WO2010122716A1 - Solid-state imaging element - Google Patents

Solid-state imaging element Download PDF

Info

Publication number
WO2010122716A1
WO2010122716A1 PCT/JP2010/002501 JP2010002501W WO2010122716A1 WO 2010122716 A1 WO2010122716 A1 WO 2010122716A1 JP 2010002501 W JP2010002501 W JP 2010002501W WO 2010122716 A1 WO2010122716 A1 WO 2010122716A1
Authority
WO
WIPO (PCT)
Prior art keywords
color filter
solid
color
state imaging
red
Prior art date
Application number
PCT/JP2010/002501
Other languages
French (fr)
Japanese (ja)
Inventor
齋藤繁
香山信三
薄田学
六車充
廣瀬裕
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2010122716A1 publication Critical patent/WO2010122716A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/223Absorbing filters containing organic substances, e.g. dyes, inks or pigments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14621Colour filter arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14632Wafer-level processed structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/10Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
    • H04N25/11Arrangement of colour filter arrays [CFA]; Filter mosaics
    • H04N25/13Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements
    • H04N25/134Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements based on three different wavelength filter elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses

Definitions

  • the present invention relates to a solid-state image sensor, and more particularly to a filtering technique for a solid-state image sensor used for a digital camera or the like.
  • color filters for transmitting the three primary colors of RGB are laminated (for example, refer to Patent Document 1), and it is possible to express almost all colors.
  • the conventional method of expressing colors using RGB as primary colors is not sufficient for expressing natural colors as perceived by human eyes. In particular, a color that cannot be expressed in a part of blue-green color is generated.
  • the X filter of the XYZ color system has transmission center wavelengths in red and blue.
  • the filter characteristics approximate to the X filter of the XYZ color system cannot be obtained. This is because when two color filters are overlapped, the filter characteristics are multiplied and light is not transmitted.
  • a reflective color filter has been proposed as a color filter applicable to the XYZ color system (see, for example, Patent Document 2).
  • the reflective color filter uses an inorganic dielectric multilayer filter, and the dielectric multilayer filter is formed by alternately laminating a high refractive index film and a low refractive index film alternately.
  • the color filter transmits light of a specific wavelength under a certain film thickness condition.
  • a dielectric multilayer filter it is possible to generate a light forbidden band in which light in a certain wavelength region cannot be transmitted. Therefore, by stacking a plurality of dielectric multilayer filters having different film configurations, a color filter that can transmit only light of a specific wavelength can be realized. When such a color filter is used, it is possible to realize three types of color filters that transmit light of desired three primary colors.
  • B, G, and R represent a blue signal, a green signal, and a red signal, respectively.
  • a pixel arrangement having four units of RGGB pixels called “Bayer array” as unit cells in order to obtain a large luminance can most efficiently acquire a luminance signal. Therefore, it is conceivable to use one G pixel of the RGGB pixels instead of the emerald pixel as a pixel arrangement when the emerald filter is used.
  • the green signal having the largest proportion of the luminance is reduced by half (that is, the pixel is changed from 2 pixels to 1 pixel). It cannot be acquired efficiently.
  • a thin-film color filter having a filter characteristic that has a negative sensitivity to light having a wavelength near 500 nm, particularly a red visual sensitivity, while obtaining a luminance signal efficiently is still Absent.
  • an object of the present invention is to provide a solid-state imaging device capable of realizing a thin-film color filter that realizes a filter characteristic of human visibility without reducing a luminance signal.
  • a solid-state imaging device includes a plurality of light receiving units arranged two-dimensionally and a color filter disposed on each of the plurality of light receiving units and having different light absorption characteristics.
  • the plurality of color filters include a first color filter having a transmission center wavelength in a blue region, a second color filter having a transmission center wavelength in a green region, and a first color filter having a transmission center wavelength in a red region. And a third color filter having a first transmission band and a second transmission band having a transmission center wavelength in a blue region.
  • an XYZ color system X filter can be realized by the third color filter without using a reflective color filter and an emerald filter. Therefore, it is possible to realize a thin film color filter that realizes the filter characteristic of human visibility without reducing the luminance signal. As a result, an absorption XYZ color system color filter without flare can be realized.
  • the solid-state imaging device of the present invention is characterized in that the maximum transmittance of the second transmission band is 10 to 50% with respect to the maximum transmittance of the first transmission band.
  • the third color filter includes a first layer having the first transmission band and the second transmission band, and the first layer. And a second layer having the first transmission band, which is disposed above or below the first transmission band.
  • the X filter of the XYZ color system is configured by laminating two layers, and the aspect ratio of the solid-state imaging device is lowered, so that the sensitivity can be improved.
  • the first layer and the second layer have ⁇ 1_blue and ⁇ 2_blue as absorption coefficients at the transmission center wavelengths of the respective blue regions, and transmit the red region.
  • the absorption coefficients at the center wavelength are ⁇ 1_red and ⁇ 2_red and the optical film thicknesses are t1 and t2
  • the following expression is satisfied. 0.1 ⁇ Exp ( ⁇ 1_blue ⁇ t1 ⁇ 2_blue ⁇ t2) ⁇ 0.5 0.5 ⁇ Exp ( ⁇ 1_red ⁇ t1 ⁇ 2_red ⁇ t2)
  • the solid-state imaging device of the present invention is characterized in that the first layer is composed of a pigment containing a magenta dye or a dye-based color resist.
  • the solid-state imaging device of the present invention is characterized in that the second layer is composed of a pigment or dye-based color resist containing a red pigment.
  • the third color filter includes the first material having the first transmission band and the second transmission band, and the first transmission filter. And a second material having a band.
  • an X filter of an XYZ color system can be realized with a single layer.
  • the first material and the second material have an absorption coefficient ⁇ 1_blue and ⁇ 2_blue at the transmission center wavelength of each blue region, and transmit the red region.
  • the absorption coefficients at the center wavelength are ⁇ 1_red and ⁇ 2_red
  • the mixing ratio is X1 and X2
  • the optical film thickness is both t
  • the solid-state imaging device of the present invention is characterized in that the first material is composed of a pigment containing a magenta dye or a dye-based color resist.
  • the solid-state imaging device of the present invention is characterized in that the second material is composed of a pigment or dye-based color resist containing a red pigment.
  • the solid-state imaging device is characterized in that spectral characteristics obtained by the first color filter, the second color filter, and the third color filter satisfy a color matching condition. To do.
  • the present invention it is possible to realize a solid-state imaging device including a thin-film color filter that realizes a filter characteristic of human visibility without reducing a luminance signal. It becomes possible to improve.
  • FIG. 1A is a cross-sectional view showing the structure of the solid-state imaging device according to Embodiment 1 of the present invention.
  • FIG. 1B is a plan view showing the arrangement of color filters of the solid-state imaging device according to the embodiment.
  • FIG. 2A is a diagram showing a transmission characteristic of the red filter according to the embodiment.
  • FIG. 2B is a diagram showing transmission characteristics of the magenta filter according to the embodiment.
  • FIG. 3 is a diagram showing the transmission characteristics of the third color filter according to the embodiment.
  • FIG. 4A is a diagram illustrating spectral characteristics obtained by the first color filter, the second color filter, and the third color filter according to the embodiment.
  • FIG. 4B is a diagram showing a color gamut possessed by a filter characteristic of the xy chromaticity distribution and human visibility obtained by the filter according to the embodiment.
  • FIG. 5A is a cross-sectional view for explaining the method for manufacturing the solid-state imaging element according to the embodiment.
  • FIG. 5B is a cross-sectional view for illustrating the method for manufacturing the solid-state imaging element according to the embodiment.
  • FIG. 5C is a cross-sectional view for illustrating the method for manufacturing the solid-state imaging element according to the embodiment.
  • FIG. 5D is a cross-sectional view for illustrating the method for manufacturing the solid-state imaging element according to the embodiment.
  • FIG. 6 is a cross-sectional view showing the structure of the solid-state imaging device according to Embodiment 2 of the present invention.
  • FIG. 7A is a cross-sectional view for explaining the method for manufacturing the solid-state imaging element according to the embodiment.
  • FIG. 7B is a cross-sectional view for illustrating the method for manufacturing the solid-state imaging element according to the embodiment.
  • FIG. 7C is a cross-sectional view for illustrating the method for manufacturing the solid-state imaging element according to the embodiment.
  • FIG. 7D is a cross-sectional view for illustrating the method for manufacturing the solid-state imaging element according to the embodiment.
  • FIG. 7E is a cross-sectional view for illustrating the method for manufacturing the solid-state imaging element according to the embodiment.
  • FIG. 8A is a cross-sectional view showing the structure of the solid-state imaging device according to Embodiment 3 of the present invention.
  • FIG. 8B is a plan view showing the arrangement of color filters of the solid-state imaging device according to the embodiment.
  • FIG. 9A is a cross-sectional view for explaining the method for manufacturing the solid-state imaging element according to the embodiment.
  • FIG. 9B is a cross-sectional view for illustrating the method for manufacturing the solid-state imaging element according to the embodiment.
  • FIG. 9C is a cross-sectional view for illustrating the method for manufacturing the solid-state imaging element according to the embodiment.
  • FIG. 1A is a cross-sectional view showing the structure of the solid-state imaging device 100 according to the present embodiment.
  • the solid-state imaging device 100 includes a p-type Si substrate 101, a plurality of light receiving portions 102, an interlayer insulating film 103, a wiring layer 104 corresponding to a signal line, a plurality of color filters, a planarizing film 106, and a light collecting element (on-chip). Microlens) 107.
  • the solid-state imaging device 100 may include a p-type semiconductor layer instead of the p-type Si substrate 101, or may further include a p-type semiconductor layer formed on the p-type Si substrate 101. In this case, the light receiving portion 102 is formed in the semiconductor layer.
  • the p-type Si substrate 101 is provided with a reading unit (not shown) such as a transistor for reading an electric signal generated by light incident on each light receiving unit 102.
  • the light receiving unit 102 is an n-type region and is two-dimensionally arranged on the surface of the p-type Si substrate 101. Note that the thickness of the p-type Si substrate 101 varies depending on the solid-state imaging device 100, but is, for example, 5 to 10 ⁇ m.
  • the color filter is disposed on each of the plurality of light receiving units 102.
  • the plurality of color filters include three types of color filters having different light absorption characteristics in the visible light range, that is, an XYZ color system X filter, Y filter, and Z filter.
  • the plurality of color filters includes a first color filter (blue filter having a transmission center wavelength (having a transmission peak with a transmittance of 50% or more)) in a blue region (wavelength region of 410 to 510 nm) as a Z filter.
  • a second color filter (green filter) 109 having a transmission center wavelength in a green region (wavelength region of 470 to 650 nm) as a Y filter, and a red region (wavelength region of 520 to 670 nm) as an X filter
  • a third color filter 112 having a first transmission band having a transmission center wavelength and a second transmission band having a transmission center wavelength in the blue region.
  • the XYZ color system is a color system approved as a standard color system by the CIE (International Lighting Commission) in 1931.
  • the first color filter 108, the second color filter 109, and the third color filter 112 include one first color filter 108, one second color filter 109,
  • the two third color filters 112 are two-dimensionally arranged as one unit cell.
  • the third color filter 112 is an example of the first layer of the present invention, and includes a color filter (magenta filter) 111 having a first transmission band and a second transmission band, and a second layer of the present invention. It is an example, and is composed of a color filter (red filter) 110 having a first transmission band and no second transmission band, which is disposed above the color filter 111. Although the color filter 110 is arranged above the color filter 111, it may be arranged below.
  • the first color filter 108 has a pigment containing a blue pigment dispersed therein
  • the second color filter 109 has a pigment containing a green pigment dispersed therein
  • the color filter 110 has a pigment containing a red pigment dispersed therein
  • the color filter 111 has a pigment containing a magenta pigment dispersed therein.
  • the first color filter 108, the second color filter 109, and the color filters 110 and 111 may be made of a dye-based color resist instead of a pigment.
  • FIGS. 2A and 2B are diagrams showing the transmission characteristics of the color filters 110 and 111 formed in the solid-state imaging device 100 according to the present embodiment, respectively.
  • the transmittances TR and TMg of the color filters 110 and 111 are expressed by the following equations, where ⁇ 2 and ⁇ 1 are the absorption coefficients of the color filters 110 and 111, respectively, and t2 and t1 are the optical film thicknesses of the color filters 110 and 111, respectively. It can be represented by (1) and (2).
  • TR [%] 100 * Exp ( ⁇ 2 ⁇ t2)
  • TMg [%] 100 * Exp ( ⁇ 1 ⁇ t1) (2)
  • the solid-state imaging device by using a stacked structure of the color filters 110 and 111 as the third color filter 112, X of the XYZ display system that has been difficult with the conventional absorption color filter. Spectral characteristics corresponding to the filter are realized.
  • the third color filter 112 has a laminated structure of the color filters 110 and 111, a transmission band in the blue region exists. That is, by adjusting the film thickness of each color filter in order to realize the desired spectral characteristics, it is possible to transmit light having a wavelength that is originally absorbed. Also, the transmittance can be obtained by controlling the film thickness of each color filter to obtain desired spectral characteristics.
  • the transmittance TR / Mg of the third color filter 112 is represented by the product of the transmittances TR and TMg of the color filters 110 and 111. That is, the transmittance TR / Mg is expressed by the following formula (3).
  • the color filter having various spectral characteristics can be obtained by arbitrarily setting the film thickness t2 of the color filter 110 and the film thickness t1 of the color filter 111 constituting the third color filter 112.
  • the absorption coefficient at the transmission center wavelength in the blue region of the color filter 110 is ⁇ 2_blue
  • the absorption coefficient at the transmission center wavelength in the red region is ⁇ 2_red
  • the absorption coefficient at the transmission center wavelength in the blue region of the color filter 111 is ⁇ 1_blue
  • the absorption coefficient at the transmission center wavelength in the red region is ⁇ 1_red
  • the third color filter 112 is configured so as to satisfy the relationship of the following expressions (4) and (5).
  • the maximum transmittance of the second transmission band is 10 to 50% with respect to the maximum transmittance of the first transmission band.
  • FIG. 4A is a diagram showing spectral sensitivity characteristics obtained by the first color filter 108, the second color filter 109, and the third color filter 112 of the solid-state imaging device 100 according to the present embodiment.
  • FIG. 4B shows an xy chromaticity distribution (a region indicated by a diagonal line surrounded by a dotted line in FIG. 4B) obtained by the color filter of the solid-state imaging device 100 according to the present embodiment and a filter characteristic of human visibility. It is a figure which shows the color gamut (area
  • the spectral characteristics obtained by the first color filter 108, the second color filter 109, and the third color filter 112 satisfy the color matching conditions.
  • a color filter having a filter characteristic of human visibility can be realized.
  • 5A to 5D are cross-sectional views for explaining a method of manufacturing a color filter of the solid-state imaging device 100 according to the present embodiment.
  • the light receiving portion 102, the interlayer insulating film 103, and the wiring layer 104 are formed on the p-type Si substrate 101 using a normal semiconductor process.
  • a solution 152 in which a negative pigment containing a magenta dye is dispersed by a spin-on method 151 is applied to the surface of the interlayer insulating film 103, and only a desired region of the solution 152 is cured by lithography 153. Is done. Thereafter, the solution 152 is wet-etched with a TMAH (tetramethylammonium hydroxide) solution or the like to form the color filter 111.
  • TMAH tetramethylammonium hydroxide
  • a solution 155 in which a negative pigment containing a green pigment is dispersed by spin-on method 151 is applied to the surface of interlayer insulating film 103, and only a desired region of solution 155 is cured by lithography 153. Is done. Thereafter, wet etching is performed on the solution 155 with a TMAH solution or the like, and the second color filter 109 is formed.
  • TMAH solution TMAH solution
  • a solution 156 in which a negative pigment containing a blue pigment is dispersed by spin-on method 151 is applied to the surface of interlayer insulating film 103, and only a desired region of solution 156 is cured by lithography 153. Is done. Thereafter, the solution 156 is wet-etched with a TMAH solution or the like to form the first color filter 108.
  • TMAH solution or the like is wet-etched with a TMAH solution or the like to form the first color filter 108.
  • the second color filter 109 formed in the process of FIG. 5B is already cured, it is not affected by the wet etching.
  • a solution 157 in which a negative pigment containing a red pigment is dispersed by spin-on method 151 is applied to the surface of color filter 111, and only a desired region of solution 157 is cured by lithography 153.
  • the first color filter 108 formed in the process of FIG. 5C has already been cured, it is not affected by wet etching.
  • a negative pigment color resist is assumed as a material constituting the color filter, but a positive pigment color resist may be used.
  • a positive pigment color resist may be used.
  • the solid-state imaging device 100 of the present embodiment realizes an X filter of the XYZ color system by overlapping a magenta filter and a red filter without using a reflective color filter and an emerald filter. Therefore, it is possible to realize a thin film color filter that realizes the filter characteristic of human visibility without reducing the luminance signal.
  • FIG. 6 is a cross-sectional view showing the structure of the solid-state imaging device 200 according to the present embodiment.
  • This solid-state image sensor 200 is different from the solid-state image sensor 100 of the first embodiment in that the color filter includes a transparent material 202.
  • the solid-state imaging device 200 includes a p-type Si substrate 101, a plurality of light receiving portions 102, an interlayer insulating film 103, a wiring layer 104, a plurality of color filters, a planarizing film 106, and a light collecting element 107.
  • the color filter is disposed on each of the plurality of light receiving units 102.
  • the plurality of color filters include a first color filter 108, a second color filter 109, a third color filter 112, and a transparent material 202.
  • the third color filter 112 includes color filters 111 and 110.
  • the transparent material 202 is formed on the first color filter 108, the second color filter 109, and the color filter 111, and the color filter 110 is formed on the transparent material 202.
  • Transparent material 202 for example composed of SiO 2, SiN and TiO 2 and the like.
  • 7A to 7E are cross-sectional views for explaining a method for manufacturing a color filter of the solid-state imaging device 200 according to the present embodiment.
  • the light receiving portion 102, the interlayer insulating film 103, and the wiring layer 104 are formed on the p-type Si substrate 101 using a normal semiconductor process.
  • a solution 152 in which a negative pigment containing a magenta dye is dispersed by a spin-on method 151 is applied to the surface of the interlayer insulating film 103, and only a desired region of the solution 152 is cured by lithography 153. Is done. Thereafter, the solution 152 is wet-etched with a TMAH solution or the like, and the color filter 111 is formed.
  • a solution 155 in which a negative pigment containing a green pigment is dispersed by spin-on method 151 is applied to the surface of interlayer insulating film 103, and only a desired region of solution 155 is cured by lithography 153. Is done. Thereafter, wet etching is performed on the solution 155 with a TMAH solution or the like, and the second color filter 109 is formed.
  • TMAH solution or the like wet etching is performed on the solution 155 with a TMAH solution or the like, and the second color filter 109 is formed.
  • the color filter 111 formed in the process of FIG. 7A is already cured, it is not affected by wet etching.
  • a solution 156 in which a negative pigment containing a blue pigment is dispersed by spin-on method 151 is applied to the surface of interlayer insulating film 103, and only a desired region of solution 156 is cured by lithography 153. Is done. Thereafter, the solution 156 is wet-etched with a TMAH solution or the like to form the first color filter 108.
  • TMAH solution or the like is wet-etched with a TMAH solution or the like to form the first color filter 108.
  • the second color filter 109 formed in the process of FIG. 7B is already cured, it is not affected by wet etching.
  • a transparent material 202 made of, for example, SiO 2 is formed on the first color filter 108, the second color filter 109, and the color filter 111 by CVD, and is flattened by CMP. It becomes.
  • a solution 157 in which a negative pigment containing a red pigment is dispersed by a spin-on method 151 is applied to the surface of the p-type Si substrate 101, and only a desired region of the solution 157 is formed by lithography 153. Cured. Thereafter, wet etching 154 is performed on the solution 157 with a TMAH solution or the like, and the color filter 110 is formed.
  • a negative pigment color resist is assumed as a material constituting the color filter, but a positive pigment color resist may be used. Further, there is no problem even if the order of forming the first color filter 108, the second color filter 109, and the third color filter 112 is changed.
  • the transparent material 202 is provided between the color filter 110 and the color filter 111 constituting the third color filter 112. Therefore, optical interference or physical interference that can occur at the interface between the color filter 110 and the color filter 111 can be suppressed, and desired spectral characteristics can be more faithfully reproduced in the third color filter 112. It becomes possible. Further, when the color filter 110 is formed, the base is flattened by the transparent material 202, so that the process of forming the color filter 110 is facilitated.
  • the color of the thin film that realizes the filter characteristic of human visibility without reducing the luminance signal A filter can be realized.
  • FIG. 8A is a cross-sectional view showing the structure of the solid-state imaging device 300 according to the present embodiment.
  • This solid-state image sensor 300 differs from the solid-state image sensor 100 of the first embodiment in that the third color filter is composed of a single-layer color filter.
  • the solid-state imaging device 300 includes a p-type Si substrate 101, a plurality of light receiving portions 102, an interlayer insulating film 103, a wiring layer 104, a plurality of color filters, a planarizing film 106, and a light collecting element 107.
  • the color filter is disposed on each of the plurality of light receiving units 102.
  • the plurality of color filters include a first color filter 108, a second color filter 109, and a third color filter 302 as an X filter.
  • the first color filter 108, the second color filter 109, and the third color filter 302 include one first color filter 108, one second color filter 109,
  • the two third color filters 302 are two-dimensionally arranged as one unit cell.
  • the third color filter 302 includes a first material having a first transmission band having a transmission center wavelength in the red region and a second transmission band having a transmission center wavelength in the blue region, and a first transmission band. And a second material having no second transmission band.
  • the third color filter 302 is formed by dispersing a pigment containing a red dye as the second material and a pigment containing a magenta dye as the first material.
  • the third color filter 302 may be composed of a dye-based color resist instead of a pigment.
  • the transmittance T of the third color filter 302 includes the pigment containing red pigment and the magenta pigment.
  • the mixing ratio of the pigment is X2 and X1
  • the absorption coefficient of the pigment containing the red dye and the pigment containing the magenta dye is ⁇ 2 and ⁇ 1, respectively
  • the optical film thickness of the pigment containing the red dye and the pigment containing the magenta dye is both t.
  • T [%] 100 * Exp ( ⁇ 1 ⁇ X1 ⁇ t ⁇ 2 ⁇ X2 ⁇ t) (6)
  • various spectral characteristics can be obtained by arbitrarily setting the mixing ratio X2 of the pigment containing the red dye and the mixing ratio X1 of the pigment containing the magenta dye constituting the third color filter 302. It is possible to realize a color filter having the same.
  • the absorption coefficient at the transmission center wavelength in the blue region of the pigment containing the red dye is ⁇ 2_blue
  • the absorption coefficient at the transmission center wavelength in the red region is ⁇ 2_red
  • the absorption coefficient at the transmission center wavelength in the blue region of the pigment containing the magenta dye is ⁇ 2_blue
  • the third color filter 302 is configured so as to satisfy the relationship of the following expressions (7) and (8), as shown in FIG.
  • the maximum transmittance of the second transmission band is 10 to 50% with respect to the maximum transmittance of the first transmission band.
  • 9A to 9C are cross-sectional views for explaining a method of manufacturing a color filter of the solid-state imaging device 300 according to the present embodiment.
  • the light receiving portion 102, the interlayer insulating film 103, and the wiring layer 104 are formed on the p-type Si substrate 101 using a normal semiconductor process.
  • a solution 155 in which a negative pigment containing a green pigment is dispersed by a spin-on method 151 is applied to the surface of the interlayer insulating film 103, and only a desired region of the solution 155 is cured by lithography 153. Is done. Thereafter, wet etching is performed on the solution 155 with a TMAH solution or the like, and the second color filter 109 is formed.
  • a solution 156 in which a negative pigment containing a blue dye is dispersed by spin-on method 151 is applied to the surface of interlayer insulating film 103, and only a desired region of solution 156 is cured by lithography 153. Is done. Thereafter, the solution 156 is wet-etched with a TMAH solution or the like to form the first color filter 108.
  • TMAH solution or the like is wet-etched with a TMAH solution or the like to form the first color filter 108.
  • the second color filter 109 formed in the process of FIG. 9A is already cured, it is not affected by wet etching.
  • a solution 303 in which a negative pigment containing a red dye and a magenta dye is dispersed by a spin-on method 151 is applied to the surface of the interlayer insulating film 103, and a desired solution of the solution 303 is formed by lithography 153. Only the area is cured. Thereafter, the solution 303 is wet-etched with a TMAH solution or the like to form the third color filter 302.
  • TMAH solution or the like to form the third color filter 302.
  • a negative pigment color resist is assumed as a material constituting the color filter, but a positive pigment color resist may be used.
  • the solid-state imaging device 300 has an XYZ color system using a filter in which a pigment containing a red pigment and a pigment containing a magenta pigment are mixed without using a reflective color filter and an emerald filter.
  • An X filter is realized. Therefore, it is possible to realize a thin film color filter that realizes the filter characteristic of human visibility without reducing the luminance signal.
  • the present invention can be used for solid-state imaging devices, and in particular, can be used for digital cameras, mobile phones, single-lens reflex cameras, scanners, and the like.
  • Solid-state image sensor 101 P-type Si substrate 102 Light-receiving part 103 Interlayer insulation film 104 Wiring layer 106 Planarization film 107 Condensing element 108 1st color filter 109 2nd color filter 110, 111 Color filter 112, 302 Third color filter 151 Spin-on method 152, 155, 156, 157, 303 Solution 153 Lithography 202 Transparent material

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Multimedia (AREA)
  • Optics & Photonics (AREA)
  • Signal Processing (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optical Filters (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

Provided is a solid-state imaging element capable of implementing a thin-film color filter which implements the filter characteristics of human visual sensitivity without reducing luminance signals, and the solid-state imaging element is provided with a plurality of two-dimensionally arranged light receiving portions (102), and color filters which are arranged on the respective plurality of light receiving portions (102), and which have different light absorption characteristics from one another, wherein a plurality of the color filters include a first color filter (108) having a transmission center wavelength in a blue color region, a second color filter (109) having the transmission center wavelength in a green color region, and a third color filter (112) comprising a first transmission band having the transmission center wavelength in a red color region, and a second transmission band having the transmission center wavelength in the blue color region.

Description

固体撮像素子Solid-state image sensor
 本発明は、固体撮像素子に関し、特にデジタルカメラ等に使用される固体撮像素子のフィルタリング技術に関する。 The present invention relates to a solid-state image sensor, and more particularly to a filtering technique for a solid-state image sensor used for a digital camera or the like.
 従来、固体撮像素子においては、RGB三原色を透過させるための色フィルタが積層されており(例えば、特許文献1参照)、殆どの色についての表現を可能にしている。しかし、従来のRGBを原色として色を表す方式では、人間の目に感じるような自然な色を表現することについては十分とは云えない。特に、青緑色の一部に表現できない色が生じてしまう。 Conventionally, in a solid-state imaging device, color filters for transmitting the three primary colors of RGB are laminated (for example, refer to Patent Document 1), and it is possible to express almost all colors. However, the conventional method of expressing colors using RGB as primary colors is not sufficient for expressing natural colors as perceived by human eyes. In particular, a color that cannot be expressed in a part of blue-green color is generated.
 そこで、XYZ表色系という概念の色フィルタ特性が提案されている。これは、人間の目の赤色を感じる視神経が青緑色に対して負の感度を持つことを考慮した色フィルタ特性である。このようなフィルタ特性を持つ色フィルタを固体撮像素子に採用することで、より人間の目に近い撮像をすることができる。 Therefore, a color filter characteristic of the concept of XYZ color system has been proposed. This is a color filter characteristic considering that the optic nerve that senses the red color of the human eye has a negative sensitivity to blue-green. By adopting a color filter having such filter characteristics in a solid-state imaging device, it is possible to perform imaging closer to human eyes.
 このとき、XYZ表色系のXフィルタは、赤色及び青色に透過中心波長を有する。しかし、単純に赤色透過フィルタと青色透過フィルタとを重ね合わせてもXYZ表色系のXフィルタに近似したフィルタ特性は得られない。というのは、2つの色フィルタを重ね合わせるとフィルタ特性が掛け合わされ、光が透過しなくなるからである。 At this time, the X filter of the XYZ color system has transmission center wavelengths in red and blue. However, even if the red transmission filter and the blue transmission filter are simply overlapped, the filter characteristics approximate to the X filter of the XYZ color system cannot be obtained. This is because when two color filters are overlapped, the filter characteristics are multiplied and light is not transmitted.
 そこで、XYZ表色系に適用可能な色フィルタとして反射型色フィルタが提案されている(例えば、特許文献2参照)。この反射型色フィルタは具体的には無機の誘電体多層膜フィルタを用いるものであり、誘電体多層膜フィルタは周期的に高屈折率の膜と低屈折率の膜とを交互に積層してなり、ある膜厚条件で特定の波長の光が透過する色フィルタである。このような誘電体多層膜フィルタを用いることで、ある波長領域の光が透過できない、光の禁止帯を生じさせることができる。従って、膜の構成を変えた誘電体多層膜フィルタを複数重ねることで、ある特定波長の光だけが透過できるような色フィルタを実現できる。このような色フィルタを用いると、所望の三原色の光を透過させる3種類の色フィルタを実現することが可能になる。 Therefore, a reflective color filter has been proposed as a color filter applicable to the XYZ color system (see, for example, Patent Document 2). Specifically, the reflective color filter uses an inorganic dielectric multilayer filter, and the dielectric multilayer filter is formed by alternately laminating a high refractive index film and a low refractive index film alternately. Thus, the color filter transmits light of a specific wavelength under a certain film thickness condition. By using such a dielectric multilayer filter, it is possible to generate a light forbidden band in which light in a certain wavelength region cannot be transmitted. Therefore, by stacking a plurality of dielectric multilayer filters having different film configurations, a color filter that can transmit only light of a specific wavelength can be realized. When such a color filter is used, it is possible to realize three types of color filters that transmit light of desired three primary colors.
 しかし、反射型色フィルタでXYZ表色系に適用可能な色フィルタを実現しようとした場合、複数の誘電体多層膜フィルタを重ねる必要等があり、色フィルタの膜厚が4μm程度と非常に厚くなるため、固体撮像素子のアスペクト比が高くなり、集光効率が低下してしまうという課題が生じる。さらに、反射型色フィルタが所望の光以外を全て反射することによりフレアが引き起こされるという課題も生じる。 However, when it is intended to realize a color filter applicable to the XYZ color system with a reflective color filter, it is necessary to overlap a plurality of dielectric multilayer filters, and the thickness of the color filter is as extremely thick as about 4 μm. As a result, the aspect ratio of the solid-state imaging device is increased, resulting in a problem that the light collection efficiency is reduced. Further, there is a problem that flare is caused when the reflective color filter reflects all light other than desired light.
 そこで、負の視感度となる青緑色の光だけを透過する吸収型のエメラルドフィルタを用い、このエメラルドフィルタに対応するエメラルド画素で得られる信号成分を赤色の信号成分から差分することで、赤色フィルタの負の視感度を実現する方法が提案されている(例えば、特許文献3参照)。 Therefore, by using an absorption type emerald filter that transmits only blue-green light with negative visual sensitivity, the signal component obtained by the emerald pixel corresponding to this emerald filter is subtracted from the red signal component, so that the red filter Have been proposed (see, for example, Patent Document 3).
米国特許第3971065号明細書US Pat. No. 3,971,065 米国特許第7132644号明細書US Pat. No. 7,132,644 特開2004-200357号公報JP 2004-200377 A
 ところで、一般に、輝度信号は、「Y=0.11B+0.59G+0.30R」で表わされる。ここで、B、G及びRは、それぞれ青色信号、緑色信号及び赤色信号を表わす。これに関し、輝度を大きく取るために「ベイヤー配列」と呼ばれるRGGB画素から成る4画素を単位セルとした画素配置が最も輝度信号を効率よく取得できることが知られている。従って、エメラルドフィルタを用いた場合の画素配置としては、RGGB画素の1つのG画素をエメラルド画素に代えて用いることが考え得る。 Incidentally, in general, the luminance signal is represented by “Y = 0.11B + 0.59G + 0.30R”. Here, B, G, and R represent a blue signal, a green signal, and a red signal, respectively. In this regard, it is known that a pixel arrangement having four units of RGGB pixels called “Bayer array” as unit cells in order to obtain a large luminance can most efficiently acquire a luminance signal. Therefore, it is conceivable to use one G pixel of the RGGB pixels instead of the emerald pixel as a pixel arrangement when the emerald filter is used.
 しかしながら、RGGB画素の1つのG画素をエメラルド画素に代えて用いると、輝度に最も占める割合が大きい緑色信号が半減してしまう(即ち、2画素から1画素になってしまう)ため、輝度信号を効率よく取得できない。その結果、輝度信号を効率よく取得しつつ、人間の視感度の特に赤色の視感度が500nm付近の波長の光に対して負の感度を持つようなフィルタ特性を有する薄膜の色フィルタは、まだない。 However, if one G pixel of the RGGB pixels is used instead of the emerald pixel, the green signal having the largest proportion of the luminance is reduced by half (that is, the pixel is changed from 2 pixels to 1 pixel). It cannot be acquired efficiently. As a result, a thin-film color filter having a filter characteristic that has a negative sensitivity to light having a wavelength near 500 nm, particularly a red visual sensitivity, while obtaining a luminance signal efficiently, is still Absent.
 そこで本発明は、上記課題に鑑み、輝度信号を減らすことなく人間の視感度のフィルタ特性を実現する薄膜の色フィルタを実現可能な固体撮像素子を提供することを目的とする。 In view of the above problems, an object of the present invention is to provide a solid-state imaging device capable of realizing a thin-film color filter that realizes a filter characteristic of human visibility without reducing a luminance signal.
 上記課題を解決するため、本発明の固体撮像素子は、2次元状に配置された複数の受光部と、前記複数の受光部のそれぞれの上に配置され、互いに異なる光吸収特性を有する色フィルタとを備え、複数の前記色フィルタは、青色領域に透過中心波長を有する第1の色フィルタと、緑色領域に透過中心波長を有する第2の色フィルタと、赤色領域に透過中心波長を有する第1の透過帯と、青色領域に透過中心波長を有する第2の透過帯とを持つ第3の色フィルタとを含むことを特徴とする。 In order to solve the above-described problems, a solid-state imaging device according to the present invention includes a plurality of light receiving units arranged two-dimensionally and a color filter disposed on each of the plurality of light receiving units and having different light absorption characteristics. The plurality of color filters include a first color filter having a transmission center wavelength in a blue region, a second color filter having a transmission center wavelength in a green region, and a first color filter having a transmission center wavelength in a red region. And a third color filter having a first transmission band and a second transmission band having a transmission center wavelength in a blue region.
 このような構成とすることにより、反射型色フィルタ及びエメラルドフィルタを用いることなく、第3の色フィルタによりXYZ表色系のXフィルタを実現できる。従って、輝度信号を減らすことなく人間の視感度のフィルタ特性を実現する薄膜の色フィルタを実現することができる。その結果、フレアのない吸収型のXYZ表色系の色フィルタを実現することができる。 By adopting such a configuration, an XYZ color system X filter can be realized by the third color filter without using a reflective color filter and an emerald filter. Therefore, it is possible to realize a thin film color filter that realizes the filter characteristic of human visibility without reducing the luminance signal. As a result, an absorption XYZ color system color filter without flare can be realized.
 さらに上記課題を解決するため、本発明の固体撮像素子は、前記第2の透過帯の最大透過率は、前記第1の透過帯の最大透過率に対し、10~50%であることを特徴とする。 Furthermore, in order to solve the above-described problem, the solid-state imaging device of the present invention is characterized in that the maximum transmittance of the second transmission band is 10 to 50% with respect to the maximum transmittance of the first transmission band. And
 このような構成とすることにより、人間の視感度のフィルタ特性を高精度で実現する色フィルタが実現可能となる。 By adopting such a configuration, it is possible to realize a color filter that realizes a filter characteristic of human visibility with high accuracy.
 さらに上記課題を解決するため、本発明の固体撮像素子は、前記第3の色フィルタは、前記第1の透過帯及び前記第2の透過帯を持つ第1の層と、前記第1の層の上方又は下方に配置された、前記第1の透過帯を持つ第2の層とから構成されることを特徴とする。 Furthermore, in order to solve the above-described problem, in the solid-state imaging device according to the present invention, the third color filter includes a first layer having the first transmission band and the second transmission band, and the first layer. And a second layer having the first transmission band, which is disposed above or below the first transmission band.
 このような構成とすることにより、XYZ表色系のXフィルタが2つの層が積層されて構成され、固体撮像素子のアスペクト比が低くなるため、感度を向上させることができる。 By adopting such a configuration, the X filter of the XYZ color system is configured by laminating two layers, and the aspect ratio of the solid-state imaging device is lowered, so that the sensitivity can be improved.
 さらに上記課題を解決するため、本発明の固体撮像素子は、前記第1の層及び前記第2の層は、それぞれの青色領域の透過中心波長における吸収係数をα1_blue及びα2_blueとし、赤色領域の透過中心波長における吸収係数をα1_red及びα2_redとし、光学膜厚をt1及びt2とするとき、下記の式を満足することを特徴とする。
0.1≦Exp(-α1_blue×t1-α2_blue×t2)≦0.5
0.5≦Exp(-α1_red×t1-α2_red×t2)
Furthermore, in order to solve the above-described problem, in the solid-state imaging device of the present invention, the first layer and the second layer have α1_blue and α2_blue as absorption coefficients at the transmission center wavelengths of the respective blue regions, and transmit the red region. When the absorption coefficients at the center wavelength are α1_red and α2_red and the optical film thicknesses are t1 and t2, the following expression is satisfied.
0.1 ≦ Exp (−α1_blue × t1−α2_blue × t2) ≦ 0.5
0.5 ≦ Exp (−α1_red × t1−α2_red × t2)
 このような構成とすることにより、人間の視感度のフィルタ特性を高精度で実現する色フィルタが実現可能となる。 By adopting such a configuration, it is possible to realize a color filter that realizes a filter characteristic of human visibility with high accuracy.
 さらに上記課題を解決するため、本発明の固体撮像素子は、前記第1の層は、マゼンダ色素を含む顔料又は染料系のカラーレジストから構成されることを特徴とする。 Further, in order to solve the above-mentioned problems, the solid-state imaging device of the present invention is characterized in that the first layer is composed of a pigment containing a magenta dye or a dye-based color resist.
 このような構成とすることにより、現行プロセスを用いても、容易にXYZ表色系のXフィルタを形成することが可能となり、コストが低下する。 By adopting such a configuration, it is possible to easily form an XYZ color system X filter even using the current process, and the cost is reduced.
 さらに上記課題を解決するため、本発明の固体撮像素子は、前記第2の層は、赤色素を含む顔料又は染料系のカラーレジストから構成されることを特徴とする。 Further, in order to solve the above problems, the solid-state imaging device of the present invention is characterized in that the second layer is composed of a pigment or dye-based color resist containing a red pigment.
 このような構成とすることにより、現行プロセスを用いても、容易にXYZ表色系のXフィルタを形成することが可能となり、コストが低下する。 By adopting such a configuration, it is possible to easily form an XYZ color system X filter even using the current process, and the cost is reduced.
 さらに上記課題を解決するため、本発明の固体撮像素子は、前記第3の色フィルタは、前記第1の透過帯及び前記第2の透過帯を持つ第1の材料と、前記第1の透過帯を持つ第2の材料とから構成されることを特徴とする。 Furthermore, in order to solve the above-described problem, in the solid-state imaging device according to the present invention, the third color filter includes the first material having the first transmission band and the second transmission band, and the first transmission filter. And a second material having a band.
 このような構成とすることにより、単層でXYZ表色系のXフィルタが実現可能となる。 With such a configuration, an X filter of an XYZ color system can be realized with a single layer.
 さらに上記課題を解決するため、本発明の固体撮像素子は、前記第1の材料及び前記第2の材料は、それぞれの青色領域の透過中心波長における吸収係数をα1_blue及びα2_blueとし、赤色領域の透過中心波長における吸収係数をα1_red及びα2_redとし、混合比率をX1及びX2とし、光学膜厚を共にtとするとき、下記の式を満足することを特徴とする。
0.1≦Exp(-α1_blue×X1×t-α2_blue×X2×t)≦0.5
0.5≦Exp(-α1_red×X1×t-α2_red×X2×t)
Furthermore, in order to solve the above-described problem, in the solid-state imaging device of the present invention, the first material and the second material have an absorption coefficient α1_blue and α2_blue at the transmission center wavelength of each blue region, and transmit the red region. When the absorption coefficients at the center wavelength are α1_red and α2_red, the mixing ratio is X1 and X2, and the optical film thickness is both t, the following equation is satisfied.
0.1 ≦ Exp (−α1_blue × X1 × t−α2_blue × X2 × t) ≦ 0.5
0.5 ≦ Exp (−α1_red × X1 × t−α2_red × X2 × t)
 このような構成とすることにより、人間の視感度のフィルタ特性を高精度で実現する色フィルタが実現可能となる。 By adopting such a configuration, it is possible to realize a color filter that realizes a filter characteristic of human visibility with high accuracy.
 さらに上記課題を解決するため、本発明の固体撮像素子は、前記第1の材料は、マゼンダ色素を含む顔料又は染料系のカラーレジストから構成されることを特徴とする。 Further, in order to solve the above-mentioned problems, the solid-state imaging device of the present invention is characterized in that the first material is composed of a pigment containing a magenta dye or a dye-based color resist.
 このような構成とすることにより、現行プロセスを用いても、容易にXYZ表色系のXフィルタを形成することが可能となり、コストが低下する。 By adopting such a configuration, it is possible to easily form an XYZ color system X filter even using the current process, and the cost is reduced.
 さらに上記課題を解決するため、本発明の固体撮像素子は、前記第2の材料は、赤色素を含む顔料又は染料系のカラーレジストから構成されることを特徴とする。 Furthermore, in order to solve the above-mentioned problems, the solid-state imaging device of the present invention is characterized in that the second material is composed of a pigment or dye-based color resist containing a red pigment.
 このような構成とすることにより、現行プロセスを用いても、容易にXYZ表色系のXフィルタを形成することが可能となり、コストが低下する。 By adopting such a configuration, it is possible to easily form an XYZ color system X filter even using the current process, and the cost is reduced.
 さらに上記課題を解決するため、本発明の固体撮像素子は、前記第1の色フィルタ、第2の色フィルタ及び第3の色フィルタにより得られる分光特性は、等色条件を満たすことを特徴とする。 Furthermore, in order to solve the above-described problem, the solid-state imaging device according to the present invention is characterized in that spectral characteristics obtained by the first color filter, the second color filter, and the third color filter satisfy a color matching condition. To do.
 このような構成とすることにより、人間の視感度のフィルタ特性を高精度で実現する色フィルタが実現可能となる。 By adopting such a configuration, it is possible to realize a color filter that realizes a filter characteristic of human visibility with high accuracy.
 以上のように本発明によれば、輝度信号を減らすことなく人間の視感度のフィルタ特性を実現する薄膜の色フィルタを備えた固体撮像素子を実現できるので、撮像画像の色再現性及び画質を向上させることが可能となる。 As described above, according to the present invention, it is possible to realize a solid-state imaging device including a thin-film color filter that realizes a filter characteristic of human visibility without reducing a luminance signal. It becomes possible to improve.
図1Aは、本発明の実施の形態1に係る固体撮像素子の構造を示す断面図である。FIG. 1A is a cross-sectional view showing the structure of the solid-state imaging device according to Embodiment 1 of the present invention. 図1Bは、同実施の形態に係る固体撮像素子の色フィルタの配置を示す平面図である。FIG. 1B is a plan view showing the arrangement of color filters of the solid-state imaging device according to the embodiment. 図2Aは、同実施の形態に係る赤色フィルタの透過特性を示す図である。FIG. 2A is a diagram showing a transmission characteristic of the red filter according to the embodiment. 図2Bは、同実施の形態に係るマゼンダフィルタの透過特性を示す図である。FIG. 2B is a diagram showing transmission characteristics of the magenta filter according to the embodiment. 図3は、同実施の形態に係る第3の色フィルタの透過特性を示す図である。FIG. 3 is a diagram showing the transmission characteristics of the third color filter according to the embodiment. 図4Aは、同実施の形態に係る第1の色フィルタ、第2の色フィルタ及び第3の色フィルタによって得られる分光特性を示す図である。FIG. 4A is a diagram illustrating spectral characteristics obtained by the first color filter, the second color filter, and the third color filter according to the embodiment. 図4Bは、同実施の形態に係るフィルタによって得られるx-y色度分布及び人間の視感度のフィルタ特性が有する色域を示す図である。FIG. 4B is a diagram showing a color gamut possessed by a filter characteristic of the xy chromaticity distribution and human visibility obtained by the filter according to the embodiment. 図5Aは、同実施の形態に係る固体撮像素子の製造方法を説明するための断面図である。FIG. 5A is a cross-sectional view for explaining the method for manufacturing the solid-state imaging element according to the embodiment. 図5Bは、同実施の形態に係る固体撮像素子の製造方法を説明するための断面図である。FIG. 5B is a cross-sectional view for illustrating the method for manufacturing the solid-state imaging element according to the embodiment. 図5Cは、同実施の形態に係る固体撮像素子の製造方法を説明するための断面図である。FIG. 5C is a cross-sectional view for illustrating the method for manufacturing the solid-state imaging element according to the embodiment. 図5Dは、同実施の形態に係る固体撮像素子の製造方法を説明するための断面図である。FIG. 5D is a cross-sectional view for illustrating the method for manufacturing the solid-state imaging element according to the embodiment. 図6は、本発明の実施の形態2に係る固体撮像素子の構造を示す断面図である。FIG. 6 is a cross-sectional view showing the structure of the solid-state imaging device according to Embodiment 2 of the present invention. 図7Aは、同実施の形態に係る固体撮像素子の製造方法を説明するための断面図である。FIG. 7A is a cross-sectional view for explaining the method for manufacturing the solid-state imaging element according to the embodiment. 図7Bは、同実施の形態に係る固体撮像素子の製造方法を説明するための断面図である。FIG. 7B is a cross-sectional view for illustrating the method for manufacturing the solid-state imaging element according to the embodiment. 図7Cは、同実施の形態に係る固体撮像素子の製造方法を説明するための断面図である。FIG. 7C is a cross-sectional view for illustrating the method for manufacturing the solid-state imaging element according to the embodiment. 図7Dは、同実施の形態に係る固体撮像素子の製造方法を説明するための断面図である。FIG. 7D is a cross-sectional view for illustrating the method for manufacturing the solid-state imaging element according to the embodiment. 図7Eは、同実施の形態に係る固体撮像素子の製造方法を説明するための断面図である。FIG. 7E is a cross-sectional view for illustrating the method for manufacturing the solid-state imaging element according to the embodiment. 図8Aは、本発明の実施の形態3に係る固体撮像素子の構造を示す断面図である。FIG. 8A is a cross-sectional view showing the structure of the solid-state imaging device according to Embodiment 3 of the present invention. 図8Bは、同実施の形態に係る固体撮像素子の色フィルタの配置を示す平面図である。FIG. 8B is a plan view showing the arrangement of color filters of the solid-state imaging device according to the embodiment. 図9Aは、同実施の形態に係る固体撮像素子の製造方法を説明するための断面図である。FIG. 9A is a cross-sectional view for explaining the method for manufacturing the solid-state imaging element according to the embodiment. 図9Bは、同実施の形態に係る固体撮像素子の製造方法を説明するための断面図である。FIG. 9B is a cross-sectional view for illustrating the method for manufacturing the solid-state imaging element according to the embodiment. 図9Cは、同実施の形態に係る固体撮像素子の製造方法を説明するための断面図である。FIG. 9C is a cross-sectional view for illustrating the method for manufacturing the solid-state imaging element according to the embodiment.
 以下、本発明の実施の形態における固体撮像素子について、図面を参照しながら具体的に説明する。なお、本発明について、以下の実施の形態及び添付の図面を用いて説明を行うが、これは例示を目的としており、本発明はこれらに限定されることを意図しない。 Hereinafter, a solid-state imaging device according to an embodiment of the present invention will be specifically described with reference to the drawings. In addition, although this invention is demonstrated using the following embodiment and attached drawing, this is for the purpose of illustration and this invention is not intended to be limited to these.
 (実施の形態1)
 図1Aは、本実施の形態に係る固体撮像素子100の構造を示す断面図である。
(Embodiment 1)
FIG. 1A is a cross-sectional view showing the structure of the solid-state imaging device 100 according to the present embodiment.
 この固体撮像素子100は、p型Si基板101、複数の受光部102、層間絶縁膜103、信号線に相当する配線層104、複数の色フィルタ、平坦化膜106、及び集光素子(オンチップマイクロレンズ)107より構成されている。なお、固体撮像素子100は、p型Si基板101の代わりにp型半導体層を備えてもよいし、又はp型Si基板101の上に形成されたp型半導体層を更に備えてもよい。この場合には、受光部102は半導体層に形成される。 The solid-state imaging device 100 includes a p-type Si substrate 101, a plurality of light receiving portions 102, an interlayer insulating film 103, a wiring layer 104 corresponding to a signal line, a plurality of color filters, a planarizing film 106, and a light collecting element (on-chip). Microlens) 107. The solid-state imaging device 100 may include a p-type semiconductor layer instead of the p-type Si substrate 101, or may further include a p-type semiconductor layer formed on the p-type Si substrate 101. In this case, the light receiving portion 102 is formed in the semiconductor layer.
 p型Si基板101には、各受光部102に入射した光によって発生した電気信号を読み出すトランジスタ等の読出し部(図外)が設けられている。受光部102は、n型領域であり、p型Si基板101表面に2次元状に配置されている。なお、p型Si基板101の厚さは、固体撮像素子100によって異なるが、例えば5~10μmとされる。 The p-type Si substrate 101 is provided with a reading unit (not shown) such as a transistor for reading an electric signal generated by light incident on each light receiving unit 102. The light receiving unit 102 is an n-type region and is two-dimensionally arranged on the surface of the p-type Si substrate 101. Note that the thickness of the p-type Si substrate 101 varies depending on the solid-state imaging device 100, but is, for example, 5 to 10 μm.
 色フィルタは、複数の受光部102のそれぞれの上に配置されている。複数の色フィルタは、可視光域において異なる光吸収特性を有する3種類の色フィルタ、つまりXYZ表色系のXフィルタ、Yフィルタ及びZフィルタを含む。具体的に、複数の色フィルタは、Zフィルタとしての青色領域(410~510nmの波長域)に透過中心波長を有する(透過率50%以上の透過ピークを有する)第1の色フィルタ(青色フィルタ)108と、Yフィルタとしての緑色領域(470~650nmの波長域)に透過中心波長を有する第2の色フィルタ(緑色フィルタ)109と、Xフィルタとしての赤色領域(520~670nmの波長域)に透過中心波長を有する第1の透過帯と、青色領域に透過中心波長を有する第2の透過帯とを持つ第3の色フィルタ112とを含む。なお、XYZ表色系とは、1931年にCIE(国際照明委員会)で標準表色系として承認された表色系である。 The color filter is disposed on each of the plurality of light receiving units 102. The plurality of color filters include three types of color filters having different light absorption characteristics in the visible light range, that is, an XYZ color system X filter, Y filter, and Z filter. Specifically, the plurality of color filters includes a first color filter (blue filter having a transmission center wavelength (having a transmission peak with a transmittance of 50% or more)) in a blue region (wavelength region of 410 to 510 nm) as a Z filter. ) 108, a second color filter (green filter) 109 having a transmission center wavelength in a green region (wavelength region of 470 to 650 nm) as a Y filter, and a red region (wavelength region of 520 to 670 nm) as an X filter And a third color filter 112 having a first transmission band having a transmission center wavelength and a second transmission band having a transmission center wavelength in the blue region. The XYZ color system is a color system approved as a standard color system by the CIE (International Lighting Commission) in 1931.
 第1の色フィルタ108、第2の色フィルタ109及び第3の色フィルタ112は、図1Bの平面図に示すように、1つの第1の色フィルタ108、1つの第2の色フィルタ109、及び2つの第3の色フィルタ112を1つの単位セルとして2次元状に配置される。 As shown in the plan view of FIG. 1B, the first color filter 108, the second color filter 109, and the third color filter 112 include one first color filter 108, one second color filter 109, The two third color filters 112 are two-dimensionally arranged as one unit cell.
 第3の色フィルタ112は、本発明の第1の層の一例であり、第1の透過帯及び第2の透過帯を持つ色フィルタ(マゼンダフィルタ)111と、本発明の第2の層の一例であり、色フィルタ111の上方に積層して配置された、第1の透過帯を持ち第2の透過帯を持たない色フィルタ(赤色フィルタ)110とから構成される。なお、色フィルタ110は色フィルタ111の上方に配置されるとしたが、下方に配置されても構わない。 The third color filter 112 is an example of the first layer of the present invention, and includes a color filter (magenta filter) 111 having a first transmission band and a second transmission band, and a second layer of the present invention. It is an example, and is composed of a color filter (red filter) 110 having a first transmission band and no second transmission band, which is disposed above the color filter 111. Although the color filter 110 is arranged above the color filter 111, it may be arranged below.
 第1の色フィルタ108は青色素を含む顔料が分散されてなり、第2の色フィルタ109は緑色素を含む顔料が分散されてなる。色フィルタ110は赤色素を含む顔料が分散されてなり、色フィルタ111はマゼンダ色素を含む顔料が分散されてなる。なお、第1の色フィルタ108、第2の色フィルタ109、色フィルタ110及び111は、顔料ではなく染料系のカラーレジストで構成されても構わない。 The first color filter 108 has a pigment containing a blue pigment dispersed therein, and the second color filter 109 has a pigment containing a green pigment dispersed therein. The color filter 110 has a pigment containing a red pigment dispersed therein, and the color filter 111 has a pigment containing a magenta pigment dispersed therein. The first color filter 108, the second color filter 109, and the color filters 110 and 111 may be made of a dye-based color resist instead of a pigment.
 図2A及び図2Bは、それぞれ本実施の形態に係る固体撮像素子100に形成された色フィルタ110及び111の透過特性を示す図である。ここで、色フィルタ110及111の透過率TR及びTMgは、α2及びα1をそれぞれ色フィルタ110及び111の吸収係数とし、t2及びt1をそれぞれ色フィルタ110及び111の光学膜厚として、下記の式(1)及び(2)で表すことができる。
TR[%]=100*Exp(-α2×t2)・・・・(1)
TMg[%]=100*Exp(-α1×t1)・・・・(2)
2A and 2B are diagrams showing the transmission characteristics of the color filters 110 and 111 formed in the solid-state imaging device 100 according to the present embodiment, respectively. Here, the transmittances TR and TMg of the color filters 110 and 111 are expressed by the following equations, where α2 and α1 are the absorption coefficients of the color filters 110 and 111, respectively, and t2 and t1 are the optical film thicknesses of the color filters 110 and 111, respectively. It can be represented by (1) and (2).
TR [%] = 100 * Exp (−α2 × t2) (1)
TMg [%] = 100 * Exp (−α1 × t1) (2)
 式(1)及び(2)からわかるようにt2及びt1が小さくなればなるほど、透過率は高くなる。 As can be seen from the equations (1) and (2), the smaller the t2 and t1, the higher the transmittance.
 ここで、本実施の形態の固体撮像素子では、第3の色フィルタ112に色フィルタ110及び111の積層構造を用いることにより、従来の吸収型の色フィルタでは困難であったXYZ表示系のXフィルタに対応する分光特性を実現している。この場合、第3の色フィルタ112を色フィルタ110及び111の積層構造としても、青色領域の透過帯は存在する。すなわち、目的の分光特性を実現するため各色フィルタの膜厚を調整することで本来は吸収する波長の光を透過することが可能となる。また、その透過率も各々の色フィルタの膜厚を制御することで、所望の分光特性を得ることが可能となる。従って、第3の色フィルタ112の透過率TR/Mgは、色フィルタ110及び111の透過率TR及びTMgの積で表される。すなわち、透過率TR/Mgは次式(3)で表される。
TR/Mg[%]=(TR×TMg)/100=100*Exp(-α2×t2-α1×t1)・・・・(3)
Here, in the solid-state imaging device according to the present embodiment, by using a stacked structure of the color filters 110 and 111 as the third color filter 112, X of the XYZ display system that has been difficult with the conventional absorption color filter. Spectral characteristics corresponding to the filter are realized. In this case, even if the third color filter 112 has a laminated structure of the color filters 110 and 111, a transmission band in the blue region exists. That is, by adjusting the film thickness of each color filter in order to realize the desired spectral characteristics, it is possible to transmit light having a wavelength that is originally absorbed. Also, the transmittance can be obtained by controlling the film thickness of each color filter to obtain desired spectral characteristics. Therefore, the transmittance TR / Mg of the third color filter 112 is represented by the product of the transmittances TR and TMg of the color filters 110 and 111. That is, the transmittance TR / Mg is expressed by the following formula (3).
TR / Mg [%] = (TR × TMg) / 100 = 100 * Exp (−α2 × t2−α1 × t1) (3)
 式(3)によれば、第3の色フィルタ112を構成する色フィルタ110の膜厚t2と色フィルタ111の膜厚t1とを任意に設定することで、さまざまな分光特性を有する色フィルタを実現することができる。特に、色フィルタ110の青色領域の透過中心波長における吸収係数をα2_blueとし、赤色領域の透過中心波長における吸収係数をα2_redとし、また色フィルタ111の青色領域の透過中心波長における吸収係数をα1_blueとし、赤色領域の透過中心波長における吸収係数をα1_redとし、第3の色フィルタ112が下記の式(4)及び(5)の関係を満たすように構成することで、図3に示すように、第3の色フィルタ112において第2の透過帯の最大透過率が第1の透過帯の最大透過率に対し10~50%となる。その結果、図3に示すようなXYZ表色系のXフィルタの透過特性を実現することができる。
0.1≦Exp(-α1_blue×t1-α2_blue×t2)≦0.5・・・(4)
0.5≦Exp(-α1_red×t1-α2_red×t2)・・・・(5)
According to the equation (3), the color filter having various spectral characteristics can be obtained by arbitrarily setting the film thickness t2 of the color filter 110 and the film thickness t1 of the color filter 111 constituting the third color filter 112. Can be realized. In particular, the absorption coefficient at the transmission center wavelength in the blue region of the color filter 110 is α2_blue, the absorption coefficient at the transmission center wavelength in the red region is α2_red, and the absorption coefficient at the transmission center wavelength in the blue region of the color filter 111 is α1_blue. The absorption coefficient at the transmission center wavelength in the red region is α1_red, and the third color filter 112 is configured so as to satisfy the relationship of the following expressions (4) and (5). In the color filter 112, the maximum transmittance of the second transmission band is 10 to 50% with respect to the maximum transmittance of the first transmission band. As a result, it is possible to realize the transmission characteristics of the XYZ color system X filter as shown in FIG.
0.1 ≦ Exp (−α1_blue × t1−α2_blue × t2) ≦ 0.5 (4)
0.5 ≦ Exp (−α1_red × t1−α2_red × t2) (5)
 図4Aは本実施の形態に係る固体撮像素子100の第1の色フィルタ108、第2の色フィルタ109及び第3の色フィルタ112によって得られる分光感度特性を示す図である。また、図4Bは本実施の形態に係る固体撮像素子100の色フィルタによって得られるx-y色度分布(図4Bの点線で囲まれた斜線で示した領域)及び人間の視感度のフィルタ特性が有する色域(図4Bの実線で囲まれた領域)を示す図である。 FIG. 4A is a diagram showing spectral sensitivity characteristics obtained by the first color filter 108, the second color filter 109, and the third color filter 112 of the solid-state imaging device 100 according to the present embodiment. FIG. 4B shows an xy chromaticity distribution (a region indicated by a diagonal line surrounded by a dotted line in FIG. 4B) obtained by the color filter of the solid-state imaging device 100 according to the present embodiment and a filter characteristic of human visibility. It is a figure which shows the color gamut (area | region enclosed with the continuous line of FIG. 4B) which has.
 図4A及び図4Bからわかるように、第1の色フィルタ108、第2の色フィルタ109及び第3の色フィルタ112により得られる分光特性は等色条件を満たすので、固体撮像素子100の色フィルタによって、人間の視感度のフィルタ特性を有する色フィルタを実現することができる。 As can be seen from FIGS. 4A and 4B, the spectral characteristics obtained by the first color filter 108, the second color filter 109, and the third color filter 112 satisfy the color matching conditions. Thus, a color filter having a filter characteristic of human visibility can be realized.
 図5A~図5Dは本実施の形態に係る固体撮像素子100の色フィルタの製造方法を説明するための断面図である。 5A to 5D are cross-sectional views for explaining a method of manufacturing a color filter of the solid-state imaging device 100 according to the present embodiment.
 まず、通常の半導体プロセスを用いて、p型Si基板101に、受光部102、層間絶縁膜103及び配線層104が形成される。 First, the light receiving portion 102, the interlayer insulating film 103, and the wiring layer 104 are formed on the p-type Si substrate 101 using a normal semiconductor process.
 次に、図5Aに示すように、スピンオン法151でマゼンダ色素を含むネガ型の顔料が分散された溶液152が層間絶縁膜103表面に塗布され、リソグラフィー153により溶液152の所望の領域のみが硬化される。その後、溶液152に対してTMAH(水酸化テトラメチルアンモニウム)溶液等でウェットエッチングが行われ、色フィルタ111が形成される。 Next, as shown in FIG. 5A, a solution 152 in which a negative pigment containing a magenta dye is dispersed by a spin-on method 151 is applied to the surface of the interlayer insulating film 103, and only a desired region of the solution 152 is cured by lithography 153. Is done. Thereafter, the solution 152 is wet-etched with a TMAH (tetramethylammonium hydroxide) solution or the like to form the color filter 111.
 次に、図5Bに示すように、スピンオン法151で緑色素を含むネガ型の顔料が分散された溶液155が層間絶縁膜103表面に塗布され、リソグラフィー153により溶液155の所望の領域のみが硬化される。その後、溶液155に対してTMAH溶液等でウェットエッチングが行われ、第2の色フィルタ109が形成される。ここで、図5Aの工程で形成されている色フィルタ111は既に硬化しているため、ウェットエッチングの影響を受けない。 Next, as shown in FIG. 5B, a solution 155 in which a negative pigment containing a green pigment is dispersed by spin-on method 151 is applied to the surface of interlayer insulating film 103, and only a desired region of solution 155 is cured by lithography 153. Is done. Thereafter, wet etching is performed on the solution 155 with a TMAH solution or the like, and the second color filter 109 is formed. Here, since the color filter 111 formed in the process of FIG. 5A is already cured, it is not affected by wet etching.
 次に、図5Cに示すように、スピンオン法151で青色素を含むネガ型の顔料が分散された溶液156が層間絶縁膜103表面に塗布され、リソグラフィー153により溶液156の所望の領域のみが硬化される。その後、溶液156に対してTMAH溶液等でウェットエッチングが行われ、第1の色フィルタ108が形成される。ここで、図5Bの工程で形成されている第2の色フィルタ109は既に硬化しているため、ウェットエッチングの影響を受けない。 Next, as shown in FIG. 5C, a solution 156 in which a negative pigment containing a blue pigment is dispersed by spin-on method 151 is applied to the surface of interlayer insulating film 103, and only a desired region of solution 156 is cured by lithography 153. Is done. Thereafter, the solution 156 is wet-etched with a TMAH solution or the like to form the first color filter 108. Here, since the second color filter 109 formed in the process of FIG. 5B is already cured, it is not affected by the wet etching.
 最後に、図5Dに示すように、スピンオン法151で赤色素を含むネガ型の顔料が分散された溶液157が色フィルタ111表面に塗布され、リソグラフィー153により溶液157の所望の領域のみが硬化される。その後、溶液157に対してTMAH溶液等でウェットエッチング154が行われ、色フィルタ110が形成される。ここで、図5Cの工程で形成されている第1の色フィルタ108は既に硬化しているため、ウェットエッチングの影響を受けない。 Finally, as shown in FIG. 5D, a solution 157 in which a negative pigment containing a red pigment is dispersed by spin-on method 151 is applied to the surface of color filter 111, and only a desired region of solution 157 is cured by lithography 153. The Thereafter, wet etching 154 is performed on the solution 157 with a TMAH solution or the like, and the color filter 110 is formed. Here, since the first color filter 108 formed in the process of FIG. 5C has already been cured, it is not affected by wet etching.
 なお、本実施の形態に係る固体撮像素子100の製造工程では、色フィルタを構成する材料としてネガ型の顔料カラーレジストを仮定しているが、ポジ型の顔料カラーレジストでも構わない。また、第1の色フィルタ108、第2の色フィルタ109及び第3の色フィルタ112の形成工程の順番は変更されても問題ない。 In the manufacturing process of the solid-state imaging device 100 according to the present embodiment, a negative pigment color resist is assumed as a material constituting the color filter, but a positive pigment color resist may be used. In addition, there is no problem even if the order of forming the first color filter 108, the second color filter 109, and the third color filter 112 is changed.
 以上のように本実施の形態の固体撮像素子100は、反射型色フィルタ及びエメラルドフィルタを用いることなく、マゼンダフィルタ及び赤色フィルタを重ねてXYZ表色系のXフィルタを実現する。従って、輝度信号を減らすことなく人間の視感度のフィルタ特性を実現する薄膜の色フィルタを実現することができる。 As described above, the solid-state imaging device 100 of the present embodiment realizes an X filter of the XYZ color system by overlapping a magenta filter and a red filter without using a reflective color filter and an emerald filter. Therefore, it is possible to realize a thin film color filter that realizes the filter characteristic of human visibility without reducing the luminance signal.
 (実施の形態2)
 図6は、本実施の形態に係る固体撮像素子200の構造を示す断面図である。
(Embodiment 2)
FIG. 6 is a cross-sectional view showing the structure of the solid-state imaging device 200 according to the present embodiment.
 この固体撮像素子200は、色フィルタが透明材料202を含むという点で実施の形態1の固体撮像素子100と異なる。固体撮像素子200は、p型Si基板101、複数の受光部102、層間絶縁膜103、配線層104、複数の色フィルタ、平坦化膜106、及び集光素子107より構成されている。 This solid-state image sensor 200 is different from the solid-state image sensor 100 of the first embodiment in that the color filter includes a transparent material 202. The solid-state imaging device 200 includes a p-type Si substrate 101, a plurality of light receiving portions 102, an interlayer insulating film 103, a wiring layer 104, a plurality of color filters, a planarizing film 106, and a light collecting element 107.
 色フィルタは、複数の受光部102のそれぞれの上に配置されている。複数の色フィルタは、第1の色フィルタ108、第2の色フィルタ109、第3の色フィルタ112、及び透明材料202とを含む。第3の色フィルタ112は、色フィルタ111及び110から構成される。 The color filter is disposed on each of the plurality of light receiving units 102. The plurality of color filters include a first color filter 108, a second color filter 109, a third color filter 112, and a transparent material 202. The third color filter 112 includes color filters 111 and 110.
 透明材料202は第1の色フィルタ108、第2の色フィルタ109及び色フィルタ111上に形成され、透明材料202上に色フィルタ110が形成されている。透明材料202は例えばSiO、SiN及びTiO等から構成される。 The transparent material 202 is formed on the first color filter 108, the second color filter 109, and the color filter 111, and the color filter 110 is formed on the transparent material 202. Transparent material 202, for example composed of SiO 2, SiN and TiO 2 and the like.
 図7A~図7Eは、本実施の形態に係る固体撮像素子200の色フィルタの製造方法を説明するための断面図である。 7A to 7E are cross-sectional views for explaining a method for manufacturing a color filter of the solid-state imaging device 200 according to the present embodiment.
 まず、通常の半導体プロセスを用いて、p型Si基板101に、受光部102、層間絶縁膜103及び配線層104を形成する。 First, the light receiving portion 102, the interlayer insulating film 103, and the wiring layer 104 are formed on the p-type Si substrate 101 using a normal semiconductor process.
 次に、図7Aに示すように、スピンオン法151でマゼンダ色素を含むネガ型の顔料が分散された溶液152が層間絶縁膜103表面に塗布され、リソグラフィー153により溶液152の所望の領域のみが硬化される。その後、溶液152に対してTMAH溶液等でウェットエッチングが行われ、色フィルタ111が形成される。 Next, as shown in FIG. 7A, a solution 152 in which a negative pigment containing a magenta dye is dispersed by a spin-on method 151 is applied to the surface of the interlayer insulating film 103, and only a desired region of the solution 152 is cured by lithography 153. Is done. Thereafter, the solution 152 is wet-etched with a TMAH solution or the like, and the color filter 111 is formed.
 次に、図7Bに示すように、スピンオン法151で緑色素を含むネガ型の顔料が分散された溶液155が層間絶縁膜103表面に塗布され、リソグラフィー153により溶液155の所望の領域のみが硬化される。その後、溶液155に対してTMAH溶液等でウェットエッチングが行われ、第2の色フィルタ109が形成される。ここで、図7Aの工程で形成されている色フィルタ111は既に硬化しているため、ウェットエッチングの影響を受けない。 Next, as shown in FIG. 7B, a solution 155 in which a negative pigment containing a green pigment is dispersed by spin-on method 151 is applied to the surface of interlayer insulating film 103, and only a desired region of solution 155 is cured by lithography 153. Is done. Thereafter, wet etching is performed on the solution 155 with a TMAH solution or the like, and the second color filter 109 is formed. Here, since the color filter 111 formed in the process of FIG. 7A is already cured, it is not affected by wet etching.
 次に、図7Cに示すように、スピンオン法151で青色素を含むネガ型の顔料が分散された溶液156が層間絶縁膜103表面に塗布され、リソグラフィー153により溶液156の所望の領域のみが硬化される。その後、溶液156に対してTMAH溶液等でウェットエッチングが行われ、第1の色フィルタ108が形成される。ここで、図7Bの工程で形成されている第2の色フィルタ109は既に硬化しているため、ウェットエッチングの影響を受けない。 Next, as shown in FIG. 7C, a solution 156 in which a negative pigment containing a blue pigment is dispersed by spin-on method 151 is applied to the surface of interlayer insulating film 103, and only a desired region of solution 156 is cured by lithography 153. Is done. Thereafter, the solution 156 is wet-etched with a TMAH solution or the like to form the first color filter 108. Here, since the second color filter 109 formed in the process of FIG. 7B is already cured, it is not affected by wet etching.
 次に、図7Dに示すように、例えばSiOから構成される透明材料202がCVD法で第1の色フィルタ108、第2の色フィルタ109及び色フィルタ111上に成膜され、CMPにより平坦化される。 Next, as shown in FIG. 7D, a transparent material 202 made of, for example, SiO 2 is formed on the first color filter 108, the second color filter 109, and the color filter 111 by CVD, and is flattened by CMP. It becomes.
 最後に、図7Eに示すように、スピンオン法151で赤色素を含むネガ型の顔料が分散された溶液157がp型Si基板101表面に塗布され、リソグラフィー153により溶液157の所望の領域のみが硬化される。その後、溶液157に対してTMAH溶液等でウェットエッチング154が行われ、色フィルタ110が形成される。 Finally, as shown in FIG. 7E, a solution 157 in which a negative pigment containing a red pigment is dispersed by a spin-on method 151 is applied to the surface of the p-type Si substrate 101, and only a desired region of the solution 157 is formed by lithography 153. Cured. Thereafter, wet etching 154 is performed on the solution 157 with a TMAH solution or the like, and the color filter 110 is formed.
 なお、本実施の形態に係る固体撮像素子200の製造工程では、色フィルタを構成する材料としてネガ型の顔料カラーレジストを仮定しているが、ポジ型の顔料カラーレジストでも構わない。また、第1の色フィルタ108、第2の色フィルタ109及び第3の色フィルタ112の形成工程の順番を変更しても問題ない。 In the manufacturing process of the solid-state imaging device 200 according to the present embodiment, a negative pigment color resist is assumed as a material constituting the color filter, but a positive pigment color resist may be used. Further, there is no problem even if the order of forming the first color filter 108, the second color filter 109, and the third color filter 112 is changed.
 以上のように本実施の形態に係る固体撮像素子200によれば、第3の色フィルタ112を構成する色フィルタ110と色フィルタ111との間に透明材料202が設けられる。従って、色フィルタ110と色フィルタ111との界面で生じうる光学的な干渉又は物理的な干渉を抑制することができ、第3の色フィルタ112において所望の分光特性をより忠実に再現することが可能となる。また、色フィルタ110が形成される際に、透明材料202により下地が平坦化されているため、色フィルタ110の形成プロセスが容易となる。 As described above, according to the solid-state imaging device 200 according to the present embodiment, the transparent material 202 is provided between the color filter 110 and the color filter 111 constituting the third color filter 112. Therefore, optical interference or physical interference that can occur at the interface between the color filter 110 and the color filter 111 can be suppressed, and desired spectral characteristics can be more faithfully reproduced in the third color filter 112. It becomes possible. Further, when the color filter 110 is formed, the base is flattened by the transparent material 202, so that the process of forming the color filter 110 is facilitated.
 また、本実施の形態に係る固体撮像素子200においても、実施の形態1に係る固体撮像素子100と同様の理由により、輝度信号を減らすことなく人間の視感度のフィルタ特性を実現する薄膜の色フィルタを実現することができる。 Further, in the solid-state imaging device 200 according to the present embodiment, for the same reason as the solid-state imaging device 100 according to the first embodiment, the color of the thin film that realizes the filter characteristic of human visibility without reducing the luminance signal A filter can be realized.
 (実施の形態3)
 図8Aは、本実施の形態に係る固体撮像素子300の構造を示す断面図である。
(Embodiment 3)
FIG. 8A is a cross-sectional view showing the structure of the solid-state imaging device 300 according to the present embodiment.
 この固体撮像素子300は、第3の色フィルタが単層の色フィルタから構成されるという点で実施の形態1の固体撮像素子100と異なる。固体撮像素子300は、p型Si基板101、複数の受光部102、層間絶縁膜103、配線層104、複数の色フィルタ、平坦化膜106、及び集光素子107より構成されている。 This solid-state image sensor 300 differs from the solid-state image sensor 100 of the first embodiment in that the third color filter is composed of a single-layer color filter. The solid-state imaging device 300 includes a p-type Si substrate 101, a plurality of light receiving portions 102, an interlayer insulating film 103, a wiring layer 104, a plurality of color filters, a planarizing film 106, and a light collecting element 107.
 色フィルタは、複数の受光部102のそれぞれの上に配置されている。複数の色フィルタは、第1の色フィルタ108、第2の色フィルタ109及びXフィルタとしての第3の色フィルタ302を含む。第1の色フィルタ108、第2の色フィルタ109及び第3の色フィルタ302は、図8Bの平面図に示すように、1つの第1の色フィルタ108、1つの第2の色フィルタ109、及び2つの第3の色フィルタ302を1つの単位セルとして2次元状に配置される。 The color filter is disposed on each of the plurality of light receiving units 102. The plurality of color filters include a first color filter 108, a second color filter 109, and a third color filter 302 as an X filter. As shown in the plan view of FIG. 8B, the first color filter 108, the second color filter 109, and the third color filter 302 include one first color filter 108, one second color filter 109, The two third color filters 302 are two-dimensionally arranged as one unit cell.
 第3の色フィルタ302は、赤色領域に透過中心波長を有する第1の透過帯と青色領域に透過中心波長を有する第2の透過帯とを持つ第1の材料と、第1の透過帯を持ち第2の透過帯を持たない第2の材料とから構成される。第3の色フィルタ302は、第2の材料としての赤色素を含む顔料と、第1の材料としてのマゼンダ色素を含む顔料とが分散されてなる。なお、第3の色フィルタ302は、顔料ではなく染料系のカラーレジストで構成されても構わない。 The third color filter 302 includes a first material having a first transmission band having a transmission center wavelength in the red region and a second transmission band having a transmission center wavelength in the blue region, and a first transmission band. And a second material having no second transmission band. The third color filter 302 is formed by dispersing a pigment containing a red dye as the second material and a pigment containing a magenta dye as the first material. The third color filter 302 may be composed of a dye-based color resist instead of a pigment.
 ここで、第3の色フィルタ302では赤色素を含む顔料とマゼンダ色素を含む顔料が分散されているため、第3の色フィルタ302の透過率Tは、赤色素を含む顔料とマゼンダ色素を含む顔料の混合比率をX2及びX1とし、赤色素を含む顔料とマゼンダ色素を含む顔料の吸収係数をそれぞれα2及びα1、赤色素を含む顔料とマゼンダ色素を含む顔料の光学膜厚を共にtとすると、下記の式(6)で表すことができる。
T[%]=100*Exp(-α1×X1×t-α2×X2×t)・・・・(6)
Here, since the pigment containing red pigment and the pigment containing magenta pigment are dispersed in the third color filter 302, the transmittance T of the third color filter 302 includes the pigment containing red pigment and the magenta pigment. When the mixing ratio of the pigment is X2 and X1, the absorption coefficient of the pigment containing the red dye and the pigment containing the magenta dye is α2 and α1, respectively, and the optical film thickness of the pigment containing the red dye and the pigment containing the magenta dye is both t. And can be represented by the following formula (6).
T [%] = 100 * Exp (−α1 × X1 × t−α2 × X2 × t) (6)
 式(6)によれば、第3の色フィルタ302を構成する赤色素を含む顔料の混合比X2とマゼンダ色素を含む顔料の混合比X1とを任意に設定することで、さまざまな分光特性を有する色フィルタを実現することができる。特に、赤色素を含む顔料の青色領域の透過中心波長における吸収係数をα2_blueとし、赤色領域の透過中心波長における吸収係数をα2_redとし、またマゼンダ色素を含む顔料の青色領域の透過中心波長における吸収係数をα1_blueとし、赤色領域の透過中心波長における吸収係数をα1_redとし、第3の色フィルタ302が下記の式(7)及び(8)の関係を満たすように構成することで、図3に示すように、第3の色フィルタ302において第2の透過帯の最大透過率は第1の透過帯の最大透過率に対し10~50%となる。その結果、図3に示すようなXYZ表色系のXフィルタの透過特性を実現することができる。
0.1≦Exp(-α1_blue×X1×t-α2_blue×X2×t)≦0.5・・・(7)
0.5≦Exp(-α1_red×X1×t-α2_red×X2×t)・・・・(8)
According to the equation (6), various spectral characteristics can be obtained by arbitrarily setting the mixing ratio X2 of the pigment containing the red dye and the mixing ratio X1 of the pigment containing the magenta dye constituting the third color filter 302. It is possible to realize a color filter having the same. In particular, the absorption coefficient at the transmission center wavelength in the blue region of the pigment containing the red dye is α2_blue, the absorption coefficient at the transmission center wavelength in the red region is α2_red, and the absorption coefficient at the transmission center wavelength in the blue region of the pigment containing the magenta dye. Is set to α1_blue, the absorption coefficient at the transmission center wavelength in the red region is set to α1_red, and the third color filter 302 is configured so as to satisfy the relationship of the following expressions (7) and (8), as shown in FIG. In addition, in the third color filter 302, the maximum transmittance of the second transmission band is 10 to 50% with respect to the maximum transmittance of the first transmission band. As a result, it is possible to realize the transmission characteristics of the XYZ color system X filter as shown in FIG.
0.1 ≦ Exp (−α1_blue × X1 × t−α2_blue × X2 × t) ≦ 0.5 (7)
0.5 ≦ Exp (−α1_red × X1 × t−α2_red × X2 × t) (8)
 図9A~図9Cは、本実施の形態に係る固体撮像素子300の色フィルタの製造方法を説明するための断面図である。 9A to 9C are cross-sectional views for explaining a method of manufacturing a color filter of the solid-state imaging device 300 according to the present embodiment.
 まず、通常の半導体プロセスを用いて、p型Si基板101に、受光部102、層間絶縁膜103及び配線層104が形成される。 First, the light receiving portion 102, the interlayer insulating film 103, and the wiring layer 104 are formed on the p-type Si substrate 101 using a normal semiconductor process.
 次に、図9Aに示すように、スピンオン法151で緑色素を含むネガ型の顔料が分散された溶液155が層間絶縁膜103表面に塗布され、リソグラフィー153により溶液155の所望の領域のみが硬化される。その後、溶液155に対してTMAH溶液等でウェットエッチングが行われ、第2の色フィルタ109が形成される。 Next, as shown in FIG. 9A, a solution 155 in which a negative pigment containing a green pigment is dispersed by a spin-on method 151 is applied to the surface of the interlayer insulating film 103, and only a desired region of the solution 155 is cured by lithography 153. Is done. Thereafter, wet etching is performed on the solution 155 with a TMAH solution or the like, and the second color filter 109 is formed.
 次に、図9Bに示すように、スピンオン法151で青色素を含むネガ型の顔料が分散された溶液156が層間絶縁膜103表面に塗布され、リソグラフィー153により溶液156の所望の領域のみが硬化される。その後、溶液156に対してTMAH溶液等でウェットエッチングが行われ、第1の色フィルタ108が形成される。ここで、図9Aの工程で形成されている第2の色フィルタ109は既に硬化しているため、ウェットエッチングの影響を受けない。 Next, as shown in FIG. 9B, a solution 156 in which a negative pigment containing a blue dye is dispersed by spin-on method 151 is applied to the surface of interlayer insulating film 103, and only a desired region of solution 156 is cured by lithography 153. Is done. Thereafter, the solution 156 is wet-etched with a TMAH solution or the like to form the first color filter 108. Here, since the second color filter 109 formed in the process of FIG. 9A is already cured, it is not affected by wet etching.
 最後に、図9Cに示すように、スピンオン法151で赤色素とマゼンダ色素とを含むネガ型の顔料が分散された溶液303が層間絶縁膜103表面に塗布され、リソグラフィー153により溶液303の所望の領域のみが硬化される。その後、溶液303に対してTMAH溶液等でウェットエッチングが行われ、第3の色フィルタ302が形成される。ここで、図9Bの工程で形成されている第1の色フィルタ108は既に硬化しているため、ウェットエッチングの影響を受けない。 Finally, as shown in FIG. 9C, a solution 303 in which a negative pigment containing a red dye and a magenta dye is dispersed by a spin-on method 151 is applied to the surface of the interlayer insulating film 103, and a desired solution of the solution 303 is formed by lithography 153. Only the area is cured. Thereafter, the solution 303 is wet-etched with a TMAH solution or the like to form the third color filter 302. Here, since the first color filter 108 formed in the step of FIG. 9B has already been cured, it is not affected by wet etching.
 なお、本実施の形態に係る固体撮像素子300の製造工程では、色フィルタを構成する材料としてネガ型の顔料カラーレジストを仮定しているが、ポジ型の顔料カラーレジストでも構わない。また、第1の色フィルタ108、第2の色フィルタ109及び第3の色フィルタ302の形成工程の順番を変更しても問題ない。 In the manufacturing process of the solid-state imaging device 300 according to the present embodiment, a negative pigment color resist is assumed as a material constituting the color filter, but a positive pigment color resist may be used. In addition, there is no problem even if the order of forming the first color filter 108, the second color filter 109, and the third color filter 302 is changed.
 以上のように本実施の形態の固体撮像素子300は、反射型色フィルタ及びエメラルドフィルタを用いることなく、赤色素を含む顔料とマゼンダ色素を含む顔料とが混合されたフィルタによりXYZ表色系のXフィルタを実現する。従って、輝度信号を減らすことなく人間の視感度のフィルタ特性を実現する薄膜の色フィルタを実現することができる。 As described above, the solid-state imaging device 300 according to the present embodiment has an XYZ color system using a filter in which a pigment containing a red pigment and a pigment containing a magenta pigment are mixed without using a reflective color filter and an emerald filter. An X filter is realized. Therefore, it is possible to realize a thin film color filter that realizes the filter characteristic of human visibility without reducing the luminance signal.
 本発明は、固体撮像素子に利用可能であり、特にデジタルカメラ、携帯電話、一眼レフカメラ及びスキャナ等に利用可能である。 The present invention can be used for solid-state imaging devices, and in particular, can be used for digital cameras, mobile phones, single-lens reflex cameras, scanners, and the like.
  100、200、300  固体撮像素子
  101  p型Si基板
  102  受光部
  103  層間絶縁膜
  104  配線層
  106  平坦化膜
  107  集光素子
  108  第1の色フィルタ
  109  第2の色フィルタ
  110、111  色フィルタ
  112、302  第3の色フィルタ
  151  スピンオン法
  152、155、156、157、303  溶液
  153  リソグラフィー
  202  透明材料
 
DESCRIPTION OF SYMBOLS 100, 200, 300 Solid-state image sensor 101 P-type Si substrate 102 Light-receiving part 103 Interlayer insulation film 104 Wiring layer 106 Planarization film 107 Condensing element 108 1st color filter 109 2nd color filter 110, 111 Color filter 112, 302 Third color filter 151 Spin-on method 152, 155, 156, 157, 303 Solution 153 Lithography 202 Transparent material

Claims (12)

  1.  2次元状に配置された複数の受光部と、
     前記複数の受光部のそれぞれの上に配置され、互いに異なる光吸収特性を有する色フィルタとを備え、
     複数の前記色フィルタは、
     青色領域に透過中心波長を有する第1の色フィルタと、
     緑色領域に透過中心波長を有する第2の色フィルタと、
     赤色領域に透過中心波長を有する第1の透過帯と、青色領域に透過中心波長を有する第2の透過帯とを持つ第3の色フィルタとを含む
     固体撮像素子。
    A plurality of light receiving portions arranged two-dimensionally;
    A color filter disposed on each of the plurality of light receiving parts and having different light absorption characteristics;
    The plurality of color filters are
    A first color filter having a transmission center wavelength in the blue region;
    A second color filter having a transmission center wavelength in the green region;
    A solid-state imaging device comprising: a third color filter having a first transmission band having a transmission center wavelength in a red region and a second transmission band having a transmission center wavelength in a blue region.
  2.  前記第2の透過帯の最大透過率は、前記第1の透過帯の最大透過率に対し、10~50%である
     請求項1に記載の固体撮像素子。
    The solid-state imaging device according to claim 1, wherein the maximum transmittance of the second transmission band is 10 to 50% with respect to the maximum transmittance of the first transmission band.
  3.  前記第3の色フィルタは、前記第1の透過帯及び前記第2の透過帯を持つ第1の層と、前記第1の層の上方又は下方に配置された、前記第1の透過帯を持つ第2の層とから構成される
     請求項1又は2に記載の固体撮像素子。
    The third color filter includes a first layer having the first transmission band and the second transmission band, and the first transmission band disposed above or below the first layer. The solid-state imaging device according to claim 1, comprising a second layer having the second layer.
  4.  前記第1の層及び前記第2の層は、それぞれの青色領域の透過中心波長における吸収係数をα1_blue及びα2_blueとし、赤色領域の透過中心波長における吸収係数をα1_red及びα2_redとし、光学膜厚をt1及びt2とするとき、下記の式を満足する
    0.1≦Exp(-α1_blue×t1-α2_blue×t2)≦0.5
    0.5≦Exp(-α1_red×t1-α2_red×t2)
     請求項3に記載の固体撮像素子。
    The first layer and the second layer have an absorption coefficient of α1_blue and α2_blue at the transmission center wavelength of the blue region, an absorption coefficient of α1_red and α2_red of the transmission center wavelength of the red region, and an optical film thickness of t1. And t2 satisfying the following formula: 0.1 ≦ Exp (−α1_blue × t1−α2_blue × t2) ≦ 0.5
    0.5 ≦ Exp (−α1_red × t1−α2_red × t2)
    The solid-state imaging device according to claim 3.
  5.  前記第1の層は、マゼンダ色素を含む顔料又は染料系のカラーレジストから構成される
     請求項3又は4に記載の固体撮像素子。
    5. The solid-state imaging device according to claim 3, wherein the first layer includes a pigment containing a magenta dye or a dye-based color resist.
  6.  前記第2の層は、赤色素を含む顔料又は染料系のカラーレジストから構成される
     請求項3~5のいずれか1項に記載の固体撮像素子。
    The solid-state imaging device according to any one of claims 3 to 5, wherein the second layer includes a pigment containing a red pigment or a dye-based color resist.
  7.  前記第3の色フィルタは、前記第1の透過帯及び前記第2の透過帯を持つ第1の材料と、前記第1の透過帯を持つ第2の材料とから構成される
     請求項1又は2に記載の固体撮像素子。
    The third color filter includes a first material having the first transmission band and the second transmission band, and a second material having the first transmission band. 2. A solid-state imaging device according to 2.
  8.  前記第1の材料及び前記第2の材料は、それぞれの青色領域の透過中心波長における吸収係数をα1_blue及びα2_blueとし、赤色領域の透過中心波長における吸収係数をα1_red及びα2_redとし、混合比率をX1及びX2とし、光学膜厚を共にtとするとき、下記の式を満足する
    0.1≦Exp(-α1_blue×X1×t-α2_blue×X2×t)≦0.5
    0.5≦Exp(-α1_red×X1×t-α2_red×X2×t)
     請求項7に記載の固体撮像素子。
    In the first material and the second material, the absorption coefficient at the transmission center wavelength of each blue region is α1_blue and α2_blue, the absorption coefficient at the transmission center wavelength of the red region is α1_red and α2_red, and the mixing ratio is X1 and When X2 and the optical film thickness are both t, 0.1 ≦ Exp (−α1_blue × X1 × t−α2_blue × X2 × t) ≦ 0.5 that satisfies the following formula:
    0.5 ≦ Exp (−α1_red × X1 × t−α2_red × X2 × t)
    The solid-state imaging device according to claim 7.
  9.  前記第1の材料は、マゼンダ色素を含む顔料又は染料系のカラーレジストから構成される
     請求項7又は8に記載の固体撮像素子。
    The solid-state imaging device according to claim 7, wherein the first material is formed of a pigment containing a magenta dye or a dye-based color resist.
  10.  前記第2の材料は、赤色素を含む顔料又は染料系のカラーレジストから構成される
     請求項7~9のいずれか1項に記載の固体撮像素子。
    The solid-state imaging device according to any one of claims 7 to 9, wherein the second material includes a pigment containing a red pigment or a dye-based color resist.
  11.  前記第1の色フィルタ、第2の色フィルタ及び第3の色フィルタにより得られる分光特性は、等色条件を満たす
     請求項1~10のいずれか1項に記載の固体撮像素子。
    The solid-state imaging device according to any one of claims 1 to 10, wherein spectral characteristics obtained by the first color filter, the second color filter, and the third color filter satisfy a color matching condition.
  12.  前記第1の色フィルタ、第2の色フィルタ及び第3の色フィルタは、それぞれXYZ表色系のZフィルタ、Yフィルタ及びXフィルタである
     請求項1~11のいずれか1項に記載の固体撮像素子。
    The solid color according to any one of claims 1 to 11, wherein the first color filter, the second color filter, and the third color filter are a Z filter, a Y filter, and an X filter of an XYZ color system, respectively. Image sensor.
PCT/JP2010/002501 2009-04-22 2010-04-06 Solid-state imaging element WO2010122716A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009104475A JP2010258104A (en) 2009-04-22 2009-04-22 Solid-state imaging element
JP2009-104475 2009-04-22

Publications (1)

Publication Number Publication Date
WO2010122716A1 true WO2010122716A1 (en) 2010-10-28

Family

ID=43010846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/002501 WO2010122716A1 (en) 2009-04-22 2010-04-06 Solid-state imaging element

Country Status (2)

Country Link
JP (1) JP2010258104A (en)
WO (1) WO2010122716A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103650143A (en) * 2011-07-29 2014-03-19 索尼公司 Imaging element and method for manufacturing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6126190B2 (en) * 2015-11-27 2017-05-10 ソニーセミコンダクタソリューションズ株式会社 Image sensor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62111204A (en) * 1985-11-08 1987-05-22 Matsushita Electronics Corp Color separating filter
JPH09321262A (en) * 1996-05-27 1997-12-12 Sharp Corp Solid-state image pickup device and method of fabricating the same
JP2003008997A (en) * 2001-06-27 2003-01-10 Konica Corp Image pickup element and digital still camera employing the image pickup element
JP2007329380A (en) * 2006-06-09 2007-12-20 Sony Corp Method and apparatus for acquiring physical information, semiconductor device, signal processor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62111204A (en) * 1985-11-08 1987-05-22 Matsushita Electronics Corp Color separating filter
JPH09321262A (en) * 1996-05-27 1997-12-12 Sharp Corp Solid-state image pickup device and method of fabricating the same
JP2003008997A (en) * 2001-06-27 2003-01-10 Konica Corp Image pickup element and digital still camera employing the image pickup element
JP2007329380A (en) * 2006-06-09 2007-12-20 Sony Corp Method and apparatus for acquiring physical information, semiconductor device, signal processor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103650143A (en) * 2011-07-29 2014-03-19 索尼公司 Imaging element and method for manufacturing same
CN103650143B (en) * 2011-07-29 2016-10-26 索尼半导体解决方案公司 Image-forming component and manufacture method thereof

Also Published As

Publication number Publication date
JP2010258104A (en) 2010-11-11

Similar Documents

Publication Publication Date Title
US8670051B2 (en) Solid-state image sensor and camera having improved sensitivity and color separation characteristics
JP5074106B2 (en) Solid-state image sensor and camera
JP5017193B2 (en) Solid-state imaging device and camera
JP5649990B2 (en) Color filter, solid-state imaging device, liquid crystal display device, and electronic information device
JP5247042B2 (en) Color filter array and image sensor
JP2011077410A (en) Solid-state imaging device
US8054352B2 (en) Color filter array with reduced crosstalk effect and image sensor and image pickup apparatus having the same
JPWO2006028128A1 (en) Solid-state image sensor
JP2007220832A (en) Solid state imaging device and camera
JP2008170979A (en) Solid-state imaging apparatus, manufacturing method therefor and camera
JP2000180621A (en) On-chip color filter and solid image pick-up element using the same
JP2008060323A (en) Solid-state imaging apparatus, manufacturing method therefor, and camera
KR100808494B1 (en) Color filter of image sensor
JP2010062417A (en) Solid-state imaging device and method of manufacturing the same
WO2010122797A1 (en) Solid-stage imaging element
WO2010122716A1 (en) Solid-state imaging element
JP2004319610A (en) Image sensor
JP2013118295A (en) Method of manufacturing solid state image sensor, solid state image sensor, and electronic information apparatus
WO2010122719A1 (en) Solid-state imaging element
JP2011061134A (en) Semiconductor image sensor
JP2011243785A (en) Solid state imaging device
JP2009194572A (en) Solid-state imaging apparatus, and camera
US7800666B2 (en) Color filter arrays compensating for wavelength offset due to crosstalk and methods of producing the same
TW201102683A (en) Color filter
KR20070021430A (en) Image sensor with decreased signal noise and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10766779

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10766779

Country of ref document: EP

Kind code of ref document: A1