WO2010121470A1 - Resource mapping method - Google Patents

Resource mapping method Download PDF

Info

Publication number
WO2010121470A1
WO2010121470A1 PCT/CN2009/074878 CN2009074878W WO2010121470A1 WO 2010121470 A1 WO2010121470 A1 WO 2010121470A1 CN 2009074878 W CN2009074878 W CN 2009074878W WO 2010121470 A1 WO2010121470 A1 WO 2010121470A1
Authority
WO
WIPO (PCT)
Prior art keywords
subcarriers
carrier
frequency
physical resource
subcarrier
Prior art date
Application number
PCT/CN2009/074878
Other languages
French (fr)
Chinese (zh)
Inventor
刘向宇
关艳峰
宁丁
刘颖
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to JP2012506307A priority Critical patent/JP5461687B2/en
Publication of WO2010121470A1 publication Critical patent/WO2010121470A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path

Definitions

  • the physical resource unit independently performs at least one of the following operations: DRU allocation and subcarrier replacement, CRU allocation.
  • FIG. 10 is a schematic diagram of a resource mapping process of two adjacent 10 MHz bandwidth guard subcarriers in a large bandwidth mode according to an embodiment of the present invention
  • the resource mapping process according to an embodiment of the present invention will be described in detail below in conjunction with the resource mapping and scheduling modes of the current multi-carrier communication system.
  • the resource mapping process is:
  • the process of forming resources in the bandwidth protection according to the resource configuration information is:
  • the leftmost 8 subcarriers of the second 10 MHz bandwidth on the right side that is, the second 10 MHz bandwidth subcarriers 0-7, are still used as guard subcarriers, and the subsequent 72 guard subcarriers (8 ⁇ 79)
  • the four physical resource units are formed, and the middle 865 subcarriers, that is, the 80 to 944 subcarriers are used as normal data carriers, and the next 79 guard subcarriers (944 1023) are used as protection subcarriers.
  • subband Partition is performed on 48 physical resource units formed by subcarriers 80 to 1015, and then Mmiband Permutation is performed, and then Perform CRU/DRU allocation, and DRU Subcarrier permutation.
  • the sub-band division is performed on the 48 physical resource units formed by 1033 to 1968, and then the microband permutation is performed, and then the CRU DRU allocation and the subcarrier replacement in the DRU are performed. None of these processes involve physical resource elements formed by guarding subcarriers within the band.
  • Figure 11 shows the resource mapping process for two adjacent 20 MHz bandwidths in this example.
  • the leftmost 40 subcarriers of the first 5 MHz bandwidth on the left side that is, the first 5 MHz bandwidth subcarriers 0 to 39, still serve as guard subcarriers, and the middle 433 subcarriers, that is, 40 to 472.
  • the subcarrier is used as a normal data carrier (which includes a zero frequency carrier that does not modulate baseband data), and subcarriers 473 to 490 are used to participate in forming one physical resource unit, and the remaining 21 subcarriers, ie, No. 491 511 The carrier still acts as a guard subcarrier.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A resource mapping method includes: making the protection sub-carriers between the continuous carrier frequencies as a physical resource unit, making the protection sub-carriers between the un-continuous carrier frequencies as the protection between the carrier frequencies, and not mapping the protection sub-carrier as a physical resource unit. Using the technical solutions of the present invention, when the resource mapping is performed to the multi-carrier system, mapping the protection sub-carriers between the continuous carrier frequencies as a physical resource unit, and keeping the original function of the protection sub-carriers between the un-continuous carrier frequencies, solve the problem which the resource mapping can't be processed in a multi-carrier system, and make the resource mapping progress of the wireless resource unit in the multi-carrier system canonical, make the use of the whole frequency spectrum resource more flexibly and fully, and improve the utilization ratio of the system frequency spectrum.

Description

资源映射方法 技术领域  Resource mapping method
本发明涉及通信领域, 尤其涉及一种资源映射方法。 背景技术  The present invention relates to the field of communications, and in particular, to a resource mapping method. Background technique
在无线通信系统中, 基站是指为终端提供服务的设备。 通常, 基站可 以通过上、 下行链路与终端进行通信, 其中, 下行是指基站到终端的方向, 上行是指终端到基站的方向。 并且, 多个终端可以同时通过上行链路向基 站发送数据, 也可以通过下行链路同时从基站接收数据。 其中, 基站为了 实现与终端的上 /行下通信, 会给出该基站到终端的下行传输时的资源分配 信息以及终端到基站的上行传输时所能使用的资源分配信息等。 通常, 资 源分配信息可以包含需要终端获知的实际物理资源位置和传输方法等参数 信息。 不同的通信系统对于资源分配和映射的要求也会有所不同, 基于特 定技术实现的通信系统对具体的资源分配和资源映射也有着特定的要求。  In a wireless communication system, a base station refers to a device that provides services to a terminal. Generally, the base station can communicate with the terminal through the uplink and the downlink, where the downlink refers to the direction of the base station to the terminal, and the uplink refers to the direction of the terminal to the base station. Also, a plurality of terminals can simultaneously transmit data to the base station through the uplink, or can simultaneously receive data from the base station through the downlink. The base station provides resource allocation information for downlink transmission from the base station to the terminal, and resource allocation information that can be used when the terminal transmits uplink to the base station, in order to implement uplink/line communication with the terminal. Generally, the resource allocation information may include parameter information such as an actual physical resource location and a transmission method that the terminal needs to know. Different communication systems have different requirements for resource allocation and mapping. Communication systems based on specific technologies also have specific requirements for specific resource allocation and resource mapping.
随着无线通信技术的不断发展, 用户对传输速率的需求也有着更高的 要求。例 ^口,在国际移动电信 -2000 ( International Mobile Telecommunications - 2000, IMT-2000 ) 系统和超 IMT-2000 系统的框架和总体目标中, 要求 超 IMT-2000系统能够在终端高速移动的情况下达到 100Mbits/s的速率, 在 终端低速移动时达到 lGbits/s的速率。 为了满足这样的速率需求, 需要系统 能够提供更大的带宽。 但是, 由于多种通信系统共存所导致的无线频谱资 源的日益紧张, IMT-2000系统所采用的比较大的带宽通常会是以下两种情 形: 一种是连续的大带宽, 另一种是非连续的大带宽。  With the continuous development of wireless communication technology, users have higher requirements for transmission rate. In the framework and overall objectives of the International Mobile Telecommunications-2000 (IMT-2000) system and the Super IMT-2000 system, the requirements of the IMT-2000 system can be achieved at high speeds in the terminal. The rate of 100 Mbits/s reaches the rate of 1 Gbits/s when the terminal moves at a low speed. In order to meet such rate requirements, the system needs to be able to provide more bandwidth. However, due to the increasing tension of wireless spectrum resources caused by the coexistence of multiple communication systems, the relatively large bandwidth used by IMT-2000 systems is usually the following two situations: one is continuous large bandwidth, and the other is discontinuous. Large bandwidth.
在终端侧, 不同终端的处理能力存在差异, 有些终端可以处理连续的 大带宽, 而有的终端则只能处理比较小的带宽, 需要通过载频切换实现在 不同的载频上收发数据。 因此, 为了提供更高的传输速率以及为不同类型 的终端提供支持, 基站需要支持多载频 (Multi-Carrier )操作, 例如, 多载 频的控制和切换管理。 On the terminal side, the processing capabilities of different terminals are different. Some terminals can handle continuous large bandwidth, while some terminals can only handle relatively small bandwidth. Send and receive data on different carrier frequencies. Therefore, in order to provide higher transmission rates and support for different types of terminals, the base station needs to support multi-carrier operation, for example, multi-carrier frequency control and handover management.
目前, 多载频操作是当前无线通信中的重点研究对象。 目前主要的载 波映射技术主要是针对单载波的。 但是, 多载频的资源映射过程(尤其是 基于正交频分多址 ( Orthogonal Frequency Division Multiple Address , OFDMA )的无线通信系统中的资源映射过程)远比单载波的资源映射复杂。  At present, multi-carrier operation is the key research object in current wireless communication. At present, the main carrier mapping technology is mainly for single carrier. However, the resource mapping process of multiple carrier frequencies (especially the resource mapping process in Orthogonal Frequency Division Multiple Address (OFDMA) based wireless communication systems) is much more complicated than the resource mapping of single carriers.
具体地, OFDMA系统属于多载波系统, OFDMA系统中的每个符号可 包括多个子载波, 其干扰控制技术比较灵活和复杂, 可以采用部分频率复 用 (Fractional Frequency Reuse, FFR )技术实现良好的覆盖和比较高的频 谱利用效率。  Specifically, the OFDMA system belongs to a multi-carrier system, and each symbol in the OFDMA system may include multiple sub-carriers, and the interference control technology is flexible and complex, and a partial frequency reuse (FFR) technology can be used to achieve good coverage. And relatively high spectrum utilization efficiency.
尽管诸如 OFDMA系统的多载波系统具有多种优势, 但是相关技术中 尚未提出如何基于多载波系统进行资源映射的解决方案。 发明内容  Although a multi-carrier system such as an OFDMA system has various advantages, a solution for resource mapping based on a multi-carrier system has not been proposed in the related art. Summary of the invention
针对相关技术中无法在多载波系统中实现资源映射的问题, 为此, 本 发明的主要目的在于提供一种资源映射方法, 以解决上述问题中的至少之 根据本发明的一个方面, 提供一种资源映射方法。  For the problem that the resource mapping cannot be implemented in the multi-carrier system in the related art, the main object of the present invention is to provide a resource mapping method to solve at least one of the above problems according to an aspect of the present invention, and to provide a Resource mapping method.
根据本发明的资源映射方法包括: 将连续载频之间的保护子载波作为 物理资源单元, 将非连续载频之间的保护子载波用于载频之间的保护, 并 且不将该保护子载波映射为物理资源单元。  The resource mapping method according to the present invention includes: using a guard subcarrier between consecutive carrier frequencies as a physical resource unit, and using a guard subcarrier between non-contiguous carrier frequencies for protection between carrier frequencies, and not protecting the protector The carrier map is a physical resource unit.
其中, 保护子载波是指: 连续载频之间的全部或部分保护子载波。 并 且, 连续载频之间的频率间隔是子载波间隔的整数倍。  The protection subcarrier refers to: all or part of the protection subcarriers between consecutive carrier frequencies. Moreover, the frequency interval between consecutive carrier frequencies is an integer multiple of the subcarrier spacing.
其中, 物理资源单元可以归属于其所在的载频的第 0个频率分区; 另 外, 物理资源单元也可以归属于其所在的载频的除第 0 个频率分区之外的 其他部分或全部频率分区。 The physical resource unit may belong to the 0th frequency partition of the carrier frequency in which it is located; in addition, the physical resource unit may also belong to the carrier frequency of the carrier frequency other than the 0th frequency partition. Some or all of the frequency partitions.
优选地, 将物理资源单元映射为逻辑资源单元时, 不对物理资源单元 进行子带划分和 /或微带置换。  Preferably, when the physical resource unit is mapped to a logical resource unit, the physical resource unit is not subjected to subband division and/or microstrip replacement.
优选地, 在进行逻辑资源单元映射时, 物理资源单元独立进行以下操 作至少之一: DRU分配和子载波置换、 CRU分配。  Preferably, when performing logical resource unit mapping, the physical resource unit independently performs at least one of the following operations: DRU allocation and subcarrier replacement, CRU allocation.
其中, 逻辑资源单元的类型包括以下至少之一: 连续资源单元、 分布 式资源单元。  The type of the logical resource unit includes at least one of the following: a continuous resource unit and a distributed resource unit.
进一步地, 在进行逻辑单元映射之前, 上述方法还包括: 根据系统的 预先配置或控制信道的控制信息确定逻辑单元的类型。  Further, before performing logical unit mapping, the foregoing method further includes: determining a type of the logical unit according to pre-configuration of the system or control information of the control channel.
其中, 如果确定的逻辑单元类型为分布式资源单元, 则在进行逻辑单 元映射时, 根据预定子载波映射规则将保护子载波映射的物理资源单元映 射为分布式资源单元。  Wherein, if the determined logical unit type is a distributed resource unit, the physical resource unit of the protected subcarrier mapping is mapped to the distributed resource unit according to a predetermined subcarrier mapping rule when the logical unit mapping is performed.
优选地, 控制信息包含用于指示逻辑资源单元类型的指示位, 并且指 示位用于指示一个或多个载频的保护子载波映射的物理资源单元所需映射 的逻辑资源单元类型。  Preferably, the control information includes an indication bit for indicating a logical resource unit type, and the indication bit is used to indicate a logical resource unit type to which the physical resource unit of the protection subcarrier mapping of the one or more carrier frequencies is required to be mapped.
进一步地, 上述方法还包括: 对连续资源单元进行排序并编号、 和 /或 分布式资源单元进行排序并编号。  Further, the above method further comprises: sorting and numbering the consecutive resource units, and/or sorting and numbering the distributed resource units.
其中, 连续载频是指: 两个相邻的载频, 且该两个载频之间的保护子 载波的频域间隔小于或等于预定值。  The continuous carrier frequency refers to: two adjacent carrier frequencies, and the frequency domain interval of the protection subcarriers between the two carrier frequencies is less than or equal to a predetermined value.
优选地, 可以根据下述方式之一指示作为物理资源单元的保护子载波 的数量和 /或标识: 系统的预先配置、 控制信道的控制信息、 管理消息。  Preferably, the number and/or identification of guard subcarriers as physical resource units may be indicated according to one of the following ways: pre-configuration of the system, control information of the control channel, management messages.
优选地, 可以根据下述方式之一指示是否将连续载频之间的保护子载 波作为物理资源单元: 系统的预先配置、 控制信道的控制信息、 管理消息。  Preferably, whether the guard subcarrier between consecutive carrier frequencies is used as a physical resource unit according to one of the following ways: pre-configuration of the system, control information of the control channel, management message.
优选地, 可以根据下述方式之一指示物理资源单元所归属的频率分区: 系统的预先配置、 控制信道的控制信息、 管理消息。 借助于本发明的上述技术方案, 通过在对多载波系统进行资源映射时, 将连续载频之间的保护子载波映射为物理资源单元, 保持不连续的载频之 间的保护子载波的原有功能, 解决了无法在多载波系统进行资源映射的问 题, 规范了多载波系统中无线资源单位的资源映射过程, 使得整个频谱资 源的使用更加灵活和充分, 提高了系统的频谱利用效率。 附图说明 Preferably, the frequency partition to which the physical resource unit belongs may be indicated according to one of the following ways: pre-configuration of the system, control information of the control channel, and management message. By means of the above technical solution of the present invention, by performing resource mapping on a multi-carrier system, the protected sub-carriers between consecutive carrier frequencies are mapped into physical resource units, and the original of the protected sub-carriers between the discontinuous carrier frequencies is maintained. It has the function of solving the problem of resource mapping in the multi-carrier system, standardizing the resource mapping process of the radio resource unit in the multi-carrier system, making the use of the entire spectrum resource more flexible and sufficient, and improving the spectrum utilization efficiency of the system. DRAWINGS
图 1A是多载波系统的示意图;  1A is a schematic diagram of a multi-carrier system;
图 1B是相邻载波带宽的相邻载波示意图;  1B is a schematic diagram of adjacent carriers of adjacent carrier bandwidths;
图 2A是 OFDMA无线通信系统的帧结构的一个具体实例的示意图; 图 2B是 5MHz的 OFDMA系统中一个子帧中的第一个物理资源单元构 成示意图;  2A is a schematic diagram of a specific example of a frame structure of an OFDMA wireless communication system; FIG. 2B is a schematic diagram showing a configuration of a first physical resource unit in one subframe of a 5 MHz OFDMA system;
图 2C是 5MHz的 OFDMA系统中对物理资源单元进行映射得到逻辑资 源单元的示意图;  2C is a schematic diagram of mapping a physical resource unit to a logical resource unit in a 5 MHz OFDMA system;
图 3是单载波 5MHz带宽(频率分区数为 1 , 即只有 FP0 )中资源映射 示意图;  Figure 3 is a schematic diagram of resource mapping in a single carrier 5MHz bandwidth (the number of frequency partitions is 1, that is, only FP0);
图 4是本发明实施例中 2个相邻 5MHz带宽(其频率分区数全为 1 , 即 均只有 FP0 ) 的保护子载波资源块的映射示意图;  4 is a schematic diagram of mapping of protected subcarrier resource blocks of two adjacent 5 MHz bandwidths (the number of frequency partitions is all 1, that is, only FP0) in the embodiment of the present invention;
图 5是本发明实施例中两个相邻的 10MHz带宽的保护子载波资源块的 资源映射过程示意图;  5 is a schematic diagram of a resource mapping process of two adjacent 10 MHz bandwidth guard subcarrier resource blocks in an embodiment of the present invention;
图 6是本发明实施例中一个 5MHz带宽和一个与其相邻的 10MHz带宽 的多载波系统的资源映射过程示意图;  6 is a schematic diagram of a resource mapping process of a multi-carrier system with a 5 MHz bandwidth and a 10 MHz bandwidth adjacent thereto in the embodiment of the present invention;
图 7是本发明实施例中 2个相邻 5MHz带宽的另一资源映射过程示意 图;  7 is a schematic diagram of another resource mapping process of two adjacent 5 MHz bandwidths in an embodiment of the present invention;
图 8是本发明实施例中 2个相邻 10MHz带宽的多载波系统的另一资源 映射过程示意图; 图 9是本发明实施例中两个相邻的 10MHz带宽的保护子载波资源块的 资源映射过程另一示意图; FIG. 8 is a schematic diagram of another resource mapping process of two adjacent 10 MHz bandwidth multi-carrier systems according to an embodiment of the present invention; FIG. 9 is another schematic diagram of a resource mapping process of two adjacent 10 MHz bandwidth guard subcarrier resource blocks in an embodiment of the present invention;
图 10是本发明实施例中两个相邻的 10MHz带宽的保护子载波在大带 宽模式下的资源映射过程示意图;  10 is a schematic diagram of a resource mapping process of two adjacent 10 MHz bandwidth guard subcarriers in a large bandwidth mode according to an embodiment of the present invention;
图 11是本发明实施例中两个相邻的 20MHz带宽的保护子载波资源映 射过程示意图;  11 is a schematic diagram of a mapping process of two adjacent 20 MHz bandwidth guard subcarrier resources in an embodiment of the present invention;
图 12是本发明实施例中两个相邻的 20MHz带宽的保护子载波资源映 射过程示意图;  12 is a schematic diagram of a mapping process of two adjacent 20 MHz bandwidth guard subcarrier resources in an embodiment of the present invention;
图 13是本发明实施例中两个相邻的 20MHz带宽的保护子载波在大带 宽模式下的资源映射过程示意图;  13 is a schematic diagram of a resource mapping process of two adjacent 20 MHz bandwidth guard subcarriers in a large bandwidth mode according to an embodiment of the present invention;
图 14是本发明实施例中两个相邻的 5MHz在大带宽情况下形成不规则 PRU的资源映射示意图;  14 is a schematic diagram of resource mapping of two adjacent 5 MHz forming an irregular PRU in a large bandwidth according to an embodiment of the present invention;
图 15是本发明实施例中两个相邻的 5MHz带宽的多载频无线通信系统 使用非规则 PRU的资源映射过程示意图;  15 is a schematic diagram of a resource mapping process using an irregular PRU in two adjacent 5 MHz bandwidth multi-carrier wireless communication systems according to an embodiment of the present invention;
图 16是本发明实施例中两个相邻的 5MHz带宽的多载频无线通信系统 使用非规则 PRU的资源映射过程示意图;  16 is a schematic diagram of a resource mapping process using an irregular PRU in two adjacent 5 MHz bandwidth multi-carrier wireless communication systems according to an embodiment of the present invention;
图 17是本发明实施例中两个相邻的 5MHz带宽在大带宽模式下形成不 规则 PRU的资源映射过程示意图;  17 is a schematic diagram of a resource mapping process for forming an irregular PRU in a large bandwidth mode by using two adjacent 5 MHz bandwidths in an embodiment of the present invention;
图 18是本发明实施例中两个相邻的 5MHz多载频无线通信系统在特殊 情况下的资源映射过程的具体实例的示意图。 具体实施方式  FIG. 18 is a schematic diagram showing a specific example of a resource mapping process of two adjacent 5 MHz multi-carrier frequency wireless communication systems in a special case according to an embodiment of the present invention. detailed description
针对相关技术中无法在多载波系统中实现资源映射的问题, 本发明提 出,在对多载波系统进行资源映射时,将连续载频之间的保护子载波( Guard Subcarrier ) 映射为物理资源单元, 对于不连续的载频之间的保护子载波则 不进行映射, 保持原有功能, 规范了多载波系统中无线资源单位的资源映 射过程, 解决了无法在多载波系统进行资源映射的问题, 并且资源的映射 能够适应多载频 OFDMA系统的特点, 使得釆用多载频的基站能够根据调 度需要选择合适的保护带资源映射方法, 从而更加灵活和充分地使用整个 频傳资源, 保证了基于 OFDMA技术的无线通信系统的频谱利用效率。 For the problem that the resource mapping cannot be implemented in the multi-carrier system in the related art, the present invention proposes to map the Guard Subcarriers between the continuous carrier frequencies into physical resource units when performing resource mapping on the multi-carrier system. The protection subcarriers between the discontinuous carrier frequencies are not mapped, the original functions are maintained, and the resource mapping of the radio resource units in the multi-carrier system is standardized. The shooting process solves the problem that resource mapping cannot be performed in a multi-carrier system, and the mapping of resources can adapt to the characteristics of a multi-carrier OFDMA system, so that a base station using multiple carrier frequencies can select an appropriate protection band resource mapping method according to scheduling requirements. Therefore, the use of the entire frequency transmission resource more flexibly and fully ensures the spectrum utilization efficiency of the wireless communication system based on OFDMA technology.
根据本发明的实施例, 提供了一种资源映射方法。  According to an embodiment of the present invention, a resource mapping method is provided.
根据本发明实施例的资源映射方法包括: 将连续载频 (两个或更多个 连续载频)之间的保护子载波作为物理资源单元 (Physical Resource Unit, PRU ); 这里, 连续载频是指: 两个相邻的载频, 且这两个载频之间的保护 子载波的频域间隔小于或等于预定值, 即, 两个相邻的载频中, 其中一个 载频(载频较小的) 的最后一个保护子载波与另外一个载频(载频较大的) 的第一个保护子载波之间的频域间隔小于或等于预定值 (该预定值可以根 据需要灵活设置, 这里不做限制); 连续载频之间的保护子载波是指: 连续 载频之间的全部或部分保护子载波; 并且, 连续载频之间的频率间隔是子 载波间隔的整数倍, 即, 两个连续载频的中心频点之间的频率间隔是子载 波间隔的整数倍。  The resource mapping method according to an embodiment of the present invention includes: using a guard subcarrier between consecutive carrier frequencies (two or more consecutive carrier frequencies) as a physical resource unit (PRU); where, the continuous carrier frequency is Refers to: two adjacent carrier frequencies, and the frequency domain spacing of the guard subcarriers between the two carrier frequencies is less than or equal to a predetermined value, that is, one of the two adjacent carrier frequencies, one carrier frequency (carrier frequency) The frequency domain interval between the last protected subcarrier of the smaller one and the first guard subcarrier of the other carrier frequency (larger carrier frequency) is less than or equal to a predetermined value (the predetermined value can be flexibly set as needed, There is no limitation here; the protection subcarrier between consecutive carrier frequencies means: all or part of the protection subcarriers between consecutive carrier frequencies; and, the frequency spacing between consecutive carrier frequencies is an integer multiple of the subcarrier spacing, ie The frequency spacing between the center frequency points of the two consecutive carrier frequencies is an integer multiple of the subcarrier spacing.
对于非连续多载频之间的保护子载波, 则依然用作载频之间的保护, 即, 仍旧作为保护子载波, 不用于形成 PRU。  For the protection subcarriers between the discontinuous multi-carrier frequencies, it is still used as protection between the carrier frequencies, that is, still as a protection subcarrier, and is not used to form a PRU.
对于由多载频系统的保护子载波所形成的某个 PRU,该 PRU归属于其 所在的载频的第 0个频率分区 (Frequency Partition 0 , 或者也可以简称为 FP0 ), 也就是说, 该 PRU归该载波系统的第 0个频率分区调度; 或者, 该 PRU可以归属于其所在的载频的其他部分或全部频率分区, 也就是说, 该 PRU 归该载波系统的其他部分或全部频率分区调度; 可选地, 在归属于第 0个频率分区的基础上, 该 PRU还可以归属于该载频的其他部分或全部频 率分区, 例如, 该 PRU还可以归属于该载波系统的第 1、 2、 3个频率分区 ( Frequency Partition 1 , 2、 3, 可以简称为 FP1 , FP2, FP3 ), 即, 该 PRU 还可以归该载波系统的第 1、 2、 3 个频率分区调度。 优选地, 还可以根据 下述方式之一指示所述物理资源单元所归属的频率分区: 系统的预先配置、 控制信道的控制信息、管理消息(管理消息是用于传送管理信息的 MAC层 数据包, 和普通数据包的区别在于其负载 (payload )是一些携带管理信息 的字段, 例如, 在网络初始化中的能力协商消息)。 例如, 可以在多载波系 统的控制信道中设置 1 比特指示信息, 其中, 该比特指示信息用于指示多 载波系统的保护子载波是否归属于第 0个频率分区 (FP0 ), 并且, 在该指 示比特为 1时,指示物理资源单元归属于其所在载频的 FP0;在该指示比特 为 0 时, 则可以指示物理资源单元归属于其所在载频的以下频率分区中的 一个或多个上: FP1、 FP2、 FP3。 For a certain PRU formed by the protection subcarrier of the multi-carrier system, the PRU belongs to the 0th frequency partition (Frequency Partition 0, or simply FP0) of the carrier frequency in which it is located, that is, the PRU The PRU is scheduled to be allocated to the 0th frequency partition of the carrier system; or, the PRU may be attributed to other part or all frequency partitions of the carrier frequency in which it is located, that is, the PRU belongs to other part or all frequency partitions of the carrier system. Optionally, the PRU may also belong to other part or all frequency partitions of the carrier frequency, for example, the PRU may also belong to the first part of the carrier system, based on the 0th frequency partition. 2, 3 frequency partitions (Frequency Partition 1, 2, 3, which can be simply referred to as FP1, FP2, FP3), that is, the PRU It can also be scheduled for the first, second, and third frequency partitions of the carrier system. Preferably, the frequency partition to which the physical resource unit belongs may also be indicated according to one of the following ways: pre-configuration of the system, control information of the control channel, and management message (the management message is a MAC layer data packet for transmitting management information) The difference from a normal data packet is that its payload is a field that carries management information, for example, a capability negotiation message in network initialization. For example, the 1-bit indication information may be set in a control channel of the multi-carrier system, where the bit indication information is used to indicate whether the protection sub-carrier of the multi-carrier system belongs to the 0th frequency partition (FP0), and the indication is When the bit is 1, it indicates that the physical resource unit belongs to the FP0 of the carrier frequency where it is located; when the indication bit is 0, it may indicate that the physical resource unit belongs to one or more of the following frequency partitions of the carrier frequency where it is located: FP1, FP2, FP3.
在进行了物理资源单元的映射之后, 还需要进行逻辑资源单元的映射。 此时,可以将载频上由保护子载波映射的 PRU以及该载频上其他 PRU映射 为逻辑资源单元。  After the mapping of physical resource units is performed, mapping of logical resource units is also required. In this case, the PRU mapped by the guard subcarrier on the carrier frequency and other PRUs on the carrier frequency can be mapped into logical resource units.
在进行逻辑资源单元映射时, 多小区相关的资源映射过程仅对非保护 子载波形成的 PRU进行操作, 由多载频系统的保护子载波所形成的一个或 多个 PRU不参与多小区的资源映射过程。 这是因为普通系统中保护子载波 不形成 PRU, 所有的正常数据 PRU将独立进行多小区资源映射过程, 不支 持多载波系统的终端将只按照普通数据的多小区资源映射过程进行映射, 如果将保护子载波形成的 PRU也加入多小区资源映射过程, 将会打乱普通 数据 PRU的正常映射, 从而导致那些不支持多载波系统的普通终端接入时 可能无法正确得到正常数据 P U的映射关系。 所以, 由多载频系统的保护 子载波所形成的一个或多个 PRU不参与多小区的资源映射过程。  When performing logical resource unit mapping, the multi-cell related resource mapping process operates only on PRUs formed by non-protected subcarriers, and one or more PRUs formed by protected subcarriers of the multi-carrier system do not participate in multi-cell resources. The mapping process. This is because the protection subcarriers in the normal system do not form a PRU. All normal data PRUs will independently perform multi-cell resource mapping procedures. Terminals that do not support multi-carrier systems will only map according to the multi-cell resource mapping process of common data. The PRU formed by the protection sub-carriers also joins the multi-cell resource mapping process, which will disrupt the normal mapping of the normal data PRUs, and the normal data PU mapping relationship may not be correctly obtained when the ordinary terminals that do not support the multi-carrier system are accessed. Therefore, one or more PRUs formed by the protected subcarriers of the multi-carrier system do not participate in the resource mapping process of the multi-cell.
为了避免 PRU不能正常映射的问题, 需要仅对载频上除了由保护子载 波映射 PRU之外的其他 PRU进行子带划分和 /或微带置换, 也就是说, 载 分和 /或微带置换处理。 In order to avoid the problem that the PRU cannot be mapped normally, it is necessary to perform subband division and/or microstrip replacement only on PRUs other than the protection subcarrier mapping PRU on the carrier frequency, that is, Sub- and/or microstrip replacement processing.
优选地, 由多载频系统的保护子载波所映射的一个或多个 PRU可以独 立参与小区指定的资源映射过程, 这些 PRU的小区指定映射过程将与普通 数据 PRU的小区指定映射过程相互无关, 具体地, 可以对保护子载波所映 射的一个或多个 PRU 独立进行以下操作至少之一: 分布式资源单元 Preferably, one or more PRUs mapped by the protection subcarriers of the multi-carrier system can independently participate in the cell-specified resource mapping process, and the cell-specific mapping process of these PRUs is independent of the cell-specific mapping process of the common data PRU. Specifically, at least one of the following operations may be independently performed on one or more PRUs mapped by the protection subcarriers: a distributed resource unit
( Distributed Resource Unit, DRU ) 分配和子载波置换、 集中式资源单元(Distributed Resource Unit, DRU) allocation and subcarrier permutation, centralized resource unit
( Contiguous Resource Unit , CRU )分酉己。 (Contiguous Resource Unit, CRU).
由 PRU映射的逻辑单元的类型可以包括:连续资源单元和 /或分布式资 源单元。 具体需要映射为哪一类逻辑资源单元可以根据系统的预先配置或 专用控制信道的控制信息来确定。 其中, 控制信息中可以包含用于指示逻 辑资源单元类型的指示位, 并且指示位用于指示一个或多个载频的保护子 载波映射的 PRU所需映射的逻辑资源单元类型, 例如, 指示位可以用于指 示多载波系统的所有载频上由保护子载波映射的 PRU所需要映射的逻辑资 源单元的类型, 也对每个载频的保护子载波所映射的 PRU需要映射的逻辑 资源单元的类型进行分别指示。  The type of logical unit mapped by the PRU may include: a contiguous resource unit and/or a distributed resource unit. The specific logical resource unit that needs to be mapped to can be determined according to the pre-configuration of the system or the control information of the dedicated control channel. The control information may include an indication bit for indicating a logical resource unit type, and the indication bit is used to indicate a logical resource unit type of the PRU required to be mapped by the protection subcarrier mapping of one or more carrier frequencies, for example, an indication bit. It can be used to indicate the type of logical resource unit to be mapped by the PRU mapped by the protection subcarrier on all carrier frequencies of the multi-carrier system, and also to the logical resource unit to which the PRU mapped by the protection subcarrier of each carrier frequency needs to be mapped. Types are indicated separately.
一方面, 如果确定多载频系统的保护子载波所映射的 PRU需要映射的 逻辑单元类型为分布式资源单元, 则可以在进行逻辑单元映射时, 根据分 布式资源单元的预定子载波映射规则将由保护子载波映射的 PRU映射为分 布式资源单元。 并且, 可以对这些分布式资源单元进行默认或指定顺序的 式资源单元进行编号。  On the one hand, if it is determined that the logical unit type mapped by the PRU mapped by the protection subcarrier of the multi-carrier system is a distributed resource unit, the predetermined subcarrier mapping rule according to the distributed resource unit may be used when performing logical unit mapping. The PRUs that protect the subcarrier mapping are mapped to distributed resource units. Also, these distributed resource units can be numbered by default or in a specified order.
另一方面, 如果确定多载频系统的保护子载波所映射的 PRU需要映射 的逻辑单元类型为连续资源单元, 则可以对这些连续资源单元进行默认或 后的连续资源单元进行编号。 除此之外, 对于多载波系统使用多少数量以及哪些保护子载波用于映 射为 PRU, 可以由多载波系统在控制信令, 或者管理消息 (管理消息是用 于传送管理信息的 MAC 层数据包, 和普通数据包的区別在于其负载 ( payload )是一些携带管理信息的字段, 例如, 在网络初始化中的能力协 商消息) 中指示, 也可以按照默认配置。 并且, 对于多载波系统的保护子 载波是否可用于映射为 PRU, 可以由多载波系统在控制信令, 或者管理消 息 (例如, 在网络初始化中的能力协商消息) 中指示, 也可以按照默认配 置。 On the other hand, if it is determined that the logical unit type to be mapped by the PRU mapped by the protection subcarrier of the multi-carrier system is a continuous resource unit, the consecutive or subsequent consecutive resource units may be numbered for these consecutive resource units. In addition, how many quantities are used for the multi-carrier system and which protection sub-carriers are used for mapping to PRUs, control signaling can be performed by the multi-carrier system, or management messages (management messages are MAC layer packets for transmitting management information) The difference from a normal data packet is that its payload is a field that carries management information, for example, a capability negotiation message in network initialization. It can also be configured by default. And, whether the protection subcarrier of the multi-carrier system is available for mapping to a PRU may be indicated by the multi-carrier system in control signaling, or a management message (for example, a capability negotiation message in network initialization), or may be configured by default .
下面将结合目前多载频通信系统的资源映射和调度方式详细描述根据 本发明实施例的资源映射过程。  The resource mapping process according to an embodiment of the present invention will be described in detail below in conjunction with the resource mapping and scheduling modes of the current multi-carrier communication system.
通常, 在目前所釆用的多载频通信系统中, 带宽可以由多个载频上的 带宽共同构成, 多个载频的带宽可以是连续或不连续的, 不同类型的终端 可能支持不同的带宽。 例如, 如图 1A所示, 载频 1和载频 2的频讲是连续 的。 如图 1B所示, 载频 1 (共有 512个子载波, 编号为 0 ~ 511 ) 的第 511 号子载波, 与载频 2 (共有 512个子载波, 编号 0 ~ 511 ) 的第 0号子载波 邻近, 例如, 在某一类 OFDMA 系统中, 连续两个子载波之间的频率间隔 是 10.94 KHz, 而载频 1 (共有 512个子载波, 编号为 0 ~ 511 ) 的第 511号 子载波与载频 2 (共有 512个子载波, 编号 0 ~ 511 ) 的第 0号子载波之间 的频率间隔也为 10.94 KHz, 这时可以认为两个载波的带宽是相邻的, 而载 频 3的频谙与载频 1和 2的频豫是不连续的, 载频 2的最后一个子载波和 载频 3 的第一个载波中间相隔一段较大的频率段, 例如在上述的 OFDMA 系统中 , 连续两个子载波之间的频率间隔是 10.94 KHz, 然而载频 2的最后 一个子载波和载频 3 的第一个载波频率间隔达到 5MHz, 此时认为载频 3 的频谱与载频 2的频 是不连续的, 终端 1 能够同时在 3个载频上接收数 据, 终端 2能够同时在载频 1和 2上接收数据, 终端 3只能在不同时刻先 后在载频 2和 3上接收数据,而终端 4、 5和 6只能在一个载频上接收数据。 在基于 OFDMA技术的无线通信系统中, 资源映射过程能够将物理资 源 (例如, 包括物理子载波) 映射为逻辑资源, 例如, 将物理子载波映射 为逻辑资源块(Logic Resource Unit, LRU ), 基站通过调度逻辑资源块实现 无线资源的调度。 资源映射的主要依据是 OFDMA系统的帧结构和资源结 构。 帧结构将无线资源在时域上划分为不同等级的单位进行调度, 例如, 可以分为超帧 ( Super-Frame )、 帧 ( Frame )、 子帧 ( SubFrame )、 和符号 ( Symbol )。 Generally, in the multi-carrier communication system currently used, the bandwidth may be composed of bandwidths on multiple carrier frequencies, and the bandwidth of multiple carrier frequencies may be continuous or discontinuous, and different types of terminals may support different types. bandwidth. For example, as shown in FIG. 1A, the frequency of carrier 1 and carrier 2 is continuous. As shown in FIG. 1B, the 511th subcarrier of carrier frequency 1 (a total of 512 subcarriers, numbered 0 to 511) is adjacent to the 0th subcarrier of carrier frequency 2 (a total of 512 subcarriers, numbers 0 to 511) For example, in a certain type of OFDMA system, the frequency interval between two consecutive subcarriers is 10.94 KHz, and the carrier frequency 1 (a total of 512 subcarriers, numbered 0 ~ 511) of subcarrier No. 511 and carrier frequency 2 The frequency interval between subcarriers 0 of 512 subcarriers (numbered from 0 to 511) is also 10.94 KHz. In this case, the bandwidth of the two carriers can be considered to be adjacent, and the frequency and carrier of carrier frequency 3 are considered to be adjacent. The frequency sums of frequencies 1 and 2 are discontinuous, and the last subcarrier of carrier frequency 2 and the first carrier of carrier frequency 3 are separated by a relatively large frequency segment, for example, in the above OFDMA system, two consecutive subcarriers The frequency interval between them is 10.94 KHz. However, the frequency difference between the last subcarrier of carrier 2 and the first carrier of carrier 3 is 5 MHz. At this time, it is considered that the frequency of carrier 3 and the frequency of carrier 2 are discontinuous. Terminal 1 can receive data on three carrier frequencies at the same time, and terminal 2 can simultaneously 1 and frequency 2 receives the data, the first terminal 3 only at different times The data is then received on carrier frequencies 2 and 3, while terminals 4, 5 and 6 can only receive data on one carrier frequency. In a wireless communication system based on OFDMA technology, a resource mapping process can map physical resources (eg, including physical subcarriers) into logical resources, for example, map physical subcarriers into logical resource units (LRUs), base stations. The scheduling of radio resources is implemented by scheduling logical resource blocks. The main basis of resource mapping is the frame structure and resource structure of the OFDMA system. The frame structure divides the radio resources into different levels of units in the time domain for scheduling, for example, it can be classified into a super-frame, a frame, a sub-frame, and a symbol.
如图 2A所示, 无线资源在时域上划分为超帧, 每个超帧包含 4个帧, 每个帧包含 8个子帧, 子帧由 6个基本的 OFDM符号组成 (也可以由其他 数量的 OFDM符号组成), 实际的系统根据需要支持的终端的移动速度、业 务速率和业务类型等因素确定帧结构中各个等级单位中具体包含多少个 OFDM符号。  As shown in FIG. 2A, the radio resource is divided into super frames in the time domain, each super frame includes 4 frames, each frame includes 8 sub-frames, and the sub-frame is composed of 6 basic OFDM symbols (may also be other numbers The OFDM symbol is composed of, and the actual system determines how many OFDM symbols are included in each level unit in the frame structure according to factors such as the moving speed, service rate, and service type of the terminal to be supported.
对于资源结构, 可以根据需要支持的覆盖范围、 终端的移动速度、 业 务速率和业务类型等因素将可用的频带在频域上分成多个频率子带 ( Frequency Partition, FP ), 进而将频率子带内的频率资源分成若干个物理 其中逻辑资源单元又可分为: 集中式资源单元和 /或分布式资源单元。  For the resource structure, the available frequency bands can be divided into frequency sub-bands (FPs) in the frequency domain according to factors such as the coverage supported by the terminal, the moving speed of the terminal, the service rate, and the service type, and then the frequency subbands are The internal frequency resource is divided into several physical ones, wherein the logical resource unit can be further divided into: a centralized resource unit and/or a distributed resource unit.
如图 2B所示的 5MHz OFDMA系统, 每一个物理资源单元, 由连续的 18个载波和 6个时域符号组成。  As shown in Fig. 2B, the 5 MHz OFDMA system, each physical resource unit, consists of 18 consecutive carriers and 6 time domain symbols.
如图 2C所示, 对于上述的 5MHz带宽中的 24个 PRU, 通过子带划分 ( Subband Partition ), 可以将所有的 PRU分为两个部分, 一个部分是子带 部分(如图中白色 PRU部分所示), 另一个是微带部分 (如图中的深色部 分所示), 所有微带部分的 PRU经过一个微带置换 ( Miniband Permutation ) 错乱位置,将得到重新排序后的 PRU,也称为 PPRUMB;然后,所有的 PRU 再通过频率划分 ( Frequency Partition )被分配到一个或者多个频率分区中, 如图 3所示, 24个 PRU全部被分到频率分区 0, 即, 被分到 FP0中, 并且 上述的子带划分、 微带置换和频率分区过程都属于多小区资源映射As shown in FIG. 2C, for 24 PRUs in the above 5 MHz bandwidth, all sub-PRUs can be divided into two parts by sub-band division (subband Partition), and one part is a sub-band part (as shown in the white PRU part). The other is the microstrip part (shown in the dark part of the figure). The PRU of all microstrip parts will be reordered after a microband permutation (Miniband Permutation). For PPRUMB; then, all PRUs Then, the frequency partition is allocated to one or more frequency partitions. As shown in FIG. 3, 24 PRUs are all divided into frequency partition 0, that is, divided into FP0, and the above-mentioned sub-band division , microstrip replacement and frequency partitioning processes all belong to multi-cell resource mapping
(Multi-Cell Resource Mapping)过程, 在每一个频率分区, 该频率分区的 所有 PRU将通过 CRU/DRU分配( CRU/DRU Allocation )和子载波置换(Multi-Cell Resource Mapping) process, in each frequency partition, all PRUs of the frequency partition will be replaced by CRU/DRU Allocation and subcarrier replacement
( Subcarrier Permutation ) 过程, 从而被映射为逻辑资源单元 ( LRU )0 这些逻辑资源单元可以分为 CRU和 DRU, 如图 2C所示, 其中有 12 个 CRU, CRU编号分别是 0, 1, 2, …, 11, 还有 12个 DRU, DRU编号 分别是 0, 1, 2, 11。 CRUDRU分配过程将决定多少以及哪些 PRU被 映射为 CRU, PRU映射为 CRU的过程是将所有载波不做任何顺序的改变, 直接映射到 CRU, 对于不是 CRU的全部 DRU, 将通过一个子载波置换过 程映射为 DRU, 这里子载波置换的映射过程将把所有划分为 DRU的 PRU 中的载波的位置进行打乱和重排序, 例如, 对于第 t个子帧中的第 1个时域 符号上的第 s个 LRU上面的第 m个载波对,该载波对的实际物理载波对的 索引 k可以由下式得出: (Subcarrier Permutation) process, which is mapped to logical resource unit (LRU). 0 These logical resource units can be divided into CRU and DRU, as shown in Figure 2C, where there are 12 CRUs, and the CRU numbers are 0, 1, 2, respectively. ..., 11, there are 12 DRUs, the DRU numbers are 0, 1, 2, 11. The CRUDRU allocation process will determine how many and which PRUs are mapped to CRUs. The process of mapping PRUs to CRUs is to directly map all carriers to the CRU without any order change. For all DRUs that are not CRUs, the sub-carrier replacement process will be adopted. Mapped to DRU, where the mapping process of subcarrier permutation will scramble and reorder the positions of all carriers in the PRU divided into DRUs, for example, for the sth on the first time domain symbol in the tth subframe The mth carrier pair above the LRU, the index k of the actual physical carrier pair of the carrier pair can be obtained by:
k― LDRU FPi■ f (^m,s) + g^PermSeq^ ),^, m ,t^ K― L DRU FPi ■ f (^m,s) + g^PermSeq^ ),^, m ,t^
其中,  among them,
g^PermSeq ),s,m,l,t^  G^PermSeq ),s,m,l,t^
= ( PermSeq {^f [m,s) + s + l^ mod LDRU FPi + DL _ PermBase ) mod LDRU PPi 其中的 PermSeqQ是一个长度为 L腦 !的置换序列。上述的 CRU/DRU分 配和子载波置换过程都属于小区指定资源映射过程 (Cell-Specific Resource Mapping )。 = ( PermSeq {^f [m,s) + s + l^ mod L DRU FPi + DL _ PermBase ) mod L DRU PPi where PermSeqQ is a permutation sequence of length L brain! The above CRU/DRU allocation and subcarrier replacement procedures belong to Cell-Specific Resource Mapping.
当基站侧利用上述的资源映射过程将所有的 PRU映射为 LRU之后, 其调度将全部在 LRU上进行, 并通知一个特定终端, 告知该终端其数据资 源被分配在哪些 LRU上, 接入的终端知道了这些 LRU的索引后, 会使用 与上述相同的映射规则和映射参数将分配给该终端的 LRU实际映射成实际 的物理载波索引, 从而获知自己的数据位于哪些真实的物理子载波上, 进 而到正确的时间 -频率位置去接收数据。 After the base station side maps all PRUs to LRUs by using the resource mapping process described above, all the schedulings are performed on the LRUs, and a specific terminal is notified to inform the terminal which LRUs the data resources are allocated to, and the connected terminals. After knowing the index of these LRUs, they will use The same mapping rule and mapping parameters as above are actually mapped to the actual LRU of the LRU allocated to the terminal, so as to know which real physical subcarriers the data is located on, and then receive the data at the correct time-frequency position. .
上述映射过程所需要的必要参数可通过控制信道或者控制信令传送给 终端, 例如, 多少个 PRU分配到 Subband部分, 多少分到 Miniband部分, 分多少频率分区, 每个频率分区中分配多少 CRU/DRU等等。  The necessary parameters required for the above mapping process can be transmitted to the terminal through the control channel or control signaling. For example, how many PRUs are allocated to the Subband part, how many are allocated to the Miniband part, how many frequency partitions are divided, and how many CRUs are allocated in each frequency partition. DRU and so on.
基于以上多载频通信系统, 下面将详细描述根据本发明实施例的资源 映射过程的多个实例。  Based on the above multi-carrier frequency communication system, a plurality of examples of the resource mapping process according to an embodiment of the present invention will be described in detail below.
实例 1 :  Example 1 :
在本实例中, 参照图 4, 示出了的两个相邻的 5MHz带宽多载频无线通 信系统的资源映射过程。  In this example, referring to Figure 4, a resource mapping process for two adjacent 5 MHz bandwidth multi-carrier wireless communication systems is shown.
其中, 5MHz带宽的 FFT ( Fast Fourier Transform, 快速傅里叶变换) 点数为 512, 子帧内可用子载波为 432个, 共分成物理资源单元 24个, 每 个大小为 18 x 6, 每一个 5MHz带宽的左边(低频)保护带有 40个保护子 载波, 右边(高频)有 39个保护子载波。  Among them, the 5MHz bandwidth FFT (Fast Fourier Transform) points are 512, and the available subcarriers in the sub-frame are 432, which are divided into 24 physical resource units, each of which is 18 x 6, each 5MHz. The left (low frequency) protection of the bandwidth has 40 guard subcarriers and the right (high frequency) has 39 guard subcarriers.
每一个 5MHz带宽的资源配置信息为将该子帧分成 1个频率子带 FP0 , 频率子带 0包括三个资源子带 ( Subband ), 包含 12个物理资源单元。  The resource configuration information of each 5 MHz bandwidth is divided into one frequency sub-band FP0, and the frequency sub-band 0 includes three resource sub-bands (Subband), which includes 12 physical resource units.
在左边(低频 ) 5MHz带宽的左边(低频), 有 40个保护子载波, 右边 (高频)有 39个保护子载波, 在两个相邻带宽之间, 有 39+40=79个保护 子载波。  On the left (low frequency) left side of the 5MHz bandwidth (low frequency), there are 40 guard subcarriers, and on the right (high frequency) there are 39 guard subcarriers. Between two adjacent bandwidths, there are 39+40=79 guards. Carrier.
根据资源配置信息, 保护带宽中的资源形成过程为:  According to the resource configuration information, the process of forming resources in the protection bandwidth is:
如图 4所示, 将左边第一个 5MHz带宽的最左边 40个子载波, 即第一 个 5MHz带宽的子载波 0 ~ 39, 仍作为保护子载波, 中间的 433个子载波, 即 40 ~ 472 号子载波作为正常数据载波(其中包含一个不调制基带数据的 零频率载波), 而第 473 490 号子载波用于参与形成一个物理资源单元, 剩下的 21个子载波, 即, 第 491 511号载波仍作为保护子载波。 As shown in FIG. 4, the leftmost 40 subcarriers of the first 5 MHz bandwidth on the left side, that is, the first 5 MHz bandwidth subcarriers 0 to 39, still serve as guard subcarriers, and the middle 433 subcarriers, that is, 40 to 472. The subcarrier is used as a normal data carrier (which includes a zero frequency carrier that does not modulate baseband data), and subcarrier 473 490 is used to participate in forming a physical resource unit. The remaining 21 subcarriers, i.e., the 491 511 carrier, still serve as guard subcarriers.
如图 4所示, 将右边第二个 5MHz带宽的最左边 22个保护子载波, 即 第二个 5MHz带宽的子载波 0 ~ 21 , 仍作为保护子载波, 随后的 18个保护 子载波, 即子载波 22 39, 用于形成一个物理资源单元, 中间的 433个子载 波, 即 40 ~ 472 号子载波作为正常数据载波(其中包含一个不调制基带数 据的零频率载波), 剩下的 39个子载波, 即, 第 473 511 号载波仍作为保 护子载波。  As shown in FIG. 4, the leftmost 22 guard subcarriers of the second 5 MHz bandwidth on the right side, that is, the second 5 MHz bandwidth subcarriers 0 to 21, still serve as guard subcarriers, and the subsequent 18 guard subcarriers, that is, The subcarrier 22 39 is configured to form one physical resource unit, and the middle 433 subcarriers, that is, 40 to 472 subcarriers are used as normal data carriers (including a zero frequency carrier that does not modulate baseband data), and the remaining 39 subcarriers That is, the carrier number 473 511 still acts as a protection subcarrier.
根据资源配置信息, 资源映射过程为:  According to the resource configuration information, the resource mapping process is:
如图 4所示, 对于第一个载波的 5MHz带宽, 其首先对正常数据子载 波形成的 24个物理资源单元进行子带区分( Subband Partition ), 然后进行 微带置换(Miniband Permutation ), 然后进行 CRU/DRU分配, 以及 DRU 中的子载波置换。 这些过程均不涉及到保护带内子载波形成的物理资源单 元。 最后, (可选的, 根据前述控制信道的指示信息)将保护带内的物理资 源单元映射为 CRU, 它归属第一个载波的 5MHz带宽的频率分区零 FP0调 度, 并且重新编号为 FP0中的 CRU12。  As shown in FIG. 4, for the 5 MHz bandwidth of the first carrier, the sub-band division (Subband Partition) is performed on the 24 physical resource units formed by the normal data subcarriers, and then the microband permutation is performed, and then performed. CRU/DRU allocation, and subcarrier permutation in the DRU. None of these processes involve physical resource elements that form subcarriers within the protection band. Finally, (optionally, according to the indication information of the foregoing control channel), the physical resource unit in the guard band is mapped to a CRU, which belongs to the frequency partitioning of the first carrier, and the frequency partition is zero FP0 scheduling, and is renumbered in the FP0. CRU12.
如图 4所示, 对于第二个载波的 5MHz带宽, 其首先对正常数据子载 波形成的 24个物理资源单元进行子带区分( Subband Partition ), 然后进行 微带置换(Miniband Permutation ), 然后进行 CRU/DRU分配, 以及 DRU 中的子载波置换。 这些过程均不涉及到保护带内子载波形成的物理资源单 元。 最后, (可选的, 根据前述控制信道的指示信息)将保护带内的物理资 源单元映射为 CRU, 它归属第二载波带宽的频率分区零 FP0调度, 并且重 新编号为 FP0中的 CRU12。  As shown in FIG. 4, for the 5 MHz bandwidth of the second carrier, the sub-band division (Subband Partition) is performed on the 24 physical resource units formed by the normal data sub-carriers, and then the micro-band permutation is performed, and then performed. CRU/DRU allocation, and subcarrier permutation in the DRU. None of these processes involve physical resource elements that form subcarriers within the protection band. Finally, (optionally, according to the indication information of the foregoing control channel), the physical resource unit in the guard band is mapped to a CRU, which belongs to the frequency partition zero FP0 scheduling of the second carrier bandwidth, and is renumbered as CRU12 in FP0.
实例 2:  Example 2:
图 5示出了本实例中两个相邻的 10MHz带宽多载频无线通信系统的资 源映射过程。 其中, 10MHz带宽的 FFT点数为 1024, 子帧内可用子载波为 864个, 共分成物理资源单元 48个,每个大小为 18 6,每一个 10MHz带宽的左边 (低频)保护带有 80个保护子载波, 右边(高频)有 79个保护子载波。 Figure 5 illustrates the resource mapping process for two adjacent 10 MHz bandwidth multi-carrier wireless communication systems in this example. Among them, the FFT point of the 10MHz bandwidth is 1024, the available subcarriers in the sub-frame are 864, and are divided into 48 physical resource units, each of which is 18, and the left (low frequency) protection of each 10MHz bandwidth has 80 protections. Subcarriers, right (high frequency) have 79 guard subcarriers.
每一个 10MHz 带宽的载波资源配置信息为将该子帧分成 4 个频率子 带, 分别为 FP0、 FP1、 FP2、 FP3 , 其中每一个频率子带都包含 12个资源 单元。  The carrier resource configuration information of each 10 MHz bandwidth is divided into four frequency sub-bands, which are FP0, FP1, FP2, and FP3, respectively, and each frequency sub-band includes 12 resource units.
在左边(低频 ) 10MHz带宽的多载波系统的左边 (低频;), 有 80个保 护子载波, 右边(高频)有 79 个保护子载波, 在两个相邻系统之间, 有 79+80=159个保护子载波。  On the left (low frequency) left side of the 10MHz bandwidth multicarrier system (low frequency;), there are 80 guard subcarriers, and on the right (high frequency) there are 79 guard subcarriers, between two adjacent systems, there are 79+80 = 159 protected subcarriers.
根据资源配置信息保护带宽中的资源形成过程为:  The process of forming resources in the bandwidth protection according to the resource configuration information is:
如图 5所示, 将左边第一个 10MHz带宽的最左边 80个子载波, 即第 一个 10MHz带宽的子载波 0 ~ 79, 仍作为保护子载波, 中间的 865个子载 波, 即 80 ~ 944 号子载波作为正常数据载波(其中包含一个不调制基带数 据的零频率载波), 而接着的 36个子载波, 即第 945 ~ 980号子载波用于参 与形成两个物理资源单元, 剩下的 43个子载波, 即, 第 981 1023号载波 仍作为保护子载波。  As shown in FIG. 5, the leftmost 80 subcarriers of the first 10 MHz bandwidth on the left side, that is, the first 10 MHz bandwidth subcarriers 0 to 79, still serve as guard subcarriers, and the middle 865 subcarriers, that is, 80 to 944. The subcarrier is used as a normal data carrier (which contains a zero frequency carrier that does not modulate the baseband data), and the next 36 subcarriers, ie, subcarriers 945-980, are used to form two physical resource units, and the remaining 43 sub-carriers The carrier, ie, the 981 1023 carrier still acts as a guard subcarrier.
如图 5所示, 将右边第二个 10MHz带宽的最左边 44个保护子载波, 即第二个 10MHz带宽的子载波 0 ~ 43,仍作为保护子载波, 随后的 36个保 护子载波, 即子载波 44 79 , 用于形成两个物理资源单元, 中间的 865个子 载波, 即 80 ~ 944 号子载波作为正常数据载波(其中包含一个不调制基带 数据的零频率载波), 剩下的 79个子载波, 即, 第 945~1023号载波仍作为 保护子载波。  As shown in FIG. 5, the leftmost 44 guard subcarriers of the second 10 MHz bandwidth on the right side, that is, the second 10 MHz bandwidth subcarriers 0 to 43, still serve as guard subcarriers, and the subsequent 36 guard subcarriers, that is, The subcarrier 44 79 is used to form two physical resource units, and the middle 865 subcarriers, that is, the subcarriers 80 to 944 are used as normal data carriers (including a zero frequency carrier that does not modulate baseband data), and the remaining 79 sub-carriers The carrier, that is, the carrier number 945~1023 still acts as a protection subcarrier.
根据资源配置信息, 资源映射过程为:  According to the resource configuration information, the resource mapping process is:
如图 5所示, 对于第一个载波的 10MHz带宽, 其首先对正常数据子载 波形成的 48个物理资源单元进行子带区分( Subband Partition ), 然后进行 微带置换(Miniband Permutation ), 然后进行 CRU/DRU分配, 以及 DRU 中的子载波置换。 这些过程均不涉及到保护带内子载波形成的物理资源单 元。 最后, (可选的, 根据前述控制信道的指示信息)将保护带内的物理资 源单元映射为 CRU, 它归属第一个载波的 10MHz带宽的频率分区零 FP0 调度, 并且按照从左到右 (从低频到高频) 的顺序重新编号为 FP0 中的 CRU8、 CRU9。 As shown in FIG. 5, for the 10 MHz bandwidth of the first carrier, the subband Partition is performed on the 48 physical resource units formed by the normal data subcarriers, and then performed. Microband permutation, then CRU/DRU allocation, and subcarrier permutation in the DRU. None of these processes involve physical resource elements formed by guarding subcarriers within the band. Finally, (optionally, according to the indication information of the foregoing control channel), the physical resource unit in the guard band is mapped to a CRU, which belongs to the frequency division of the first carrier of the 10 MHz bandwidth, zero FP0 scheduling, and is from left to right ( The order from low frequency to high frequency is renumbered as CRU8, CRU9 in FP0.
如图 5所示, 对于第二个载波的 10MHz带宽, 其首先对正常数据子载 波形成的 48个物理资源单元进行子带区分( Subband Partition ), 然后进行 微带置换(Mmiband Permutation ), 然后进行 CRU/DRU分配, 以及 DRU 中的子载波置换。 这些过程均不涉及到保护带内子载波形成的物理资源单 元。 最后, (可选的, 根据前述控制信道的指示信息)将保护带内的物理资 源单元映射为 CRU, 它归属第二载波带宽的频率分区零 FP0调度, 并且按 照从左到右 (从低频到高频) 的顺序重新编号为 FP0中的 CRU8、 CRU9。 实例 3 :  As shown in FIG. 5, for the 10 MHz bandwidth of the second carrier, the subband Partition is performed on the 48 physical resource units formed by the normal data subcarriers, and then the Mmiband Permutation is performed, and then performed. CRU/DRU allocation, and subcarrier permutation in the DRU. None of these processes involve physical resource elements that form subcarriers within the protection band. Finally, (optionally, according to the indication information of the foregoing control channel), the physical resource unit in the guard band is mapped to a CRU, which belongs to the frequency partition of the second carrier bandwidth, zero FP0 scheduling, and is from left to right (from low frequency to The order of the high frequency) is renumbered as CRU8 and CRU9 in FP0. Example 3:
图 6 示出了本实例中两个相邻带宽的多载频无线通信系统, 其中, 左 边 (低频)是一个 5MHz带宽、 右边 (高频)是一个 10MHz带宽的保护带 资源映射过程。  Figure 6 shows a multi-carrier wireless communication system with two adjacent bandwidths in this example, where the left (low frequency) is a 5 MHz bandwidth and the right (high frequency) is a 10 MHz bandwidth guard band resource mapping process.
其中, 5MHz带宽的 FFT点数为 512, 子帧内可用子载波为 432个, 共 分成物理资源单元 24个, 每个大小为 18 6 , 5MHz带宽的左边 (低频) 保护带有 40个保护子载波, 右边有 39个保护子载波。  The FFT point of the 5MHz bandwidth is 512, the number of available subcarriers in the sub-frame is 432, and is divided into 24 physical resource units, each of which is 18 6 , and the left side (low frequency) of the 5 MHz bandwidth is protected with 40 guard subcarriers. There are 39 guard subcarriers on the right.
其中, 10MHz带宽的 FFT点数为 1024, 子帧内可用子载波为 864个, 共分成物理资源单元 48个,每个大小为 18 6 ,每一个 10MHz带宽的左边 (低频)保护带有 80个保护子载波, 右边有 79个保护子载波。  Among them, the FFT point of the 10MHz bandwidth is 1024, the available subcarriers in the sub-frame are 864, which are divided into 48 physical resource units, each of which is 18 6 , and the left (low frequency) protection of each 10MHz bandwidth has 80 protections. Subcarriers, there are 79 guard subcarriers on the right.
5MHz带宽的资源配置信息为将该子帧分成 1个频率子带 FP0, 10MHz 载波系统资源配置信息为将该子帧分成 4个频率子带, 分别为 FP0、 FPU FP2、 FP3 , 其中每一个频率子带都包含 12个资源单元。 The resource configuration information of the 5 MHz bandwidth is divided into one frequency sub-band FP0, and the 10 MHz carrier system resource configuration information is divided into four frequency sub-bands, which are respectively FP0 and FPU. FP2, FP3, where each frequency subband contains 12 resource elements.
在左边(低频) 5MHz 带宽的左边(低频), 有 40 个保护子载波, 在 10MHz带宽的右边(高频)有 79个保护子载波, 在两个相邻系统之间, 有 39+80=119个保护子载波。  On the left (low frequency) left side of the 5MHz bandwidth (low frequency), there are 40 guard subcarriers, there are 79 guard subcarriers on the right side (high frequency) of the 10MHz bandwidth, between two adjacent systems, there are 39+80= 119 guard subcarriers.
根据资源配置信息, 保护带宽中的资源形成过程为:  According to the resource configuration information, the process of forming resources in the protection bandwidth is:
如图 6所示, 将左边第一个 5MHz带宽的最左边 40个子载波, 即第一 个 5MHz带宽的子载波 0 ~ 39, 仍作为保护子载波, 中间的 433个子载波, 即 40 ~ 472 号子载波作为正常数据载波(其中包含一个不调制基带数据的 零频率载波), 而第 473 - 490 号子载波用于参与形成一个物理资源单元, 剩下的 21个子载波, 即, 第 491〜511号载波仍作为保护子载波。  As shown in FIG. 6, the leftmost 40 subcarriers of the first 5 MHz bandwidth on the left side, that is, the first 5 MHz bandwidth subcarriers 0 to 39, still serve as guard subcarriers, and the middle 433 subcarriers, that is, 40 to 472. The subcarrier is used as a normal data carrier (which includes a zero frequency carrier that does not modulate baseband data), and subcarriers No. 473-490 are used to participate in forming one physical resource unit, and the remaining 21 subcarriers, ie, 491 to 511 The number carrier still acts as a protection subcarrier.
如图 6所示, 将右边第二个 10MHz带宽的最左边 62个保护子载波, 即第二个 10MHz带宽的子载波 0 ~ 61 ,仍作为保护子载波, 随后的 18个保 护子载波, 即子载波 62〜79 , 用于形成一个物理资源单元, 中间的 865个子 载波, 即 80 ~ 944 号子载波作为正常数据载波(其中包含一个不调制基带 数据的零频率载波), 剩下的 79个子载波, 即, 第 945~1023号载波仍作为 保护子载波。  As shown in FIG. 6, the leftmost 62 guard subcarriers of the second 10 MHz bandwidth on the right side, that is, the second 10 MHz bandwidth subcarriers 0 to 61, still serve as guard subcarriers, and the subsequent 18 guard subcarriers, that is, Subcarriers 62 to 79 are used to form one physical resource unit, and 865 subcarriers in the middle, that is, subcarriers 80 to 944 are used as normal data carriers (including a zero frequency carrier that does not modulate baseband data), and the remaining 79 sub-carriers The carrier, that is, the carrier number 945~1023 still acts as a protection subcarrier.
根据资源配置信息, 资源映射过程为:  According to the resource configuration information, the resource mapping process is:
如图 6所示, 对于第一个载波的 5MHz带宽, 其首先对正常数据子载 波形成的 24个物理资源单元进行子带区分( Subband Partition ), 然后进行 微带置换(Miniband Permutation ), 然后进行 CRU/DRU分配, 以及 DRU 中的子载波置换。 这些过程均不涉及到保护带内子载波形成的物理资源单 元。 最后, (可选的, 根据前述控制信道的指示信息)将保护带内的物理资 源单元映射为 CRU, 它归属第一个载波的 5MHz带宽的频率分区零 FP0调 度,并且按照从左到右(从低频到高频)的顺序重新编号为 FP0中的 CRU12。  As shown in FIG. 6, for the 5 MHz bandwidth of the first carrier, the sub-band division (Subband Partition) is performed on the 24 physical resource units formed by the normal data subcarriers, and then the microband permutation is performed, and then performed. CRU/DRU allocation, and subcarrier permutation in the DRU. None of these processes involve physical resource elements that form subcarriers within the protection band. Finally, (optionally, according to the indication information of the foregoing control channel), the physical resource unit in the guard band is mapped to a CRU, which belongs to the frequency division of the first carrier with a frequency partition of zero FP0 scheduling, and is from left to right ( The order from low frequency to high frequency is renumbered as CRU12 in FP0.
如图 6所示, 对于第二个载波的 10MHz带宽, 其首先对正常数据子载 波形成的 48个物理资源单元进行子带区分( Subband Partition ), 然后进行 微带置换(Mmiband Permutation ), 然后进行 CRU/DRU分配, 以及 DRU 中的子载波置换。 这些过程均不涉及到保护带内子载波形成的物理资源单 元。 最后, (可选的, 根据前述控制信道的指示信息)将保护带内的物理资 源单元映射为 CRU, 它归属第二载波 10MHz带宽的频率分区零 FP0调度, 并且按照从左到右 (从低频到高频) 的顺序重新编号为 FP0中的 CRU8。 实例 4: As shown in Figure 6, for the 10MHz bandwidth of the second carrier, it is first for the normal data subcarrier. The 48 physical resource units formed by the wave perform Subband Partition, then perform Mmiband Permutation, then perform CRU/DRU allocation, and subcarrier replacement in the DRU. None of these processes involve physical resource elements formed by guarding subcarriers within the band. Finally, (optionally, according to the indication information of the foregoing control channel), the physical resource unit in the guard band is mapped to a CRU, which belongs to the frequency division of the second carrier 10 MHz bandwidth, zero FP0 scheduling, and follows from left to right (from low frequency The order to the high frequency) is renumbered as CRU8 in FP0. Example 4:
图 Ί示出了本实例中两个相邻的 5MHz带宽的多载频无线通信系统的 资源映射过程。  Figure Ί shows the resource mapping process for two adjacent 5 MHz bandwidth multi-carrier wireless communication systems in this example.
其中, 5MHz带宽的 FFT点数为 512 , 子帧内可用子载波为 432个, 共 分成物理资源单元 24个,每个大小为 18 x 6,每一个 5MHz带宽的左边(低 频 )保护带有 40个保护子载波, 右边 (高频)有 39个保护子载波。  The FFT points of the 5MHz bandwidth are 512, and the number of available subcarriers in the sub-frame is 432, which are divided into 24 physical resource units, each of which is 18 x 6. The left (low frequency) protection of each 5MHz bandwidth has 40 The subcarrier is protected, and there are 39 guard subcarriers on the right (high frequency).
每一个 5MHz的载波带宽资源配置信息为将该子帧分成 1个频率子带 FP0 , 频率子带 0包括一个集中式资源组, 包含 6个物理资源单元。  Each 5MHz carrier bandwidth resource configuration information is divided into one frequency subband FP0, and the frequency subband 0 includes a centralized resource group, which includes six physical resource units.
在左边(低频 ) 5MHz带宽的多载波系统的左边(低频), 有 40个保护 子载波,右边(高频)有 39个保护子载波,在两个相邻系统之间,有 39+40=79 个保护子载波。  On the left (low frequency) 5MHz bandwidth multicarrier system (low frequency), there are 40 guard subcarriers, and the right (high frequency) has 39 guard subcarriers. Between two adjacent systems, there are 39+40= 79 protection subcarriers.
根据资源配置信息, 保护带宽中的资源形成过程为:  According to the resource configuration information, the process of forming resources in the protection bandwidth is:
如图 7所示, 将左边第一个 5MHz带宽的最左边 40个子载波, 即第一 个 5MHz带宽的子载波 0 ~ 39 , 仍作为保护子载波, 中间的 433个子载波, 即 40 ~ 472 号子载波作为正常数据载波(其中包含一个不调制基带数据的 零频率载波), 而第 473 - 508 号子载波用于参与形成两个物理资源单元, 剩下的 3个子载波, 即, 第 509〜511号载波仍作为保护子载波。  As shown in FIG. 7, the leftmost 40 subcarriers of the first 5 MHz bandwidth on the left side, that is, the first 5 MHz bandwidth subcarriers 0 to 39, still serve as guard subcarriers, and the middle 433 subcarriers, that is, 40 to 472. The subcarrier is used as a normal data carrier (which includes a zero frequency carrier that does not modulate baseband data), and subcarriers No. 473-508 are used to participate in forming two physical resource units, and the remaining three subcarriers, ie, 509~ Carrier 511 still acts as a protection subcarrier.
如图 7所示, 将右边第二个 5MHz带宽的最左边 40个保护子载波, 即 第二个 5MHz带宽的子载波 0 ~ 39 , 仍作为保护子载波, 中间的 433个子载 波, 即 41 ~ 473 号子载波作为正常数据载波(其中包含一个不调制基带数 据的零频率载波), 剩下的 39个子载波, 即, 第 474 511 号载波仍作为保 护子载波。 As shown in FIG. 7, the leftmost 40 guard subcarriers of the second 5 MHz bandwidth on the right side, that is, the second 5 MHz bandwidth subcarriers 0 to 39, still serve as guard subcarriers, with 433 subcarriers in the middle. The wave, that is, the subcarriers 41 to 473 is used as the normal data carrier (which includes a zero frequency carrier that does not modulate the baseband data), and the remaining 39 subcarriers, that is, the 474 511th carrier still serve as the guard subcarrier.
根据资源配置信息, 资源映射过程为:  According to the resource configuration information, the resource mapping process is:
如图 7所示, 对于第一个载波的 5MHz带宽, 其首先对正常数据子载 波形成的 24个物理资源单元进行子带区分( Subband Partition ), 然后进行 微带置换(Miniband Permutation ), 然后进行 CRU/DRU分配, 以及 DRU 中的子载波置换。 这些过程均不涉及到保护带内子载波形成的物理资源单 元。 最后, (根据前述控制信道的指示信息)将保护带内的两个物理资源单 元映射为 DRU, 并在该两个物理资源单元内, 按照子载波置换规则进行子 载波的置换, 归属第一个载波的 5MHz带宽的频率分区零 FP0调度, 并且 按照从左到右(从低频到高频)的顺序重新编号为 FP0中的 DRU12、DRU13。  As shown in FIG. 7, for the 5 MHz bandwidth of the first carrier, the sub-band division (Subband Partition) is performed on the 24 physical resource units formed by the normal data subcarriers, and then the microband permutation is performed, and then performed. CRU/DRU allocation, and subcarrier permutation in the DRU. None of these processes involve physical resource elements that form subcarriers within the protection band. Finally, (based on the indication information of the foregoing control channel), two physical resource units in the guard band are mapped into DRUs, and subcarrier replacement is performed according to the subcarrier replacement rule in the two physical resource units, belonging to the first one. The frequency division of the 5 MHz bandwidth of the carrier is zero FP0 scheduling, and is renumbered as DRU 12, DRU 13 in FP0 in order from left to right (from low frequency to high frequency).
如图 7所示, 对于第二个载波的 5MHz带宽, 其首先对正常数据子载 波形成的 24个物理资源单元进行子带区分( Subband Partition ), 然后进行 微带置换(Mmiband Permutation ), 然后进行 CRU/DRU分配, 以及 DRU 中的子载波置换。  As shown in FIG. 7, for the 5 MHz bandwidth of the second carrier, the subband Partition is performed on the 24 physical resource units formed by the normal data subcarriers, and then the Mmiband Permutation is performed, and then performed. CRU/DRU allocation, and subcarrier permutation in the DRU.
实例 5:  Example 5:
图 8示出了本实例中两个相邻的 10MHz多载频无线通信系统的资源映 射过程。  Figure 8 shows the resource mapping process for two adjacent 10 MHz multi-carrier wireless communication systems in this example.
其中, 10MHz带宽的 FFT点数为 1024, 子帧内可用子载波为 864个, 共分成物理资源单元 48个,每个大小为 18 6,每一个 10MHz带宽的左边 (低频)保护带有 80个保护子载波, 右边(高频)有 79个保护子载波。  Among them, the FFT point of the 10MHz bandwidth is 1024, the available subcarriers in the sub-frame are 864, and are divided into 48 physical resource units, each of which is 18, and the left (low frequency) protection of each 10MHz bandwidth has 80 protections. Subcarriers, right (high frequency) have 79 guard subcarriers.
每一个 10MHz 的载波系统资源配置信息为将该子帧分成 4 个频率子 带, 分别为 FP0、 FP1、 FP2、 FP3 , 其中每一个频率子带都包含 12个资源 单元。 在左边(低频) 10MHz的多载波系统的左边(低频), 有 80个保护子 载波,右边(高频)有 79个保护子载波,在两个相邻系统之间,有 79+80=159 个保护子载波。 Each 10 MHz carrier system resource configuration information is divided into four frequency sub-bands, which are FP0, FP1, FP2, and FP3, wherein each frequency sub-band includes 12 resource elements. On the left (low frequency) 10MHz multi-carrier system on the left (low frequency), there are 80 guard subcarriers, and on the right (high frequency) there are 79 guard subcarriers, between two adjacent systems, there are 79+80=159 Protection subcarriers.
根据资源配置信息保护带宽中的资源形成过程为:  The process of forming resources in the bandwidth protection according to the resource configuration information is:
如图 8所示, 将左边第一个 10MHz带宽的最左边 80个子载波, 即第 一个 10MHz带宽的子载波 0 ~ 79, 仍作为保护子载波, 中间的 865个子载 波, 即 80 ~ 944 号子载波作为正常数据载波(其中包含一个不调制基带数 据的零频率载波), 而接着的 36个子载波, 即第 945 ~ 980号子载波用于参 与形成两个物理资源单元, 剩下的 43个子载波, 即, 第 981 1023号载波 仍作为保护子载波。  As shown in FIG. 8, the leftmost 80 subcarriers of the first 10 MHz bandwidth on the left side, that is, the first 10 MHz bandwidth subcarriers 0 to 79, still serve as guard subcarriers, and the middle 865 subcarriers, that is, 80 to 944. The subcarrier is used as a normal data carrier (which contains a zero frequency carrier that does not modulate the baseband data), and the next 36 subcarriers, ie, subcarriers 945-980, are used to form two physical resource units, and the remaining 43 sub-carriers The carrier, ie, the 981 1023 carrier still acts as a guard subcarrier.
如图 8所示, 将右边第二个 10MHz带宽的最左边 44个保护子载波, 即第二个 10MHz带宽的子载波 0 ~ 43 ,仍作为保护子载波, 随后的 36个保 护子载波, 即子载波 44〜79 , 用于形成两个物理资源单元, 中间的 865个子 载波, 即 80 ~ 944 号子载波作为正常数据载波(其中包含一个不调制基带 数据的零频率载波), 剩下的 79个子载波, 即, 第 945~1023号载波仍作为 保护子载波。  As shown in FIG. 8, the leftmost 44 guard subcarriers of the second 10 MHz bandwidth on the right side, that is, the second 10 MHz bandwidth subcarriers 0 to 43 are still used as guard subcarriers, and the subsequent 36 guard subcarriers, that is, Subcarriers 44 to 79 are used to form two physical resource units, and 865 subcarriers in the middle, that is, subcarriers 80 to 944 are used as normal data carriers (including a zero frequency carrier that does not modulate baseband data), and the remaining 79 The subcarriers, that is, the carrier number 945~1023 are still used as protection subcarriers.
根据资源配置信息, 资源映射过程为:  According to the resource configuration information, the resource mapping process is:
如图 8所示, 对于第一个载波的 10MHz带宽, 其首先对正常数据子载 波形成的 48个物理资源单元进行子带区分( Subband Partition ), 然后进行 微带置换(Miniband Permutation ), 然后进行 CRU/DRU分配, 以及 DRU 中的子载波置换。 这些过程均不涉及到保护带内子载波形成的物理资源单 元。 最后, (根据前述控制信道的指示信息)将保护带内的物理资源单元映 射为 DRU并在该两个物理资源单元内,按照子载波置换规则进行子载波的 置换, 它归属第一个载波的 10MHz带宽的频率分区零 FP0调度, 并且按照 从左到右 (从低频到高频) 的顺序重新编号为 FP0中的 DRU4、 DRU5。 如图 8所示, 对于第二个载波的 10MHz带宽, 其首先对正常数据子载 波形成的 48个物理资源单元进行子带区分( Subband Partition ), 然后进行 微带置换( Mmiband Permutation ), 然后进行 CRU/DRU分配, 以及 DRU 中的子载波置换。 这些过程均不涉及到保护带内子载波形成的物理资源单 元。 最后, (可选的, 根据前述控制信道的指示信息)将保护带内的物理资 源单元映射为 DRU并在该两个物理资源单元内,按照子载波置换规则进行 子载波的置换, 它归属第二载波系统的频率分区零 FP0调度, 并且按照从 左到右 (从低频到高频) 的顺序重新编号为 FP0中的 DRU4、 DRU5。 As shown in FIG. 8, for the 10 MHz bandwidth of the first carrier, the subband Partition is performed on the 48 physical resource units formed by the normal data subcarriers, and then the microband permutation is performed, and then performed. CRU/DRU allocation, and subcarrier permutation in the DRU. None of these processes involve physical resource elements formed by guarding subcarriers within the band. Finally, (in accordance with the indication information of the foregoing control channel), the physical resource unit in the guard band is mapped into a DRU, and in the two physical resource units, the subcarrier replacement is performed according to the subcarrier replacement rule, which belongs to the first carrier. The frequency partition of the 10 MHz bandwidth is zero FP0 scheduled, and is renumbered as DRU4, DRU5 in FP0 in order from left to right (from low frequency to high frequency). As shown in FIG. 8, for the 10 MHz bandwidth of the second carrier, the subband Partition is performed on the 48 physical resource units formed by the normal data subcarriers, and then the Mmiband Permutation is performed, and then performed. CRU/DRU allocation, and subcarrier permutation in the DRU. None of these processes involve physical resource elements formed by guarding subcarriers within the band. Finally, (optionally, according to the indication information of the foregoing control channel), the physical resource unit in the guard band is mapped into a DRU, and in the two physical resource units, the subcarrier replacement is performed according to the subcarrier replacement rule, and the The frequency division of the two-carrier system is zero FP0 scheduling, and is renumbered as DRU4, DRU5 in FP0 in order from left to right (from low frequency to high frequency).
实例 6:  Example 6:
图 9示出了本实例中两个相邻的 10MHz多载频无线通信系统的资源映 射过程。  Figure 9 shows the resource mapping process for two adjacent 10 MHz multi-carrier wireless communication systems in this example.
其中, 10MHz带宽的 FFT点数为 1024, 子帧内可用子载波为 864个, 共分成物理资源单元 48个,每个大小为 18 X 6,每一个 10MHz带宽的左边 (低频)保护带有 80个保护子载波, 右边(高频)有 79个保护子载波。  The FFT point of the 10MHz bandwidth is 1024, and the available subcarriers in the subframe are 864, which are divided into 48 physical resource units, each of which is 18 X 6. The left (low frequency) protection of each 10 MHz bandwidth is 80 The subcarrier is protected, and the right (high frequency) has 79 guard subcarriers.
每一个 10MHz 的载波系统资源配置信息为将该子帧分成 4 个频率子 带, 分別为 FP0、 FP1、 FP2、 FP3 , 其中每一个频率子带都包含 12个资源 单元。  Each 10 MHz carrier system resource configuration information is divided into four frequency sub-bands, which are FP0, FP1, FP2, and FP3, and each frequency sub-band includes 12 resource units.
在左边(低频) 10MHz的多载波系统的左边(低频), 有 80个保护子 载波,右边(高频)有 79个保护子载波,在两个相邻系统之间,有 79+80=159 个保护子载波。  On the left (low frequency) 10MHz multi-carrier system on the left (low frequency), there are 80 guard subcarriers, and on the right (high frequency) there are 79 guard subcarriers, between two adjacent systems, there are 79+80=159 Protection subcarriers.
根据资源配置信息保护带宽中的资源形成过程为:  The process of forming resources in the bandwidth protection according to the resource configuration information is:
如图 9所示, 将左边第一个 10MHz带宽的最左边 80个子载波, 即第 一个 10MHz带宽的子载波 0 ~ 79, 仍作为保护子载波, 中间的 865个子载 波, 即 80 ~ 944 号子载波作为正常数据载波(其中包含一个不调制基带数 据的零频率载波), 而接着的 36个子载波, 即第 945 ~ 980号子载波用于参 与形成两个物理资源单元, 剩下的 43个子载波, 即, 第 981 1023号载波 仍作为保护子载波。 As shown in FIG. 9, the leftmost 80 subcarriers of the first 10 MHz bandwidth on the left side, that is, the first 10 MHz bandwidth subcarriers 0 to 79, still serve as guard subcarriers, and the middle 865 subcarriers, that is, 80 to 944. The subcarrier is used as a normal data carrier (which contains a zero frequency carrier that does not modulate the baseband data), and the next 36 subcarriers, that is, subcarriers No. 945 ~ 980 are used for the reference. And forming two physical resource units, the remaining 43 subcarriers, that is, the 981 1023 carrier still acts as a protection subcarrier.
如图 9所示, 将右边第二个 10MHz带宽的最左边 44个保护子载波, 即第二个 10MHz带宽的子载波 0 ~ 43 ,仍作为保护子载波, 随后的 36个保 护子载波, 即子载波 44 79 , 用于形成两个物理资源单元, 中间的 865个子 载波, 即 80 ~ 944 号子载波作为正常数据载波(其中包含一个不调制基带 数据的零频率载波), 剩下的 79个子载波, 即, 第 945〜1023号载波仍作为 保护子载波。  As shown in FIG. 9, the leftmost 44 guard subcarriers of the second 10 MHz bandwidth on the right side, that is, the second 10 MHz bandwidth subcarriers 0 to 43 are still used as guard subcarriers, and the subsequent 36 guard subcarriers, that is, The subcarrier 44 79 is used to form two physical resource units, and the middle 865 subcarriers, that is, the subcarriers 80 to 944 are used as normal data carriers (including a zero frequency carrier that does not modulate baseband data), and the remaining 79 sub-carriers The carrier, that is, the carrier number 945~1023 still acts as a protection subcarrier.
根据资源配置信息, 资源映射过程为:  According to the resource configuration information, the resource mapping process is:
如图 9所示, 对于第一个载波的 10MHz带宽, 其首先对正常数据子载 波形成的 48个物理资源单元进行子带区分( Subband Partition ), 然后进行 微带置换(Mmiband Permutation ), 然后进行 CRU/DRU分配, 以及 DRU 中的子载波置换。 这些过程均不涉及到保护带内子载波形成的物理资源单 元。最后,根据控制信道的指示信息将保护带内的物理资源单元映射为 DRU 并在该两个物理资源单元内, 按照子载波置换规则进行子载波的置换, 它 归属第一个载波的 10MHz带宽的频率分区零 FP0调度,并且按照从左到右 (从低频到高频) 的顺序重新编号为 FP0中的 DRU4、 DRU5。  As shown in FIG. 9, for the 10 MHz bandwidth of the first carrier, the subband Partition is performed on the 48 physical resource units formed by the normal data subcarriers, and then the Mmiband Permutation is performed, and then performed. CRU/DRU allocation, and subcarrier permutation in the DRU. None of these processes involve physical resource elements that form subcarriers within the protection band. Finally, the physical resource unit in the guard band is mapped to the DRU according to the indication information of the control channel, and the subcarrier replacement is performed according to the subcarrier replacement rule in the two physical resource units, which belongs to the 10 MHz bandwidth of the first carrier. The frequency partition is zero FP0 scheduled and renumbered as DRU4, DRU5 in FP0 in order from left to right (from low frequency to high frequency).
如图 9所示, 对于第二个载波的 10MHz带宽, 其首先对正常数据子载 波形成的 48个物理资源单元进行子带区分( Subband Partition ), 然后进行 微带置换(Miniband Permutation ), 然后进行 CRU/DRU分配, 以及 DRU 中的子载波置换。 这些过程均不涉及到保护带内子载波形成的物理资源单 元。 最后, 根据控制信道的指示信息将保护带内的物理资源单元映射为 CRU, 它归属第二载波系统的频率分区零 FP0调度,并且按照从左到右(从 低频到高频) 的顺序重新编号为 FP0中的 CRU8、 CRU9。  As shown in FIG. 9, for the 10 MHz bandwidth of the second carrier, the subband Partition is performed on the 48 physical resource units formed by the normal data subcarriers, and then the microband permutation is performed, and then performed. CRU/DRU allocation, and subcarrier permutation in the DRU. None of these processes involve physical resource elements that form subcarriers within the protection band. Finally, the physical resource unit in the guard band is mapped to the CRU according to the indication information of the control channel, which belongs to the frequency partition zero FP0 scheduling of the second carrier system, and is renumbered in order from left to right (from low frequency to high frequency). It is CRU8 and CRU9 in FP0.
实例 7: 图 10示出了本实例中两个相邻的 10MHz多载频无线通信系统作为大 带宽系统时的资源映射过程。 Example 7: FIG. 10 shows a resource mapping process when two adjacent 10 MHz multi-carrier wireless communication systems in this example are used as a large bandwidth system.
其中, 10MHz带宽的 FFT点数为 1024, 子帧内可用子载波为 864个, 共分成物理资源单元 48个,每个大小为 18 X 6,每一个 10MHz带宽的左边 (低频)保护带有 80个保护子载波, 右边(高频)有 79个保护子载波。  The FFT point of the 10MHz bandwidth is 1024, and the available subcarriers in the subframe are 864, which are divided into 48 physical resource units, each of which is 18 X 6. The left (low frequency) protection of each 10 MHz bandwidth is 80 The subcarrier is protected, and the right (high frequency) has 79 guard subcarriers.
每一个 10MHz的载波系统资源配置信息为将该子帧分成 4个频率子带 FPO, FP1 , FP2, FP3 , 其中每一个频率子带都包含 12个资源单元。  Each 10 MHz carrier system resource configuration information is divided into four frequency sub-bands FPO, FP1, FP2, and FP3, wherein each frequency sub-band includes 12 resource elements.
在左边(低频) 10MHz的多载波系统的左边(低频), 有 80个保护子 载波,右边(高频)有 79个保护子载波,在两个相邻系统之间 ,有 79+80=159 个保护子载波。  On the left (low frequency) 10MHz multi-carrier system on the left (low frequency), there are 80 guard subcarriers, and on the right (high frequency) there are 79 guard subcarriers, between two adjacent systems, there are 79+80=159 Protection subcarriers.
根据资源配置信息保护带宽中的资源形成过程为:  The process of forming resources in the bandwidth protection according to the resource configuration information is:
如图 10所示, 将左边第一个 10MHz带宽的最左边 80个子载波, 即第 一个 10MHz带宽的子载波 0 ~ 79, 仍作为保护子载波, 中间的 865个子载 波, 即 80 ~ 944 号子载波作为正常数据载波, 接着的 72 个保护子载波 ( 945 1016 )作为保护带物理资源单元, 而接着的 7个子载波( 1017 1023 ) 作为保护子载波。 调制数据。  As shown in FIG. 10, the leftmost 80 subcarriers of the first 10 MHz bandwidth on the left side, that is, the first 10 MHz bandwidth subcarriers 0 to 79, still serve as guard subcarriers, and the middle 865 subcarriers, that is, 80 to 944. The subcarriers are used as normal data carriers, the next 72 guard subcarriers (945 1016) are used as guard band physical resource units, and the next 7 subcarriers (1017 1023) are used as guard subcarriers. Modulate the data.
如图 10所示, 将右边第二个 10MHz带宽的最左边 8个子载波, 即第 二个 10MHz带宽的子载波 0 ~ 7, 仍作为保护子载波, 随后的 72个保护子 载波( 8 ~ 79 )形成 4个物理资源单元, 中间的 865个子载波, 即 80 ~ 944 号子载波作为正常数据载波, 接着的 79个保护子载波( 944 1023 )作为保 护子载波。  As shown in FIG. 10, the leftmost 8 subcarriers of the second 10 MHz bandwidth on the right side, that is, the second 10 MHz bandwidth subcarriers 0-7, are still used as guard subcarriers, and the subsequent 72 guard subcarriers (8 ~ 79) The four physical resource units are formed, and the middle 865 subcarriers, that is, the 80 to 944 subcarriers are used as normal data carriers, and the next 79 guard subcarriers (944 1023) are used as protection subcarriers.
根据资源配置信息, 资源映射过程为:  According to the resource configuration information, the resource mapping process is:
如图 10所示, 对于第一个载波的 10MHz带宽, 其对 80 ~ 1015号子载 波形成的 48个物理资源单元进行子带区分( Subband Partition ), 然后进行 微带置换(Mmiband Permutation ), 然后进行 CRU/DRU分配, 以及 DRU 中的子载波置换。 对 1033~1968号形成的 48个物理资源单元进行子带区分 ( Subband Partition ), 然后进行微带置换 ( Miniband Permutation ), 然后进 行 CRU DRU分配, 以及 DRU中的子载波置换。 这些过程均不涉及到保护 带内子载波形成的物理资源单元。 最后, 根据控制信道的指示信息将第一 个载波系统中的保护带内的 4个物理资源单元映射为 DRU, 并在该 4个物 理资源单元内, 按照子载波置换规则进行子载波的置换, 分别归属第一个 载波的 10MHz带宽的频率分区零 FP0调度, 并且按照从左到右(从低频到 高频)的顺序重新编号为第一个系统中的 FP0中的 DRU4、 D U5、 DRU6、 DRU7。 As shown in FIG. 10, for the 10 MHz bandwidth of the first carrier, subband Partition is performed on 48 physical resource units formed by subcarriers 80 to 1015, and then Mmiband Permutation is performed, and then Perform CRU/DRU allocation, and DRU Subcarrier permutation. The sub-band division (Subband Partition) is performed on the 48 physical resource units formed by 1033 to 1968, and then the microband permutation is performed, and then the CRU DRU allocation and the subcarrier replacement in the DRU are performed. None of these processes involve physical resource elements formed by guarding subcarriers within the band. Finally, four physical resource units in the guard band in the first carrier system are mapped into DRUs according to the indication information of the control channel, and subcarrier replacement is performed according to the subcarrier replacement rule in the four physical resource units. The frequency partitioning of the 10MHz bandwidth of the first carrier is respectively zero FP0 scheduling, and is renumbered as DRU4, D U5, DRU6 in FP0 in the first system in order from left to right (from low frequency to high frequency), DRU7.
如图 10所示, 对于第二个载波的 10MHz带宽, 其首先对正常数据子 载波形成的 48个物理资源单元进行子带区分( Subband Partition ), 然后进 行微带置换( Miniband Permutation ), 然后进行 CRU DRU分配, 以及 DRU 中的子载波置换。 这些过程均不涉及到保护带内子载波形成的物理资源单 元。 最后, 根据控制信道的指示信息将保护带内的物理资源单元映射为 CRU, 它归属第二载波系统的频率分区零 FP0调度,并且按照从左到右(从 低频到高频)的顺序重新编号为 FP0中的 CRU8、 CRU9、 CRU10、 CRU1L 实例 8:  As shown in FIG. 10, for the 10 MHz bandwidth of the second carrier, the subband Partition is performed on the 48 physical resource units formed by the normal data subcarriers, and then the microband permutation is performed, and then performed. CRU DRU allocation, and subcarrier permutation in the DRU. None of these processes involve physical resource elements that form subcarriers within the protection band. Finally, the physical resource unit in the guard band is mapped to the CRU according to the indication information of the control channel, which belongs to the frequency partition zero FP0 scheduling of the second carrier system, and is renumbered in order from left to right (from low frequency to high frequency). Example 8 for CRU8, CRU9, CRU10, CRU1L in FP0:
图 11示出了本实例中两个相邻的 20MHz带宽的资源映射过程。  Figure 11 shows the resource mapping process for two adjacent 20 MHz bandwidths in this example.
其中, 20MHz带宽的 FFT点数为 2048 , 子帧内可用子载波为 1728个, 共分成物理资源单元 96个,每个大小为 18 x 6,每一个 20MHz带宽的左边 (低频)保护带有 160个保护子载波, 右边(高频)有 159个保护子载波。  Among them, the 20MHz bandwidth FFT point is 2048, the sub-frame available sub-carrier is 1728, which is divided into 96 physical resource units, each of which is 18 x 6. The left (low frequency) protection of each 20MHz bandwidth is 160 The subcarriers are protected, and there are 159 guard subcarriers on the right (high frequency).
每一个 20MHz的载波系统资源配置信息为将该子帧分成 3个频率子带 FP1 , FP2, FP3 , 其中每一个频率资源单元包含, 包含 32个物理资源单元。  Each 20 MHz carrier system resource configuration information is divided into three frequency sub-bands FP1, FP2, and FP3, wherein each frequency resource unit includes, and includes 32 physical resource units.
在左边(低频) 5MHz的多载波系统的左边(低频), 有 160个保护子 载波, 右边 (高频) 有 159 个保护子载波, 在两个相邻系统之间, 有 160+159=319个保护子载波。 On the left (low frequency) 5MHz multi-carrier system on the left (low frequency), there are 160 guard subcarriers, and on the right (high frequency) there are 159 guard subcarriers, between two adjacent systems, 160+159=319 protection subcarriers.
根据资源配置信息, 保护带宽中的资源形成过程为:  According to the resource configuration information, the process of forming resources in the protection bandwidth is:
如图 11所示, 将左边第一个 20MHz带宽的最左边 160个子载波, 即 第一个 20MHz带宽的子载波 0 ~ 159 , 仍作为保护子载波, 中间的 1729个 子载波, 即 160 ~ 1888 号子载波作为正常数据载波(其中包含一个不调制 基带数据的零频率载波), 而第 1889 ~ 1960号子载波用于参与形成 4个物 理资源单元, 剩下的 87个子载波, 即, 第 1961 2047号载波仍作为保护子 载波。  As shown in FIG. 11, the leftmost 160 subcarriers of the first 20 MHz bandwidth on the left side, that is, the first 20 MHz bandwidth subcarriers 0 to 159, still serve as guard subcarriers, and the middle 1729 subcarriers, that is, 160 ~ 1888 The subcarrier is used as a normal data carrier (which contains a zero frequency carrier that does not modulate baseband data), and subcarriers 1889 ~ 1960 are used to participate in the formation of 4 physical resource units, and the remaining 87 subcarriers, ie, 1961 2047 The number carrier still acts as a protection subcarrier.
如图 11所示, 将右边第二个 20MHz带宽的最左边 88个保护子载波, 即第二个 20MHz带宽的子载波 0 ~ 87 , 仍作为保护子载波, 随后的 72个保 护子载波, 即子载波 88 159, 用于形成 4 个物理资源单元, 中间的 1729 个子载波, 即 160 1888 号子载波作为正常数据载波(其中包含一个不调 制基带数据的零频率载波), 剩下的 159个子载波, 即, 第 1889〜2047号载 波仍作为保护子载波。  As shown in FIG. 11, the leftmost 88 guard subcarriers of the second 20 MHz bandwidth on the right side, that is, the second 20 MHz bandwidth subcarriers 0 to 87, still serve as guard subcarriers, and then 72 guard subcarriers, that is, Subcarrier 88 159, used to form 4 physical resource units, 1729 subcarriers in the middle, that is, 160 1888 subcarriers as normal data carriers (including a zero frequency carrier that does not modulate baseband data), and the remaining 159 subcarriers That is, the carrier number 1889~2047 still acts as a protection subcarrier.
根据资源配置信息, 资源映射过程为:  According to the resource configuration information, the resource mapping process is:
如图 11所示, 对于第一个载波的 20MHz带宽, 其首先对正常数据子 载波形成的 96个物理资源单元进行子带区分( Subband Partition ), 然后进 行微带置换( Miniband Permutation ), 然后进行 CRU DRU分配, 以及 DRU 中的子载波置换。 这些过程均不涉及到保护带内子载波形成的物理资源单 元。 最后, (可选的, 根据前述控制信道的指示信息)将保护带内的物理资 源单元映射为 CRU, 它归属第一个载波的 20MHz带宽的频率分区零 FP0 调度, 并且重新编号为 FP0中的 CRU0、 CRUU CRU2、 CRU3。  As shown in FIG. 11, for the 20 MHz bandwidth of the first carrier, first subband Partition (subband Partition) is performed on 96 physical resource units formed by the normal data subcarriers, and then microband permutation is performed, and then performed. CRU DRU allocation, and subcarrier permutation in the DRU. None of these processes involve physical resource elements that form subcarriers within the protection band. Finally, (optionally, according to the indication information of the foregoing control channel), the physical resource unit in the guard band is mapped to a CRU, which belongs to the frequency partitioning zero FP0 scheduling of the 20 MHz bandwidth of the first carrier, and is renumbered as FP0. CRU0, CRUU CRU2, CRU3.
如图 11所示, 对于第二个载波的 20MHz带宽, 其首先对正常数据子 载波形成的 96个物理资源单元进行子带区分( Subband Partition ), 然后进 行微带置换( Miniband Permutation ), 然后进行 CRU DRU分配, 以及 DRU 中的子载波置换。 这些过程均不涉及到保护带内子载波形成的物理资源单 元。 最后, (可选的, 根据前述控制信道的指示信息)将保护带内的物理资 源单元映射为 CRU, 它归属第二载波系统的频率分区零 FP0调度, 并且重 新编号为 FP0中的 CRU0、 CRU1、 CRU2、 CRU3。 As shown in FIG. 11, for the 20 MHz bandwidth of the second carrier, first subband Partition (subband Partition) is performed on 96 physical resource units formed by the normal data subcarriers, and then microband permutation is performed, and then performed. CRU DRU distribution, and DRU Subcarrier permutation. None of these processes involve physical resource elements formed by guarding subcarriers within the band. Finally, (optionally, according to the indication information of the foregoing control channel), the physical resource unit in the guard band is mapped to the CRU, which belongs to the frequency partition zero FP0 scheduling of the second carrier system, and is renumbered as CRU0 and CRU1 in the FP0. , CRU2, CRU3.
实例 9:  Example 9:
图 12示出了本实例中两个相邻的 20MHz带宽的资源映射过程。  Figure 12 shows the resource mapping process for two adjacent 20 MHz bandwidths in this example.
其中, 20MHz带宽的 FFT点数为 2048 , 子帧内可用子载波为 1728个, 共分成物理资源单元 96个,每个大小为 18 x 6,每一个 20MHz带宽的左边 (低频)保护带有 160个保护子载波, 右边(高频)有 159个保护子载波。  Among them, the 20MHz bandwidth FFT point is 2048, the sub-frame available sub-carrier is 1728, which is divided into 96 physical resource units, each of which is 18 x 6. The left (low frequency) protection of each 20MHz bandwidth is 160 The subcarriers are protected, and there are 159 guard subcarriers on the right (high frequency).
每一个 20MHz的载波系统资源配置信息为将该子帧分成 3个频率子带 FP1 , FP2, FP3 , 其中每一个频率资源单元包含, 包含 32个物理资源单元。  Each 20 MHz carrier system resource configuration information is divided into three frequency sub-bands FP1, FP2, and FP3, wherein each frequency resource unit includes, and includes 32 physical resource units.
在左边(低频) 5MHz的多载波系统的左边(低频), 有 160个保护子 载波, 右边 (高频) 有 159 个保护子载波, 在两个相邻系统之间, 有 160+159=319个保护子载波。  On the left (low frequency) 5MHz multi-carrier system to the left (low frequency), there are 160 guard subcarriers, and on the right (high frequency) there are 159 guard subcarriers, between two adjacent systems, there are 160+159=319 Protection subcarriers.
根据资源配置信息, 保护带宽中的资源形成过程为:  According to the resource configuration information, the process of forming resources in the protection bandwidth is:
如图 12所示, 将左边第一个 20MHz带宽的最左边 160个子载波, 即 第一个 20MHz带宽的子载波 0 ~ 159 , 仍作为保护子载波, 中间的 1729个 子载波, 即 160 ~ 1888 号子载波作为正常数据载波(其中包含一个不调制 基带数据的零频率载波), 而随后的 144个子载波, 即第 1889 - 2032号子 载波用于参与形成 8个物理资源单元,剩下的 15个子载波,即,第 2033〜2047 号载波仍作为保护子载波;  As shown in FIG. 12, the leftmost 160 subcarriers of the first 20 MHz bandwidth on the left side, that is, the first 20 MHz bandwidth subcarriers 0 to 159, still serve as guard subcarriers, and the middle 1729 subcarriers, that is, 160 ~ 1888 The subcarrier is used as a normal data carrier (which contains a zero frequency carrier that does not modulate the baseband data), and the subsequent 144 subcarriers, ie, subcarriers 1889-2032, are used to participate in the formation of 8 physical resource units, and the remaining 15 subcarriers The carrier, that is, the carrier number 2033~2047 still acts as a protection subcarrier;
如图 12所示, 将右边第二个 20MHz带宽的最左边 142个保护子载波, 即第二个 20MHz带宽的子载波 0 ~ 141 , 仍作为保护子载波, 随后的 18个 保护子载波, 即子载波 142~159,用于形成 1个物理资源单元, 中间的 1729 个子载波, 即 160 1888 号子载波作为正常数据载波(其中包含一个不调 制基带数据的零频率载波), 剩下的 159个子载波, 即, 第 1889 2047号载 波仍作为保护子载波。 As shown in FIG. 12, the leftmost 142 guard subcarriers of the second 20 MHz bandwidth on the right side, that is, the second 20 MHz bandwidth subcarriers 0 to 141, still serve as guard subcarriers, and the subsequent 18 guard subcarriers, that is, Subcarriers 142~159 are used to form one physical resource unit, and 1729 subcarriers in the middle, that is, 160 1888 subcarriers are used as normal data carriers (including one mismatch) The zero-frequency carrier of the baseband data), the remaining 159 sub-carriers, that is, the 1889 2047 carrier still acts as a protection sub-carrier.
根据资源配置信息, 资源映射过程为:  According to the resource configuration information, the resource mapping process is:
如图 12所示, 对于第一个载波的 20MHz带宽, 其首先对正常数据子 载波形成的 96个物理资源单元进行子带区分( Subband Partition ), 然后进 行微带置换( Miniband Permutation ), 然后进行 CRU DRU分配, 以及 DRU 中的子载波置换。 这些过程均不涉及到保护带内子载波形成的物理资源单 元。 最后, (可选的, 根据前述控制信道的指示信息)将保护带内的物理资 源单元映射为 CRU, 它归属第一个载波的 20MHz带宽的频率分区零 FP0 调度, 并且重新编号为 FP0中的 CRU0、 CRU1、 CRU2、 CRU3、 CRU4、 CRU5、 CRU6、 CRU7。  As shown in FIG. 12, for the 20 MHz bandwidth of the first carrier, first subband Partition (subband Partition) is performed on 96 physical resource units formed by the normal data subcarriers, and then microband permutation is performed, and then performed. CRU DRU allocation, and subcarrier permutation in the DRU. None of these processes involve physical resource elements that form subcarriers within the protection band. Finally, (optionally, according to the indication information of the foregoing control channel), the physical resource unit in the guard band is mapped to a CRU, which belongs to the frequency partitioning zero FP0 scheduling of the 20 MHz bandwidth of the first carrier, and is renumbered as FP0. CRU0, CRU1, CRU2, CRU3, CRU4, CRU5, CRU6, CRU7.
如图 12所示, 对于第二个载波的 20MHz带宽, 其首先对正常数据子 载波形成的 96个物理资源单元进行子带区分( Subband Partition ), 然后进 行微带置换( Miniband Permutation ), 然后进行 CRU DRU分配, 以及 DRU 中的子载波置换。 这些过程均不涉及到保护带内子载波形成的物理资源单 元。 最后, (可选的, 根据前述控制信道的指示信息)将保护带内的物理资 源单元映射为 CRU, 它归属第二载波系统的频率分区零 FP0调度, 并且重 新编号为 FP0中的 CRU0。  As shown in FIG. 12, for the 20 MHz bandwidth of the second carrier, first subband Partition (subband Partition) is performed on 96 physical resource units formed by the normal data subcarriers, and then microband permutation is performed, and then performed. CRU DRU allocation, and subcarrier permutation in the DRU. None of these processes involve physical resource elements that form subcarriers within the protection band. Finally, (optionally, according to the indication information of the foregoing control channel), the physical resource unit in the guard band is mapped to a CRU, which belongs to the frequency partition zero FP0 scheduling of the second carrier system, and is renumbered as CRU0 in FP0.
实例 10:  Example 10:
图 13示出了本实例中两个相邻的 20MHz带宽的多载频系统在大带宽 模式下的资源映射过程。  Figure 13 shows the resource mapping process for two adjacent 20 MHz bandwidth multi-carrier systems in the large bandwidth mode in this example.
其中, 20MHz带宽的 FFT点数为 2048 , 子帧内可用子载波为 1728个, 共分成物理资源单元 96个,每个大小为 18 x 6,每一个 20MHz带宽的左边 (低频)保护带有 160个保护子载波, 右边(高频)有 159个保护子载波。  Among them, the 20MHz bandwidth FFT point is 2048, the sub-frame available sub-carrier is 1728, which is divided into 96 physical resource units, each of which is 18 x 6. The left (low frequency) protection of each 20MHz bandwidth is 160 The subcarriers are protected, and there are 159 guard subcarriers on the right (high frequency).
每一个 20MHz的载波系统资源配置信息为将该子帧分成 3个频率子带 FP1 , FP2, FP3 , 其中每一个频率资源单元包含, 包含 32个物理资源单元。 在左边(低频) 5MHz的多载波系统的左边(低频), 有 160个保护子 载波, 右边 (高频) 有 159 个保护子载波, 在两个相邻系统之间, 有 160+159=319个保护子载波。 Each 20MHz carrier system resource configuration information is divided into three frequency subbands for the subframe. FP1, FP2, FP3, where each frequency resource unit contains, contains 32 physical resource units. On the left (low frequency) 5MHz multi-carrier system to the left (low frequency), there are 160 guard subcarriers, and on the right (high frequency) there are 159 guard subcarriers, between two adjacent systems, there are 160+159=319 Protection subcarriers.
根据资源配置信息, 保护带宽中的资源形成过程为:  According to the resource configuration information, the process of forming resources in the protection bandwidth is:
如图 13所示, 将左边第一个 20MHz带宽的最左边 160个子载波, 即 第一个 20MHz带宽的子载波 0 ~ 159 , 仍作为保护子载波, 中间的 1729个 子载波, 即 160 ~ 1888 号子载波作为正常数据载波(其中包含一个不调制 基带数据的零频率载波), 将剩下的 159 个保护子载波, 连同右边第二个 20MHz带宽的最左边 160个保护子载波(一共 319个保护子载波), 形成 17个 PRU, 随后的第二个 20MHz带宽的 1729个子载波, 即 160 ~ 1888号 子载波作为正常数据载波(其中包含一个不调制基带数据的零频率载波), 剩下的 159个子载波, 即, 第 1889〜2047号载波仍作为保护子载波。  As shown in FIG. 13, the leftmost 160 subcarriers of the first 20 MHz bandwidth on the left side, that is, the first 20 MHz bandwidth subcarriers 0 to 159, still serve as guard subcarriers, and the middle 1729 subcarriers, that is, 160 ~ 1888 The subcarrier is used as the normal data carrier (which contains a zero frequency carrier that does not modulate the baseband data), and the remaining 159 guard subcarriers, together with the leftmost 160 guard subcarriers of the second 20 MHz bandwidth on the right (a total of 319 protections) Subcarriers, forming 17 PRUs, followed by a second 20MHz bandwidth of 1729 subcarriers, ie 160 ~ 1888 subcarriers as normal data carriers (which contain a zero frequency carrier that does not modulate baseband data), the remaining 159 The subcarriers, that is, the carrier number 1889~2047 are still used as guard subcarriers.
根据资源配置信息, 资源映射过程为:  According to the resource configuration information, the resource mapping process is:
如图 13所示, 对于第一个载波的 20MHz带宽, 其首先对正常数据子 载波形成的 96个物理资源单元进行子带区分( Subband Partition ), 然后进 行微带置换( Miniband Permutation ), 然后进行 CRU DRU分配, 以及 DRU 中的子载波置换。 这些过程均不涉及到保护带内子载波形成的物理资源单 元。 对于第二个载波的 20MHz 带宽, 其首先对正常数据子载波形成的 % 个物理资源单元进行子带区分 (Subband Partition ), 然后进行微带置换 As shown in FIG. 13, for the 20 MHz bandwidth of the first carrier, first subband Partition is performed on 96 physical resource units formed by the normal data subcarriers, and then microband permutation is performed, and then performed. CRU DRU allocation, and subcarrier permutation in the DRU. None of these processes involve physical resource elements that form subcarriers within the protection band. For the 20MHz bandwidth of the second carrier, it first performs Subband Partition on the % physical resource units formed by the normal data subcarriers, and then performs microstrip replacement.
( Miniband Permutation ), 然后进行 CRU/DRU分配, 以及 DRU中的子载 波置换。 这些过程均不涉及到保护带内子载波形成的物理资源单元。 最后,(Miniband Permutation), then perform CRU/DRU allocation, and subcarrier replacement in the DRU. None of these processes involve physical resource elements formed by guarding subcarriers within the band. At last,
(可选的, 根据前述控制信道的指示信息)将保护带内的 17个物理资源单 元映射为 CRU, 它归属这个大带宽多载波系统的频率分区零 FP0调度, 并 且重新编号为 FP0中的 CRU0 ~ 17。 实例 11 : (Optionally, according to the foregoing indication information of the control channel), the 17 physical resource units in the guard band are mapped into CRUs, which belong to the frequency partition zero FP0 scheduling of the large bandwidth multi-carrier system, and are renumbered as CRU0 in FP0. ~ 17. Example 11:
图 14示出了本实例中两个相邻的 5MHz带宽在大带宽模式下形成不规 则 PRU的资源映射过程。  Figure 14 shows the resource mapping process for forming an irregular PRU in a large bandwidth mode for two adjacent 5 MHz bandwidths in this example.
其中, 5MHz带宽的 FFT点数为 512, 子帧内可用子载波为 432个, 共 分成物理资源单元 24个,每个大小为 18 x 6,每一个 5MHz带宽的左边(低 频)保护带有 40个保护子载波, 右边 (高频)有 39个保护子载波。  The FFT points of the 5MHz bandwidth are 512, and the number of available subcarriers in the sub-frame is 432, which are divided into 24 physical resource units, each of which is 18 x 6. The left (low frequency) protection of each 5MHz bandwidth has 40 The subcarrier is protected, and there are 39 guard subcarriers on the right (high frequency).
每一个 5MHz的载波系统资源配置信息为将该子帧分成 1个频率子带 FP0, 频率子带 0包括三个资源子带(Subband ), 包含 12个物理资源单元。  Each 5 MHz carrier system resource configuration information is divided into one frequency sub-band FP0, and the frequency sub-band 0 includes three resource sub-bands (Subband), which includes 12 physical resource units.
在左边 (低频 ) 5MHz的多载波系统的左边(低频), 有 40个保护子载 波, 右边(高频 )有 39个保护子载波, 在两个相邻系统之间, 有 39+40=79 个保护子载波。  On the left (low frequency) 5MHz multi-carrier system (low frequency), there are 40 guard subcarriers, and on the right (high frequency) there are 39 guard subcarriers, between two adjacent systems, there are 39+40=79 Protection subcarriers.
根据资源配置信息, 保护带宽中的资源形成过程为:  According to the resource configuration information, the process of forming resources in the protection bandwidth is:
如图 14所示, 将左边第一个 5MHz带宽的最左边 40个子载波, 即第 一个 5MHz带宽的子载波 0 ~ 39,仍作为保护子载波,中间的 433个子载波, 即 40 ~ 472 号子载波作为正常数据载波(其中包含一个不调制基带数据的 零频率载波), 随后的 39个保护子载波和右边第二个 5MHz带宽的最左边 40个保护子载波(一共 79个保护子载波), 用于形成尺寸为 (14个子载波 n个时域符号)的 5个不规则 PRU, 剩余 9个保护子载波。 第二个 5MHz 带宽的中间的 433个子载波, 即 41 ~ 473号子载波作为正常数据载波(其 中包含一个不调制基带数据的零频率载波), 剩下的 39 个子载波, 即, 第 474-511号载波仍作为保护子载波。  As shown in FIG. 14, the leftmost 40 subcarriers of the first 5 MHz bandwidth on the left side, that is, the first 5 MHz bandwidth subcarriers 0 to 39, still serve as guard subcarriers, and the middle 433 subcarriers, that is, 40 to 472. The subcarrier is used as the normal data carrier (which contains a zero frequency carrier that does not modulate the baseband data), the subsequent 39 guard subcarriers and the leftmost 40 guard subcarriers of the second 5 MHz bandwidth on the right (a total of 79 guard subcarriers) For forming 5 irregular PRUs of size (14 subcarriers n time domain symbols), and remaining 9 guard subcarriers. 433 subcarriers in the middle of the second 5MHz bandwidth, that is, subcarriers 41 to 473 are used as normal data carriers (including a zero frequency carrier that does not modulate baseband data), and the remaining 39 subcarriers, ie, 474-511 The number carrier still acts as a protection subcarrier.
根据资源配置信息, 资源映射过程为:  According to the resource configuration information, the resource mapping process is:
如图 14所示, 对于第一个载波的 5MHz带宽, 其首先对正常数据子载 波形成的 24个物理资源单元进行子带区分( Subband Partition ), 然后进行 微带置换(Mmiband Permutation ), 然后进行 CRU/DRU分配, 以及 DRU 中的子载波置换。 对于第二个载波的 5MHz带宽, 其首先对正常数据子载 波形成的 24个物理资源单元进行子带区分 ( Subband Partition ), 然后进行 微带置换( Mmiband Permutation ), 然后进行 CRU/DRU分配, 以及 DRU 中的子载波置换。 最后, (可选的, 根据前述控制信道的指示信息)将保护 带内的物理资源单元映射为 CRU, 它归属第一个载波的 5MHz带宽或者第 二个载波的 5MHz带宽的频率分区零 FP0调度, 并且重新编号为 FP0中的 CRU12、 CRU13、 CRU14、 CRU15、 CRU16。 As shown in FIG. 14, for the 5 MHz bandwidth of the first carrier, first subband Partition is performed on 24 physical resource units formed by the normal data subcarriers, and then Mmiband Permutation is performed, and then CRU/DRU allocation, and DRU Subcarrier permutation. For the 5 MHz bandwidth of the second carrier, it first performs subband Partition on the 24 physical resource units formed by the normal data subcarriers, then performs Mmiband Permutation, and then performs CRU/DRU allocation, and Subcarrier permutation in the DRU. Finally, (optionally, according to the indication information of the foregoing control channel), the physical resource unit in the guard band is mapped to a CRU, which belongs to the 5 MHz bandwidth of the first carrier or the frequency partition zero FP0 scheduling of the 5 MHz bandwidth of the second carrier. And renumbered as CRU12, CRU13, CRU14, CRU15, CRU16 in FP0.
实例 12:  Example 12:
图 15示出了本实例中两个相邻的 5MHz带宽的多载频无线通信系统使 用非规则 PRU的资源映射过程。  Fig. 15 shows a resource mapping process using an irregular PRU for two adjacent 5 MHz bandwidth multi-carrier wireless communication systems in this example.
其中, 5MHz带宽的 FFT点数为 512, 子帧内可用子载波为 432个, 共 分成物理资源单元 24个,每个大小为 18 x 6,每一个 5MHz带宽的左边(低 频)保护带有 40个保护子载波, 右边 (高频)有 39个保护子载波。  The FFT points of the 5MHz bandwidth are 512, and the number of available subcarriers in the sub-frame is 432, which are divided into 24 physical resource units, each of which is 18 x 6. The left (low frequency) protection of each 5MHz bandwidth has 40 The subcarrier is protected, and there are 39 guard subcarriers on the right (high frequency).
每一个 5MHz的载波系统资源配置信息为将该子帧分成 1个频率子带 FP0, 频率子带 0包括三个资源子带(Subband ), 包含 12个物理资源单元。  Each 5 MHz carrier system resource configuration information is divided into one frequency sub-band FP0, and the frequency sub-band 0 includes three resource sub-bands (Subband), which includes 12 physical resource units.
在左边(低频) 5MHz的多载波系统的左边(低频), 有 40个保护子载 波, 右边(高频 )有 39个保护子载波, 在两个相邻系统之间, 有 39+40=79 个保护子载波。  On the left (low frequency) 5MHz multi-carrier system (low frequency), there are 40 guard subcarriers, and on the right (high frequency) there are 39 guard subcarriers, between two adjacent systems, there are 39+40=79 Protection subcarriers.
根据资源配置信息, 保护带宽中的资源形成过程为:  According to the resource configuration information, the process of forming resources in the protection bandwidth is:
如图 15所示, 将左边第一个 5MHz带宽的最左边 40个子载波, 即第 一个 5MHz带宽的子载波 0 ~ 39,仍作为保护子载波,中间的 433个子载波, 即 40 472 号子载波作为正常数据载波(其中包含一个不调制基带数据的 零频率载波),而第 473 ~ 500号子载波用于参与形成 2个物理资源单元(每 个包含 14个子载波), 剩下的 11个子载波, 即, 第 501 511号载波仍作为 保护子载波。 如图 15所示, 将右边第二个 5MHz带宽的最左边 12个保护子载波, 即第二个 5MHz带宽的子载波 0 ~ 11, 仍作为保护子载波, 随后的 28个保 护子载波, 即子载波 12 39 , 用于形成一个物理资源单元, 中间的 433个子 载波, 即 40 ~ 472 号子载波作为正常数据载波(其中包含一个不调制基带 数据的零频率载波), 剩下的 39个子载波, 即, 第 473 511号载波仍作为 保护子载波。 As shown in FIG. 15, the leftmost 40 subcarriers of the first 5 MHz bandwidth on the left side, that is, the first 5 MHz bandwidth subcarriers 0 to 39, still serve as guard subcarriers, and the middle 433 subcarriers, that is, 40 472 subcarriers. The carrier acts as a normal data carrier (which contains a zero-frequency carrier that does not modulate the baseband data), while subcarriers 473-500 are used to participate in the formation of two physical resource units (each containing 14 subcarriers), and the remaining 11 sub-carriers The carrier, ie, the 501st 511 carrier still acts as a guard subcarrier. As shown in FIG. 15, the leftmost 12 guard subcarriers of the second 5 MHz bandwidth on the right side, that is, the second 5 MHz bandwidth subcarriers 0 to 11, still serve as guard subcarriers, and then 28 guard subcarriers, that is, The subcarrier 12 39 is used to form one physical resource unit, and the middle 433 subcarriers, that is, 40 to 472 subcarriers are used as normal data carriers (including a zero frequency carrier that does not modulate baseband data), and the remaining 39 subcarriers That is, the carrier number 473 511 still acts as a protection subcarrier.
根据资源配置信息, 资源映射过程为:  According to the resource configuration information, the resource mapping process is:
如图 15所示, 对于第一个载波的 5MHz带宽, 其首先对正常数据子载 波形成的 24个物理资源单元进行子带区分( Subband Partition ), 然后进行 微带置换(Miniband Permutation ), 然后进行 CRU/DRU分配, 以及 DRU 中的子载波置换。 最后, (可选的, 根据前述控制信道的指示信息)将保护 带内的物理资源单元映射为 CRU, 它归属第一个载波的 5MHz带宽的频率 分区零 FP0调度, 并且重新编号为 FP0中的 CRU12、 CRU13。  As shown in FIG. 15, for the 5 MHz bandwidth of the first carrier, the sub-band division (Subband Partition) is performed on the 24 physical resource units formed by the normal data subcarriers, and then the microband permutation is performed, and then performed. CRU/DRU allocation, and subcarrier permutation in the DRU. Finally, (optionally, according to the indication information of the foregoing control channel), the physical resource unit in the guard band is mapped to a CRU, which belongs to the frequency partitioning of the first carrier, and the frequency partition is zero FP0 scheduling, and is renumbered in the FP0. CRU12, CRU13.
如图 15所示, 对于第二个载波的 5MHz带宽, 其首先对正常数据子载 波形成的 24个物理资源单元进行子带区分 ( Subband Partition ), 然后进行 微带置换( Mmiband Permutation ), 然后进行 CRU/DRU分配, 以及 DRU 中的子载波置换。 最后, (可选的, 根据前述控制信道的指示信息)将保护 带内的物理资源单元映射为 CRU, 它归属第二载波系统的频率分区零 FP0 调度, 并且重新编号为 FP0中的 CRU12、 CRU13。  As shown in FIG. 15, for the 5 MHz bandwidth of the second carrier, first subband Partition is performed on 24 physical resource units formed by the normal data subcarriers, and then Mmiband Permutation is performed, and then performed. CRU/DRU allocation, and subcarrier permutation in the DRU. Finally, (optionally, according to the indication information of the foregoing control channel), the physical resource unit in the guard band is mapped to a CRU, which belongs to the frequency partition zero FP0 scheduling of the second carrier system, and is renumbered as CRU12 and CRU13 in FP0. .
实例 13:  Example 13:
图 16示出了本实例中两个相邻的 5MHz带宽的多载频无线通信系统使 用非规则 PRU的资源映射过程。  Fig. 16 shows a resource mapping process using an irregular PRU for two adjacent 5 MHz bandwidth multi-carrier wireless communication systems in this example.
其中, 5MHz带宽的 FFT点数为 512, 子帧内可用子载波为 432个, 共 分成物理资源单元 24个,每个大小为 18 x 6,每一个 5MHz带宽的左边(低 频 )保护带有 40个保护子载波, 右边 (高频)有 39个保护子载波。 每一个 5MHz的载波系统资源配置信息为将该子帧分成 1个频率子带 FP0, 频率子带 0包括三个资源子带(Subband ), 包含 12个物理资源单元。 The FFT points of the 5MHz bandwidth are 512, and the number of available subcarriers in the sub-frame is 432, which are divided into 24 physical resource units, each of which is 18 x 6. The left (low frequency) protection of each 5MHz bandwidth has 40 The subcarrier is protected, and there are 39 guard subcarriers on the right (high frequency). Each 5 MHz carrier system resource configuration information is divided into one frequency sub-band FP0, and the frequency sub-band 0 includes three resource sub-bands (Subband), which includes 12 physical resource units.
在左边(低频) 5MHz的多载波系统的左边(低频), 有 40个保护子载 波, 右边(高频 )有 39个保护子载波, 在两个相邻系统之间, 有 39+40=79 个保护子载波。  On the left (low frequency) 5MHz multi-carrier system (low frequency), there are 40 guard subcarriers, and on the right (high frequency) there are 39 guard subcarriers, between two adjacent systems, there are 39+40=79 Protection subcarriers.
根据资源配置信息, 保护带宽中的资源形成过程为:  According to the resource configuration information, the process of forming resources in the protection bandwidth is:
如图 16所示, 将左边第一个 5MHz带宽的最左边 40个子载波, 即第 一个 5MHz带宽的子载波 0 ~ 39,仍作为保护子载波,中间的 433个子载波, 即 40 472 号子载波作为正常数据载波(其中包含一个不调制基带数据的 零频率载波),而第 473 ~ 500号子载波用于参与形成 2个物理资源单元(每 个包含 14个子载波), 剩下的 11个子载波, 即, 第 501 511号载波仍作为 保护子载波。  As shown in FIG. 16, the leftmost 40 subcarriers of the first 5 MHz bandwidth on the left side, that is, the first 5 MHz bandwidth subcarriers 0 to 39, still serve as guard subcarriers, and the middle 433 subcarriers, that is, 40 472 subcarriers. The carrier acts as a normal data carrier (which contains a zero-frequency carrier that does not modulate the baseband data), while subcarriers 473-500 are used to participate in the formation of two physical resource units (each containing 14 subcarriers), and the remaining 11 sub-carriers The carrier, ie, the 501st 511 carrier still acts as a guard subcarrier.
如图 16所示, 将右边第二个 5MHz带宽的最左边 12个保护子载波, 即第二个 5MHz带宽的子载波 0 ~ 11, 仍作为保护子载波, 随后的 28个保 护子载波, 即子载波 12 39 , 用于形成一个物理资源单元, 中间的 433个子 载波, 即 40 ~ 472 号子载波作为正常数据载波(其中包含一个不调制基带 数据的零频率载波), 剩下的 39个子载波, 即, 第 473 511号载波仍作为 保护子载波。  As shown in FIG. 16, the leftmost 12 guard subcarriers of the second 5 MHz bandwidth on the right side, that is, the second 5 MHz bandwidth subcarriers 0 to 11, still serve as guard subcarriers, and then 28 guard subcarriers, that is, The subcarrier 12 39 is used to form one physical resource unit, and the middle 433 subcarriers, that is, 40 to 472 subcarriers are used as normal data carriers (including a zero frequency carrier that does not modulate baseband data), and the remaining 39 subcarriers That is, the carrier number 473 511 still acts as a protection subcarrier.
根据资源配置信息, 资源映射过程为:  According to the resource configuration information, the resource mapping process is:
如图 16所示, 对于第一个载波的 5MHz带宽, 其首先对正常数据子载 波形成的 24个物理资源单元进行子带区分( Subband Partition ), 然后进行 微带置换(Mmiband Permutation ), 然后进行 CRU/DRU分配, 以及 DRU 中的子载波置换。 最后, (可选的, 根据前述控制信道的指示信息)将保护 带内的物理资源单元映射为 DRU, 它归属第一个载波的 5MHz带宽的频率 分区零 FP0调度, 并且重新编号为 FP0中的 DRU12、 DRU13。 如图 16所示, 对于第二个载波的 5MHz带宽, 其首先对正常数据子载 波形成的 24个物理资源单元进行子带区分 ( Subband Partition ), 然后进行 微带置换( Mmiband Permutation ), 然后进行 CRU/DRU分配, 以及 DRU 中的子载波置换。 最后, (可选的, 根据前述控制信道的指示信息)将保护 带内的物理资源单元映射为 DRU, 它归属第二载波系统的频率分区零 FP0 调度, 并且重新编号为 FP0中的 DRU12、 DRU13。 As shown in FIG. 16, for the 5 MHz bandwidth of the first carrier, the sub-band division (Subband Partition) is performed on the 24 physical resource units formed by the normal data sub-carriers, and then the Mmiband Permutation is performed, and then performed. CRU/DRU allocation, and subcarrier permutation in the DRU. Finally, (optionally, according to the indication information of the foregoing control channel), the physical resource unit in the guard band is mapped to a DRU, which belongs to the frequency partition of the first carrier, and the frequency partition is zero FP0 scheduling, and is renumbered in the FP0. DRU12, DRU13. As shown in FIG. 16, for the 5 MHz bandwidth of the second carrier, first subband Partition is performed on 24 physical resource units formed by the normal data subcarriers, and then Mmiband Permutation is performed, and then performed. CRU/DRU allocation, and subcarrier permutation in the DRU. Finally, (optionally, according to the indication information of the foregoing control channel), the physical resource unit in the guard band is mapped to a DRU, which belongs to the frequency partition zero FP0 scheduling of the second carrier system, and is renumbered as DRU12 and DRU13 in FP0. .
实例 14:  Example 14:
图 17示出了本实例中两个相邻的 5MHz带宽在大带宽模式下形成不规 则 PRU的资源映射过程。  Figure 17 shows the resource mapping process for forming an irregular PRU in a large bandwidth mode for two adjacent 5 MHz bandwidths in this example.
其中, 5MHz带宽的 FFT点数为 512, 子帧内可用子载波为 432个, 共 分成物理资源单元 24个,每个大小为 18 x 6,每一个 5MHz带宽的左边(低 频 )保护带有 40个保护子载波, 右边 (高频)有 39个保护子载波。  The FFT points of the 5MHz bandwidth are 512, and the number of available subcarriers in the sub-frame is 432, which are divided into 24 physical resource units, each of which is 18 x 6. The left (low frequency) protection of each 5MHz bandwidth has 40 The subcarrier is protected, and there are 39 guard subcarriers on the right (high frequency).
每一个 5MHz的载波系统资源配置信息为将该子帧分成 1个频率子带 FP0, 频率子带 0包括三个资源子带(Subband ), 包含 12个物理资源单元。  Each 5 MHz carrier system resource configuration information is divided into one frequency sub-band FP0, and the frequency sub-band 0 includes three resource sub-bands (Subband), which includes 12 physical resource units.
在左边(低频 ) 5MHz的多载波系统的左边(低频), 有 40个保护子载 波, 右边(高频 )有 39个保护子载波, 在两个相邻系统之间, 有 39+40=79 个保护子载波。  On the left (low frequency) 5MHz multi-carrier system (low frequency), there are 40 guard subcarriers, and on the right (high frequency) there are 39 guard subcarriers, between two adjacent systems, there are 39+40=79 Protection subcarriers.
根据资源配置信息, 保护带宽中的资源形成过程为:  According to the resource configuration information, the process of forming resources in the protection bandwidth is:
如图 17所示, 将左边第一个 5MHz带宽的最左边 40个子载波, 即第 一个 5MHz带宽的子载波 0 ~ 39,仍作为保护子载波,中间的 433个子载波, 即 40 ~ 472 号子载波作为正常数据载波(其中包含一个不调制基带数据的 零频率载波), 随后的 39个保护子载波和右边第二个 5MHz带宽的最左边 40个保护子载波(一共 79个保护子载波), 用于形成尺寸为 (14个子载波 n个时域符号)的 5个不规则 PRU, 剩余 9个保护子载波。 第二个 5MHz 带宽的中间的 433个子载波, 即 41 473号子载波作为正常数据载波(其 中包含一个不调制基带数据的零频率载波), 剩下的 39 个子载波, 即第 473-511号载波仍作为保护子载波。 As shown in FIG. 17, the leftmost 40 subcarriers of the first 5 MHz bandwidth on the left side, that is, the first 5 MHz bandwidth subcarriers 0 to 39, still serve as guard subcarriers, and the middle 433 subcarriers, that is, 40 to 472. The subcarrier is used as the normal data carrier (which contains a zero frequency carrier that does not modulate the baseband data), the subsequent 39 guard subcarriers and the leftmost 40 guard subcarriers of the second 5 MHz bandwidth on the right (a total of 79 guard subcarriers) For forming 5 irregular PRUs of size (14 subcarriers n time domain symbols), and remaining 9 guard subcarriers. 433 subcarriers in the middle of the second 5 MHz bandwidth, ie, 41 473 subcarriers as normal data carriers (its It contains a zero-frequency carrier that does not modulate the baseband data. The remaining 39 subcarriers, ie, the 473-511 carrier, still act as guard subcarriers.
根据资源配置信息, 资源映射过程为:  According to the resource configuration information, the resource mapping process is:
如图 17所示, 对于第一个载波的 5MHz带宽, 其首先对正常数据子载 波形成的 24个物理资源单元进行子带区分 ( Subband Partition ), 然后进行 微带置换(Mmiband Permutation ), 然后进行 CRU/DRU分配, 以及 DRU 中的子载波置换。 对于第二个载波的 5MHz带宽, 其首先对正常数据子载 波形成的 24个物理资源单元进行子带区分( Subband Partition ), 然后进行 微带置换(Mmiband Permutation ), 然后进行 CRU/DRU分配, 以及 DRU 中的子载波置换。 最后, (可选的, 根据前述控制信道的指示信息)将保护 带内的物理资源单元映射为 DRU, 它归属第一个载波的 5MHz带宽或者第 二个载波的 5MHz带宽的频率分区零 FP0调度, 并且重新编号为 FP0中的 DRU12、 DRU13、 DRU14、 DRU15、 DRU16。  As shown in FIG. 17, for the 5 MHz bandwidth of the first carrier, first subband Partition is performed on 24 physical resource units formed by the normal data subcarriers, and then Mmiband Permutation is performed, and then performed. CRU/DRU allocation, and subcarrier permutation in the DRU. For the 5 MHz bandwidth of the second carrier, it first performs Subband Partition on the 24 physical resource units formed by the normal data subcarriers, then performs Mmiband Permutation, and then performs CRU/DRU allocation, and Subcarrier permutation in the DRU. Finally, (optionally, according to the indication information of the foregoing control channel), the physical resource unit in the guard band is mapped to a DRU, which belongs to the 5 MHz bandwidth of the first carrier or the frequency partition zero FP0 scheduling of the 5 MHz bandwidth of the second carrier. And renumbered as DRU12, DRU13, DRU14, DRU15, DRU16 in FP0.
实例 15:  Example 15:
图 18示出了本实例中的两个相邻的 5MHz多载频无线通信系统在一类 特殊情况下的资源映射过程。  Figure 18 shows the resource mapping process for two adjacent 5 MHz multi-carrier wireless communication systems in this example in a special case.
图中的两个 5MHz带宽的多载波系统, 基站侧为某些特殊类型的终端 提供支持, 在某些子帧中, 如果保护载波形成的 PRU被映射为 DRU, 那么 将保护子载波形成的 PRU和普通数据子载波形成的 PRU—起进行子载波置 换。  In the two multi-carrier systems with 5 MHz bandwidth in the figure, the base station side provides support for some special types of terminals. In some subframes, if the PRU formed by the protection carrier is mapped to a DRU, the PRU formed by the subcarriers will be protected. The PRU formed by the normal data subcarrier is subjected to subcarrier replacement.
其中, 5MHz带宽的 FFT点数为 512, 子帧内可用子载波为 432个, 共 分成物理资源单元 24个,每个大小为 18 x 6,每一个 5MHz带宽的左边(低 频)保护带有 40个保护子载波, 右边 (高频)有 39个保护子载波。  The FFT points of the 5MHz bandwidth are 512, and the number of available subcarriers in the sub-frame is 432, which are divided into 24 physical resource units, each of which is 18 x 6. The left (low frequency) protection of each 5MHz bandwidth has 40 The subcarrier is protected, and there are 39 guard subcarriers on the right (high frequency).
每一个 5MHz的载波系统资源配置信息为将该子帧分成 1个频率子带 FP0, 频率子带 0包括三个资源子带(Subband ), 包含 12个物理资源单元。 在左边(低频) 5MHz的多载波系统的左边(低频), 有 40个保护子载 波, 右边(高频 )有 39个保护子载波, 在两个相邻系统之间, 有 39+40=79 个保护子载波。 Each 5 MHz carrier system resource configuration information is divided into one frequency sub-band FP0, and the frequency sub-band 0 includes three resource sub-bands (Subband), which includes 12 physical resource units. On the left (low frequency) 5MHz multi-carrier system (low frequency), there are 40 guard subcarriers, and on the right (high frequency) there are 39 guard subcarriers, between two adjacent systems, there are 39+40=79 Protection subcarriers.
根据资源配置信息, 保护带宽中的资源形成过程为:  According to the resource configuration information, the process of forming resources in the protection bandwidth is:
如图 18所示, 将左边第一个 5MHz带宽的最左边 40个子载波, 即第 一个 5MHz带宽的子载波 0 ~ 39,仍作为保护子载波,中间的 433个子载波, 即 40 ~ 472 号子载波作为正常数据载波(其中包含一个不调制基带数据的 零频率载波), 而第 473 ~ 490 号子载波用于参与形成一个物理资源单元, 剩下的 21个子载波, 即, 第 491 511号载波仍作为保护子载波。  As shown in FIG. 18, the leftmost 40 subcarriers of the first 5 MHz bandwidth on the left side, that is, the first 5 MHz bandwidth subcarriers 0 to 39, still serve as guard subcarriers, and the middle 433 subcarriers, that is, 40 to 472. The subcarrier is used as a normal data carrier (which includes a zero frequency carrier that does not modulate baseband data), and subcarriers 473 to 490 are used to participate in forming one physical resource unit, and the remaining 21 subcarriers, ie, No. 491 511 The carrier still acts as a guard subcarrier.
如图 18所示, 将右边第二个 5MHz带宽的最左边 22个保护子载波, 即第二个 5MHz带宽的子载波 0 ~ 21, 仍作为保护子载波, 随后的 18个保 护子载波, 即子载波 22 39 , 用于形成一个物理资源单元, 中间的 433个子 载波, 即 40 ~ 472 号子载波作为正常数据载波(其中包含一个不调制基带 数据的零频率载波), 剩下的 39个子载波, 即, 第 473 511号载波仍作为 保护子载波。  As shown in FIG. 18, the leftmost 22 guard subcarriers of the second 5 MHz bandwidth on the right side, that is, the second 5 MHz bandwidth subcarriers 0 to 21, still serve as guard subcarriers, and the subsequent 18 guard subcarriers, that is, The subcarrier 22 39 is configured to form one physical resource unit, and the middle 433 subcarriers, that is, 40 to 472 subcarriers are used as normal data carriers (including a zero frequency carrier that does not modulate baseband data), and the remaining 39 subcarriers That is, the carrier number 473 511 still acts as a protection subcarrier.
根据资源配置信息, 资源映射过程为:  According to the resource configuration information, the resource mapping process is:
如图 18所示, 对于第一个载波的 5MHz带宽, 其首先对正常数据子载 波形成的 24个物理资源单元进行子带区分( Subband Partition ), 然后进行 微带置换( Mmiband Permutation ), 然后进行 CRU/DRU分配, 最后, (可 选的, 根据前述控制信道的指示信息) 将保护带内的物理资源单元连同频 率分区 FP0中的所有 DRU,一起进行子载波置换得到置换后的 DRU, 它们 全部归属第一个载波的 5MHz带宽的频率分区零 FP0调度。  As shown in FIG. 18, for the 5 MHz bandwidth of the first carrier, first subband Partition is performed on 24 physical resource units formed by the normal data subcarriers, and then Mmiband Permutation is performed, and then performed. CRU/DRU allocation, and finally, (optionally, according to the indication information of the foregoing control channel), the physical resource unit in the guard band is replaced with all DRUs in the frequency partition FP0, and the replaced DRU is obtained. The frequency partitioning of the 5 MHz bandwidth belonging to the first carrier is zero FP0 scheduling.
如图 18所示, 对于第二个载波的 5MHz带宽, 其首先对正常数据子载 波形成的 24个物理资源单元进行子带区分( Subband Partition ), 然后进行 微带置换( Mmiband Permutation ), 然后进行 CRU/DRU分配, 最后, (可 选的, 根据前述控制信道的指示信息) 将保护带内的物理资源单元连同频 率分区 FP0中的所有 DRU,—起进行子载波置换得到置换后的 DRU, 它们 全部归属第一个载波的 5MHz带宽的频率分区零 FP0调度。 As shown in FIG. 18, for the 5 MHz bandwidth of the second carrier, first subband Partition is performed on 24 physical resource units formed by the normal data subcarriers, and then Mmiband Permutation is performed, and then performed. CRU/DRU allocation, last, (can Optionally, according to the indication information of the foregoing control channel, the physical resource unit in the guard band is replaced with all DRUs in the frequency partition FP0, and the replaced DRU is obtained, and all of them belong to the 5 MHz bandwidth of the first carrier. The frequency partition is zero FP0 scheduling.
综上所述, 借助于本发明的技术方案, 通过在对多载波系统进行资源 映射时, 将连续载频之间的保护子载波映射为物理资源单元, 保持不连续 的载频之间的保护子载波的原有功能, 解决了无法在多载波系统进行资源 映射的问题, 规范了多载波系统中无线资源单位的资源映射过程, 并且, 通过使资源的映射能够适应多载频 OFDMA系统的特点, 有助于釆用多载 频的基站能够根据调度需要选择合适的保护带资源映射方法, 从而达到更 加灵活和充分地使用整个频谱资源的目的, 保证了多载波系统(例如, 基 于 OFDMA技术的无线通信系统 ) 的频语利用效率。  In summary, by means of the technical solution of the present invention, by protecting the subcarriers of the multicarrier system, the protection subcarriers between the continuous carrier frequencies are mapped to physical resource units, and the protection between the discontinuous carrier frequencies is maintained. The original function of subcarriers solves the problem of resource mapping in multi-carrier systems, standardizes the resource mapping process of radio resource units in multi-carrier systems, and adapts the mapping of resources to the characteristics of multi-carrier OFDMA systems. The base station that helps to use multiple carrier frequencies can select an appropriate guard band resource mapping method according to scheduling requirements, thereby achieving more flexible and full use of the entire spectrum resource, and ensuring a multi-carrier system (for example, based on OFDMA technology) Frequency communication efficiency of wireless communication systems).
以上所述仅为本发明的优选实施例而已, 并不用于限制本发明 , 对于 本领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精 神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明 的保护范围之内。  The above is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. within the spirit and scope of the invention are intended to be included within the scope of the invention.

Claims

权利要求书 Claim
1. 一种资源映射方法, 其特征在于, 包括:  A resource mapping method, comprising:
将连续载频之间的保护子载波作为物理资源单元。  The guard subcarriers between consecutive carrier frequencies are taken as physical resource units.
2.根据权利要求 1 所述的方法, 其特征在于, 所述方法还包括: 将非 连续载频之间的保护子载波用于载频之间的保护, 并且不将非连续载频之 间的保护子载波映射为物理资源单元。  The method according to claim 1, wherein the method further comprises: using a guard subcarrier between the discontinuous carrier frequencies for protection between carrier frequencies, and not between non-continuous carrier frequencies The protected subcarriers are mapped to physical resource units.
3.根据权利要求 1 所述的方法, 其特征在于, 所述保护子载波为: 所 述连续载频之间的全部或部分保护子载波。  The method according to claim 1, wherein the protection subcarrier is: all or part of the protection subcarriers between the continuous carrier frequencies.
4.根据权利要求 1 所述的方法, 其特征在于, 所述连续载频之间的频 率间隔是子载波间隔的整数倍。  The method according to claim 1, wherein the frequency interval between the consecutive carrier frequencies is an integer multiple of the subcarrier spacing.
5.根据权利要求 1 所述的方法, 其特征在于, 所述物理资源单元归属 于其所在的载频的第 0个频率分区。  The method according to claim 1, wherein the physical resource unit belongs to a 0th frequency partition of a carrier frequency in which it is located.
6.根据权利要求 1 所述的方法, 其特征在于, 所述物理资源单元归属 于其所在的载频的除第 0个频率分区之外的其他部分或全部频率分区。  The method according to claim 1, wherein the physical resource unit belongs to some or all of the frequency partitions other than the 0th frequency partition of the carrier frequency in which it is located.
7.根据权利要求 1 所述的方法, 其特征在于, 所述方法还包括: 将所 述物理资源单元映射为逻辑资源单元时, 不对所述物理资源单元进行子带 划分和 /或微带置换。  The method according to claim 1, wherein the method further comprises: performing subband division and/or microstrip replacement on the physical resource unit when the physical resource unit is mapped to a logical resource unit .
8.根据权利要求 7 所述的方法, 其特征在于, 在进行逻辑资源单元映 射时, 所述物理资源单元独立进行以下操作至少之一: DRU分配、 子载波 置换和 CRU分配。  The method according to claim 7, wherein, when performing logical resource unit mapping, the physical resource unit independently performs at least one of the following operations: DRU allocation, subcarrier replacement, and CRU allocation.
9.根据权利要求 7 所述的方法, 其特征在于, 所述逻辑资源单元的类 型包括以下至少之一: 连续资源单元、 分布式资源单元。  The method according to claim 7, wherein the type of the logical resource unit comprises at least one of the following: a continuous resource unit, a distributed resource unit.
10.根据权利要求 9所述的方法, 其特征在于, 在进行逻辑单元映射之 前, 还包括: 根据系统的预先配置或控制信道的控制信息确定逻辑单元的 类型。 The method according to claim 9, wherein before performing the logical unit mapping, the method further comprises: determining a type of the logical unit according to a pre-configuration of the system or control information of the control channel.
11.根据权利要求 10所述的方法, 其特征在于, 在确定的逻辑单元类型 为分布式资源单元, 且进行逻辑单元映射时, 根据预定子载波映射规则将 所述保护子载波映射的物理资源单元映射为分布式资源单元。 The method according to claim 10, wherein, when the determined logical unit type is a distributed resource unit, and the logical unit mapping is performed, the physical resource mapped by the protection subcarrier according to a predetermined subcarrier mapping rule The unit is mapped to a distributed resource unit.
12.根据权利要求 10所述的方法, 其特征在于, 所述控制信息包含用于 指示逻辑资源单元类型的指示位, 并且所述指示位用于指示一个以上载频 的保护子载波映射的物理资源单元所需映射的逻辑资源单元类型。  The method according to claim 10, wherein the control information includes an indication bit for indicating a logical resource unit type, and the indication bit is used to indicate a physical of a protected subcarrier mapping with an uplink frequency. The logical resource unit type that the resource unit needs to map.
13.根据权利要求 9所述的方法, 其特征在于, 还包括: 对所述连续资 源单元进行排序并编号、 和 /或分布式资源单元进行排序并编号。  13. The method of claim 9, further comprising: sorting and numbering the consecutive resource units, and/or distributing resource units.
14.根据权利要求 1至 13中任一项所述的方法, 其特征在于, 所述连续 载频是指: 两个相邻的载频, 且该两个载频之间的保护子载波的频域间隔 小于或等于预定值。  The method according to any one of claims 1 to 13, wherein the continuous carrier frequency refers to: two adjacent carrier frequencies, and the protection subcarriers between the two carrier frequencies The frequency domain interval is less than or equal to a predetermined value.
15.根据权利要求 1至 13中任一项所述的方法, 其特征在于, 根据下述 方式之一指示作为物理资源单元的保护子载波的数量和 /或标识: 系统的预 先配置、 控制信道的控制信息、 管理消息。  The method according to any one of claims 1 to 13, characterized in that the number and/or identification of guard subcarriers as physical resource units are indicated according to one of the following ways: Pre-configuration of the system, control channel Control information, management messages.
16.根据权利要求 1至 13中任一项所述的方法, 其特征在于, 根据下述 方式之一指示是否将所述连续载频之间的保护子载波作为物理资源单元: 系统的预先配置、 控制信道的控制信息、 管理消息。  The method according to any one of claims 1 to 13, characterized in that the protection subcarrier between the continuous carrier frequencies is used as a physical resource unit according to one of the following ways: Pre-configuration of the system Control information of the control channel and management messages.
17.根据权利要求 1至 13中任一项所述的方法, 其特征在于, 根据下述 方式之一指示所述物理资源单元所归属的频率分区: 系统的预先配置、 控 制信道的控制信息、 管理消息。  The method according to any one of claims 1 to 13, wherein the frequency partition to which the physical resource unit belongs is indicated according to one of the following ways: pre-configuration of the system, control information of the control channel, Manage messages.
PCT/CN2009/074878 2009-04-25 2009-11-10 Resource mapping method WO2010121470A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012506307A JP5461687B2 (en) 2009-04-25 2009-11-10 Resource mapping method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910137084A CN101873697A (en) 2009-04-25 2009-04-25 Resource mapping method
CN200910137084.2 2009-04-25

Publications (1)

Publication Number Publication Date
WO2010121470A1 true WO2010121470A1 (en) 2010-10-28

Family

ID=42998296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/074878 WO2010121470A1 (en) 2009-04-25 2009-11-10 Resource mapping method

Country Status (3)

Country Link
JP (1) JP5461687B2 (en)
CN (1) CN101873697A (en)
WO (1) WO2010121470A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112367154A (en) * 2020-12-07 2021-02-12 国网信息通信产业集团有限公司 Resource mapping processing method and device based on electric power wireless private network

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104883332B (en) * 2014-02-28 2018-03-09 国际商业机器公司 method and device for signal modulation
CN106358297B (en) * 2015-07-14 2020-10-16 中国移动通信集团公司 Service transmission method and device based on configurable structural frame, network element equipment and terminal
US10945274B2 (en) * 2016-05-13 2021-03-09 Huawei Technologies Co., Ltd. System and method for bandwidth utilization
CN108123778B (en) * 2017-03-24 2023-04-11 中兴通讯股份有限公司 Transmission and transmission configuration method, device, base station and terminal
CN108880756B (en) * 2018-07-12 2020-10-02 北京邮电大学 Signal sending method and device based on resource mapping in non-orthogonal multiple access system
EP4062613A4 (en) * 2019-11-19 2022-12-28 ZTE Corporation A method for configuring guard subcarriers

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007149961A1 (en) * 2006-06-21 2007-12-27 Qualcomm Incorporated Wireless resource allocation methods and apparatus
CN101223719A (en) * 2005-07-14 2008-07-16 松下电器产业株式会社 Radio communication apparatus and radio communication method in multicarrier communication

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3800503B2 (en) * 2001-04-24 2006-07-26 日本ビクター株式会社 Multi-carrier signal generation method
KR100959207B1 (en) * 2005-03-02 2010-05-19 후지쯔 가부시끼가이샤 Subcarrier transmission method, base station and mobile station
CN101043495A (en) * 2006-03-20 2007-09-26 北京三星通信技术研究有限公司 Device and method for dividing resource blocks of wireless communication system
JP4378368B2 (en) * 2006-09-13 2009-12-02 京セラ株式会社 Mobile communication system, base station apparatus, mobile station apparatus, and multicarrier communication method
CN101136894B (en) * 2007-03-23 2012-11-28 中兴通讯股份有限公司 Extendable OFDM and ofdma bandwidth distributing method and system
US8891350B2 (en) * 2008-07-07 2014-11-18 Mediatek Inc. Method and apparatus of data transmission over guard sub-carriers in multi-carrier OFDM systems
CN101730237B (en) * 2008-10-28 2012-06-06 中兴通讯股份有限公司 Wireless resource mapping method
CN101742666B (en) * 2008-11-07 2012-06-06 中兴通讯股份有限公司 Multi-carrier-based method for mapping resource

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101223719A (en) * 2005-07-14 2008-07-16 松下电器产业株式会社 Radio communication apparatus and radio communication method in multicarrier communication
WO2007149961A1 (en) * 2006-06-21 2007-12-27 Qualcomm Incorporated Wireless resource allocation methods and apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112367154A (en) * 2020-12-07 2021-02-12 国网信息通信产业集团有限公司 Resource mapping processing method and device based on electric power wireless private network

Also Published As

Publication number Publication date
JP5461687B2 (en) 2014-04-02
JP2012525019A (en) 2012-10-18
CN101873697A (en) 2010-10-27

Similar Documents

Publication Publication Date Title
CA2795321C (en) Base station apparatus and user terminal
EP2373106B1 (en) Resource mapping methods for control channels
US9503239B2 (en) Radio network node, user equipment and methods therein
JP5676261B2 (en) Resource allocation method and apparatus for control channel in mobile communication system using orthogonal frequency division multiplexing
JP5203463B2 (en) Mobile communication system, mobile station apparatus, base station apparatus, mobile station apparatus communication method, and base station apparatus communication method
EP2304912B1 (en) Method and apparatus for allocating resource of multiple carriers in ofdma system
JP6810255B2 (en) Physically separated channels for narrowband, low complexity receiver
EP2730046B1 (en) Methods and apparatuses for an extended bandwidth carrier
WO2010121470A1 (en) Resource mapping method
US20120014330A1 (en) Method and apparatus for resource allocation with carrier extension
JP4776451B2 (en) Base station, mobile station and communication method
WO2009000185A1 (en) Transmission method, and device basing on ofdm
CN108432285B (en) Transmission method, device and system of physical downlink channel
CN109863715B (en) Method and transmitter for allocating resources to terminals in a communication system
EP2355607B1 (en) Radio resource mapping method
CN114826526A (en) Data signal transmission with shortened end-to-end delay in wireless communication systems
CN108540985A (en) A kind of method that PDSCH is shared with PDCCH resource in NR systems
US8259560B2 (en) Communication system allocating pilot sub-carriers and related methods
CN108401292A (en) Control transmission method, method of reseptance, device, base station and the terminal of information
CN110536433A (en) DMRS processing method, device, system, equipment, terminal, storage medium
WO2019191898A1 (en) Method for performing transmission on channel using unlicensed spectrum, and network device and terminal
WO2015135780A1 (en) Communication device for lte communication within unused gsm channels
KR20110010683A (en) Method and apparatus for uplink transmission in wireless communication system
WO2009011513A2 (en) Method for allocating radio resource in wireless communication system and method for transmitting or receiving data using the same
CN114362905A (en) SRS resource allocation method for multiple BWPs and multiple UEs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09843574

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012506307

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09843574

Country of ref document: EP

Kind code of ref document: A1