WO2010122658A1 - 荷重測定装置及び方法並びにプログラム - Google Patents

荷重測定装置及び方法並びにプログラム Download PDF

Info

Publication number
WO2010122658A1
WO2010122658A1 PCT/JP2009/058139 JP2009058139W WO2010122658A1 WO 2010122658 A1 WO2010122658 A1 WO 2010122658A1 JP 2009058139 W JP2009058139 W JP 2009058139W WO 2010122658 A1 WO2010122658 A1 WO 2010122658A1
Authority
WO
WIPO (PCT)
Prior art keywords
load
sensor
windmill
blade
measurement data
Prior art date
Application number
PCT/JP2009/058139
Other languages
English (en)
French (fr)
Inventor
秀康 藤岡
林 義之
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to KR1020107019906A priority Critical patent/KR101227327B1/ko
Priority to CA2714852A priority patent/CA2714852C/en
Priority to BRPI0909359A priority patent/BRPI0909359A2/pt
Priority to US12/601,313 priority patent/US8255173B2/en
Priority to JP2009550120A priority patent/JP4959814B2/ja
Priority to PCT/JP2009/058139 priority patent/WO2010122658A1/ja
Priority to EP09749312.6A priority patent/EP2431607B1/en
Priority to CN200980111176.1A priority patent/CN102439301B/zh
Publication of WO2010122658A1 publication Critical patent/WO2010122658A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D17/00Monitoring or testing of wind motors, e.g. diagnostics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/83Testing, e.g. methods, components or tools therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/328Blade pitch angle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/331Mechanical loads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/80Devices generating input signals, e.g. transducers, sensors, cameras or strain gauges
    • F05B2270/802Calibration thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/80Devices generating input signals, e.g. transducers, sensors, cameras or strain gauges
    • F05B2270/808Strain gauges; Load cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention relates to a load measuring apparatus and method, and a program.
  • a sensor for measuring a load applied to a wind turbine blade is attached to a blade root portion or the like in a wind turbine generator, and the load is calculated by processing data measured by these sensors.
  • the load is measured for each windmill blade and the load value is calibrated. Has been proposed to do. US Pat. No. 6,940,186
  • the load is calibrated by measuring the load of each windmill blade in a state where the windmill rotor is fixed so as not to rotate manually (using a lock pin or the like).
  • the present invention has been made to solve the above problem, and an object of the present invention is to provide a load measuring apparatus, method, and program capable of efficiently calibrating the load of a wind turbine blade regardless of observation conditions.
  • a first aspect of the present invention is a load measuring device applied to a wind turbine in which the pitch angle of the wind turbine blade is variable, a sensor for obtaining the distortion of the wind turbine blade, and the distortion of the wind turbine blade.
  • a calibration unit that calibrates the function based on the measurement data of the sensor acquired in the pitch angle range and the rotation speed range of the wind turbine blades in which the variation between the minimum and the minimum is a predetermined value or less. is there.
  • the calibration means for calibrating the function held by the load calculation means is provided, and this calibration means has a variation between the maximum and the minimum of the aerodynamic torque due to the wind speed being a predetermined value or less. Since the function is calibrated based on the measurement data of the sensor acquired in the pitch angle range and the rotation speed range of the windmill blade, the condition of the wind speed can be widened.
  • the calibration means calibrates the function based on measurement data of the sensor acquired in a pitch angle range and a rotation speed range of the windmill blade in which the aerodynamic torque is equal to or less than a predetermined value. It is good.
  • the calibration means includes a table in which a load of the windmill blade, a pitch angle of the windmill blade, and an azimuth angle are associated with no wind, and the windmill blade when measurement data is acquired by the sensor. Obtained by the load acquisition means for acquiring the load of the windmill blade corresponding to the pitch angle and the azimuth angle from the table, the strain calculation means for calculating the distortion of the windmill blade from the measurement data of the sensor, and the load acquisition means.
  • the apparatus may further comprise parameter calculation means for calibrating the parameters of the function based on the relationship between the load of the windmill blade and the strain calculated by the strain calculation means.
  • the table is associated with the wind turbine blade load and the wind turbine blade pitch angle and azimuth angle when there is no wind, and corresponds to the wind turbine blade pitch angle and azimuth angle when the measurement data is acquired by the sensor.
  • the load of the wind turbine blade is acquired from the table by the load acquisition means
  • the distortion of the wind turbine blade is calculated from the sensor measurement data by the strain calculation means
  • the parameter of the function is calibrated by the parameter calculation means based on the relationship with the distortion obtained.
  • the table of the calibration means associates the load with the azimuth angle and the pitch angle. Therefore, if the azimuth angle and the pitch angle when the measurement data is acquired is known, the load of the windmill blade at that time is calculated. It can be easily grasped.
  • the parameters of the function are calibrated based on the relationship between the wind turbine blade distortion calculated based on the measurement data and the load determined based on the measurement data, the distortion of the measurement data must be calibrated with high accuracy. Can do.
  • the calibration means obtains the measurement data of the sensor at the time of no load based on the load of the windmill blade acquired by the load acquisition means and the measurement data of the sensor.
  • the measurement data of the sensor may be offset calibrated using the measurement data at the time.
  • the measurement data at the time of no load included in the measurement data of the sensor is obtained and offset, so that the accuracy of the measurement data can be improved.
  • the sensor is a pair of first sensors provided at positions facing each other across the windmill blade, and positions different from the first sensor and facing each other across the windmill blade. It is good also as providing a pair of 2nd sensor provided in.
  • the sensor is a position opposed to the wind turbine blade, is different from the first sensor and the second sensor, and is the first sensor or the second sensor. It is good also as providing a pair of 3rd sensor provided in the position parallel to either.
  • the third sensor can be used for measuring information other than the load.
  • a second aspect of the present invention is a load measuring device applied to a windmill in which the pitch angle of the windmill blade is variable, a sensor for obtaining distortion of the windmill blade, and distortion of the windmill blade.
  • a load calculating means for obtaining a load of the windmill blade by using a strain based on measurement data of the sensor, and a wind speed of 3 meters or less.
  • each of the pitch angles set at the minimum pitch angle and the maximum pitch angle at two points including the first azimuth angle and the second azimuth angle rotated 180 degrees from the first azimuth angle.
  • a load measuring device comprising calibration means for calibrating the function based on measurement data of the sensor.
  • the calibration unit that calibrates the function held by the load calculation unit is provided, and the calibration unit is configured such that when the wind speed is 3 meters or less, the first azimuth angle and the first azimuth angle.
  • the function is calibrated based on the measurement data of each sensor when the pitch angle is set to the minimum pitch angle and the maximum pitch angle at two points consisting of the second azimuth angle rotated 180 degrees from the azimuth angle of one. Therefore, the function can be calibrated based on a small amount of measurement data.
  • a load measuring method applied to a wind turbine in which the pitch angle of the wind turbine blade is variable, the distortion of the wind turbine blade is obtained, and the distortion of the wind turbine blade and the wind turbine blade A function representing a relationship with the load, and using the strain based on the measurement data of the sensor for the function, the load of the wind turbine blade is obtained, and the variation between the maximum and minimum of the aerodynamic torque due to the wind speed is a predetermined value.
  • the load measuring method calibrates the function based on the measurement data of the sensor acquired in the pitch angle range and the rotation speed range of the windmill blade as described below.
  • a load measurement program applied to a wind turbine in which the pitch angle of the wind turbine blade is variable, and a function representing a relationship between the distortion of the wind turbine blade and the load of the wind turbine blade. And using the distortion based on the measurement data of the sensor for the function, the first processing for obtaining the load of the windmill blade, and the variation between the maximum and the minimum of the aerodynamic torque due to the wind speed is a predetermined value or less. It is a load measurement program for making a computer perform the 2nd processing which calibrates this function based on the measurement data of the sensor acquired in the pitch angle range and rotation speed range of a windmill blade.
  • a load measuring method applied to a wind turbine in which the pitch angle of the wind turbine blade is variable, wherein the function represents a relationship between the distortion of the wind turbine blade and the load of the wind turbine blade.
  • the first azimuth angle and the first azimuth angle are obtained by using the strain based on the measurement data of the sensor as the function.
  • a load measurement program applied to a wind turbine in which the pitch angle of the wind turbine blade is variable, and a function representing a relationship between the distortion of the wind turbine blade and the load of the wind turbine blade. And using the strain based on the measurement data of the sensor as the function, the first processing for obtaining the load of the windmill blade, and the first azimuth angle and the second when the wind speed is 3 meters or less. Based on the measurement data of each sensor when the pitch angle is set to the minimum pitch angle and the maximum pitch angle at two points consisting of the second azimuth angle rotated 180 degrees from the one azimuth angle, It is the load measurement program which makes a computer perform the 2nd process to calibrate.
  • FIG. 1 It is a figure showing the schematic structure of the whole wind power generator concerning a 1st embodiment of the present invention. It is a figure for demonstrating a blade root part. It is an example of sectional drawing in the position of 1.8 meters from the blade root part of a windmill blade. It is a figure for demonstrating arrangement
  • FIG. 1 is a diagram showing a schematic configuration of a wind turbine generator to which a load measuring device 100 according to the present embodiment is applied.
  • the wind turbine generator 1 according to the present embodiment is a windmill in which the pitch angle of the windmill blade 10 is variable.
  • the wind turbine generator 1 includes a support column 2, a nacelle 3 installed at the upper end of the support column 2, and a rotor head (hub) provided on the nacelle 3 so as to be rotatable around a substantially horizontal axis. 4.
  • Three windmill blades 10 are attached to the rotor head 4 radially around the rotational axis thereof.
  • Each windmill blade 10 is provided with a plurality of sensors (sensing units) 7 for obtaining distortion of the windmill blade 10.
  • the sensor 7 is, for example, an FBG (Fiber Bragg Grating sensor).
  • the FBG is an optical fiber sensor engraved with a Bragg grating, and detects changes in the lattice spacing due to distortion and thermal expansion based on the wavelength change of reflected light.
  • the rotor head 4 includes a signal processing unit (not shown) that receives the measurement result of the sensor 7 (sensing unit).
  • each wind turbine blade 10 is provided with a first sensor, a second sensor, and a third sensor.
  • the first sensor, the second sensor, and the third sensor each have a pair of sensors provided at positions facing each other with the wind turbine blade 10 interposed therebetween.
  • the first sensor and the second sensor may be provided such that a straight line connecting two sensors constituting each of the first sensor and the second sensor intersects substantially vertically.
  • the third sensor is, for example, a sensor used for temperature compensation, and is provided around the first sensor or the second sensor.
  • FIG. 2 is a diagram for explaining the position of the sensor 7 (sensing unit) attached to the windmill blade.
  • the sensor 7 is provided, for example, at a position 1.8 meters away from the root of the windmill blade 10.
  • the root is a boundary between the wind turbine blade 10 and the rotor head 4 as shown in FIG. In the present embodiment, this root is referred to as a “wing root”.
  • FIG. 3 is a view showing a cross-sectional view at a position 1.8 meters from the blade root portion of the wind turbine blade 10 to which the sensor 7 is attached.
  • a sensor A3 is provided on the back side 21 of the windmill blade 10
  • a sensor A1 is provided on the abdomen side 22 to constitute a first sensor.
  • a sensor A5 is provided at the same position as A3, and a sensor A6 is provided at the same position as A1, thereby forming a third sensor.
  • a sensor A2 is provided in the direction of the front edge 23 of the windmill blade 10, and a sensor A4 is provided in the direction of the rear edge 24, thereby constituting a second sensor.
  • FIG. 4 is a diagram schematically showing the arrangement of the sensor 7 attached to the windmill blade 10 when viewed from the blade root portion of the windmill blade 10.
  • the position where the sensor A1 is provided is HP
  • the position where the sensor A3 is provided is LP
  • the position where the sensor A2 is provided is LE
  • the sensor A4 is provided. Is defined as TE.
  • the tilt angle is an inclination angle of the rotating surface of the windmill blade 10 with respect to the vertical axis of the tower, and even if the windmill blade 10 is deformed by wind power during operation, the windmill blade 10 and the tower are in contact with each other. In order to prevent this, such an inclination angle is provided. This tilt angle may be ignored or taken into account in the calculation described later.
  • FIG. 5 is a functional block diagram showing the functions provided in the load measuring apparatus 100 in an expanded manner.
  • the load measuring apparatus 100 according to the present embodiment includes a load calculation unit (load calculation unit) 20 and a calibration unit (calibration unit) 30.
  • the load calculation unit 20 has a function that represents the relationship between the distortion of the windmill blade and the load of the windmill blade 10, and by using the distortion based on the measurement data of the sensors A1 to A6 as the function, the load of the windmill blade 10 is calculated. Ask for.
  • the calibration unit 30 calibrates the above function based on the sensor measurement data acquired in the pitch angle range and the rotation speed range of the wind turbine blade 10 in which the variation between the maximum and the minimum of the aerodynamic torque due to the wind speed is a predetermined value or less. To do. It is more preferable to use sensor measurement data acquired during a period satisfying the condition of the pitch angle range of the wind turbine blade 10 where the aerodynamic torque is equal to or less than a predetermined value and the condition of the rotational speed range.
  • FIG. 6 shows the change in the aerodynamic torque until the windmill blade 10 is stopped by changing the windmill blade 10 from the fine side (pitch angle 21 degrees) to the feather side (pitch angle 109 degrees). To 12 m / second).
  • the pitch angle of 21 degrees or 109 degrees is an angle of the windmill blade 10 when the position of the blade reference line determined when the windmill blade 10 is attached to the windmill rotor 3 is 0 degrees.
  • the pitch angle of 0 degrees is an angle on the blade reference line defined on the blade root cross section, and the angle formed by this line and the rotor plane is the pitch angle.
  • three windmill blades at a speed of 2.5 degrees per second in the range of 21 to 45 degrees of pitch angle and 1.0 degree per second in the range of 45 to 109 degrees of pitch angle. 10 is changed at the same time, and measurement data in the three wind turbine blades 10 at this time are acquired. Moreover, the windmill blade 10 is rotated by changing the pitch angle, and is in an idle state.
  • the idle rotation is a state where the windmill blade 10 is rotated within a range where the wind power generator 1 does not generate power (for example, a state where the windmill blade 10 rotates at a low speed).
  • the windmill blade 10 in order to perform the same process with respect to all the three windmill blades 10, suppose that one windmill blade 10 is demonstrated in the following description.
  • region A As shown in FIG. 6, in the region A, different aerodynamic torque is applied depending on the wind speed. Thereafter, when the right side of the region A (in other words, the pitch angle is larger than 60 degrees and the rotational speed of the generator is 0 to 300 rpm (when the frequency is 60 Hz))
  • the torque value is about -300 kilonewton meters or more, and the torque is small enough to ignore the influence of aerodynamic torque.
  • the condition of the rotational speed range on the right side from the region A is 0 to 300 rpm, but is not limited to this, and may be set according to the frequency.
  • the rotation speed range condition may be set to 0 to 250 rpm.
  • the calibration unit 30 uses measurement data acquired in a portion that is not the region A, that is, in a range where the aerodynamic torque does not depend on the wind speed.
  • measurement data acquired from a pitch angle of 60 degrees to 109 degrees which is a pitch angle in a range in which the variation between the maximum and the minimum of the aerodynamic torque is equal to or less than a predetermined value, is used.
  • the basis for using the data of the area other than the area A will be described later.
  • the calibration unit 30 includes a table 31, a load acquisition unit (load acquisition unit) 32, a strain calculation unit (strain calculation unit) 33, and a parameter calculation unit 34.
  • the calibration unit 30 obtains the measurement data of the sensor 7 when there is no load based on the load of the wind turbine blade 10 acquired by the load acquisition unit 32 and the measurement data of the sensor 7, and uses the measurement data when there is no load. Then, the measurement data of the sensor 7 is offset calibrated. Thereby, since the measurement error included in the sensor 7 itself is taken into consideration, the accuracy of calibration can be improved.
  • the table 31 associates the load at the blade root portion of the wind turbine blade 10 in the absence of wind (ideal environmental conditions for calibration), the pitch angle and the azimuth angle of the wind turbine blade 10, for example, as shown in FIG.
  • the azimuth angle is an angle formed by a predetermined reference and the axis of the windmill blade 10 on the rotating surface of the windmill blade 10.
  • the windmill blade 10 is at the top. It is based on when it is located. Therefore, the azimuth angle when the windmill blade 10 is located at the top of the windmill is 0 degrees, and the azimuth angle when it is located at the bottom is 180 degrees.
  • W is the weight of the wind turbine blade 10
  • l g is (a known value at the manufacturing stage) center-of-gravity position measured from the blade root portion of the wind turbine blade 10
  • theta is the azimuth angle and tilt
  • a function of angle, ⁇ is a function of pitch angle and tilt angle.
  • the load acquisition unit 32 acquires the load at the blade root part of the windmill blade 10 corresponding to the pitch angle and the azimuth angle of the windmill blade 10 when the measurement data is acquired by the sensor 7 from the table 31.
  • is measurement data by the first sensor (second sensor)
  • ⁇ i measurement data at no load by the first sensor (second sensor)
  • ⁇ T is measurement data by the third sensor
  • p e is the strain-optical constants (809 ⁇ / nm)
  • is the temperature compensation coefficient (2.2).
  • ⁇ i is an average value of the measurement data, and is obtained by the following equation (3).
  • ⁇ i ( ⁇ max + ⁇ min ) / 2 (3)
  • ⁇ max indicates the maximum peak value of data
  • ⁇ min indicates the minimum peak value
  • the strains are calculated in the sensors A1 and A3 constituting the first sensor and the sensors A2 and A4 constituting the second sensor, four strains are calculated. Further, by calculating the difference in strain obtained from each of the sensors A1 and A3 constituting the first sensor, the strain ⁇ F with respect to the flap direction of the wind turbine blade 10 (HP-LP direction in FIG. 4), and the second sensor The strain ⁇ E with respect to the edge direction of the wind turbine blade 10 (the direction of LE-TE in FIG. 4) is calculated by calculating the difference in strain in each of the sensors A2 and A4 that constitutes.
  • the parameter calculation unit 34 calibrates the function parameters based on the relationship between the load of the wind turbine blade 10 acquired by the load acquisition unit 32 and the strain calculated by the strain calculation unit 33. Specifically, the load at the blade root portion of the strain epsilon F, epsilon measurement data is the source data calculated the E, acquired wind turbine blade 10 associated with the azimuth angle and the pitch angle at the timing was, strain epsilon F , ⁇ E , a new function is constructed, and the coefficient of the function included in the load calculation unit 20 is calibrated using the coefficient of the new function. At this time, one new function is created in the flap direction and one in the edge direction.
  • the following equation (4) is used to convert the strain ⁇ into a moment at the sensor position.
  • d is the inner diameter of the wind turbine blade 10 at the installation position of the sensor 7 (1.8 meters from the blade root)
  • E is the blade material (FRP).
  • Young's modulus I is the cross-sectional secondary moment at the sensor installation position
  • M sensor is the bending moment (load) at the sensor installation position
  • ⁇ 2L-1 and ⁇ 2L are a pair of sensors (first sensor or second sensor).
  • the strains based on the measurement data, ⁇ 2L ⁇ 1,0 and ⁇ 2L, 0 are initial values of strain of the first sensor or the second sensor.
  • the moment M root at the blade root portion is expressed as a linear function with the coefficients a and b as parameters and the distortion caused by a pair of sensors (first sensor or second sensor) as variables. . Therefore, when the horizontal axis represents the strain ⁇ F or ⁇ E and the vertical axis represents the moment M root for the azimuth angle and pitch angle, the graph is obtained based on this linear function. By calculating the slope a and the intercept b, the coefficients a and b can be calculated as parameters.
  • the horizontal axis represents the strain ⁇ F in the flap direction and the strain ⁇ E in the edge direction of each wind turbine blade 10, and the vertical axis represents the load (moment) M root corresponding to the strain ⁇ F and the strain ⁇ E acquired from the table 31.
  • the slope a and the intercept b are extracted from this graph. More specifically, a graph as shown in FIG. 9 is created, and based on such a graph, coefficients a and b in the case of the flap direction of each wind turbine blade 10, coefficients a and b in the case of the edge direction, b is calculated.
  • the coefficients a and b of the flap direction and the edge direction are calculated for the windmill blade 10 # 2 and the windmill blade 10 # 3, respectively.
  • the parameter calculation unit 34 calculates the coefficients a and b, it outputs them to the load calculation unit 20.
  • the parameter of the function of the load calculation unit 20 is calibrated, and by using the measurement data acquired from the sensor as the function of the load calculation unit 20, the obtained moment at the blade root is calibrated. .
  • the operation of the calibration unit 30 of the load measuring device will be described.
  • the pitch angle is changed from 60 degrees to 109 degrees, and measurement data of the sensors A1 to A6 at this time are acquired.
  • the measurement data is given to the load acquisition unit 32 of the calibration unit 30.
  • the load acquisition unit 32 refers to the table 31 and reads the load at the blade root portion associated with the information on the azimuth angle and pitch angle of the measurement data measured from the sensors A1 to A6. Subsequently, for each sensor, the load acquisition unit 32 creates a graph indicating the sensor measurement data on the vertical axis and the load on the blade root on the horizontal axis (see FIG. 10). The distortion wavelength when the value of “0” is “0” is read out. This value corresponds to the measurement data of the sensor when there is no load, that is, the offset value of each sensor.
  • the load acquisition unit 32 outputs the information on the load at the blade root read from the table 31 and the data of each sensor when the load is obtained together with the offset value of each sensor to the strain calculation unit 33. Thus, the offset value of each sensor is calculated
  • the strain calculation unit 33 extracts strain wavelengths from the measurement data of the sensors A1 to A6, and uses the above equation (2) based on the measurement data calculated from each sensor and the measurement data at no load. Thus, a strain (self-weight moment) ⁇ at each sensor position is calculated.
  • strain epsilon A1 in the sensor A1 is determined from the following (2) '.
  • ⁇ A1 P e ⁇ ( ⁇ HP ⁇ HPi ) ⁇ ( ⁇ HPT ⁇ HPTi ) ⁇ (2) ′
  • ⁇ HP is the strain wavelength data of the sensor A1
  • ⁇ HPT is the strain wavelength data of the temperature compensation sensor A5 installed around the sensor A1
  • ⁇ HPi is the offset value of the sensor A1 (none )
  • HPTi is an offset value of sensor A5 (measurement data at no load).
  • the strain calculation unit 33 calculates the strain ⁇ for each of the sensors A3, A2, and A4 by the same calculation process. As a result, a total of four strains ⁇ , ⁇ A1 , ⁇ A2 , ⁇ A3 , and ⁇ A4 are calculated. Distortion calculating unit 33, calculating the strain epsilon A1 ⁇ A4 for each sensor A1 ⁇ A4, and outputs the load information to the parameter calculator 34 in the blade root portion inputted from these values and the load obtaining unit 32.
  • the parameter calculation unit 34 determines the distortion of the windmill blade 10 and the blade root portion of the windmill blade 10 based on the relationship between the strain ⁇ A1 to A4 for each sensor and the load information at the blade root portion input from the load acquisition unit 32. Calibrate the parameters of the function whose relationship to the load is indicated. Specifically, the relational expression between the load information at the blade root portion of the wind turbine blade 10 and the distortion of the wind turbine blade 10 is expressed as the above-described equation (5). Specifically, one relational expression is obtained for the first sensor and one for the second sensor, and two relational expressions are created for one wind turbine blade 10. For example, in the case of the first sensor, the above relational expression is expressed by the following expression (5) ′.
  • M HP-LP a ( ⁇ A1 ⁇ A3 ) ⁇ 10 ⁇ 6 + b [Nm] (5) ′
  • ⁇ A1 is the strain at the position of the sensor A1 calculated based on (2) ′
  • ⁇ A3 is the strain at the position of the sensor A3 calculated based on the same calculation formula.
  • the strain difference ⁇ A1 - ⁇ A3 in the flap direction (HP-LP direction in FIG. 4) of the above formula (5) ′ is represented on the horizontal axis and M HP-LP is represented on the vertical axis, as shown in FIG. A graph is obtained.
  • the intercept and slope of this graph can be derived, and the coefficient a (slope) and coefficient of the above equation (5) ′ b (intercept) can be calculated.
  • two combinations of coefficients a and b are calculated for the flap direction and the edge direction.
  • the process from the measurement of the sensor to the calculation of the coefficients is repeatedly performed to obtain a plurality of coefficients, and an average value of these coefficients is used to obtain a function equation after calibration.
  • sudden data such as noise can be removed by omitting the maximum value and the minimum value. It should be noted that the removal of non-noise data here does not affect the calculation of the average value.
  • the load calculation unit 32 uses the relational expression to calculate the wind turbine blade 10 from the measurement data of each sensor. Calculate the load at the blade root. This makes it possible to calculate a highly reliable load.
  • FIG. 11A shows the moment in the flap direction when there is no wind on the horizontal axis, and the moment in the flap direction when the wind speed is 8 meters on the vertical axis.
  • FIG. 11B similarly compares moments in the edge direction.
  • FIGS. 11A and 11B are functions obtained when the coefficients a and b are obtained from the measurement data including the area A in FIG. 6, and are compared with ideal no wind data.
  • the load obtained using the coefficients a and b calculated including the measurement data of the area A shows that the error is larger than the load when no wind exists.
  • one calibration data file is generated by rotation of 180 degrees.
  • the number of rotations of the azimuth angle is not particularly limited.
  • one calibration data file is generated with a rotation of 360 degrees.
  • the rotor starts to rotate by moving the pitch angle from 109 degrees to 60 degrees, or from 60 degrees to 109 degrees.
  • the rotor is rotated at least once by moving the pitch angle from 109 degrees to 60 degrees, and one data file is acquired.
  • by moving the pitch angle from 60 degrees to 109 degrees at least one rotation of the rotor is performed to acquire one data file.
  • one calibration data file is acquired under the condition that the rotor makes one rotation. Similarly, one calibration data file is acquired when the pitch angle is moved to the feather side.
  • ten calibration data files are acquired by performing the pitch angle operation as described above. Further, when such calibration data for 10 times (that is, the coefficients a and b) are calculated, the reliability of the coefficients a and b may be verified by calculating their average value.
  • X is calibration data (18 measurement data at no load, 12 calibration data (data of edge direction and flap direction of each windmill blade 10) 12 points), N is a pitch angle from 109 degrees to 60 degrees The number of times of operation is shown as 109 ° (one cycle).
  • m is an average value.
  • the maximum and minimum data are omitted from 2N calibration data files, and 2 (N ⁇ 1) average values are obtained. Then, it is verified whether or not the average value of the calibration values a and b satisfies the following range condition. When the reference value is satisfied, the average value of the calibration data is used as the local parameter.
  • the measurement data is acquired by the sensor provided in the windmill blade 10, and the strain and load of the windmill blade 10 are calculated based on the acquired data.
  • the function provided in the load calculation unit 20 is calibrated by a coefficient of a new function obtained from the relationship between the strain of the wind turbine blade 10 and the load calculated based on the measurement data.
  • sensor measurement data acquired in the pitch angle range of the wind turbine blade 10 in which the variation between the maximum and minimum aerodynamic torque is a predetermined value or less is used, and the influence of the aerodynamic torque is used. Since negligible measurement data is used, the accuracy of calibration can be improved. Further, the accuracy of calibration can be further improved by calculating and offsetting the distortion of the sensor itself. Furthermore, in order to acquire measurement data, measurement data acquired in a pitch angle range (for example, a pitch angle range of 60 degrees to 109 degrees) of the wind turbine blade 10 where the maximum and minimum variations in aerodynamic torque are equal to or less than a predetermined value. As long as it is not limited to the azimuth angle, a wide range of measurement data can be used for calibration.
  • the load measuring device 100 since the measurement of the measurement data, the calculation of the load and strain, and the verification of the reliability of the calibration data are performed by the load measuring device 100, the time required for the calibration work can be shortened and the burden on the user is reduced. can do.
  • the load measurement device is premised on processing by hardware, but is not necessarily limited to such a configuration.
  • the load measuring device includes a main storage device such as a CPU and a RAM, and a computer-readable recording medium on which a program for realizing all or part of the above processing is recorded.
  • the CPU reads out the program recorded in the storage medium and executes information processing / calculation processing, thereby realizing the same processing as the above-described load measuring device.
  • the computer-readable recording medium means a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory, or the like.
  • the computer program may be distributed to the computer via a communication line, and the computer that has received the distribution may execute the program.
  • the above function is used.
  • the present invention is not limited to this.
  • the rotational speed range of the wind turbine blade 10 is used, and sensor data acquired in the rotational speed range of the wind turbine blade where the variation between the maximum and the minimum of the aerodynamic torque due to the wind speed is a predetermined value or less. Based on this, the function may be calibrated.
  • the number of the plurality of windmill blades 10 is three, but the number of the windmill blades 10 is not particularly limited.
  • the load measuring apparatus 100 In the load measuring apparatus 100 according to this embodiment, six sensors are attached to one windmill blade 10, but the number of sensors is not particularly limited.
  • the table 31 is calculated from the azimuth angle and the pitch angle, but is not limited to this.
  • a table may be given to the calibration unit 30 in advance.
  • the load measuring device of this embodiment is different from the first embodiment in that the azimuth angle and pitch angle data is limited to predetermined values, and the wind speed is limited to a range where the negative aerodynamic torque is small, and data is acquired. It is a point to do.
  • description of points common to the first embodiment will be omitted, and different points will be mainly described.
  • the sensor 7 sets the pitch angle to the minimum pitch angle and the maximum pitch angle at two points including the first azimuth angle and the second azimuth angle rotated 180 degrees from the first azimuth angle. Measure the measurement data when the pitch angle is set. More specifically, in the sensor, the wind speed is 3 meters or less, the azimuth angles of the windmill blade 10 are at 90 degrees and 270 degrees, and the pitch angles are 21 degrees and 109 at the respective azimuth angles. Measurement data is acquired when it is in the state set at the time.
  • the pitch angle of the other two windmill blades 10 is set to, for example, 85 degrees and is in an idle state.
  • the measurement data used for the function calculated from the parameter calculation unit 34 is a wide range of data with respect to the horizontal axis. It can be acquired. Thereby, the accuracy in calculating the coefficients a and b with a small amount of measurement data can be improved. In addition, since the parameters can be calculated with a small amount of measurement data, the time required for calibration can be shortened.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

 広い観測条件によって収集されたデータに基づいて荷重の較正を行い、複数の風車ブレードの荷重の較正を迅速に行うことを目的とする。風車ブレード10のピッチ角が可変とされている風車に適用される荷重計測装置1であって、風車ブレード10の歪を求めるためのセンサと、風車ブレード10の歪と風車ブレード10の荷重との関係を表した関数を有し、関数にセンサの計測データに基づく歪を用いることで、風車ブレード10の荷重を求める荷重算出部20と、空力トルクの最大と最小とのばらつきが所定値以下となる風車ブレード10のピッチ角範囲および回転数範囲で取得されたセンサの計測データに基づいて、関数を較正する較正部30とを具備する荷重計測装置。

Description

荷重測定装置及び方法並びにプログラム
 本発明は、荷重測定装置及び方法並びにプログラムに関するものである。
 一般に、風力発電装置には、風車ブレードにかかる荷重を計測するセンサが翼根部等に取り付けられており、これらセンサによって計測されたデータを処理することで荷重を算出している。しかしながら、翼の製造時やセンサの取り付け時に生じる個体差に起因して、各風車ブレードに加わる荷重と歪との関係は一定でないこと等から、風車ブレード毎に荷重を測定し、荷重値の較正を行うことが提案されている。
米国特許第6,940,186号公報明細書
 従来、上記荷重の較正は人手によって(ロックピン等を用いて)風車ロータが回転しないように固定した状態で各風車ブレードの荷重を測定し、行っていた。
 しかしながら、上記較正作業は風車毎に行う必要があり、全ての風車に対して較正を行うためには、人手によってロータを固定しなければならず、数百台もの風力発電装置が設置された大規模なウィンドファームの場合には、膨大な作業時間が必要であった。また、風車ブレードに加わる荷重と歪との関係は風車毎、風車ブレード毎に異なるため、それぞれの風車ブレードに対し、繰り返し較正作業を行う必要があった。また、ターニングモータを用いて所定の位置(角度)まで翼を移動させ、固定するまでに時間がかかってしまい、作業をスムーズに行えず、作業効率が悪いという問題があった。
 本発明は、上記問題を解決するためになされたもので、観測条件によらずに、風車ブレードの荷重の較正を効率的に行うことができる荷重測定装置及び方法並びにプログラムを提供することを目的とする。
 本発明の第1の態様は、風車ブレードのピッチ角が可変とされている風車に適用される荷重計測装置であって、該風車ブレードの歪を求めるためのセンサと、該風車ブレードの歪と該風車ブレードの荷重との関係を表した関数を有し、該関数に該センサの計測データに基づく歪を用いることで、前記風車ブレードの荷重を求める荷重算出手段と、風速による空力トルクの最大と最小とのばらつきが所定値以下となる前記風車ブレードのピッチ角範囲および回転数範囲で取得された前記センサの計測データに基づいて、該関数を較正する較正手段とを具備する荷重計測装置である。
 このような構成によれば、荷重算出手段が保有している関数を較正する較正手段が設けられており、この較正手段が、風速による空力トルクの最大と最小とのばらつきが所定値以下となる風車ブレードのピッチ角範囲および回転数範囲で取得されたセンサの計測データに基づいて関数を較正するので、風速の条件を広範にすることができる。
 上記荷重計測装置において、前記較正手段は、前記空力トルクが所定値以下となる前記風車ブレードのピッチ角範囲および回転数範囲で取得された前記センサの計測データに基づいて、前記関数を較正することとしてもよい。
 これにより、空力トルクが所定値以下となる風車ブレードのピッチ角範囲で取得されたセンサの計測データを用いるので、空力トルクの影響を無視することができる。
 上記荷重計測装置において、前記較正手段は、無風時における前記風車ブレードの荷重及び前記風車ブレードのピッチ角並びにアジマス角が関連付けられたテーブルと、前記センサによって計測データが取得されたときの前記風車ブレードのピッチ角及びアジマス角に対応する風車ブレードの荷重を前記テーブルから取得する荷重取得手段と、前記センサの計測データから前記風車ブレードの歪を算出する歪算出手段と、前記荷重取得手段によって取得された前記風車ブレードの荷重と前記歪算出手段によって算出された歪との関係に基づいて前記関数のパラメータを較正するパラメータ算出手段とを具備することとしてもよい。
 このように、較正手段においてテーブルには無風時における風車ブレードの荷重及び風車ブレードのピッチ角並びにアジマス角が関連付けられ、計測データがセンサによって取得されたときの風車ブレードのピッチ角及びアジマス角に対応する風車ブレードの荷重が、荷重取得手段によってテーブルから取得され、歪算出手段によってセンサの計測データから風車ブレードの歪が算出され、荷重取得手段によって取得された風車ブレードの荷重と歪算出手段によって算出された歪との関係に基づいてパラメータ算出手段によって関数のパラメータが較正される。
 これにより、較正手段が有するテーブルは、アジマス角とピッチ角とに荷重が対応付けられているので、計測データが取得されたときのアジマス角とピッチ角がわかれば、その時の風車ブレードの荷重を簡便に把握することができる。また、計測データに基づいて算出された風車ブレードの歪と、計測データに基づいて決定される荷重との関係に基づいて関数のパラメータが較正されるので、計測データの歪を精度高く較正することができる。
 上記荷重計測装置において、前記較正手段は、前記荷重取得手段によって取得された風車ブレードの荷重と、前記センサの計測データとに基づいて、無荷重時における前記センサの計測データを求め、この無荷重時における計測データを用いて前記センサの計測データをオフセット較正することとしてもよい。
 これにより、センサの計測データに含まれる無荷重時における計測データが求められ、オフセットするので、計測データの精度を向上させることができる。
 上記荷重計測装置において、前記センサは、前記風車ブレードを挟んで対向する位置に設けられた一対の第1センサと、該第1センサと異なる位置であって、該風車ブレードを挟んで対向する位置に設けられた一対の第2センサとを具備することとしてもよい。
 これにより、1つの風車ブレードにおける異なる向きの荷重を計測できる。例えば、第1センサを風車ブレードの腹と背とに設け、第2センサを風車ブレードのエッジ側に設ければ、これらのセンサによって風車ブレードがフェザー側となる向きにかかる荷重と、ファイン側となる向きにかかる荷重とを計測できる。
 上記荷重計測装置において、前記センサは、前記風車ブレードを挟んで対向する位置であって、前記第1センサ及び前記第2センサと異なる位置であって、かつ、前記第1センサまたは前記第2センサのどちらかと平行する位置に設けられた一対の第3センサとを具備することとしてもよい。
 これにより、第3のセンサによって、荷重以外の情報の計測に使用することができる。
 本発明の第2の態様は、風車ブレードのピッチ角が可変とされている風車に適用される荷重計測装置であって、該風車ブレードの歪を求めるためのセンサと、該風車ブレードの歪と該風車ブレードの荷重との関係を表した関数を有し、該関数に該センサの計測データに基づく歪を用いることで、前記風車ブレードの荷重を求める荷重算出手段と、風速が3メートル以下である場合に、第1のアジマス角及び該第1のアジマス角から180度回転させた第2のアジマス角からなる2地点において、ピッチ角を最小ピッチ角と最大ピッチ角とに設定したときの各前記センサの計測データに基づいて、該関数を較正する較正手段とを具備する荷重計測装置である。
 このような構成によれば、荷重算出手段が保有している関数を較正する較正手段が設けられており、この較正手段は、風速が3メートル以下である場合に、第1のアジマス角及び第1のアジマス角から180度回転させた第2のアジマス角からなる2地点において、ピッチ角を最小ピッチ角と最大ピッチ角とに設定したときの各センサの計測データに基づいて、関数を較正するので、少ない計測データに基づいて関数を較正できる。
 本発明の第3の態様は、風車ブレードのピッチ角が可変とされている風車に適用される荷重計測方法であって、該風車ブレードの歪を求め、該風車ブレードの歪と該風車ブレードの荷重との関係を表した関数を有し、該関数に該センサの計測データに基づく歪を用いることで、前記風車ブレードの荷重を求め、風速による空力トルクの最大と最小とのばらつきが所定値以下となる前記風車ブレードのピッチ角範囲および回転数範囲で取得された前記センサの計測データに基づいて、該関数を較正する荷重計測方法である。
 本発明の第4の態様は、風車ブレードのピッチ角が可変とされている風車に適用される荷重計測プログラムであって、該風車ブレードの歪と該風車ブレードの荷重との関係を表した関数を有し、該関数に該センサの計測データに基づく歪を用いることで、前記風車ブレードの荷重を求める第1処理と、風速による空力トルクの最大と最小とのばらつきが所定値以下となる前記風車ブレードのピッチ角範囲および回転数範囲で取得された前記センサの計測データに基づいて、該関数を較正する第2処理とをコンピュータに実行させるための荷重計測プログラムである。
 本発明の第5の態様は、風車ブレードのピッチ角が可変とされている風車に適用される荷重計測方法であって、該風車ブレードの歪と該風車ブレードの荷重との関係を表した関数を有し、該関数に該センサの計測データに基づく歪を用いることで、前記風車ブレードの荷重を求め、風速が3メートル以下である場合に、第1のアジマス角及び該第1のアジマス角から180度回転させた第2のアジマス角からなる2地点において、ピッチ角を最小ピッチ角と最大ピッチ角とに設定したときの各前記センサの計測データに基づいて、該関数を較正する荷重計測方法である。
 本発明の第6の態様は、風車ブレードのピッチ角が可変とされている風車に適用される荷重計測プログラムであって、該風車ブレードの歪と該風車ブレードの荷重との関係を表した関数を有し、該関数に該センサの計測データに基づく歪を用いることで、前記風車ブレードの荷重を求める第1処理と、風速が3メートル以下である場合に、第1のアジマス角及び該第1のアジマス角から180度回転させた第2のアジマス角からなる2地点において、ピッチ角を最小ピッチ角と最大ピッチ角とに設定したときの各前記センサの計測データに基づいて、該関数を較正する第2処理とをコンピュータに実行させる荷重計測プログラムである。
 本発明によれば、観測条件によらずに、風車ブレードの荷重の較正を効率的に行うことができるという効果を奏する。
本発明の第1の実施形態に係る風力発電装置の全体の概略構成を示す図である。 翼根部を説明するための図である。 風車ブレードの翼根部から1.8メートルの位置における断面図の一例である。 翼根部から見たセンサ位置の配置を説明するための図である。 本発明の第1の実施形態に係る荷重測定装置の概略構成を示すブロック図である。 風速毎の空力トルク、発電機回転数、及びピッチ角の関係を示す図である。 較正部が有するテーブルの一例を示した図である。 アジマス角を説明するための図である。 計測データに基づいて歪と荷重との関係を示した一例の図である。 翼根部における荷重と歪波長との関係を示した一例の図である。 風速8メートル毎秒のときの領域Aの範囲におけるピッチ角の計測データを含んで較正を行った場合の荷重(フラップ方向)と無風時の荷重とを比較の一例を示した図である。 風速8メートル毎秒のときの領域Aの範囲におけるピッチ角の計測データを含んで較正を行った場合の荷重(エッジ方向)と無風時の荷重との比較の一例を示した図である。 風速8メートル毎秒のときの領域Aの範囲におけるピッチ角の計測データを含まずに較正を行った場合の荷重(フラップ方向)と無風時の荷重との比較の一例を示した図である。 風速8メートル毎秒のときの領域Aの範囲におけるピッチ角の計測データを含まずに較正を行った場合の荷重(エッジ方向)と無風時の荷重との比較の一例を示した図である。
1 風力発電装置
7 センサ
20 荷重算出部
30 較正部
31 テーブル
32 荷重取得部
33 歪算出部
34 パラメータ算出部 
100 荷重測定装置
 以下に、本発明に係る荷重測定装置及び方法並びにプログラムの一実施形態について、図面を参照して説明する。
〔第1の実施形態〕
 図1は、本実施形態に係る荷重測定装置100を適用した風力発電装置の概略構成を示した図である。本実施形態に係る風力発電装置1は、風車ブレード10のピッチ角が可変とされている風車である。
 風力発電装置1は、図1に示されるように、支柱2と、支柱2の上端に設置されるナセル3と、略水平な軸線周りに回転可能にしてナセル3に設けられるロータヘッド(ハブ)4とを有している。ロータヘッド4には、その回転軸線周りに放射状に3枚の風車ブレード10が取り付けられている。これにより、ロータヘッド4の回転軸線方向から風車ブレード10に当たった風の力が、ロータヘッド4を回転軸線周りに回転させる動力に変換され、この動力が発電機によって電気エネルギーに変換されるようになっている。
 各風車ブレード10には、風車ブレード10の歪を求めるための複数のセンサ(センシング部)7が設けられている。センサ7は、例えば、FBG(Fiber Bragg Grating sensor)である。FBGは、ブラッグ格子の刻まれた光ファイバセンサで、反射光の波長変化に基づいて、歪、熱膨張による格子間隔変化を検出する。
 また、ロータヘッド4には、上記センサ7(センシング部)における計測結果を受信する信号処理部(図示略)を備えている。
 具体的には、各風車ブレード10には、第1センサと第2センサと第3センサとが設けられている。第1センサ、第2センサ、及び第3センサは、それぞれ風車ブレード10を挟んで対向する位置に設けられた一対のセンサを有する。好ましくは、第1センサ及び第2センサは、各々を構成する2つのセンサを結ぶ直線が略垂直に交わるように設けられているとよい。第3センサは、例えば、温度補償用に用いられるセンサであり、第1センサまたは第2センサの周辺に設けられている。
 図2は、風車ブレードに取り付けられたセンサ7(センシング部)の位置を説明するための図である。図2に示されるように、本実施形態において、センサ7は、例えば風車ブレード10の付け根から1.8メートル離れた位置に設けられている。付け根とは、図2に示されるように風車ブレード10とロータヘッド4との境界である。本実施形態においては、この付け根を「翼根部」という。
 図3は、センサ7が取り付けられた風車ブレード10の翼根部から1.8メートルの位置における断面図を示した図である。図3において、風車ブレード10の背側21にはセンサA3、及び腹側22にはセンサA1が設けられ、第1センサが構成されている。また、A3と同じ位置にはセンサA5、A1と同じ位置にはセンサA6が設けられ、第3センサが構成されている。また、風車ブレード10の前縁23の方向にはセンサA2、及び後縁24の方向にはセンサA4が設けられ、第2センサを構成する。
 図4は風車ブレード10の翼根部から見た場合の風車ブレード10に取り付けられたセンサ7の配置を模式的に示した図である。図4に示すように、本実施形態では、センサA1が設けられている位置をHP、センサA3が設けられている位置をLP、センサA2が設けられている位置をLE、センサA4が設けられている位置をTEと定義する。また、図4において、チルト角はタワーの鉛直軸線に対する風車ブレード10の回転面の傾斜角度であり、運転時において風力によって風車ブレード10が変形したとしても、風車ブレード10とタワーとが接触するのを防ぐためにこのような傾斜角度が設けられている。このチルト角については、後述の計算においては無視してもよいし、考慮に入れても良い。
 次に、本実施形態に係る荷重測定装置100の構成について詳細に説明する。
 図5は、荷重測定装置100が備える機能を展開して示した機能ブロック図である。
 図5に示されるように、本実施形態に係る荷重測定装置100は、荷重算出部(荷重算出手段)20と、較正部(較正手段)30とを備えている。
 荷重算出部20は、風車ブレードの歪と風車ブレード10の荷重との関係を表した関数を有し、この関数にセンサA1~A6の計測データに基づく歪を用いることで、風車ブレード10の荷重を求める。
 較正部30は、風速による空力トルクの最大と最小とのばらつきが所定値以下となる風車ブレード10のピッチ角範囲および回転数範囲で取得されたセンサの計測データに基づいて、上述の関数を較正する。なお、空力トルクが所定値以下となる風車ブレード10のピッチ角範囲の条件、および回転数範囲の条件を満たす期間に取得されたセンサの計測データを用いると、なおよい。
 具体的に、較正部30によって関数の較正に用いられるセンサの計測データについて説明する。
 図6は、風車ブレード10をファイン側(ピッチ角21度)から、フェザー側(ピッチ角109度)に変化させ、風車ブレード10が停止されるまでの空力トルクの変化を風速毎(風速4m毎秒から12m毎秒)に示した図である。ピッチ角が21度や109度とは、風車ブレード10を風車ロータ3に取り付けた時に決定される翼基準線の位置を0度とした場合の風車ブレード10の角度である。ここで、ピッチ角0度とは、翼根断面上で定義される翼基準線上の角度であり、この線とロータ平面がなす角度とがピッチ角である。
 図6を得る際には、ピッチ角21度から45度の範囲では2.5度毎秒の速さ、ピッチ角45度から109度の範囲では1.0度毎秒の速さで3つの風車ブレード10を同時に変化させ、このときの3つの風車ブレード10における計測データを取得する。また、風車ブレード10は、ピッチ角を変化させることによって回転され、遊転の状態となっている。遊転とは、風力発電装置1が発電しない範囲で、風車ブレード10を回転させる状態(例えば、低速で風車ブレード10が回転する状態)である。
 なお、3つの風車ブレード10の全てに対して同様の処理を行うため、以下の説明では、1つの風車ブレード10について説明することとする。
 図6に示されるように、風力発電装置が発電している期間と、停止等のためにピッチ角をフェザー側に開くことによりロータの回転を止めようとする力である空力ブレーキが強くかかる期間とを含めて領域Aとする。図6に示されるように、領域Aにおいては、風速に応じて異なる空力トルクがかかっている。その後、領域Aより右側(換言すると、ピッチ角は60度よりも大きく、かつ、発電機の回転数は0から300rpm(周波数60Hzの場合))である場合には、いずれの風速であってもトルクの値はおよそ-300キロニュートンメートル以上となり、空力トルクの影響を無視できるような小さなトルクとなっている。
 なお、図6において、領域Aより右側における回転数範囲の条件は、0から300rpmとしていたが、これに限定されず、周波数に応じて設定するとよい。例えば、50Hzの場合には、回転数範囲の条件を0から250rpmとすることとしてもよい。
 このように、較正部30は、領域Aでない領域である部分、即ち、風速によらない空力トルクとなる範囲で取得された計測データを用いることとする。換言すると、空力トルクの最大と最小とのばらつきが所定値以下となる範囲のピッチ角である、ピッチ角60度から109度の範囲で取得された計測データを用いることとする。なお、領域Aでない領域のデータを用いる根拠については後述することとする。
 より具体的には、較正部30は、テーブル31、荷重取得部(荷重取得手段)32、歪算出部(歪算出手段)33、及びパラメータ算出部34を備えている。
 較正部30は、荷重取得部32によって取得された風車ブレード10の荷重と、センサ7の計測データとに基づいて無荷重時におけるセンサ7の計測データを求め、この無荷重時における計測データを用いてセンサ7の計測データをオフセット較正する。これにより、センサ7自身に含まれる測定誤差を考慮するので、較正の精度を向上することができる。
 テーブル31は、無風時(較正を行う上で理想的な環境条件)における風車ブレード10の翼根部における荷重及び風車ブレード10のピッチ角並びにアジマス角が関連付けられたものであり、例えば、図7に示されるような一覧表(テーブル)として与えられ、風車ブレード10のアジマス角とピッチ角との組み合わせに対応付けられた翼根部における荷重の値α、α、α、α・・・が格納されている。
 上記アジマス角とは、図8に示されるように、風車ブレード10の回転面において、所定の基準と風車ブレード10の軸線とのなす角をいい、本実施形態では、風車ブレード10が最上部に位置したときを基準としている。従って、風車ブレード10が風車の最上部に位置したときのアジマス角度は0度、最下部に位置したときのアジマス角度は180度である。
 図7に示されるような一覧表(テーブル)において、翼根部におけるモーメントは、以下に示す(1)式により、各センサA1~A4の位置における自重によるモーメントをそれぞれ計算し、これらのモーメントを座標変換することで、得ることができる。
 M=9.8×W×l×sinθ・cosβ [Nm]  (1)
 上記(1)式において、Wは、風車ブレード10の重量、lは、風車ブレード10の翼根部から測定した重心位置(製造の段階で既知の値である)、θは、アジマス角とチルト角との関数、βは、ピッチ角とチルト角との関数である。
 荷重取得部32は、センサ7によって計測データが取得されたときの風車ブレード10のピッチ角及びアジマス角に対応する風車ブレード10の翼根部における荷重をテーブル31から取得する。
 歪算出部33は、センサ7の計測データから風車ブレード10の歪を算出する。具体的には、センサ7の計測データから歪波長を抽出し、歪波長を所定の関数に基づいて歪に変換する。より具体的には、センサ7の計測データは、ロータヘッド4に設けられる図示しない信号処理部において歪波長データが数値に変換され、数値として得られた歪波長を、歪εに変換する。また、歪εは、以下の(2)式で求められる。
ε=P{(λ-λ)-α(λ-λTi)}  (2)
 上記(2)式において、λは第1センサ(第2センサ)による計測データ、λは第1センサ(第2センサ)による無荷重時の計測データ、λは第3センサによる計測データ、λTiは第3センサによる無荷重時の算出データ、pは歪光学定数(809με/nm)、αは温度補償係数(2.2)である。なお、λは、計測データの平均値であり、以下の(3)式で求められる。
λ=(λmax+λmin)/2   (3)
 上記(3)式において、λmaxは、データの最大ピーク値を示し、λminは、最小ピーク値を示す。
 このように、第1センサを構成する各センサA1,A3、第2センサを構成する各センサA2,A4においてそれぞれ歪を算出するので、4つの歪が算出される。さらに、第1センサを構成する各センサA1,A3から得られた歪の差分を算出することにより風車ブレード10のフラップ方向(図4におけるHP-LPの方向)に対する歪ε、及び第2センサを構成する各センサA2,A4における歪の差分を算出することにより風車ブレード10のエッジ方向(図4におけるLE-TEの方向)に対する歪εを算出する。
 パラメータ算出部34は、荷重取得部32によって取得された風車ブレード10の荷重と、歪算出部33によって算出された歪との関係に基づいて関数のパラメータを較正する。具体的には、歪ε、εを算出した元データとなった計測データを、取得したタイミングにおけるアジマス角とピッチ角とに関連付けられた風車ブレード10の翼根部における荷重と、歪ε、εとの関係に基づいて新たな関数を構成し、新たな関数の係数を用いて、荷重算出部20に有する関数の係数を較正する。このとき、新たな関数は、フラップ方向について1つ、エッジ方向において1つ作成される。
 例えば、上記歪εをセンサの位置におけるモーメントに変換するには、以下の(4)式が用いられる。なお、dはセンサ7の設置位置(翼根部から1.8メートル)における風車ブレード10の内径、Lは風車ブレード10の番号(L=1、2、3)、Eは翼材(FRP)のヤング率、Iはセンサの設置位置における断面二次モーメント、Msensorはセンサ設置位置における曲げモーメント(荷重)、ε2L-1とε2Lとは一対のセンサ(第1センサまたは第2センサ)の計測データに基づく歪、ε2L-1,0とε2L,0とは第1センサまたは第2センサの歪の初期値である。
Figure JPOXMLDOC01-appb-M000001
 ここで、このモーメントを風車ブレード10の翼根部におけるモーメントMrootとセンサ7の設置位置(例えば、風車ブレード10の翼根部から1.8mの場所)におけるモーメントMsensorとの比をβ(>1)とすると、次式が得られる。
ただし、
Figure JPOXMLDOC01-appb-M000002
 上記(5)式に示されるように、翼根部におけるモーメントMrootは、係数a、bをパラメータとし、一対のセンサ(第1センサまたは第2センサ)による歪を変数とする一次関数として表わされる。
 このことから、横軸に歪εまたはεとした場合に、縦軸にそのアジマス角及びピッチ角の場合のモーメントMrootとするグラフを作成した場合に、この一次関数に基づいて得られる傾きaと切片bとを算出することにより、係数aとbとをパラメータとして算出することができる。
 次に、上記一次関数をグラフ化する方法について説明する。
 横軸は各風車ブレード10におけるフラップ方向の歪εとエッジ方向の歪εとし、縦軸はテーブル31から取得した歪εと歪εとに対応した荷重(モーメント)Mrootとしてグラフ化し、このグラフから傾きaと切片bとを抽出する。より具体的には、図9に示されるようなグラフが作成され、このようなグラフに基づいてそれぞれの風車ブレード10のフラップ方向の場合の係数a及びbと、エッジ方向の場合の係数a及びbを算出する。例えば、1番目の風車ブレード10#1におけるフラップ方向のパラメータとしてa=2.014×109、b=-0.448×10とする。同様にして、風車ブレード10#2、風車ブレード10#3に対してそれぞれフラップ方向とエッジ方向との係数a、およびbを算出する。
 このように、パラメータ算出部34は、係数a及びbを算出すると、これを荷重算出部20に出力する。これにより、荷重算出部20の関数のパラメータは較正されることとなり、荷重算出部20の関数にセンサから取得された計測データを用いることによって、得られる翼根部におけるモーメントが較正されることとなる。
 次に、本実施形態に係る荷重測定装置の較正部30の作用について説明する。なお、各風車ブレード10に対して行う処理は同じであるので、以下の説明においては、1つの風車ブレード10に対する処理を例に挙げて説明する。
 まず、本実施形態においては、ピッチ角を60度から109度まで変化させ、このときの各センサA1~A6の計測データを取得する。計測データは、較正部30の荷重取得部32に与えられる。
 荷重取得部32はテーブル31を参照し、各センサA1~A6から計測された計測データのアジマス角とピッチ角との情報に関連付けられた翼根部における荷重を読み出す。続いて、荷重取得部32は、センサ毎に、縦軸にセンサの計測データ、横軸に翼根部における荷重を示したグラフを作成し(図10を参照)、これら各グラフから横軸の荷重の値が「0」であるときの歪波長をそれぞれ読み出す。この値は、無荷重時におけるセンサの計測データ、即ち、各センサのオフセット値に相当する。荷重取得部32は、各センサのオフセット値とともに、テーブル31から読み出した翼根部における荷重の情報及び該荷重が得られたときの各センサのデータを歪算出部33に出力する。このように荷重取得部32によって各センサのオフセット値が求められることにより、以降の処理において、センサ自身に含まれる測定誤差が較正され、荷重の測定精度を向上させることができる。
 歪算出部33は、センサA1~A6の計測データから歪波長をそれぞれ抽出し、各センサから算出された計測データと、無荷重時の計測データとに基づいて、上記の(2)式を用いて、各センサ位置における歪(自重モーメント)εを算出する。例えば、センサA1における歪εA1は、以下の(2)´から求められる。
εA1=P{(λHP-λHPi)-α(λHPT-λHPTi)}  (2)´
 上記(2)´において、λHPはセンサA1の歪波長データ、λHPTは、センサA1の周辺に設置された温度補償用のセンサA5の歪波長データ、λHPiはセンサA1のオフセット値(無荷重時の計測データ)、λHPTiはセンサA5のオフセット値(無荷重時の計測データ)である。
 歪算出部33は、同様の算出処理により、センサA3,A2,及びA4のそれぞれに対して歪εを算出する。これにより、歪εはεA1、εA2、εA3、εA4の合計4個算出される。歪算出部33は、各センサA1~A4に対する歪εA1~A4を算出すると、これらの値と荷重取得部32から入力された翼根部における荷重の情報とをパラメータ算出部34に出力する。
 パラメータ算出部34は、各センサに対する歪εA1~A4と、荷重取得部32から入力された翼根部における荷重の情報との関係に基づいて、風車ブレード10の歪と風車ブレード10の翼根部における荷重との関係が示された関数のパラメータを較正する。
 具体的には、風車ブレード10の翼根部における荷重の情報と風車ブレード10の歪との関係式は、上述した(5)式のように表される。具体的には、この関係式は、第1センサに対して一つ、第2センサに対して一つ求められ、一枚の風車ブレード10に対して2つの関係式が作成される。例えば、第1センサの場合には、上記関係式は、以下の(5)´式で表わされる。
HP-LP=a(εA1-εA3)×10-6+b  [Nm]  (5)´
 (5)式において、εA1は(2)´に基づいて算出されたセンサA1の位置における歪、εA3は同様の算出式に基づいて算出されたセンサA3の位置における歪である。
 ここで、上記(5)´式のフラップ方向(図4におけるHP-LPの方向)の歪の差分εA1-εA3を横軸とし、MHP-LPを縦軸とすると、図9に示されるようなグラフが得られる。このように、歪εA1~A4と翼根部における荷重の情報との関係をグラフ化すると、このグラフの切片と傾きを導くことができ、上記(5)´式の係数a(傾き)と係数b(切片)とを算出できる。1つの風車ブレード10において係数aとbの組み合わせがフラップ方向とエッジ方向との2つずつ算出される。
 そして、上記センサの計測から係数の算出までの処理を繰り返し行うことで、複数の係数を得、これらの係数の平均値を用いることにより、較正後の関数式を得る。例えば、最大値と最小値をそれぞれ省くことで、ノイズなどの突発したデータを取り除くことができる。なお、ここでノイズでないデータを取り除いても平均値の算出には影響を与えない。
 そして、このようにして、信頼度の高い関係式、換言すると、較正後の関係式が得られた後は、荷重計算部32がこの関係式を用いて各センサの計測データから風車ブレード10の翼根部における荷重を算出する。これにより、信頼度の高い荷重を算出することが可能となる。
 なお、本実施形態において、各センサA1~A6によって計測される計測データのうち、図6の領域Aでない領域のデータを用いることとしていたが、これは較正の精度を向上させるためである。具体的には、上述した係数a及びbを求める場合に、無風時に得られるモーメント(較正を行う場合の理想的なモーメント)に近似するためである。より具体的に、図11A、Bと、図12A、Bとを用いて説明する。
 図11Aは横軸に無風時のフラップ方向のモーメント、縦軸に風速8メートルの場合のフラップ方向のモーメントを示している。図11Bは同様にエッジ方向のモーメントを比較している。図11A及び図11Bは、図6の領域Aを含む計測データによって係数a、bを求めた場合に得られる関数であり、理想的な無風時のデータと比較した場合である。理想的な無風時の関数の関数をy=xであるのに対し、領域Aを含む計測データを用いて係数a及びbを算出すると、y=0.9701x-31.88となる。また、無風時のモーメントと領域Aを含む計測データから算出されるモーメントとを比較すると、y=xからずれた位置に点が多く存在している。これにより、領域Aの計測データを含んで算出された係数a、bを用いて得られる荷重は、無風時の荷重と比較して誤差が大きくなることを示している。
 一方、図12A及び図12Bは、図11A及び図11Bと同様に横軸に無風時のモーメント、縦軸に風速8メートルの場合のモーメントを示しているが、図6の領域Aにおいて得られた計測データを除外した計測データを用いて係数a及びbを算出した場合の図である。例えば、図12Aに示されるように、領域Aを含まない計測データを用いて係数a、bを算出した場合には、y=0.9968x-3.322となる。また、これにより得られる荷重の結果は、グラフを見てもわかるように、無風時のモーメントと風速8メートルの場合のモーメントとがほぼ一致している。これにより領域Aの計測データを含まないで得られた係数a、bによって関数が較正されることにより、無風時の荷重により近似させることができることとなる。
 なお、センサによる計測データを取得する場合は、風車ブレード10を少なくともアジマス角0度から180度に1回、回転させればよいこととし、180度の回転で1つの較正用のデータファイルを生成することとするが、アジマス角の回転回数は特に限定されない。なお、本実施形態では、360度の回転で1つの較正用のデータファイルを生成するように構成されている。
  より具体的には、ピッチ角を109度から60度、または60度から109度に動かすことで、ロータは遊転をはじめる。ここでは、ピッチ角を109度から60度に動かすことによって少なくともロータを1回転させ、1データファイルを取得する。同様に、ピッチ角を60度から109度に動かすことによって少なくともロータを1回転させ1データファイルを取得する。
 即ち、本実施形態では、空力の影響を除く範囲において、ピッチ角をファイン側へ動作させる際に、少なくともロータが1回転する条件で一の較正用データファイルを取得する。同様に、ピッチ角をフェザー側へ動作させる際に一の較正用データファイルを取得する。
 本実施形態では、上述したようなピッチ角動作を行うことによって、10の較正用データファイルを取得する。
 さらに、このような10回分の較正用のデータ(つまり、係数a及びb)が算出された場合には、これらの平均値を算出することにより、係数a及びbの信頼性を検証するとよい。
 また、Xは較正用のデータ(無荷重時の計測データ18点、較正用データ(各風車ブレード10のエッジ方向とフラップ方向のデータ)12点)、Nはピッチ角を109度から60度から109°度(1周期)と動作させた回数を示す。また、mを平均値とする。なお、ここでは、2N個の較正用データファイルから最大及び最小のデータを省き、2(N-1)個の平均値を求める。そして、キャリブレーション値a、bの平均値が下記の範囲条件を満たすか否かを検証する。基準値を満たす場合、較正用データの平均値を現地パラメータとする。
Figure JPOXMLDOC01-appb-M000003
〔平均値〕
〔基準値の検証〕
1.7×10<a<2.7×109   (9)
-100kNm<b<100kNm  (10)
 以上説明してきたように、風車ブレード10に設けられたセンサによって計測データを取得し、取得したデータに基づいて風車ブレード10の歪と荷重とが算出される。荷重算出部20に備えられた関数は、計測データに基づいて算出された風車ブレード10の歪と荷重との関係から得られる新たな関数の係数によって較正される。これにより、計測データから簡便に新たな関数が算出できるので、簡便に較正のための係数を決定することができる。
 なお、このとき使用される計測データは、空力トルクの最大と最小とのばらつきが所定値以下となる風車ブレード10のピッチ角範囲で取得されたセンサの計測データが用いられ、空力トルクの影響を無視できる計測データを使用するので、較正の精度を向上させることができる。
 また、センサ自身の持つ歪を算出し、オフセットすることにより、より較正の精度を向上させることができる。さらに、計測データを取得するには、空力トルクの最大と最小のばらつきが所定値以下となる風車ブレード10のピッチ角範囲(例えば、ピッチ角60度から109度の範囲)で取得された計測データであればよく、特にアジマス角に限定されることがないので、広範な計測データを、較正のために用いることができる。
 また、このような計測データの取得、荷重及び歪の算出、及びその較正データの信頼性の検証を荷重測定装置100によって行うので、較正作業にかかる時間を短縮できるとともに、ユーザにかかる負担を低減することができる。
 なお、上述した実施形態では、荷重測定装置としてハードウェアによる処理を前提としていたが、このような構成に限定される必要はない。例えば、各センサからの出力信号に基づいて別途ソフトウェアにて処理する構成も可能である。この場合、荷重測定装置は、CPU、RAM等の主記憶装置、上記処理の全て或いは一部を実現させるためのプログラムが記録されたコンピュータ読み取り可能な記録媒体を備えている。そして、CPUが上記記憶媒体に記録されているプログラムを読み出して、情報の加工・演算処理を実行することにより、上述の荷重測定装置と同様の処理を実現させる。
 ここでコンピュータ読み取り可能な記録媒体とは、磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリ等をいう。また、このコンピュータプログラムを通信回線によってコンピュータに配信し、この配信を受けたコンピュータが当該プログラムを実行するようにしても良い。
〔変形例〕
 また、本実施形態に係る荷重測定装置100において、空力トルクの最大と最小とのばらつきが所定値以下となる風車ブレード10のピッチ角範囲で取得されたセンサの計測データに基づいて、上述の関数を較正することとしていたが、これに限定されない。例えば、ピッチ角範囲に代えて風車ブレード10の回転数の範囲とし、風速による空力トルクの最大と最小とのばらつきが所定値以下となる風車ブレードの回転数の範囲で取得されたセンサのデータに基づいて、関数を較正することとしてもよい。
 なお、本実施形態に係る風力発電装置1において、複数の風車ブレード10の枚数は3枚としていたが、風車ブレード10の枚数は特に限定されない。
 また、本実施形態に係る荷重測定装置100において、1つの風車ブレード10に対し、取り付けられるセンサは6個であったが、センサの個数は特に限定されない。
 また、本実施形態に係る荷重測定装置100において、テーブル31は、アジマス角とピッチ角とから算出されることとしていたが、これに限定されない。例えば、較正部30に予めテーブルが与えられていることとしてもよい。
〔第2の実施形態〕
 次に、本発明の第2の実施形態について説明する。
 本実施形態の荷重測定装置が第1の実施形態と異なる点は、アジマス角及びピッチ角の角度データを所定の値に限定し、風速を負の空力トルクが小さい範囲に限定してデータを取得する点である。以下、本実施形態の荷重測定装置について、第1の実施形態と共通する点については説明を省略し、異なる点について主に説明する。
 センサ7は、風速が3メートル以下である場合に、第1のアジマス角及び第1のアジマス角から180度回転させた第2のアジマス角からなる2地点において、ピッチ角を最小ピッチ角と最大ピッチ角とに設定したときの計測データを計測する。
 より具体的には、センサは、風速が3メートル以下で、風車ブレード10のアジマス角は90度と270度の位置にある場合であり、かつ、それぞれのアジマス角においてピッチ角は21度と109度に設定された状態である場合に計測データを取得する。
 1つの風車ブレード10のデータを計測している場合には、他の2つの風車ブレード10のピッチ角は、例えば、85度等に設定し、遊転状態とする。
 このようにアジマス角を180度回転させた位置にある2地点から計測されたデータを用いることにより、パラメータ算出部34から算出される関数に用いられる計測データは横軸に対して広範囲なデータを取得できることとなる。これにより、少ない計測データで係数aとbとを算出する場合の精度を向上させることができる。また、少ない計測データでパラメータが算出できるので、較正にかかる時間を短縮することができる。
 以上、本発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。

Claims (11)

  1.  風車ブレードのピッチ角が可変とされている風車に適用される荷重計測装置であって、
     該風車ブレードの歪を求めるためのセンサと、
     該風車ブレードの歪と該風車ブレードの荷重との関係を表した関数を有し、該関数に該センサの計測データに基づく歪を用いることで、前記風車ブレードの荷重を求める荷重算出手段と、
     風速による空力トルクの最大と最小とのばらつきが所定値以下となる前記風車ブレードのピッチ角範囲および回転数範囲で取得された前記センサの計測データに基づいて、該関数を較正する較正手段と
     を具備する荷重計測装置。
  2.  前記較正手段は、前記空力トルクが所定値以下となる前記風車ブレードのピッチ角範囲および回転数範囲で取得された前記センサの計測データに基づいて、前記関数を較正する請求項1に記載の荷重計測装置。
  3.  前記較正手段は、
     無風時における前記風車ブレードの荷重及び前記風車ブレードのピッチ角並びにアジマス角が関連付けられたテーブルと、
     前記センサによって計測データが取得されたときの前記風車ブレードのピッチ角及びアジマス角に対応する風車ブレードの荷重を前記テーブルから取得する荷重取得手段と、
     前記センサの計測データから前記風車ブレードの歪を算出する歪算出手段と、
     前記荷重取得手段によって取得された前記風車ブレードの荷重と前記歪算出手段によって算出された歪との関係に基づいて前記関数のパラメータを較正するパラメータ算出手段と
     を具備する請求項1または請求項2に記載の荷重計測装置。
  4.  前記較正手段は、
     前記荷重取得手段によって取得された風車ブレードの荷重と、前記センサの計測データとに基づいて、無荷重時における前記センサの計測データを求め、この無荷重時における計測データを用いて前記センサの計測データをオフセット較正する請求項3に記載の荷重計測装置。
  5.  前記センサは、
     前記風車ブレードを挟んで対向する位置に設けられた一対の第1センサと、
     該第1センサと異なる位置であって、該風車ブレードを挟んで対向する位置に設けられた一対の第2センサと
     を具備する請求項1から請求項4のいずれかに記載の荷重計測装置。
  6.  前記センサは、
     前記風車ブレードを挟んで対向する位置であって、前記第1センサ及び前記第2センサと異なる位置であって、かつ、前記第1センサまたは前記第2センサのどちらかと平行する位置に設けられた一対の第3センサと
     を具備する請求項1から請求項5のいずれかに記載の荷重計測装置。
  7.  風車ブレードのピッチ角が可変とされている風車に適用される荷重計測装置であって、
     該風車ブレードの歪を求めるためのセンサと、
     該風車ブレードの歪と該風車ブレードの荷重との関係を表した関数を有し、該関数に該センサの計測データに基づく歪を用いることで、前記風車ブレードの荷重を求める荷重算出手段と、
     風速が3メートル以下である場合に、第1のアジマス角及び該第1のアジマス角から180度回転させた第2のアジマス角からなる2地点において、ピッチ角を最小ピッチ角と最大ピッチ角とに設定したときの各前記センサの計測データに基づいて、該関数を較正する較正手段と
     を具備する荷重計測装置。
  8.  風車ブレードのピッチ角が可変とされている風車に適用される荷重計測方法であって、
     該風車ブレードの歪を求め、
     該風車ブレードの歪と該風車ブレードの荷重との関係を表した関数を有し、該関数に該センサの計測データに基づく歪を用いることで、前記風車ブレードの荷重を求め、
     風速による空力トルクの最大と最小とのばらつきが所定値以下となる前記風車ブレードのピッチ角範囲および回転数範囲で取得された前記センサの計測データに基づいて、該関数を較正する
     荷重計測方法。
  9.  風車ブレードのピッチ角が可変とされている風車に適用される荷重計測プログラムであって、
     該風車ブレードの歪と該風車ブレードの荷重との関係を表した関数を有し、該関数に該センサの計測データに基づく歪を用いることで、前記風車ブレードの荷重を求める第1処理と、
     風速による空力トルクの最大と最小とのばらつきが所定値以下となる前記風車ブレードのピッチ角範囲および回転数範囲で取得された前記センサの計測データに基づいて、該関数を較正する第2処理と
     をコンピュータに実行させるための荷重計測プログラム。
  10.  風車ブレードのピッチ角が可変とされている風車に適用される荷重計測方法であって、
     該風車ブレードの歪と該風車ブレードの荷重との関係を表した関数を有し、該関数に該センサの計測データに基づく歪を用いることで、前記風車ブレードの荷重を求め、
     風速が3メートル以下である場合に、第1のアジマス角及び該第1のアジマス角から180度回転させた第2のアジマス角からなる2地点において、ピッチ角を最小ピッチ角と最大ピッチ角とに設定したときの各前記センサの計測データに基づいて、該関数を較正する
     荷重計測方法。
  11.  風車ブレードのピッチ角が可変とされている風車に適用される荷重計測プログラムであって、
     該風車ブレードの歪と該風車ブレードの荷重との関係を表した関数を有し、該関数に該センサの計測データに基づく歪を用いることで、前記風車ブレードの荷重を求める第1処理と、
     風速が3メートル以下である場合に、第1のアジマス角及び該第1のアジマス角から180度回転させた第2のアジマス角からなる2地点において、ピッチ角を最小ピッチ角と最大ピッチ角とに設定したときの各前記センサの計測データに基づいて、該関数を較正する第2処理と
     をコンピュータに実行させる荷重計測プログラム。
     
PCT/JP2009/058139 2009-04-24 2009-04-24 荷重測定装置及び方法並びにプログラム WO2010122658A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
KR1020107019906A KR101227327B1 (ko) 2009-04-24 2009-04-24 하중 측정 장치 및 방법 및 프로그램
CA2714852A CA2714852C (en) 2009-04-24 2009-04-24 Load measuring apparatus, method, and program
BRPI0909359A BRPI0909359A2 (pt) 2009-04-24 2009-04-24 aparelho de medição de carga, método e programa
US12/601,313 US8255173B2 (en) 2009-04-24 2009-04-24 Load measuring apparatus, method, and program
JP2009550120A JP4959814B2 (ja) 2009-04-24 2009-04-24 荷重測定装置及び方法並びにプログラム
PCT/JP2009/058139 WO2010122658A1 (ja) 2009-04-24 2009-04-24 荷重測定装置及び方法並びにプログラム
EP09749312.6A EP2431607B1 (en) 2009-04-24 2009-04-24 Load measuring device, method and program
CN200980111176.1A CN102439301B (zh) 2009-04-24 2009-04-24 负载测量装置及其方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/058139 WO2010122658A1 (ja) 2009-04-24 2009-04-24 荷重測定装置及び方法並びにプログラム

Publications (1)

Publication Number Publication Date
WO2010122658A1 true WO2010122658A1 (ja) 2010-10-28

Family

ID=43010794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/058139 WO2010122658A1 (ja) 2009-04-24 2009-04-24 荷重測定装置及び方法並びにプログラム

Country Status (8)

Country Link
US (1) US8255173B2 (ja)
EP (1) EP2431607B1 (ja)
JP (1) JP4959814B2 (ja)
KR (1) KR101227327B1 (ja)
CN (1) CN102439301B (ja)
BR (1) BRPI0909359A2 (ja)
CA (1) CA2714852C (ja)
WO (1) WO2010122658A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013139732A (ja) * 2011-12-28 2013-07-18 Mitsubishi Heavy Ind Ltd 風力発電用風車の衝撃荷重監視システム及び衝撃荷重監視方法
CN103502789A (zh) * 2010-12-30 2014-01-08 Lmwp专利控股有限公司 用于确定风力涡轮机叶片的载荷的方法和装置
JP2016156674A (ja) * 2015-02-24 2016-09-01 三菱重工業株式会社 風車翼の損傷検知方法及び風車
US9574457B2 (en) 2010-12-30 2017-02-21 LM WP Patent Holdings A/S Method and apparatus for determining loads of a wind turbine blade
JP2017053780A (ja) * 2015-09-11 2017-03-16 三菱重工業株式会社 荷重計測装置の較正方法、風車翼の荷重計測システム及び風車
US10400750B2 (en) 2015-09-11 2019-09-03 Mitsubishi Heavy Industries, Ltd. Wind turbine power generating apparatus and method of connecting the same
CN114323602A (zh) * 2021-11-30 2022-04-12 明阳智慧能源集团股份公司 一种风机叶片静力测试方法及系统
JP2022168363A (ja) * 2021-04-26 2022-11-08 三菱重工業株式会社 風車翼の診断方法

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110049886A1 (en) * 2009-08-28 2011-03-03 Prueftechnik Dieter Busch Ag Device and method for detecting the loading of pivoted rotor blades
DE102009058595A1 (de) * 2009-12-17 2011-06-22 Siemens Aktiengesellschaft, 80333 Detektion einer Verformung eines Flügels einer Windkraftanlage
DE102010011549A1 (de) * 2010-03-15 2011-09-15 Repower Systems Ag Wartungsazimutwinkel
DK2659133T3 (da) * 2010-12-30 2022-05-02 Lm Wp Patent Holding As Vindmøllevinge med tværsnitssensorer
US9447778B2 (en) * 2011-11-02 2016-09-20 Vestas Wind Systems A/S Methods and systems for detecting sensor fault modes
EP2597302B1 (en) * 2011-11-23 2014-04-30 Siemens Aktiengesellschaft Determining an accumulated load of a wind turbine in angular sectors
US8511177B1 (en) 2011-12-15 2013-08-20 Shaw Shahriar Makaremi Blade condition monitoring system
US8757003B1 (en) 2011-12-15 2014-06-24 Shaw Shahriar Makaremi Multi-frequency-band blade condition monitoring system
US9383436B2 (en) * 2012-01-18 2016-07-05 Tdc Acquisition Holdings, Inc. One way time of flight distance measurement
DK2885531T3 (en) * 2012-08-17 2017-07-17 Lm Wp Patent Holding As A wing deflection monitoring system
KR20150080845A (ko) * 2014-01-02 2015-07-10 두산중공업 주식회사 풍력 발전기용 블레이드의 제어장치, 제어방법, 및 이를 이용하는 풍력 발전기
CN109072883B (zh) * 2016-02-23 2020-11-10 Lm Wp 专利控股有限公司 叶片偏转监测系统
US11098698B2 (en) * 2016-04-07 2021-08-24 General Electric Company System and method for auto-calibrating a load sensor system of a wind turbine
JP6663369B2 (ja) 2017-02-13 2020-03-11 三菱重工業株式会社 風車翼の損傷検知方法及び風車
US10539119B2 (en) 2017-07-10 2020-01-21 WindESCo, Inc. System and method for augmenting control of a wind turbine assembly
DE102018009334A1 (de) * 2018-11-28 2020-05-28 Senvion Gmbh Verfahren zum Betrieb einer Windenergieanlage, Windenergieanlage und Computerprogrammprodukt
CN113454335A (zh) * 2018-12-20 2021-09-28 维斯塔斯风力系统集团公司 修正桨距角
CN113833597A (zh) * 2020-06-08 2021-12-24 江苏金风科技有限公司 叶片、风力发电机组、监控系统及监控方法
CN112628078A (zh) * 2020-11-09 2021-04-09 华能饶平风力发电有限公司 一种具有叶片自检功能的风力发电机
CN114689237B (zh) * 2020-12-31 2023-04-07 新疆金风科技股份有限公司 载荷传感器标定方法、装置及计算机可读存储介质
EP4296507A1 (de) * 2022-06-23 2023-12-27 Wobben Properties GmbH Verfahren zum parametrieren einer sensoranordnung aus mehreren lastsensoren eines rotorblattes einer windenergieanlage
CN117433695B (zh) * 2023-10-24 2024-05-31 上海拜安传感技术有限公司 一种风力发电机叶片载荷的标定方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004036612A (ja) * 2002-05-02 2004-02-05 General Electric Co <Ge> 風力発電装置、風力発電装置の制御構成、及び風力発電装置を動作させる方法
JP2008286156A (ja) * 2007-05-21 2008-11-27 Mitsubishi Heavy Ind Ltd 風力発電装置および風力発電装置のヨー旋回駆動方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5155375A (en) * 1991-09-19 1992-10-13 U.S. Windpower, Inc. Speed control system for a variable speed wind turbine
DE29715249U1 (de) * 1997-08-25 1998-12-24 Institut für Solare Energieversorgungstechnik Verein an der Universität Gesamthochschule Kassel eV, 34119 Kassel Windenergieanlage
DE10219664A1 (de) * 2002-04-19 2003-11-06 Enron Wind Gmbh Windenergieanlage, Regelanordnung für eine Windenergieanlage und Verfahren zum Betreiben einer Windenergieanlage
DE102006036157B4 (de) * 2006-08-01 2016-09-15 Senvion Gmbh Kalibrierverfahren

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004036612A (ja) * 2002-05-02 2004-02-05 General Electric Co <Ge> 風力発電装置、風力発電装置の制御構成、及び風力発電装置を動作させる方法
JP2008286156A (ja) * 2007-05-21 2008-11-27 Mitsubishi Heavy Ind Ltd 風力発電装置および風力発電装置のヨー旋回駆動方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2431607A4 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103502789A (zh) * 2010-12-30 2014-01-08 Lmwp专利控股有限公司 用于确定风力涡轮机叶片的载荷的方法和装置
US9574457B2 (en) 2010-12-30 2017-02-21 LM WP Patent Holdings A/S Method and apparatus for determining loads of a wind turbine blade
US10662807B2 (en) 2010-12-30 2020-05-26 Lm Wp Patent Holding A/S Method and apparatus for determining loads of a wind turbine blade
US8800354B2 (en) 2011-12-28 2014-08-12 Mitsubishi Heavy Industries, Ltd. Impact load monitoring system and impact load monitoring method for wind turbine for wind power generation
JP2013139732A (ja) * 2011-12-28 2013-07-18 Mitsubishi Heavy Ind Ltd 風力発電用風車の衝撃荷重監視システム及び衝撃荷重監視方法
US10167853B2 (en) 2015-02-24 2019-01-01 Mitsubishi Heavy Industries, Ltd. Method for detecting damage of wind turbine blade and wind turbine
JP2016156674A (ja) * 2015-02-24 2016-09-01 三菱重工業株式会社 風車翼の損傷検知方法及び風車
US10400750B2 (en) 2015-09-11 2019-09-03 Mitsubishi Heavy Industries, Ltd. Wind turbine power generating apparatus and method of connecting the same
US10054510B2 (en) 2015-09-11 2018-08-21 Mitsubishi Heavy Industries, Ltd. Method of calibrating load measurement apparatus, load measurement system of wind turbine blade, and wind turbine
JP2017053780A (ja) * 2015-09-11 2017-03-16 三菱重工業株式会社 荷重計測装置の較正方法、風車翼の荷重計測システム及び風車
JP2022168363A (ja) * 2021-04-26 2022-11-08 三菱重工業株式会社 風車翼の診断方法
JP7245866B2 (ja) 2021-04-26 2023-03-24 三菱重工業株式会社 風車翼の診断方法
JP2023055788A (ja) * 2021-04-26 2023-04-18 三菱重工業株式会社 風車翼の診断方法
JP7419580B2 (ja) 2021-04-26 2024-01-22 三菱重工業株式会社 風車翼の診断方法
CN114323602A (zh) * 2021-11-30 2022-04-12 明阳智慧能源集团股份公司 一种风机叶片静力测试方法及系统
CN114323602B (zh) * 2021-11-30 2024-03-26 明阳智慧能源集团股份公司 一种风机叶片静力测试方法及系统

Also Published As

Publication number Publication date
EP2431607A1 (en) 2012-03-21
CA2714852C (en) 2013-09-24
CN102439301B (zh) 2014-06-11
JP4959814B2 (ja) 2012-06-27
US8255173B2 (en) 2012-08-28
KR101227327B1 (ko) 2013-01-28
EP2431607A4 (en) 2014-03-12
JPWO2010122658A1 (ja) 2012-10-22
CN102439301A (zh) 2012-05-02
KR20110009083A (ko) 2011-01-27
CA2714852A1 (en) 2010-10-24
BRPI0909359A2 (pt) 2015-09-29
EP2431607B1 (en) 2016-05-25
US20120035865A1 (en) 2012-02-09

Similar Documents

Publication Publication Date Title
JP4959814B2 (ja) 荷重測定装置及び方法並びにプログラム
EP3218600B1 (en) System and method for estimating rotor blade loads of a wind turbine
AU2004259426B2 (en) Method and apparatus for wind turbine rotor load control based on shaft radial displacement
EP3056726A1 (en) System and method for operating a wind turbine based on rotor blade margin
JP6351557B2 (ja) 荷重計測装置の較正方法、風車翼の荷重計測システム及び風車
Peng et al. High-solidity straight-bladed vertical axis wind turbine: Aerodynamic force measurements
BR112016011109B1 (pt) Método para avaliar o impacto de desempenho de atualizações de turbina eólica
US9926912B2 (en) System and method for estimating wind coherence and controlling wind turbine based on same
AU2009340218A1 (en) Load measuring apparatus, method, and program
US9638169B2 (en) Method for setting a pitch reference point for a wind turbine blade on a rotor
DK2659253T3 (en) METHOD AND APPARATUS FOR DETERMINING LOADS ON A WINDOW MILL
US20170292501A1 (en) System and Method for Auto-Calibrating a Load Sensor System of a Wind Turbine
EP3514373A1 (en) Twist correction factor for aerodynamic performance map used in wind turbine control
CN111734585B (zh) 风力发电机的极限载荷的确定方法、装置及可读存储介质
CN113323816A (zh) 一种基于叶片载荷分析的叶片检测方法
Verelst et al. Wind tunnel tests of a free yawing downwind wind turbine
US10961981B2 (en) Control for a wind turbine
TWI403706B (zh) Load measuring apparatus and method and program product
Ossmann et al. Multivariable controller design verification for a Liberty wind turbine
Taruffi et al. Experimental validation of the aero-servo design of a large-scale floating offshore wind turbine model
WO2022270025A1 (ja) 風力発電装置の余寿命診断方法および余寿命診断装置
Träsch et al. Blade strain analysis from field measurements on a vertical axis wind turbine
BR102019001282B1 (pt) Método para controlar uma turbina eólica, método para gerar um mapa de desempenho aerodinâmico e sistema para controlar uma turbina eólica
CN118483069A (zh) 一种基于弯扭组合“应变-载荷”关系模型的风电叶片现场载荷测量方法
CN115076026A (zh) 考虑安装偏角的风力发电机组叶根载荷应变计标定计算方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980111176.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 12601313

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009749312

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009550120

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2009340218

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 6106/DELNP/2010

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20107019906

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2714852

Country of ref document: CA

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09749312

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: PI0909359

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20100910