an acid component composed of terephthalic acid, and a glycol component composed of 60 to 90 mol% ethylene glycol and 10 to 40 mol% cyclohexanedimethanol (provided that the glycol component described above) The sheet for vacuum forming according to claim 4, wherein the total is 100 mol%.
  10.  下記の真空成型方法により真空成型を行なうために用いられる、請求項1~9のいずれかに記載の真空成型用シート。
     真空成型方法:請求項1~9のいずれかに記載の真空成型用シートと、前記真空成型用シートを積層する積層基材とを対向配置し、前記真空成型用シートにより積層基材側に第一の室を、反対側に第二の室を互いに気密に区画し、前記第一の室および前記第二の室を減圧し、かつ前記真空成型用シートを加熱軟化した後、前記真空成型用シートと前記積層基材とを接触させ、この後に前記第二の室の減圧を解除して前記第一の室と前記第二の室の差圧により前記真空成型用シートを積層基材の外表面に密着積層する真空成型方法。
    The vacuum forming sheet according to any one of claims 1 to 9, which is used for vacuum forming by the following vacuum forming method.
    Vacuum forming method: The vacuum forming sheet according to any one of claims 1 to 9 and a laminated base material on which the vacuum forming sheet is laminated are arranged opposite to each other, and the vacuum forming sheet causes One chamber, the second chamber on the opposite side are hermetically separated from each other, the first chamber and the second chamber are depressurized, and the vacuum forming sheet is heated and softened, and then the vacuum forming The sheet is brought into contact with the laminated base material, and then the decompression of the second chamber is released, and the vacuum forming sheet is removed from the laminated base material by the differential pressure between the first chamber and the second chamber. Vacuum forming method that adheres and laminates to the surface.
  11.  請求項1~10のいずれかに記載の真空成型用シートと、マグネシウム基材またはアルミニウム基材とを真空成型により積層せしめてなることを特徴とする成型品。 A molded product comprising the vacuum forming sheet according to any one of claims 1 to 10 and a magnesium base material or an aluminum base material laminated by vacuum forming.
  12.  前記マグネシウム基材の表面にリン酸塩表面処理が施されていることを特徴とする請求項11に記載の成型品。 The molded article according to claim 11, wherein a phosphate surface treatment is applied to the surface of the magnesium substrate.
  13.  請求項1~10のいずれかに記載の真空成型用シートと、前記真空成型用シートを積層する積層基材とを対向配置し、前記真空成型用シートにより積層基材側に第一の室を、反対側に第二の室を互いに気密に区画し、前記第一の室および前記第二の室を減圧し、かつ前記真空成型用シートを加熱軟化した後、前記真空成型用シートと前記積層基材とを接触させ、この後に前記第二の室の減圧を解除して前記第一の室と前記第二の室の差圧により前記真空成型用シートを積層基材の外表面に密着積層する真空成型方法であって、
     前記真空成型用シートと前記積層基材とを接触させる工程の際に、前記積層基材を60℃~100℃に加温することを特徴とする真空成型方法。
    The vacuum forming sheet according to any one of claims 1 to 10 and a laminated base material on which the vacuum forming sheet is laminated are arranged to face each other, and the first chamber is provided on the laminated base material side by the vacuum forming sheet. The second chamber is separated from each other in an airtight manner, the first chamber and the second chamber are decompressed, and the vacuum forming sheet is heated and softened, and then the vacuum forming sheet and the laminate A base material is brought into contact, and then the reduced pressure in the second chamber is released, and the vacuum forming sheet is adhered and laminated on the outer surface of the laminated base material by the differential pressure between the first chamber and the second chamber. A vacuum forming method,
    A vacuum forming method comprising heating the laminated base material to 60 ° C. to 100 ° C. during the step of bringing the vacuum forming sheet into contact with the laminated base material.
  14.  前記積層基材が、マグネシウム基材またはアルミニウム基材であることを特徴とする請求項13に記載の真空成型方法。 The vacuum forming method according to claim 13, wherein the laminated base material is a magnesium base material or an aluminum base material.
PCT/JP2010/050802 2009-04-23 2010-01-22 Sheet for vacuum molding WO2010122826A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009104667A JP5351597B2 (en) 2009-04-23 2009-04-23 Vacuum forming sheet
JP2009-104667 2009-04-23

Publications (1)

Publication Number Publication Date
WO2010122826A1 true WO2010122826A1 (en) 2010-10-28

Family

ID=43010950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/050802 WO2010122826A1 (en) 2009-04-23 2010-01-22 Sheet for vacuum molding

Country Status (2)

Country Link
JP (1) JP5351597B2 (en)
WO (1) WO2010122826A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10086555B2 (en) 2011-10-27 2018-10-02 Whirlpool Corporation Method for forming a laminated part
CN108949093A (en) * 2017-05-25 2018-12-07 住友化学株式会社 Adhesive composite and polarization plates

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5818489B2 (en) * 2011-04-12 2015-11-18 積水化学工業株式会社 Combustion resistant sheet
CN102602113B (en) * 2012-03-07 2014-11-05 深圳创维-Rgb电子有限公司 Decorative processing method for surface of large-size complex surface shell, surface shell and device
MX2016017153A (en) * 2014-06-30 2017-05-03 Topsoe Haldor As Process for the preparation of ethylene glycol from sugars.
JP2018193410A (en) * 2015-10-01 2018-12-06 日清紡ケミカル株式会社 Resin additive, and masterbatch and resin composition using the same
WO2019131471A1 (en) * 2017-12-26 2019-07-04 ユニチカ株式会社 Polyester resin composition, adhesive and laminate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06184515A (en) * 1992-12-21 1994-07-05 Nippon Synthetic Chem Ind Co Ltd:The Adhesive composition
JPH06240204A (en) * 1993-02-17 1994-08-30 Nippon Synthetic Chem Ind Co Ltd:The Coating composition
JP2000157346A (en) * 1998-11-27 2000-06-13 Itoki Crebio Corp Surface plate structure in furnature and manufacture thereof
JP2002113834A (en) * 2000-10-06 2002-04-16 Toppan Printing Co Ltd Decorative sheet and a decorative material
JP2006169413A (en) * 2004-12-17 2006-06-29 Nippon Synthetic Chem Ind Co Ltd:The Adhesive composition and hot-melt adhesive composition using the same
JP2008110519A (en) * 2006-10-30 2008-05-15 Riken Technos Corp Metal like sheet and metal like decorative material using it

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06184515A (en) * 1992-12-21 1994-07-05 Nippon Synthetic Chem Ind Co Ltd:The Adhesive composition
JPH06240204A (en) * 1993-02-17 1994-08-30 Nippon Synthetic Chem Ind Co Ltd:The Coating composition
JP2000157346A (en) * 1998-11-27 2000-06-13 Itoki Crebio Corp Surface plate structure in furnature and manufacture thereof
JP2002113834A (en) * 2000-10-06 2002-04-16 Toppan Printing Co Ltd Decorative sheet and a decorative material
JP2006169413A (en) * 2004-12-17 2006-06-29 Nippon Synthetic Chem Ind Co Ltd:The Adhesive composition and hot-melt adhesive composition using the same
JP2008110519A (en) * 2006-10-30 2008-05-15 Riken Technos Corp Metal like sheet and metal like decorative material using it

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10086555B2 (en) 2011-10-27 2018-10-02 Whirlpool Corporation Method for forming a laminated part
CN108949093A (en) * 2017-05-25 2018-12-07 住友化学株式会社 Adhesive composite and polarization plates
CN108949093B (en) * 2017-05-25 2021-12-10 住友化学株式会社 Adhesive composition and polarizing plate
TWI785050B (en) * 2017-05-25 2022-12-01 日商住友化學股份有限公司 Adhesive composition and polarizing plate

Also Published As

Publication number Publication date
JP5351597B2 (en) 2013-11-27
JP2010253740A (en) 2010-11-11

Similar Documents

Publication Publication Date Title
JP5351597B2 (en) Vacuum forming sheet
JP6005911B2 (en) Structure integrated by vacuum / pressure forming or vacuum forming, and manufacturing method thereof
US10730268B2 (en) Decorative laminated sheet, structure including the decorative laminated sheet, and method of manufacturing the same
JP6574088B2 (en) Film and decorative film capable of coating article having three-dimensional shape by heat stretching
JP5332274B2 (en) Matte laminated film
JP6487203B2 (en) Design transfer sheet, decorative film and method for producing the same
JP5286023B2 (en) Vacuum forming sheet
JP5286042B2 (en) Vacuum forming sheet
JP5286043B2 (en) Vacuum forming sheet
JP5284203B2 (en) Vacuum laminating sheet
JP4664111B2 (en) Designable laminate sheet and design laminate sheet-coated metal plate
JP2000117925A (en) Decorative sheet
US11459489B2 (en) Pressure-sensitive adhesive and articles including same
JP6710674B2 (en) Decorative laminated sheet, structure including decorative laminated sheet, and method for manufacturing the same
JP6146083B2 (en) Decorative sheet
JP2022160099A (en) Sheet for thermoforming with protective film, decorative sheet, and molding using the same
JP5608059B2 (en) Cosmetic sheet for secondary processing and method for producing cosmetic material using the same
JP5867249B2 (en) 3D decorative sheet and decorative molded product
WO2024111437A1 (en) Thermoforming sheet and decorative sheet
JP5262097B2 (en) Monolithic decorative sheet and decorative molded product for sheet molding compound
JP4583867B2 (en) Method for producing a three-dimensional molded product having an ultraviolet curable resin coating on the surface
JP2016147505A (en) Structure integrated by vacuum/pressure molding and vacuum molding and manufacturing method therefor
JP2017154365A (en) Moisture-proof sheet for building material
TW201139142A (en) Sheet-like switch member
TW201536591A (en) Transfer film and transfer molded article produced using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10766886

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10766886

Country of ref document: EP

Kind code of ref document: A1