WO2010122703A1 - Biological light measuring device - Google Patents

Biological light measuring device Download PDF

Info

Publication number
WO2010122703A1
WO2010122703A1 PCT/JP2010/001202 JP2010001202W WO2010122703A1 WO 2010122703 A1 WO2010122703 A1 WO 2010122703A1 JP 2010001202 W JP2010001202 W JP 2010001202W WO 2010122703 A1 WO2010122703 A1 WO 2010122703A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
code
composite carrier
carrier code
biological
Prior art date
Application number
PCT/JP2010/001202
Other languages
French (fr)
Japanese (ja)
Inventor
木口雅史
敦森洋和
堀田忠宏
深作泉
Original Assignee
株式会社日立メディコ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立メディコ filed Critical 株式会社日立メディコ
Priority to JP2011510157A priority Critical patent/JPWO2010122703A1/en
Publication of WO2010122703A1 publication Critical patent/WO2010122703A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • A61B5/14553Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases specially adapted for cerebral tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6814Head
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/08Optical fibres; light guides
    • G01N2201/0826Fibre array at source, distributing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/08Optical fibres; light guides
    • G01N2201/0833Fibre array at detector, resolving
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/08Optical fibres; light guides
    • G01N2201/0846Fibre interface with sample, e.g. for spatial resolution

Definitions

  • the present invention relates to a biological light measurement device, and more particularly to generation of a code suitable for measurement and biological light measurement using the code.
  • Code multiplexing is used to multiplex signals in fields such as communication and measurement. This is a method of performing signal separation by despreading a signal that has been modulated, that is, spectrum spread using pseudo-noise signals orthogonal to each other, after detection.
  • Non-Patent Document 1 describes that a sensor signal is multiplexed and separated using the CDM method.
  • Patent Document 1 discloses a biological tissue measurement apparatus that suppresses crosstalk by modulating a plurality of light beams with pseudo-noise signals orthogonal to each other and demodulating on a detector side.
  • Patent Document 2 describes a biological information measuring device that separates two wavelengths of light that irradiates a living body using a pseudo noise signal on the detector side.
  • a plurality of visible to near-infrared light is irradiated on the living body, the light passing through the living body is detected, the concentration change of the body substance such as hemoglobin and the brain blood volume change are measured and the brain activity distribution is displayed. It is written about the device to do.
  • light sources and detectors are arranged alternately in a grid pattern, and the light emitted from different positions is separated using a single detector. CDM method is used to electrically separate light of different wavelengths.
  • crosstalk between signals may be a problem when the CDM method is used to separate analog signals, particularly in the measurement field.
  • crosstalk can be reduced to zero by using Hadamard codes.
  • crosstalk occurs due to band limitation and circuit distortion.
  • This problem is not a big problem because a system that transmits and receives digital signals, that is, code information, as in optical communication, can eliminate the influence by setting the threshold appropriately or can reduce it extremely.
  • crosstalk is a major factor that reduces measurement accuracy.
  • the detected signal is small and the detected light amount may vary greatly depending on the light source due to the influence of hair etc., and crosstalk between signals is a problem.
  • the amount of received light of the former is several times to several tens of times larger than the latter. At this time, in order to accurately measure the latter signal, it is necessary to sufficiently reduce the crosstalk between the signals.
  • An object of the present invention is to provide a code for reducing crosstalk between signals and a biological light measurement device using the code.
  • the biological light measurement device of the present invention includes at least a plurality of light irradiation units each having a light source that irradiates light to a living body, and a plurality of detections that receive light reflected or transmitted from the living body.
  • FIG. 10 is a schematic diagram showing multiplexing of received signals when the present invention is used for biological measurement as a third embodiment of the present invention. It is a conceptual diagram of the brain activity measuring device using light in the 3rd example.
  • the code used for the CDMA modulation includes a signal called Hadamard code (Wallish Hadamard code).
  • the features of this code are: (1) excellent correlation that other sequence codes that are Hadamard codes can be completely removed at the code level, and (2) the number of “1” and “0” forming the code is equal.
  • the duty ratio of the signal is 50%.
  • the crosstalk is zero from the characteristic (1), and since the average power of the signal is not changed by the code and the SN ratio is not changed from the characteristic (2), the Hadamard code is used as a code used for measurement. Is suitable.
  • FIG. 1 shows an example of crosstalk measurement between codes when using a Hadamard code with a code length of 128 bits, which is an embodiment of the present invention.
  • the horizontal axis represents a code number (Code Number)
  • the vertical axis represents a crosstalk suppression ratio (XTalk suppress (dB)).
  • XTalk suppress dB
  • a code with a period of 64 bits concatenates two identical codes
  • a code with a period of 32 bits concatenates four identical codes.
  • the Hadamard code is generated by a generation method using a well-known Hadamard matrix.
  • the light intensity is modulated using codes 15 and 31, and the signal received through the optical attenuator having the same attenuation rate as the head is demodulated using codes 1 to 128.
  • the logarithm of the ratio of the detected signal amplitude when detected and the detected signal amplitude when demodulated using its own code is used as the crosstalk suppression ratio. That is, the crosstalk suppression ratio increases as the crosstalk decreases.
  • the Hadamard code is transmitted on a carrier wave having a frequency four times the chip rate.
  • the cycles of the 15th and 31st codes are 16 and 32, respectively. It can be seen that the crosstalk suppression ratio is smaller between codes with the same period than between codes with different periods.
  • the cause is as follows.
  • the crosstalk suppression ratio should be zero for its own code and infinite for other codes.
  • crosstalk occurs due to bandwidth limitations in an actual circuit.
  • the information to be detected is code information. Therefore, the influence of crosstalk can be eliminated by providing an appropriate threshold value.
  • crosstalk is an error in the detected value itself.
  • the characteristics of both the crosstalk suppression ratio and the SN ratio can be improved by using a code in which codes having different code lengths are combined. For example, when the preceding chip affects the immediately following chip but the influence on the next two chips can be ignored, chips of two types of codes having different code lengths are alternately arranged. As a result, signals with the same code length that increase crosstalk are separated from each other by two chips, so crosstalk can be ignored, and the code length of the next chip is different, so that high orthogonality is maintained. So crosstalk will not increase. If the response time constant of the circuit is low and a chip that is more than two chips is affected, similarly, crosstalk can be reduced by combining three or more types of codes having different code lengths.
  • modulation codes and demodulation codes can be created and stored in advance and used as needed.
  • a composite code may be created and assigned for each channel in advance.
  • a code (modulation composite carrier code) when superimposed on a carrier wave signal may be created and stored in advance.
  • the reception side may perform demodulation by using the same code as the demodulation signal and multiplying the received signal with a delay if necessary.
  • the phase of the received signal cannot be predicted, so it is necessary to synchronize the phase of the demodulated signal and the received signal.
  • the phase difference between the demodulated signal and the received signal is also designed in advance.
  • the optimum delay time can be set in advance. Therefore, this delay time is given to the modulation composite carrier code and used as a demodulation composite carrier signal.
  • a well-known delay circuit can be used for the delay.
  • one bit is subdivided in time, stored with an appropriate time delay, that is, a phase difference, and transmitted at the same timing.
  • demodulation can be easily performed without using a delay circuit.
  • the time tailing of the chip that causes the above-mentioned crosstalk often occurs due to band limitation in the reception system, but may also occur in the transmission system, that is, the laser drive circuit. Even in either case or both, crosstalk can be reduced by the present invention.
  • phase modulation or frequency hopping modulation may be performed.
  • a method used in communication such as an orthogonal frequency division multiplexing method can be used.
  • Hadamard code is given as an example, but it can be similarly applied to a code whose orthogonality is reduced with respect to phase shift. For example, when using a Gold code or an M-sequence code having a short inter-code distance, a code synthesized with a code having a long inter-code distance may be created.
  • FIG. 3 a chip with a code of period A is a, a chip with a code of period B is b, a chip with a code of period C is c, and different codes with the same period are represented by subscripts n, k, and the like. .
  • the number in parentheses represents the chip number.
  • Three new composite codes created by alternately arranging these are (a) to (c) in FIG.
  • the code length of these composite codes is 2N.
  • each code can be made a code length that is an integral multiple of the maximum cycle by repeating itself.
  • FIG. 3D shows an example in which the signs of an and ak are the same in the first half and the second half, but different in the case where the period a is N / 2 and the period c is N.
  • FIG. 3 (e) shows an example in which the symbols an and ak which should be alternately arranged with the symbol c are alternately used.
  • (f) in FIG. 3 is a composite code synthesized using three codes having different periods.
  • the synthesis method of (a) of FIG. 3 is used, three codes may be synthesized using the synthesis method of (d) and (f) of FIG.
  • FIG. 4 (A) and (b) of FIG. 4 are the code
  • tips alternately is shown in FIG.4 (c).
  • the period of (a) in FIG. 4 is 64, and the period of (b) is 128.
  • FIG. 5 shows a modulation waveform corresponding to the composite code in FIG. 4 (c), and (b) in FIG. 5 is a carrier wave having a bit rate four times that.
  • exclusive OR of waveforms (a) and (b) is taken.
  • the modulation composite carrier code thus obtained is shown in FIG.
  • FIG. 6 is a schematic diagram of a transmission-side light source and a drive circuit (light irradiation units 101 and 102), which are light irradiation units of the biological light measurement apparatus.
  • the modulation composite carrier code c1 shown in FIG. 5C is stored in advance in the modulation composite carrier code storage unit 111 of the light irradiation unit 101, and this code is converted into an analog signal using the DA converter 113. After that, it is input to the laser drive circuit 114, the semiconductor laser 115 as the light source is driven, and the output is intensity-modulated by the modulation composite carrier code c1.
  • modulation composite carrier code c2 stored in the modulation composite carrier code storage unit 121 of the light irradiation unit 102 is converted into an analog signal by using the DA converter 123, and then is sent to the laser drive circuit 124.
  • the semiconductor laser 125 which is inputted and driven as another light source is driven.
  • the modulation composite carrier code c2 is created in the same manner using the code number 43 and the code number 97.
  • the wavelengths of the two semiconductor lasers 115 and 125 are different, and the two output lights are multiplexed by the transmission side optical fiber 100, guided to the living body as the subject, and irradiated.
  • the wavelength is assumed to be about 680 nm to 850 nm which is easily transmitted through the living body, but it is not necessarily within this range.
  • FIG. 7 is a schematic diagram of a circuit on the receiving side which is a light receiving unit of the biological light measuring device.
  • the two wavelengths of light transmitted through the living body are guided to the photodetector 601 by the receiving side optical fiber 600, are photoelectrically converted, are amplified by the preamplifier 602, and are digitized by the AD converter 603.
  • the digitized data is multiplied by a demodulating composite carrier code c ′ 1 stored in advance in the demodulating composite carrier code storage unit 612 by a multiplier 610, and is multiplied by a predetermined number of chips by an integrator 611. Integration is performed (an integer multiple of the maximum value of the combined code length).
  • the demodulated composite carrier code storage unit 612, the multiplier 610, and the integrator 611 may be stored in the light receiving unit, or may be incorporated in the control unit 701 described later.
  • the signal of the output 613 of the integrator 611 obtained in this way is proportional to the light intensity emitted from the light source 115 and detected by the detector 601.
  • the demodulation composite carrier code c′1 is obtained by replacing 0 of the corresponding modulation composite carrier code c1 with ⁇ 1.
  • the data digitized by the AD converter 603 is multiplied by the demodulating composite carrier code c ′ 2 stored in advance in the demodulating composite carrier code storage unit 622 by the multiplier 620, and determined in advance by the multiplier 621. Integration is performed for the number of chips obtained (an integral multiple of the maximum value of the combined code length).
  • the signal at the output 623 of the integrator 621 is proportional to the received light intensity emitted from the light source 125 and detected by the detector 601 using the demodulating composite carrier code c'2 corresponding to the modulating composite carrier code c2.
  • FIG. 8 shows an overall conceptual diagram of the biological light measurement system.
  • Modulating composite carrier codes c1 and c2 are assigned in advance to the light sources 115 and 125 in the light irradiation units 101 and 102, respectively, and demodulation corresponding to the photodetector 601 that should receive the light from the light sources.
  • Composite carrier codes c′1 and c′2 are assigned and stored in modulation composite carrier code storage units 111 and 121 and demodulation composite carrier code storage units 612 and 622, respectively. (DA converters 113 and 123 are not shown).
  • the transmission side circuit shown in FIG. 6 and the reception side circuit shown in FIG. 7 are controlled by the control unit 701. Specifically, the semiconductor lasers 115 and 125 are driven using the codes c1 and c2 stored in the modulation composite carrier code storage units 111 and 121, and also stored in the demodulation composite carrier code storage units 612 and 622. The digitized data is demodulated using the demodulated composite carrier codes c ′ 1 and c ′ 2, and after integration, the data is displayed on the display unit 702 or stored in the data storage unit 703. Further, both data display and data storage may be executed.
  • codes having a phase difference can be stored in advance as c1 and c'1.
  • the clock rate of the DA converter 113 and AD converter 603 is set to a constant multiple of the chip rate of the code, and the modulation composite carrier code and the demodulated composite carrier code are resampled at that clock rate to give a phase difference.
  • the chip rate of the modulation composite carrier code or the demodulation composite carrier code is 10 kbps, and the clock of the DA converter and AD converter is 100 kbps, if the modulation composite carrier code is a repetition of 01, for example, 00000000000001111111111111 Save as a repeat.
  • the demodulated composite carrier code is stored as a repetition of 1100000000000011111111 which is a code provided with a phase delay of 20 msec, that is, 2 bits.
  • 1100000000000011111111 which is a code provided with a phase delay of 20 msec, that is, 2 bits.
  • a phase difference can be provided to the modulation composite carrier code using delay circuits 811 and 821, and used for demodulation.
  • the modulation combined carrier code storage unit 111 and the demodulation combined carrier code storage unit 121 do not need to be provided separately, and can be made common by providing them in the control unit 701.
  • the delay circuit shown here is widely known, such as one configured as hardware, one configured as software, or one that realizes a phase difference by shifting the timing of the clock read from the code storage unit. Refers to the delay method.
  • intersymbol crosstalk was measured when the preamplifier 602 was provided with a 41 kHz low-pass filter. However, the chip rate of the carrier wave was 82 kHz.
  • the crosstalk suppression ratio is It is expressed as 20 ⁇ LOG (S0 / S1). As a result of the experiment, a crosstalk suppression ratio of 83.4 dB was obtained.
  • the crosstalk suppression ratio was improved by 48 dB by using a new composite code in which chips with different period codes were alternately stacked.
  • the SN ratio at this time was 65 dB when either combination code was used.
  • the S / N ratio depends on the received light amount, the S / N ratio does not change because the received light amount is the same for combination codes 1 and 2. In this way, it is possible to improve the measurement accuracy by making the high SN ratio and the high crosstalk suppression ratio compatible.
  • the combined code may be stored in advance as described above.
  • 64 orthogonal codes can be prepared, corresponding to half the period, such as 64 codes having a period of 128 and 32 codes having a period of 64.
  • the number of orthogonal codes among the combination codes created using two kinds of codes having different periods is the number of codes having the maximum period.
  • the number is 64. That is, if a composite code is created using two codes having a period N or less, signals from a maximum of N / 2 light sources can be separated.
  • wavelengths are not necessarily different, and light from a plurality of arbitrary light sources incident on a certain light receiver. Can be used for signal separation.
  • FIG. 10 shows an example of a circuit configuration on the transmission side suitable for that case.
  • the composite code stored in the code storage unit 911 is analog-mounted on the output of the carrier wave generation circuit 912 by the mixer 913, and the semiconductor laser 115 is amplitude-modulated by the laser driving circuit 114.
  • the composite code stored in the code storage unit 921 is analogly placed on the output of the carrier wave generation circuit 922 by the mixer 923, and the semiconductor laser 125 is amplitude-modulated by the laser driving circuit 124.
  • the speed of the AD conversion and the subsequent processing circuit is insufficient on the receiving circuit side as well, it is only necessary to obtain a baseband signal, that is, a composite code, and then perform AD conversion and demodulate. As a result, the carrier frequency can be increased while using a transmission side circuit that is inexpensive and has a slow response speed.
  • FIG. 11 is a schematic diagram showing multiplexing of received signals as a conceptual diagram when the present invention is used for biological measurement.
  • Irradiation light sources 1015, 1025, and 1035 provided in the probe portion 2003 of the probe holder are different in positions where they are brought into contact with a living body that is a subject.
  • Lights of three wavelengths from ⁇ 1 to ⁇ 3 are emitted from the fibers of the respective irradiation light sources.
  • the light detector 1001 is configured such that these lights are simultaneously incident. In this figure, the light from nine light sources is detected simultaneously.
  • the irradiation light sources 1015, 1025, and 1035 are intensity-modulated by using the different codes according to the methods described in the first and second embodiments, and the detection signals are demodulated. . Since the demodulated signal is proportional to the light intensity detected when the light emitted from each light source passes through the living body, information inside the living body, such as blood dynamics, can be mapped by a spectroscopic method.
  • FIG. 12 is a block diagram of an apparatus for measuring a hemodynamic change accompanying brain activity using light and mapping a brain activity state.
  • a transmission side fiber 100 and a reception side optical fiber 600 are arranged in a lattice pattern on a probe holder 1101 attached to the head of a subject.
  • the circuits described in the first and second embodiments are accommodated in the housing 1102.
  • the above-described control unit 701 is also stored in the casing, and computation and analysis for executing mapping and the like using a spectroscopic method are performed by the control unit 701 in the casing 1102 and the calculation / analysis is performed.
  • the result and the like are controlled by the control unit 701 so as to be displayed on the display unit 702.
  • Examples 1 and 2 light is transmitted using an optical fiber, but the present invention can also be applied to an apparatus that eliminates the optical fiber by incorporating all or part of the circuit in the probe holder. It is.
  • the present invention is not limited to the biological measurement apparatus described in the embodiment, and in a measurement apparatus that obtains information on a living body or a substance using a plurality of light or sound waves, a code multiplexing method is used for signal multiplexing and separation. Available when used. For example, a device that measures blood dynamics in a living body using visible to near-infrared light, a device that obtains the spatial distribution of the result, a device that observes the internal structure of a living body using ultrasound, and the sugar content of fruits A device for inspecting the outside from the outside.
  • DESCRIPTION OF SYMBOLS 100 Transmission side optical fiber, 111, 121 ... Modulation synthetic

Abstract

Provided are codes with less crosstalk even in a system having band limitation or distortion, and a biological light measuring device using the codes. The biological light measuring device is characterized in that the chips of the respective codes are successively arranged using a plurality of Hadamard codes with different periodicity, whereby new codes appropriate to the measurement of biological light are obtained. Namely, codes with less inter-code crosstalk are obtained and signals can be multiplexed and separated using the codes.

Description

生体光計測装置Biological light measurement device
 本発明は、生体光計測装置に係り、特に、計測に適した符号の生成およびそれを用いた生体光計測に関する。 The present invention relates to a biological light measurement device, and more particularly to generation of a code suitable for measurement and biological light measurement using the code.
 通信、計測などの分野で信号を多重化するために符号多重化方式(CDM)が用いられている。これは、互いに直交する擬似雑音信号を用いて変調、つまりスペクトラム拡散された信号を、検出後に逆拡散することにより信号分離する方式である。例えば、非特許文献1には、 CDM方式を用いてセンサー信号を多重化、分離することが述べられている。 Code multiplexing (CDM) is used to multiplex signals in fields such as communication and measurement. This is a method of performing signal separation by despreading a signal that has been modulated, that is, spectrum spread using pseudo-noise signals orthogonal to each other, after detection. For example, Non-Patent Document 1 describes that a sensor signal is multiplexed and separated using the CDM method.
 特許文献1には、複数の光ビームを互いに直交する擬似雑音信号で変調し、検出器側で復調することにより、クロストークを抑える生体組織測定装置が開示されている。 Patent Document 1 discloses a biological tissue measurement apparatus that suppresses crosstalk by modulating a plurality of light beams with pseudo-noise signals orthogonal to each other and demodulating on a detector side.
 またCDM方式を生体情報測定装置に応用した例として特許文献2では、擬似雑音信号を用いて生体に照射する2波長の光を検出器側で分離する生体情報測定装置について述べられている。ここでは、可視から近赤外の複数の光を生体に照射し、生体を通過した光を検出して、ヘモグロビンなどの体内物質の濃度変化や脳血液量変化を計測して脳活動分布を表示する装置について記されている。この装置では、光源と検出器を格子状に交互に配置し、一つの検出器を用いて異なる位置から照射された光を分離するため、さらに異なる波長の光を用いて分光学的にヘモグロビン濃度を計測するにあたり、波長の異なる光を電気的に分離するためにCDM方式が使われている。 Also, as an example in which the CDM method is applied to a biological information measuring device, Patent Document 2 describes a biological information measuring device that separates two wavelengths of light that irradiates a living body using a pseudo noise signal on the detector side. Here, a plurality of visible to near-infrared light is irradiated on the living body, the light passing through the living body is detected, the concentration change of the body substance such as hemoglobin and the brain blood volume change are measured and the brain activity distribution is displayed. It is written about the device to do. In this device, light sources and detectors are arranged alternately in a grid pattern, and the light emitted from different positions is separated using a single detector. CDM method is used to electrically separate light of different wavelengths.
特開平4-166144号公報JP-A-4-166144 特開2002-248104号公報JP 2002-248104 A
 デジタル信号を送受信する通信分野での応用に比べ、アナログ信号の分離にCDM方式を用いた場合、特に計測分野では信号間のクロストークが問題となる場合がある。 Compared with applications in the communication field for transmitting and receiving digital signals, crosstalk between signals may be a problem when the CDM method is used to separate analog signals, particularly in the measurement field.
 CDM方式では、アダマール符号などを用いれば、原理的にはクロストークはゼロにすることができる。しかし、実際には帯域制限や、回路の歪などによりクロストークが発生してしまうというCDM特有の問題があった。 In the CDM system, in principle, crosstalk can be reduced to zero by using Hadamard codes. However, in reality, there was a problem peculiar to CDM in that crosstalk occurs due to band limitation and circuit distortion.
 この問題は、光通信のようにデジタル信号、つまり符号情報を送受信する系であれば、閾値を適切に設定することによりその影響は排除できるか、或いは極めて少なくできるため大きく問題にはならない。 This problem is not a big problem because a system that transmits and receives digital signals, that is, code information, as in optical communication, can eliminate the influence by setting the threshold appropriately or can reduce it extremely.
 しかし、アナログ信号の信号振幅を情報として使う計測の場合、クロストークは計測精度を低下させる大きな要因となる。特に頭部を計測する生体光計測装置に適用するような場合には、検出信号が小さい上、毛髪等の影響で光源ごとに検出光量が大きく異なる場合があり、信号間のクロストークが問題となる。つまり、毛髪がない部位から照射された光と、毛髪がある部位から照射された光を同じ検出器で受けた場合、前者の受光量は後者に比べて数倍から数十倍大きくなる。この時、後者の信号を精度よく計測するためには、信号間のクロストークを十分に小さくする必要がある。 However, in the case of measurement using the signal amplitude of an analog signal as information, crosstalk is a major factor that reduces measurement accuracy. Especially when it is applied to a biological light measurement device that measures the head, the detected signal is small and the detected light amount may vary greatly depending on the light source due to the influence of hair etc., and crosstalk between signals is a problem. Become. In other words, when the light emitted from the part without hair and the light emitted from the part with hair are received by the same detector, the amount of received light of the former is several times to several tens of times larger than the latter. At this time, in order to accurately measure the latter signal, it is necessary to sufficiently reduce the crosstalk between the signals.
 本発明の目的は、信号間クロストークを小さくするための符号およびそれを用いた生体光計測装置を提供することにある。 An object of the present invention is to provide a code for reducing crosstalk between signals and a biological light measurement device using the code.
 上記課題を解決するために、本発明の生体光計測装置は、少なくとも、生体に光を照射する光源を夫々有する複数の光照射部と、当該生体において反射ないし透過した光を受光する複数の検出器と、前記光照射部と前記検出器を少なくとも制御する制御手段と、前記光源毎に異なる変調用合成搬送符号を予め記憶する変調用合成搬送符号記憶部と、前記検出器の夫々が受光すべき前記光源からの光に対応する、前記検出器毎に異なる復調用合成搬送符号を記憶する復調用合成搬送符号記憶部とを有する。 In order to solve the above-described problems, the biological light measurement device of the present invention includes at least a plurality of light irradiation units each having a light source that irradiates light to a living body, and a plurality of detections that receive light reflected or transmitted from the living body. Each of the detector, a control means for controlling at least the light irradiating unit and the detector, a modulation composite carrier code storage unit for storing in advance a modulation composite carrier code different for each light source, and the detector And a demodulating composite carrier code storage unit for storing a demodulating composite carrier code corresponding to the light from the light source.
 本発明によれば、信号間クロストークを小さくするための符号およびそれを用いた生体光計測装置を提供することが可能となる。 According to the present invention, it is possible to provide a code for reducing crosstalk between signals and a biological light measurement device using the code.
本発明の適用対象である生体光計測装置にアダマール符号を用いた場合の、クロストーク抑圧比の計測例を示す図である。It is a figure which shows the example of a measurement of a crosstalk suppression ratio at the time of using a Hadamard code | symbol for the biological light measuring device which is an application object of this invention. アダマール符号と実際の回路における信号電圧の関係の例を示す図である。It is a figure which shows the example of the relationship between the signal voltage in an Hadamard code | symbol and an actual circuit. 本発明の第一の実施例になる合成符号パターンの例を示す図である。It is a figure which shows the example of the synthetic code pattern which becomes the 1st Example of this invention. 第一の実施例における符号合成の具体例を示す図である。It is a figure which shows the specific example of the code | symbol synthesis | combination in a 1st Example. 第一の実施例における変調用合成搬送符号の作成例を示す図である。It is a figure which shows the example of preparation of the synthetic | combination synthetic | combination code | symbol for modulation in a 1st Example. 第一の実施例における送信側回路を示す図である。It is a figure which shows the transmission side circuit in a 1st Example. 第一の実施例における受信側回路を示す図である。It is a figure which shows the receiving side circuit in a 1st Example. 第一の実施例におけるシステムの概念図である。It is a conceptual diagram of the system in a 1st Example. 第一の実施例の変形例として、符号記憶部を共通化する場合のシステム概念図である。As a modification of the first embodiment, it is a system conceptual diagram in the case where a code storage unit is shared. 本発明の第2の実施例になる生体計測装置の送信側回路構成を示す図である。It is a figure which shows the transmission side circuit structure of the bioinstrumentation apparatus which becomes 2nd Example of this invention. 本発明の第3の実施例として、生体計測に本発明を用いる場合の受信信号の多重を表す模式図である。FIG. 10 is a schematic diagram showing multiplexing of received signals when the present invention is used for biological measurement as a third embodiment of the present invention. 第3の実施例における、光を用いた脳活動計測装置の概念図である。It is a conceptual diagram of the brain activity measuring device using light in the 3rd example.
 携帯電話、無線LAN等の様々な無線通信機器において、その通信方式としてCDM方式が採用されている。  
 そのCDMA変調用として用いられる符号には、アダマール符号(ウォールッシュアダマール符号)と呼ばれる信号がある。  
 この符号の特徴として、(1)アダマール符号である他の系列符号を、符号レベルでは完全に除去できるという優れた相関性、(2)符号を形成する「1」と「0」の個数が等しく、信号のデューティ比が50%となることがあげられる。上記(1)の特性から原理的にはクロストークがゼロであること、上記(2)の特性から信号の平均パワーが符号によって変わらずSN比が変わらないため、アダマール符号は計測に用いる符号として適している。
In various wireless communication devices such as mobile phones and wireless LANs, the CDM method is adopted as the communication method.
The code used for the CDMA modulation includes a signal called Hadamard code (Wallish Hadamard code).
The features of this code are: (1) excellent correlation that other sequence codes that are Hadamard codes can be completely removed at the code level, and (2) the number of “1” and “0” forming the code is equal. The duty ratio of the signal is 50%. In principle, the crosstalk is zero from the characteristic (1), and since the average power of the signal is not changed by the code and the SN ratio is not changed from the characteristic (2), the Hadamard code is used as a code used for measurement. Is suitable.
 そのため、以下、本発明の実施例の説明では、アダマール符号を例に挙げて記述する。 Therefore, in the description of the embodiments of the present invention, the Hadamard code will be described as an example.
 図1に、本発明の一実施例になる、符号長128ビットのアダマール符号を用いた場合の、符号間のクロストークの計測例を示す。図の横軸は符号番号(Code Number)、縦軸はクロストーク抑圧比(XTalk suppress (dB))を表す。例えば周期64ビットの符号は同じ符号を2個連結し、また周期32ビットの符号は同じ符号を4個連結するというように、全ての符号を繰り返して連結することにより、符号長を128ビットとしている。アダマール符号は、一般に良く知られているアダマール行列を用いた生成方法で作成する。 FIG. 1 shows an example of crosstalk measurement between codes when using a Hadamard code with a code length of 128 bits, which is an embodiment of the present invention. In the figure, the horizontal axis represents a code number (Code Number), and the vertical axis represents a crosstalk suppression ratio (XTalk suppress (dB)). For example, a code with a period of 64 bits concatenates two identical codes, and a code with a period of 32 bits concatenates four identical codes. Yes. The Hadamard code is generated by a generation method using a well-known Hadamard matrix.
 ここでは、符号番号15番と31番の符号を用いて光強度を変調し、頭部と同等の減衰率を有する光減衰体を通して受光した信号を、1から128番までの符号を用いて復調したときの検出信号振幅と、自分自身の符号を用いて復調したときの検出信号振幅の比の対数をクロストーク抑圧比としている。つまり、クロストークが小さいほど、クロストーク抑圧比は大きくなる。 Here, the light intensity is modulated using codes 15 and 31, and the signal received through the optical attenuator having the same attenuation rate as the head is demodulated using codes 1 to 128. The logarithm of the ratio of the detected signal amplitude when detected and the detected signal amplitude when demodulated using its own code is used as the crosstalk suppression ratio. That is, the crosstalk suppression ratio increases as the crosstalk decreases.
 尚、アダマール符号は、チップレートの4倍の周波数の搬送波に乗せて伝送している。15番と31番の符号の周期はそれぞれ16と32である。周期が同じ符号間では、周期が異なる符号間に比べてクロストーク抑圧比が小さくなっていることがわかる。この原因は以下のとおりである。 The Hadamard code is transmitted on a carrier wave having a frequency four times the chip rate. The cycles of the 15th and 31st codes are 16 and 32, respectively. It can be seen that the crosstalk suppression ratio is smaller between codes with the same period than between codes with different periods. The cause is as follows.
 アダマール符号は、本来、符号レベルではクロストークは完全にゼロになるため、クロストーク抑圧比は自分の符号に対してはゼロで、他の符号に対しては無限大になるはずである。しかし、実際の回路では帯域制限があるためにクロストークが発生する。 Since the Hadamard code is essentially zero in crosstalk at the code level, the crosstalk suppression ratio should be zero for its own code and infinite for other codes. However, crosstalk occurs due to bandwidth limitations in an actual circuit.
 図2の(a)に示す符号は、実際の回路では帯域制限がるために、図2の(b)に示すように個々のチップの信号電圧が時間的に後ろに裾を引く。例えば図2の点線で示す時間における本来の符号は0であるが、前の符号1の影響で0にはならない(図2では例として0.02になったものを示している)。 2 (a) is band-limited in an actual circuit, the signal voltage of each chip has a trailing edge in time as shown in FIG. 2 (b). For example, although the original code at the time indicated by the dotted line in FIG. 2 is 0, it does not become 0 due to the influence of the previous code 1 (in FIG. 2, an example of 0.02 is shown).
 これは、自身の符号の位相がずれた信号が妨害信号として重畳されることと等価である。アダマール符号を搬送波に乗せた場合には、位相をずらすと同符号長の別の符号となるため直交性がなくなり、符号長が同じ符号間でクロストークが発生することになる。クロストークは符号間距離が近い場合に極めて大きくなり、同一符号長の符号間ではクロストーク抑圧比が低下する。 This is equivalent to superimposing a signal whose code is out of phase as a disturbing signal. When a Hadamard code is placed on a carrier wave, if the phase is shifted, another code having the same code length is generated, so that orthogonality is lost, and crosstalk occurs between codes having the same code length. Crosstalk becomes extremely large when the distance between codes is short, and the crosstalk suppression ratio decreases between codes of the same code length.
 通信のようにデジタル信号を扱う場合には、検出すべき情報は符号情報であるため、適切な閾値を設けることによりクロストークの影響を無くすことができる。しかし、本明細書のようにアナログ計測に用いる場合には、信号振幅を検出する必要があるため、クロストークは検出値そのものの誤差となる。 When a digital signal is handled as in communication, the information to be detected is code information. Therefore, the influence of crosstalk can be eliminated by providing an appropriate threshold value. However, when used for analog measurement as in this specification, it is necessary to detect the signal amplitude, so crosstalk is an error in the detected value itself.
 これを回避するためにはチップ間に時間的インターバルを十分に設けて、前のチップの影響がないようにすればよいが、その場合には受光平均パワーが落ちるためSN比が低下してしまう。 In order to avoid this, a sufficient time interval should be provided between the chips so as not to be affected by the previous chip. However, in this case, the S / N ratio is lowered because the average received light power is reduced. .
 そこで、符号長の異なる符号を組み合わせた符号を用いることによりクロストーク抑圧比とSN比の両方の特性を向上することができる。例えば、前のチップがすぐ後ろのチップには影響するが、2つ後ろのチップへの影響が無視できる場合には、異なる符号長を有する2種類の符号のチップを交互に配置する。これにより、クロストークが大きくなる同符号長の信号間は、2チップ分離れているのでクロストークは無視でき、かつ、一つ後ろのチップは符号長が異なるため高い直交性が維持されているのでクロストークが大きくなることはない。回路の応答時定数が低いために、2チップ以上はなれたチップにも影響が及ぶ場合には、同様に、符号長の異なる3種類以上の符号を組み合わせることにより、クロストークを低減できる。 Therefore, the characteristics of both the crosstalk suppression ratio and the SN ratio can be improved by using a code in which codes having different code lengths are combined. For example, when the preceding chip affects the immediately following chip but the influence on the next two chips can be ignored, chips of two types of codes having different code lengths are alternately arranged. As a result, signals with the same code length that increase crosstalk are separated from each other by two chips, so crosstalk can be ignored, and the code length of the next chip is different, so that high orthogonality is maintained. So crosstalk will not increase. If the response time constant of the circuit is low and a chip that is more than two chips is affected, similarly, crosstalk can be reduced by combining three or more types of codes having different code lengths.
 尚、直交した符号を用いて合成した符号は互いに直交することは数学上保証されている。計測用途で信号の多重化や分離にCDM方式を用いる場合には、通信用途とは異なり、送信と受信の順番やタイミング、組み合わせなどが全てあらかじめ設定しておくことができる。 In addition, it is mathematically guaranteed that codes synthesized using orthogonal codes are orthogonal to each other. When the CDM method is used for multiplexing and demultiplexing signals for measurement purposes, the order, timing, combination, etc. of transmission and reception can all be set in advance, unlike communication applications.
 そのため、変調符号も復調符号もあらかじめ作成して保存しておき、必要に応じて使用することができる。例えば、チャネル分離として本発明を用いる場合には、あらかじめチャネル毎に合成符号を作成して割り当てておけばよい。更には、搬送波信号に重畳した場合の符号(変調用合成搬送符号)をあらかじめ作成し保存しておいてもよい。 Therefore, modulation codes and demodulation codes can be created and stored in advance and used as needed. For example, when the present invention is used for channel separation, a composite code may be created and assigned for each channel in advance. Furthermore, a code (modulation composite carrier code) when superimposed on a carrier wave signal may be created and stored in advance.
 受信側では、復調用信号として同じ符号を用いて、必要に応じて遅延をかけて受信信号に掛け合わせることにより復調すればよい。通信などでは、受信信号の位相が予測できないので、復調用信号と受信信号の位相同期を行う必要があるが、ここで述べるような計測用途では、復調用信号と受信信号の位相差もあらかじめ設計ならびに計測しておくことができ、最適な遅延時間はあらかじめ設定できる。そのため、前記、変調用合成搬送符号にこの遅延時間を与えて復調用合成搬送波信号として用いる。遅延は、通常良く知られた遅延回路を用いることができる。さらには、変調用合成搬送符号と復調用合成搬送符号は、1ビットを時間的に細分化しておき、適切な時間遅延つまり位相差を持たせて保存しておき、これらを同じタイミングで送信と受信に用いることにより、遅延回路を用いることなく簡便に復調を行うことができる。 The reception side may perform demodulation by using the same code as the demodulation signal and multiplying the received signal with a delay if necessary. In communications, etc., the phase of the received signal cannot be predicted, so it is necessary to synchronize the phase of the demodulated signal and the received signal. However, in measurement applications as described here, the phase difference between the demodulated signal and the received signal is also designed in advance. The optimum delay time can be set in advance. Therefore, this delay time is given to the modulation composite carrier code and used as a demodulation composite carrier signal. For the delay, a well-known delay circuit can be used. Furthermore, in the modulation composite carrier code and the demodulation composite carrier code, one bit is subdivided in time, stored with an appropriate time delay, that is, a phase difference, and transmitted at the same timing. By using for reception, demodulation can be easily performed without using a delay circuit.
 上記のクロストークの原因となるチップの時間的な裾引きは、受信系に帯域制限があり生じることが多いが、送信系、つまりレーザの駆動回路で生じる場合もある。たとえ、どちらの場合であっても、また両方にあっても、本発明によりクロストークを減少することができる。 The time tailing of the chip that causes the above-mentioned crosstalk often occurs due to band limitation in the reception system, but may also occur in the transmission system, that is, the laser drive circuit. Even in either case or both, crosstalk can be reduced by the present invention.
 以下は、符号により光を強度変調する場合について記述するが、位相変調、周波数ホッピング変調をしてもよい。また、直交周波数分割多重方式などの通信で用いられる方式を用いることもできる。また、ここではアダマール符号を例として挙げたが、位相ずれに対して直交性が低下する符号について同様に適用することができる。例えば、符号間距離が近いゴールド符号やM系列符号などを用いる場合に符号間距離の遠い符号と合成した符号を作成すればよい。 The following describes the case where the intensity of light is modulated by a code, but phase modulation or frequency hopping modulation may be performed. Also, a method used in communication such as an orthogonal frequency division multiplexing method can be used. Further, here, Hadamard code is given as an example, but it can be similarly applied to a code whose orthogonality is reduced with respect to phase shift. For example, when using a Gold code or an M-sequence code having a short inter-code distance, a code synthesized with a code having a long inter-code distance may be created.
 次に、本発明の第一の実施例になる生体光計測装置について、具体的な構成を説明する。まず、図3を用いて本発明の第一の実施例における合成符号パターンの例を説明する。図3は、周期Aの符号のチップをaとし、周期Bの符号のチップをb、周期Cの符号のチップをcとし、周期が同じで異なる符号を添字のn、k等で表している。  
 括弧内の番号はチップの番号を表す。これらを交互に配置して作成した新しい3個の合成符号が、図3の(a)から(c)である。これらの合成符号の符号長は2Nとなる。
Next, a specific configuration of the biological light measurement apparatus according to the first embodiment of the present invention will be described. First, an example of the composite code pattern in the first embodiment of the present invention will be described with reference to FIG. In FIG. 3, a chip with a code of period A is a, a chip with a code of period B is b, a chip with a code of period C is c, and different codes with the same period are represented by subscripts n, k, and the like. .
The number in parentheses represents the chip number. Three new composite codes created by alternately arranging these are (a) to (c) in FIG. The code length of these composite codes is 2N.
 周期は2のべき乗で表されるため、それぞれの符号は、自分自身を繰り返して連ねることにより、最大周期の整数倍の符号長とすることができる。 Since the cycle is represented by a power of 2, each code can be made a code length that is an integral multiple of the maximum cycle by repeating itself.
 図3の(d)はaの周期がN/2、cの周期がNである場合について、前半と後半で、周期は同じであるが異なる符合anとakを用いた例である。符号cと交互に配置すべき符号anとakを交互に用いて順次配置した例を図3(e)に示す。  
 更に、図3の(f)は、周期の異なる3個の符号を用いて合成した合成符号である。ここでは、図3の(a)の合成方法を用いているが、図3の(d)や(f)の合成方法を用いて3個の符号を合成してもよい。
FIG. 3D shows an example in which the signs of an and ak are the same in the first half and the second half, but different in the case where the period a is N / 2 and the period c is N. FIG. 3 (e) shows an example in which the symbols an and ak which should be alternately arranged with the symbol c are alternately used.
Further, (f) in FIG. 3 is a composite code synthesized using three codes having different periods. Here, although the synthesis method of (a) of FIG. 3 is used, three codes may be synthesized using the synthesis method of (d) and (f) of FIG.
 次に、これを用いて、具体的に実際のアダマール符号を生成する例について説明する。図4の(a)、(b)はそれぞれ符号番号42の符号と符号番号96の符号であり、これらのチップを交互に組み合わせた合成符号を図4(c)に示す。図4の(a)の周期は64であり(b)の周期は128である。 Next, a specific example of generating an actual Hadamard code using this will be described. (A) and (b) of FIG. 4 are the code | symbol of the code number 42, and the code | symbol number 96, respectively, The synthetic code which combined these chips | tips alternately is shown in FIG.4 (c). The period of (a) in FIG. 4 is 64, and the period of (b) is 128.
 図5の(a)は図4(c)の合成符号に対応する変調波形を示し、図5の(b)はその4倍のビットレートを有する搬送波である。図5の(a)を(b)に重畳するためには、波形(a)、(b)の排他的論理和をとる。こうして得られた変調用合成搬送符号が図5の(c)である。 (A) in FIG. 5 shows a modulation waveform corresponding to the composite code in FIG. 4 (c), and (b) in FIG. 5 is a carrier wave having a bit rate four times that. In order to superimpose (a) in FIG. 5 on (b), exclusive OR of waveforms (a) and (b) is taken. The modulation composite carrier code thus obtained is shown in FIG.
 次に、上述の図5の符号を生体光計測装置に応用した例を、図6から7を用いて説明する。まず、図6は、生体光計測装置の光照射部である送信側の光源と駆動回路(光照射部101、102)の模式図である。 Next, an example in which the above-described reference numeral of FIG. 5 is applied to a biological light measurement device will be described with reference to FIGS. First, FIG. 6 is a schematic diagram of a transmission-side light source and a drive circuit (light irradiation units 101 and 102), which are light irradiation units of the biological light measurement apparatus.
 図5(c)に示す変調用合成搬送符号c1は、光照射部101の変調用合成搬送符号記憶部111にあらかじめ保存されており、この符号が、DA変換器113を用いてアナログ信号に変換された後、レーザ駆動回路114に入力され、光源である半導体レーザ115が駆動されその出力が変調用合成搬送符号c1により強度変調される。 The modulation composite carrier code c1 shown in FIG. 5C is stored in advance in the modulation composite carrier code storage unit 111 of the light irradiation unit 101, and this code is converted into an analog signal using the DA converter 113. After that, it is input to the laser drive circuit 114, the semiconductor laser 115 as the light source is driven, and the output is intensity-modulated by the modulation composite carrier code c1.
 同様に、光照射部102の変調用合成搬送符号記憶部121に保存された別の変調用合成搬送符号c2が、DA変換器123を用いてアナログ信号に変換された後、レーザ駆動回路124に入力され、別の光源である半導体レーザ125を駆動する。変調用合成搬送符号c2は、符号番号43の符号と符号番号97を用いて、同様に作成したものである。 Similarly, another modulation composite carrier code c2 stored in the modulation composite carrier code storage unit 121 of the light irradiation unit 102 is converted into an analog signal by using the DA converter 123, and then is sent to the laser drive circuit 124. The semiconductor laser 125 which is inputted and driven as another light source is driven. The modulation composite carrier code c2 is created in the same manner using the code number 43 and the code number 97.
 2つの半導体レーザ115と125の波長が異なっており、2つの出力光を送信側光ファイバ100で合波して被検体である生体に導き、照射する。ここで、波長は生体を透過しやすい680nm~850nm程度の波長を想定しているが、必ずしもこの範囲である必要は無い。 The wavelengths of the two semiconductor lasers 115 and 125 are different, and the two output lights are multiplexed by the transmission side optical fiber 100, guided to the living body as the subject, and irradiated. Here, the wavelength is assumed to be about 680 nm to 850 nm which is easily transmitted through the living body, but it is not necessarily within this range.
 図7は、生体光計測装置の受光部である受信側の回路の模式図である。生体を透過した2つの波長の光は、受信側光ファイバ600により光検出器601に導かれ光電変換後、前置増幅器602により増幅されAD変換器603によりデジタル化される。 FIG. 7 is a schematic diagram of a circuit on the receiving side which is a light receiving unit of the biological light measuring device. The two wavelengths of light transmitted through the living body are guided to the photodetector 601 by the receiving side optical fiber 600, are photoelectrically converted, are amplified by the preamplifier 602, and are digitized by the AD converter 603.
 その後、このデジタル化されたデータは、復調用合成搬送符号記憶部612にあらかじめ保存された復調用合成搬送符号c’1と乗算器610により乗算され、積算器611によりあらかじめ決められたチップ数分(合成符号長の最大値の整数倍)の積算がなされる。なお、復調用合成搬送符号記憶部612と乗算器610及び積算器611は、受光部内に格納しても良いし、後述する制御部701内に組み込まれていても良い。 Thereafter, the digitized data is multiplied by a demodulating composite carrier code c ′ 1 stored in advance in the demodulating composite carrier code storage unit 612 by a multiplier 610, and is multiplied by a predetermined number of chips by an integrator 611. Integration is performed (an integer multiple of the maximum value of the combined code length). Note that the demodulated composite carrier code storage unit 612, the multiplier 610, and the integrator 611 may be stored in the light receiving unit, or may be incorporated in the control unit 701 described later.
 こうして得られた積算器611の出力613の信号は、光源115より発光され検出器601により検出された光強度に比例する。  
 ここで、復調用合成搬送符号c’1は、対応する変調用合成搬送符号c1の0を-1に置き換えたものである。
The signal of the output 613 of the integrator 611 obtained in this way is proportional to the light intensity emitted from the light source 115 and detected by the detector 601.
Here, the demodulation composite carrier code c′1 is obtained by replacing 0 of the corresponding modulation composite carrier code c1 with −1.
 同様に、AD変換器603によりデジタル化されたデータは、復調用合成搬送符号記憶部622にあらかじめ保存された復調用合成搬送符号c’2と乗算器620により乗算され、積算器621によりあらかじめ決められたチップ数分(合成符号長の最大値の整数倍)の積算がなされる。積算器621の出力623の信号は、変調用合成搬送符号c2に対応する復調用合成搬送符号c’2を用いて光源125より発光され検出器601により検出された受光強度に比例する。 Similarly, the data digitized by the AD converter 603 is multiplied by the demodulating composite carrier code c ′ 2 stored in advance in the demodulating composite carrier code storage unit 622 by the multiplier 620, and determined in advance by the multiplier 621. Integration is performed for the number of chips obtained (an integral multiple of the maximum value of the combined code length). The signal at the output 623 of the integrator 621 is proportional to the received light intensity emitted from the light source 125 and detected by the detector 601 using the demodulating composite carrier code c'2 corresponding to the modulating composite carrier code c2.
 図8に、生体光計測システムの全体の概念図を示す。光照射部101、102内の各光源115、125には、それぞれ変調用合成搬送符号c1、c2があらかじめ割り当てられており、その光源からの光を受信すべき光検出器601にも対応した復調用合成搬送符号c’1、c’2が割り当てられており、それぞれ変調用合成搬送符号記憶部111、121、および復調用合成搬送符号記憶部612、622に記憶されている。(DA変換器113、123は図示略)。 FIG. 8 shows an overall conceptual diagram of the biological light measurement system. Modulating composite carrier codes c1 and c2 are assigned in advance to the light sources 115 and 125 in the light irradiation units 101 and 102, respectively, and demodulation corresponding to the photodetector 601 that should receive the light from the light sources. Composite carrier codes c′1 and c′2 are assigned and stored in modulation composite carrier code storage units 111 and 121 and demodulation composite carrier code storage units 612 and 622, respectively. (DA converters 113 and 123 are not shown).
 図6に示した送信側回路と図7に示した受信側回路は、制御部701により制御される。具体的には、変調用合成搬送符号記憶部111、121に保存された符号c1、c2を用いて半導体レーザ115、125を駆動するとともに、復調用合成搬送符号記憶部612、622に保存された復調用合成搬送符号c’1、c’2を用いてデジタル化されたデータを復調し、積算後、表示部702にデータ表示を行うか、データ記憶部703にデータを保存する。また、データ表示及びデータ保存の両方を実行するようにしても良い。 The transmission side circuit shown in FIG. 6 and the reception side circuit shown in FIG. 7 are controlled by the control unit 701. Specifically, the semiconductor lasers 115 and 125 are driven using the codes c1 and c2 stored in the modulation composite carrier code storage units 111 and 121, and also stored in the demodulation composite carrier code storage units 612 and 622. The digitized data is demodulated using the demodulated composite carrier codes c ′ 1 and c ′ 2, and after integration, the data is displayed on the display unit 702 or stored in the data storage unit 703. Further, both data display and data storage may be executed.
 尚、変調信号と復調信号の位相差は用いている回路で決まるので、c1とc’1としてはあらかじめ位相差を設けた符号を保存しておくことができる。 Since the phase difference between the modulated signal and the demodulated signal is determined by the circuit used, codes having a phase difference can be stored in advance as c1 and c'1.
 これについて、簡単な例を挙げて説明する。DA変換器113とAD変換器603のクロックレートを符号のチップレートの定数倍にしておき、そのクロックレートで変調用合成搬送波符号や復調用合成搬送符号をリサンプリングし、位相差をつけたものを、変調用合成搬送符号記憶部111や復調用合成搬送符号記憶部612にあらかじめ保存しておく。変調用合成搬送波符号や復調用合成搬送符号のチップレートが10 kbps、DA変換器とAD変換器のクロックを100 kbpsとした場合、変調用合成搬送波符号が例えば01の繰り返しである場合は00000000001111111111の繰り返しとして保存しておく。受信信号に20m秒の遅延が生じる場合には、復調用合成搬送符号は、20m秒、つまり2ビット分の位相遅延を設けた符号である11000000000011111111の繰り返しとして保存しておく。これにより、遅延回路等を設ける必要がなく、共通のクロックに応じて順次復調演算を行うことができる。 This will be explained with a simple example. The clock rate of the DA converter 113 and AD converter 603 is set to a constant multiple of the chip rate of the code, and the modulation composite carrier code and the demodulated composite carrier code are resampled at that clock rate to give a phase difference. Are stored in advance in the modulation composite carrier code storage unit 111 and the demodulation composite carrier code storage unit 612. When the chip rate of the modulation composite carrier code or the demodulation composite carrier code is 10 kbps, and the clock of the DA converter and AD converter is 100 kbps, if the modulation composite carrier code is a repetition of 01, for example, 00000000000001111111111 Save as a repeat. When a delay of 20 msec occurs in the received signal, the demodulated composite carrier code is stored as a repetition of 1100000000000011111111 which is a code provided with a phase delay of 20 msec, that is, 2 bits. As a result, it is not necessary to provide a delay circuit or the like, and demodulation operations can be sequentially performed according to a common clock.
 また、位相差を処理する別の方法として、図9に示すように、遅延回路811,821を用いて変調用合成搬送波符号に位相差を設けて復調に用いることもできる。この場合には、変調用合成搬送波符号記憶部111と復調用合成搬送符号記憶部121は、別々に設ける必要はなく、これらを制御部701内に設けることで、共通にすることができる。但し、ここで示す遅延回路は、ハードとして構成されたもの、ソフト的に構成されたもの、あるいは、符号記憶部から読み出すクロックのタイミングをずらすことにより位相差を実現するものなど、広く知られた遅延方法をいう。 As another method for processing the phase difference, as shown in FIG. 9, a phase difference can be provided to the modulation composite carrier code using delay circuits 811 and 821, and used for demodulation. In this case, the modulation combined carrier code storage unit 111 and the demodulation combined carrier code storage unit 121 do not need to be provided separately, and can be made common by providing them in the control unit 701. However, the delay circuit shown here is widely known, such as one configured as hardware, one configured as software, or one that realizes a phase difference by shifting the timing of the clock read from the code storage unit. Refers to the delay method.
 上記図8若しくは図9に示したシステムを用いて、前置増幅器602に41kHzのローパスフィルタを設けた場合の符号間クロストークの計測を行った。但し、搬送波のチップレートは82 kHzであった。光源115と光源125を動作させたときの出力613の信号レベルをS0とし、光源115を消灯し、光源125のみを点灯した時の出力613の信号レベルをS1としたとき、クロストーク抑圧比は20×LOG(S0/S1)で表される。実験の結果、83.4 dBのクロストーク抑圧比が得られた。 Using the system shown in FIG. 8 or FIG. 9, intersymbol crosstalk was measured when the preamplifier 602 was provided with a 41 kHz low-pass filter. However, the chip rate of the carrier wave was 82 kHz. When the signal level of the output 613 when the light source 115 and the light source 125 are operated is S0, the signal level of the output 613 when the light source 115 is turned off and only the light source 125 is turned on is S1, the crosstalk suppression ratio is It is expressed as 20 × LOG (S0 / S1). As a result of the experiment, a crosstalk suppression ratio of 83.4 dB was obtained.
 比較のために、図4の符号(a)の2周期の後に符号(b)の1周期を連結し、これを繰り返した合成符号について、同様にクロストーク抑圧比を計測すると35.4 dBであった。 For comparison, when one cycle of the code (b) is concatenated after two cycles of the code (a) in FIG. 4 and the crosstalk suppression ratio is measured in the same manner for the combined code obtained by repeating this, it is 35.4 dB. there were.
 これらの結果から、異なる周期の符号のチップを交互に重ねた新しい合成符号を用いることで、クロストーク抑圧比が48 dB向上することがわかった。尚、この時のSN比は、どちらの組み合わせ符号を用いた場合でも65 dBであった。SN比は受光量に依存するが、組み合わせ符号1と2では受光量は同じであるため、SN比は変化しない。このように、高いSN比と高いクロストーク抑圧比を両立せしめることにより、計測精度の向上が可能となる。 From these results, it was found that the crosstalk suppression ratio was improved by 48 dB by using a new composite code in which chips with different period codes were alternately stacked. Incidentally, the SN ratio at this time was 65 dB when either combination code was used. Although the S / N ratio depends on the received light amount, the S / N ratio does not change because the received light amount is the same for combination codes 1 and 2. In this way, it is possible to improve the measurement accuracy by making the high SN ratio and the high crosstalk suppression ratio compatible.
 また、ここでは周期が異なる2種類の符号を組み合わせたが、クロストーク抑圧比をより大きくする必要がある場合には、図3(e)で示したように周期の異なる3種類以上の符号を組み合わせた符号を用いることにより、よりクロストークを抑圧することができる。この時も前述のように予め組み合わせた符号を保存しておけばよい。 In addition, although two types of codes with different periods are combined here, when it is necessary to increase the crosstalk suppression ratio, three or more types of codes with different periods are used as shown in FIG. By using the combined code, crosstalk can be further suppressed. At this time, the combined code may be stored in advance as described above.
 アダマール符号の場合には、周期128の符号の数は64個、周期64の符号の数は32個というように、周期の半分に相当する数の直交した符号が用意できる。この中から異なる周期の2種類の符号を用いて作成する組み合わせ符号のうち直交する符号の数は、最大周期の符号の数となる。 In the case of a Hadamard code, 64 orthogonal codes can be prepared, corresponding to half the period, such as 64 codes having a period of 128 and 32 codes having a period of 64. The number of orthogonal codes among the combination codes created using two kinds of codes having different periods is the number of codes having the maximum period.
 例えば、用いる符号の最大周期が128である場合には、64個となる。つまり、周期N以下の符号を2個用いて合成符号を作成すれば、最大N/2個の光源からの信号を分離できることになる。 For example, when the maximum period of the code to be used is 128, the number is 64. That is, if a composite code is created using two codes having a period N or less, signals from a maximum of N / 2 light sources can be separated.
 本実施例では、ファイバで合波する2波長の光源からの信号の分離の例を示したが、波長は必ずしも異なっている必要はなく、ある受光器に入射する複数の任意の光源からの光信号の分離に使うことができる。 In this embodiment, an example of signal separation from a light source of two wavelengths combined by a fiber is shown. However, the wavelengths are not necessarily different, and light from a plurality of arbitrary light sources incident on a certain light receiver. Can be used for signal separation.
 本実施例によれば、信号間クロストークを小さくするための符号およびそれを用いた生体光計測装置を提供することが可能となる。 According to the present embodiment, it is possible to provide a code for reducing crosstalk between signals and a biological light measurement device using the code.
 本発明の第2の実施例として、実施例1の生体計測装置における送信側回路構成を別の形態とした例について、図10を用いて説明する。実施例1では、変調用合成符号を搬送波にのせた符号をあらかじめ用意しておいた例を示した。 As a second embodiment of the present invention, an example in which the transmission side circuit configuration of the living body measurement apparatus according to the first embodiment is different will be described with reference to FIG. In the first embodiment, an example is shown in which a code in which a modulation composite code is placed on a carrier wave is prepared in advance.
 搬送波周波数が低い場合にはこれが簡便でよいが、搬送波周波数を高くしたい場合には回路処理速度が不足する場合がある。 This may be simple when the carrier frequency is low, but the circuit processing speed may be insufficient when the carrier frequency is desired to be high.
 その場合に好適な送信側の回路構成例を、図10に示す。光照射部101において、符号記憶部911に保存された合成符号は、ミキサー913により搬送波発生回路912の出力にアナログ的に乗せられ、レーザ駆動回路114により半導体レーザ115を振幅変調する。同様に、光照射部102において、符号記憶部921に保存された合成符号は、ミキサー923により搬送波発生回路922の出力にアナログ的に乗せられ、レーザ駆動回路124により半導体レーザ125を振幅変調する。受信回路側でもAD変換やその後の処理回路の速度が不足する場合には、アナログ的にベースバンド信号、つまり合成符号を得てからAD変換して復調すればよい。  
 これにより、安価で応答速度の遅い送信側回路を用いながら、搬送波周波数を高くすることができる。
FIG. 10 shows an example of a circuit configuration on the transmission side suitable for that case. In the light irradiation unit 101, the composite code stored in the code storage unit 911 is analog-mounted on the output of the carrier wave generation circuit 912 by the mixer 913, and the semiconductor laser 115 is amplitude-modulated by the laser driving circuit 114. Similarly, in the light irradiation unit 102, the composite code stored in the code storage unit 921 is analogly placed on the output of the carrier wave generation circuit 922 by the mixer 923, and the semiconductor laser 125 is amplitude-modulated by the laser driving circuit 124. If the speed of the AD conversion and the subsequent processing circuit is insufficient on the receiving circuit side as well, it is only necessary to obtain a baseband signal, that is, a composite code, and then perform AD conversion and demodulate.
As a result, the carrier frequency can be increased while using a transmission side circuit that is inexpensive and has a slow response speed.
 次に、本発明の第3の実施例を、図11、図12で説明する。まず、図11は、生体計測に本発明を用いる場合の概念図として、受信信号の多重を表す模式図である。プローブホルダのプローブ部2003に設けられた照射用光源1015、1025、1035は、被検体である生体に接触せしめる位置が異なる。それぞれの照射用光源のファイバからは、λ1からλ3の3波長の光が照射される。光検出器1001には、これらの光が同時に入射する構成となっており、この図では9個の光源の光を同時に検出する。この光源の位置と波長を区別するために、実施例1や実施例2で述べた方式により、それぞれ異なる符合を用いて各照射用光源1015、1025、1035を強度変調し、検出信号を復調する。復調信号はそれぞれの光源から照射された光が生体を通過して検出された光強度に比例するため、分光的手法により生体内部の情報、たとえば血液動態などをマッピングすることができる。 Next, a third embodiment of the present invention will be described with reference to FIGS. First, FIG. 11 is a schematic diagram showing multiplexing of received signals as a conceptual diagram when the present invention is used for biological measurement. Irradiation light sources 1015, 1025, and 1035 provided in the probe portion 2003 of the probe holder are different in positions where they are brought into contact with a living body that is a subject. Lights of three wavelengths from λ1 to λ3 are emitted from the fibers of the respective irradiation light sources. The light detector 1001 is configured such that these lights are simultaneously incident. In this figure, the light from nine light sources is detected simultaneously. In order to distinguish the position and wavelength of the light source, the irradiation light sources 1015, 1025, and 1035 are intensity-modulated by using the different codes according to the methods described in the first and second embodiments, and the detection signals are demodulated. . Since the demodulated signal is proportional to the light intensity detected when the light emitted from each light source passes through the living body, information inside the living body, such as blood dynamics, can be mapped by a spectroscopic method.
 図12は、光を用いて脳活動に伴う血液動態変化を計測し、脳活動状態をマッピングする装置の構成図である。被検体の頭部に装着されるプローブホルダ1101に、送信側ファイバ100と受信側光ファイバ600が格子状に配列されている。前記実施例1や2で述べた回路は筐体1102内に収納されている。前述の制御部701も当該筐体内部に格納されており、分光的手法を用いてマッピング等を実行するための演算や解析は当該筐体1102内の制御部701で実行され、当該演算・解析結果等は表示部702に表示されように制御部701で制御される。 FIG. 12 is a block diagram of an apparatus for measuring a hemodynamic change accompanying brain activity using light and mapping a brain activity state. A transmission side fiber 100 and a reception side optical fiber 600 are arranged in a lattice pattern on a probe holder 1101 attached to the head of a subject. The circuits described in the first and second embodiments are accommodated in the housing 1102. The above-described control unit 701 is also stored in the casing, and computation and analysis for executing mapping and the like using a spectroscopic method are performed by the control unit 701 in the casing 1102 and the calculation / analysis is performed. The result and the like are controlled by the control unit 701 so as to be displayed on the display unit 702.
 なお、実施例1や2では光ファイバを用いて光を伝送したが、前記回路の全部、または一部をプローブホルダ内に内蔵することにより、光ファイバをなくした装置にも本発明は適用可能である。 In Examples 1 and 2, light is transmitted using an optical fiber, but the present invention can also be applied to an apparatus that eliminates the optical fiber by incorporating all or part of the circuit in the probe holder. It is.
 本発明は、実施例で述べた生体計測装置に限定されず、複数の光や音波などを用いて生体や物質の情報を得る計測装置において、信号の多重化および分離のために符号多重方式を用いる場合に利用できる。例えば、可視から近赤外光を用いて生体内の血液動態を計測する装置、およびその結果の空間的分布を得る装置、超音波を用いて生体等の内部構造を観測する装置、果物の糖度を外部から検査する装置などである。 The present invention is not limited to the biological measurement apparatus described in the embodiment, and in a measurement apparatus that obtains information on a living body or a substance using a plurality of light or sound waves, a code multiplexing method is used for signal multiplexing and separation. Available when used. For example, a device that measures blood dynamics in a living body using visible to near-infrared light, a device that obtains the spatial distribution of the result, a device that observes the internal structure of a living body using ultrasound, and the sugar content of fruits A device for inspecting the outside from the outside.
100…送信側光ファイバ、111、121…変調用合成搬送符号記憶部、113、123…DA変換器、114、124…レーザ駆動回路、115、125…半導体レーザ、600…受信側光ファイバ、60…1光検出器、602…前置増幅器、603…AD変換器、610、620…乗算器、611、621…積算器、612、622…復調用合成搬送符号記憶部、613、614…出力、701…制御部、702…表示部、703…データ記憶部、811、821…遅延回路、911、921…符号記憶部、912、922…搬送波発生回路、913、923…ミキサー、1001…光検出器、1015、1025、1035…照射用光源、1101…プローブホルダ、1102…筐体、2003…プローブ部。 DESCRIPTION OF SYMBOLS 100 ... Transmission side optical fiber, 111, 121 ... Modulation synthetic | combination conveyance code memory | storage part, 113, 123 ... DA converter, 114, 124 ... Laser drive circuit, 115, 125 ... Semiconductor laser, 600 ... Reception side optical fiber, 60 ... 1 photodetector, 602 ... preamplifier, 603 ... AD converter, 610, 620 ... multiplier, 611, 621 ... integrator, 612, 622 ... demodulated composite carrier code storage unit, 613, 614 ... output, 701: Control unit, 702: Display unit, 703: Data storage unit, 811, 821 ... Delay circuit, 911, 921 ... Code storage unit, 912, 922 ... Carrier wave generation circuit, 913, 923 ... Mixer, 1001 ... Photodetector 1015, 1025, 1035... Irradiation light source, 1101... Probe holder, 1102.

Claims (11)

  1.  生体に光を照射する光源を夫々有する複数の光照射部と、
     当該生体において反射ないし透過した光を受光する複数の検出器と、
     前記光照射部と前記検出器を少なくとも制御する制御手段と、
     前記光源毎に異なる変調用合成搬送符号を予め記憶する変調用合成搬送符号記憶部と、
     前記検出器の夫々が受光すべき前記光源からの光に対応する、前記検出器毎に異なる復調用合成搬送符号を記憶する復調用合成搬送符号記憶部と、
     前記検出器で検出される検出信号を前記復調用合成搬送符号と乗算する乗算器と、当該乗算された検出信号を積算する積算器とを備えることを特徴とする生体光計測装置。
    A plurality of light irradiation units each having a light source for irradiating light to a living body;
    A plurality of detectors for receiving light reflected or transmitted in the living body;
    Control means for controlling at least the light irradiation unit and the detector;
    A modulation composite carrier code storage unit that stores in advance a different modulation composite carrier code for each light source;
    A demodulating composite carrier code storage unit for storing a demodulating composite carrier code corresponding to the light from the light source to be received by each of the detectors;
    A biological light measurement apparatus comprising: a multiplier that multiplies a detection signal detected by the detector with the demodulated composite carrier code; and an integrator that integrates the multiplied detection signal.
  2.  請求項1に記載の生体光計測装置において、
     前記複数の光照射部の夫々は、
     前記光源と前記変調用合成搬送符号記憶部と、DA変換器と光源駆動回路とを内部に備え、
     前記制御手段からの制御信号に基づいて、当該変調用合成搬送符号記憶部に記憶された当該光源に対応する変調用合成搬送符号が当該DA変換器によりアナログ信号に変換され、当該変換されたアナログ信号が当該光源駆動回路に入力され、当該駆動信号により変調用合成搬送符号に基づいて前記光源から照射される光が強度変調されることを特徴とする生体光計測装置。
    The biological light measurement device according to claim 1,
    Each of the plurality of light irradiation units is
    The light source, the modulation composite carrier code storage unit, a DA converter and a light source driving circuit are provided inside,
    Based on the control signal from the control means, the modulation composite carrier code corresponding to the light source stored in the modulation composite carrier code storage unit is converted into an analog signal by the DA converter, and the converted analog A biological light measuring device, wherein a signal is input to the light source driving circuit, and the light emitted from the light source is intensity-modulated by the driving signal based on a modulation composite carrier code.
  3.  請求項1に記載の生体光計測装置において、
     前記制御手段は、前記復調用合成搬送符号記憶部と、前記乗算器と、前記積算器とを内部に有することを特徴とする生体光計測装置。
    The biological light measurement device according to claim 1,
    The biological light measurement apparatus, wherein the control means includes the demodulation composite carrier code storage unit, the multiplier, and the multiplier.
  4.  請求項1に記載の生体光計測装置において、
     前記光源は半導体レーザであって、
     前記光照射部はさらに光ファイバを有することを特徴とする生体光計測装置。
    The biological light measurement device according to claim 1,
    The light source is a semiconductor laser;
    The biological light measurement apparatus, wherein the light irradiation unit further includes an optical fiber.
  5.  請求項1に記載の生体光計測装置において、
     前記検出器は受光用光ファイバを有することを特徴とする生体光計測装置。
    The biological light measurement device according to claim 1,
    The biological light measuring device, wherein the detector has a light receiving optical fiber.
  6.  請求項1に記載の生体光計測装置において、
     前記積算器により積算された前記検出信号を表示できる表示部を備えることを特徴とする生体光計測装置。
    The biological light measurement device according to claim 1,
    A biological light measurement apparatus comprising a display unit capable of displaying the detection signals integrated by the integrator.
  7.  請求項1に記載の生体光計測装置において、
     前記変調用合成搬送符号は周期が異なる2種類以上の符号を組み合わせた符号であることを特徴とする生体光計測装置。
    The biological light measurement device according to claim 1,
    The biometric optical measurement apparatus, wherein the modulation composite carrier code is a code obtained by combining two or more kinds of codes having different periods.
  8.  請求項7に記載の生体光計測装置において、
    前記符号はアダマール符号であることを特徴とする生体光計測装置。
    The biological light measurement device according to claim 7,
    The biological light measuring device, wherein the code is a Hadamard code.
  9.  生体に光を照射する光源を夫々有する複数の光照射部と、
     当該生体において反射ないし透過した光を受光する複数の検出器と、
     前記光照射部と前記検出器を少なくとも制御する制御手段と、
     前記制御手段は、
     前記光源毎に異なる変調用合成搬送符号を予め記憶する変調用合成搬送符号記憶部と、
     前記検出器の夫々が受光すべき前記光源からの光に対応する、前記検出器毎に異なる復調用合成搬送符号を記憶する復調用合成搬送符号記憶部と、
     前記検出器で検出される検出信号を前記復調用合成搬送符号と乗算する乗算器と、当該乗算された検出信号を積算する積算器とを備えることを特徴とする生体光計測装置。
    A plurality of light irradiation units each having a light source for irradiating light to a living body;
    A plurality of detectors for receiving light reflected or transmitted in the living body;
    Control means for controlling at least the light irradiation unit and the detector;
    The control means includes
    A modulation composite carrier code storage unit that stores in advance a different modulation composite carrier code for each light source;
    A demodulating composite carrier code storage unit for storing a demodulating composite carrier code corresponding to the light from the light source to be received by each of the detectors;
    A biological light measurement apparatus comprising: a multiplier that multiplies a detection signal detected by the detector with the demodulated composite carrier code; and an integrator that integrates the multiplied detection signal.
  10.  請求項9に記載の生体光計測装置において、
     前記制御手段の内部に変調用合成搬送波符号と復調用合成搬送波符号に位相差を設ける遅延回路を備えることを特徴とする生体光計測装置。
    The biological light measurement device according to claim 9,
    A biological light measuring device comprising a delay circuit for providing a phase difference between a modulating synthetic carrier code and a demodulating synthetic carrier code in the control means.
  11.  請求項9に記載の生体光計測装置において、
     前記変調用合成搬送符号記憶部と復調用合成搬送符号記憶部が共通であることを特徴とする生体光計測装置。
    The biological light measurement device according to claim 9,
    The biometric optical measurement apparatus, wherein the modulation composite carrier code storage unit and the demodulation composite carrier code storage unit are common.
PCT/JP2010/001202 2009-04-24 2010-02-23 Biological light measuring device WO2010122703A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011510157A JPWO2010122703A1 (en) 2009-04-24 2010-02-23 Biological light measurement device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-106159 2009-04-24
JP2009106159 2009-04-24

Publications (1)

Publication Number Publication Date
WO2010122703A1 true WO2010122703A1 (en) 2010-10-28

Family

ID=43010833

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/001202 WO2010122703A1 (en) 2009-04-24 2010-02-23 Biological light measuring device

Country Status (2)

Country Link
JP (1) JPWO2010122703A1 (en)
WO (1) WO2010122703A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107028589A (en) * 2015-12-07 2017-08-11 本田技研工业株式会社 The system and method that bio signal processing is carried out using height auto-correlation carrier wave sequence
EP3213683A4 (en) * 2014-10-30 2019-02-20 Korea Advanced Institute of Science and Technology Optical spectroscopy system using matched filter-based broadband signal receiver for stable data extraction, and method for controlling the optical spectroscopy system
CN112236084A (en) * 2018-12-10 2021-01-15 松下知识产权经营株式会社 Optical measuring device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002248104A (en) * 2001-02-26 2002-09-03 Spectratech Inc Biological information measurement device and measurement method in use
JP2004333344A (en) * 2003-05-09 2004-11-25 Hitachi Ltd Optical measuring method and apparatus
JP2006218013A (en) * 2005-02-09 2006-08-24 Spectratech Inc Biological information measuring apparatus and controlling method
JP2006230657A (en) * 2005-02-24 2006-09-07 Spectratech Inc Visualization apparatus
JP2009017999A (en) * 2007-07-11 2009-01-29 Hitachi Ltd Living body optical measuring device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002248104A (en) * 2001-02-26 2002-09-03 Spectratech Inc Biological information measurement device and measurement method in use
JP2004333344A (en) * 2003-05-09 2004-11-25 Hitachi Ltd Optical measuring method and apparatus
JP2006218013A (en) * 2005-02-09 2006-08-24 Spectratech Inc Biological information measuring apparatus and controlling method
JP2006230657A (en) * 2005-02-24 2006-09-07 Spectratech Inc Visualization apparatus
JP2009017999A (en) * 2007-07-11 2009-01-29 Hitachi Ltd Living body optical measuring device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3213683A4 (en) * 2014-10-30 2019-02-20 Korea Advanced Institute of Science and Technology Optical spectroscopy system using matched filter-based broadband signal receiver for stable data extraction, and method for controlling the optical spectroscopy system
US10667756B2 (en) 2014-10-30 2020-06-02 Korea Advanced Institute Of Science And Technology Optical spectroscopy system using matched filter-based broadband signal receiver for stable data extraction, and method for controlling the optical spectroscopy system
CN107028589A (en) * 2015-12-07 2017-08-11 本田技研工业株式会社 The system and method that bio signal processing is carried out using height auto-correlation carrier wave sequence
CN112236084A (en) * 2018-12-10 2021-01-15 松下知识产权经营株式会社 Optical measuring device

Also Published As

Publication number Publication date
JPWO2010122703A1 (en) 2012-10-25

Similar Documents

Publication Publication Date Title
US6505133B1 (en) Simultaneous signal attenuation measurements utilizing code division multiplexing
JP4546274B2 (en) Biological information measuring apparatus and control method thereof
EP1568320A1 (en) Simultaneous signal attenuation measurements utilizing frequency orthogonal random codes
US5349952A (en) Photoplethysmographics using phase-division multiplexing
JP3623743B2 (en) Biological information measuring device
EP1709902A2 (en) Method and apparatus for demodulating signals in a pulse oximetry system
CN103609047B (en) Transmission signal generating and detecting method by using code sequences, communication system using the same and measurement system using the same
JP2019525181A (en) Distributed optical fiber sensing system and vibration detection positioning method thereof
CA2988662A1 (en) Tunable optical receiver
JP2013079906A (en) Distribution type optical fiber acoustic wave detection device
JP6762500B2 (en) Tomographic imaging device
WO2010122703A1 (en) Biological light measuring device
JP5049678B2 (en) Biological light measurement device
TR201804106T1 (en) FULLY DIGITAL MULTI-CHANNEL RF TRANSMITTER FOR PARALLEL MAGNETIC RESONANCE IMAGING WITH RCC MODULATION
US7569821B2 (en) Biological information measuring apparatus
JP2011069763A (en) Optical transmission line inspection apparatus, optical transmission system, and optical transmission line inspection method
JP2004333344A (en) Optical measuring method and apparatus
CN116047468A (en) Multipath output signal transmitting device, MIMO chaotic laser radar and detection and identification equipment
US20070212077A1 (en) Ultra Wideband Communication System, Transmission Device Reception Device, and Replay Device Used for the Same
RU2011129413A (en) METHOD AND DEVICE FOR ELIMINATING THE INFLUENCE OF PHASE SHIFT AND DOPPLER EFFECT IN DETECTION AND COMMUNICATION SYSTEMS
KR100317806B1 (en) Apparatus and method for detecting information of optical transmission channel using spread spectrum code modulation
JP2015108580A (en) Interference type optical fiber sensor
JP5372447B2 (en) Sampling device and signal monitor
JP5198377B2 (en) Code converter, optical transmitter for optical code division multiplexing, and optical code division multiplexing transmission system
JP5999179B2 (en) Photodetector, photodetection method, and optical transmitter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10766766

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011510157

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10766766

Country of ref document: EP

Kind code of ref document: A1