WO2010120006A1 - Method for controlling surface characteristics through exchange of super hydrophobic/super hydrophilic surface coating and anion using polymer electrolyte with ammonium groups - Google Patents

Method for controlling surface characteristics through exchange of super hydrophobic/super hydrophilic surface coating and anion using polymer electrolyte with ammonium groups Download PDF

Info

Publication number
WO2010120006A1
WO2010120006A1 PCT/KR2009/002030 KR2009002030W WO2010120006A1 WO 2010120006 A1 WO2010120006 A1 WO 2010120006A1 KR 2009002030 W KR2009002030 W KR 2009002030W WO 2010120006 A1 WO2010120006 A1 WO 2010120006A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
electrolyte polymer
anion
micro
ions
Prior art date
Application number
PCT/KR2009/002030
Other languages
French (fr)
Korean (ko)
Inventor
조길원
임호선
Original Assignee
포항공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항공과대학교 산학협력단 filed Critical 포항공과대학교 산학협력단
Priority to PCT/KR2009/002030 priority Critical patent/WO2010120006A1/en
Publication of WO2010120006A1 publication Critical patent/WO2010120006A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F120/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F120/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F120/10Esters
    • C08F120/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate

Definitions

  • the present invention relates to a smart surface, and more particularly to a novel smart surface and a method of manufacturing the same that can adjust the wettability of the surface of the material from the superhydrophobic to superhydrophilic.
  • Intelligent surfaces with adjustable surface wetting for a variety of external stimuli are receiving a lot of attention due to a variety of applications ranging from self-cleaning to microfluidics and biosensors.
  • Ion exchange is a reversible process in which ions are exchanged between a cation or anionic electrolyte and a complex, and through direct exchange of counter ions, the surface function and physicochemical properties can be controlled.
  • Electrolyte polymers with quaternary ammonium groups for example poly [2- (methacryloyloxy) ethyltrimethylammonium chloride] (PMETAC), are chemical structures of polymer brushes on the surface during direct exchange of counter ions. Is reorganized, and the surface wettability is greatly changed depending on the characteristics of the counter ion. It is also known that the introduction of micro and nanoscale surface roughness can greatly amplify the wettability of solid surfaces.
  • the present invention relates to a smart surface having wettability that can be reversibly programmed in the superhydrophilic to superhydrophilic range by selection of an appropriate counter ion.
  • the present invention provides a new method for precisely controlling the wettability of a surface by easily attaching or removing ion-paired counterions.
  • the present invention provides a rough surface whose wettability is adjustable through ion exchange.
  • Intelligent surface according to the present invention is characterized by being prepared by graft polymerization of an ion-exchangeable electrolyte polymer on the surface of the substrate having a surface roughness of micro to nano scale as a surface having an adjustable wettability.
  • the electrolyte polymer is composed of various electrolyte polymers including cations so as to be able to exchange anions in pairs with anions, and are preferably electrolyte polymers containing an ammonium group.
  • the ammonium group may use a tetravalent ammonium group.
  • the electrolyte polymer is grafted through the surface-initiated atomic transfer radical polymerization on the surface of the substrate.
  • the electrolyte polymer is poly [2- (methacryloyloxy) ethyltrimethylammonium chloride].
  • the electrolyte polymer is preferably formed to a thickness that can maintain the influence of the rough surface of the substrate on the surface wettability.
  • the thickness of the electrolyte polymer is 13-18 nm, even when formed on a substrate having a surface roughness of micro to nanoscale can be maintained the roughness of the substrate.
  • the substrate having a micro-to-nano scale roughness may be manufactured by various methods, and preferably by a method of forming fine protrusions on a flat substrate surface.
  • a dendritic protrusion is formed on the surface of the substrate.
  • the dendritic protrusion may form protrusions having micro-scale roughness by combining protrusions having nano-scale roughness.
  • the dendritic protrusion is preferably a cluster made of gold, and the gold cluster may be easily formed through a galvanic cell exchange reaction.
  • the substrate is a silicon substrate, preferably a p-type silicon substrate may be made of a gold cluster through a galvanic battery exchange.
  • the roughness of the substrate on which the gold cluster is formed may have an RMS of roughness of 0.74 ⁇ 0.05 ⁇ m.
  • the present invention provides a method of controlling surface wettability of a substrate by exchanging ions of the electrolyte polymer in a substrate having a surface roughness of micro-to-nano scale grafted with the electrolyte polymer.
  • the electrolyte polymer may be poly [2- (methacryloyloxy) ethyltrimethylammonium chloride] containing a tetravalent ammonium group, and surface wettability by exchanging chlorine ions with various anions through an anion exchange reaction. Can be controlled.
  • chloride ions and negative ions to be exchanged it may be a hydrophobic anion or a hydrophilic anionic, hydrophobic anions as an example is F -, PF 6 -, n -octylsulfate, bis (trifluoromethylsulfonyl) imide (TFSI), perfluorosulfonic acid Can be.
  • the hydrophilic anion is Br - may be, poly (phosphate) -, SCN -, ClO 4.
  • the substrate exhibits hydrophilicity when the hydrophilic anions are exchanged and hydrophobicity when the hydrophobic anions are exchanged, thereby controlling surface wettability.
  • the present invention provides an intelligent substrate having a surface roughness of micro to nano scale and grafted with an electrolyte polymer capable of ion exchange on the surface thereof.
  • the present invention provides a substrate having a surface roughness of micro to nano scale, and having a surface grafted with an electrolyte polymer including tetravalent ammonium groups ion-exchanged on the surface.
  • the tetravalent ammonium ions can be paired with various anions, preferably paired with Cl anions, and then exchanged with other anions to be paired with various anions.
  • the tetravalent ammonium ions are paired with SCN - cation to form a hydrophilic substrate, in another embodiment of the invention, the tetravalent ammonium ions are paired with a TFSI anion to form a hydrophobic substrate To form.
  • the wettability of the substrate is extremely improved hydrophobicity and hydrophilicity by the dendritic protrusion formed on the surface, and the water contact angle is changed to 0-175 °.
  • a method of forming a metal cluster having a micro-to-nano scale roughness using a galvanic cell exchange reaction on a surface of a substrate Imparting an OH functional group to the metal cluster; Replacing the OH functional group with an initiator for surface induced polymerization of a polymer brush; Graft polymerizing an electrolyte polymer containing an ammonium group in the cluster using atomic transfer radical polymerization; And exchanging anions bound to the electrolyte polymer, the surface having an adjustable wettability, wherein the metal is a noble metal, more preferably gold.
  • the present invention provides a method of forming a gold cluster having a micro-to-nano scale roughness on a substrate surface by using a galvanic cell exchange reaction.
  • the smart surface manufacturing method according to the present invention can be applied to a substrate having a flat surface, thereby providing a method of arbitrarily controlling the surface wettability of various materials.
  • 1 is a schematic view showing the manufacturing process of the surface having an adjustable wettability.
  • FIG. 2 is a FESEM image of a FMETAC gold micro / nano scale surface formed by a galvanic cell substitution reaction, a) low magnification image, b) magnification image, c) magnification image of image b, d) cross section of image a, e) CLSM image to be.
  • the washed p-silicon (100) wafer was immersed in an aqueous solution of HAuCl 4 (5 mM) and HF (5 mM) at 45 ° C. for 5 minutes in the dark.
  • the prepared gold nanostructured substrate was washed with excess water and dried over flowing nitrogen.
  • the substrate was then immersed in 11-mercapto-1-undecanol (1 mM) solution at room temperature for 12 hours to prepare an OH-functional gold substrate.
  • the OH-functional gold substrate was placed at room temperature for 12 hours in an initiator solution in which (4-chloromethyl) benzoyl chloride was dissolved in toluene, then washed with toluene, ethanol, and ionized water, and dried under nitrogen flow.
  • Gold surface of micro / nano roughness can be identified by field-emission scanning electron microscopy (FE-SEM) and confocal laser scanning microscopy (CLSM), and irregular gold clusters of many dendritic micro / nano structures. Is a surface covering a silicon surface, each cluster including a fractal structure, as shown in FIG. 1B, having a size of several micrometers and, when enlarged, a plurality of protrusions having a diameter of 50 nm or less. .
  • the gold surface of the present invention has a hierarchical structure with micro and nano scale roughness.
  • the thickness of the coated PMETAC brush on flat substrates is about 15.4 ⁇ 2.4 nm, so even irregular porous structures on the surface can be partially filled by the PMETAC brush, and the micro- and nanostructures of the substrates are present after polymerization.
  • the cross-sectional structure of FIG. 1D can be seen that the surface consists of a forest of densely packed gold microstructures 5-7 ⁇ m high.
  • the surface roughness of the manufactured gold microstructure has a rms of 0.74 ⁇ 0.05 ⁇ m, which is sufficient to be super water / superhydrophilic, and the nanostructured PMETAC film has a super water repellency according to the change of ion-pairing.
  • the properties can vary from to superhydrophilic.
  • the nanostructured surface according to the present invention contains Cl ⁇ ions, it exhibits superhydrophilic properties, and after being immersed in a TFSI solution, it exhibits superhydrophobic properties.
  • the high water contact angle of 171 ⁇ 3 ° and the sliding angle below 5 ° are due to the trapped air under the liquid.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

The present invention relates to a smart surface, and more specifically to a novel smart surface and method for manufacturing the same which enable the control of moisture conditions on the surface of materials ranging from super hydrophobic to super hydrophilic states. According to the present invention, the smart surface can be manufactured by graft-polymerizing a polymer electrolyte having ions which can be exchanged on a substrate surface with micro or nano scale roughness. According to the present invention, the method for manufacturing the smart surface can also be applied to substrates with flat surfaces, thereby enabling free control of the moisture condition of surfaces of various materials.

Description

암모늄기를 가지는 전해질 고분자를 이용한 초발수/초친수 표면 코팅 및 음이온 교환을 통한 그 표면 특성의 제어 방법 Super water- and super-hydrophilic surface coating using an electrolyte polymer having an ammonium group and a method of controlling its surface properties through anion exchange
본 발명은 스마트 표면에 관한 것으로서, 보다 상세하게는 소재 표면의 젖음성을 초발수에서 초친수의 범위까지 조절할 수 있는 신규 스마트 표면 및 그 제조 방법에 관한 것이다. The present invention relates to a smart surface, and more particularly to a novel smart surface and a method of manufacturing the same that can adjust the wettability of the surface of the material from the superhydrophobic to superhydrophilic.
다양한 외부 자극에 대해서 조절 가능한 표면 젖음성을 가지는 지능형 표면은 자가 세척에서부터 미세 유체 및 바이오 센서 등에 이르는 다양한 응용 분야로 인해 많은 관심을 받고 있다.  Intelligent surfaces with adjustable surface wetting for a variety of external stimuli are receiving a lot of attention due to a variety of applications ranging from self-cleaning to microfluidics and biosensors.
이온 교환은 양이온 또는 음이온 전해질과 컴플렉스 사이에서 이온이 교환되는 가역적 과정으로서, 카운터 이온의 직접 교환을 통해서 표면의 기능과 물리화학적 특성을 조절할 수 있다.  Ion exchange is a reversible process in which ions are exchanged between a cation or anionic electrolyte and a complex, and through direct exchange of counter ions, the surface function and physicochemical properties can be controlled.
기존의 초발수/초친수 표면을 제조하기 위한 방법으로는 포토리소그래피, 플라즈마, 졸-겔법, 알킬키틴 다이머의 고체화, 표면에 피브릴구조 형성, 고분자의 상분리 현상, layer-by-layer를 이용한 실리카 입자의 자기조립 등을 이용하였으나, 이러한 방법들은 초발수/초친수의 단일 특성만을 보이는 기술이다.  Conventional methods for producing superhydrophobic / superhydrophilic surfaces include photolithography, plasma, sol-gel, solidification of alkyl chitin dimers, formation of fibrils on the surface, phase separation of polymers, and silica using layer-by-layer. Although self-assembly of particles is used, these methods show only a single property of superhydrophobic / superhydrophilic.
4가 암모늄 그룹(quaternary ammonium, QA+)를 가지는 전해질 고분자, 일예로 폴리[2-(메타크릴오일옥시)에틸트리메틸암모늄 클로라이드](PMETAC)는 카운터 이온의 직접 교환시 표면에서 고분자 브러쉬의 화학적 구조가 재조직되어, 카운터 이온의 특성에 따라서 표면 젖음성이 크게 변하게 된다. 또한, 마이크로 및 나노스케일 표면 거칠기의 도입이 고체 표면의 젖음성을 크게 증폭시킬 수 있다고 알려져 있다.Electrolyte polymers with quaternary ammonium groups (QA + ), for example poly [2- (methacryloyloxy) ethyltrimethylammonium chloride] (PMETAC), are chemical structures of polymer brushes on the surface during direct exchange of counter ions. Is reorganized, and the surface wettability is greatly changed depending on the characteristics of the counter ion. It is also known that the introduction of micro and nanoscale surface roughness can greatly amplify the wettability of solid surfaces.
본 발명은 적절한 카운터 이온의 선택에 의해서 초발수에서 초친수의 범위에서 가역적으로 프로그램될 수 있는 젖음성을 가지는 스마트 표면에 관한 것이다. The present invention relates to a smart surface having wettability that can be reversibly programmed in the superhydrophilic to superhydrophilic range by selection of an appropriate counter ion.
본 발명은 이온-짝지움된 카운터이온을 손쉽게 부착 또는 제거하여 표면의 젖음성을 정밀하게 제어하는 새로운 방법을 제공하는 것이다. The present invention provides a new method for precisely controlling the wettability of a surface by easily attaching or removing ion-paired counterions.
본 발명은 이온 교환을 통해서 젖음성이 조절가능한 거친 표면을 제공하는 것이다. The present invention provides a rough surface whose wettability is adjustable through ion exchange.
본 발명에 따른 지능형 표면은 조절 가능한 젖음성을 가지는 표면으로서 마이크로 내지 나노 스케일의 표면 거칠기를 가지는 기판표면에 이온교환이 가능한 전해질 고분자를 그라프트 중합시켜 제조되는 것을 특징으로 한다. Intelligent surface according to the present invention is characterized by being prepared by graft polymerization of an ion-exchangeable electrolyte polymer on the surface of the substrate having a surface roughness of micro to nano scale as a surface having an adjustable wettability.
본 발명에 있어서, 상기 전해질 고분자는 음이온과 짝을 이루어 음이온의 교환이 가능할 수 있도록 양이온을 포함하는 다양한 전해질 고분자로 이루어지며, 바람직하게는 암모늄기를 포함하는 전해질 고분자이다. 발명의 바람직한 실시에 있어서, 상기 암모늄기는 4가 암모늄기를 사용할 수 있다. In the present invention, the electrolyte polymer is composed of various electrolyte polymers including cations so as to be able to exchange anions in pairs with anions, and are preferably electrolyte polymers containing an ammonium group. In a preferred embodiment of the invention, the ammonium group may use a tetravalent ammonium group.
본 발명에 있어서, 상기 전해질 고분자를 기판의 표면에 표면 개시된 원자 전이 라디칼 중합을 통해서 그라프트 되는 것이 바람직하다.  In the present invention, it is preferable that the electrolyte polymer is grafted through the surface-initiated atomic transfer radical polymerization on the surface of the substrate.
본 발명의 일 실시에 있어서, 상기 전해질 고분자는 폴리[2-(메타크릴오일옥시)에틸트리메틸암모늄 클로라이드]이다.  In one embodiment of the present invention, the electrolyte polymer is poly [2- (methacryloyloxy) ethyltrimethylammonium chloride].
본 발명에 있어서, 상기 전해질 고분자는 기판의 거친 표면이 표면 젖음성에 미치는 영향이 유지될 수 있는 두께로 형성되는 것이 바람직하다. 발명의 일 실시에 있어서, 상기 전해질 고분자의 두께는 13 - 18 nm로서, 마이크로 내지 나노스케일의 표면 거칠기를 가지는 기판에 형성될 경우에도 기판의 거칠기가 유지될 수 있다. In the present invention, the electrolyte polymer is preferably formed to a thickness that can maintain the influence of the rough surface of the substrate on the surface wettability. In one embodiment of the invention, the thickness of the electrolyte polymer is 13-18 nm, even when formed on a substrate having a surface roughness of micro to nanoscale can be maintained the roughness of the substrate.
본 발명에 있어서, 마이크로 내지 나노 스케일의 거칠기를 가지는 기판은 다양한 방법으로 제조될 수 있으며, 바람직하게는 평탄한 기판 표면에 미세 돌기를 형성하는 방법으로 제조될 수 있다. 본 발명의 바람직한 실시에 있어서, 상기 기판 표면은 덴드리트형 돌기부가 형성되는 것이 바람직하다. 상기 덴드리트형 돌기는 나노스케일의 거칠기를 가지는 돌기들이 뭉쳐서 마이크로 스케일의 거칠기를 가지는 돌기부를 형성하는 것이 좋다. In the present invention, the substrate having a micro-to-nano scale roughness may be manufactured by various methods, and preferably by a method of forming fine protrusions on a flat substrate surface. In a preferred embodiment of the present invention, it is preferable that a dendritic protrusion is formed on the surface of the substrate. The dendritic protrusion may form protrusions having micro-scale roughness by combining protrusions having nano-scale roughness.
본 발명의 실시에 있어서, 상기 덴드리트형 돌기부로는 금으로 이루어진 클러스터가 바람직하며, 상기 금 클러스터는 갈바닉 전지 교환 반응을 통해서 손쉽게 형성될 수 있다.  In the practice of the present invention, the dendritic protrusion is preferably a cluster made of gold, and the gold cluster may be easily formed through a galvanic cell exchange reaction.
발명의 일 실시에 있어서, 상기 기판은 실리콘 기판, 바람직하게는 p-타입 실리콘 기판에 금클러스터가 갈바닉 전지 교환을 통해서 이루어진 것일 수 있다. 본 발명의 실시에 있어서, 상기 금 클러스터가 형성된 기판의 거칠기는 거칠기의 RMS가 0.74 ± 0.05 ㎛ 로 형성될 수 있다. In one embodiment of the invention, the substrate is a silicon substrate, preferably a p-type silicon substrate may be made of a gold cluster through a galvanic battery exchange. In the practice of the present invention, the roughness of the substrate on which the gold cluster is formed may have an RMS of roughness of 0.74 ± 0.05 μm.
본 발명은 일 측면에 있어서, 전해질 고분자가 그라프트된 마이크로 내지 나노 스케일의 표면 거칠기를 가지는 기판에서 전해질 고분자의 이온을 교환하여 기판의 표면 젖음성을 조절하는 방법을 제공하는 것을 특징으로 한다.  In one aspect, the present invention provides a method of controlling surface wettability of a substrate by exchanging ions of the electrolyte polymer in a substrate having a surface roughness of micro-to-nano scale grafted with the electrolyte polymer.
본 발명에 있어서, 상기 전해질 고분자는 4가 암모늄기를 함유하는 폴리[2-(메타크릴오일옥시)에틸트리메틸암모늄 클로라이드]일 수 있으며, 염소이온을 음이온교환반응을 통해서 다양한 음이온으로 교환함으로써 표면의 젖음성을 제어할 수 있게 된다.  In the present invention, the electrolyte polymer may be poly [2- (methacryloyloxy) ethyltrimethylammonium chloride] containing a tetravalent ammonium group, and surface wettability by exchanging chlorine ions with various anions through an anion exchange reaction. Can be controlled.
본 발명의 실시에 있어서, 염소이온과 교환되는 음이온은 소수성 음이온 또는 친수성 음이온일 수 있으며, 일예로 소수성 음이온은 F-, PF6 -, n-octylsulfate, bis(trifluoromethylsulfonyl)imide (TFSI), perfluorosulfonic acid 일 수 있다. 다른 실시에 있어서, 친수성 음이온은 Br-, SCN-, ClO4 -, poly(phosphate)일 수 있다. 상기 기판은 친수성 음이온이 교환될 경우에는 친수성을 띄고 소수성 음이온이 교환될 경우에는 소수성을 띄게 되어 표면 젖음성의 제어가 가능하게 된다.In the practice of the present invention, chloride ions and negative ions to be exchanged it may be a hydrophobic anion or a hydrophilic anionic, hydrophobic anions as an example is F -, PF 6 -, n -octylsulfate, bis (trifluoromethylsulfonyl) imide (TFSI), perfluorosulfonic acid Can be. In another embodiment, the hydrophilic anion is Br - may be, poly (phosphate) -, SCN -, ClO 4. The substrate exhibits hydrophilicity when the hydrophilic anions are exchanged and hydrophobicity when the hydrophobic anions are exchanged, thereby controlling surface wettability.
본 발명은 일 측면에 있어서, 마이크로 내지 나노 스케일의 표면 거칠기를 가지며, 표면에는 이온 교환이 가능한 전해질 고분자가 그라프트 된 지능형 기판을 제공한다. In one aspect, the present invention provides an intelligent substrate having a surface roughness of micro to nano scale and grafted with an electrolyte polymer capable of ion exchange on the surface thereof.
본 발명은 다른 일 측면에 있어서, 마이크로 내지 나노 스케일의 표면 거칠기를 가지며, 표면에는 이온 교환된 4가 암모늄 기를 포함하는 전해질 고분자가 그라프팅된 기판을 제공한다. In another aspect, the present invention provides a substrate having a surface roughness of micro to nano scale, and having a surface grafted with an electrolyte polymer including tetravalent ammonium groups ion-exchanged on the surface.
본 발명에 있어서, 상기 4가 암모늄 이온은 다양한 음이온과 짝을 이룰 수 있으며, 바람직하게는 Cl 음이온과 짝을 이룬 후, 다른 음이온으로 교환되어 다양한 음이온과 짝을 이루게 된다.  In the present invention, the tetravalent ammonium ions can be paired with various anions, preferably paired with Cl anions, and then exchanged with other anions to be paired with various anions.
발명의 일 실시에 있어서, 상기 4가 암모늄 이온은 SCN-을 양이온과 짝을 이루어 친수성 기판을 형성하게 되며, 발명의 다른 실시에 있어서, 상기 4가 암모늄 이온은 TFSI 음이온과 짝을 이루어 소수성 기판을 형성하게 된다. In one embodiment of the invention, the tetravalent ammonium ions are paired with SCN - cation to form a hydrophilic substrate, in another embodiment of the invention, the tetravalent ammonium ions are paired with a TFSI anion to form a hydrophobic substrate To form.
본 발명에 있어서, 상기 기판의 젖음성은 표면에 형성된 덴드리트형 돌기부에 의해서 소수성이나 친수성이 극단적으로 향상되어, 물 접촉각이 0-175°까지 변하게 된다.  In the present invention, the wettability of the substrate is extremely improved hydrophobicity and hydrophilicity by the dendritic protrusion formed on the surface, and the water contact angle is changed to 0-175 °.
본 발명은 일 측면에 있어서, 기판 표면에 갈바닉 전지 교환반응을 이용하여 마이크로 내지 나노 스케일의 거칠기를 가지는 금속 클러스터를 형성하는 단계; 상기 금속 클러스터에 OH 관능기를 부여하는 단계; 상기 OH관능기를 고분자 브러쉬의 표면 유도 중합을 위한 개시제로 치환하는 단계; 상기 클러스터에 원자 전이 라디칼 중합을 이용하여 암모늄기를 함유하는 전해질 고분자를 그라프트 중합하는 단계; 및 상기 전해질 고분자와 결합하고 있는 음이온을 교환하는 단계를 포함하는 조절가능한 젖음성을 가지는 표면을 제공하며, 상기 금속을 귀금속이며, 보다 바람직하게는 금이다. In accordance with an aspect of the present invention, a method of forming a metal cluster having a micro-to-nano scale roughness using a galvanic cell exchange reaction on a surface of a substrate; Imparting an OH functional group to the metal cluster; Replacing the OH functional group with an initiator for surface induced polymerization of a polymer brush; Graft polymerizing an electrolyte polymer containing an ammonium group in the cluster using atomic transfer radical polymerization; And exchanging anions bound to the electrolyte polymer, the surface having an adjustable wettability, wherein the metal is a noble metal, more preferably gold.
본 발명은 일 측면에 있어서, 기판 표면에 갈바닉 전지 교환 반응을 이용하여 마이크로 내지 나노 스케일의 거칠기를 가지는 금 클러스터를 형성하는 방법을 제공한다. In one aspect, the present invention provides a method of forming a gold cluster having a micro-to-nano scale roughness on a substrate surface by using a galvanic cell exchange reaction.
본 발명에 따른 스마트 표면 제조 방법은 평탄한 표면을 가진 기판에도 적용할 수 있어, 다양한 재질의 표면 젖음성을 임의로 제어할 수 있는 방법을 제공한다.  The smart surface manufacturing method according to the present invention can be applied to a substrate having a flat surface, thereby providing a method of arbitrarily controlling the surface wettability of various materials.
도 1은 조절가능한 젖음성을 가지는 표면의 제조 과정을 나타내는 개락도이다.  1 is a schematic view showing the manufacturing process of the surface having an adjustable wettability.
도 2는 갈바닉 셀 치환 반응으로 형성된 FMETAC 금 마이크로/나노 스케일 표면의 FESEM 이미지이며, a)저배율 이미지, b)확대이미지, c) 이미지 b의 확대 이미지, d) 이미지 a의 단면, e) CLSM 이미지이다.  2 is a FESEM image of a FMETAC gold micro / nano scale surface formed by a galvanic cell substitution reaction, a) low magnification image, b) magnification image, c) magnification image of image b, d) cross section of image a, e) CLSM image to be.
도 3은 a) 평탄 기판과 거친 기판에서의 물 방울의 사진. 평탄면에서 물의 접촉각이 90°±2°에서 65°±1°에서 변화하였으며, 금 클러스터 표면에서는 171°±3°에서 5°이하까지 변화하였고, 이는 TFSI이온을 SCN-이온으로 치환하여 초발수에서 초친수까지 바뀌는 것을 의미. b)직접 이온 교환을 통해서 PMETAC-개질된 평판 기판(□)과 나노 구조 기판(■)사이의 젖음성에서의 가역적 변화를 나타내는 그래프이다. 3 a) Photographs of water drops on flat and rough substrates. The contact angle of water on the flat surface was changed from 90 ° ± 2 ° to 65 ° ± 1 °, and on the surface of the gold cluster, it changed from 171 ° ± 3 ° to 5 ° or less, which replaced TFSI ion with SCN-ion Means changing from to superhydrophile. b) A graph showing the reversible change in wettability between PMETAC-modified flat substrate (□) and nanostructured substrate (■) through direct ion exchange.
도 4는 a) TFSI이온과 SCN-이온의 복합체와 Cl-이온의 PMETAC 브러쉬에 대한 FTIR 스펙트럼. b)F 1s, c) N1s, d)S 2p레벨의 나노 구조체 PMETAC필름의 X-레이 포토일렉트론 스펙트럼. 4 is a) FTIR spectra of a complex of TFSI and SCN-ions and a PMETAC brush of Cl-ions. b) X-ray photoelectron spectra of nanostructured PMETAC films at levels F 1s, c) N 1s, d) S 2p.
이하, 도면과 실시예를 통해서 본 발명을 보다 상세하게 설명한다. 하기 실시예는 본 발명을 예시하는 것이며, 어떠한 경우에도 발명의 범위를 한정하는 것으로 해석될 수 없다. Hereinafter, the present invention will be described in more detail with reference to the drawings and examples. The following examples illustrate the invention and in no case should be construed as limiting the scope of the invention.
세척된 p-실리콘(100) 웨이퍼를 HAuCl4(5 mM)와 HF(5 mM) 수용액에 45℃ 온도로 5분동안 어둠속에서 침지시켰다. 제조된 금 나노 구조 기판을 과량의 물로 세척하고, 흐르는 질소에서 건조시켰다. 다음 기판을 실온에서 12시간동안 11-머캡토-1-언데칸올(1mM)용액에 침지시켜 OH-관능성 금 기판을 제조하였다. OH-관능성 금 기판을 (4-클로로메틸)벤조일클로라이드가 톨루엔에 용해된 개시제 용액에서 상온으로 12 시간동안 넣어둔 후, 톨루엔, 에탄올, 및 이온화된 물로 세척하고, 질소흐름하에서 건조시켰다. 2-(메타크릴오일옥시)에틸트리메틸암모늄 클로라이드(METAC)의 중합은 CuCl2, 4,4-바이피리딜와 L-아스코빅산을 함유하는 80% 메탄올 수용액 속의 탈가스된 METAC 용액에 개시제-그라프트된 기판을 침지하여 이루어졌다. 샘플들은 메탄올과 Milli-Q 물로 완전히 세척되고, 질소 가스하에서 건조되었다. 카운터 이온을 교환하기 위해서, PMETAC-개질된 기판을 적절한 카운터 이온의 10 mM용액에 3시간 동안 침지시켰다. 나노 구조 표면의 이미지는 SEM(Hitachi S-4800)으로 촬영하였다. 표면 마이크로 구조와 표면 거칠기를 측정하기 위해서 공초점 레이져 현미경(Olympus, OLS 3100)를 사용하였다. 표면 접촉각은 포화 습도에서 측정하였다. The washed p-silicon (100) wafer was immersed in an aqueous solution of HAuCl 4 (5 mM) and HF (5 mM) at 45 ° C. for 5 minutes in the dark. The prepared gold nanostructured substrate was washed with excess water and dried over flowing nitrogen. The substrate was then immersed in 11-mercapto-1-undecanol (1 mM) solution at room temperature for 12 hours to prepare an OH-functional gold substrate. The OH-functional gold substrate was placed at room temperature for 12 hours in an initiator solution in which (4-chloromethyl) benzoyl chloride was dissolved in toluene, then washed with toluene, ethanol, and ionized water, and dried under nitrogen flow. Polymerization of 2- (methacryloyloxy) ethyltrimethylammonium chloride (METAC) was initiator-grafted into a degassed METAC solution in 80% methanol aqueous solution containing CuCl 2, 4,4-bipyridyl and L-ascorbic acid. It was done by immersing the substrate. Samples were washed thoroughly with methanol and Milli-Q water and dried under nitrogen gas. To exchange counter ions, PMETAC-modified substrates were immersed in 10 mM solution of appropriate counter ions for 3 hours. Images of the nanostructured surface were taken by SEM (Hitachi S-4800). Confocal laser microscope (Olympus, OLS 3100) was used to measure the surface microstructure and surface roughness. Surface contact angle was measured at saturation humidity.
마이크로/나노 거칠기의 금 표면은 FE-SEM(field-emission scanning electron microscopy)과 CLSM(confocal laser scanning microscopy)로 확인할 수 있으며, 다수의 수상 돌기형(덴드리트형) 마이크로/나노 구조를 불규칙한 금 클러스터가 실리콘 표면을 덮고 있는 표면으로서, 각 클러스터는 프렉탈 구조를 포함하고 있으며, 도 1b에서 보는 바와 같이 수 마이크로미터의 크기를 가지며, 확대할 경우, 50 nm이하의 직경을 가지는 다수의 돌출부로 이루어져 있다. 본 발명의 금 표면은 마이크로 및 나노 스케일의 거칠기를 가지는 계층적 구조를 가진다. Gold surface of micro / nano roughness can be identified by field-emission scanning electron microscopy (FE-SEM) and confocal laser scanning microscopy (CLSM), and irregular gold clusters of many dendritic micro / nano structures. Is a surface covering a silicon surface, each cluster including a fractal structure, as shown in FIG. 1B, having a size of several micrometers and, when enlarged, a plurality of protrusions having a diameter of 50 nm or less. . The gold surface of the present invention has a hierarchical structure with micro and nano scale roughness.
편평한 기재에서 코팅된 PMETAC브러쉬의 두께는 약 15.4±2.4 nm이며, 따라서 표면의 불규칙적인 다공성 구조라 할지라도 PMETAC 브러쉬에 의해서 부분적으로 채워질 수 있으며, 기재의 마이크로- 및 나노 구조는 중합 후에도 존재하게 된다. 도 1d의 단면 구조는 표면이 5-7 ㎛ 높이의 조밀하게 팩킹된 금 마이크로 구조로의 숲으로 이루어져 있음을 확인할 수 있다. The thickness of the coated PMETAC brush on flat substrates is about 15.4 ± 2.4 nm, so even irregular porous structures on the surface can be partially filled by the PMETAC brush, and the micro- and nanostructures of the substrates are present after polymerization. The cross-sectional structure of FIG. 1D can be seen that the surface consists of a forest of densely packed gold microstructures 5-7 μm high.
제조된 금 마이크로 구조의 표면 거칠기는 0.74±0.05 ㎛의 rms를 가지고 있어, 초발수/초친수가 되기에 충분한 거칠기를 가지며, 나노구조의 PMETAC 필름은 표면은 이온-짝짖기의 변화에 따라서 초발수에서 초친수까지 특성이 변할 수 있다.  The surface roughness of the manufactured gold microstructure has a rms of 0.74 ± 0.05 μm, which is sufficient to be super water / superhydrophilic, and the nanostructured PMETAC film has a super water repellency according to the change of ion-pairing. The properties can vary from to superhydrophilic.
본 발명에 따른 나노구조된 표면에 Cl-이온을 함유할 경우에는 초친수의 특성을 나타내며, TFSI 용액에 침지된 후에는 초발수의 특성을 나타낸다. 이론적으로 한정되는 것은 아니지만, 171±3°에 이르는 높은 물 접촉각과 5°이하의 슬라이딩 각은 액체 하부에 트랩된 공기에 기인한 것으로 판단된다.When the nanostructured surface according to the present invention contains Cl ions, it exhibits superhydrophilic properties, and after being immersed in a TFSI solution, it exhibits superhydrophobic properties. Although not limited in theory, it is believed that the high water contact angle of 171 ± 3 ° and the sliding angle below 5 ° are due to the trapped air under the liquid.

Claims (32)

  1. 마이크로 내지 나노 스케일의 표면 거칠기를 가지는 기판표면에 이온교환이 가능한 전해질 고분자를 그라프트 중합시키는 것을 특징으로 하는 조절가능한 젖음성을 가지는 표면의 제조 방법. A method for producing a surface having controllable wettability, characterized in that graft polymerization of an ion-exchangeable electrolyte polymer on a surface of a substrate having a surface roughness of micro to nano scale.
  2. 제1항에 있어서, 전해질 고분자는 암모늄기를 함유하는 전해질 고분자인 것을 특징으로 하는 방법. The method of claim 1, wherein the electrolyte polymer is an electrolyte polymer containing an ammonium group.
  3. 제1항에 있어서, 상기 암모늄기는 4가 암모늄기인 것을 특징으로 하는 방법. The method of claim 1 wherein the ammonium group is a tetravalent ammonium group.
  4. 제1항에 있어서, 상기 전해질 고분자는 표면에 그라프트 되는 것을 특징으로 하는 방법. The method of claim 1 wherein the electrolyte polymer is grafted on the surface.
  5. 제4항에 있어서, 상기 전해질 고분자는 폴리[2-(메타크릴오일옥시)에틸트리메틸암모늄 클로라이드] 전해질 고분자인 것을 특징으로 하는 방법. The method of claim 4, wherein the electrolyte polymer is a poly [2- (methacryloyloxy) ethyltrimethylammonium chloride] electrolyte polymer.
  6. 제4항에 있어서, 상기 전해질 고분자의 두께는 최소 10 nm 인 것을 특징으로 하는 방법. The method of claim 4, wherein the electrolyte polymer has a thickness of at least 10 nm.
  7. 제1항에 있어서, 상기 기판 표면은 덴드리트형 돌기부가 형성된 것을 특징으로 하는 방법. The method of claim 1, wherein the substrate surface has a dendritic protrusion.
  8. 제7항에 있어서, 상기 돌기부는 금 클러스터인 것을 특징으로 하는 방법. 8. The method of claim 7, wherein the protrusion is a gold cluster.
  9. 제8항에 있어서, 상기 금 클러스터는 갈바닉 전지 교환 반응을 통해서 형성되는 것을 특징으로 하는 방법.  The method of claim 8, wherein the gold cluster is formed through a galvanic cell exchange reaction.
  10. 제1항에 있어서, 상기 기판은 실리콘 기판인 것을 특징으로 하는 방법. The method of claim 1 wherein the substrate is a silicon substrate.
  11. 제7항에 있어서, 기판 거칠기의 RMS는 최소 50 nm 인 것을 특징으로 하는 방법. 8. The method of claim 7, wherein the RMS of the substrate roughness is at least 50 nm.
  12. 전해질 고분자가 그라프트된 마이크로 내지 나노 스케일의 표면 거칠기를 가지는 기판에서 전해질 고분자의 이온을 교환하여 기판의 표면 젖음성을 조절하는 방법. A method of controlling the surface wettability of a substrate by exchanging ions of the electrolyte polymer in a substrate having a micro to nano scale surface roughness grafted with the electrolyte polymer.
  13. 제12항에 있어서, 상기 전해질 고분자는 4가 암모늄기를 함유하는 것을 특징으로 하는 방법. 13. The method of claim 12, wherein the electrolyte polymer contains a tetravalent ammonium group.
  14. 제13항에 있어서, 상기 전해질 고분자는 폴리[2-(메타크릴오일옥시)에틸트리메틸암모늄 클로라이드]인 것을 특징으로 하는 방법. The method of claim 13, wherein the electrolyte polymer is poly [2- (methacryloyloxy) ethyltrimethylammonium chloride].
  15. 제13항에 있어서, 이온 교환은 음이온 교환 반응인 것을 특징으로 하는 방법. The method of claim 13, wherein the ion exchange is an anion exchange reaction.
  16. 제15항에 있어서, 상기 음이온은 소수성 음이온인 것을 특징으로 하는 방법. The method of claim 15, wherein the anion is a hydrophobic anion.
  17. 제16항에 있어서, 상기 소수성 음이온은 F-, PF6 -, n-octylsulfate, bis(trifluoromethylsulfonyl)imide, perfluorosulfonic acid 인 것을 특징으로 하는 방법.The method of claim 16, wherein the hydrophobic anion is F , PF 6 , n-octylsulfate, bis (trifluoromethylsulfonyl) imide, or perfluorosulfonic acid.
  18. 제15항에 있어서, 상기 음이온은 친수성 음이온인 것을 특징으로 하는 방법. The method of claim 15, wherein the anion is a hydrophilic anion.
  19. 제18항에 있어서, 상기 친수성 음이온은 Cl-, Br-, SCN-, ClO4 -, poly(phosphate)인 것을 특징으로 하는 방법.The method of claim 18, wherein the hydrophilic anion is Cl , Br , SCN , ClO 4 , poly (phosphate).
  20. 마이크로 내지 나노 스케일의 표면 거칠기를 가지며, 표면에는 이온 교환이 가능한 전해질 고분자가 그라프트 된 것을 특징으로 하는 지능형 기판. Intelligent substrate having a surface roughness of micro to nano scale, the surface is grafted electrolyte polymer capable of ion exchange.
  21. 제20항에 있어서, 상기 전해질 고분자는 4가 암모늄기를 포함하는 것을 특징으로 하는 지능형 기판. 21. The intelligent substrate of claim 20, wherein the electrolyte polymer comprises a tetravalent ammonium group.
  22. 제20항에 있어서, 상기 기판은 덴드리트형 돌기부가 형성된 것을 특징으로 하는 지능형 기판. 21. The intelligent substrate of claim 20, wherein the substrate has a dendritic protrusion.
  23. 제22항에 있어서, 상기 덴드리트형 돌기부는 금 클러스터인 것을 특징으로 하는 지능형 기판. 23. The intelligent substrate of claim 22, wherein the dendritic protrusion is a gold cluster.
  24. 제21항에 있어서, 상기 전해질 고분자는 폴리[2-(메타크릴오일옥시)에틸트리메틸암모늄 클로라이드]인 것을 특징으로 하는 지능형 기판. 22. The intelligent substrate of claim 21, wherein the electrolyte polymer is poly [2- (methacryloyloxy) ethyltrimethylammonium chloride].
  25. 제20항에 있어서, 상기 지능형 기판은 표면 젖음성이 조절되는 기판인 것을 특징으로 하는 지능형 기판. 21. The intelligent substrate of claim 20, wherein the intelligent substrate is a substrate whose surface wetting is controlled.
  26. 마이크로 내지 나노 스케일의 표면 거칠기를 가지며, 표면에는 이온 교환이 가능한 4가 암모늄 기를 포함하는 전해질 고분자가 그라프팅된 기판. A substrate having a surface roughness of micro to nano scale, the surface is grafted with an electrolyte polymer comprising a tetravalent ammonium group capable of ion exchange.
  27. 제27항에 있어서, 상기 4가 암모늄 이온은 Cl-이온과 짝을 이루는 것을 특징으로 하는 기판.The substrate of claim 27, wherein the tetravalent ammonium ions are paired with Cl ions.
  28. 제26항에 있어서, 상기 4가 암모늄 이온은 SCN-을 이온과 짝을 이루는 것을 특징으로 하는 기판.27. The substrate of claim 26, wherein the tetravalent ammonium ions pair SCN - with ions.
  29. 제26항에 있어서, 상기 4가 암모늄 이온은 TFSI이온과 짝을 이루는 것을 특징으로 하는 기판. 27. The substrate of claim 26, wherein the tetravalent ammonium ions are paired with TFSI ions.
  30. 제26항에 있어서, 상기 기판은 물 접촉각이 0-175°까지 변하는 것을 특징으로 하는 기판. 27. The substrate of claim 26, wherein the substrate varies in water contact angle by 0-175 degrees.
  31. 기판 표면에 갈바닉 전지 교환반응을 이용하여 마이크로 내지 나노 스케일의 거칠기를 가지는 금 클러스터를 형성하는 단계;Forming a gold cluster having micro to nano scale roughness on the surface of the substrate by using a galvanic cell exchange reaction;
    상기 금 클러스터에 OH 관능기를 부여하는 단계;Imparting an OH functional group to the gold cluster;
    상기 OH관능기를 고분자 브러쉬의 표면 유도 중합을 위한 개시제로 치환하는 단계;Replacing the OH functional group with an initiator for surface induced polymerization of a polymer brush;
    상기 클러스터에 원자 전이 라디칼 중합을 이용하여 암모늄기를 함유하는 전해질 고분자를 그라프트 중합하는 단계; 및Graft polymerizing an electrolyte polymer containing an ammonium group in the cluster using atomic transfer radical polymerization; And
    상기 전해질 고분자와 결합한 음이온을 교환하는 단계Exchanging anions bound to the electrolyte polymer
    를 포함하는 조절가능한 젖음성을 가지는 표면을 제조하는 방법.Method for producing a surface having an adjustable wettability comprising a.
  32. 기판 표면에 갈바닉 전지 교환 반응을 이용하여 마이크로 내지 나노 스케일의 거칠기를 가지는 금 클러스터를 형성하는 방법. A method of forming a gold cluster having a micro to nano scale roughness using a galvanic cell exchange reaction on the substrate surface.
PCT/KR2009/002030 2009-04-17 2009-04-17 Method for controlling surface characteristics through exchange of super hydrophobic/super hydrophilic surface coating and anion using polymer electrolyte with ammonium groups WO2010120006A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2009/002030 WO2010120006A1 (en) 2009-04-17 2009-04-17 Method for controlling surface characteristics through exchange of super hydrophobic/super hydrophilic surface coating and anion using polymer electrolyte with ammonium groups

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2009/002030 WO2010120006A1 (en) 2009-04-17 2009-04-17 Method for controlling surface characteristics through exchange of super hydrophobic/super hydrophilic surface coating and anion using polymer electrolyte with ammonium groups

Publications (1)

Publication Number Publication Date
WO2010120006A1 true WO2010120006A1 (en) 2010-10-21

Family

ID=42982653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/002030 WO2010120006A1 (en) 2009-04-17 2009-04-17 Method for controlling surface characteristics through exchange of super hydrophobic/super hydrophilic surface coating and anion using polymer electrolyte with ammonium groups

Country Status (1)

Country Link
WO (1) WO2010120006A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006272076A (en) * 2005-03-28 2006-10-12 Seinan Kogyo Kk Surface modifying method using ion beam
JP2007015955A (en) * 2005-07-06 2007-01-25 Osaka Univ Method for controlling interaction between substrate and material, and substrate usable therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006272076A (en) * 2005-03-28 2006-10-12 Seinan Kogyo Kk Surface modifying method using ion beam
JP2007015955A (en) * 2005-07-06 2007-01-25 Osaka Univ Method for controlling interaction between substrate and material, and substrate usable therefor

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CUI-HONG WANG ET AL.: "Semiconductor supported biomimetic superhydrophobic gold surfaces by the galvanic exchange reaction", SURFACE SCIENCE, vol. 600, 2006 *
J. HEMMERLE ET AL.: "Mechanically Responsive Films of Variable Hydrophobicity Made of Polyelectrolyte Multilayers", LANGMUIR, vol. 21, 2005, pages 10328 - 10331, XP002442750, DOI: doi:10.1021/la052157g *
JAD A. JABER ET AL.: "Recent developments in the properties and applications of polyelectrolyte multilayers", CURRENT OPINION IN COLLOID & INTERFACE SCIENCE, vol. 11, 2006, pages 324 - 329 *

Similar Documents

Publication Publication Date Title
Liu et al. Design and preparation of biomimetic polydimethylsiloxane (PDMS) films with superhydrophobic, self-healing and drag reduction properties via replication of shark skin and SI-ATRP
Wei et al. Simplified and robust adhesive-free superhydrophobic SiO2-decorated PVDF membranes for efficient oil/water separation
Li et al. A review on special wettability textiles: theoretical models, fabrication technologies and multifunctional applications
Cheng et al. A novel strategy for fabricating robust superhydrophobic fabrics by environmentally-friendly enzyme etching
Zhao et al. Photoreactive azido-containing silica nanoparticle/polycation multilayers: durable superhydrophobic coating on cotton fabrics
Barthwal et al. Multifunctional and fluorine-free superhydrophobic composite coating based on PDMS modified MWCNTs/ZnO with self-cleaning, oil-water separation, and flame retardant properties
Liu et al. Superhydrophilic and underwater superoleophobic modified chitosan-coated mesh for oil/water separation
Zhang et al. High-adhesive superhydrophobic litchi-like coatings fabricated by in-situ growth of nano-silica on polyethersulfone surface
Shang et al. Fabrication of transparent superhydrophobic porous silica coating for self-cleaning and anti-fogging
Wen et al. Recent advances in the fabrication of superhydrophobic surfaces
Zhang et al. Robust superhydrophobic coatings prepared by cathodic electrophoresis of hydrophobic silica nanoparticles with the cationic resin as the adhesive for corrosion protection
Cheng et al. Robust and durable superhydrophobic cotton fabrics via a one-step solvothermal method for efficient oil/water separation
Xu et al. Modified cellulose membrane with good durability for effective oil-in-water emulsion treatment
Emarati et al. Theoretical, fundamental and experimental study of liquid-repellency and corrosion resistance of fabricated superamphiphobic surface on Al alloy 2024
Yuan et al. A mechanically robust slippery surface with ‘corn-like’structures fabricated by in-situ growth of TiO2 on attapulgite
US20060029808A1 (en) Superhydrophobic coatings
Ai et al. Biomimetic polymeric superamphiphobic surfaces: their fabrication and applications
Ghadimi et al. Preparation and characterization of superhydrophobic and highly oleophobic FEVE-SiO2 nanocomposite coatings
Wang et al. Durable superhydrophobic coating based on inorganic/organic double-network polysiloxane and functionalized nanoparticles
Teng et al. Facile preparation of economical, eco-friendly superhydrophobic surface on paper substrate with excellent mechanical durability
Zhao et al. Transparent, thermal stable and hydrophobic coatings from fumed silica/fluorinated polyacrylate composite latex via in situ miniemulsion polymerization
Chen et al. Transparent smart surface with pH-induced wettability transition between superhydrophobicity and underwater superoleophobicity
Chi et al. Highly stable self-cleaning antireflection coatings from fluoropolymer brush grafted silica nanoparticles
Jiang et al. Synthesis of superhydrophobic fluoro-containing silica sol coatings for cotton textile by one-step sol–gel process
Chen et al. Durable underwater super-oleophobic/super-hydrophilic conductive polymer membrane for oil-water separation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09843382

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09843382

Country of ref document: EP

Kind code of ref document: A1