WO2010119835A1 - Deep groove ball bearing and method of designing same - Google Patents

Deep groove ball bearing and method of designing same Download PDF

Info

Publication number
WO2010119835A1
WO2010119835A1 PCT/JP2010/056520 JP2010056520W WO2010119835A1 WO 2010119835 A1 WO2010119835 A1 WO 2010119835A1 JP 2010056520 W JP2010056520 W JP 2010056520W WO 2010119835 A1 WO2010119835 A1 WO 2010119835A1
Authority
WO
WIPO (PCT)
Prior art keywords
grease
deep groove
ball bearing
groove ball
pocket
Prior art date
Application number
PCT/JP2010/056520
Other languages
French (fr)
Japanese (ja)
Inventor
藤原宏樹
川村光生
田口陽介
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009099705A external-priority patent/JP2010249241A/en
Priority claimed from JP2010074327A external-priority patent/JP5404493B2/en
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2010119835A1 publication Critical patent/WO2010119835A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/38Ball cages
    • F16C33/41Ball cages comb-shaped
    • F16C33/412Massive or moulded comb cages, e.g. snap ball cages
    • F16C33/414Massive or moulded comb cages, e.g. snap ball cages formed as one-piece cages, i.e. monoblock comb cages
    • F16C33/416Massive or moulded comb cages, e.g. snap ball cages formed as one-piece cages, i.e. monoblock comb cages made from plastic, e.g. injection moulded comb cages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/583Details of specific parts of races
    • F16C33/585Details of specific parts of races of raceways, e.g. ribs to guide the rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6603Special parts or details in view of lubrication with grease as lubricant
    • F16C33/6607Retaining the grease in or near the bearing
    • F16C33/6614Retaining the grease in or near the bearing in recesses or cavities provided in retainers, races or rolling elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6603Special parts or details in view of lubrication with grease as lubricant
    • F16C33/6629Details of distribution or circulation inside the bearing, e.g. grooves on the cage or passages in the rolling elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/70Diameters; Radii

Definitions

  • the present invention relates to a deep groove ball bearing and a design method thereof, and relates to a technique applied to the design of a deep groove ball bearing that supports rotating parts of various devices.
  • the bearing has resistance to rotation, that is, rotational torque, and is affected by friction between the rolling elements and the inner and outer rings, friction between the rolling elements and the cage, stirring of the lubricant, and viscosity.
  • the torque of the bearing is a stirring resistance in which the balls and the cage stir the grease and a shear resistance in which the grease is sheared between the cage and the seal.
  • Patent Document 3 As a conventional technique for reducing the rotational torque in a grease-lubricated bearing, for example, a structure in which the rotational torque of the bearing becomes low even at low temperatures due to the composition of grease is disclosed (Patent Document 3).
  • Patent Document 4 As a conventional technique for reducing the torque of the bearing by the shape of the cage, for example, the cage is designed such that the minimum necessary lubricant is taken in between the inner peripheral surface of the cage pocket and the rolling surface of the ball. The thing which aimed at reduction of a sound and rotational torque is disclosed (patent document 4).
  • Patent Document 5 As a conventional technique for reducing the torque by other cages, for example, there is disclosed one in which a groove having a buffering action is provided between cage pockets when a rolling element collides with a pocket (Patent Document 5). As a conventional technique for reducing the torque of other bearings, there is disclosed a technique in which the composition and shape of the bearing seal portion are changed (Patent Document 6).
  • Patent Documents 1 and 2 are inventions that focus only on a part of the design parameters of the bearing raceway, and it is difficult to say that all parameters are considered.
  • the “basic dynamic load rating” means that the direction and size are such that the basic rated life is 1 million revolutions when the same bearings are individually operated under the condition that the inner ring is rotated and the outer ring is stationary. A load that does not fluctuate.
  • Radial bearings such as deep groove ball bearings take a radial load whose direction and size are constant.
  • a first object of the present invention is to provide a deep groove ball bearing capable of realizing a low torque and ensuring a sufficient basic dynamic load rating and a design method thereof.
  • a second object of the present invention is to reduce the torque during bearing operation without sacrificing rolling fatigue life and grease life in deep groove ball bearings used in grease lubrication, without being limited to bearing applications. It is to provide a deep groove ball bearing capable of
  • the deep groove ball bearing of the present invention is a deep groove ball bearing in which a ball is interposed between an inner ring and an outer ring, and the groove shoulder heights of the inner ring and the outer ring are each 0.2 times the diameter of the ball, and the inner and outer ring raceways
  • the groove, groove shoulder height, ball diameter, the number of balls, and the pitch circle diameter of the balls are set within the following range.
  • the deep groove ball bearing may be lubricated with lubricating oil, grease, or solid lubricant. It may be provided with a cage that holds a plurality of balls interposed between the inner and outer rings.
  • the area forming the clearance is set as a design parameter. If these areas are used as design parameters, the larger the area, the lower the torque. Therefore, when (Si + So) / d p D a Z is large, the torque is low. This function depends on the size and diameter series of the bearing and is difficult to handle as it is. Therefore, each design parameter is made dimensionless as follows.
  • the diameter series means a stepwise series of bearing outer diameters each having a bearing outer diameter with respect to a standard bearing inner diameter.
  • the inner and outer ring raceway grooves, groove shoulder height, ball diameter, number of balls, and balls so that the function f is larger than a certain value considering torque and smaller than an appropriate value considering basic dynamic load rating. If the pitch circle diameter is designed, a deep groove ball bearing with a low torque can be realized while having a sufficient basic dynamic load rating.
  • the basic dynamic load rating is determined based on the theory of Lundberg-Palmgren (Non-Patent Document 1), which is the basis of this standard.
  • the deep groove ball bearing is a deep groove ball bearing in which the ball is held in a cage and lubricated by grease, 0.8d m ⁇ d P ⁇ d m
  • the retainer has a crown shape that is partially open on one side surface of the annular body and has pockets for holding balls therein in a plurality of circumferential directions of the annular body, and the circumferential direction of the annular body
  • a grease containing recess for storing grease is provided between the pockets adjacent to each other. The grease containing recess and the pocket communicate with each other, and the grease adhering to the ball is moved to the grease containing recess by the relative movement of the ball and the cage.
  • a communication port is provided.
  • the crown-shaped cage is provided with a grease-receiving recess, and a communication port that communicates with the grease-receiving recess and the pocket that holds the ball is provided. Move to. That is, when the ball rotates in the pocket, a part of the grease attached to the ball reaches the communication port, and further, the ball rotates in the pocket, so that a part of the grease is scraped by the edge of the communication port, for example.
  • the base oil of grease acts on lubrication. Since the base oil separated from the grease held in the grease containing recess is supplied to the ball through the communication port, the base oil necessary for lubrication can be used.
  • the grease is a grease composition in which an additive is blended with a base grease comprising a base oil and a thickener, and the additive comprises a plant-derived polyphenol compound and its decomposition. Containing at least one compound selected from the compounds, and the blending ratio of this compound is from 0.05 parts by weight to 10 parts by weight with respect to 100 parts by weight of the base grease, and the plant-derived polyphenol compound is curcumin or a derivative thereof And / or quercetin or a derivative thereof.
  • the occurrence of peculiar peeling due to hydrogen embrittlement can be suppressed.
  • the oxidation deterioration resistance can be improved as compared with a grease composition containing a conventional antioxidant or the like, and the life of the bearing can be extended under high temperature and high speed.
  • the communication port may be a notch that allows the grease-receiving recess and the pocket to communicate with each other and that opens to the inner diameter side of the annular body. In this case, it is possible to enhance the effect of scraping off the grease at the edge of the notch, and to easily move the grease to the grease receiving recess. Further, the communication port can be provided without complicating the cage shape.
  • the angle of the central portion of the communication port with respect to the plane that is perpendicular to the axis of the annular body and passes through the center of the pocket may be in the range of 20 degrees to 50 degrees.
  • the angle of the central portion of the communication port with respect to the plane is as small as less than 20 degrees.
  • the contact portion between the balls and the inner and outer rings, that is, the raceway surface has a small amount of grease attached. Therefore, if the angle is small, the effect of scraping the grease into the grease receiving recess is small.
  • By making the angle in the range of 20 degrees or more and 50 degrees or less it becomes easy to manufacture and the effect of scraping the grease into the grease receiving recess can be enhanced and the torque can be reduced.
  • the maximum width dimension along the circumferential direction of the cage of the pocket at the communication port may be in the range of 10% to 40% of the inner diameter of the pocket. If the maximum width dimension of the communication port is smaller than 10% of the inner diameter of the pocket, it becomes difficult to move the grease through the communication port. When the maximum width dimension of the communication port is larger than 40% of the inner diameter of the pocket, it becomes difficult for the pocket to hold the ball.
  • the connecting portion forms the grease containing recess, the inner wall portion has an inclined surface inclined with respect to the axis, and the connecting portion has an inclined surface inclined with respect to a plane perpendicular to the axis. It is good also as what includes either or both of things.
  • the inner wall portion When the inner wall portion has an inclined surface that is inclined with respect to the shaft center, the inner wall portion has an inclined surface that becomes thinner as it goes toward the anti-pocket side.
  • the grease can be smoothly discharged from the inclined surface into the bearing space by centrifugal force due to rotation.
  • the inner wall portion has an inclined surface that becomes thicker toward the opposite pocket side, the grease accumulated in the grease receiving recess can be held so as not to leak out during the bearing operation.
  • the connecting portion has an inclined surface that is inclined with respect to a plane perpendicular to the axis
  • the connecting portion is an inclined surface that becomes thinner toward the inner diameter side
  • the rigidity of the cage is increased and high-speed rotation is achieved.
  • the strength of the cage can be ensured.
  • the grease accumulated in the grease receiving recess can be smoothly discharged from the inclined surface into the bearing space through the inner wall portion by centrifugal force due to rotation.
  • the connecting portion is an inclined surface that becomes thicker toward the inner diameter side, the grease accumulated in the grease-receiving recess can be held so as not to leak.
  • a partition plate may be provided in the grease containing recess. With this partition plate, the grease can be easily held in the grease containing recess. You may provide the cover part which covers the other side surface of the non-pocket side of a grease accommodating recessed part among the said annular bodies. In the case of high-speed rotation, it is possible to prevent the grease held in the grease-receiving recess by the cover portion from leaking out.
  • the grease that has entered the pocket from the recess moves to the inner ring side and is leveled around the ball arrangement pitch circle. For this reason, it becomes possible to draw more grease in the bearing into the grease receiving recess.
  • the retainer may be manufactured by injection molding, and the communication port may be provided so as to extend in parallel with the axis of the annular body or from the pocket side toward the grease containing recess. In this case, it is possible to easily remove the cage from the injection mold.
  • a mold for forming a communication port can be applied to a mold on the side of a grease receiving recess that is relatively easy to process, not on the pocket side where high-precision processing is required for the mold. Therefore, the manufacturing cost of the mold can be reduced.
  • the grease containing recess may be initially filled with grease.
  • the “initial stage” means a grease filling stage at the time of assembling the bearing.
  • the grease moves to the grease-receiving recess in a very short time, resulting in low torque.
  • the grease should be initially sealed in the grease-receiving recess without changing the amount of grease itself sealed in the bearing space.
  • a sealing device that closes the bearing space between the inner and outer rings may be provided in the outer ring.
  • the design method of the deep groove ball bearing of the present invention is a design method of a deep groove ball bearing in which a ball is interposed between an inner ring and an outer ring, and an arbitrary value is set to a and b in the following formulas under the condition of a ⁇ b. Given this, the raceway groove, groove shoulder height, ball diameter, number of balls, and pitch circle diameter of the balls are designed to satisfy the following formula.
  • the design may be realized by changing any variable of the function f, or two or more variables may be changed simultaneously. For example, by changing only the pitch circle diameter d p of the ball is to be realized a low torque, if 0.8d m ⁇ d p ⁇ d m , satisfying 1 ⁇ f ⁇ 1.1. Therefore, it is possible to design a deep groove ball bearing capable of realizing a low torque and ensuring a sufficient basic dynamic load rating.
  • the radial cross section is a cross section obtained by cutting a portion where a ball is brought into contact with the raceway groove of the inner and outer rings along the axial plane. In this case, the radial cross section can be uniquely obtained regardless of the radial clearance of the deep groove ball bearing.
  • (A) is the side view seen from the non-pocket side of the cage after operating the same deep groove ball bearing
  • (B) is the side view seen from the pocket side of the cage after operating the same deep groove ball bearing.
  • (A) is a side view of the conventional deep groove ball bearing as a comparative example, viewed from the side opposite to the cage after operation
  • (B) is viewed from the side of the cage after operation of the deep groove ball bearing. It is a side view.
  • FIGS. 1 to (D) are cross-sectional views showing a cross-sectional shape of a grease receiving recess in a cage according to fourth to seventh embodiments of the present invention. It is a perspective view of the holder
  • the deep groove ball bearing supports, for example, rotating parts of various devices such as automobiles, electric motors, household electric appliances, instruments, internal combustion engines, construction machinery, railway vehicles, transporting machinery, agricultural machinery, industrial machinery, and robots.
  • This deep groove ball bearing can be loaded with a radial load, an axial load in both directions, and a combined load thereof.
  • the deep groove ball bearing 1 has an inner ring 2, an outer ring 3, a plurality of balls 4, and a cage 5.
  • a plurality of balls 4 are interposed between the raceway grooves 2 a and 3 a of the inner and outer rings 2 and 3, and the cage 5 holds these balls 4.
  • the deep groove ball bearing 1 of this embodiment is shown as an open type without a seal member, but is not necessarily limited to this open type.
  • a non-contact type or a contact type sealing member that seals the bearing space may be provided on both side surfaces or one side surface.
  • Lubricating oil, grease, solid lubricant, etc. are provided inside the bearing and contribute to lubrication.
  • the cage 5 is made of, for example, two annular members manufactured by punching and forming a plate material made of an iron-based metal material, that is, a so-called iron plate by a press.
  • the material of the cage 5 is not particularly limited only to the iron-based metal material, and a copper-based metal material, an aluminum-based metal material, a resin material, or the like can be used.
  • a crown-shaped cage having pockets that are partially opened on one side surface of the annular body and hold the balls 4 inside is provided at a plurality of locations in the circumferential direction of the annular body. It is also possible.
  • steel balls or ceramic balls are used as the balls 4.
  • the main dimensions that is, the inner diameter, outer diameter, width, and chamfer dimension of the deep groove ball bearing 1 are standardized by the International Organization for Standardization, abbreviated ISO.
  • the main dimensions of deep groove ball bearings defined in Japanese Industrial Standard JIS B 1512 are also defined in accordance with this ISO.
  • the shape of the raceway portion of the deep groove ball bearing 1 is as follows: the diameter D a of the balls 4, the pitch circle diameter d p , the diameters d 2a and d 3a (referred to as groove diameters) of the race grooves 2a and 3a, the groove shoulder height H 2a , It can be determined by H 3a and the number of balls Z.
  • the groove shoulder height H 2a in the inner ring 2 refers to the radial dimension from the bottom of the raceway groove that forms the smallest diameter of the raceway grooves 2a of the inner ring 2 to the outer diameter of the inner ring.
  • the groove shoulder height H 3a in the outer ring 3 refers to the radial dimension from the bottom of the raceway groove forming the maximum diameter of the raceway groove 3a of the outer ring 3 to the inner diameter of the outer ring.
  • the friction torque between the ball 4 of the deep groove ball bearing 1 and the bearing ring is generated by the traction of the lubricating oil and the rolling viscous resistance.
  • the friction torque changes as shown in FIGS. This tendency does not change even in the case of solid contact where no lubricating oil is interposed between the balls 4 and the races.
  • the diameter D a small ball 4 the diameter of balls Z small, the pitch circle diameter d p small, raceway groove curvature ratio of the inner ring 2 large, if the raceway groove curvature ratio is high the outer ring 3, a low torque It turns out that it becomes.
  • the raceway groove curvature ratio of the inner ring 2, the radius of curvature of the arcuate section of the track groove 2a formed on the outer peripheral surface of the inner ring 2, divided by the diameter D a of the ball 4, i.e. the inner ring 2 of the raceway groove curvature ratio This is a value obtained by (the radius of curvature of the raceway groove 2a / the diameter D a of the ball 4).
  • the raceway groove curvature ratio of the outer ring 3 is a value obtained by dividing the radius of curvature of the raceway groove 3 a having a circular arc shape formed on the inner peripheral surface of the outer ring 3 by the radius D a / 2 of the ball 4.
  • the groove shoulder heights H 2a and H 3a are determined so that the contact ellipse between the ball 4 and the raceway does not protrude from the raceway grooves 2a and 3a when a predetermined axial load is applied to the bearing. However, if the groove shoulder heights H 2a and H 3a are excessive, the bearing cannot be assembled. Groove shoulder height H 2a, the ratio of the ball diameter D a of H 3a is about 0.2.
  • each design parameter is made dimensionless as follows.
  • the radial cross section is a cross section obtained by cutting a portion where the balls 4 are brought into contact with the raceway grooves 2a and 3a of the inner and outer rings 2 and 3 along the axial plane.
  • the ratio of the groove shoulder heights H 2a and H 3a to the diameter D a of the ball 4 is “0.2”, the raceway groove curvature ratio is “1.04” for both the inner and outer rings 2 and 3, and the pitch circle diameter d p is The average value of the inner and outer diameters of the bearing, that is, the inner ring inner diameter is added to the outer ring outer diameter and divided by 2.
  • the function f is obtained as shown in FIG.
  • the raceway groove curvature ratio varies depending on the manufacturer and product number, but in order to generalize and discuss, in this embodiment, it is used for calculation of the basic dynamic load rating defined in JIS B 1518 of the Japanese Industrial Standard. Value. In this case, 0.9 ⁇ f ⁇ 1 is generally satisfied in a very general design. The larger the function f is, the lower the torque becomes. At the same time, the basic dynamic load rating decreases and the service life is shortened.
  • the calculation method of the basic dynamic load rating of the deep groove ball bearing is stipulated in Japanese Industrial Standard JIS B 1518. This means that the raceway groove curvature ratio of the inner and outer rings is “1.04”. Configured as a premise. However, since the basic dynamic load rating changes when the raceway groove curvature ratio of the inner and outer rings changes, the Lundberg-Palmgren theory (Non-Patent Document 1), which is the basis of this standard, is used here. Determine the basic dynamic load rating. That is, when the diameter D a of the ball 4 is less deep groove ball bearing 25.4 mm, basic dynamic load rating C r can be calculated by the following expression.
  • the function f becomes Must be "1.1" or less. That is, 1 ⁇ f ⁇ 1.1
  • the design may be realized by changing any variable of the function f, or two or more variables may be changed simultaneously. For example, by changing only the pitch circle diameter d p of the ball is to be realized a low torque, if 0.8d m ⁇ d p ⁇ d m , satisfying 1 ⁇ f ⁇ 1.1.
  • the deep groove ball bearing 1 is not an open-type deep groove ball bearing as in the first embodiment but a sealed deep groove ball bearing, and is the same as the first embodiment. Corresponding portions are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the deep groove ball bearing 1 ⁇ / b> A of the second embodiment is different from the first embodiment in a closed type deep groove ball bearing and has sealing devices 6 and 6 that close the bearing space between the inner and outer rings 2 and 3. Only the point and the point where the cage 5 ⁇ / b> A has a crown shape made of the annular body 7. Other configurations and internal specifications are the same as those in the first embodiment.
  • the same internal dimensions means that the groove shoulder heights of the inner ring 2 and the outer ring 3 of the bearing are each 0.2 times the diameter of the ball 4, and the function f is “1 ⁇ f ⁇ 1.1. It means that the bearing is designed so as to satisfy.
  • the sealing device 6 is fitted and fixed in a seal groove 3b formed on the inner peripheral surface of the outer ring 3.
  • a contact seal is shown as the sealing device 6 in FIG. 9, a non-contact seal may be used.
  • a shield made of a metal plate may be provided as the sealing device 6. Grease is sealed in the bearing space.
  • the raceway groove may be referred to as a rolling surface or a raceway surface.
  • the retainer 5A has a pocket Pt that is partially opened on one side surface 7a of the annular body 7 and holds the ball 4 inside, and is formed in a circle of the annular body 7. It is a crown shape at a plurality of locations in the circumferential direction.
  • the cage 5A is formed, for example, by injection molding or machining a synthetic resin material.
  • the synthetic resin material for example, polyamide resin such as nylon, polyether ether ketone, abbreviation PEEK, polyphenylene salside, abbreviation PPS, or the like is used.
  • the cage 5A is formed into a rolling element guide type in which the inner surface of each pocket Pt is a spherical surface having the same curvature, and the ball 4 is fitted in each pocket Pt, thereby restraining in the axial direction, the radial direction, and the circumferential direction. It is configured.
  • a pair of claws 8 and 8 projecting axially from both circumferential ends of the pocket Pt on the open side surface of the pocket Pt of the annular body 7 are provided for each pocket Pt.
  • the pair of claws 8, 8 oppose each other in the circumferential direction, and constitute a part of the pocket Pt between each other.
  • the inner surfaces of the pair of claws 8 and 8 are formed along a spherical surface having the same curvature center position and the same curvature radius as the spherical surface forming the pocket bottom surface.
  • a grease containing recess GP is provided between the pockets Pt and Pt adjacent to each other in the circumferential direction of the annular body 7 as a grease pocket for collecting grease.
  • FIG. 10 (B) the non-pocket side of the grease containing recess GP in the annular body 7 is opened.
  • FIG. 12 the inner wall portion of the annular body 7 with respect to the cross-sectional shape of the annular body 7 as viewed by cutting the portion where the grease accommodating recess GP is provided along the plane including the axis L ⁇ b> 1 of the annular body 7 9 and the connecting portion 10 connecting the circumferentially adjacent pockets Pt and Pt form a grease containing recess GP.
  • the grease containing recess GP is surrounded by the inner wall 9 of the annular body 7, the spherical outer wall Pa of the adjacent pockets Pt and Pt, and the connecting portion 10, so that grease can be received. Provided.
  • the annular body 7 is provided with a communication port Rh that communicates with the grease containing recess GP and the pocket Pt.
  • the communication port Rh has a function of supplying the base oil of the grease stored in the grease receiving recess GP to the balls 4 (FIG. 9) in the pocket Pt. Further, during the bearing operation, the grease adhering to the ball 4 is moved to the grease containing recess GP through the communication port Rh by the relative movement of the ball 4 and the cage 5.
  • the communication port Rh is a notch that communicates with the grease receiving recess GP and the pocket Pt and opens to the inner diameter side of the annular body 7.
  • the central portion CP of the communication port Rh with respect to the plane S1.
  • the angle ⁇ 1 is preferably in the range of 20 degrees to 50 degrees.
  • the central portion CP of the communication port Rh refers to the central portion CP of the pocket Pt in the circumferential direction at the communication port Rh, and in other words, the angle ⁇ 1 is the center portion CP and the center C1 of the pocket Pt.
  • the angle ⁇ 1 is small, the effect of scraping the grease into the grease containing recess GP is small.
  • the angle ⁇ 1 in the range of 20 degrees or more and 50 degrees or less, it becomes easy to manufacture and the effect of scraping the grease into the grease containing recess GP can be enhanced and the torque can be reduced.
  • the size of the communication port Rh that is, the maximum width dimension H along the circumferential direction of the pocket Pt is preferably 10% or more and 40% or less of the inner diameter d1 of the pocket Pt. If the maximum width dimension H of the communication port Rh is smaller than 10% of the inner diameter d1 of the pocket Pt, it becomes difficult to move the grease through the communication port Rh. When the maximum width dimension H of the communication port Rh is larger than 40% of the inner diameter d1 of the pocket Pt, it is difficult for the pocket Pt to hold the ball 4.
  • FIGS. 15A and 15B are bearings incorporating the cage according to the second embodiment
  • FIGS. 16A and 16B are bearings incorporating a conventional crown cage 50, respectively.
  • running conditions is shown.
  • FIG. 25 is a perspective view of a conventional crown-shaped cage 50
  • FIG. 26 is a cross-sectional view of the main part of the crown-shaped cage 50.
  • the operating conditions are a deep groove ball bearing bearing model number “6206”, a rotational speed of 1800 min ⁇ 1 , and an operating time of about 30 sec.
  • the grease enters the grease accommodating recess GP through the communication port Rh regardless of the grease filling position with respect to the bearing, and compared with the conventional cage 50, the pocket Pt. Less grease on the side. The grease moves to the grease containing recess GP in a very short time and becomes low torque. If grease is initially sealed in the grease containing recess GP, the torque at the time of starting can be reduced.
  • the cage 5A of FIG. 11 is provided with the grease accommodating recess GP, and the grease accommodating recess GP and the ball 4 (FIG. 9). Since the communication port Rh that communicates with the pocket Pt that holds the grease is provided, the grease adhering to the ball 4 is moved to the grease containing recess GP through the communication port Rh during the bearing operation. That is, when the ball 4 rotates in the pocket Pt, a part of the grease adhering to the ball 4 reaches the communication port Rh, and further, the ball 4 rotates (that is, relative movement) in the pocket Pt.
  • the part is scraped off by the communication port Rh and is moved by being pressed toward the grease containing recess GP through the communication port Rh by the pressure of the balls 4. Since the grease is stored in the grease containing recess GP and rotates together with the cage 5A, the above-described stirring resistance and shear resistance can be reduced.
  • the base oil of grease acts on lubrication. Since the base oil separated from the grease held in the grease containing recess GP is supplied to the ball 4 through the communication port Rh, the base oil necessary for lubrication can be used. As described above, the present invention is not limited to the use of the bearing, and it is possible to reduce the torque during the operation of the bearing without sacrificing the rolling fatigue life and the grease life, and from the grease held in the grease containing recess GP.
  • the separated base oil can be used for lubrication.
  • the communication port Rh is not a hole but a notch, the effect of scraping off the grease at the edge (edge part) of this notch can be enhanced, and the effect of scraping into the grease containing recess GP can be enhanced.
  • the mold structure when the cage 5A is manufactured by injection molding can be simplified. Therefore, the manufacturing cost of the cage 5A can be reduced.
  • the cage 5A is manufactured by injection molding that is excellent in mass productivity, it is easy to process and assemble and reduce costs by using a polyamide-based resin such as nylon as the synthetic resin material.
  • PEEK polyether ether ketone
  • PES polyphenylene salside
  • PPS polyphenylene salside
  • a plant-derived resin material may be used as the cage material.
  • This category includes, for example, polylactic acid, polybutylene succinate synthesized from sugars such as sugar cane and corn, or castor oil. Such as polyamide.
  • the deep groove ball bearing 1B of FIG. 17 incorporates the same grease containing recess GP and the cage 5B provided with the communication port Rh as in the second embodiment, and the following grease is sealed in the bearing space between the inner and outer rings 2 and 3 Has been.
  • the grease is a grease composition in which an additive is blended with a base grease comprising a base oil and a thickener, and the additive is at least selected from a plant-derived polyphenol compound and its decomposition compound One compound is contained, and the compounding ratio of this compound is 0.05 to 10 parts by weight with respect to 100 parts by weight of the base grease.
  • the present applicant encloses a grease composition containing at least one compound selected from (1) plant-derived polyphenol compounds and (2) plant-derived polyphenol compound decomposition compounds for deep groove ball bearings, A quick acceleration / deceleration test and a high temperature durability test were conducted, and it was found that the bearing life could be extended. This is because the compound is easily attached to the metal surface of the bearing rolling surface by the action of the polar group (A), and the substance reacts on the frictional wear surface or the newly formed metal surface exposed by wear, causing the oxide film to roll on the bearing. By forming on the running surface, generation of hydrogen due to decomposition of the grease composition can be suppressed, and unique peeling due to hydrogen embrittlement on the bearing rolling surface can be prevented. (B) The above compound prevents oxidation of the grease composition. This is considered to be because it acts as an agent and can suppress oxidative deterioration. The present invention is based on these findings.
  • the polyphenol compound that can be used in the third embodiment is an aromatic hydroxy compound having a plurality of hydroxyl groups in one molecule, in which a hydrogen atom of an aromatic hydrocarbon ring is substituted with a hydroxyl group (hydroxy group), and is derived from a plant. It is.
  • the degradation compound of the plant-derived polyphenol compound is an aromatic or alicyclic hydroxy compound produced by hydrolysis of the polyphenol compound.
  • the decomposition compound also preferably has a plurality of hydroxyl groups in one molecule.
  • plant-derived polyphenol compounds or degradation compounds examples include tannin, gallic acid, ellagic acid, chlorogenic acid, caffeic acid, quinic acid, curcumin, quercetin, pyrogallol, theaflavin, anthocyanin, rutin, lignan. And catechins.
  • polyphenol compounds obtained from plant-derived sesamin, isoflavones, coumarins and the like can also be used.
  • the above polyphenol compounds or their decomposition compounds may be used alone or in combination of two or more.
  • tannin gallic acid or derivatives thereof, ellagic acid or derivatives thereof, chlorogenic acid or derivatives thereof, caffeic acid or derivatives thereof, quinic acid or derivatives thereof, curcumin or It is preferable to use a derivative thereof, quercetin or a derivative thereof.
  • the tannin used in this embodiment is a polyphenol compound that contains many phenolic hydroxyl groups in the molecule and has a relatively large molecular weight as an acidic organic substance.
  • the tannin is an astringent plant component present in oak peel, fushi (garlic), cocoon and the like, and is roughly classified into hydrolyzable tannin and condensed tannin depending on the chemical structure.
  • Hydrolyzable tannin is hydrolyzed to polyhydric phenolic acid and polyhydric alcohol by acid, alkali and enzyme.
  • the polyhydric phenol obtained there are mainly two types of gallic acid and its dimer (in the free state, dehydration cyclization becomes tetracyclic ellagic acid).
  • the polyhydric alcohol obtained include pyrogallol.
  • Condensed tannin is a product in which multiple molecules of catechin are condensed at a carbon-carbon bond.
  • Gallic acid and ellagic acid used in this embodiment are polyhydric phenol acids (polyphenol compounds) obtained by hydrolyzing hydrolyzable tannin as described above.
  • Gallic acid has a structure shown in the following formula (1)
  • ellagic acid has a structure shown in the following formula (2).
  • gallic acid esters such as methyl gallate, ethyl gallate, propyl gallate, butyl gallate, pentyl gallate, hexyl gallate, heptyl gallate, and octyl gallate.
  • examples thereof include gallates such as bismuth acid.
  • ethyl gallate is more preferred because of its excellent solubility in lubricating oil.
  • the same derivative can be used also about ellagic acid.
  • Chlorogenic acid used in this embodiment is a polyphenol compound contained in coffee beans and the like, and has a structure represented by the following formula (3).
  • the caffeic acid used in the present embodiment is a hydrolyzate of chlorogenic acid, and is an aromatic hydroxy compound having three hydroxyl groups in the molecule in which the hydrogen atom of the aromatic hydrocarbon ring is substituted with a hydroxyl group. It has the structure shown in 4).
  • the quinic acid used in the present embodiment is a hydrolyzate of chlorogenic acid, and is an alicyclic hydroxy compound having five hydroxyl groups in the molecule in which hydrogen atoms of the alicyclic hydrocarbon rings are substituted with hydroxyl groups. It has a structure shown in Formula (5).
  • Curcumin used in this embodiment is a polyphenol compound contained in turmeric or the like and has a structure represented by the following formula (6).
  • Quercetin used in the present embodiment is a polyphenol compound contained in citrus fruits and has a structure represented by the following formula (7).
  • the blending ratio of at least one compound selected from a plant-derived polyphenol compound and its decomposition compound is 0.05 to 10 parts by weight with respect to 100 parts by weight of the base grease. Further, it is preferably 0.1 to 5 parts by weight.
  • the compounding ratio of the compound is less than 0.05 parts by weight, peeling on the rolling surface due to hydrogen embrittlement cannot be effectively prevented. In addition, the grease cannot be effectively prevented from being deteriorated by oxidation. Even if the compounding ratio of the above compound exceeds 10 parts by weight, the anti-peeling effect and the effect of preventing the oxidative deterioration of the lubricant are hardly further improved.
  • base oils examples include mineral oils such as spindle oil, refrigerator oil, turbine oil, machine oil, dynamo oil, highly refined mineral oil, liquid paraffin oil, polybutene oil, and GTL oil synthesized by the Fischer-Tropsch method.
  • Hydrocarbon synthetic oils such as PAO oil, alkylnaphthalene oil, and alicyclic compounds, or natural oils, polyol ester oils, phosphate ester oils, polymer ester oils, aromatic ester oils, carbonate ester oils, diester oils,
  • Non-hydrocarbon synthetic oils such as ester oils such as polyglycol oil, silicone oils, polyphenyl ether oils, alkyl diphenyl ether oils, alkyl benzene oils, and fluorinated oils can be used. These may be used alone or in combination of two or more.
  • PAO oil is usually an ⁇ -olefin or a mixture of isomerized ⁇ -olefin oligomers or polymers.
  • ⁇ -olefins include 1-octene, 1-nonene, 1-decene, 1-dodecene, 1-tridecene, 1-tetradecene, 1-pentadecene, 1-hexadecene, 1-heptadecene, 1-octadecene, -Nonadecene, 1-eicosene, 1-docosene, 1-tetracocene and the like can be mentioned, and usually a mixture thereof is used.
  • At least one oil selected from alkyl diphenyl ether oil, ester oil and PAO oil is used because of excellent heat resistance and lubricity among the above base oils.
  • Alkyl diphenyl ether oil and ester oil are more preferably used in combination with PAO oil.
  • the kinematic viscosity at 40 ° C. of the base oil is preferably 10 to 100 mm 2 / sec. More preferably, it is 10 to 70 mm 2 / sec.
  • the kinematic viscosity is less than 10 mm 2 / sec, the base oil deteriorates in a short time, and the resulting deterioration promotes the deterioration of the entire base oil. Become. Also, if it exceeds 100 mm 2 / sec, the temperature rise of the bearing will increase due to the increase of rotational torque, especially at high speed rotation, and the temperature rise will be large. become unable.
  • urea compounds such as polyurea compounds. Of these, urea compounds are desirable in view of heat resistance, cost, and the like.
  • a urea compound is obtained by reacting an isocyanate compound and an amine compound. In order not to leave a reactive free radical, the isocyanate group of the isocyanate compound and the amino group of the amine compound are preferably blended so as to be approximately equivalent.
  • the diurea compound can be obtained, for example, by a reaction between diisocyanate and monoamine.
  • diisocyanate include phenylene diisocyanate, tolylene diisocyanate, diphenyl diisocyanate, diphenylmethane diisocyanate, octadecane diisocyanate, decane diisocyanate, hexane diisocyanate, etc.
  • monoamines include octylamine, dodecylamine, hexadecylamine, stearylamine, And oleylamine, aniline, p-toluidine, cyclohexylamine and the like.
  • the polyurea compound can be obtained, for example, by reacting diisocyanate with a monoamine or diamine.
  • diisocyanate and monoamine include those similar to those used for the production of the diurea compound.
  • diamine include ethylenediamine, propanediamine, butanediamine, hexanediamine, octanediamine, phenylenediamine, tolylenediamine, xylenediamine, And diaminodiphenylmethane.
  • a base grease for blending the above-mentioned polyphenol compound and the like can be obtained by blending a thickener such as a urea compound with the base oil.
  • a base grease using a urea compound as a thickener is prepared by reacting an isocyanate compound and an amine compound in a base oil.
  • the blending ratio of the thickener in 100 parts by weight of the base grease is 1 to 40 parts by weight, preferably 3 to 25 parts by weight. If the content of the thickener is less than 1 part by weight, the thickening effect will be reduced, making it difficult to make grease, and if it exceeds 40 parts by weight, the resulting base grease will be too hard and the desired effect will be difficult to obtain. Become.
  • a known grease additive may be included as necessary.
  • the additives include antioxidants such as organic zinc compounds and amine compounds, metal deactivators such as benzotriazole, viscosity index improvers such as polymethacrylate and polystyrene, and solid lubricants such as molybdenum disulfide and graphite.
  • Rust preventives such as metal sulfonates and polyalcohol esters, friction reducing agents such as organic molybdenum, oily agents such as esters and alcohols, and antiwear agents such as phosphorus compounds. These can be added alone or in combination of two or more.
  • the grease composition of this embodiment can improve the life of the grease-sealed bearing by suppressing the occurrence of peculiar delamination due to hydrogen embrittlement and improving the oxidation resistance of the grease under high temperature and high speed.
  • the PAO oil used as the base oil is trade name Sinfluid 601 manufactured by Nippon Steel Chemical Co., Ltd. having a kinematic viscosity of 30 mm 2 / sec at 40 ° C.
  • the alkyl diphenyl ether oil is at 40 ° C.
  • the reagent made from Tokyo Chemical Industry was used for each polyphenol compound.
  • Examples 1 to 10 In half of the base oil shown in Table 1, 4,4-diphenylmethane diisocyanate (trade name Millionate MT, hereinafter referred to as MDI) manufactured by Nippon Polyurethane Industry Co., Ltd. was dissolved in the proportion shown in Table 1, and the remaining half Monoamine that is twice the equivalent of MDI was dissolved in this base oil. The respective blending ratios and types are shown in Table 1. A solution in which monoamine was dissolved was added while stirring the solution in which MDI was dissolved, and then the reaction was continued at 100 ° C. to 120 ° C. for 30 minutes to produce a diurea compound in the base oil.
  • MDI 4,4-diphenylmethane diisocyanate
  • ⁇ Rapid acceleration / deceleration test> An alternator, which is an example of an electrical accessory, was simulated, and the grease composition was enclosed in an inner ring rotating deep groove ball bearing that supports a rotating shaft, and a rapid acceleration / deceleration test was performed.
  • the rapid acceleration / deceleration test conditions are as follows: the load applied to the pulley attached to the tip of the rotating shaft is set to 1960 N, the operating speed is set to 0 rpm to 18000 rpm, and a current of 0.1 A flows through the test bearing. The test was conducted. Then, abnormal peeling occurred in the bearing, and the time when the vibration of the vibration detector exceeded the set value and the generator stopped (peeling life time, h) was measured. The test was terminated after 500 hours.
  • Comparative Examples 1 to 3 A base grease was prepared by selecting a thickener and a base oil in the blending ratio shown in Table 1 by the method according to Example 1, and further blended with additives to obtain a grease composition. The obtained grease composition was evaluated by performing the same test as in Example 1. The results are shown in Table 1.
  • Examples 11 to 17 In half of the base oil shown in Table 2, MDI was dissolved in the proportion shown in Table 2, and in the remaining half of the base oil, monoamine that was twice the equivalent of MDI was dissolved. The blending ratio and type of each are shown in Table 2. A solution in which monoamine was dissolved was added while stirring the solution in which MDI was dissolved, and then the reaction was continued at 100 ° C. to 120 ° C. for 30 minutes to produce a diurea compound in the base oil. To this, a plant-derived polyphenol compound and the like were added at a blending ratio shown in Table 2, and the mixture was further stirred at 100 to 120 ° C. for 10 minutes. Thereafter, the mixture was cooled and homogenized with three rolls to obtain a grease composition. The obtained grease composition was subjected to a high temperature durability test. Test methods and test conditions are shown below. The results are also shown in Table 2.
  • Deep groove ball bearing (bearing dimensions: inner diameter 20 mm, outer diameter 47 mm, width 14 mm) is filled with 0.7 g of lubricating composition, bearing outer ring outer diameter temperature 150 ° C, radial load 67 N, axial load 67 N was rotated at a rotation speed of 10,000 rpm, and the time until seizure was measured. The results are also shown in Table 2.
  • Comparative Example 4 and Comparative Example 5 In accordance with the method according to Example 11, the base grease was prepared by selecting the thickener and the base oil at the blending ratio shown in Table 2, and the additive was further blended to obtain a grease composition. The obtained grease composition was evaluated by conducting the same test as in Example 11. The results are also shown in Table 2.
  • Examples 11 to 17 showed excellent high temperature durability with a lifetime of 1400 hours or more in the high temperature durability test. This is considered to be because the plant-derived polyphenol compound blended as an additive of the grease composition was able to suppress oxidative deterioration of the grease composition.
  • Comparative Examples 4 and 5 the same base oil as in Examples 11 to 17 was used and two kinds of antioxidants were used in combination, but the life was significantly shorter than in Examples 11 to 17. It became.
  • the life (high temperature durability) of the curcumin-added grease added with curcumin as a plant-derived polyphenol compound was tested with a deep groove ball bearing having a bearing model number “6204” having an inner diameter of 20 mm, an outer diameter of 47 mm, and a width of 14 mm.
  • the inner ring rotational speed is 10000 min ⁇ 1
  • the outer ring outer diameter portion temperature is 150 ° C.
  • the horizontal axis shows the ratio of the amount of grease charged to the total space volume inside the bearing
  • the vertical axis shows the grease life, that is, the time until seizure.
  • the life is slightly longer in the case of 25% grease with the addition of curcumin indicated by the square mark than when the grease life is 38% without the addition of curcumin indicated by the circle in the figure. It can be seen that if 22% grease is added with the addition of curcumin, the life is almost the same as when 38% grease is added without the addition of curcumin. Generally, the smaller the amount of grease charged, the lower the resistance due to the agitation and shearing of the grease by the cage, so that lower torque can be expected. That is, when curcumin is added, the torque can be reduced while maintaining the grease life.
  • the grease is stored in the grease containing recess GP (FIG. 10A) and rotates together with the cage 5B, so that stirring resistance and shear resistance can be reduced. Since the base oil separated from the grease held in the grease containing recess GP is supplied to the ball 4 through the communication port Rh (FIG. 10A), the base oil necessary for lubrication can be used. .
  • the grease composition By enclosing the grease composition in a bearing incorporating such a cage 5B, it is possible to suppress the occurrence of specific peeling due to hydrogen embrittlement. Further, the oxidation deterioration resistance can be improved as compared with a grease composition containing a conventional antioxidant or the like, and the life of the bearing can be extended under high temperature and high speed.
  • the torque measurement result will be described.
  • the deep groove ball bearing having the internal specifications shown in FIG. 8 was designated “A”, and the deep groove ball bearing having the crown-shaped cage provided with the grease containing recess GP and the communication port Rh was designated “B”.
  • the deep groove ball bearing subjected to the torque test is a bearing model number “6206” having an inner diameter of 30 mm, an outer diameter of 62 mm, and a width of 16 mm.
  • the test is performed by fixing the test bearing to a hydrostatic gas bearing capable of supporting both radial load and axial load, and applying radial load to the shaft fitted to the inner ring of the test bearing or applying axial load to the hydrostatic gas bearing.
  • the outer ring rotational torque was measured when a load was applied to the bearing and the shaft was rotated by an external motor. Torque measurement was performed under the following conditions. Torque measurement conditions Rotational speed: 3000 to 5000 min ⁇ 1 , radial load: 0 to 250N, axial load: 0 to 150N
  • Table 3 shows the results of measuring the outer ring rotational torque under the above torque measurement conditions.
  • the standard bearing is a bearing model number “6206”, a standard nylon crown cage, and 38% of Maltemp SRL grease.
  • Table 3 the deep groove ball bearing with the internal specifications shown in FIG. 8 incorporates a crown-shaped cage with a grease containing recess GP and a communication port Rh, and curcumin is added to the standard Multemp SRL grease with 100 weight base grease.
  • a grease containing 2% by weight of grease added with 25% by weight is expressed as “A * B * C”.
  • the torques of the A, B, C, and A * B * C bearings are shown as relative values when the torque value of the standard bearing is 100.
  • “C” and “A * B * C” bearings were filled with 25% of grease obtained by adding 2 parts by weight of curcumin to 100 parts by weight of base grease in standard Multemp SRL grease.
  • the “A” and “B” bearings are the same as the standard bearings in terms of grease, with respect to the additive and the amount of sealing.
  • the torque reduction effect is recognized with each of the bearings A, B, and C with respect to the standard bearing, but the bearing of A * B * C has a greater synergistic effect than the simple combination effect (A + B + C).
  • the torque value is about half that of the standard bearing.
  • the bearings A, B, and C are technically different torque reduction methods, but it can also be determined from the above results that they do not work in the direction of suppressing the torque reduction effect due to mutual interference.
  • the deep groove ball bearing having the internal specifications shown in FIG. 8 and incorporating a crown-shaped cage having a grease containing recess GP and a communication port Rh is referred to as “A * B”.
  • a standard deep groove ball bearing is equipped with a grease retaining recess GP and a crown-shaped cage with a communication port Rh, and a standard maltemp SRL grease with 2 parts by weight of curcumin added to 100 parts by weight of base grease. 25% encapsulated material is designated as “B * C”.
  • a deep groove ball bearing with the internal specifications shown in FIG. 8 and 25% encapsulated grease with 2 parts by weight of curcumin added to 100 parts by weight of the base grease is added to the standard Multemp SRL grease.
  • the portion of the annular body 7 of the cages 5C and 5D where the grease accommodating recess GP is provided is cut by a plane including the axis L1 of the annular body 7.
  • the connecting portion 10 of the annular body 7 may have inclined surfaces 10a and 10b that are inclined with respect to the plane S1 perpendicular to the axis L1.
  • a cage 5C according to the fourth embodiment shown in FIG. 19A has an inclined surface 10a that becomes thinner as the thickness of the connecting portion 10 moves toward the inner diameter side indicated by the arrow A1. In this case, the cage rigidity is higher than that of the cage of FIG.
  • a cage 5D according to the fifth embodiment shown in FIG. 19B has an inclined surface 10b that becomes thicker as the thickness of the connecting portion 10 moves toward the inner diameter side indicated by the arrow A1. In this case, the grease stored in the grease receiving recess GP can be held so as not to leak during the bearing operation.
  • a cage 5E according to the sixth embodiment shown in FIG. 19C has an inclined surface 9a that becomes thinner as the thickness of the inner wall portion 9 moves toward the opposite pocket side indicated by the arrow A2.
  • the grease stored in the grease accommodating recess GP can be smoothly discharged from the inclined surface 9a into the bearing space by the centrifugal force due to the rotation.
  • a cage 5F according to the seventh embodiment shown in FIG. 19D has an inclined surface 9b that becomes thicker as the wall thickness of the inner wall portion 9 goes toward the non-pocket side. In this case, it is possible to hold the grease stored in the grease receiving recess GP so as not to leak during the bearing operation.
  • the cage 5G according to the eighth embodiment in FIG. 20 is provided with a cover portion 11 that covers the other side surface 7b on the opposite side of the grease receiving recess GP in the annular body 7.
  • the shape having the cover portion 11 can be easily manufactured by machining using a machining center or the like. According to the cage 5G, in the case of high-speed rotation, it is possible to prevent the grease held in the grease containing recess GP by the cover portion 11 from leaking.
  • the cage 5H according to the ninth embodiment in FIG. 21 is manufactured by injection molding, and the communication port Rh is provided so as to widen from the pocket Pt side toward the grease containing recess GP side.
  • the non-pocket side portion Rha of the communication port Rh is formed parallel to the axis L1 of the annular body 7. In this case, it is possible to easily remove the cage 5H from the injection mold.
  • a mold for forming the communication port Rh can be applied not to the pocket Pt side where high-precision machining is required for the mold but to the mold on the grease housing recess GP side that is relatively easy to process. Therefore, the manufacturing cost of the mold can be reduced.
  • the cage 5I according to the tenth embodiment in FIG. 22 has a recess 13 in the pocket opening edge 12 on the outer diameter side of the annular body on the inner surface of the pocket Pt.
  • two recesses 13 are provided on the pocket opening edge 12.
  • Each of these recesses 13 extends from the pocket opening edge 12 to the vicinity of the ball arrangement pitch circle toward the inner diameter side of the annular body.
  • the two recessed portions 13 are located on both sides of the center L3 in the cage circumferential direction at the pocket opening edge 12 of the pocket Pt.
  • the shape of the inner surface of each recess 13 is an arc having a radius of curvature smaller than the radius of curvature of the concave spherical surface that forms the inner surface of the pocket Pt.
  • the cross-sectional shape is synonymous with a cross-sectional shape obtained by cutting the recess 13 along a plane perpendicular to the axis L1 of the annular body 7.
  • Each dent 13 has a shape that gradually decreases from the annular body outer diameter side toward the ball arrangement pitch circle in the radial direction of the cage, that is, gradually becomes shallower and narrower.
  • the cage 5J according to the eleventh embodiment in FIG. 23 is provided with a groove 14 at the bottom of the inner surface of the pocket Pt.
  • This groove part 14 consists of a single groove
  • Grease containing a thickener and base oil is stored in the grease containing recess GP, and base oil necessary for lubrication separated from the grease is moved to the pocket Pt through the communication port Rh, thereby contributing to lubrication. Since a part of the base oil separated from the grease enters the groove portion 14 shown in FIG. 22, the viscous shear resistance due to the base oil between the balls 4 (FIG. 8) and the pocket Pt can be reduced. Therefore, it can contribute to lower torque.
  • the partition plate 15 may be provided in the grease containing recess GP.
  • the partition plate 15 in this example divides the grease containing recess GP in two, and is arranged in parallel to the axis L1.
  • Such a partition plate 15 restricts the movement of the grease in the grease accommodating recess GP, and the grease easily adheres to the inner wall portion 9 of the grease accommodating recess GP. Therefore, the grease can be easily held in the grease containing recess GP.
  • the partition plate 15 can be applied in a form that does not completely partition the grease containing recess GP or in a form that is not parallel to the axis L1.
  • the grease may be initially sealed in the grease containing recess GP, and the grease on the pocket Pt side may be reduced in advance.
  • the effect that a part of the grease is scraped off at the communication port Rh is lower than that of the above embodiments, but the torque at the time of starting can be reduced by the amount of grease on the pocket Pt side being small.
  • the base oil separated from the grease enclosed in the grease containing recess GP is supplied to the ball 4 (FIG. 8) through the communication port Rh, the base oil necessary for lubrication can be used.
  • an angular ball bearing may be applied instead of the deep groove ball bearing.
  • an angular ball bearing with a small load load it is possible to further reduce the torque by reducing the number of balls of the entire bearing, reducing the rotational torque, and using any one of the cages of the present embodiment.
  • the grease containing recesses are provided between all the pockets of the annular body, but this is not a limitation. It is sufficient to provide at least one grease receiving recess between any pockets.
  • the rolling bearing according to aspect 1 is a rolling bearing in which a plurality of balls interposed between inner and outer rings are held in a cage and are grease-lubricated, and the cage is partially opened on one side surface of an annular body. And a pocket for holding a ball inside the annular body at a plurality of locations in the circumferential direction of the annular body, provided with a grease containing recess for collecting grease between pockets adjacent in the circumferential direction of the annular body, There is provided a communication port that communicates with the grease containing recess and the pocket, and moves the grease adhering to the ball to the grease containing recess by the relative movement of the ball and the cage.
  • a grease composition comprising an additive and a base grease comprising an additive, wherein the additive is at least one selected from plant-derived polyphenol compounds and degradation compounds thereof
  • the compound is contained in an amount of 0.05 to 10 parts by weight based on 100 parts by weight of the base grease, and the plant-derived polyphenol compound contains curcumin or a derivative thereof, and quercetin or a derivative thereof. Either one or both.
  • the ball rotates in the pocket, a part of the grease attached to the ball reaches the communication port, and further, the ball rotates in the pocket, so that a part of the grease is, for example, the communication port.
  • the grease is pressed and moved through the communication port by scraping with the edge of the ball or the pressure of the balls. Since the grease is stored in the grease containing recess and rotates together with the cage, the above-described stirring resistance and shear resistance can be reduced.
  • the base oil of grease acts on lubrication. Since the base oil separated from the grease held in the grease containing recess is supplied to the ball through the communication port, the base oil necessary for lubrication can be used.
  • the occurrence of peculiar peeling due to hydrogen embrittlement can be suppressed by enclosing the grease composition in a bearing incorporating such a cage. Further, the oxidation deterioration resistance can be improved as compared with a grease composition containing a conventional antioxidant or the like, and the life of the bearing can be extended under high temperature and high speed.
  • the communication port may be a notch that allows the grease-receiving recess and the pocket to communicate with each other and opens to the inner diameter side of the annular body.
  • the angle of the central portion of the communication port with respect to the plane that is a plane perpendicular to the axis of the annular body and passes through the center of the pocket may be in the range of 20 degrees to 50 degrees.
  • the maximum width dimension along the circumferential direction of the cage of the pocket at the communication port may be in the range of 10% to 40% of the inner diameter of the pocket.
  • a partition plate may be provided in the grease containing recess.
  • a recess may be provided on the pocket opening edge on the outer diameter side of the annular body on the inner surface of the pocket.
  • a groove may be provided at the bottom of the inner surface of the pocket.
  • the cage is manufactured by injection molding, and the communication port may be provided so as to extend in parallel with the axis of the annular body or from the pocket side toward the grease-accommodating concave portion.
  • the cage may include a synthetic resin material or a plant-derived resin material.
  • grease may be initially sealed in the grease receiving recess.
  • the rolling bearing may be a deep groove ball bearing or an angular ball bearing.
  • a sealing device that closes the bearing space between the inner and outer rings may be provided in the outer ring.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

Provided are a deep groove ball bearing which exhibits low torque characteristics and has a sufficient basic dynamic rated load, and a method of designing the deep groove ball bearing. The raceway grooves (2a, 3a) of inner and outer rings (2, 3), the heights (H2a, H3a) of groove shoulders, the diameter of balls, the number of the balls, and the pitch circle diameter of the balls are designed so as to satisfy the mathematical expression (9) with arbitrary values given to a and b which satisfy the relationship of a < b. 【9】Si: The area of the clearance between the raceway groove of the inner ring and a ball in a radial cross-section of the bearing taken along an axial plane. S0: The area of the clearance between the raceway surface of the outer ring and the ball in the radial cross-section. Da: The diameter of the balls. dm: The average of the inner and outer diameters of the bearing obtained by adding the outer diameter of the outer ring to the inner diameter of the inner ring and dividing the result by two. dp: The pitch circle diameter of the balls. Z: The number of the balls.

Description

深溝玉軸受およびその設計方法Deep groove ball bearing and design method thereof 関連出願Related applications
 本出願は、2009年4月16日出願の特願2009-099705および2010年3月29日出願の特願2010-74327の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。 This application claims the priority of Japanese Patent Application No. 2009-099705 filed on Apr. 16, 2009 and Japanese Patent Application No. 2010-74327 filed on Mar. 29, 2010, which is incorporated herein by reference in its entirety. Cited as what constitutes
 この発明は、深溝玉軸受およびその設計方法に関し、各種機器の回転部を支承する深溝玉軸受の設計に適用される技術に関する。 The present invention relates to a deep groove ball bearing and a design method thereof, and relates to a technique applied to the design of a deep groove ball bearing that supports rotating parts of various devices.
 転がり軸受のうち、深溝玉軸受は最も汎用的に使用される軸受形式であり、低コストと同時に低トルク化が強く要求される。この低トルクを実現するために、保持器設計や、グリース潤滑であればグリース組成、密封式であればシール設計等の改良がなされている。また、軌道輪軌道面と玉の設計についても種々の発明がなされている(特許文献1、2)。 Among rolling bearings, deep groove ball bearings are the most widely used bearing types, and low torque and high torque are strongly required. In order to achieve this low torque, improvements have been made to the cage design, the grease composition for grease lubrication, and the seal design for a sealed type. Various inventions have also been made for the design of raceway raceway surfaces and balls (Patent Documents 1 and 2).
 玉軸受の多くは潤滑剤としてグリースを封入し、シールやシールドで密封した状態で使用される。グリースを用いた軸受は、油による潤滑と比較して、給油設備が不要・メンテナンスフリー等の利点が挙げられる。
 軸受には、回転に対する抵抗つまり回転トルクがあり、転動体と内外輪間の摩擦や、転動体と保持器の摩擦、潤滑剤の攪拌や粘性の影響がある。グリース潤滑の場合、玉や保持器がグリースを撹拌する撹拌抵抗や、保持器とシール等との間でグリースをせん断するせん断抵抗が軸受のトルクとなる。
Many ball bearings are used in a state where grease is sealed as a lubricant and sealed with a seal or shield. Compared to lubrication with oil, a bearing using grease has advantages such as no need for lubrication facilities and maintenance-free operation.
The bearing has resistance to rotation, that is, rotational torque, and is affected by friction between the rolling elements and the inner and outer rings, friction between the rolling elements and the cage, stirring of the lubricant, and viscosity. In the case of grease lubrication, the torque of the bearing is a stirring resistance in which the balls and the cage stir the grease and a shear resistance in which the grease is sheared between the cage and the seal.
 グリース潤滑の軸受において、回転トルクの低下を図った従来技術として、例えば、グリースの組成によって、低温時においても軸受の回転トルクが低くなるものが開示されている(特許文献3)。
 保持器形状により、軸受の低トルク化を図った従来技術として、例えば、保持器ポケットの内周面と玉の転動面との間に必要最小限の潤滑剤を取り込むようにして、保持器音および回転トルクの低減を図ったものが開示されている(特許文献4)。
 その他の保持器による低トルク化の従来技術として、例えば、転動体がポケットに衝突した際に、緩衝作用がある溝を保持器ポケット間に設けたものが開示されている(特許文献5)。
 その他の軸受の低トルク化を図った従来技術として、軸受シール部の組成や形状を変更したものが開示されている(特許文献6)。
As a conventional technique for reducing the rotational torque in a grease-lubricated bearing, for example, a structure in which the rotational torque of the bearing becomes low even at low temperatures due to the composition of grease is disclosed (Patent Document 3).
As a conventional technique for reducing the torque of the bearing by the shape of the cage, for example, the cage is designed such that the minimum necessary lubricant is taken in between the inner peripheral surface of the cage pocket and the rolling surface of the ball. The thing which aimed at reduction of a sound and rotational torque is disclosed (patent document 4).
As a conventional technique for reducing the torque by other cages, for example, there is disclosed one in which a groove having a buffering action is provided between cage pockets when a rolling element collides with a pocket (Patent Document 5).
As a conventional technique for reducing the torque of other bearings, there is disclosed a technique in which the composition and shape of the bearing seal portion are changed (Patent Document 6).
特開2003-74545号公報JP 2003-74545 A 米国特許第6634792号明細書US Pat. No. 6,647,792 特許第3875108号公報Japanese Patent No. 3875108 特開平10-238543号公報Japanese Patent Laid-Open No. 10-238543 特開2009-19766号公報JP 2009-19766 A 特許第3772688号公報Japanese Patent No. 3772688
 特許文献1、2のいずれの発明も軸受の軌道部の設計パラメータの一部にのみ着目した発明であり、あらゆるパラメータが考慮されているとは言い難い。また、通常、低トルクとなるように軸受設計を行うと基本動定格荷重が低下し、したがって、短寿命となる。前記「基本動定格荷重」とは、内輪を回転させ外輪を静止させた条件で、一群の同じ軸受を個々に運転したとき、基本定格寿命が100万回転になるような、方向と大きさとが変動しない荷重をいう。深溝玉軸受等のラジアル軸受では、方向と大きさとが一定のラジアル荷重をとる。 The inventions of Patent Documents 1 and 2 are inventions that focus only on a part of the design parameters of the bearing raceway, and it is difficult to say that all parameters are considered. In general, when the bearing design is performed so that the torque is low, the basic dynamic load rating is reduced, and therefore the life is shortened. The “basic dynamic load rating” means that the direction and size are such that the basic rated life is 1 million revolutions when the same bearings are individually operated under the condition that the inner ring is rotated and the outer ring is stationary. A load that does not fluctuate. Radial bearings such as deep groove ball bearings take a radial load whose direction and size are constant.
 また、特許文献3、6の発明による場合、軸受の用途によっては、グリースやシール等を変更できないものがあるため、グリースやシール等によるトルク低減方法では、その使用が限定される。
 特許文献4の発明による場合、保持器ポケットの内周面と玉の転動面との間に必要最小限の潤滑剤を取り込む保持器では、軸受空間内に多くのグリースを封入した場合、トルク低減の効果は得られない。その他前記保持器では、転動体を保持するための面積が低下するため、保持器の振れ回りやガタが生じる可能性がある。
 特許文献5の発明による場合、緩衝作用がある溝を保持器ポケット間に設けた保持器では、起動時やミスアライメント発生時のトルク低減は期待できるが、回転が安定している状態では、従来の保持器と変わらないトルクとなる。
In addition, according to the inventions of Patent Documents 3 and 6, depending on the application of the bearing, there is a grease or seal that cannot be changed. Therefore, the use of the torque reduction method using grease or the seal is limited.
In the case of the invention of Patent Document 4, in a cage that takes in a minimum amount of lubricant between the inner peripheral surface of the cage pocket and the rolling surface of the ball, when a large amount of grease is sealed in the bearing space, the torque The effect of reduction cannot be obtained. In addition, since the area for holding the rolling elements is reduced in the cage, there is a possibility that the cage will swing and play.
According to the invention of Patent Document 5, in a cage in which a groove having a buffering action is provided between the cage pockets, torque reduction at the time of start-up or misalignment can be expected, but in a state where rotation is stable, The torque is the same as that of the cage.
 この発明の第1の目的は、低トルクを実現すると共に、十分な基本動定格荷重を確保することが可能な深溝玉軸受およびその設計方法を提供することである。 A first object of the present invention is to provide a deep groove ball bearing capable of realizing a low torque and ensuring a sufficient basic dynamic load rating and a design method thereof.
 この発明の第2の目的は、グリース潤滑で用いられる深溝玉軸受において、軸受の用途に限定されず、転がり疲労寿命とグリース寿命を犠牲にすることなく、軸受運転時の低トルク化を図ることができる深溝玉軸受を提供することである。 A second object of the present invention is to reduce the torque during bearing operation without sacrificing rolling fatigue life and grease life in deep groove ball bearings used in grease lubrication, without being limited to bearing applications. It is to provide a deep groove ball bearing capable of
 この発明の深溝玉軸受は、内輪と外輪の間に玉を介在させた深溝玉軸受において、前記内輪および外輪の溝肩高さが各々玉の直径の0.2倍であり、内外輪の軌道溝、溝肩高さ、玉の直径、玉数、および玉のピッチ円直径を次式の範囲に設定している。
Figure JPOXMLDOC01-appb-M000003
 この深溝玉軸受は、潤滑油、グリース、固体潤滑剤によって潤滑されるものであっても良い。内外輪間に介在させた複数の玉を保持する保持器を備えたものであっても良い。
The deep groove ball bearing of the present invention is a deep groove ball bearing in which a ball is interposed between an inner ring and an outer ring, and the groove shoulder heights of the inner ring and the outer ring are each 0.2 times the diameter of the ball, and the inner and outer ring raceways The groove, groove shoulder height, ball diameter, the number of balls, and the pitch circle diameter of the balls are set within the following range.
Figure JPOXMLDOC01-appb-M000003
The deep groove ball bearing may be lubricated with lubricating oil, grease, or solid lubricant. It may be provided with a cage that holds a plurality of balls interposed between the inner and outer rings.
 この構成によると、軸受をアキシアル平面に沿って切断して見た半径方向断面における、内輪の軌道溝と玉とのすきまをなす面積、および、前記半径方向断面における、外輪の軌道溝と玉とのすきまをなす面積を、設計パラメータとする。これら面積を設計パラメータとすれば、同面積が大きい程低トルクとなる。
 したがって、(Si+So)/dpDa Zが大のとき、低トルクとなる。この関数は、軸受の寸法や直径系列に依存し、このままでは扱いにくい。そこで、次のように各設計パラメータを無次元化する。前記直径系列とは、それぞれ標準の軸受内径に対して軸受外径を持っている軸受外径の段階的な系列をいう。
According to this configuration, the area formed by the clearance between the inner ring raceway groove and the ball in the radial cross section viewed by cutting the bearing along the axial plane, and the outer ring raceway groove and the ball in the radial cross section. The area forming the clearance is set as a design parameter. If these areas are used as design parameters, the larger the area, the lower the torque.
Therefore, when (Si + So) / d p D a Z is large, the torque is low. This function depends on the size and diameter series of the bearing and is difficult to handle as it is. Therefore, each design parameter is made dimensionless as follows. The diameter series means a stepwise series of bearing outer diameters each having a bearing outer diameter with respect to a standard bearing inner diameter.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 上記関数f がトルクを考慮したある値より大きく、かつ基本動定格荷重を考慮した適切な値より小さくなるように、内外輪の軌道溝、溝肩高さ、玉の直径、玉数、および玉のピッチ円直径を設計すれば、十分な基本動定格荷重を有しつつ低トルクの深溝玉軸受を実現できる。 The inner and outer ring raceway grooves, groove shoulder height, ball diameter, number of balls, and balls so that the function f is larger than a certain value considering torque and smaller than an appropriate value considering basic dynamic load rating. If the pitch circle diameter is designed, a deep groove ball bearing with a low torque can be realized while having a sufficient basic dynamic load rating.
 前記内輪および外輪の溝肩高さが各々玉の直径の0.2倍であり、かつa=1,b=1.1としている。この溝肩高さにすると、軸受に所定のアキシアル荷重が作用したときに、玉と軌道輪の接触楕円が軌道溝からはみ出さないようにでき、且つ、軸受を組み立てることが可能となる。内外輪の軌道溝曲率比が変化すれば、基本動定格荷重が変化する。ここでは、この規格の基となったルンドベルグ-パルムグレン(Lundberg- Palmgren)の理論(非特許文献1)により、基本動定格荷重を求める。同理論により求めた基本動定格荷重に対し0.9倍以上の基本動定格荷重を確保しようとすると、上記関数 f は「1.1」以下でなければならない。つまりa=1,b=1.1とし1< f <1.1を満足することによって、十分な基本動定格荷重を確保しつつ、低トルクの設計が可能となる。 The groove shoulder heights of the inner ring and the outer ring are each 0.2 times the diameter of the ball, and a = 1 and b = 1.1. With this groove shoulder height, when a predetermined axial load is applied to the bearing, the contact ellipse between the ball and the race can be prevented from protruding from the race groove, and the bearing can be assembled. If the raceway groove curvature ratio of the inner and outer rings changes, the basic dynamic load rating changes. Here, the basic dynamic load rating is determined based on the theory of Lundberg-Palmgren (Non-Patent Document 1), which is the basis of this standard. In order to secure a basic dynamic load rating of 0.9 times or more than the basic dynamic load rating obtained by the same theory, the function f must be “1.1” or less. That is, by setting a = 1 and b = 1.1 and satisfying 1 <f <1.1, it is possible to design a low torque while ensuring a sufficient basic dynamic load rating.
 この発明において、深溝玉軸受は前記玉が保持器に保持され、グリースによって潤滑される深溝玉軸受であって、
 0.8d<d<dとし、
 前記保持器は、環状体の一側面に一部が開放されて内部に玉を保持するポケットを、前記環状体の円周方向複数箇所に有する冠形状であり、前記環状体のうち円周方向に隣接するポケット間にグリースを溜めるグリース収容凹部を設け、このグリース収容凹部と前記ポケットとに連通し、前記玉に付着したグリースを、玉と保持器との相対動作により前記グリース収容凹部へ移動させる連通口を設けている。
In this invention, the deep groove ball bearing is a deep groove ball bearing in which the ball is held in a cage and lubricated by grease,
0.8d m <d P <d m
The retainer has a crown shape that is partially open on one side surface of the annular body and has pockets for holding balls therein in a plurality of circumferential directions of the annular body, and the circumferential direction of the annular body A grease containing recess for storing grease is provided between the pockets adjacent to each other. The grease containing recess and the pocket communicate with each other, and the grease adhering to the ball is moved to the grease containing recess by the relative movement of the ball and the cage. A communication port is provided.
 0.8d<d<dとすれば、1< f <1.1を満足する。よって、低トルクを実現すると共に、十分な基本動定格荷重を確保することが可能な深溝玉軸受を設計することができる。さらに、冠形状保持器にグリース収容凹部を設け、このグリース収容凹部と、玉を保持するポケットとに連通する連通口を設けたため、軸受運転時、玉に付着したグリースを連通口によりグリース収容凹部に移動させる。つまり玉がポケット内で回転すると、玉に付着したグリースの一部が連通口に到達し、さらに玉がポケット内で回転することで、前記グリースの一部が、例えば、連通口の縁による掻き取りや玉の圧力等により連通口を通してグリース収容凹部側に押圧されて移動する。前記グリースがグリース収容凹部に格納され保持器と共に回転するため、前述の撹拌抵抗やせん断抵抗を軽減することができる。グリースによる潤滑では、グリースの基油が潤滑に作用する。グリース収容凹部内に保持されたグリースから分離した基油は、連通口を通って玉へ供給されるため、潤滑に必要な基油を利用することができる。 If 0.8d m <d p <d m , satisfying 1 <f <1.1. Therefore, it is possible to design a deep groove ball bearing capable of realizing a low torque and ensuring a sufficient basic dynamic load rating. In addition, the crown-shaped cage is provided with a grease-receiving recess, and a communication port that communicates with the grease-receiving recess and the pocket that holds the ball is provided. Move to. That is, when the ball rotates in the pocket, a part of the grease attached to the ball reaches the communication port, and further, the ball rotates in the pocket, so that a part of the grease is scraped by the edge of the communication port, for example. It moves by being pressed toward the grease-receiving recess through the communication port due to the take-off or ball pressure. Since the grease is stored in the grease containing recess and rotates together with the cage, the above-described stirring resistance and shear resistance can be reduced. In lubrication with grease, the base oil of grease acts on lubrication. Since the base oil separated from the grease held in the grease containing recess is supplied to the ball through the communication port, the base oil necessary for lubrication can be used.
 グリースによって潤滑する場合、前記グリースは、基油と、増ちょう剤とからなるベースグリースに添加剤を配合してなるグリース組成物であって、前記添加剤は、植物由来のポリフェノール化合物およびその分解化合物から選ばれた少なくとも一つの化合物を含有し、この化合物の配合割合はベースグリース 100 重量部に対して 0.05重量部以上10 重量部以下であり、前記植物由来のポリフェノール化合物は、クルクミンまたはその誘導体、およびケルセチンまたはその誘導体のいずれか一方または両方であっても良い。この場合、水素脆性による特異な剥離の発生を抑制することができる。また、従来の酸化防止剤等を配合したグリース組成物よりも耐酸化劣化性を向上させることができ、高温高速下での軸受の長寿命化が図れる。 When lubricated with grease, the grease is a grease composition in which an additive is blended with a base grease comprising a base oil and a thickener, and the additive comprises a plant-derived polyphenol compound and its decomposition. Containing at least one compound selected from the compounds, and the blending ratio of this compound is from 0.05 parts by weight to 10 parts by weight with respect to 100 parts by weight of the base grease, and the plant-derived polyphenol compound is curcumin or a derivative thereof And / or quercetin or a derivative thereof. In this case, the occurrence of peculiar peeling due to hydrogen embrittlement can be suppressed. Further, the oxidation deterioration resistance can be improved as compared with a grease composition containing a conventional antioxidant or the like, and the life of the bearing can be extended under high temperature and high speed.
 前記連通口は、前記グリース収容凹部と前記ポケットとを連通させ、且つ環状体の内径側に開口する切欠きであっても良い。この場合、切欠きの縁でグリースを掻き取る効果を高め、グリース収容凹部へグリースを移動させ易くできる。また、保持器形状を複雑化することなく連通口を設けることができる。 The communication port may be a notch that allows the grease-receiving recess and the pocket to communicate with each other and that opens to the inner diameter side of the annular body. In this case, it is possible to enhance the effect of scraping off the grease at the edge of the notch, and to easily move the grease to the grease receiving recess. Further, the communication port can be provided without complicating the cage shape.
 前記環状体の軸心に垂直な平面であり前記ポケットの中心を通る前記平面に対する、前記連通口の中央部の角度を20度以上50度以下の範囲としても良い。保持器を射出成形で製作する場合、前記平面に対する連通口の中央部の角度が20度未満と小さいと金型から保持器を抜くことが困難となる。また、玉と内外輪との接触部つまり軌道面は、グリースの付着量が少ないので、前記角度が小さいとグリースをグリース収容凹部へ掻き入れる効果が小さい。前記角度を20度以上50度以下の範囲とすることで、製作容易となるうえ、グリースをグリース収容凹部へ掻き入れる効果を高めトルク低減を図れる。 The angle of the central portion of the communication port with respect to the plane that is perpendicular to the axis of the annular body and passes through the center of the pocket may be in the range of 20 degrees to 50 degrees. When the cage is manufactured by injection molding, it is difficult to remove the cage from the mold if the angle of the central portion of the communication port with respect to the plane is as small as less than 20 degrees. Further, the contact portion between the balls and the inner and outer rings, that is, the raceway surface, has a small amount of grease attached. Therefore, if the angle is small, the effect of scraping the grease into the grease receiving recess is small. By making the angle in the range of 20 degrees or more and 50 degrees or less, it becomes easy to manufacture and the effect of scraping the grease into the grease receiving recess can be enhanced and the torque can be reduced.
 前記連通口における、前記ポケットの保持器円周方向に沿った最大幅寸法を、前記ポケットの内径の10%以上40%以下の範囲としても良い。前記連通口の前記最大幅寸法が前記ポケットの内径の10%より小さいと、連通口を通してグリースを移動させることが困難となる。連通口の前記最大幅寸法が前記ポケットの内径の40%より大きいと、ポケットが玉を保持することが難しくなる。 The maximum width dimension along the circumferential direction of the cage of the pocket at the communication port may be in the range of 10% to 40% of the inner diameter of the pocket. If the maximum width dimension of the communication port is smaller than 10% of the inner diameter of the pocket, it becomes difficult to move the grease through the communication port. When the maximum width dimension of the communication port is larger than 40% of the inner diameter of the pocket, it becomes difficult for the pocket to hold the ball.
 前記環状体のうちグリース収容凹部が設けられた箇所を、同環状体の軸心を含む平面で切断して見た断面形状について、前記環状体の内壁部および円周方向に隣接するポケットを繋ぐ連結部が、前記グリース収容凹部を成し、前記内壁部が前記軸心に対し傾斜する傾斜面を有するもの、および、前記連結部が前記軸心に垂直な平面に対し傾斜する傾斜面を有するもののいずれか一方または両方を含むものとしても良い。 A cross-sectional shape of the annular body, where a portion where the grease containing recess is provided, is cut by a plane including the axial center of the annular body, and the inner wall portion of the annular body and a pocket adjacent in the circumferential direction are connected. The connecting portion forms the grease containing recess, the inner wall portion has an inclined surface inclined with respect to the axis, and the connecting portion has an inclined surface inclined with respect to a plane perpendicular to the axis. It is good also as what includes either or both of things.
 前記内壁部が前記軸心に対し傾斜する傾斜面を有する場合に、内壁部の肉厚が反ポケット側に向かうに従って薄肉となる傾斜面であると、軸受運転時、グリース収容凹部内に溜めたグリースを、回転による遠心力により前記傾斜面から軸受空間内に円滑に排出させることができる。逆に前記内壁部の肉厚が反ポケット側に向かうに従って厚肉となる傾斜面であると、軸受運転時、グリース収容凹部内に溜めたグリースを漏出させないように保持することができる。 When the inner wall portion has an inclined surface that is inclined with respect to the shaft center, the inner wall portion has an inclined surface that becomes thinner as it goes toward the anti-pocket side. The grease can be smoothly discharged from the inclined surface into the bearing space by centrifugal force due to rotation. On the contrary, if the inner wall portion has an inclined surface that becomes thicker toward the opposite pocket side, the grease accumulated in the grease receiving recess can be held so as not to leak out during the bearing operation.
 前記連結部が前記軸心に垂直な平面に対し傾斜する傾斜面を有する場合に、連結部の肉厚が内径側に向かうに従って薄肉となる傾斜面であると、保持器剛性を高め、高速回転させる場合に保持器の強度を確保し得る。さらに軸受運転時、グリース収容凹部内に溜めたグリースを回転による遠心力により前記傾斜面から内壁部を介して軸受空間内に円滑に排出させることができる。逆に前記連結部の肉厚が内径側に向かうに従って厚肉となる傾斜面であると、グリース収容凹部内に溜めたグリースを漏出させないように保持し得る。 When the connecting portion has an inclined surface that is inclined with respect to a plane perpendicular to the axis, if the connecting portion is an inclined surface that becomes thinner toward the inner diameter side, the rigidity of the cage is increased and high-speed rotation is achieved. In this case, the strength of the cage can be ensured. Further, during the bearing operation, the grease accumulated in the grease receiving recess can be smoothly discharged from the inclined surface into the bearing space through the inner wall portion by centrifugal force due to rotation. Conversely, if the connecting portion is an inclined surface that becomes thicker toward the inner diameter side, the grease accumulated in the grease-receiving recess can be held so as not to leak.
 前記グリース収容凹部内に仕切り板を設けても良い。この仕切り板によって、グリース収容凹部にグリースを保持し易くできる。
 前記環状体のうち、グリース収容凹部の反ポケット側の他側面を覆う覆い部を設けても良い。高速回転の場合、覆い部によりグリース収容凹部に保持されたグリースが漏出することを防止し得る。
A partition plate may be provided in the grease containing recess. With this partition plate, the grease can be easily held in the grease containing recess.
You may provide the cover part which covers the other side surface of the non-pocket side of a grease accommodating recessed part among the said annular bodies. In the case of high-speed rotation, it is possible to prevent the grease held in the grease-receiving recess by the cover portion from leaking out.
 前記ポケットの内面における環状体外径側のポケット開口縁に、凹み部を設けても良い。凹み部からポケット内に進入したグリースは、内輪側に移動し、玉配列ピッチ円付近で均される。このため、軸受内のグリースをより多くグリース収容凹部に引き込むことが可能となる。
 前記ポケットの内面の底部に、溝部を設けても良い。この場合、グリースから分離した基油の一部が溝部に進入するため、玉とポケット間の基油による粘性せん断抵抗を減らすことができる。それ故、より低トルク化に寄与し得る。
You may provide a recessed part in the pocket opening edge of the annular body outer diameter side in the inner surface of the said pocket. The grease that has entered the pocket from the recess moves to the inner ring side and is leveled around the ball arrangement pitch circle. For this reason, it becomes possible to draw more grease in the bearing into the grease receiving recess.
You may provide a groove part in the bottom part of the inner surface of the said pocket. In this case, since part of the base oil separated from the grease enters the groove portion, the viscous shear resistance due to the base oil between the balls and the pockets can be reduced. Therefore, it can contribute to lower torque.
 前記保持器は射出成形で製作されたものであり、前記連通口を環状体の軸心に平行、またはポケット側からグリース収容凹部側に向かうに従って広がるように設けても良い。この場合、射出成形金型から保持器を抜き易くすることができる。また、金型に高精度な加工が要求されるポケット側でなく、比較的加工の容易なグリース収容凹部側の金型に、連通口を形成する金型を適用することができる。したがって、金型の製作費の低減を図れる。 The retainer may be manufactured by injection molding, and the communication port may be provided so as to extend in parallel with the axis of the annular body or from the pocket side toward the grease containing recess. In this case, it is possible to easily remove the cage from the injection mold. In addition, a mold for forming a communication port can be applied to a mold on the side of a grease receiving recess that is relatively easy to process, not on the pocket side where high-precision processing is required for the mold. Therefore, the manufacturing cost of the mold can be reduced.
 前記グリース収容凹部に初期にグリースを封入したものであっても良い。前記「初期」とは、軸受組立時におけるグリース封入段階を意味する。グリースが極めて短時間でグリース収容凹部に移動することで、低トルクとなるが、例えば、軸受空間に封入するグリース封入量自体は変えずに、グリース収容凹部に初期にグリースを封入しておくことで、起動時のトルクを低減することができる。
 また、内外輪間の軸受空間を塞ぐ密封装置を外輪に設けても良い。
The grease containing recess may be initially filled with grease. The “initial stage” means a grease filling stage at the time of assembling the bearing. The grease moves to the grease-receiving recess in a very short time, resulting in low torque. For example, the grease should be initially sealed in the grease-receiving recess without changing the amount of grease itself sealed in the bearing space. Thus, the torque at the time of starting can be reduced.
Further, a sealing device that closes the bearing space between the inner and outer rings may be provided in the outer ring.
 この発明の深溝玉軸受の設計方法は、内輪と外輪の間に玉を介在させた深溝玉軸受の設計方法であって、次式のa,bにa<bの条件下で任意の値を与えて、次式を満たすように内外輪の軌道溝、溝肩高さ、玉の直径、玉数、および玉のピッチ円直径を設計している。
Figure JPOXMLDOC01-appb-M000005
The design method of the deep groove ball bearing of the present invention is a design method of a deep groove ball bearing in which a ball is interposed between an inner ring and an outer ring, and an arbitrary value is set to a and b in the following formulas under the condition of a <b. Given this, the raceway groove, groove shoulder height, ball diameter, number of balls, and pitch circle diameter of the balls are designed to satisfy the following formula.
Figure JPOXMLDOC01-appb-M000005
 この構成によると、十分な基本動定格荷重を有しつつ低トルクの深溝玉軸受を実現できる。 According to this configuration, a low torque deep groove ball bearing having a sufficient basic dynamic load rating can be realized.
 前記内輪および外輪の溝肩高さが各々玉の直径の0.2倍であり、かつa=1,b=1.1としても良い。この溝肩高さにすると、軸受に所定のアキシアル荷重が作用したときに、玉と軌道輪の接触楕円が軌道溝からはみ出さないようにでき、且つ、軸受を組み立てることが可能となる。 The groove shoulder height of the inner ring and the outer ring may be 0.2 times the diameter of the ball, and a = 1 and b = 1.1. With this groove shoulder height, when a predetermined axial load is applied to the bearing, the contact ellipse between the ball and the race can be prevented from protruding from the race groove, and the bearing can be assembled.
 前記設計は、関数 f のいずれの変数を変更して実現しても良く、二以上の変数を同時に変更しても良い。例えば、玉のピッチ円直径dのみを変更して低トルク化を実現しようとすると、0.8d<d<dとすれば、1< f <1.1を満足する。よって、低トルクを実現すると共に、十分な基本動定格荷重を確保することが可能な深溝玉軸受を設計することができる。
 前記半径方向断面は、内外輪の軌道溝に玉を接触させた部分をアキシアル平面に沿って切断して見た断面としたものである。この場合、深溝玉軸受のラジアル隙間の大小に拘わらず、半径方向断面を一義的に得ることができる。
The design may be realized by changing any variable of the function f, or two or more variables may be changed simultaneously. For example, by changing only the pitch circle diameter d p of the ball is to be realized a low torque, if 0.8d m <d p <d m , satisfying 1 <f <1.1. Therefore, it is possible to design a deep groove ball bearing capable of realizing a low torque and ensuring a sufficient basic dynamic load rating.
The radial cross section is a cross section obtained by cutting a portion where a ball is brought into contact with the raceway groove of the inner and outer rings along the axial plane. In this case, the radial cross section can be uniquely obtained regardless of the radial clearance of the deep groove ball bearing.
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。
この発明の第1実施形態に係る深溝玉軸受の断面図である。 玉径とトルクとの関係を表す図である。 玉数とトルクとの関係を表す図である。 玉のピッチ円直径とトルクとの関係を表す図である。 内輪溝曲率比とトルクとの関係を表す図である。 外輪溝曲率比とトルクとの関係を表す図である。 深溝玉軸受品番と関数 f との関係を表す図である。 この発明の第2実施形態に係る深溝玉軸受の断面図である。 同深溝玉軸受の拡大断面図である。 (A)は同深溝玉軸受の保持器をポケット側から見た斜視図、(B)は保持器を反ポケット側から見た斜視図である。 同保持器を、ピッチ円を含む円筒面で切断して展開した要部の断面図である。 同保持器の環状体のうちグリース収容凹部が設けられた箇所を、同環状体の軸心を含む平面で切断して見た断面図である。 同保持器を、ピッチ円を含む円筒面で切断して展開した要部の断面図であり、切欠きの位置を説明する断面図である。 同保持器を、ピッチ円を含む円筒面で切断して展開した要部の断面図であり、切欠きの大きさを説明する断面図である。 (A)は、同深溝玉軸受を運転後、保持器の反ポケット側から見た側面図、(B)は、同深溝玉軸受を運転後、保持器のポケット側から見た側面図である。 (A)は、比較例として従来の深溝玉軸受を運転後、保持器の反ポケット側から見た側面図、(B)は、同深溝玉軸受を運転後、保持器のポケット側から見た側面図である。 この発明の第3実施形態に係る深溝玉軸受の断面図である。 クルクミン添加品および無添加品のグリース封入量と、寿命との関係を示す図である。 (A)~(D)は、この発明の第4~7実施形態に係る保持器におけるグリース収容凹部の断面形状を示す断面図である。 この発明の第8実施形態に係る保持器の斜視図である。 この発明の第9実施形態に係る保持器の要部の断面図である。 この発明の第10実施形態に係る保持器の斜視図である。 この発明の第11実施形態に係る保持器の斜視図である。 この発明の第12実施形態に係る保持器のグリース収容凹部内に仕切り板を設けた要部の断面図である。 従来例の冠形保持器の斜視図である。 同冠形保持器の要部の断面図である。
The present invention will be more clearly understood from the following description of preferred embodiments with reference to the accompanying drawings. However, the embodiments and drawings are for illustration and description only and should not be used to define the scope of the present invention. The scope of the invention is defined by the appended claims. In the accompanying drawings, the same reference numerals in a plurality of drawings indicate the same or corresponding parts.
It is sectional drawing of the deep groove ball bearing which concerns on 1st Embodiment of this invention. It is a figure showing the relationship between a ball diameter and a torque. It is a figure showing the relationship between the number of balls and torque. It is a figure showing the relationship between the pitch circle diameter of a ball | bowl, and a torque. It is a figure showing the relationship between an inner ring groove curvature ratio and torque. It is a figure showing the relationship between an outer ring groove curvature ratio and torque. It is a figure showing the relationship between a deep groove ball bearing product number and the function f. It is sectional drawing of the deep groove ball bearing which concerns on 2nd Embodiment of this invention. It is an expanded sectional view of the same deep groove ball bearing. (A) is the perspective view which looked at the retainer of the deep groove ball bearing from the pocket side, (B) is the perspective view which looked at the retainer from the non-pocket side. It is sectional drawing of the principal part which cut | disconnected and extended | deployed the same holder | retainer by the cylindrical surface containing a pitch circle. It is sectional drawing seen by cut | disconnecting the location in which the grease accommodating recessed part was provided among the annular bodies of the holder | retainer by the plane containing the axial center of the annular body. It is sectional drawing of the principal part which cut | disconnected and extended | deployed the same holder | retainer by the cylindrical surface containing a pitch circle, and is sectional drawing explaining the position of a notch. It is sectional drawing of the principal part which cut | disconnected and extended | deployed the same holder | retainer by the cylindrical surface containing a pitch circle, and is sectional drawing explaining the magnitude | size of a notch. (A) is the side view seen from the non-pocket side of the cage after operating the same deep groove ball bearing, (B) is the side view seen from the pocket side of the cage after operating the same deep groove ball bearing. . (A) is a side view of the conventional deep groove ball bearing as a comparative example, viewed from the side opposite to the cage after operation, and (B) is viewed from the side of the cage after operation of the deep groove ball bearing. It is a side view. It is sectional drawing of the deep groove ball bearing which concerns on 3rd Embodiment of this invention. It is a figure which shows the relationship between the grease filling amount of a curcumin addition product and an additive-free product, and lifetime. (A) to (D) are cross-sectional views showing a cross-sectional shape of a grease receiving recess in a cage according to fourth to seventh embodiments of the present invention. It is a perspective view of the holder | retainer which concerns on 8th Embodiment of this invention. It is sectional drawing of the principal part of the holder | retainer which concerns on 9th Embodiment of this invention. It is a perspective view of the holder | retainer which concerns on 10th Embodiment of this invention. It is a perspective view of the holder | retainer based on 11th Embodiment of this invention. It is sectional drawing of the principal part which provided the partition plate in the grease accommodation recessed part of the holder | retainer based on 12th Embodiment of this invention. It is a perspective view of the conventional coronal cage. It is sectional drawing of the principal part of the crown-shaped cage.
 この発明の第1実施形態を図1ないし図7と共に説明する。この実施形態に係る深溝玉軸受は、例えば、自動車、電動機、家庭電機、計器類、内燃機関、建設機械、鉄道車両、運搬機械、農業機械、産業機械、ロボット等、各種機器の回転部を支承するために設けられる。この深溝玉軸受は、ラジアル荷重、両方向のアキシアル荷重およびその合成荷重を負荷可能である。 A first embodiment of the present invention will be described with reference to FIGS. The deep groove ball bearing according to this embodiment supports, for example, rotating parts of various devices such as automobiles, electric motors, household electric appliances, instruments, internal combustion engines, construction machinery, railway vehicles, transporting machinery, agricultural machinery, industrial machinery, and robots. To be provided. This deep groove ball bearing can be loaded with a radial load, an axial load in both directions, and a combined load thereof.
 図1に示すように、深溝玉軸受1は、内輪2と、外輪3と、複数の玉4と、保持器5とを有する。内外輪2,3の軌道溝2a,3a間に、複数の玉4を介在させ、保持器5はこれら玉4を保持する。この実施形態の深溝玉軸受1は、シール部材が設けられていない開放形のものが示されているが、必ずしもこの開放形のものに限定されるものではない。例えば、両側面または一側面に軸受空間を密封する非接触形または接触形のシール部材を設けてもよい。軸受内部には、潤滑油、グリース、固体潤滑剤等が設けられ、潤滑に寄与する。保持器5は、例えば、鉄系金属材料から成る板材、いわゆる鉄板をプレスにより打ち抜きおよび成形加工して製作された2枚の環状部材から成る。この保持器5の材料としては、特に鉄系金属材料だけに限定されるものではなく、銅系金属材料、アルミニウム系金属材料、あるいは樹脂材料等を使用することができる。上記保持器5に代えて、環状体の一側面部に一部が開放されて内部に玉4を保持するポケットを、前記環状体の円周方向複数箇所に有する冠形状の保持器を適用することも可能である。玉4としては例えば鋼球またはセラミックス球が適用される。 As shown in FIG. 1, the deep groove ball bearing 1 has an inner ring 2, an outer ring 3, a plurality of balls 4, and a cage 5. A plurality of balls 4 are interposed between the raceway grooves 2 a and 3 a of the inner and outer rings 2 and 3, and the cage 5 holds these balls 4. The deep groove ball bearing 1 of this embodiment is shown as an open type without a seal member, but is not necessarily limited to this open type. For example, a non-contact type or a contact type sealing member that seals the bearing space may be provided on both side surfaces or one side surface. Lubricating oil, grease, solid lubricant, etc. are provided inside the bearing and contribute to lubrication. The cage 5 is made of, for example, two annular members manufactured by punching and forming a plate material made of an iron-based metal material, that is, a so-called iron plate by a press. The material of the cage 5 is not particularly limited only to the iron-based metal material, and a copper-based metal material, an aluminum-based metal material, a resin material, or the like can be used. Instead of the cage 5, a crown-shaped cage having pockets that are partially opened on one side surface of the annular body and hold the balls 4 inside is provided at a plurality of locations in the circumferential direction of the annular body. It is also possible. For example, steel balls or ceramic balls are used as the balls 4.
 深溝玉軸受の設計方法について説明する。深溝玉軸受1の主要寸法つまり内径、外径、幅、および面取寸法は、国際標準化機構、略称ISOで標準化されている。日本工業規格のJIS B 1512に規定される深溝玉軸受の主要寸法もこのISOに準拠して定められている。深溝玉軸受1の軌道部の形状は、玉4の直径D、ピッチ円直径d、軌道溝2a,3aの直径d2a,d3a(溝径と称す)、溝肩高さH2a,H3a、玉数Zによって決定できる。内輪2における前記溝肩高さH2aとは、内輪2の軌道溝2aのうち最小径を成す軌道溝底から内輪外径までの径方向寸法をいう。外輪3における前記溝肩高さH3aとは、外輪3の軌道溝3aのうち最大径を成す軌道溝底から外輪内径までの径方向寸法をいう。 A design method of the deep groove ball bearing will be described. The main dimensions, that is, the inner diameter, outer diameter, width, and chamfer dimension of the deep groove ball bearing 1 are standardized by the International Organization for Standardization, abbreviated ISO. The main dimensions of deep groove ball bearings defined in Japanese Industrial Standard JIS B 1512 are also defined in accordance with this ISO. The shape of the raceway portion of the deep groove ball bearing 1 is as follows: the diameter D a of the balls 4, the pitch circle diameter d p , the diameters d 2a and d 3a (referred to as groove diameters) of the race grooves 2a and 3a, the groove shoulder height H 2a , It can be determined by H 3a and the number of balls Z. The groove shoulder height H 2a in the inner ring 2 refers to the radial dimension from the bottom of the raceway groove that forms the smallest diameter of the raceway grooves 2a of the inner ring 2 to the outer diameter of the inner ring. The groove shoulder height H 3a in the outer ring 3 refers to the radial dimension from the bottom of the raceway groove forming the maximum diameter of the raceway groove 3a of the outer ring 3 to the inner diameter of the outer ring.
 ここで、深溝玉軸受1の玉4と軌道輪間の摩擦トルクが、潤滑油のトラクションと転がり粘性抵抗によって発生していると考える。内径30mm、外径62mm、幅16mmの軸受品番「6206」の深溝玉軸受1について検討すると、玉4と軌道輪の設計の変更によって、摩擦トルクは図2~図6のように変化する。この傾向は、玉4と軌道輪間に潤滑油が介在しない固体接触の場合でも変わらない。 Here, it is considered that the friction torque between the ball 4 of the deep groove ball bearing 1 and the bearing ring is generated by the traction of the lubricating oil and the rolling viscous resistance. Considering the deep groove ball bearing 1 having an inner diameter of 30 mm, an outer diameter of 62 mm, and a width of 16 mm and having a bearing part number “6206”, the friction torque changes as shown in FIGS. This tendency does not change even in the case of solid contact where no lubricating oil is interposed between the balls 4 and the races.
 すなわち、定性的には、玉4の直径D小、玉数Z小、ピッチ円直径d小、内輪2の軌道溝曲率比大、外輪3の軌道溝曲率比大とすれば、低トルクになることがわかる。前記内輪2の軌道溝曲率比は、内輪2の外周面に形成した断面円弧状の軌道溝2aの曲率半径を、玉4の直径Dで除した値、つまり内輪2の軌道溝曲率比=(軌道溝2aの曲率半径/玉4の直径D)で求められる値である。前記外輪3の軌道溝曲率比は、外輪3の内周面に形成した断面円弧状の軌道溝3aの曲率半径を、玉4の半径D/2で除した値である。溝肩高さH2a,H3aは、軸受に所定のアキシアル荷重が作用したときに、玉4と軌道輪の接触楕円が軌道溝2a,3aからはみ出さないように定める。ただし、溝肩高さH2a,H3aが過大であると、軸受を組み立てることができなくなる。溝肩高さH2a,H3aの玉直径Dに対する比は0.2程度である。軌道溝2a,3aの大きさについては、半径方向断面における軌道溝2a,3aと玉4とのすきまに着目する。図1に示すように、半径方向断面における、内外輪2,3の軌道溝2a,3aと玉4とのすきまをなす面積Si, Soを、設計パラメータとすれば、これら面積Si, Soが大きい程低トルクとなる。したがって、(Si+So)/dpDaZが大のとき、低トルクとなる。この関数は、軸受の寸法や直径系列に依存し、このままでは扱いにくい。そこで、次のように各設計パラメータを無次元化する。前記半径方向断面は、内外輪2,3の軌道溝2a,3aに玉4を接触させた部分をアキシアル平面に沿って切断して見た断面としている。 That is, Qualitatively, the diameter D a small ball 4, number of balls Z small, the pitch circle diameter d p small, raceway groove curvature ratio of the inner ring 2 large, if the raceway groove curvature ratio is high the outer ring 3, a low torque It turns out that it becomes. The raceway groove curvature ratio of the inner ring 2, the radius of curvature of the arcuate section of the track groove 2a formed on the outer peripheral surface of the inner ring 2, divided by the diameter D a of the ball 4, i.e. the inner ring 2 of the raceway groove curvature ratio = This is a value obtained by (the radius of curvature of the raceway groove 2a / the diameter D a of the ball 4). The raceway groove curvature ratio of the outer ring 3 is a value obtained by dividing the radius of curvature of the raceway groove 3 a having a circular arc shape formed on the inner peripheral surface of the outer ring 3 by the radius D a / 2 of the ball 4. The groove shoulder heights H 2a and H 3a are determined so that the contact ellipse between the ball 4 and the raceway does not protrude from the raceway grooves 2a and 3a when a predetermined axial load is applied to the bearing. However, if the groove shoulder heights H 2a and H 3a are excessive, the bearing cannot be assembled. Groove shoulder height H 2a, the ratio of the ball diameter D a of H 3a is about 0.2. As for the size of the raceway grooves 2a and 3a, attention is paid to the clearance between the raceway grooves 2a and 3a and the balls 4 in the radial cross section. As shown in FIG. 1, if the areas S i and S o forming the clearances between the raceway grooves 2a and 3a of the inner and outer rings 2 and 3 and the balls 4 in the radial cross section are set as design parameters, these areas Si and So The larger the value, the lower the torque. Therefore, when (S i + S o ) / d p D a Z is large, the torque is low. This function depends on the size and diameter series of the bearing and is difficult to handle as it is. Therefore, each design parameter is made dimensionless as follows. The radial cross section is a cross section obtained by cutting a portion where the balls 4 are brought into contact with the raceway grooves 2a and 3a of the inner and outer rings 2 and 3 along the axial plane.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 上記関数fがトルクを考慮したある値より大きく、かつ基本動定格荷重を考慮した適切な値より小さくなるように、内外輪2,3の軌道溝2a,3a、溝肩高さH2a,H3a、玉4の直径D、玉数Z、および玉4のピッチ円直径dを設計すれば、十分な基本動定格荷重を有しつつ低トルクの深溝玉軸受を実現できる。 Greater than a value in which the function f is considering torque, and to be less than the appropriate value in consideration of the basic dynamic load rating, raceway groove 2a of the inner and outer rings 2,3, 3a, groove shoulder height H 2a, H If the diameter D a of the balls 4, the number of balls Z, and the pitch circle diameter d p of the balls 4 are designed, a deep groove ball bearing having a low basic torque and a sufficient basic dynamic load rating can be realized.
Figure JPOXMLDOC01-appb-M000007
について、溝肩高さH2a,H3aの玉4の直径Dに対する比を「0.2」、軌道溝曲率比を内外輪2,3共に「1.04」、ピッチ円直径dを軸受の内外径の平均径つまり内輪内径に外輪外径を加えて2で除した値とする。上記関数fについて、さらに玉4の直径D、玉数Zを一般的な市販されている軸受の値とすると、上記関数fは図7のように求められる。軌道溝曲率比は、メーカーや品番によってまちまちであるが、一般化して議論するために、本実施形態では、日本工業規格のJIS B 1518に規定される基本動定格荷重の計算に用いられている値とした。この場合、ごく一般的な設計では概ね0.9< f<1が成り立つ。上記関数fは大きい程低トルクになるのであるが、同時に基本動定格荷重が減少し、短寿命となる。
Figure JPOXMLDOC01-appb-M000007
The ratio of the groove shoulder heights H 2a and H 3a to the diameter D a of the ball 4 is “0.2”, the raceway groove curvature ratio is “1.04” for both the inner and outer rings 2 and 3, and the pitch circle diameter d p is The average value of the inner and outer diameters of the bearing, that is, the inner ring inner diameter is added to the outer ring outer diameter and divided by 2. With respect to the function f, when the diameter D a and the number of balls Z of the balls 4 are values of a general commercially available bearing, the function f is obtained as shown in FIG. The raceway groove curvature ratio varies depending on the manufacturer and product number, but in order to generalize and discuss, in this embodiment, it is used for calculation of the basic dynamic load rating defined in JIS B 1518 of the Japanese Industrial Standard. Value. In this case, 0.9 <f <1 is generally satisfied in a very general design. The larger the function f is, the lower the torque becomes. At the same time, the basic dynamic load rating decreases and the service life is shortened.
 ところで、深溝玉軸受の基本動定格荷重の計算方法は、日本工業規格のJIS B 1518に規定されているが、これは、内外輪の軌道溝曲率比がともに「1.04」であることを前提として構成されている。しかし、内外輪の軌道溝曲率比が変化すれば、基本動定格荷重が変化するため、ここでは、この規格の基となったルンドベルグ-パルムグレン(Lundberg- Palmgren)の理論(非特許文献1)により、基本動定格荷重を求める。すなわち、玉4の直径Dが25.4mm以下の深溝玉軸受の場合、基本動定格荷重Crは次の式で求めることができる。
Figure JPOXMLDOC01-appb-M000008
By the way, the calculation method of the basic dynamic load rating of the deep groove ball bearing is stipulated in Japanese Industrial Standard JIS B 1518. This means that the raceway groove curvature ratio of the inner and outer rings is “1.04”. Configured as a premise. However, since the basic dynamic load rating changes when the raceway groove curvature ratio of the inner and outer rings changes, the Lundberg-Palmgren theory (Non-Patent Document 1), which is the basis of this standard, is used here. Determine the basic dynamic load rating. That is, when the diameter D a of the ball 4 is less deep groove ball bearing 25.4 mm, basic dynamic load rating C r can be calculated by the following expression.
Figure JPOXMLDOC01-appb-M000008
 上記の内外輪2,3の軌道溝曲率比mi,moの変化を考慮した設計条件で得られる基本動定格荷重に対し、0.9倍以上の基本定格荷重を確保しようとすると、関数 f は「1.1」以下でなければならない。すなわち、
 1< f <1.1
とすることによって、十分な基本動定格荷重を確保しつつ、低トルクの深溝玉軸受を設計することが可能となる。前記設計は、関数 f のいずれの変数を変更して実現しても良く、二以上の変数を同時に変更しても良い。例えば、玉のピッチ円直径dのみを変更して低トルク化を実現しようとすると、0.8d<d<dとすれば、1< f <1.1を満足する。よって、低トルクを実現すると共に、十分な基本動定格荷重を確保することが可能な深溝玉軸受を設計することができる。1< f <1.1を満足する深溝玉軸受とすると、内外輪2,3の軌道溝曲率比mi,moを種々変化させたときであっても、十分な基本動定格荷重を確保すると共に、低トルク化を図った深溝玉軸受を得ることが可能となる。
If we try to secure a basic load rating of 0.9 times or more than the basic dynamic load rating obtained under the design conditions considering the changes in the raceway groove curvature ratios mi and mo of the inner and outer rings 2 and 3, the function f becomes Must be "1.1" or less. That is,
1 <f <1.1
By doing so, it is possible to design a deep groove ball bearing with low torque while ensuring a sufficient basic dynamic load rating. The design may be realized by changing any variable of the function f, or two or more variables may be changed simultaneously. For example, by changing only the pitch circle diameter d p of the ball is to be realized a low torque, if 0.8d m <d p <d m , satisfying 1 <f <1.1. Therefore, it is possible to design a deep groove ball bearing capable of realizing a low torque and ensuring a sufficient basic dynamic load rating. 1 <When deep groove ball bearing which satisfies f <1.1, raceway groove curvature ratio of the inner and outer rings 2,3 m i, even when the m o while varying, ensure sufficient basic dynamic load rating In addition, it is possible to obtain a deep groove ball bearing with reduced torque.
 この発明の第2実施形態を図8ないし図16と共に説明する。図8に示すように、この実施形態に係る深溝玉軸受1は、前述第1実施形態のような開放型の深溝玉軸受でなく、密閉型の深溝玉軸受であり、第1実施形態と同一または相当する部分には同一の符号を付してその詳しい説明は省略する。第2実施形態の深溝玉軸受1Aが、第1実施形態と相違している点は、密閉型の深溝玉軸受であり、内外輪2,3間の軸受空間を塞ぐ密封装置6,6を有する点と、保持器5Aが環状体7からなる冠形状である点のみである。その他の構成および内部諸元は第1実施形態と同じである。ここで、「内部諸元が同じ」とは、軸受の内輪2および外輪3の溝肩高さが各々玉4の直径の0.2倍で、前記関数fが「1<f<1.1」を満足するように、軸受が設計されていることをいう。 A second embodiment of the present invention will be described with reference to FIGS. As shown in FIG. 8, the deep groove ball bearing 1 according to this embodiment is not an open-type deep groove ball bearing as in the first embodiment but a sealed deep groove ball bearing, and is the same as the first embodiment. Corresponding portions are denoted by the same reference numerals, and detailed description thereof is omitted. The deep groove ball bearing 1 </ b> A of the second embodiment is different from the first embodiment in a closed type deep groove ball bearing and has sealing devices 6 and 6 that close the bearing space between the inner and outer rings 2 and 3. Only the point and the point where the cage 5 </ b> A has a crown shape made of the annular body 7. Other configurations and internal specifications are the same as those in the first embodiment. Here, “the same internal dimensions” means that the groove shoulder heights of the inner ring 2 and the outer ring 3 of the bearing are each 0.2 times the diameter of the ball 4, and the function f is “1 <f <1.1. It means that the bearing is designed so as to satisfy.
 図9に示すように、外輪3の内周面に形成されたシール溝3bに密封装置6が嵌め込まれて固定されている。なお、深溝玉軸受において、いずれか一方または両方の密封装置6を省略することも可能である。図9では密封装置6として接触シールが示されているが、非接触シールであっても良い。密封装置6として金属板からなるシールドを設けても良い。前記軸受空間にグリースが封入される。前記軌道溝を、転走面または軌道面という場合がある。 As shown in FIG. 9, the sealing device 6 is fitted and fixed in a seal groove 3b formed on the inner peripheral surface of the outer ring 3. In the deep groove ball bearing, either one or both of the sealing devices 6 can be omitted. Although a contact seal is shown as the sealing device 6 in FIG. 9, a non-contact seal may be used. A shield made of a metal plate may be provided as the sealing device 6. Grease is sealed in the bearing space. The raceway groove may be referred to as a rolling surface or a raceway surface.
 保持器5Aについて説明する。図9(A),(B)に示すように、保持器5Aは、環状体7の一側面7aに一部が開放されて内部に玉4を保持するポケットPtを、前記環状体7の円周方向複数箇所に有する冠形状である。この保持器5Aは、例えば、合成樹脂材料を射出成形または機械加工して形成されている。合成樹脂材料として、例えば、ナイロン等のポリアミド系樹脂、ポリエーテルエーテルケトン,略称PEEK、ポリフェニレンサルサイド,略称PPS等を用いる。保持器5Aは各ポケットPtの内面を同一曲率から成る球面とし、各ポケットPtに玉4がはめ込まれることにより、軸方向、径方向、および円周方向への拘束がなされる転動体案内形式に構成されている。 The cage 5A will be described. As shown in FIGS. 9A and 9B, the retainer 5A has a pocket Pt that is partially opened on one side surface 7a of the annular body 7 and holds the ball 4 inside, and is formed in a circle of the annular body 7. It is a crown shape at a plurality of locations in the circumferential direction. The cage 5A is formed, for example, by injection molding or machining a synthetic resin material. As the synthetic resin material, for example, polyamide resin such as nylon, polyether ether ketone, abbreviation PEEK, polyphenylene salside, abbreviation PPS, or the like is used. The cage 5A is formed into a rolling element guide type in which the inner surface of each pocket Pt is a spherical surface having the same curvature, and the ball 4 is fitted in each pocket Pt, thereby restraining in the axial direction, the radial direction, and the circumferential direction. It is configured.
 環状体7のポケットPtの開放側の側面におけるポケットPtの円周方向の両端からそれぞれ軸方向に突出する一対の爪8,8を、各ポケットPtに対して設けている。これら一対の爪8,8は、円周方向に対向し、互いの間で前記ポケットPtの一部を構成する。換言すれば、一対の爪8,8の内面は、ポケット底面をなす球面と同一の曲率中心位置で且つ同一曲率半径の球面に沿って形成されている。 A pair of claws 8 and 8 projecting axially from both circumferential ends of the pocket Pt on the open side surface of the pocket Pt of the annular body 7 are provided for each pocket Pt. The pair of claws 8, 8 oppose each other in the circumferential direction, and constitute a part of the pocket Pt between each other. In other words, the inner surfaces of the pair of claws 8 and 8 are formed along a spherical surface having the same curvature center position and the same curvature radius as the spherical surface forming the pocket bottom surface.
 図11に示すように、環状体7のうち円周方向に隣接するポケットPt,Pt間に、グリースを溜めるグリースポケットとしてグリース収容凹部GPを設けている。図10(B)に示すように、環状体7のうちグリース収容凹部GPの反ポケット側が開放されている。図12に示すように、環状体7のうちグリース収容凹部GPが設けられた箇所を、同環状体7の軸心L1を含む平面で切断して見た断面形状について、環状体7の内壁部9および円周方向に隣接するポケットPt,Ptを繋ぐ連結部10が、グリース収容凹部GPを成す。図11に示すように、グリース収容凹部GPは、環状体7における内壁部9と、隣接するポケットPt,Ptの球面状の外壁部Paと、連結部10とで囲まれてグリースを収容可能に設けられる。 As shown in FIG. 11, a grease containing recess GP is provided between the pockets Pt and Pt adjacent to each other in the circumferential direction of the annular body 7 as a grease pocket for collecting grease. As shown in FIG. 10 (B), the non-pocket side of the grease containing recess GP in the annular body 7 is opened. As shown in FIG. 12, the inner wall portion of the annular body 7 with respect to the cross-sectional shape of the annular body 7 as viewed by cutting the portion where the grease accommodating recess GP is provided along the plane including the axis L <b> 1 of the annular body 7 9 and the connecting portion 10 connecting the circumferentially adjacent pockets Pt and Pt form a grease containing recess GP. As shown in FIG. 11, the grease containing recess GP is surrounded by the inner wall 9 of the annular body 7, the spherical outer wall Pa of the adjacent pockets Pt and Pt, and the connecting portion 10, so that grease can be received. Provided.
 環状体7において、グリース収容凹部GPとポケットPtとに連通する連通口Rhが設けられている。連通口Rhは、グリース収容凹部GP内に溜めたグリースの基油を、ポケットPt内の玉4(図9)に供給する機能を有する。また、軸受運転時、玉4に付着したグリースを、玉4と保持器5との相対動作により連通口Rhを通してグリース収容凹部GPに移動させるようになっている。 The annular body 7 is provided with a communication port Rh that communicates with the grease containing recess GP and the pocket Pt. The communication port Rh has a function of supplying the base oil of the grease stored in the grease receiving recess GP to the balls 4 (FIG. 9) in the pocket Pt. Further, during the bearing operation, the grease adhering to the ball 4 is moved to the grease containing recess GP through the communication port Rh by the relative movement of the ball 4 and the cage 5.
 図10(A),(B)に示すように、連通口Rhは、グリース収容凹部GPとポケットPtとに連通し、且つ環状体7の内径側に開口する切欠きである。ここで図13に示すように、環状体7の軸心L1に垂直な平面S1であってポケットPtの中心C1を通る前記平面S1を基準とすると、この平面S1に対する連通口Rhの中央部CPの角度α1を20度以上50度以下の範囲とすることが好ましい。ここで、連通口Rhの中央部CPとは、連通口RhにおけるポケットPtの円周方向の中央部CPをいい、前記角度α1は、換言すれば、この中央部CPとポケットPtの中心C1とを結ぶ直線L2が前記平面S1となす角をいう。保持器5Aを射出成形で製作する場合、前記平面S1に対する連通口Rhの中央部CPの角度α1が20度未満であると金型から保持器を抜くことが困難となる。また、玉4と内外輪2,3との接触部つまり軌道面2a,3aは、グリースの付着量が少ないため、前記角度α1が小さいとグリースをグリース収容凹部GPへ掻き入れる効果が小さい。前記角度α1を20度以上50度以下の範囲とすることで、製作容易となるうえ、グリースをグリース収容凹部GPへ掻き入れる効果を高めトルク低減を図れる。 As shown in FIGS. 10A and 10B, the communication port Rh is a notch that communicates with the grease receiving recess GP and the pocket Pt and opens to the inner diameter side of the annular body 7. Here, as shown in FIG. 13, when the plane S1 perpendicular to the axis L1 of the annular body 7 and passing through the center C1 of the pocket Pt is used as a reference, the central portion CP of the communication port Rh with respect to the plane S1. The angle α1 is preferably in the range of 20 degrees to 50 degrees. Here, the central portion CP of the communication port Rh refers to the central portion CP of the pocket Pt in the circumferential direction at the communication port Rh, and in other words, the angle α1 is the center portion CP and the center C1 of the pocket Pt. The angle formed by the straight line L2 connecting the plane S1 and the plane S1. When the cage 5A is manufactured by injection molding, it is difficult to remove the cage from the mold when the angle α1 of the central portion CP of the communication port Rh with respect to the plane S1 is less than 20 degrees. Further, the contact portions between the balls 4 and the inner and outer rings 2 and 3, that is, the raceway surfaces 2a and 3a, have a small amount of grease. Therefore, if the angle α1 is small, the effect of scraping the grease into the grease containing recess GP is small. By making the angle α1 in the range of 20 degrees or more and 50 degrees or less, it becomes easy to manufacture and the effect of scraping the grease into the grease containing recess GP can be enhanced and the torque can be reduced.
 図14に示すように、連通口Rhの大きさ、つまりポケットPtの円周方向に沿った最大幅寸法Hは、ポケットPtの内径d1の10%以上40%以下とすることが好ましい。連通口Rhの最大幅寸法HがポケットPtの内径d1の10%より小さいと、連通口Rhを通してグリースを移動させることが困難となる。連通口Rhの最大幅寸法HがポケットPtの内径d1の40%より大きいと、ポケットPtが玉4を保持することが難しくなる。 As shown in FIG. 14, the size of the communication port Rh, that is, the maximum width dimension H along the circumferential direction of the pocket Pt is preferably 10% or more and 40% or less of the inner diameter d1 of the pocket Pt. If the maximum width dimension H of the communication port Rh is smaller than 10% of the inner diameter d1 of the pocket Pt, it becomes difficult to move the grease through the communication port Rh. When the maximum width dimension H of the communication port Rh is larger than 40% of the inner diameter d1 of the pocket Pt, it is difficult for the pocket Pt to hold the ball 4.
 比較試験について説明する。この発明の第2実施形態に係る保持器を組み込んだ軸受と、従来の冠形保持器を組み込んだ軸受とを比較した。図15(A),(B)は第2実施形態に係る保持器を組み込んだ軸受、図16(A),(B)は従来の冠形保持器50を組み込んだ軸受であり、それぞれ下記の運転条件で運転させた後の写真を示したものである。
 なお、図25は従来例の冠形保持器50の斜視図であり、図26は同冠形保持器50の要部の断面図である。運転条件は、深溝玉軸受の軸受型番「6206」、回転速度1800min-1、運転時間約30secである。
A comparative test will be described. A bearing incorporating the cage according to the second embodiment of the present invention was compared with a bearing incorporating a conventional crown cage. FIGS. 15A and 15B are bearings incorporating the cage according to the second embodiment, and FIGS. 16A and 16B are bearings incorporating a conventional crown cage 50, respectively. The photograph after driving | running on driving | running conditions is shown.
FIG. 25 is a perspective view of a conventional crown-shaped cage 50, and FIG. 26 is a cross-sectional view of the main part of the crown-shaped cage 50. The operating conditions are a deep groove ball bearing bearing model number “6206”, a rotational speed of 1800 min −1 , and an operating time of about 30 sec.
 比較試験によると、第2実施形態の保持器5Aでは、軸受に対するグリース封入位置にかかわらず、グリースが連通口Rhを通ってグリース収容凹部GPに入り、従来の保持器50と比較してポケットPt側のグリースが少ない。グリースは極めて短時間で前記グリース収容凹部GPに移動して低トルクとなる。グリース収容凹部GPに初期にグリースを封入しておけば、起動時のトルクを低減することができる。 According to the comparative test, in the cage 5A of the second embodiment, the grease enters the grease accommodating recess GP through the communication port Rh regardless of the grease filling position with respect to the bearing, and compared with the conventional cage 50, the pocket Pt. Less grease on the side. The grease moves to the grease containing recess GP in a very short time and becomes low torque. If grease is initially sealed in the grease containing recess GP, the torque at the time of starting can be reduced.
 以上説明した第2実施形態によると、第1実施形態と同様の効果を奏するうえに、図11の保持器5Aにグリース収容凹部GPを設け、このグリース収容凹部GPと、玉4(図9)を保持するポケットPtとを連通する連通口Rhを設けたので、軸受運転時、玉4に付着したグリースを連通口Rhによりグリース収容凹部GPに移動させる。つまり玉4がポケットPt内で回転すると、玉4に付着したグリースの一部が連通口Rhに到達し、さらに玉4がポケットPt内で回転(つまり相対動作)することで、前記グリースの一部が連通口Rhで掻き取られると共に玉4の圧力により連通口Rhを通してグリース収容凹部GP側に押圧されて移動する。前記グリースがグリース収容凹部GPに格納され保持器5Aと共に回転するため、前述の攪拌抵抗やせん断抵抗を軽減することができる。 According to the second embodiment described above, the same effects as those of the first embodiment can be obtained. In addition, the cage 5A of FIG. 11 is provided with the grease accommodating recess GP, and the grease accommodating recess GP and the ball 4 (FIG. 9). Since the communication port Rh that communicates with the pocket Pt that holds the grease is provided, the grease adhering to the ball 4 is moved to the grease containing recess GP through the communication port Rh during the bearing operation. That is, when the ball 4 rotates in the pocket Pt, a part of the grease adhering to the ball 4 reaches the communication port Rh, and further, the ball 4 rotates (that is, relative movement) in the pocket Pt. The part is scraped off by the communication port Rh and is moved by being pressed toward the grease containing recess GP through the communication port Rh by the pressure of the balls 4. Since the grease is stored in the grease containing recess GP and rotates together with the cage 5A, the above-described stirring resistance and shear resistance can be reduced.
 グリースによる潤滑では、グリースの基油が潤滑に作用する。グリース収容凹部GP内に保持されたグリースから分離した基油は、連通口Rhを通って玉4へ供給されるので、潤滑に必要な基油を利用することができる。このように、軸受の用途に限定されず、転がり疲労寿命とグリース寿命を犠牲にすることなく、軸受運転時の低トルク化を図ることができるうえ、グリース収容凹部GP内に保持されたグリースから分離した基油を潤滑に利用することができる。 In grease lubrication, the base oil of grease acts on lubrication. Since the base oil separated from the grease held in the grease containing recess GP is supplied to the ball 4 through the communication port Rh, the base oil necessary for lubrication can be used. As described above, the present invention is not limited to the use of the bearing, and it is possible to reduce the torque during the operation of the bearing without sacrificing the rolling fatigue life and the grease life, and from the grease held in the grease containing recess GP. The separated base oil can be used for lubrication.
 連通口Rhを孔ではなく切欠きとしたので、この切欠きの縁(エッジ部)でグリースを掻き取る効果を高め、グリース収容凹部GPへ掻き入れる効果を高めることができる。この場合、この保持器5Aを射出成形で製作する際の金型構造を簡単化することができる。したがって、保持器5Aの製作コストの低減を図れる。量産性に優れる射出成形により保持器5Aを製作する場合、合成樹脂材料としてナイロン等のポリアミド系樹脂を用いることで、加工・組立が容易で低コスト化を図ることができる。保持器5Aの合成樹脂材料としてポリエーテルエーテルケトン,略称PEEKを用いることで、高強度、耐熱性、耐摩耗性、耐加水分解性に優れたものとできる。保持器5Aの合成樹脂材料としてポリフェニレンサルサイド,略称PPSを用いることで、高温性、耐薬品性に優れ、難燃性、寸法安定性が高い保持器5Aとすることができる。 Since the communication port Rh is not a hole but a notch, the effect of scraping off the grease at the edge (edge part) of this notch can be enhanced, and the effect of scraping into the grease containing recess GP can be enhanced. In this case, the mold structure when the cage 5A is manufactured by injection molding can be simplified. Therefore, the manufacturing cost of the cage 5A can be reduced. When the cage 5A is manufactured by injection molding that is excellent in mass productivity, it is easy to process and assemble and reduce costs by using a polyamide-based resin such as nylon as the synthetic resin material. By using polyether ether ketone, abbreviated as PEEK, as the synthetic resin material of the cage 5A, it can be made excellent in high strength, heat resistance, wear resistance, and hydrolysis resistance. By using polyphenylene salside, abbreviated as PPS, as the synthetic resin material for the cage 5A, it is possible to obtain a cage 5A that is excellent in high temperature property, chemical resistance, flame retardancy, and dimensional stability.
 近年工業製品に対して強く要求される低環境負荷の観点から、保持器材料として植物由来の樹脂材料を用いても良い。すなわちCO収支がゼロとなる(カーボンニュートラル)バイオプラスチックの利用であり、この範疇には例えば、サトウキビやとうもろこしといった糖質類から合成されるポリ乳酸やポリブチレンサクシネート、またはひまし油等から合成されるポリアミド等が含まれる。これら合成樹脂材料、植物由来の樹脂材料を保持器5Aに適用するには、ガラス繊維やカーボン繊維で強度を増すことが一般に必要となる。 From the viewpoint of low environmental load that is strongly demanded for industrial products in recent years, a plant-derived resin material may be used as the cage material. This means the use of bioplastics with zero CO 2 balance (carbon neutral). This category includes, for example, polylactic acid, polybutylene succinate synthesized from sugars such as sugar cane and corn, or castor oil. Such as polyamide. In order to apply these synthetic resin materials and plant-derived resin materials to the cage 5A, it is generally necessary to increase the strength with glass fibers or carbon fibers.
 この発明の第3実施形態について説明する。以下の説明においては、各形態で先行する形態で説明している事項に対応している部分には同一の符号を付し、重複する説明を略する。構成の一部のみを説明している場合、構成の他の部分は、先行して説明している形態と同様とする。実施の各形態で具体的に説明している部分の組合せばかりではなく、特に組合せに支障が生じなければ、実施の形態同士を部分的に組合せることも可能である。 A third embodiment of the present invention will be described. In the following description, the same reference numerals are given to portions corresponding to the matters described in the preceding forms in each embodiment, and overlapping descriptions are omitted. When only a part of the configuration is described, the other parts of the configuration are the same as those described in the preceding section. Not only the combination of the parts specifically described in each embodiment, but also the embodiments can be partially combined as long as the combination does not hinder.
 図17の深溝玉軸受1Bは、第2実施形態と同様のグリース収容凹部GP、連通口Rhを設けた保持器5Bが組み込まれ、さらに内外輪2,3間の軸受空間に以下のグリースが封入されている。前記グリースは、基油と、増ちょう剤とからなるベースグリースに添加剤を配合してなるグリース組成物であって、前記添加剤は、植物由来のポリフェノール化合物およびその分解化合物から選ばれた少なくとも一つの化合物を含有し、この化合物の配合割合はベースグリース100重量部に対して0.05重量部以上10重量部以下である。 The deep groove ball bearing 1B of FIG. 17 incorporates the same grease containing recess GP and the cage 5B provided with the communication port Rh as in the second embodiment, and the following grease is sealed in the bearing space between the inner and outer rings 2 and 3 Has been. The grease is a grease composition in which an additive is blended with a base grease comprising a base oil and a thickener, and the additive is at least selected from a plant-derived polyphenol compound and its decomposition compound One compound is contained, and the compounding ratio of this compound is 0.05 to 10 parts by weight with respect to 100 parts by weight of the base grease.
 本件出願人は、深溝玉軸受について、(1)植物由来のポリフェノール化合物、および(2)植物由来のポリフェノール化合物の分解化合物、から選ばれた少なくとも一つの化合物を含有するグリース組成物を封入し、急加減速試験および高温耐久性試験を行なったところ軸受寿命を延長できることがわかった。これは、上記化合物が、(A)極性基の作用により軸受転走面の金属表面に容易に付着し、摩擦摩耗面または摩耗により露出した金属新生面において該物質が反応し、酸化被膜を軸受転走面に形成することで、グリース組成物の分解による水素の発生が抑制され、軸受転走面における水素脆性に起因する特異な剥離を防止できること、(B)上記化合物がグリース組成物の酸化防止剤として働き酸化劣化が抑制できること、によるためであると考えられる。本発明はこれらの知見に基づくものである。 The present applicant encloses a grease composition containing at least one compound selected from (1) plant-derived polyphenol compounds and (2) plant-derived polyphenol compound decomposition compounds for deep groove ball bearings, A quick acceleration / deceleration test and a high temperature durability test were conducted, and it was found that the bearing life could be extended. This is because the compound is easily attached to the metal surface of the bearing rolling surface by the action of the polar group (A), and the substance reacts on the frictional wear surface or the newly formed metal surface exposed by wear, causing the oxide film to roll on the bearing. By forming on the running surface, generation of hydrogen due to decomposition of the grease composition can be suppressed, and unique peeling due to hydrogen embrittlement on the bearing rolling surface can be prevented. (B) The above compound prevents oxidation of the grease composition. This is considered to be because it acts as an agent and can suppress oxidative deterioration. The present invention is based on these findings.
 この第3実施形態において使用できるポリフェノール化合物は、芳香族炭化水素環の水素原子を水酸基(ヒドロキシ基)で置換した、1分子内に複数の水酸基を有する芳香族ヒドロキシ化合物であり、植物由来のものである。また、上記植物由来のポリフェノール化合物の分解化合物は、該ポリフェノール化合物の加水分解などで生成する芳香族または脂環族ヒドロキシ化合物などである。ポリフェノール化合物と同様の作用効果を得るため、該分解化合物においても、1分子内に複数の水酸基を有することが好ましい。 The polyphenol compound that can be used in the third embodiment is an aromatic hydroxy compound having a plurality of hydroxyl groups in one molecule, in which a hydrogen atom of an aromatic hydrocarbon ring is substituted with a hydroxyl group (hydroxy group), and is derived from a plant. It is. Moreover, the degradation compound of the plant-derived polyphenol compound is an aromatic or alicyclic hydroxy compound produced by hydrolysis of the polyphenol compound. In order to obtain the same effect as that of the polyphenol compound, the decomposition compound also preferably has a plurality of hydroxyl groups in one molecule.
 本実施形態において使用できる植物由来のポリフェノール化合物またはその分解化合物としては、例えば、タンニン、没食子酸、エラグ酸、クロロゲン酸、コーヒー酸、キナ酸、クルクミン、ケルセチン、ピロガロール、テアフラビン、アントシアニン、ルチン、リグナン、カテキン等が挙げられる。また、植物由来のセサミン、イソフラボン、クマリンなどから得られるポリフェノール化合物も使用できる。以上のようなポリフェノール化合物またはその分解化合物は、単独で用いても2種類以上を組み合わせて用いてもよい。 Examples of plant-derived polyphenol compounds or degradation compounds that can be used in the present embodiment include tannin, gallic acid, ellagic acid, chlorogenic acid, caffeic acid, quinic acid, curcumin, quercetin, pyrogallol, theaflavin, anthocyanin, rutin, lignan. And catechins. In addition, polyphenol compounds obtained from plant-derived sesamin, isoflavones, coumarins and the like can also be used. The above polyphenol compounds or their decomposition compounds may be used alone or in combination of two or more.
 これらの中で、より長期間、酸化劣化を抑制できることから、タンニン、没食子酸またはその誘導体、エラグ酸またはその誘導体、クロロゲン酸またはその誘導体、コーヒー酸またはその誘導体、キナ酸またはその誘導体、クルクミンまたはその誘導体、ケルセチンまたはその誘導体を用いることが好ましい。本実施形態に用いるタンニンは、分子内に多くのフェノール性水酸基を含み、酸性有機物質として分子量が比較的大きなポリフェノール化合物である。該タンニンは、カシの皮、フシ(没食子)、柿などに存在する収斂性の植物成分であり、化学構造の相違により、加水分解性タンニンと縮合型タンニンとに大別される。 Among these, tannin, gallic acid or derivatives thereof, ellagic acid or derivatives thereof, chlorogenic acid or derivatives thereof, caffeic acid or derivatives thereof, quinic acid or derivatives thereof, curcumin or It is preferable to use a derivative thereof, quercetin or a derivative thereof. The tannin used in this embodiment is a polyphenol compound that contains many phenolic hydroxyl groups in the molecule and has a relatively large molecular weight as an acidic organic substance. The tannin is an astringent plant component present in oak peel, fushi (garlic), cocoon and the like, and is roughly classified into hydrolyzable tannin and condensed tannin depending on the chemical structure.
 加水分解性タンニンは、酸、アルカリ、酵素で多価フェノール酸と、多価アルコールとに加水分解される。得られる多価フェノール酸としては、主に没食子酸およびその二量体(遊離状態では脱水環化して4環性のエラグ酸となる)の二つのタイプがある。また、得られる多価アルコールとして、ピロガロールなどがある。縮合型タンニンは複数分子のカテキンが炭素-炭素結合で縮合したものである。本発明においては、没食子酸、エラグ酸、ピロガロールなどの分解物を得られる加水分解性タンニンを用いることが好ましい。 Hydrolyzable tannin is hydrolyzed to polyhydric phenolic acid and polyhydric alcohol by acid, alkali and enzyme. As the polyhydric phenol obtained, there are mainly two types of gallic acid and its dimer (in the free state, dehydration cyclization becomes tetracyclic ellagic acid). Examples of the polyhydric alcohol obtained include pyrogallol. Condensed tannin is a product in which multiple molecules of catechin are condensed at a carbon-carbon bond. In the present invention, it is preferable to use a hydrolyzable tannin from which a decomposition product such as gallic acid, ellagic acid, pyrogallol and the like can be obtained.
 本実施形態に用いる没食子酸およびエラグ酸は、上記のように加水分解性タンニンを加水分解して得られる多価フェノール酸(ポリフェノール化合物)である。没食子酸は下記式(1)に、エラグ酸は下記式(2)に、それぞれ示す構造を有する。
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Gallic acid and ellagic acid used in this embodiment are polyhydric phenol acids (polyphenol compounds) obtained by hydrolyzing hydrolyzable tannin as described above. Gallic acid has a structure shown in the following formula (1), and ellagic acid has a structure shown in the following formula (2).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
 本実施形態に用いる没食子酸の誘導体としては、没食子酸メチル、没食子酸エチル、没食子酸プロピル、没食子酸ブチル、没食子酸ペンチル、没食子酸ヘキシル、没食子酸ヘプチル、没食子酸オクチル等の没食子酸エステルや没食子酸ビスマス等の没食子酸塩が挙げられる。これらの中で潤滑油への溶解性に優れることから、没食子酸エチルを用いることがさらに好ましい。また、エラグ酸についても、同様の誘導体を用いることができる。 Derivatives of gallic acid used in the present embodiment include gallic acid esters such as methyl gallate, ethyl gallate, propyl gallate, butyl gallate, pentyl gallate, hexyl gallate, heptyl gallate, and octyl gallate. Examples thereof include gallates such as bismuth acid. Of these, ethyl gallate is more preferred because of its excellent solubility in lubricating oil. Moreover, the same derivative can be used also about ellagic acid.
 本実施形態に用いるクロロゲン酸は、コーヒー豆などに含まれるポリフェノール化合物であり、下記式(3)に示す構造を有する。
Figure JPOXMLDOC01-appb-C000011
 本実施形態に用いるコーヒー酸は、クロロゲン酸の加水分解物であり、芳香族炭化水素環の水素原子を水酸基で置換した分子内に3個の水酸基を有する芳香族ヒドロキシ化合物であり、下記式(4)に示す構造を有する。
Figure JPOXMLDOC01-appb-C000012
Chlorogenic acid used in this embodiment is a polyphenol compound contained in coffee beans and the like, and has a structure represented by the following formula (3).
Figure JPOXMLDOC01-appb-C000011
The caffeic acid used in the present embodiment is a hydrolyzate of chlorogenic acid, and is an aromatic hydroxy compound having three hydroxyl groups in the molecule in which the hydrogen atom of the aromatic hydrocarbon ring is substituted with a hydroxyl group. It has the structure shown in 4).
Figure JPOXMLDOC01-appb-C000012
 本実施形態に用いるキナ酸は、クロロゲン酸の加水分解物であり、脂環族炭化水素環の水素原子を水酸基で置換した分子内に5個の水酸基を有する脂環族ヒドロキシ化合物であり、下記式(5)に示す構造を有する。
Figure JPOXMLDOC01-appb-C000013
The quinic acid used in the present embodiment is a hydrolyzate of chlorogenic acid, and is an alicyclic hydroxy compound having five hydroxyl groups in the molecule in which hydrogen atoms of the alicyclic hydrocarbon rings are substituted with hydroxyl groups. It has a structure shown in Formula (5).
Figure JPOXMLDOC01-appb-C000013
 本実施形態に用いるクルクミンは、ウコンなどに含まれるポリフェノール化合物であり、下記式(6)に示す構造を有する。
Figure JPOXMLDOC01-appb-C000014
 本実施形態に用いるケルセチンは、柑橘類などに含まれるポリフェノール化合物であり、下記式(7)に示す構造を有する。
Figure JPOXMLDOC01-appb-C000015
Curcumin used in this embodiment is a polyphenol compound contained in turmeric or the like and has a structure represented by the following formula (6).
Figure JPOXMLDOC01-appb-C000014
Quercetin used in the present embodiment is a polyphenol compound contained in citrus fruits and has a structure represented by the following formula (7).
Figure JPOXMLDOC01-appb-C000015
 植物由来のポリフェノール化合物およびその分解化合物から選ばれた少なくとも一つの化合物の配合割合は、ベースグリース 100 重量部に対して0.05~10重量部である。さらに、好ましくは0.1~5重量部である。上記化合物の配合割合が0.05重量部未満であると、水素脆性による転走面での剥離を効果的に防止できない。また、グリースの酸化劣化を効果的に防止できない。上記化合物の配合割合が10重量部をこえても剥離防止効果および潤滑剤の酸化劣化を防止する効果がそれ以上に向上しにくい。 The blending ratio of at least one compound selected from a plant-derived polyphenol compound and its decomposition compound is 0.05 to 10 parts by weight with respect to 100 parts by weight of the base grease. Further, it is preferably 0.1 to 5 parts by weight. When the compounding ratio of the compound is less than 0.05 parts by weight, peeling on the rolling surface due to hydrogen embrittlement cannot be effectively prevented. In addition, the grease cannot be effectively prevented from being deteriorated by oxidation. Even if the compounding ratio of the above compound exceeds 10 parts by weight, the anti-peeling effect and the effect of preventing the oxidative deterioration of the lubricant are hardly further improved.
 本実施形態に使用できる基油としては、スピンドル油、冷凍機油、タービン油、マシン油、ダイナモ油等の鉱油、高度精製鉱油、流動パラフィン油、ポリブテン油、フィッシャー・トロプシュ法により合成されたGTL油、PAO油、アルキルナフタレン油、脂環式化合物等の炭化水素系合成油、または、天然油脂、ポリオールエステル油、りん酸エステル油、ポリマーエステル油、芳香族エステル油、炭酸エステル油、ジエステル油、ポリグリコール油等のエステル油、シリコーン油、ポリフェニルエーテル油、アルキルジフェニルエーテル油、アルキルベンゼン油、フッ素化油等の非炭化水素系合成油等を使用できる。これらを単独で用いても2種類以上を組み合わせて用いてもよい。 Examples of base oils that can be used in this embodiment include mineral oils such as spindle oil, refrigerator oil, turbine oil, machine oil, dynamo oil, highly refined mineral oil, liquid paraffin oil, polybutene oil, and GTL oil synthesized by the Fischer-Tropsch method. , Hydrocarbon synthetic oils such as PAO oil, alkylnaphthalene oil, and alicyclic compounds, or natural oils, polyol ester oils, phosphate ester oils, polymer ester oils, aromatic ester oils, carbonate ester oils, diester oils, Non-hydrocarbon synthetic oils such as ester oils such as polyglycol oil, silicone oils, polyphenyl ether oils, alkyl diphenyl ether oils, alkyl benzene oils, and fluorinated oils can be used. These may be used alone or in combination of two or more.
 PAO油は、通常、α-オレフィンまたは異性化されたα-オレフィンのオリゴマーまたはポリマーの混合物である。α-オレフィンの具体例としては、1-オクテン、1-ノネン、1-デセン、1-ドデセン、1-トリデセン、1-テトラデセン、1-ペンタデセン、1-ヘキサデセン、1-ヘプタデセン、1-オクタデセン、1-ノナデセン、1-エイコセン、1-ドコセン、1-テトラコセン等を挙げることができ、通常はこれらの混合物が使用される。本実施形態のグリース組成物の基油としては、上記基油の中で耐熱性と潤滑性に優れることから、アルキルジフェニルエーテル油、エステル油およびPAO油から選ばれた少なくとも一つの油を用いることが好ましい。アルキルジフェニルエーテル油およびエステル油は、PAO油と併用することがより好ましい。 PAO oil is usually an α-olefin or a mixture of isomerized α-olefin oligomers or polymers. Specific examples of α-olefins include 1-octene, 1-nonene, 1-decene, 1-dodecene, 1-tridecene, 1-tetradecene, 1-pentadecene, 1-hexadecene, 1-heptadecene, 1-octadecene, -Nonadecene, 1-eicosene, 1-docosene, 1-tetracocene and the like can be mentioned, and usually a mixture thereof is used. As the base oil of the grease composition of the present embodiment, at least one oil selected from alkyl diphenyl ether oil, ester oil and PAO oil is used because of excellent heat resistance and lubricity among the above base oils. preferable. Alkyl diphenyl ether oil and ester oil are more preferably used in combination with PAO oil.
 また、上記基油の 40℃における動粘度が 10~100 mm/sec であることが好ましい。より好ましくは、10~70 mm/sec である。動粘度が、10 mm/sec 未満である場合には、短時間で基油が劣化し、生成した劣化物が基油全体の劣化を促進するため、軸受の耐久性を低下させ短寿命となる。また、100 mm/sec をこえると回転トルクの増加による軸受の温度上昇が大きくなり、特に高速回転下では温度上昇が大きく、上記ポリフェノール化合物等を配合してもグリースの酸化劣化を十分に防止できなくなる。 The kinematic viscosity at 40 ° C. of the base oil is preferably 10 to 100 mm 2 / sec. More preferably, it is 10 to 70 mm 2 / sec. When the kinematic viscosity is less than 10 mm 2 / sec, the base oil deteriorates in a short time, and the resulting deterioration promotes the deterioration of the entire base oil. Become. Also, if it exceeds 100 mm 2 / sec, the temperature rise of the bearing will increase due to the increase of rotational torque, especially at high speed rotation, and the temperature rise will be large. become unable.
 本実施形態のグリース組成物の増ちょう剤としては、ベントン、シリカゲル、フッ素化合物、リチウム石けん、リチウムコンプレックス石けん、力ルシウム石けん、カルシウムコンプレックス石けん、アルミニウム石けん、アルミニウムコンプレックス石けん等の石けん類、ジウレア化合物、ポリウレア化合物等のウレア系化合物が挙げられる。これらの中で、耐熱性、コスト等を考慮するとウレア系化合物が望ましい。ウレア系化合物は、イソシアネート化合物とアミン化合物とを反応させることにより得られる。反応性のある遊離基を残さないため、イソシアネート化合物のイソシアネート基とアミン化合物のアミノ基とは略当量となるように配合することが好ましい。 As a thickener of the grease composition of the present embodiment, benton, silica gel, fluorine compound, lithium soap, lithium complex soap, strong lucium soap, calcium complex soap, aluminum soap, aluminum complex soap and other soaps, diurea compounds, Examples include urea compounds such as polyurea compounds. Of these, urea compounds are desirable in view of heat resistance, cost, and the like. A urea compound is obtained by reacting an isocyanate compound and an amine compound. In order not to leave a reactive free radical, the isocyanate group of the isocyanate compound and the amino group of the amine compound are preferably blended so as to be approximately equivalent.
 ジウレア化合物は、例えば、ジイソシアネートとモノアミンとの反応で得られる。ジイソシアネートとしては、フェニレンジイソシアネート、トリレンジイソシアネート、ジフェニルジイソシアネート、ジフェニルメタンジイソシアネート、オクタデカンジイソシアネート、デカンジイソシアネート、ヘキサンジイソシアネー卜等が挙げられ、モノアミンとしては、オクチルアミン、ドデシルアミン、ヘキサデシルアミン、ステアリルアミン、オレイルアミン、アニリン、p-トルイジン、シクロヘキシルアミン等が挙げられる。ポリウレア化合物は、例えば、ジイソシアネートとモノアミン、ジアミンとの反応で得られる。ジイソシアネート、モノアミンとしては、ジウレア化合物の生成に用いられるものと同様のものが挙げられ、ジアミンとしては、エチレンジアミン、プロパンジアミン、ブタンジアミン、ヘキサンジアミン、オクタンジアミン、フェニレンジアミン、トリレンジアミン、キシレンジアミン、ジアミノジフェニルメタン等が挙げられる。 The diurea compound can be obtained, for example, by a reaction between diisocyanate and monoamine. Examples of the diisocyanate include phenylene diisocyanate, tolylene diisocyanate, diphenyl diisocyanate, diphenylmethane diisocyanate, octadecane diisocyanate, decane diisocyanate, hexane diisocyanate, etc., and monoamines include octylamine, dodecylamine, hexadecylamine, stearylamine, And oleylamine, aniline, p-toluidine, cyclohexylamine and the like. The polyurea compound can be obtained, for example, by reacting diisocyanate with a monoamine or diamine. Examples of the diisocyanate and monoamine include those similar to those used for the production of the diurea compound. Examples of the diamine include ethylenediamine, propanediamine, butanediamine, hexanediamine, octanediamine, phenylenediamine, tolylenediamine, xylenediamine, And diaminodiphenylmethane.
 基油にウレア系化合物等の増ちょう剤を配合して、上記ポリフェノール化合物等を配合するためのベースグリースが得られる。ウレア系化合物を増ちょう剤とするベースグリースは、基油中でイソシアネート化合物とアミン化合物とを反応させて作製する。ベースグリース100重量部中に占める増ちょう剤の配合割合は、1~40重量部、好ましくは3~25重量部配合される。増ちょう剤の含有量が1重量部未満では、増ちょう効果が少なくなり、グリース化が困難となり、40重量部をこえると得られたベースグリースが硬くなりすぎ、所期の効果が得られ難くなる。 A base grease for blending the above-mentioned polyphenol compound and the like can be obtained by blending a thickener such as a urea compound with the base oil. A base grease using a urea compound as a thickener is prepared by reacting an isocyanate compound and an amine compound in a base oil. The blending ratio of the thickener in 100 parts by weight of the base grease is 1 to 40 parts by weight, preferably 3 to 25 parts by weight. If the content of the thickener is less than 1 part by weight, the thickening effect will be reduced, making it difficult to make grease, and if it exceeds 40 parts by weight, the resulting base grease will be too hard and the desired effect will be difficult to obtain. Become.
 また、植物由来のポリフェノール化合物とともに、必要に応じて公知のグリース用添加剤を含有させることができる。この添加剤として、例えば、有機亜鉛化合物、アミン系化合物等の酸化防止剤、ベンゾトリアゾールなどの金属不活性剤、ポリメタクリレート、ポリスチレン等の粘度指数向上剤、二硫化モリブデン、グラファイト等の固体潤滑剤、金属スルホネート、ポリアルコールエステルなどの防錆剤、有機モリブデンなどの摩擦低減剤、エステル、アルコールなどの油性剤、りん系化合物などの摩耗防止剤等が挙げられる。これらを単独または2種類以上組み合せて添加できる。 In addition to the plant-derived polyphenol compound, a known grease additive may be included as necessary. Examples of the additives include antioxidants such as organic zinc compounds and amine compounds, metal deactivators such as benzotriazole, viscosity index improvers such as polymethacrylate and polystyrene, and solid lubricants such as molybdenum disulfide and graphite. Rust preventives such as metal sulfonates and polyalcohol esters, friction reducing agents such as organic molybdenum, oily agents such as esters and alcohols, and antiwear agents such as phosphorus compounds. These can be added alone or in combination of two or more.
 本実施形態のグリース組成物は、水素脆性による特異な剥離の発生の抑制、および、高温高速下におけるグリースの耐酸化劣化性の向上により、グリース封入軸受の寿命を向上させることができる。 The grease composition of this embodiment can improve the life of the grease-sealed bearing by suppressing the occurrence of peculiar delamination due to hydrogen embrittlement and improving the oxidation resistance of the grease under high temperature and high speed.
 以下に示す各実施例および各比較例において、基油として用いたPAO油は40℃における動粘度 30 mm/sec の新日鉄化学社製の商品名シンフルード601を、アルキルジフェニルエーテル油は 40℃における動粘度 97 mm/sec の松村石油社製の商品名モレスコハイルーブLB100を、エステル油は40℃における動粘度72 mm2/secの新日鉄化学社製の商品名ハトコールH2362(ポリオールエステル油)を、それぞれ用いた。また、各ポリフェノール化合物は、東京化成社製試薬を用いた。 In each of the following Examples and Comparative Examples, the PAO oil used as the base oil is trade name Sinfluid 601 manufactured by Nippon Steel Chemical Co., Ltd. having a kinematic viscosity of 30 mm 2 / sec at 40 ° C., and the alkyl diphenyl ether oil is at 40 ° C. The product name Moresco High Lube LB100 made by Matsumura Sekiyu Co., Ltd. with a kinematic viscosity of 97 mm 2 / sec, and the ester oil made by Nippon Steel Chemical Co., Ltd. having a kinematic viscosity of 72 mm 2 / sec at 40 ° C. Were used respectively. Moreover, the reagent made from Tokyo Chemical Industry was used for each polyphenol compound.
実施例1~実施例10
 表1に示した基油の半量に、4,4-ジフェニルメタンジイソシアナート(日本ポリウレタン工業社製商品名のミリオネートMT、以下、MDIと記す)を表1に示す割合で溶解し、残りの半量の基油にMDIの2倍当量となるモノアミンを溶解した。それぞれの配合割合および種類は表1のとおりである。MDIを溶解した溶液を撹拌しながらモノアミンを溶解した溶液を加えた後、100℃~120℃で 30 分間撹拌を続けて反応させて、ジウレア化合物を基油中に生成させた。これに、植物由来のポリフェノール化合物等および酸化防止剤を表1に示す配合割合で加えて、さらに 100℃~120℃で 10 分間撹拌した。その後冷却し、三本ロールで均質化し、グリース組成物を得た。得られたグリース組成物の急加減速試験を行なった。試験方法および試験条件を以下に示す。また、結果を表1に示す。
Examples 1 to 10
In half of the base oil shown in Table 1, 4,4-diphenylmethane diisocyanate (trade name Millionate MT, hereinafter referred to as MDI) manufactured by Nippon Polyurethane Industry Co., Ltd. was dissolved in the proportion shown in Table 1, and the remaining half Monoamine that is twice the equivalent of MDI was dissolved in this base oil. The respective blending ratios and types are shown in Table 1. A solution in which monoamine was dissolved was added while stirring the solution in which MDI was dissolved, and then the reaction was continued at 100 ° C. to 120 ° C. for 30 minutes to produce a diurea compound in the base oil. To this, a plant-derived polyphenol compound and the like and an antioxidant were added in the proportions shown in Table 1, and the mixture was further stirred at 100 to 120 ° C. for 10 minutes. Thereafter, the mixture was cooled and homogenized with three rolls to obtain a grease composition. The obtained grease composition was subjected to a rapid acceleration / deceleration test. Test methods and test conditions are shown below. The results are shown in Table 1.
<急加減速試験>
 電装補機の一例であるオルタネータを模擬し、回転軸を支持する内輪回転の深溝玉軸受に上記グリース組成物を封入し、急加減速試験を行なった。急加減速試験条件は、回転軸先端に取り付けたプーリに対する負荷荷重を 1960 N 、回転速度は 0 rpm~18000 rpm で運転条件を設定し、さらに、試験軸受内に 0.1 A の電流が流れる状態で試験を実施した。そして、軸受内に異常剥離が発生し、振動検出器の振動が設定値以上になって発電機が停止する時間(剥離発生寿命時間、h)を計測した。なお、試験は、500 時間で打ち切った。
<Rapid acceleration / deceleration test>
An alternator, which is an example of an electrical accessory, was simulated, and the grease composition was enclosed in an inner ring rotating deep groove ball bearing that supports a rotating shaft, and a rapid acceleration / deceleration test was performed. The rapid acceleration / deceleration test conditions are as follows: the load applied to the pulley attached to the tip of the rotating shaft is set to 1960 N, the operating speed is set to 0 rpm to 18000 rpm, and a current of 0.1 A flows through the test bearing. The test was conducted. Then, abnormal peeling occurred in the bearing, and the time when the vibration of the vibration detector exceeded the set value and the generator stopped (peeling life time, h) was measured. The test was terminated after 500 hours.
比較例1~比較例3
 実施例1に準じる方法で、表1に示す配合割合で、増ちょう剤、基油を選択してベースグリースを調製し、さらに添加剤を配合してグリース組成物を得た。得られたグリース組成物を実施例1と同様の試験を行なって評価した。結果を表1に示す。
Comparative Examples 1 to 3
A base grease was prepared by selecting a thickener and a base oil in the blending ratio shown in Table 1 by the method according to Example 1, and further blended with additives to obtain a grease composition. The obtained grease composition was evaluated by performing the same test as in Example 1. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 表1に示すように、実施例1~実施例10の急加減速試験は全て 400 時間以上を示した。これはグリース組成物の添加剤として配合された植物由来のポリフェノール化合物の作用により、軸受転走面で生じる白色組織変化を伴った特異的な剥離を防止できたことによると考えられる。これに対して、酸化防止剤(ヒンダードフェノール)のみを添加剤として配合した比較例1~3では、実施例1~実施例10と比較して、剥離発生寿命が大幅に短かい結果となった。 As shown in Table 1, all the rapid acceleration / deceleration tests of Examples 1 to 10 showed 400 hours or more. This is considered to be due to the fact that the specific peeling accompanied with the white structure change generated on the bearing rolling surface could be prevented by the action of the plant-derived polyphenol compound blended as an additive of the grease composition. In contrast, Comparative Examples 1 to 3 containing only an antioxidant (hindered phenol) as an additive resulted in a significantly shorter peel life compared to Examples 1 to 10. It was.
 実施例11~実施例17
 表2に示した基油の半量に、MDIを表2に示す割合で溶解し、残りの半量の基油にMDIの2倍当量となるモノアミンを溶解した。それぞれの配合割合および種類は表2のとおりである。MDIを溶解した溶液を撹拌しながらモノアミンを溶解した溶液を加えた後、100℃~120℃で 30 分間撹拌を続けて反応させて、ジウレア化合物を基油中に生成させた。これに、植物由来のポリフェノール化合物等を表2に示す配合割合で加えて、さらに100℃~120℃で 10 分間撹拌した。その後冷却し、三本ロールで均質化し、グリース組成物を得た。得られたグリース組成物の高温耐久性試験を行なった。試験方法および試験条件を以下に示す。また、結果を表2に併記する。
Examples 11 to 17
In half of the base oil shown in Table 2, MDI was dissolved in the proportion shown in Table 2, and in the remaining half of the base oil, monoamine that was twice the equivalent of MDI was dissolved. The blending ratio and type of each are shown in Table 2. A solution in which monoamine was dissolved was added while stirring the solution in which MDI was dissolved, and then the reaction was continued at 100 ° C. to 120 ° C. for 30 minutes to produce a diurea compound in the base oil. To this, a plant-derived polyphenol compound and the like were added at a blending ratio shown in Table 2, and the mixture was further stirred at 100 to 120 ° C. for 10 minutes. Thereafter, the mixture was cooled and homogenized with three rolls to obtain a grease composition. The obtained grease composition was subjected to a high temperature durability test. Test methods and test conditions are shown below. The results are also shown in Table 2.
<高温耐久性試験>
 深溝玉軸受(軸受寸法:内径 20 mm、外径 47 mm、幅 14 mm)に潤滑組成物を 0.7 g封入し、軸受外輪外径部温度 150℃、ラジアル荷重 67 N 、アキシアル荷重 67 N の下で10000 rpm の回転数で回転させ、焼き付きに至るまでの時間を測定した。結果を表2に併記する。
<High temperature durability test>
Deep groove ball bearing (bearing dimensions: inner diameter 20 mm, outer diameter 47 mm, width 14 mm) is filled with 0.7 g of lubricating composition, bearing outer ring outer diameter temperature 150 ° C, radial load 67 N, axial load 67 N Was rotated at a rotation speed of 10,000 rpm, and the time until seizure was measured. The results are also shown in Table 2.
比較例4および比較例5
 実施例11に準じる方法で、表2に示す配合割合で、増ちょう剤、基油を選択してベースグリースを調整し、さらに添加剤を配合してグリース組成物を得た。得られたグリース組成物を実施例11と同様の試験を行なって評価した。結果を表2に併記する。
Comparative Example 4 and Comparative Example 5
In accordance with the method according to Example 11, the base grease was prepared by selecting the thickener and the base oil at the blending ratio shown in Table 2, and the additive was further blended to obtain a grease composition. The obtained grease composition was evaluated by conducting the same test as in Example 11. The results are also shown in Table 2.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
 表2に示すように、実施例11~実施例17は、高温耐久性試験において寿命が全て 1400 時間以上の優れた高温耐久性を示した。これは、グリース組成物の添加剤として配合された植物由来のポリフェノール化合物が、グリース組成物の酸化劣化を抑制できたことによると考えられる。一方、比較例4,5では、実施例11~実施例17と同じ基油を用い2種類の酸化防止剤を併用したが、実施例11~実施例17と比較して寿命が大幅に短い結果となった。 As shown in Table 2, Examples 11 to 17 showed excellent high temperature durability with a lifetime of 1400 hours or more in the high temperature durability test. This is considered to be because the plant-derived polyphenol compound blended as an additive of the grease composition was able to suppress oxidative deterioration of the grease composition. On the other hand, in Comparative Examples 4 and 5, the same base oil as in Examples 11 to 17 was used and two kinds of antioxidants were used in combination, but the life was significantly shorter than in Examples 11 to 17. It became.
 ここで、植物由来のポリフェノール化合物として、クルクミンを添加したクルクミン添加グリースの寿命(高温耐久性)を、内径20mm、外径47mm、幅14mmの軸受型番「6204」の深溝玉軸受で試験した結果を図18に示す。内輪回転速度は10000min-1、外輪外径部の温度は150℃である。同図において、横軸に軸受内部の全空間体積に対するグリース封入量の割合、縦軸にグリース寿命、つまり焼き付きに至る時間を示す。 Here, the life (high temperature durability) of the curcumin-added grease added with curcumin as a plant-derived polyphenol compound was tested with a deep groove ball bearing having a bearing model number “6204” having an inner diameter of 20 mm, an outer diameter of 47 mm, and a width of 14 mm. As shown in FIG. The inner ring rotational speed is 10000 min −1 , and the outer ring outer diameter portion temperature is 150 ° C. In the figure, the horizontal axis shows the ratio of the amount of grease charged to the total space volume inside the bearing, and the vertical axis shows the grease life, that is, the time until seizure.
 試験結果によると、同図中丸印で表記するクルクミン無添加でグリース38%封入の場合のグリース寿命よりも、四角印で表記するクルクミン添加でグリース25%封入の場合の方が若干寿命が長い。クルクミン添加でグリース22%封入であれば、クルクミン無添加でグリース38%封入の場合と略同等の寿命であることがわかる。一般に、グリース封入量が少ないほど、保持器によるグリースの攪拌・せん断による抵抗が少ないため、低トルク化が期待できる。すなわち、クルクミンを添加すると、グリース寿命を維持したままトルクを低減することが可能となる。 According to the test results, the life is slightly longer in the case of 25% grease with the addition of curcumin indicated by the square mark than when the grease life is 38% without the addition of curcumin indicated by the circle in the figure. It can be seen that if 22% grease is added with the addition of curcumin, the life is almost the same as when 38% grease is added without the addition of curcumin. Generally, the smaller the amount of grease charged, the lower the resistance due to the agitation and shearing of the grease by the cage, so that lower torque can be expected. That is, when curcumin is added, the torque can be reduced while maintaining the grease life.
 以上説明した図17の深溝玉軸受1Bによると、グリースがグリース収容凹部GP(図10(A))に格納され保持器5Bと共に回転するため、攪拌抵抗やせん断抵抗を軽減することができる。グリース収容凹部GP内に保持されたグリースから分離した基油は、連通口Rh(図10(A))を通って玉4へ供給されるため、潤滑に必要な基油を利用することができる。このような保持器5Bを組み込んだ軸受に、前記グリース組成物を封入することで、水素脆性による特異な剥離の発生を抑制することができる。また、従来の酸化防止剤等を配合したグリース組成物よりも耐酸化劣化性を向上させることができ、高温高速下での軸受の長寿命化が図れる。 According to the deep groove ball bearing 1B of FIG. 17 described above, the grease is stored in the grease containing recess GP (FIG. 10A) and rotates together with the cage 5B, so that stirring resistance and shear resistance can be reduced. Since the base oil separated from the grease held in the grease containing recess GP is supplied to the ball 4 through the communication port Rh (FIG. 10A), the base oil necessary for lubrication can be used. . By enclosing the grease composition in a bearing incorporating such a cage 5B, it is possible to suppress the occurrence of specific peeling due to hydrogen embrittlement. Further, the oxidation deterioration resistance can be improved as compared with a grease composition containing a conventional antioxidant or the like, and the life of the bearing can be extended under high temperature and high speed.
 トルク測定結果について説明する。図8の内部諸元を設定した深溝玉軸受を「A」とし、冠形保持器に前記グリース収容凹部GP、連通口Rhを設けた深溝玉軸受を「B」とした。標準のマルテンプSRLグリースにクルクミンをベースグリース100重量部に対して2重量部添加したグリースを、25%封入した深溝玉軸受を「C」とした。トルク試験対象とした深溝玉軸受は、内径30mm、外径62mm、幅16mmの軸受型番「6206」である。試験は、ラジアル荷重とアキシアル荷重を同時に支持できる静圧気体軸受に試験軸受を固定し、試験軸受の内輪に嵌合した軸にラジアル荷重を、または静圧気体軸受にアキシアル荷重を与えることで試験軸受に負荷を与え、軸を外部モータで回転させたときの外輪回転トルクを測定した。トルク測定は以下の条件で実施した。
 トルク測定条件
 回転速度:3000~5000min-1、ラジアル荷重:0~250N、アキシアル荷重:0~150N
The torque measurement result will be described. The deep groove ball bearing having the internal specifications shown in FIG. 8 was designated “A”, and the deep groove ball bearing having the crown-shaped cage provided with the grease containing recess GP and the communication port Rh was designated “B”. A deep groove ball bearing in which 25% of grease obtained by adding 2 parts by weight of curcumin to 100 parts by weight of base grease in standard Multemp SRL grease was designated as “C”. The deep groove ball bearing subjected to the torque test is a bearing model number “6206” having an inner diameter of 30 mm, an outer diameter of 62 mm, and a width of 16 mm. The test is performed by fixing the test bearing to a hydrostatic gas bearing capable of supporting both radial load and axial load, and applying radial load to the shaft fitted to the inner ring of the test bearing or applying axial load to the hydrostatic gas bearing. The outer ring rotational torque was measured when a load was applied to the bearing and the shaft was rotated by an external motor. Torque measurement was performed under the following conditions.
Torque measurement conditions Rotational speed: 3000 to 5000 min −1 , radial load: 0 to 250N, axial load: 0 to 150N
 上記トルク測定条件で外輪回転トルクを測定した結果を概算的に表3に示す。
Figure JPOXMLDOC01-appb-T000018
Table 3 shows the results of measuring the outer ring rotational torque under the above torque measurement conditions.
Figure JPOXMLDOC01-appb-T000018
 標準軸受を、軸受型番「6206」、標準ナイロン製冠形保持器、マルテンプSRLグリース38%封入したものとし、表3において「標準」と表記する。同表3において、図8の内部諸元を設定した深溝玉軸受に、グリース収容凹部GP、連通口Rhを設けた冠形保持器を組込み、さらに標準のマルテンプSRLグリースにクルクミンをベースグリース100重量部に対して2重量部添加したグリースを25%封入したものを、「A*B*C」と表記する。また表3においてA,B,C,A*B*C各軸受のトルクは、標準軸受のトルク値を100とした場合の相対値で示している。これら軸受のうち、「C」と「A*B*C」の軸受は、標準のマルテンプSRLグリースにクルクミンをベースグリース100重量部に対して2重量部添加したグリースを25%封入した。「A」と「B」の軸受は、グリースに関しては添加剤、封入量共に標準軸受と同じである。 Suppose that the standard bearing is a bearing model number “6206”, a standard nylon crown cage, and 38% of Maltemp SRL grease. In Table 3, the deep groove ball bearing with the internal specifications shown in FIG. 8 incorporates a crown-shaped cage with a grease containing recess GP and a communication port Rh, and curcumin is added to the standard Multemp SRL grease with 100 weight base grease. A grease containing 2% by weight of grease added with 25% by weight is expressed as “A * B * C”. In Table 3, the torques of the A, B, C, and A * B * C bearings are shown as relative values when the torque value of the standard bearing is 100. Among these bearings, “C” and “A * B * C” bearings were filled with 25% of grease obtained by adding 2 parts by weight of curcumin to 100 parts by weight of base grease in standard Multemp SRL grease. The “A” and “B” bearings are the same as the standard bearings in terms of grease, with respect to the additive and the amount of sealing.
 表3を見ると、標準軸受に対してA,B,Cそれぞれ単独の軸受でトルク低減効果が認められるが、A*B*Cの軸受には単純な組合せ効果(A+B+C)より大きな相乗効果が発生し、標準軸受に対してトルク値は略半減している。A,B,Cの各軸受はそれぞれ技術的に異なったトルク低減方法であるが、相互干渉によりトルク低減効果を抑制する方向に働かないことは上記結果からも判断できる。図8の内部諸元を設定した深溝玉軸受に、グリース収容凹部GP、連通口Rhを設けた冠形保持器を組み込んだものを「A*B」とする。標準の深溝玉軸受に、グリース収容凹部GP、連通口Rhを設けた冠形保持器を組み込み、さらに標準のマルテンプSRLグリースにクルクミンをベースグリース100重量部に対して2重量部添加したグリースを、25%封入したものを「B*C」とする。また、図8の内部諸元を設定した深溝玉軸受に、標準のマルテンプSRLグリースにクルクミンをベースグリース100重量部に対して2重量部添加したグリースを、25%封入したものを「C*A」とする。これら「A*B」、「B*C」、「C*A」の各軸受でも、単純な加算効果以上の相乗効果が期待できる。なお、軸受「C」に関しては、添加剤としてクルクミンだけでなくクルクミンの誘導体、およびケルセチンまたはその誘導体のいずれか一方または両方であっても良い。これらの場合であっても前述の効果が認められる。 As shown in Table 3, the torque reduction effect is recognized with each of the bearings A, B, and C with respect to the standard bearing, but the bearing of A * B * C has a greater synergistic effect than the simple combination effect (A + B + C). The torque value is about half that of the standard bearing. The bearings A, B, and C are technically different torque reduction methods, but it can also be determined from the above results that they do not work in the direction of suppressing the torque reduction effect due to mutual interference. The deep groove ball bearing having the internal specifications shown in FIG. 8 and incorporating a crown-shaped cage having a grease containing recess GP and a communication port Rh is referred to as “A * B”. A standard deep groove ball bearing is equipped with a grease retaining recess GP and a crown-shaped cage with a communication port Rh, and a standard maltemp SRL grease with 2 parts by weight of curcumin added to 100 parts by weight of base grease. 25% encapsulated material is designated as “B * C”. In addition, a deep groove ball bearing with the internal specifications shown in FIG. 8 and 25% encapsulated grease with 2 parts by weight of curcumin added to 100 parts by weight of the base grease is added to the standard Multemp SRL grease. " Even with these “A * B”, “B * C”, and “C * A” bearings, a synergistic effect more than a simple additive effect can be expected. With respect to the bearing “C”, not only curcumin but also a derivative of curcumin and quercetin or a derivative thereof may be used as an additive. Even in these cases, the above-mentioned effects are recognized.
 第4~7実施形態に係る保持器について説明する。
 図19(A),(B)に示すように、保持器5C,5Dの環状体7のうちグリース収容凹部GPが設けられた箇所を、同環状体7の軸心L1を含む平面で切断して見た断面形状について、環状体7の連結部10が、前記軸心L1に垂直な平面S1に対し傾斜する傾斜面10a,10bを有するものとしても良い。図19(A)に示す第4実施形態に係る保持器5Cは、連結部10の肉厚が矢符A1で示す内径側に向かうに従って薄肉となる傾斜面10aを有する。この場合、図12の保持器よりも保持器剛性を高め、高速回転させる場合に保持器5Cの強度を確保し得る。さらに軸受運転時、グリース収容凹部GP内に溜めたグリースを、回転による遠心力により傾斜面10aから内壁部9を介して軸受空間内に円滑に排出させることができる。図19(B)に示す第5実施形態に係る保持器5Dは、連結部10の肉厚が矢符A1で示す内径側に向かうに従って厚肉となる傾斜面10bを有する。この場合、グリース収容凹部GPに溜めたグリースを、軸受運転時漏出させないように保持することができる。
The cage according to the fourth to seventh embodiments will be described.
As shown in FIGS. 19A and 19B, the portion of the annular body 7 of the cages 5C and 5D where the grease accommodating recess GP is provided is cut by a plane including the axis L1 of the annular body 7. With regard to the cross-sectional shape seen, the connecting portion 10 of the annular body 7 may have inclined surfaces 10a and 10b that are inclined with respect to the plane S1 perpendicular to the axis L1. A cage 5C according to the fourth embodiment shown in FIG. 19A has an inclined surface 10a that becomes thinner as the thickness of the connecting portion 10 moves toward the inner diameter side indicated by the arrow A1. In this case, the cage rigidity is higher than that of the cage of FIG. 12, and the strength of the cage 5C can be ensured when rotating at high speed. Further, during the bearing operation, the grease accumulated in the grease accommodating recess GP can be smoothly discharged into the bearing space from the inclined surface 10a through the inner wall portion 9 by the centrifugal force caused by the rotation. A cage 5D according to the fifth embodiment shown in FIG. 19B has an inclined surface 10b that becomes thicker as the thickness of the connecting portion 10 moves toward the inner diameter side indicated by the arrow A1. In this case, the grease stored in the grease receiving recess GP can be held so as not to leak during the bearing operation.
 図19(C)に示す第6実施形態に係る保持器5Eは、内壁部9の肉厚が矢符A2で示す反ポケット側に向かうに従って薄肉となる傾斜面9aを有する。この場合、軸受運転時、グリース収容凹部GP内に溜めたグリースを、回転による遠心力により前記傾斜面9aから軸受空間内に円滑に排出させることができる。図19(D)に示す第7実施形態に係る保持器5Fは、内壁部9の肉厚が反ポケット側に向かうに従って厚肉となる傾斜面9bを有する。この場合、軸受運転時、グリース収容凹部GP内に溜めたグリースを漏出させないように保持することができる。 A cage 5E according to the sixth embodiment shown in FIG. 19C has an inclined surface 9a that becomes thinner as the thickness of the inner wall portion 9 moves toward the opposite pocket side indicated by the arrow A2. In this case, during the bearing operation, the grease stored in the grease accommodating recess GP can be smoothly discharged from the inclined surface 9a into the bearing space by the centrifugal force due to the rotation. A cage 5F according to the seventh embodiment shown in FIG. 19D has an inclined surface 9b that becomes thicker as the wall thickness of the inner wall portion 9 goes toward the non-pocket side. In this case, it is possible to hold the grease stored in the grease receiving recess GP so as not to leak during the bearing operation.
 図20の第8実施形態に係る保持器5Gは、環状体7のうち、グリース収容凹部GPの反ポケット側の他側面7bを覆う覆い部11を設けている。例えば、マシニングセンタ等を用いた機械加工により、前記覆い部11を有する形状を製作し易い。この保持器5Gによると、高速回転の場合、覆い部11によりグリース収容凹部GPに保持されたグリースが漏出することを防止し得る。 The cage 5G according to the eighth embodiment in FIG. 20 is provided with a cover portion 11 that covers the other side surface 7b on the opposite side of the grease receiving recess GP in the annular body 7. For example, the shape having the cover portion 11 can be easily manufactured by machining using a machining center or the like. According to the cage 5G, in the case of high-speed rotation, it is possible to prevent the grease held in the grease containing recess GP by the cover portion 11 from leaking.
 図21の第9実施形態に係る保持器5Hは、射出成形で製作されたものであり、連通口RhをポケットPt側からグリース収容凹部GP側に向かうに従って広がるように設けている。連通口Rhのうち特に反ポケット側部分Rhaは、環状体7の軸心L1に平行に形成されている。この場合、射出成形金型から保持器5Hを抜き易くすることができる。また、金型に高精度な加工が要求されるポケットPt側でなく、比較的加工の容易なグリース収容凹部GP側の金型に、連通口Rhを形成する金型を適用することができる。したがって、金型の製作費の低減を図れる。 21. The cage 5H according to the ninth embodiment in FIG. 21 is manufactured by injection molding, and the communication port Rh is provided so as to widen from the pocket Pt side toward the grease containing recess GP side. In particular, the non-pocket side portion Rha of the communication port Rh is formed parallel to the axis L1 of the annular body 7. In this case, it is possible to easily remove the cage 5H from the injection mold. In addition, a mold for forming the communication port Rh can be applied not to the pocket Pt side where high-precision machining is required for the mold but to the mold on the grease housing recess GP side that is relatively easy to process. Therefore, the manufacturing cost of the mold can be reduced.
 図22の第10実施形態に係る保持器5Iは、ポケットPtの内面における環状体外径側のポケット開口縁12に、凹み部13を設けている。この例では、凹み部13はポケット開口縁12に2箇所設けられる。これら凹み部13は、それぞれ前記ポケット開口縁12から玉配列ピッチ円付近まで環状体内径側へ延びる。前記2箇所の凹み部13は、ポケットPtのポケット開口縁12における保持器円周方向の中心L3の両側に位置する。各凹み部13の内面形状は、保持器円周方向に沿う断面形状が、ポケットPtの内面となる凹球面の曲率半径よりも小さい曲率半径の円弧状である。前記断面形状とは、凹み部13を環状体7の軸心L1に垂直な平面で切断して見た断面形状と同義である。各凹み部13は、保持器半径方向につき、環状体外径側から玉配列ピッチ円に近づくに従って徐々に小さく、つまり徐々に浅くかつ幅狭となる形状である。 The cage 5I according to the tenth embodiment in FIG. 22 has a recess 13 in the pocket opening edge 12 on the outer diameter side of the annular body on the inner surface of the pocket Pt. In this example, two recesses 13 are provided on the pocket opening edge 12. Each of these recesses 13 extends from the pocket opening edge 12 to the vicinity of the ball arrangement pitch circle toward the inner diameter side of the annular body. The two recessed portions 13 are located on both sides of the center L3 in the cage circumferential direction at the pocket opening edge 12 of the pocket Pt. The shape of the inner surface of each recess 13 is an arc having a radius of curvature smaller than the radius of curvature of the concave spherical surface that forms the inner surface of the pocket Pt. The cross-sectional shape is synonymous with a cross-sectional shape obtained by cutting the recess 13 along a plane perpendicular to the axis L1 of the annular body 7. Each dent 13 has a shape that gradually decreases from the annular body outer diameter side toward the ball arrangement pitch circle in the radial direction of the cage, that is, gradually becomes shallower and narrower.
 前記凹み部13を設けた冠形保持器5Iを組み込んだ軸受では、凹み部13により環状体外径側のポケット開口縁12でのグリースの掻き取りが低減される。凹み部13からポケットPt内に進入したグリースは、内輪2(図8)側に移動し、玉配列ピッチ円付近で均される。このため、軸受内のグリースをより多くグリース収容凹部GPに引き込むことが可能となる。なお、凹み部13を1箇所のみ、あるいは3箇所以上設けても良い。 In the bearing incorporating the crown-shaped cage 5I provided with the recess 13, scraping of grease at the pocket opening edge 12 on the outer diameter side of the annular body is reduced by the recess 13. The grease that has entered the pocket Pt from the recess 13 moves to the inner ring 2 (FIG. 8) side and is leveled around the ball arrangement pitch circle. For this reason, it becomes possible to draw more grease in the bearing into the grease containing recess GP. In addition, you may provide the recessed part 13 only in one place, or three or more places.
 図23の第11実施形態に係る保持器5Jは、ポケットPtの内面の底部に溝部14が設けられている。この溝部14は、ポケット内面における底面の玉配列ピッチ円に沿って形成された一条の溝から成る。グリース収容凹部GPには、増ちょう剤および基油を含むグリースを溜め、このグリースから分離した潤滑に必要な基油を、前記連通口Rhを通してポケットPtに移動させることで潤滑に寄与する。図22に示す溝部14に、グリースから分離した基油の一部が進入するため、玉4(図8)とポケットPt間の基油による粘性せん断抵抗を減らすことができる。それ故、より低トルク化に寄与し得る。 23. The cage 5J according to the eleventh embodiment in FIG. 23 is provided with a groove 14 at the bottom of the inner surface of the pocket Pt. This groove part 14 consists of a single groove | channel formed along the ball | bowl arrangement pitch circle | round | yen of the bottom face in a pocket inner surface. Grease containing a thickener and base oil is stored in the grease containing recess GP, and base oil necessary for lubrication separated from the grease is moved to the pocket Pt through the communication port Rh, thereby contributing to lubrication. Since a part of the base oil separated from the grease enters the groove portion 14 shown in FIG. 22, the viscous shear resistance due to the base oil between the balls 4 (FIG. 8) and the pocket Pt can be reduced. Therefore, it can contribute to lower torque.
 図24に示す第12実施形態に係る保持器5Kのように、グリース収容凹部GP内に仕切り板15を設けても良い。この例の仕切り板15は、グリース収容凹部GPを二分割するものであり、軸心L1に平行に配設される。このような仕切り板15によって、グリース収容凹部GP内のグリースの移動が規制され、グリース収容凹部GPの内壁部9にグリースが付着し易くなる。したがって、グリース収容凹部GPにグリースを保持し易くできる。なお、仕切り板15は、グリース収容凹部GP内を完全に仕切らない形態のものや、軸心L1に平行でない形態のものを適用することも可能である。 As in the cage 5K according to the twelfth embodiment shown in FIG. 24, the partition plate 15 may be provided in the grease containing recess GP. The partition plate 15 in this example divides the grease containing recess GP in two, and is arranged in parallel to the axis L1. Such a partition plate 15 restricts the movement of the grease in the grease accommodating recess GP, and the grease easily adheres to the inner wall portion 9 of the grease accommodating recess GP. Therefore, the grease can be easily held in the grease containing recess GP. The partition plate 15 can be applied in a form that does not completely partition the grease containing recess GP or in a form that is not parallel to the axis L1.
 グリース収容凹部GPに初期にグリースを封入しておき、ポケットPt側のグリースを予め少なくしておいても良い。この場合、グリースの一部が連通口Rhで掻き取られる効果は前記各実施形態のものより低くなるが、ポケットPt側のグリースが少ない分、起動時のトルク低減を図ることができる。また、グリース収容凹部GP内に封入されたグリースから分離した基油は、連通口Rhを通って玉4(図8)へ供給されるため、潤滑に必要な基油を利用することができる。 The grease may be initially sealed in the grease containing recess GP, and the grease on the pocket Pt side may be reduced in advance. In this case, the effect that a part of the grease is scraped off at the communication port Rh is lower than that of the above embodiments, but the torque at the time of starting can be reduced by the amount of grease on the pocket Pt side being small. Further, since the base oil separated from the grease enclosed in the grease containing recess GP is supplied to the ball 4 (FIG. 8) through the communication port Rh, the base oil necessary for lubrication can be used.
 第2~12実施形態では、深溝玉軸受に代えてアンギュラ玉軸受を適用しても良い。荷重負荷の小さいアンギュラ玉軸受の場合、軸受全体の玉数を減らし、回転トルクを低減させると共に本実施形態のいずれかの保持器を用いることで、さらにトルク低減を図ることが可能となる。各実施形態では、環状体のポケット間全てにグリース収容凹部を設けているが、この形態に限定されるものではない。任意のポケット間にグリース収容凹部を少なくとも1つ設ければ足りる。 In the second to twelfth embodiments, an angular ball bearing may be applied instead of the deep groove ball bearing. In the case of an angular ball bearing with a small load load, it is possible to further reduce the torque by reducing the number of balls of the entire bearing, reducing the rotational torque, and using any one of the cages of the present embodiment. In each embodiment, the grease containing recesses are provided between all the pockets of the annular body, but this is not a limitation. It is sufficient to provide at least one grease receiving recess between any pockets.
 以上説明した各実施形態で要件とした「内部緒元」を要件としない応用態様として、つぎのようなものがある。 As application modes that do not require “internal specifications” as a requirement in each of the embodiments described above, there are the following.
 [態様1]
 態様1に係る転がり軸受は、内外輪間に介在する複数の玉が保持器に保持され、グリース潤滑される転がり軸受であって、前記保持器は、環状体の一側面に一部が開放されて内部に玉を保持するポケットを、前記環状体の円周方向複数箇所に有する冠形状であり、前記環状体のうち円周方向に隣接するポケット間にグリースを溜めるグリース収容凹部を設け、このグリース収容凹部と前記ポケットとに連通し、前記玉に付着したグリースを、玉と保持器との相対動作により前記グリース収容凹部へ移動させる連通口を設け、前記グリースは、基油と、増ちょう剤とからなるベースグリースに添加剤を配合してなるグリース組成物であって、前記添加剤は、植物由来のポリフェノール化合物およびその分解化合物から選ばれた少なくとも一つの化合物を含有し、この化合物の配合割合はベースグリース 100 重量部に対して 0.05重量部以上10 重量部以下であり、前記植物由来のポリフェノール化合物は、クルクミンまたはその誘導体、およびケルセチンまたはその誘導体のいずれか一方または両方である。
[Aspect 1]
The rolling bearing according to aspect 1 is a rolling bearing in which a plurality of balls interposed between inner and outer rings are held in a cage and are grease-lubricated, and the cage is partially opened on one side surface of an annular body. And a pocket for holding a ball inside the annular body at a plurality of locations in the circumferential direction of the annular body, provided with a grease containing recess for collecting grease between pockets adjacent in the circumferential direction of the annular body, There is provided a communication port that communicates with the grease containing recess and the pocket, and moves the grease adhering to the ball to the grease containing recess by the relative movement of the ball and the cage. A grease composition comprising an additive and a base grease comprising an additive, wherein the additive is at least one selected from plant-derived polyphenol compounds and degradation compounds thereof The compound is contained in an amount of 0.05 to 10 parts by weight based on 100 parts by weight of the base grease, and the plant-derived polyphenol compound contains curcumin or a derivative thereof, and quercetin or a derivative thereof. Either one or both.
 この構成によると、玉がポケット内で回転すると、玉に付着したグリースの一部が連通口に到達し、さらに玉がポケット内で回転することで、前記グリースの一部が、例えば、連通口の縁による掻き取りや玉の圧力等により連通口を通してグリース収容凹部側に押圧されて移動する。前記グリースがグリース収容凹部に格納され保持器と共に回転するため、前述の撹拌抵抗やせん断抵抗を軽減することができる。グリースによる潤滑では、グリースの基油が潤滑に作用する。グリース収容凹部内に保持されたグリースから分離した基油は、連通口を通って玉へ供給されるため、潤滑に必要な基油を利用することができる。 According to this configuration, when the ball rotates in the pocket, a part of the grease attached to the ball reaches the communication port, and further, the ball rotates in the pocket, so that a part of the grease is, for example, the communication port. The grease is pressed and moved through the communication port by scraping with the edge of the ball or the pressure of the balls. Since the grease is stored in the grease containing recess and rotates together with the cage, the above-described stirring resistance and shear resistance can be reduced. In lubrication with grease, the base oil of grease acts on lubrication. Since the base oil separated from the grease held in the grease containing recess is supplied to the ball through the communication port, the base oil necessary for lubrication can be used.
 このような保持器を組み込んだ軸受に、前記グリース組成物を封入することで、水素脆性による特異な剥離の発生を抑制することができる。また、従来の酸化防止剤等を配合したグリース組成物よりも耐酸化劣化性を向上させることができ、高温高速下での軸受の長寿命化が図れる。 The occurrence of peculiar peeling due to hydrogen embrittlement can be suppressed by enclosing the grease composition in a bearing incorporating such a cage. Further, the oxidation deterioration resistance can be improved as compared with a grease composition containing a conventional antioxidant or the like, and the life of the bearing can be extended under high temperature and high speed.
 [態様2]
 態様1において、前記連通口は、前記グリース収容凹部と前記ポケットとを連通させ、且つ環状体の内径側に開口する切欠きであっても良い。
[Aspect 2]
In the first aspect, the communication port may be a notch that allows the grease-receiving recess and the pocket to communicate with each other and opens to the inner diameter side of the annular body.
 [態様3]
 態様1において、前記環状体の軸心に垂直な平面であり前記ポケットの中心を通る前記平面に対する、前記連通口の中央部の角度を20度以上50度以下の範囲としても良い。
[Aspect 3]
In the aspect 1, the angle of the central portion of the communication port with respect to the plane that is a plane perpendicular to the axis of the annular body and passes through the center of the pocket may be in the range of 20 degrees to 50 degrees.
 [態様4]
 態様1において、前記連通口における、前記ポケットの保持器円周方向に沿った最大幅寸法を、前記ポケットの内径の10%以上40%以下の範囲としても良い。
[Aspect 4]
In aspect 1, the maximum width dimension along the circumferential direction of the cage of the pocket at the communication port may be in the range of 10% to 40% of the inner diameter of the pocket.
 [態様5]
 態様1において、前記環状体のうちグリース収容凹部が設けられた箇所を、同環状体の軸心を含む平面で切断して見た断面形状について、前記環状体の内壁部および円周方向に隣接するポケットを繋ぐ連結部が、前記グリース収容凹部を成し、前記内壁部が前記軸心に対し傾斜する傾斜面を有するもの、および、前記連結部が前記軸心に垂直な平面に対し傾斜する傾斜面を有するもののいずれか一方または両方を含むものとしても良い。
[Aspect 5]
In aspect 1, with respect to a cross-sectional shape obtained by cutting a portion where the grease containing recess is provided in the annular body along a plane including the axis of the annular body, adjacent to the inner wall portion and the circumferential direction of the annular body A connecting portion connecting the pockets forming the grease containing recess, the inner wall portion having an inclined surface inclined with respect to the axis, and the connecting portion inclined with respect to a plane perpendicular to the axis. It is good also as what includes any one or both of what has an inclined surface.
 [態様6]
 態様1において、前記グリース収容凹部内に仕切り板を設けても良い。
[Aspect 6]
In the first aspect, a partition plate may be provided in the grease containing recess.
 [態様7]
 態様1において、前記環状体のうち、グリース収容凹部の反ポケット側の他側面を覆う覆い部を設けても良い。
[Aspect 7]
In aspect 1, you may provide the cover part which covers the other side surface of the said annular body opposite the pocket side of a grease accommodation recessed part.
 [態様8]
 態様1において、前記ポケットの内面における環状体外径側のポケット開口縁に、凹み部を設けても良い。
[Aspect 8]
In the first aspect, a recess may be provided on the pocket opening edge on the outer diameter side of the annular body on the inner surface of the pocket.
 [態様9]
 態様1において、前記ポケットの内面の底部に、溝部を設けても良い。
[Aspect 9]
In the first aspect, a groove may be provided at the bottom of the inner surface of the pocket.
 [態様10]
 態様1において、前記保持器は射出成形で製作されたものであり、前記連通口を環状体の軸心に平行、またはポケット側からグリース収容凹部側に向かうに従って広がるように設けても良い。
[Aspect 10]
In aspect 1, the cage is manufactured by injection molding, and the communication port may be provided so as to extend in parallel with the axis of the annular body or from the pocket side toward the grease-accommodating concave portion.
 [態様11]
 態様1において、前記保持器が合成樹脂材料または植物由来の樹脂材料を含むものであっても良い。
[Aspect 11]
In aspect 1, the cage may include a synthetic resin material or a plant-derived resin material.
 [態様12]
 態様1において、前記グリース収容凹部に初期にグリースを封入したものであっても良い。
[Aspect 12]
In the first aspect, grease may be initially sealed in the grease receiving recess.
 [態様13]
 態様1において、前記転がり軸受が深溝玉軸受またはアンギュラ玉軸受であっても良い。
[Aspect 13]
In aspect 1, the rolling bearing may be a deep groove ball bearing or an angular ball bearing.
 [態様14]
 態様1において、前記転がり軸受が深溝玉軸受である場合に、内外輪間の軸受空間を塞ぐ密封装置を外輪に設けても良い。
[Aspect 14]
In aspect 1, when the rolling bearing is a deep groove ball bearing, a sealing device that closes the bearing space between the inner and outer rings may be provided in the outer ring.
 以上のとおり、図面を参照しながら好適な実施形態を説明したが、当業者であれば、本件明細書を見て、自明な範囲内で種々の変更および修正を容易に想定するであろう。したがって、そのような変更および修正は、請求の範囲から定まる発明の範囲内のものと解釈される。 As described above, the preferred embodiments have been described with reference to the drawings. However, those skilled in the art will readily assume various changes and modifications within the obvious scope by looking at the present specification. Accordingly, such changes and modifications are to be construed as within the scope of the invention as defined by the appended claims.
1,1A,1B 深溝玉軸受
2 内輪
2a 軌道溝
3 外輪
3a 軌道溝
4 玉
5~5K 保持器
6 密封装置
7 環状体
8 爪
9 内壁部
10 連結部
11 覆い部
12 ポケット開口縁
13 凹み部
14 溝部
GP グリース収容凹部
Pt ポケット
Rh 連通口
1, 1A, 1B Deep groove ball bearing 2 Inner ring 2a Raceway groove 3 Outer ring 3a Raceway groove 4 Balls 5 to 5K Cage 6 Sealing device 7 Annular body 8 Claw 9 Inner wall part 10 Connection part 11 Cover part 12 Pocket opening edge 13 Recess part 14 Groove GP Grease receiving recess Pt Pocket Rh Communication port

Claims (18)

  1.  内輪と外輪の間に玉を介在させた深溝玉軸受であって、
     前記内輪および外輪の溝肩高さが各々玉の直径の0.2倍であり、内外輪の軌道溝、溝肩高さ、玉の直径、玉数、および玉のピッチ円直径を次式の範囲に設定した深溝玉軸受。
    Figure JPOXMLDOC01-appb-M000001
    A deep groove ball bearing in which a ball is interposed between an inner ring and an outer ring,
    The inner and outer ring groove shoulder heights are each 0.2 times the ball diameter, and the inner and outer ring raceway grooves, groove shoulder height, ball diameter, number of balls, and ball pitch circle diameter are given by Deep groove ball bearing set to range.
    Figure JPOXMLDOC01-appb-M000001
  2.  請求項1において、前記玉が保持器に保持されグリースによって潤滑される深溝玉軸受であって、
     0.8d<d<dとし、
     前記保持器は、環状体の一側面に一部が開放されて内部に玉を保持するポケットを、前記環状体の円周方向複数箇所に有する冠形状であり、前記環状体のうち円周方向に隣接するポケット間にグリースを溜めるグリース収容凹部を設け、このグリース収容凹部と前記ポケットとに連通し、前記玉に付着したグリースを、玉と保持器との相対動作により前記グリース収容凹部へ移動させる連通口を設けた深溝玉軸受。
    The deep groove ball bearing according to claim 1, wherein the ball is held in a cage and lubricated by grease,
    0.8d m <d P <d m
    The retainer has a crown shape that is partially open on one side surface of the annular body and has pockets for holding balls therein in a plurality of circumferential directions of the annular body, and the circumferential direction of the annular body A grease containing recess for storing grease is provided between the pockets adjacent to each other. The grease containing recess and the pocket communicate with each other, and the grease adhering to the ball is moved to the grease containing recess by the relative movement of the ball and the cage. Deep groove ball bearings with communication ports
  3.  請求項2において、前記グリースは、基油と、増ちょう剤とからなるベースグリースに添加剤を配合してなるグリース組成物であって、
     前記添加剤は、植物由来のポリフェノール化合物およびその分解化合物から選ばれた少なくとも一つの化合物を含有し、この化合物の配合割合はベースグリース 100 重量部に対して 0.05重量部以上10 重量部以下であり、
     前記植物由来のポリフェノール化合物は、クルクミンまたはその誘導体、およびケルセチンまたはその誘導体のいずれか一方または両方である深溝玉軸受。
    The grease composition according to claim 2, wherein the grease is a grease composition obtained by blending an additive with a base grease comprising a base oil and a thickener.
    The additive contains at least one compound selected from a plant-derived polyphenol compound and its decomposition compound, and the compounding ratio of this compound is 0.05 parts by weight or more and 10 parts by weight or less with respect to 100 parts by weight of the base grease. ,
    The plant-derived polyphenol compound is a deep groove ball bearing which is one or both of curcumin or a derivative thereof and quercetin or a derivative thereof.
  4.  請求項2において、前記連通口は、前記グリース収容凹部と前記ポケットとを連通させ、且つ環状体の内径側に開口する切欠きである深溝玉軸受。 3. The deep groove ball bearing according to claim 2, wherein the communication port is a notch that communicates the grease-receiving recess and the pocket and opens to the inner diameter side of the annular body.
  5.  請求項2において、前記環状体の軸心に垂直な平面であり前記ポケットの中心を通る前記平面に対する、前記連通口の中央部の角度を20度以上50度以下の範囲とした深溝玉軸受。 3. The deep groove ball bearing according to claim 2, wherein an angle of a central portion of the communication port with respect to the plane that is perpendicular to the axis of the annular body and passes through the center of the pocket is in a range of 20 degrees to 50 degrees.
  6.  請求項2において、前記連通口における、前記ポケットの保持器円周方向に沿った最大幅寸法を、前記ポケットの内径の10%以上40%以下の範囲とした深溝玉軸受。 3. The deep groove ball bearing according to claim 2, wherein the maximum width dimension along the circumferential direction of the cage of the pocket at the communication port is in the range of 10% to 40% of the inner diameter of the pocket.
  7.  請求項2において、前記環状体のうちグリース収容凹部が設けられた箇所を、同環状体の軸心を含む平面で切断して見た断面形状について、
     前記環状体の内壁部および円周方向に隣接するポケットを繋ぐ連結部が、前記グリース収容凹部を成し、
     前記内壁部が前記軸心に対し傾斜する傾斜面を有するもの、および、前記連結部が前記軸心に垂直な平面に対し傾斜する傾斜面を有するもののいずれか一方または両方を含む深溝玉軸受。
    The cross-sectional shape of the annular body according to claim 2, wherein the portion where the grease containing recess is provided is cut by a plane including the axis of the annular body.
    The connecting portion that connects the inner wall portion of the annular body and the pockets adjacent in the circumferential direction forms the grease containing recess,
    A deep groove ball bearing including one or both of the inner wall portion having an inclined surface inclined with respect to the axis and the connecting portion having an inclined surface inclined with respect to a plane perpendicular to the axis.
  8.  請求項2において、前記グリース収容凹部内に仕切り板を設けた深溝玉軸受。 3. The deep groove ball bearing according to claim 2, wherein a partition plate is provided in the grease containing recess.
  9.  請求項2において、前記環状体のうち、グリース収容凹部の反ポケット側の他側面を覆う覆い部を設けた深溝玉軸受。 3. The deep groove ball bearing according to claim 2, wherein a cover portion for covering the other side surface of the annular body on the side opposite to the pocket of the grease containing recess is provided.
  10.  請求項2において、前記ポケットの内面における環状体外径側のポケット開口縁に凹み部を設けた深溝玉軸受。 3. The deep groove ball bearing according to claim 2, wherein a concave portion is provided at a pocket opening edge on the outer diameter side of the annular body on the inner surface of the pocket.
  11.  請求項2において、前記ポケットの内面の底部に溝部を設けた深溝玉軸受。 3. The deep groove ball bearing according to claim 2, wherein a groove is provided at the bottom of the inner surface of the pocket.
  12.  請求項2において、前記保持器は射出成形で製作されたものであり、前記連通口を環状体の軸心に平行、またはポケット側からグリース収容凹部側に向かうに従って広がるように設けた深溝玉軸受。 3. The deep groove ball bearing according to claim 2, wherein the cage is manufactured by injection molding, and the communication port is provided so as to extend in parallel with the axial center of the annular body or from the pocket side toward the grease receiving recess side. .
  13.  請求項2において、前記グリース収容凹部に初期にグリースを封入した深溝玉軸受。 3. The deep groove ball bearing according to claim 2, wherein grease is initially sealed in the grease receiving recess.
  14.  請求項2において、内外輪間の軸受空間を塞ぐ密封装置を外輪に設けた深溝玉軸受。 3. The deep groove ball bearing according to claim 2, wherein the outer ring is provided with a sealing device for closing a bearing space between the inner and outer rings.
  15.  内輪と外輪の間に玉を介在させた深溝玉軸受の設計方法であって、
     次式のa,bにa<bの条件下で任意の値を与えて、次式を満たすように内外輪の軌道溝、溝肩高さ、玉の直径、玉数、および玉のピッチ円直径を設計する深溝玉軸受の設計方法。
    Figure JPOXMLDOC01-appb-M000002
    A method of designing a deep groove ball bearing in which a ball is interposed between an inner ring and an outer ring,
    Arbitrary values are given to the following formulas a and b under the condition of a <b, and the inner and outer ring raceway grooves, groove shoulder heights, ball diameters, the number of balls, and the pitch circles of the balls so as to satisfy the following formulas Design method of deep groove ball bearings to design the diameter.
    Figure JPOXMLDOC01-appb-M000002
  16.  請求項15において、前記内輪および外輪の溝肩高さが各々玉の直径の0.2倍であり、かつa=1,b=1.1とする深溝玉軸受の設計方法。 The method for designing a deep groove ball bearing according to claim 15, wherein groove shoulder heights of the inner ring and the outer ring are each 0.2 times the diameter of the ball, and a = 1 and b = 1.1.
  17.  請求項15において、0.8d<d<d
    とする深溝玉軸受の設計方法。
    According to claim 15, 0.8d m <d p < d m
    Design method for deep groove ball bearings.
  18.  請求項15において、前記半径方向断面は、内外輪の軌道溝に玉を接触させた部分をアキシアル平面に沿って切断して見た断面とした深溝玉軸受の設計方法。 16. The method for designing a deep groove ball bearing according to claim 15, wherein the radial cross section is a cross section obtained by cutting a portion of the inner and outer races in contact with the raceway groove along the axial plane.
PCT/JP2010/056520 2009-04-16 2010-04-12 Deep groove ball bearing and method of designing same WO2010119835A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009099705A JP2010249241A (en) 2009-04-16 2009-04-16 Deep groove ball bearing and method for designing the same
JP2009-099705 2009-04-16
JP2010-074327 2010-03-29
JP2010074327A JP5404493B2 (en) 2010-03-29 2010-03-29 Rolling bearing

Publications (1)

Publication Number Publication Date
WO2010119835A1 true WO2010119835A1 (en) 2010-10-21

Family

ID=42982497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/056520 WO2010119835A1 (en) 2009-04-16 2010-04-12 Deep groove ball bearing and method of designing same

Country Status (1)

Country Link
WO (1) WO2010119835A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105927663A (en) * 2016-07-12 2016-09-07 江苏儒豪精密机械有限公司 Optimized design method of deep groove ball bearing in novel automobile steering device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000120666A (en) * 1998-10-19 2000-04-25 Nsk Ltd Rolling bearing
JP2002266879A (en) * 2001-03-07 2002-09-18 Nsk Ltd Ball bearing
JP2004323586A (en) * 2003-04-22 2004-11-18 Nsk Ltd Grease composition and grease-sealed rolling bearing
JP2009024822A (en) * 2007-07-23 2009-02-05 Ntn Corp Crown type cage for ball bearing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000120666A (en) * 1998-10-19 2000-04-25 Nsk Ltd Rolling bearing
JP2002266879A (en) * 2001-03-07 2002-09-18 Nsk Ltd Ball bearing
JP2004323586A (en) * 2003-04-22 2004-11-18 Nsk Ltd Grease composition and grease-sealed rolling bearing
JP2009024822A (en) * 2007-07-23 2009-02-05 Ntn Corp Crown type cage for ball bearing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105927663A (en) * 2016-07-12 2016-09-07 江苏儒豪精密机械有限公司 Optimized design method of deep groove ball bearing in novel automobile steering device

Similar Documents

Publication Publication Date Title
US9796944B2 (en) Grease composition, grease-packed bearing, universal joint for propeller shaft, lubricating oil composition, and oil-impregnated sintered bearing
WO2015008856A1 (en) Anti-friction bearing
JP5404493B2 (en) Rolling bearing
JP5115050B2 (en) Rolling bearing
WO2016114380A1 (en) Anti-friction bearing
JP5616613B2 (en) Grease composition, grease-filled bearing, and universal joint for propeller shaft
JP6193619B2 (en) Rolling bearing
JP2008069882A (en) Grease-filled sealing type rolling bearing
WO2010119835A1 (en) Deep groove ball bearing and method of designing same
WO2021153258A1 (en) Grease composition and grease-sealed bearing
JP4989083B2 (en) Grease composition and grease-filled bearing
JP5170861B2 (en) Grease composition and grease-filled bearing
JP4838549B2 (en) Grease composition and rolling bearing with grease
JP5288725B2 (en) Grease composition and grease-filled bearing
JP2008095768A (en) Roll bearing
WO2023048119A1 (en) Grease composition and grease-sealed bearing
WO2019049963A1 (en) Grease composition and grease-enclosed roller bearing
KR20240069746A (en) Grease composition and grease-filled bearings
WO2021246049A1 (en) Grease composition and rolling bearing
JP5101950B2 (en) Ball bearing
JP2008095939A (en) Grease-sealed-type rolling bearing
JP5091540B2 (en) Rolling bearings for automotive electrical equipment and accessories
JP2008106911A (en) Grease-sealed rolling bearing
JP2007217521A (en) Grease composition and bearing containing grease
JP2007254521A (en) Grease composition and grease-sealed bearing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10764419

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10764419

Country of ref document: EP

Kind code of ref document: A1