WO2010119638A1 - Biofilm formation inhibitor - Google Patents

Biofilm formation inhibitor Download PDF

Info

Publication number
WO2010119638A1
WO2010119638A1 PCT/JP2010/002477 JP2010002477W WO2010119638A1 WO 2010119638 A1 WO2010119638 A1 WO 2010119638A1 JP 2010002477 W JP2010002477 W JP 2010002477W WO 2010119638 A1 WO2010119638 A1 WO 2010119638A1
Authority
WO
WIPO (PCT)
Prior art keywords
biofilm formation
formation inhibitor
biofilm
acid
medical device
Prior art date
Application number
PCT/JP2010/002477
Other languages
French (fr)
Japanese (ja)
Inventor
土屋友房
塩田澄子
Original Assignee
国立大学法人 岡山大学
学校法人 就実学園
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 岡山大学, 学校法人 就実学園 filed Critical 国立大学法人 岡山大学
Priority to JP2011509196A priority Critical patent/JPWO2010119638A1/en
Publication of WO2010119638A1 publication Critical patent/WO2010119638A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/192Carboxylic acids, e.g. valproic acid having aromatic groups, e.g. sulindac, 2-aryl-propionic acids, ethacrynic acid 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/50Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection

Definitions

  • the present invention relates to a biofilm formation inhibitor containing a diterpenoid compound as an active ingredient. Furthermore, it is related with the biofilm formation inhibition method processed using this biofilm formation inhibitor.
  • a biofilm is a biological group formed by being covered with an extracellular matrix and adhering to each other or from cells to the surface / interface. Biofilm formation is a problem in the medical field, wastewater treatment facilities, general households, and the like, and particularly in the medical field.
  • Gram-positive bacteria are attenuated bacteria that are often present in humans and the environment and are not a problem for healthy people. However, these attenuated bacteria are also serious in immunocompromised and susceptible patients. May cause infection.
  • Staphylococci are Gram-positive cocci and are resident bacteria such as human skin, nasal cavity and gastrointestinal tract, but in medical settings, surgical site infection, bloodstream infection, respiratory infection, urinary tract infection mainly in easily infected patients. May cause endocarditis, meningitis, septicemia, etc., and is one of the most important hospital infection-causing bacteria.
  • CR-BSI catheter-related bloodstream infection
  • U-UTI urethral indwelling catheter-related urinary tract infection
  • Infection is caused by bacteria, such as staphylococci, colonizing medical devices such as vascular and urinary catheters to form a biofilm. Once a biofilm is formed, it becomes difficult to treat because bacteria escape from attack by the host's immune system or the biofilm prevents the penetration of antimicrobial agents.
  • Staphylococcus aureus is a causative agent for surgical site infections, bloodstream infections, respiratory infections, urinary tract infections, etc. in highly infected patients mainly in medical institutions. It may become.
  • MRSA methicillin-resistant Staphylococcus aureus
  • Non-patent Document 1 examples of substances that suppress staphylococcal biofilms include farnesol, a kind of linear sesquiterpene (Non-patent Document 1), and berberine, a kind of benzylisoquinoline alkaloid (Non-patent Document 2). It has been reported.
  • farnesol and berberine which have already been reported, are known to have antibacterial activity against Staphylococcus aureus, and at the reported concentrations, they suppress biofilm formation while inhibiting the growth of Staphylococcus aureus.
  • Berberine is a substrate for NorA.
  • NorA is a major multidrug efflux pump for Staphylococcus aureus and is said to contribute to the multidrug resistance of Staphylococcus aureus.
  • the expression of this NorA is enhanced, and a multidrug-resistant mutant strain may be induced.
  • Those with antibacterial activity, such as farnesol and berberine still have problems in disturbing the resident bacterial flora and eventually inducing resistance, and medical devices such as pharmaceuticals and medical instruments There is nothing in practical use.
  • biofilms are a problem, for example, around water and wastewater treatment. Even in such a case, development of a biofilm formation inhibitor that is capable of effectively inhibiting the formation of a biofilm while being safe for a living body such as a human is desired.
  • An object of the present invention is to provide a biofilm formation inhibitor that effectively acts on biofilm formation without disturbing the resident bacterial flora or inducing drug-resistant bacteria. More specifically, an object of the present invention is to provide a biofilm formation inhibitor that effectively acts on biofilm formation derived from gram-positive cocci belonging to the genus Staphylococcus. Furthermore, it aims at providing the biofilm formation inhibition method processed using this biofilm formation inhibitor.
  • this invention consists of the following. 1. A biofilm formation inhibitor comprising a diterpenoid compound as an active ingredient. 2. 2. The biofilm formation inhibitor according to 1 above, wherein the diterpenoid compound is a cyclic diterpenoid compound. 3. 3. The biofilm formation inhibitor according to 2 above, wherein the cyclic diterpenoid compound is an abietane diterpenoid compound. 4). Item 4. The abietane diterpenoid compound is any one or more of abietic acid, dehydroabietic acid, neoabietic acid, pimaric acid, parastrinic acid, levopimaric acid, and pharmacologically acceptable derivatives thereof. Biofilm formation inhibitor. 5). 5.
  • biofilm formation inhibitor according to any one of items 1 to 4, wherein the biofilm formation inhibitor comprises rosin. 6).
  • MRSA methicillin-resistant Staphylococcus aureus
  • VRSA vancomycin-resistant Staphylococcus aureus
  • One or more Gram-positive cocci belonging to the staphylococcus that are clinically problematic for example, Staphylococcus aureus (including MRSA), Staphylococcus epidermidis and rot staphylococci, which are clinically problematic by the biofilm formation inhibitor of the present invention
  • Biofilm formation from certain staphylococci can be inhibited.
  • the biofilm formation inhibitor inhibits only biofilm formation without killing bacteria. This property is 1. Does not disturb the resident bacterial flora at each site including the skin. It has two advantages of not inducing drug-resistant bacteria.
  • a method of using the biofilm formation inhibitor containing the diterpenoid compound of the present invention as an active ingredient by coating or immersing a medical device for example, a medical device such as a catheter, a medical dressing material or a medical tape, It can be a new prevention method for infectious diseases related to medical devices.
  • Example 3 It is a figure which shows the biofilm formation inhibitory ability by Staphylococcus aureus (N315 strain
  • Example 1 It is a figure which shows the influence which abietic acid has on the biofilm formation inhibitory ability by S. aureus (N315 strain
  • Example 2 It is a figure which shows the influence which abietic acid and its analog have on the biofilm formation inhibitory ability by Staphylococcus aureus (N315 strain
  • Example 3 It is a figure which shows the biofilm formation inhibitory ability by a Staphylococcus aureus (N315 strain
  • Example 4 It is a figure which shows the biofilm formation inhibitory ability by Staphylococcus epidermidis (clinical isolate) of abietic acid, dehydroabietic acid, and rosin.
  • Example 5
  • the present invention relates to a biofilm formation inhibitor containing a diterpenoid compound as an active ingredient.
  • the diterpenoid compound contained in the biofilm formation inhibitor is preferably a cyclic diterpenoid compound.
  • a labdan type, a pyramant type, an abietane type, and the like are known, and as the biofilm formation inhibitor of the present invention, an abietan diterpenoid compound is particularly suitable.
  • Abietane diterpenoid compounds are compounds that are extracted from Pinaceae plants such as pine and cedar, for example, and are compounds that can also be extracted from plants of the family Lamiaceae.
  • the abietane diterpenoid compound may be any of these pharmacologically acceptable derivatives in addition to the above compound.
  • the pharmacologically acceptable derivative is a diterpenoid compound, preferably an abietane diterpenoid compound, more preferably a derivative having a basic skeleton in common with the above-mentioned compound and having a biofilm formation inhibitory ability Say.
  • the diterpenoid compound of the present invention may be derived from a natural product extracted from the above plant, or may be a synthesized compound. Moreover, all the stereoisomers (diastereomers, epimers, enantiomers, etc.) or racemates are included.
  • abietic acid which is a typical abietane diterpenoid compound, and similar compounds are shown below.
  • the above-mentioned compound used as an active ingredient in the biofilm formation inhibitor of the present invention may be obtained commercially or extracted from a natural product.
  • this extract can be manufactured by a well-known method or all the methods developed in the future.
  • an extract can be obtained by extracting by an appropriate method using water, an organic solvent, or a mixture thereof.
  • the organic solvent is not particularly limited, and examples thereof include alcohols such as methanol, ethanol, isopropanol, and butanol, acetone, ethyl acetate, ethyl ether, and the like, and these may be used alone. Two or more kinds can be used in combination.
  • These compounds are preferably extracted by immersion using, for example, 70% acetone aqueous solution and 100% methanol as solvents.
  • the extracted compound may be further purified. For example, it may be purified by column chromatography or the like. Further, rosin (a sap obtained by scratching a pine trunk by steam distillation to remove a volatile substance) can be obtained alone or by adding an acid and heating.
  • the biofilm formation inhibitor is a diterpenoid compound having an ability to inhibit biofilm formation, preferably an abiethane diterpenoid compound, more preferably one of the above-mentioned compounds alone or as a mixture of two or more. can do.
  • the biofilm formation inhibitor of the present invention may contain a purified compound or a natural product as long as it contains the above-mentioned compound having biofilm formation inhibiting ability.
  • the extract may be contained as it is.
  • An example of such an extract is rosin.
  • the biofilm formation inhibitor of the present invention may contain rosin or rosin itself. Rosin contains about 90% of diterpene resin acid, and its main component is abietic acid.
  • Rosin is a non-volatile component of pine resin that is contained in a large amount in Pinaceae plants, and is technically composed mainly of various isomers called resin acids. Rosin can be produced by removing essential oils and volatile substances from the secretions of Pinaceae plants. The rosin may be natural rosin or various synthetic rosins.
  • the diterpenoid compound contained in the biofilm formation inhibitor may be used at any concentration as long as it can inhibit biofilm formation.
  • the minimum inhibitory concentration: MIC (hereinafter also referred to simply as “MIC”) is characterized by being able to be used at a lower concentration. For example, it can be used at a concentration of 1/2 or less, preferably 1/4 or less, more preferably 1/8 or less of MIC.
  • MIC minimum inhibitory concentration
  • the concentration of abietic acid can be 8 to 64 ppm, preferably 16 to 32 ppm.
  • the concentration of dehydroabietic acid, neoabietic acid, and pimaric acid can be 2 to 8 ppm, preferably 2 to 4 ppm.
  • the biofilm formation inhibitor of the present invention is not particularly limited as long as it contains the diterpenoid compound as the active ingredient in the above concentration.
  • the solvent for the diterpenoid compound include dimethyl sulfoxide (DMSO), alcohols, acetone and the like.
  • the origin of the biofilm on which the biofilm formation inhibitor of the present invention acts is not particularly limited, but the biofilm formation inhibitor of the present invention is against that formed by gram-positive cocci belonging to Staphylococcus. In particular, it has inhibitory activity.
  • the biofilm formation inhibitor of the present invention is preferably a staphylococcus genus, preferably a biofilm formation derived from S. aureus , S. epidermidis or S. saprophyticus. Is effectively inhibited.
  • Some Staphylococcus aureus strains have capsular polysaccharides, and these strains form biofilms, which can reduce the effectiveness of antimicrobial agents and can reduce their effectiveness.
  • the biofilm formation inhibitor of the present invention effectively acts on inhibition of biofilm formation from Staphylococcus aureus, MRSA and vancomycin-resistant Staphylococcus aureus (VRSA).
  • the present invention also extends to medical devices processed with the biofilm formation inhibitor, such as medical devices, medical dressings and medical tapes.
  • a medical device treated with a biofilm formation inhibitor means that a part or the whole of the surface of the medical device is coated with a biofilm formation inhibitor, or a part or the whole of the medical device is a biomaterial. This refers to the penetration of a film formation inhibitor.
  • medical tools include, but are not particularly limited to, apparatuses, devices, and devices used for medical purposes.
  • a medical device that can be placed in a living body that is, an implant
  • implants include, but are not limited to, for example, catheters, artificial teeth (dental implants), bolts for fixing bones in the treatment of fractures, rheumatism, pacemakers, artificial heart valves, artificial joints, voice prostheses, contact lenses, etc.
  • the catheter include a urinary catheter, an abdominal catheter, and a central venous catheter.
  • the present invention also extends to a biofilm formation inhibition method including a step of treating with a biofilm formation inhibitor.
  • the processing object to be processed using the biofilm formation inhibitor can be any object that can cause the formation of a biofilm in addition to the medical device described above.
  • pollution caused by biofilm such as slime becomes a problem in wastewater treatment facilities in ordinary households and other business establishments.
  • facilities related to water such as a kitchen, a washroom, and a bathroom, other water supply facilities, and drainage facilities such as a drain pipe and a drain ditch are included.
  • it can be applied to uses such as tackifiers for adhesive bandages, base materials for ointments, antiskid, and mixed with soap.
  • the treatment includes a step of bringing a treatment object into contact with the biofilm formation inhibitor of the present invention.
  • Contacting with a biofilm formation inhibitor refers to operations such as coating, spraying, dipping, and washing.
  • a biofilm formation inhibitor is applied to or sprayed on a part of the surface of the medical device to perform a coating process or immerse it. It can be soaked or washed.
  • the treatment object is a large scale such as a water supply facility or a wastewater treatment facility
  • the biofilm formation inhibitor of the present invention can be poured into a desired site, applied, or washed.
  • the compound itself contained in the biofilm formation inhibitor may contain an extract from a natural product as it is.
  • an antiseptic effective against bacteria capable of forming a biofilm such as chlorhexidine gluconate, benzalkonium chloride, benzethonium chloride, amphoteric surfactant, alcohol, sodium hypochlorite, povidone iodine , Glutaral or the like may be used in combination, or may be processed before or after the above processing.
  • chlorhexidine is excellent in terms of a sustained effect against staphylococci.
  • S. aureus N315 was considered suitable for biofilm formation and used in the following examples.
  • the N315 strain is a standard strain of MRSA, the entire genome sequence has already been determined, and it is easy to perform genetic analysis. In order to further enhance the biofilm forming ability of this strain, it was cultured using a medium containing 1% glucose.
  • Reference Example 2 Screening for Biofilm Formation Inhibiting Substance
  • screening was performed to select a biofilm formation inhibiting substance that is an active ingredient of a biofilm formation inhibitor.
  • 35 kinds of naturally derived substances were used.
  • the minimum growth inhibitory concentration (MIC) of these naturally-derived substances against S. aureus N315 strain was determined, and the biofilm when the concentration of 1/8 or less of MIC that does not affect the growth was added to the medium. The ability to form was confirmed.
  • Each candidate compound was diluted in a medium containing 1% DMSO.
  • the MIC for S. aureus N315 strain is shown in Table 1.
  • S. aureus N315 strain cells were diluted 100-fold with BHI (1% glucose added) medium, then dispensed 200 ⁇ l each into a 96-well plate, and 2 ⁇ l of each sample solution was further added.
  • BHI 1% glucose added
  • eugenol and quercetin were adjusted so that the final concentration was 1/16 MIC, and the others were 1/8 MIC.
  • the control was BHI medium containing neither sample nor solvent. These were cultured at 37 ° C. for 48 hours.
  • the formed biofilm was dyed using crystal violet, and the biofilm forming ability was measured by the same method as in Reference Example 1.
  • the number after the substance name represents the concentration, and the unit is ⁇ g / ml.
  • abietic acid C 20 H 30 O 2
  • eugenol eugenol, C 10 H 12 O 2
  • capsaicin capsaicin, C 17 H 27 NO 3
  • nerol nerol, C 10 H 18 O
  • naringenin naringenin, C 15 H 12 O 5
  • citronellol citronellol, C 10 H 20 O
  • dihydrocapsaicin dihydrocapzaicin, C 18 H 29 NO 3
  • 8 of geraniol geraniol, C 10 H 18 O
  • Inhibition of biofilm formation was observed in several types of substances.
  • abietic acid strongly inhibits biofilm formation by Staphylococcus aureus N315 strain.
  • Citronellol an essential oil component, was also confirmed to inhibit biofilm formation to some extent.
  • geraniol is a kind of linear monoterpenoid
  • nerol is a kind of monoterpene.
  • Capsaicin is a kind of compound called capsaicinoid among alkaloids.
  • Eugenol is a kind of phenylpropanoid having a structure in which an allyl group is substituted for guaiacol. Naringenin is a flavanone and belongs to the flavonoids.
  • Example 1 Confirmation of biofilm formation inhibitory action of abietic acid Based on the results of Reference Examples 2 and 3, this example was confirmed with respect to abietic acid that was particularly excellent in biofilm formation inhibitory action.
  • S. aureus N315 cell line or Newman cell line is diluted 100 times with BHI (1% glucose added) medium, then 200 ⁇ l is dispensed into 96-well plates, and final concentrations are 0, 4, 8, 16, 32 ⁇ g.
  • Example 2 Confirmation of biofilm formation inhibitory action of abietic acid
  • the relationship between the biofilm formation inhibitory action of abietic acid and the growth inhibitory action of bacteria was examined.
  • S. aureus N315 strain cells were diluted 100-fold with BHI (1% glucose added) medium by the same method as in Example 1, 200 ⁇ l each was dispensed into a 96-well plate, and 0, 4, 8, 16, 32 ⁇ g. 2 ⁇ l / ml of abietic acid solution (final concentration of DMSO as a solvent is 1%) was added.
  • the control was BHI medium containing neither sample nor solvent. These were cultured at 37 ° C. for 48 hours.
  • the formed biofilm was dyed using crystal violet, and the biofilm forming ability was measured by the same method as in Reference Example 1.
  • the number of bacteria in the medium in the well (floating bacteria) was also measured.
  • Culture supernatants of 96 well plates each well was applied to nutrient agar bacterial suspension was diluted with sterile saline to 1 of 10 4 minutes, and counted the number of colonies after static culture at 37 ° C., the number of bacteria Was measured. Viable counts were expressed as log 10 CFU / ml.
  • Example 3 Confirmation of biofilm formation inhibitory action of abietic acid and its similar substances Since abietic acid was found to have a biofilm formation inhibitory action, similar compounds of abietic acid were also confirmed in this example.
  • the S. aureus N315 strain cells were diluted 100-fold with BHI (1% glucose added) medium by the same method as in Example 1, and then 200 ⁇ l each was dispensed into a 96-well plate, and each concentration of abietic acid and dehydroabietic acid 2 ⁇ l each of (dehydroabietic acid), neoabietic acid, pimaric acid or tanshinones (final concentration of DMSO as solvent is 1%) was added.
  • the control was BHI medium containing neither sample nor solvent.
  • a BHI medium containing 1% DMSO was also used as a comparative control. These were cultured at 37 ° C. for 48 hours. The formed biofilm was dyed using crystal violet, and the biofilm forming ability was measured by the same method as in Reference Example 1.
  • the structural formulas of abietic acid and its similar substances are as follows.
  • Example 4 Confirmation of biofilm formation inhibitory action of rosin (1) Based on the fact that abietic acid and dehydroabietic acid had a biofilm formation inhibitory effect, it was examined whether rosin containing abietic acid as a main component also had a biofilm inhibitory effect against Staphylococcus aureus.
  • N315 strain cells were used for Staphylococcus aureus, and rosin was used from Wako Pure Chemical Industries, Ltd.
  • the composition of rosin used is resin acid (80-97%), non-fighting and other small amounts.
  • Resin acids mainly include abietic acid, neoabietic acid, and parastrinic acid, and also include levopimaric acid, dehydroabietic acid, pimaric acid, and the like. Moreover, the biofilm inhibitory effect was confirmed also about abietic acid and dehydroabietic acid.
  • the final concentrations of abietic acid and dehydroabietic acid were 1/16 and 1/8 of MIC, and the final concentrations of rosin were 1/32, 1/16 and 1/8 of MIC.
  • S. aureus N315 strain cells were diluted 100-fold with BHI (1% glucose added) medium, then 200 ⁇ l each was dispensed into a 96-well plate, and further 2 ⁇ l of abietic acid solution (16 ⁇ l / 32 ⁇ g / ml) was added. The final concentration of DMSO as a solvent was 1%).
  • abietic acid the solution was added to 2 ⁇ l medium to 4 or 8 ⁇ g / ml and rosin to a final concentration of 8, 16 or 32 ⁇ g / ml. These were then statically cultured at 37 ° C. for 48 hours. After the formed biofilm was stained with crystal violet, each well was washed with distilled water, and then the absorbance at 570 nm was measured for crystal violet eluted with DMSO 200 ⁇ l to determine the biofilm formation ability. .
  • Rosin is a resin obtained by removing essential oils and volatile substances from the secretions of Pinaceae plants. It contains 90% diterpene resin acid and its main component is abietic acid. It has a wide range of uses such as adhesives for adhesive bandages and base materials for ointments, anti-slip materials, and soap.
  • Example 5 Confirmation of biofilm formation inhibitory action of rosin (2)
  • Staphylococcus epidermidis clinical isolate
  • Staphylococcus aureus the biofilm formation inhibitory action of abietic acid, dehydroabietic acid and rosin on Staphylococcus epidermidis was confirmed. did.
  • rosin was found to inhibit biofilm formation in Staphylococcus epidermidis as well as Staphylococcus aureus.
  • Staphylococcus epidermidis is a bacterium that is resident in most human epidermis and nasal cavity and has almost no pathogenicity. However, severe infection may occur if Staphylococcus epidermidis resident on the skin infects an easily infected patient when wearing a foreign body. Staphylococcus epidermidis is highly adherent to a catheter or the like placed in the body like S. aureus, and easily forms a biofilm. As a causative bacterium of catheter-related bloodstream infection, Staphylococcus epidermidis has a higher ratio than Staphylococcus aureus.
  • the biofilm formation inhibitor of the present invention can inhibit biofilm formation derived from Staphylococcus aureus (including MRSA), which is a clinical problem. Unlike an antibacterial agent, the biofilm formation inhibitor can inhibit only biofilm formation without killing bacteria. This property is 1. Does not disturb the normal bacterial flora at each site including the skin. It has two advantages of not inducing drug-resistant bacteria. Catheters that have been impregnated with antibacterial substances (antibacterial drugs and silver) have already been clinically applied, but none of them are intended for antibacterial properties, and none have been designed to inhibit biofilm formation.
  • the method of using the biofilm formation inhibitor containing the diterpenoid compound of the present invention as an active ingredient by coating or infiltrating various medical devices such as catheters is used for infectious diseases related to medical devices such as catheters. It can be a new prevention method. Furthermore, the formation of biofilms can be effectively inhibited by treating with the biofilm formation inhibitor of the present invention even around water in each facility including general households.
  • the rosin containing abietic acid as a main component has the same biofilm inhibitory effect as abietic acid against Staphylococcus aureus and Staphylococcus epidermidis, so the biofilm formation inhibitor of the present invention containing rosin is It can be used in a wide range of applications, including adhesives for adhesive bandages and base materials for ointments, anti-slip materials, and soaps.
  • Staphylococcus epidermidis is highly adherent to a catheter or the like placed in the body like S. aureus, and easily forms a biofilm.
  • Staphylococcus epidermidis has a higher ratio than Staphylococcus aureus. From these things, it is possible to provide a highly safe medical device in which the formation of biofilm is suppressed by coating or infiltrating various medical devices with the biofilm formation inhibitor of the present invention. it can.

Abstract

A biofilm formation inhibitor which effectively acts on the formation of a biofilm without disrupting the resident bacterial flora or developing drug resistant bacteria is provided. More specifically, a biofilm formation inhibitor which effectively acts on the formation of a biofilm derived from a Gram-positive coccus belonging to the genus Staphylococcus is provided. Further, a method for inhibiting the formation of a biofilm in which a treatment is performed using the biofilm formation inhibitor is provided. A diterpenoid compound contained in a plant belonging to the family Pinaceae effectively has a strong inhibitory effect on the formation of a biofilm without disrupting the resident bacterial flora or developing drug resistant bacteria, and therefore can be used as an effective biofilm formation inhibitor.

Description

バイオフィルム形成阻害剤Biofilm formation inhibitor
 本発明は、ジテルペノイド化合物を有効成分として含有するバイオフィルム形成阻害剤に関する。さらには、該バイオフィルム形成阻害剤を用いて処理するバイオフィルム形成阻害方法に関する。 The present invention relates to a biofilm formation inhibitor containing a diterpenoid compound as an active ingredient. Furthermore, it is related with the biofilm formation inhibition method processed using this biofilm formation inhibitor.
 本出願は、参照によりここに援用されるところの日本出願特願2009-97207号優先権を請求する。 This application claims the priority of Japanese Patent Application No. 2009-97207, which is incorporated herein by reference.
 バイオフィルム(biofilm)は、細胞外マトリクスで覆われ、細胞同士あるいは細胞と表面・界面が接着することにより形成される生物集団である。バイオフィルムの形成は、医療分野、排水処理施設、一般家庭などで問題となっており、特に医療分野では大きな問題となっている。 A biofilm is a biological group formed by being covered with an extracellular matrix and adhering to each other or from cells to the surface / interface. Biofilm formation is a problem in the medical field, wastewater treatment facilities, general households, and the like, and particularly in the medical field.
 医療分野では、口内細菌によるバイオフィルムが歯周病に関連することから、歯科の分野でバイオフィルムに対する阻害剤が多く報告されている。例えば、カテキンの一種であるエピガロカテキン-3-ガレート(EGGG)が、歯周病関連細菌のエイケネラ・コローデンス (Eikenella corrodens) によるバイオフィルムの抑制剤として特許出願され、開示されている(特許文献1)。また、クランベリー抽出物が、歯周病の原因菌の一種であるポルフィロモナス・ジンジバリス (Porphyromonas gingivalis)やトレポネーマ・デンティコラ (Treponema denticola)によるバイオフィルムの抑制剤として特許出願され、開示されている(特許文献2)。 In the medical field, since biofilms by oral bacteria are related to periodontal disease, many inhibitors for biofilms have been reported in the dental field. For example, epigallocatechin-3-gallate (EGGG), a kind of catechin, has been patent-patented and disclosed as a biofilm inhibitor by Eikenella corrodens , a periodontal disease-related bacterium (Patent Document) 1). Cranberry extract has been patented and disclosed as a biofilm inhibitor by Porphyromonas gingivalis and Treponema denticola , which are one of the causative agents of periodontal disease ( Patent Document 2).
 細菌のうち、グラム陽性菌の多くは、しばしばヒトや環境に常在し、健常人にとってはほとんど問題にならない弱毒菌であるが、それら弱毒菌も免疫不全患者や易感染患者においては重篤な感染症を引き起こす場合がある。ブドウ球菌はグラム陽性の球菌で、ヒトの皮膚、鼻腔、消化管などの常在菌であるが、医療現場では主に易感染患者において手術部位感染、血流感染、呼吸器感染、尿路感染を惹起し、さらに心内膜炎、髄膜炎、敗血症などを引き起こす場合もあり、最も重要な病院感染起因菌の一つである。 Of the bacteria, many Gram-positive bacteria are attenuated bacteria that are often present in humans and the environment and are not a problem for healthy people. However, these attenuated bacteria are also serious in immunocompromised and susceptible patients. May cause infection. Staphylococci are Gram-positive cocci and are resident bacteria such as human skin, nasal cavity and gastrointestinal tract, but in medical settings, surgical site infection, bloodstream infection, respiratory infection, urinary tract infection mainly in easily infected patients. May cause endocarditis, meningitis, septicemia, etc., and is one of the most important hospital infection-causing bacteria.
 医療現場では、バイオフィルムが関与するカテーテル関連血流感染(CR-BSI)や尿道留置カテーテル関連尿路感染(UA-UTI)が問題となっている。感染は、ブドウ球菌などの細菌が血管カテーテルや尿路カテーテルなどの医療用デバイスに定着し、バイオフィルムを形成することによって引き起こされる。いったんバイオフィルムが形成されると、細菌が宿主の免疫系による攻撃から逃れたり、バイオフィルムが抗菌薬の浸透を妨げたりすることで治療が困難となる。黄色ブドウ球菌(Staphylococcus aureus)は、医療機関では主に易感染患者において手術部位感染、血流感染、呼吸器感染、尿路感染などの起因菌となり、感染部位によっては難治性となって時に死因となる場合もある。特に、院内感染の原因菌とされるメチシリン耐性黄色ブドウ球菌(methicillin-resistant Staphylococcus aureus:MRSA)の進入経路は、47.8%が血液留置カテーテル、13.9%が尿路カテーテル留置によるといわれており、難治化すると同時に、重症化することが問題となる。 In the medical field, catheter-related bloodstream infection (CR-BSI) and urethral indwelling catheter-related urinary tract infection (UA-UTI) involving biofilms have become problems. Infection is caused by bacteria, such as staphylococci, colonizing medical devices such as vascular and urinary catheters to form a biofilm. Once a biofilm is formed, it becomes difficult to treat because bacteria escape from attack by the host's immune system or the biofilm prevents the penetration of antimicrobial agents. Staphylococcus aureus is a causative agent for surgical site infections, bloodstream infections, respiratory infections, urinary tract infections, etc. in highly infected patients mainly in medical institutions. It may become. In particular, the invasion route of methicillin-resistant Staphylococcus aureus (MRSA), which is the causative agent of nosocomial infection, is said to be 47.8% by blood indwelling catheter and 13.9% by urinary catheter indwelling. It becomes a problem because it becomes intractable and becomes severe at the same time.
 ブドウ球菌によるバイオフィルムを抑制する物質としては、直鎖セスキテルペンの一種であるファルネソール (farnesol)(非特許文献1)や、ベンジルイソキノリンアルカロイドの一種であるベルベリン(berberine)(非特許文献2)が報告されている。 Examples of substances that suppress staphylococcal biofilms include farnesol, a kind of linear sesquiterpene (Non-patent Document 1), and berberine, a kind of benzylisoquinoline alkaloid (Non-patent Document 2). It has been reported.
 しかしながら、既に報告されているファルネソールやベルベリンは、黄色ブドウ球菌に抗菌活性を有することが知られており、報告されている濃度では、バイオフィルム形成を抑制する一方で、黄色ブドウ球菌の育成を抑制している可能性がある。また、ベルベリンは、NorAの基質となっている。NorAは黄色ブドウ球菌に主要な多剤排出ポンプであり、黄色ブドウ球菌の多剤耐性に寄与するといわれている。ベルベリンを常用することで、このNorAの発現が亢進し、多剤耐性変異株を誘導する可能性がある。ファルネソールやベルベリンのように、抗菌活性を有するものは、常在細菌叢を乱したり、やがては耐性獲得を誘導したりする点で問題が残されており、医薬品や医療器具などの医療用デバイスに実用化されているものはない。 However, farnesol and berberine, which have already been reported, are known to have antibacterial activity against Staphylococcus aureus, and at the reported concentrations, they suppress biofilm formation while inhibiting the growth of Staphylococcus aureus. There is a possibility. Berberine is a substrate for NorA. NorA is a major multidrug efflux pump for Staphylococcus aureus and is said to contribute to the multidrug resistance of Staphylococcus aureus. By using berberine regularly, the expression of this NorA is enhanced, and a multidrug-resistant mutant strain may be induced. Those with antibacterial activity, such as farnesol and berberine, still have problems in disturbing the resident bacterial flora and eventually inducing resistance, and medical devices such as pharmaceuticals and medical instruments There is nothing in practical use.
 また、一般家庭やその他の施設などでも、例えば水周りや排水処理に関し、バイオフィルムの形成が問題となっている。このような場合にも、ヒトなどの生体に対して安全でありながら、バイオフィルムの形成を有効に阻害しうるバイオフィルム形成阻害剤の開発が望まれている。 Also, in general households and other facilities, the formation of biofilms is a problem, for example, around water and wastewater treatment. Even in such a case, development of a biofilm formation inhibitor that is capable of effectively inhibiting the formation of a biofilm while being safe for a living body such as a human is desired.
特開2008-13458号公報Japanese Patent Laid-Open No. 2008-13458 特開2007-91703号公報JP 2007-91703 A
 本発明は、常在細菌叢を乱したり薬剤耐性菌を誘導することなく、バイオフィルム形成に対して有効に作用するバイオフィルム形成阻害剤を提供することを課題とする。より具体的には、ブドウ球菌属に属するグラム陽性球菌由来のバイオフィルム形成に対して有効に作用するバイオフィルム形成阻害剤を提供することを課題とする。さらには、該バイオフィルム形成阻害剤を用いて処理するバイオフィルム形成阻害方法を提供することを課題とする。 An object of the present invention is to provide a biofilm formation inhibitor that effectively acts on biofilm formation without disturbing the resident bacterial flora or inducing drug-resistant bacteria. More specifically, an object of the present invention is to provide a biofilm formation inhibitor that effectively acts on biofilm formation derived from gram-positive cocci belonging to the genus Staphylococcus. Furthermore, it aims at providing the biofilm formation inhibition method processed using this biofilm formation inhibitor.
 本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、マツ科の植物に含まれるジテルペノイド化合物が、常在細菌叢を乱したり薬剤耐性菌を誘導することなく、バイオフィルム形成に対して強い阻害作用を有することを見出し、本発明を完成した。 As a result of intensive studies to solve the above problems, the present inventors have found that diterpenoid compounds contained in Pinaceae plants do not disturb the resident bacterial flora or induce drug-resistant bacteria, and thus biofilms. The present invention was completed by finding that it has a strong inhibitory effect on formation.
 即ち本発明は、以下よりなる。
1.ジテルペノイド化合物を有効成分として含有するバイオフィルム形成阻害剤。
2.ジテルペノイド化合物が、環状ジテルペノイド化合物である、前項1に記載のバイオフィルム形成阻害剤。
3.環状ジテルペノイド化合物が、アビエタン系ジテルペノイド化合物である前項2に記載のバイオフィルム形成阻害剤。
4.アビエタン系ジテルペノイド化合物が、アビエチン酸、デヒドロアビエチン酸、ネオアビエチン酸、ピマル酸、パラストリン酸、レボピマル酸及びこれらの薬理学上許容可能な誘導体のいずれか1種又は2種以上である前項3に記載のバイオフィルム形成阻害剤。
5.バイオフィルム形成阻害剤が、ロジンを含む、前項1~4のいずれかに記載のバイオフィルム形成阻害剤。
6.バイオフィルムが、ブドウ球菌属に属するグラム陽性球菌由来である前項1~7のいずれか1に記載のバイオフィルム形成阻害剤。
7.ブドウ球菌属に属するグラム陽性球菌が、黄色ブドウ球菌、表皮ブドウ球菌及び腐性ブドウ球菌から選択されるいずれかである前項6に記載のバイオフィルム形成阻害剤。
8.黄色ブドウ球菌が、メチシリン耐性黄色ブドウ球菌(MRSA)又はバンコマイシン耐性黄色ブドウ球菌(VRSA)である前項7に記載のバイオフィルム形成阻害剤。
9.前項1~8のいずれか1に記載のバイオフィルム形成阻害剤で処理されてなる医療用用具。
10.バイオフィルム形成阻害剤で処理されてなる医療用用具が、当該医療用用具の表面をバイオフィルム形成阻害剤でコーティングされているか、又は当該医療用用具にバイオフィルム形成阻害剤が浸透しているものである前項9に記載の医療用用具。
11.前項1~8のいずれか1に記載のバイオフィルム形成阻害剤を用いて処理する工程を含むバイオフィルム形成阻害方法。
12.バイオフィルム形成阻害剤を用いて処理する対象物が医療用用具である、前項11に記載のバイオフィルム形成阻害方法。
13.バイオフィルム形成阻害剤を用いて処理する対象物が排水処理設備である、前項11に記載のバイオフィルム形成阻害方法。
That is, this invention consists of the following.
1. A biofilm formation inhibitor comprising a diterpenoid compound as an active ingredient.
2. 2. The biofilm formation inhibitor according to 1 above, wherein the diterpenoid compound is a cyclic diterpenoid compound.
3. 3. The biofilm formation inhibitor according to 2 above, wherein the cyclic diterpenoid compound is an abietane diterpenoid compound.
4). Item 4. The abietane diterpenoid compound is any one or more of abietic acid, dehydroabietic acid, neoabietic acid, pimaric acid, parastrinic acid, levopimaric acid, and pharmacologically acceptable derivatives thereof. Biofilm formation inhibitor.
5). 5. The biofilm formation inhibitor according to any one of items 1 to 4, wherein the biofilm formation inhibitor comprises rosin.
6). 8. The biofilm formation inhibitor according to any one of 1 to 7 above, wherein the biofilm is derived from gram-positive cocci belonging to the genus Staphylococcus.
7). 7. The biofilm formation inhibitor according to 6 above, wherein the gram-positive cocci belonging to the genus Staphylococcus is any one selected from Staphylococcus aureus, S. epidermidis and rot staphylococci.
8). 8. The biofilm formation inhibitor according to 7 above, wherein the Staphylococcus aureus is methicillin-resistant Staphylococcus aureus (MRSA) or vancomycin-resistant Staphylococcus aureus (VRSA).
9. 9. A medical device treated with the biofilm formation inhibitor according to any one of 1 to 8 above.
10. The medical device treated with the biofilm formation inhibitor is coated with the biofilm formation inhibitor on the surface of the medical device, or the biofilm formation inhibitor penetrates the medical device 10. The medical device according to 9 above.
11. 9. A biofilm formation inhibition method comprising a step of treating with the biofilm formation inhibitor according to any one of 1 to 8 above.
12 12. The biofilm formation inhibition method according to 11 above, wherein the object to be treated using the biofilm formation inhibitor is a medical device.
13. 12. The biofilm formation inhibition method according to 11 above, wherein the object to be treated using the biofilm formation inhibitor is wastewater treatment equipment.
 本発明のバイオフィルム形成阻害剤により、臨床上問題となるブドウ球菌属に属するグラム陽性球菌、例えば黄色ブドウ球菌(MRSAを含む)、表皮ブドウ球菌及び腐性ブドウ球菌から選択される1種又は複数種のブドウ球菌由来のバイオフィルム形成を阻害することができる。該バイオフィルム形成阻害剤は抗菌剤と異なり、菌を殺すことなくバイオフィルムの形成のみを阻害する。この性質は1.皮膚をはじめ、各部位での常在細菌叢を乱さない、2.薬剤耐性菌を誘導しないという2つの利点を持っている。抗菌物質(抗菌薬や銀)を浸み込ませたカテーテルはすでに臨床応用されているが、いずれも抗菌性を目的としたもので、バイオフィルムの形成阻害を目的としたものはできていない。本発明のジテルペノイド化合物を有効成分として含有するバイオフィルム形成阻害剤を、医療用用具、例えばカテーテルなどの医療用デバイス、医療用ドレッシング材や医療用テープにコーティングしたり浸み込ませて用いる方法は、医療用用具に関連する感染症の新たな予防法になり得る。 One or more Gram-positive cocci belonging to the staphylococcus that are clinically problematic, for example, Staphylococcus aureus (including MRSA), Staphylococcus epidermidis and rot staphylococci, which are clinically problematic by the biofilm formation inhibitor of the present invention Biofilm formation from certain staphylococci can be inhibited. Unlike an antibacterial agent, the biofilm formation inhibitor inhibits only biofilm formation without killing bacteria. This property is 1. Does not disturb the resident bacterial flora at each site including the skin. It has two advantages of not inducing drug-resistant bacteria. Catheters that have been soaked with antibacterial substances (antibacterial drugs and silver) have already been clinically applied, but none of them are intended for antibacterial properties, and have not been designed to inhibit biofilm formation. A method of using the biofilm formation inhibitor containing the diterpenoid compound of the present invention as an active ingredient by coating or immersing a medical device, for example, a medical device such as a catheter, a medical dressing material or a medical tape, It can be a new prevention method for infectious diseases related to medical devices.
各種黄色ブドウ球菌株について、各濃度のグルコースを含む培地で培養したときのバイオフィルム形成能を示す図である。(参考例1)It is a figure which shows biofilm formation ability when it culture | cultivates about the various S. aureus strains in the culture medium containing glucose of each concentration. (Reference Example 1) アビエチン酸及びその他の天然由来物質の、黄色ブドウ球菌(N315株)によるバイオフィルム形成阻害能を示す図である。(参考例2)It is a figure which shows the biofilm formation inhibitory ability by a Staphylococcus aureus (N315 strain | stump | stock) of abietic acid and another naturally-derived substance. (Reference Example 2) アビエチン酸及び6種の天然由来物質の、黄色ブドウ球菌(N315株)によるバイオフィルム形成阻害能を示す図である。(参考例3)It is a figure which shows the biofilm formation inhibitory ability by a Staphylococcus aureus (N315 strain | stump | stock) of abietic acid and six types of naturally-derived substances. (Reference Example 3) アビエチン酸の、黄色ブドウ球菌(N315株、Newman株)によるバイオフィルム形成阻害能を示す図である。(実施例1)It is a figure which shows the biofilm formation inhibitory ability by Staphylococcus aureus (N315 strain | stump | stock, Newman strain | stump | stock) of abietic acid. Example 1 アビエチン酸の、黄色ブドウ球菌(N315株)によるバイオフィルム形成阻害能及び遊離菌の生菌数に及ぼす影響を示す図である。(実施例2)It is a figure which shows the influence which abietic acid has on the biofilm formation inhibitory ability by S. aureus (N315 strain | stump | stock), and the viable count of free bacteria. (Example 2) アビエチン酸及びその類似化合物の、黄色ブドウ球菌(N315株)によるバイオフィルム形成阻害能及び遊離菌の生菌数に及ぼす影響を示す図である。(実施例3)It is a figure which shows the influence which abietic acid and its analog have on the biofilm formation inhibitory ability by Staphylococcus aureus (N315 strain | stump | stock), and the viable count of free bacteria. (Example 3) アビエチン酸、デヒドロアビエチン酸及びロジンの、黄色ブドウ球菌(N315株)によるバイオフィルム形成阻害能を示す図である。(実施例4)It is a figure which shows the biofilm formation inhibitory ability by a Staphylococcus aureus (N315 strain | stump | stock) of abietic acid, dehydroabietic acid, and rosin. (Example 4) アビエチン酸、デヒドロアビエチン酸及びロジンの、表皮ブドウ球菌(臨床分離株)によるバイオフィルム形成阻害能を示す図である。(実施例5)It is a figure which shows the biofilm formation inhibitory ability by Staphylococcus epidermidis (clinical isolate) of abietic acid, dehydroabietic acid, and rosin. (Example 5)
 本発明は、ジテルペノイド化合物を有効成分として含有するバイオフィルム形成阻害剤に関する。本発明においてバイオフィルム形成阻害剤に含有されるジテルペノイド化合物は、好ましくは環状ジテルペノイド化合物である。ジテルペノイド化合物には、ラブダン型、ピラマン型やアビエタン型などが知られているが、本発明のバイオフィルム形成阻害剤としては、アビエタン系ジテルペノイド化合物が特に好適である。アビエタン系ジテルペノイド化合物は、例えば松や杉などのマツ科(Pinaceae)の植物から抽出される化合物であり、しそ科の植物からも抽出可能な化合物である。そのような化合物として、具体的にはアビエチン酸、デヒドロアビエチン酸(dehydroabietic acid)、ネオアビエチン酸(neoabietic acid)、ピマル酸(pimaric acid)、パラストリン酸、レボピマル酸等が挙げられる。本発明において、アビエタン系ジテルペノイド化合物とは、上記化合物のほか、これらの薬理学上許容可能な誘導体のいずれかであってもよい。本発明において、薬理学上許容可能な誘導体とは、ジテルペノイド化合物、好ましくはアビエタン系ジテルペノイド化合物、より好ましくは上述の化合物と共通の基本骨格を有する誘導体であって、バイオフィルム形成阻害能を有する化合物をいう。本発明のジテルペノイド化合物は、上記植物から抽出した天然物由来であっても良いし、合成した化合物であっても良い。また、その全ての立体異性体(ジアステレオマー、エピマー、エナンチオマーなど)又はラセミ体を含む。 The present invention relates to a biofilm formation inhibitor containing a diterpenoid compound as an active ingredient. In the present invention, the diterpenoid compound contained in the biofilm formation inhibitor is preferably a cyclic diterpenoid compound. As the diterpenoid compound, a labdan type, a pyramant type, an abietane type, and the like are known, and as the biofilm formation inhibitor of the present invention, an abietan diterpenoid compound is particularly suitable. Abietane diterpenoid compounds are compounds that are extracted from Pinaceae plants such as pine and cedar, for example, and are compounds that can also be extracted from plants of the family Lamiaceae. Specific examples of such compounds include abietic acid, dehydroabietic acid, neoabietic acid, pimaric acid, parastolic acid, levopimaric acid, and the like. In the present invention, the abietane diterpenoid compound may be any of these pharmacologically acceptable derivatives in addition to the above compound. In the present invention, the pharmacologically acceptable derivative is a diterpenoid compound, preferably an abietane diterpenoid compound, more preferably a derivative having a basic skeleton in common with the above-mentioned compound and having a biofilm formation inhibitory ability Say. The diterpenoid compound of the present invention may be derived from a natural product extracted from the above plant, or may be a synthesized compound. Moreover, all the stereoisomers (diastereomers, epimers, enantiomers, etc.) or racemates are included.
 以下に、代表的なアビエタン系ジテルペノイド化合物であるアビエチン酸と、その類似化合物の例を示す。
Figure JPOXMLDOC01-appb-C000001
Examples of abietic acid, which is a typical abietane diterpenoid compound, and similar compounds are shown below.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 本発明のバイオフィルム形成阻害剤における有効成分として用いる上記化合物は、商業的に入手してもよいが、天然物から抽出しても良い。天然物から抽出する場合は、該抽出物は公知の方法、又は今後開発されるあらゆる方法で製造することができる。例えば、抽出物は、水、有機溶剤又はこれらの混合物を用いて適当な方法で抽出することにより得ることができる。有機溶剤は特に制限されるものではなく、メタノール、エタノール、イソプロパノール、ブタノール等のアルコール類やアセトン、酢酸エチル、エチルエーテル等を挙げることができ、これらは1種を単独で用いてもよいし、2種以上を併用することもできる。これらの化合物は、例えば70%アセトン水溶液及び100%メタノールを溶剤として浸漬抽出することが好ましい。また、抽出した化合物は、さらに精製していても良い。例えば、カラムクロマトグラフィー等で精製したものであってもよい。また、ロジン(松の幹に傷をつけて得られる樹液を水蒸気蒸留して揮発性の物質を除いたもの)は単独又は酸を添加し、加熱することにより得ることができる。 The above-mentioned compound used as an active ingredient in the biofilm formation inhibitor of the present invention may be obtained commercially or extracted from a natural product. When extracting from a natural product, this extract can be manufactured by a well-known method or all the methods developed in the future. For example, an extract can be obtained by extracting by an appropriate method using water, an organic solvent, or a mixture thereof. The organic solvent is not particularly limited, and examples thereof include alcohols such as methanol, ethanol, isopropanol, and butanol, acetone, ethyl acetate, ethyl ether, and the like, and these may be used alone. Two or more kinds can be used in combination. These compounds are preferably extracted by immersion using, for example, 70% acetone aqueous solution and 100% methanol as solvents. The extracted compound may be further purified. For example, it may be purified by column chromatography or the like. Further, rosin (a sap obtained by scratching a pine trunk by steam distillation to remove a volatile substance) can be obtained alone or by adding an acid and heating.
 本発明においてバイオフィルム形成阻害剤には、バイオフィルム形成阻害能を有するジテルペノイド化合物、好ましくはアビエタン系ジテルペノイド化合物、より好ましくは上述の化合物のうち、1種を単独で又は2種以上の混合物として配合することができる。また、本発明のバイオフィルム形成阻害剤には、バイオフィルム形成阻害能を有する上述の化合物が含有されるのであれば、化合物自体は精製されているものであってもよいし、天然物からの抽出物がそのまま含まれているものであっても良い。そのような抽出物の例として、ロジンを挙げることができる。本発明のバイオフィルム形成阻害剤は、ロジンを含んでいても良いし、ロジンそのものであってもよい。ロジンは、ジテルペン樹脂酸を約90%程度含有し、その主成分はアビエチン酸である。即ちマツ科の植物に多量に含まれる松脂の不揮発性の成分であり、専門的には樹脂酸とよばれる各種異性体を主成分としたものである。ロジンは、マツ科の植物の分泌物から精油や揮発性物質を除いて作製することができる。ロジンは、天然ロジンでも良いし、各種の合成ロジンであってもよい。 In the present invention, the biofilm formation inhibitor is a diterpenoid compound having an ability to inhibit biofilm formation, preferably an abiethane diterpenoid compound, more preferably one of the above-mentioned compounds alone or as a mixture of two or more. can do. In addition, the biofilm formation inhibitor of the present invention may contain a purified compound or a natural product as long as it contains the above-mentioned compound having biofilm formation inhibiting ability. The extract may be contained as it is. An example of such an extract is rosin. The biofilm formation inhibitor of the present invention may contain rosin or rosin itself. Rosin contains about 90% of diterpene resin acid, and its main component is abietic acid. In other words, it is a non-volatile component of pine resin that is contained in a large amount in Pinaceae plants, and is technically composed mainly of various isomers called resin acids. Rosin can be produced by removing essential oils and volatile substances from the secretions of Pinaceae plants. The rosin may be natural rosin or various synthetic rosins.
 本発明においてバイオフィルム形成阻害剤に含有されるジテルペノイド化合物は、バイオフィルムの形成を阻害しうる濃度であれば、どのような濃度で用いても良いが、本発明では、特に最小生育阻止濃度(minimum inhibitory concentration:MIC、以下単に「MIC」ともいう。)よりも低い濃度において使用することができるのが特徴である。例えばMICの1/2以下、好ましくは1/4以下、より好ましくは1/8以下の濃度で使用することができる。このような低い濃度で、バイオフィルムの形成を阻害することができることで、常在細菌叢を乱したり薬剤耐性菌を誘導することを防ぐことができる。具体的には、アビエチン酸の濃度として、 8~64ppm、好ましくは16~32ppmで使用することができる。他のジテルペノイド化合物では、デヒドロアビエチン酸、ネオアビエチン酸、ピマル酸の濃度として、2~8ppm、好ましくは2~4ppmで使用することができる。 In the present invention, the diterpenoid compound contained in the biofilm formation inhibitor may be used at any concentration as long as it can inhibit biofilm formation. The minimum inhibitory concentration: MIC (hereinafter also referred to simply as “MIC”) is characterized by being able to be used at a lower concentration. For example, it can be used at a concentration of 1/2 or less, preferably 1/4 or less, more preferably 1/8 or less of MIC. By inhibiting the formation of biofilm at such a low concentration, it is possible to prevent disturbance of the resident bacterial flora and induction of drug-resistant bacteria. Specifically, the concentration of abietic acid can be 8 to 64 ppm, preferably 16 to 32 ppm. In other diterpenoid compounds, the concentration of dehydroabietic acid, neoabietic acid, and pimaric acid can be 2 to 8 ppm, preferably 2 to 4 ppm.
 本発明のバイオフィルム形成阻害剤には、上記有効成分としてのジテルペノイド化合物が上記濃度で含有されていれば良く、特に限定されない。また、該ジテルペノイド化合物の溶媒としては、例えばジメチルスルフォキシド(DMSO)、アルコール類、アセトン等が挙げられる。 The biofilm formation inhibitor of the present invention is not particularly limited as long as it contains the diterpenoid compound as the active ingredient in the above concentration. Examples of the solvent for the diterpenoid compound include dimethyl sulfoxide (DMSO), alcohols, acetone and the like.
 本発明のバイオフィルム形成阻害剤が作用するバイオフィルムの由来は特に限定されないが、本発明のバイオフィルム形成阻害剤は、ブドウ球菌属(Staphylococcus)に属するグラム陽性球菌により形成されるものに対して特に阻害活性を有する。本発明のバイオフィルム形成阻害剤は、ブドウ球菌属のうち好ましくは、黄色ブドウ球菌 (S. aureus) 、表皮ブドウ球菌(S. epidermidis)や腐性ブドウ球菌(S. saprophyticus) 由来のバイオフィルム形成を有効に阻害する。黄色ブドウ球菌の中には莢膜多糖を有する株があり、このような株はバイオフィルムを形成し、抗菌薬の到達が悪くなるため、その効果が低下することがある。本発明のバイオフィルム形成阻害剤は、黄色ブドウ球菌のうち、さらにはMRSAやバンコマイシン耐性黄色ブドウ球菌(vancomycin-resistant Staphylococcus aureus:VRSA)由来のバイオフィルム形成阻害について有効に作用する。 The origin of the biofilm on which the biofilm formation inhibitor of the present invention acts is not particularly limited, but the biofilm formation inhibitor of the present invention is against that formed by gram-positive cocci belonging to Staphylococcus. In particular, it has inhibitory activity. The biofilm formation inhibitor of the present invention is preferably a staphylococcus genus, preferably a biofilm formation derived from S. aureus , S. epidermidis or S. saprophyticus. Is effectively inhibited. Some Staphylococcus aureus strains have capsular polysaccharides, and these strains form biofilms, which can reduce the effectiveness of antimicrobial agents and can reduce their effectiveness. The biofilm formation inhibitor of the present invention effectively acts on inhibition of biofilm formation from Staphylococcus aureus, MRSA and vancomycin-resistant Staphylococcus aureus (VRSA).
 本発明は、上記バイオフィルム形成阻害剤で処理されてなる医療用用具、例えば医療用デバイス、医療用ドレッシングや医療用テープにも及ぶ。バイオフィルム形成阻害剤で処理されてなる医療用用具とは、当該医療用用具の表面の一部若しくは全体をバイオフィルム形成阻害剤でコーティングされているか、又は医療用用具の一部若しくは全体にバイオフィルム形成阻害剤が浸透しているものをいう。 The present invention also extends to medical devices processed with the biofilm formation inhibitor, such as medical devices, medical dressings and medical tapes. A medical device treated with a biofilm formation inhibitor means that a part or the whole of the surface of the medical device is coated with a biofilm formation inhibitor, or a part or the whole of the medical device is a biomaterial. This refers to the penetration of a film formation inhibitor.
 本発明において、医療用用具は、医療用に使用される装置、機器、デバイスなどが挙げられ、特に限定されない。例えば生体内に留置されうる医療用デバイス、すなわちインプラント (implant)が、バイオフィルムの形成により重篤な感染に結びつくことが危惧される。インプラントの例として、特に限定されないが、例えばカテーテル、人工歯(デンタルインプラント)、骨折・リウマチ等の治療で骨を固定するためのボルト、ペースメーカー、人工心臓弁、人工関節、ボイスプロテーゼ、コンタクトレンズ等が挙げられる。前記カテーテルとしては、尿道カテーテル、腹腔カテーテル及び中心静脈カテーテル等が挙げられる。このように、生体内に留置されうる医療用デバイスを、本発明のバイオフィルム形成阻害剤で処理することにより、留置される生体の常在細菌叢を乱したり、薬剤耐性菌を誘導することなく、効果的に医療用デバイスにおけるバイオフィルム形成が阻害される。また、特に生体内で留置させるためのものでなくとも、バイオフィルムの形成により、何らかの好ましくない影響を及ぼすことが危惧される医療用用具、例えば医療用デバイス、医療用ドレッシング材や医療用テープも、本発明の範囲に含まれる。 In the present invention, medical tools include, but are not particularly limited to, apparatuses, devices, and devices used for medical purposes. For example, it is feared that a medical device that can be placed in a living body, that is, an implant, will lead to serious infection by the formation of a biofilm. Examples of implants include, but are not limited to, for example, catheters, artificial teeth (dental implants), bolts for fixing bones in the treatment of fractures, rheumatism, pacemakers, artificial heart valves, artificial joints, voice prostheses, contact lenses, etc. Is mentioned. Examples of the catheter include a urinary catheter, an abdominal catheter, and a central venous catheter. In this way, by treating a medical device that can be placed in a living body with the biofilm formation inhibitor of the present invention, the resident bacterial flora of the placed living body is disturbed or drug-resistant bacteria are induced. Without effectively inhibiting biofilm formation in medical devices. In addition, even medical devices that are not intended to be placed in a living body, but are feared to have some undesirable effects due to the formation of a biofilm, such as medical devices, medical dressing materials and medical tapes, It is included in the scope of the present invention.
 本発明は、バイオフィルム形成阻害剤を用いて処理する工程を含むバイオフィルム形成阻害方法にも及ぶ。ここで、バイオフィルム形成阻害剤を用いて処理する処理対象物は、上述の医療用デバイスのほか、バイオフィルムの形成が問題となりうるあらゆる物を処理対象物とすることができる。例えば、一般家庭やその他の事業所での排水処理設備には、ぬめり等のバイオフィルムに起因する汚染が問題となる。具体的には、炊事場、洗面所や風呂場などの水周りに係る設備、その他給水設備、排水管や排水溝などの排水設備が挙げられる。また、絆創膏の粘着付与剤や軟膏の基材、滑り止め、セッケンに混ぜるなどの用途に適用することができる。 The present invention also extends to a biofilm formation inhibition method including a step of treating with a biofilm formation inhibitor. Here, the processing object to be processed using the biofilm formation inhibitor can be any object that can cause the formation of a biofilm in addition to the medical device described above. For example, pollution caused by biofilm such as slime becomes a problem in wastewater treatment facilities in ordinary households and other business establishments. Specifically, facilities related to water such as a kitchen, a washroom, and a bathroom, other water supply facilities, and drainage facilities such as a drain pipe and a drain ditch are included. Moreover, it can be applied to uses such as tackifiers for adhesive bandages, base materials for ointments, antiskid, and mixed with soap.
 上記において、処理するとは、処理対象物を本発明のバイオフィルム形成阻害剤と接触させる工程を含む。バイオフィルム形成阻害剤と接触させるとは、コーティングする、スプレーする、浸漬する、洗浄する等の操作をいう。処理対象物が医療用デバイスのように小規模のものであれば、該医療用デバイスの表面の一部にバイオフィルム形成阻害剤を塗布したりスプレーすることでコーティング処理を行ったり、浸漬させて浸み込ませたり、又は洗浄したりすることができる。処理対象物が給水設備や排水処理設備のように大規模の場合には、所望の部位に本発明のバイオフィルム形成阻害剤を流し込んだり、塗布したり、洗浄したりすることができる。このような場合に、バイオフィルム形成阻害剤に含まれる化合物自体は天然物からの抽出物がそのまま含まれているものであっても良い。 In the above, the treatment includes a step of bringing a treatment object into contact with the biofilm formation inhibitor of the present invention. Contacting with a biofilm formation inhibitor refers to operations such as coating, spraying, dipping, and washing. If the object to be treated is a small-scale object such as a medical device, a biofilm formation inhibitor is applied to or sprayed on a part of the surface of the medical device to perform a coating process or immerse it. It can be soaked or washed. In the case where the treatment object is a large scale such as a water supply facility or a wastewater treatment facility, the biofilm formation inhibitor of the present invention can be poured into a desired site, applied, or washed. In such a case, the compound itself contained in the biofilm formation inhibitor may contain an extract from a natural product as it is.
 上記の場合に、必要に応じて、バイオフィルムを形成しうる菌に有効な消毒薬、例えばグルコン酸クロルヘキシジン、塩化ベンザルコニウム、塩化ベンゼトニウム、両性界面活性剤、アルコール、次亜塩素酸ナトリウム、ポビドンヨード、グルタラールなどを併用して用いて処理しても良いし、上記処理の前後に処理しても良い。なお、ブドウ球菌に対する持続効果の面ではクロルヘキシジンが優れているといわれている。 In the above case, if necessary, an antiseptic effective against bacteria capable of forming a biofilm, such as chlorhexidine gluconate, benzalkonium chloride, benzethonium chloride, amphoteric surfactant, alcohol, sodium hypochlorite, povidone iodine , Glutaral or the like may be used in combination, or may be processed before or after the above processing. In addition, it is said that chlorhexidine is excellent in terms of a sustained effect against staphylococci.
 以下に、本発明の理解をより確実にするために、本発明を完成するに至った経緯を参考例に示し、本発明の内容を具体的に実施例に示して詳細かつ具体的に説明するが、本発明は下記の実施例の範囲に限定されるものではないことは明らかである。 Hereinafter, in order to make the understanding of the present invention more reliable, details of the present invention will be described in a reference example, and the contents of the present invention will be described in detail in a specific example. However, it is clear that the present invention is not limited to the scope of the following examples.
(参考例1)バイオフィルムの作製
 本参考例では、バイオフィルム形成阻害剤の有効成分をスクリーニングするために用いるバイオフィルムの産生条件を検討した。黄色ブドウ球菌の様々な菌株の細胞をそれぞれBHI(ブレインハートインヒュージョン)培地で希釈後、96穴プレートに200μlずつ分注し、各々0.1~2.0%となるようにグルコース(glucose)を加えた。これを37℃で48時間静置培養したのち、形成されたバイオフィルムをクリスタルバイオレット(crystal violet)を用いて染色した。蒸留水を用いて各ウェルを洗浄した後、DMSO200μlで溶出したクリスタルバイオレットについて570nmの吸光度を計測し、バイオフィルムの形成能を測定した。
(Reference Example 1) Production of Biofilm In this reference example, biofilm production conditions used for screening an active ingredient of a biofilm formation inhibitor were examined. Each cell of various strains of S. aureus is diluted with BHI (Brain Heart Infusion) medium, and then 200 μl is dispensed into a 96-well plate, so that each glucose is 0.1-2.0%. Was added. This was incubated at 37 ° C. for 48 hours, and the formed biofilm was stained with crystal violet. After washing each well with distilled water, the absorbance at 570 nm was measured for crystal violet eluted with 200 μl of DMSO to determine the biofilm forming ability.
 上記の検討結果を図1に示した。その結果、さまざまな黄色ブドウ球菌の菌株のうち、黄色ブドウ球菌N315株がバイオフィルム形成に適しているものと考え、以降の実施例において使用した。N315株はMRSAの標準株であり、すでに全ゲノム配列も決定されており、遺伝的解析も行いやすい株である。この株のバイオフィルム形成能をさらに高めるために1%グルコースを含む培地を用いて培養した。 The above examination results are shown in FIG. As a result, among various S. aureus strains, S. aureus N315 was considered suitable for biofilm formation and used in the following examples. The N315 strain is a standard strain of MRSA, the entire genome sequence has already been determined, and it is easy to perform genetic analysis. In order to further enhance the biofilm forming ability of this strain, it was cultured using a medium containing 1% glucose.
(参考例2)バイオフィルム形成阻害物質のスクリーニング
 本参考例では、バイオフィルム形成阻害剤の有効成分であるバイオフィルム形成阻害物質を選別するためにスクリーニングを行なった。スクリーニングには35種類の天然由来物質を用いた。まず最初に、これらの天然由来物質の黄色ブドウ球菌N315株に対する最小生育阻止濃度(MIC)を求め、生育に影響を与えないMICの1/8以下の濃度を培地に添加したときのバイオフィルムの形成能を確認した。各候補化合物は、1%DMSOを含む培地で希釈した。黄色ブドウ球菌N315株に対するMICは、表1に示した。
Reference Example 2 Screening for Biofilm Formation Inhibiting Substance In this reference example, screening was performed to select a biofilm formation inhibiting substance that is an active ingredient of a biofilm formation inhibitor. For screening, 35 kinds of naturally derived substances were used. First, the minimum growth inhibitory concentration (MIC) of these naturally-derived substances against S. aureus N315 strain was determined, and the biofilm when the concentration of 1/8 or less of MIC that does not affect the growth was added to the medium. The ability to form was confirmed. Each candidate compound was diluted in a medium containing 1% DMSO. The MIC for S. aureus N315 strain is shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 黄色ブドウ球菌N315株細胞をBHI(1%グルコース添加)培地で100倍に希釈した後、96穴プレートに200μlずつ分注し、さらに各試料溶液2μlを加えた。ここで、候補化合物のうちオイゲノール及びケルセチン(quercetin)は最終濃度が1/16MIC、その他については1/8MICとなるよう調整した。コントロールは試料も溶媒も含まないBHI培地とした。これらを37℃で48時間静置培養した。
 形成されたバイオフィルムを、クリスタルバイオレットを用いて染色し、バイオフィルムの形成能を参考例1と同手法により測定した。物質名の後の数字は濃度を表し、単位はμg/mlである。
S. aureus N315 strain cells were diluted 100-fold with BHI (1% glucose added) medium, then dispensed 200 μl each into a 96-well plate, and 2 μl of each sample solution was further added. Here, among the candidate compounds, eugenol and quercetin were adjusted so that the final concentration was 1/16 MIC, and the others were 1/8 MIC. The control was BHI medium containing neither sample nor solvent. These were cultured at 37 ° C. for 48 hours.
The formed biofilm was dyed using crystal violet, and the biofilm forming ability was measured by the same method as in Reference Example 1. The number after the substance name represents the concentration, and the unit is μg / ml.
 その結果、アビエチン酸(abietic acid, C20H30O2)、オイゲノール(eugenol, C10H12O2)、 カプサイシン(capsaicin, C17H27NO3)、ネロール(nerol, C10H18O)、ナリンゲニン(naringenin, C15H12O5)、シトロネロール(citronellol, C10H20O)、ジヒドロカプサイシン(dihydrocapzaicin,C18H29NO3)、ゲラニオール(geraniol, C10H18O)の8種類の物質にバイオフィルム形成阻害が認められた。特に、アビエチン酸は黄色ブドウ球菌N315株によるバイオフィルム形成を強く阻害することが確認された。また精油成分であるシトロネロールもある程度バイオフィルム形成を阻害することが確認された。ここで、ゲラニオールは直鎖モノテルペノイドの一種であり、ネロールはモノテルペンの一種である。カプサイシンはアルカロイドのうちカプサイシノイドと呼ばれる化合物の一種である。また、オイゲノールはグアイアコールにアリル基が置換した構造を持つ、フェニルプロパノイドの一種である。ナリンゲニンはフラバノンであり、フラボノイドに属する。 As a result, abietic acid (C 20 H 30 O 2 ), eugenol (eugenol, C 10 H 12 O 2 ), capsaicin (capsaicin, C 17 H 27 NO 3 ), nerol (nerol, C 10 H 18 O ), naringenin (naringenin, C 15 H 12 O 5), citronellol (citronellol, C 10 H 20 O ), dihydrocapsaicin (dihydrocapzaicin, C 18 H 29 NO 3), 8 of geraniol (geraniol, C 10 H 18 O ) Inhibition of biofilm formation was observed in several types of substances. In particular, it was confirmed that abietic acid strongly inhibits biofilm formation by Staphylococcus aureus N315 strain. Citronellol, an essential oil component, was also confirmed to inhibit biofilm formation to some extent. Here, geraniol is a kind of linear monoterpenoid, and nerol is a kind of monoterpene. Capsaicin is a kind of compound called capsaicinoid among alkaloids. Eugenol is a kind of phenylpropanoid having a structure in which an allyl group is substituted for guaiacol. Naringenin is a flavanone and belongs to the flavonoids.
(参考例3)バイオフィルム形成阻害物質のスクリーニング(2)
 本参考例では参考例2におけるスクリーニングの結果、黄色ブドウ球菌のN315株において、バイオフィルムの産生を比較的強く抑制し、菌の生育には大きな影響を与えなかったアビエチン酸、オイゲノール、カプサイシン、ネロール、シトロネロール、ゲラニオールの6種類の天然由来物について、MICの1/8よりさらに低濃度の試料を用いてバイオフィルム形成阻害活性の濃度依存性を調べた。
(Reference Example 3) Screening for biofilm formation inhibitors (2)
In the present Reference Example, as a result of screening in Reference Example 2, in the N315 strain of Staphylococcus aureus, biofilm production was relatively strongly suppressed, and abietic acid, eugenol, capsaicin, nerol that did not significantly affect the growth of the bacteria , Citronellol, and geraniol were examined for concentration dependence of biofilm formation inhibitory activity using samples having a concentration lower than 1/8 of MIC.
 その結果、濃度依存的にバイオフィルム形成を抑制しているものはアビエチン酸とシトロネロールであることがわかった。低濃度で抑制作用を持つアビエチン酸を効果的なバイオフィルム形成阻害物質とした。 As a result, it was found that abietic acid and citronellol suppressed biofilm formation in a concentration-dependent manner. Abietic acid having an inhibitory action at a low concentration was used as an effective biofilm formation inhibitor.
(実施例1)アビエチン酸のバイオフィルム形成阻害作用の確認
 本実施例は、参考例2及び3の結果に基づき、特にバイオフィルムの形成阻害作用の優れていたアビエチン酸について確認した。アビエチン酸のバイオフィルム形成阻害作用が黄色ブドウ球菌N315株に特有のものであるかどうかを確認するためにメチシリン感受性黄色ブドウ球菌の病原性に関わる実験に用いられるNewman株のバイオフィルム形成に及ぼす効果も調べた。黄色ブドウ球菌N315株細胞又はNewman株細胞をBHI(1%グルコース添加)培地で100倍に希釈した後、96穴プレートに200μlずつ分注し、さらに最終濃度が0、4、8、16、32μg/mlとなるようアビエチン酸溶液2μl(溶媒であるDMSOの最終濃度は1%)を加えた。これらを37℃で48時間静置培養した。形成されたバイオフィルムを、クリスタルバイオレットを用いて染色し、バイオフィルムの形成能を参考例1と同手法により測定した。
(Example 1) Confirmation of biofilm formation inhibitory action of abietic acid Based on the results of Reference Examples 2 and 3, this example was confirmed with respect to abietic acid that was particularly excellent in biofilm formation inhibitory action. Effect of abietic acid on biofilm formation of Newman strain used in experiments related to the pathogenicity of methicillin-sensitive Staphylococcus aureus to confirm whether the biofilm formation inhibitory action is unique to S. aureus N315 I also investigated. S. aureus N315 cell line or Newman cell line is diluted 100 times with BHI (1% glucose added) medium, then 200 μl is dispensed into 96-well plates, and final concentrations are 0, 4, 8, 16, 32 μg. 2 μl of abietic acid solution (final concentration of DMSO as a solvent is 1%) was added so as to be / ml. These were cultured at 37 ° C. for 48 hours. The formed biofilm was dyed using crystal violet, and the biofilm forming ability was measured by the same method as in Reference Example 1.
 その結果、図4に示すようにN315株及びNewman株のいずれについても、バイオフィルム形成はアビエチン酸により阻害されることが確認された。 As a result, as shown in FIG. 4, it was confirmed that biofilm formation was inhibited by abietic acid in both the N315 strain and the Newman strain.
(実施例2)アビエチン酸のバイオフィルム形成阻害作用の確認
 本実施例ではアビエチン酸のバイオフィルム形成阻害作用と菌の生育抑制作用との関係を調べた。実施例1と同手法により黄色ブドウ球菌N315株細胞をBHI(1%グルコース添加)培地で100倍に希釈した後、96穴プレートに200μlずつ分注し、さらに0、4、8、16、32μg/mlのアビエチン酸溶液2μl(溶媒であるDMSOの最終濃度は1%)を加えた。コントロールは試料も溶媒も含まないBHI培地とした。これらを37℃で48時間静置培養した。形成されたバイオフィルムを、クリスタルバイオレットを用いて染色し、バイオフィルムの形成能を参考例1と同手法により測定した。また、ウェル内の培地中の菌数(浮遊菌)についても測定した。96穴プレート各ウェルの培養上清を10分の1に滅菌生理食塩液で希釈した菌浮遊液を普通寒天培地に塗布し、37℃で静置培養後のコロニー数をカウントし、菌数を測定した。生菌数はlog10CFU/mlで表した。
(Example 2) Confirmation of biofilm formation inhibitory action of abietic acid In this example, the relationship between the biofilm formation inhibitory action of abietic acid and the growth inhibitory action of bacteria was examined. After the S. aureus N315 strain cells were diluted 100-fold with BHI (1% glucose added) medium by the same method as in Example 1, 200 μl each was dispensed into a 96-well plate, and 0, 4, 8, 16, 32 μg. 2 μl / ml of abietic acid solution (final concentration of DMSO as a solvent is 1%) was added. The control was BHI medium containing neither sample nor solvent. These were cultured at 37 ° C. for 48 hours. The formed biofilm was dyed using crystal violet, and the biofilm forming ability was measured by the same method as in Reference Example 1. In addition, the number of bacteria in the medium in the well (floating bacteria) was also measured. Culture supernatants of 96 well plates each well was applied to nutrient agar bacterial suspension was diluted with sterile saline to 1 of 10 4 minutes, and counted the number of colonies after static culture at 37 ° C., the number of bacteria Was measured. Viable counts were expressed as log 10 CFU / ml.
 その結果、図5に示すように、アビエチン酸の濃度が上昇するにつれて、バイオフィルム形成能は減少する一方、各ウェル中の浮遊菌数が上昇していることが確認された。これはアビエチン酸が黄色ブドウ球菌を殺すことなくバイオフィルム形成能だけを阻害したことを示している。 As a result, as shown in FIG. 5, it was confirmed that as the concentration of abietic acid increased, the biofilm forming ability decreased, while the number of floating bacteria in each well increased. This indicates that abietic acid only inhibited the ability to form biofilm without killing S. aureus.
(実施例3)アビエチン酸及びその類似物質のバイオフィルム形成阻害作用の確認
 アビエチン酸にバイオフィルム形成阻害作用が認められたことから、本実施例ではアビエチン酸の類似化合物についても同様に確認した。実施例1と同手法により黄色ブドウ球菌N315株細胞をBHI(1%グルコース添加)培地で100倍に希釈した後、96穴プレートに200μlずつ分注し、さらに各濃度のアビエチン酸、デヒドロアビエチン酸(dehydroabietic acid)、ネオアビエチン酸(neoabietic acid)、ピマル酸(pimaric acid)又はタンシノン(tanshinones)を各々2μl(溶媒であるDMSOの最終濃度は1%)加えた。コントロールは試料も溶媒も含まないBHI培地とした。また、1%DMSOを含むBHI培地も比較対照とした。これらを37℃で48時間静置培養した。形成されたバイオフィルムを、クリスタルバイオレットを用いて染色し、バイオフィルムの形成能を参考例1と同手法により測定した。アビエチン酸及びその類似物質の構造式は、以下のとおりである。
(Example 3) Confirmation of biofilm formation inhibitory action of abietic acid and its similar substances Since abietic acid was found to have a biofilm formation inhibitory action, similar compounds of abietic acid were also confirmed in this example. The S. aureus N315 strain cells were diluted 100-fold with BHI (1% glucose added) medium by the same method as in Example 1, and then 200 μl each was dispensed into a 96-well plate, and each concentration of abietic acid and dehydroabietic acid 2 μl each of (dehydroabietic acid), neoabietic acid, pimaric acid or tanshinones (final concentration of DMSO as solvent is 1%) was added. The control was BHI medium containing neither sample nor solvent. A BHI medium containing 1% DMSO was also used as a comparative control. These were cultured at 37 ° C. for 48 hours. The formed biofilm was dyed using crystal violet, and the biofilm forming ability was measured by the same method as in Reference Example 1. The structural formulas of abietic acid and its similar substances are as follows.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 その結果、図6に示すようにアビエチン酸と同様にマツ科の植物に含まれるジテルペノイドである、デヒドロアビエチン酸、ネオアビエチン酸、ピマル酸については強いバイオフィルム形成阻害作用が認められた。また培地に添加した各アビエチン酸の類似化合物の添加濃度は、アビエチン酸の添加濃度が32μg/mlに対して、2~4μg/mlと低く、アビエチン酸よりも低濃度で効果を示した。 As a result, as shown in FIG. 6, a strong biofilm formation inhibitory action was observed for dehydroabietic acid, neoabietic acid, and pimaric acid, which are diterpenoids contained in Pinaceae plants, as in the case of abietic acid. Further, the concentration of each abietic acid-like compound added to the medium was 2-4 μg / ml, which was lower than that of abietic acid, compared to 32 μg / ml for the concentration of abietic acid.
(実施例4)ロジンのバイオフィルム形成阻害作用の確認(1)
 アビエチン酸及びデヒドロアビエチン酸にバイオフィルム形成阻害効果があったことに基づいて、アビエチン酸を主成分として含むロジン(rosin)についても黄色ブドウ球菌に対してバイオフィルム抑制効果があるかどうか調べた。本実施例では、黄色ブドウ球菌はN315株細胞を用い、ロジンは和光純薬工業株式会社のものを用いた。用いたロジンの組成は、樹脂酸(80-97%)、不ケンカ物及びその他少量である。樹脂酸には主としてアビエチン酸、ネオアビエチン酸、パラストリン酸を含み、他にレボピマル酸、デヒドロアビエチン酸、ピマル酸などが含まれる。また、アビエチン酸及びデヒドロアビエチン酸についてもバイオフィルム抑制効果を確認した。アビエチン酸及びデヒドロアビエチン酸の最終濃度はMICの1/16及び1/8、ロジンの最終濃度はMICの1/32、1/16及び1/8を用いた。
(Example 4) Confirmation of biofilm formation inhibitory action of rosin (1)
Based on the fact that abietic acid and dehydroabietic acid had a biofilm formation inhibitory effect, it was examined whether rosin containing abietic acid as a main component also had a biofilm inhibitory effect against Staphylococcus aureus. In this example, N315 strain cells were used for Staphylococcus aureus, and rosin was used from Wako Pure Chemical Industries, Ltd. The composition of rosin used is resin acid (80-97%), non-fighting and other small amounts. Resin acids mainly include abietic acid, neoabietic acid, and parastrinic acid, and also include levopimaric acid, dehydroabietic acid, pimaric acid, and the like. Moreover, the biofilm inhibitory effect was confirmed also about abietic acid and dehydroabietic acid. The final concentrations of abietic acid and dehydroabietic acid were 1/16 and 1/8 of MIC, and the final concentrations of rosin were 1/32, 1/16 and 1/8 of MIC.
 黄色ブドウ球菌N315株細胞をBHI(1%グルコース添加)培地で100倍に希釈した後、96穴プレートに200μlずつ分注し、さらに最終濃度が16又は32μg/mlとなるようアビエチン酸溶液2μl(溶媒であるDMSOの最終濃度は1%)を加えた。デヒドロアビエチン酸については4又は8μg/mlとなるよう、さらにロジンも最終濃度が8、16又は32μg/mlとなるように溶液を2μl培地に加えた。次いで、これらを37℃で48時間静置培養した。形成されたバイオフィルムを、クリスタルバイオレットを用いて染色したのち、蒸留水を用いて各ウェルを洗浄した後、DMSO200μlで溶出したクリスタルバイオレットについて570nmの吸光度を計測し、バイオフィルムの形成能を測定した。 S. aureus N315 strain cells were diluted 100-fold with BHI (1% glucose added) medium, then 200 μl each was dispensed into a 96-well plate, and further 2 μl of abietic acid solution (16 μl / 32 μg / ml) was added. The final concentration of DMSO as a solvent was 1%). For dehydroabietic acid, the solution was added to 2 μl medium to 4 or 8 μg / ml and rosin to a final concentration of 8, 16 or 32 μg / ml. These were then statically cultured at 37 ° C. for 48 hours. After the formed biofilm was stained with crystal violet, each well was washed with distilled water, and then the absorbance at 570 nm was measured for crystal violet eluted with DMSO 200 μl to determine the biofilm formation ability. .
 上記の結果、黄色ブドウ球菌において、アビエチン酸を主成分として含むロジンについてもアビエチン酸と同様のバイオフィルム抑制効果が認められた。ロジンはマツ科の植物の分泌物から精油や揮発性物質を除いた樹脂である。ジテルペン樹脂酸を90%含有し、その主成分はアビエチン酸である。絆創膏の粘着付与剤や軟膏の基材、滑り止め、セッケンに混ぜるなど、用途は広い。 As a result, in staphylococcus aureus, the same biofilm inhibitory effect as that of abietic acid was observed for rosin containing abietic acid as a main component. Rosin is a resin obtained by removing essential oils and volatile substances from the secretions of Pinaceae plants. It contains 90% diterpene resin acid and its main component is abietic acid. It has a wide range of uses such as adhesives for adhesive bandages and base materials for ointments, anti-slip materials, and soap.
(実施例5)ロジンのバイオフィルム形成阻害作用の確認(2)
 黄色ブドウ球菌の代わりに、表皮ブドウ球菌(臨床分離株)を用いた他は、実施例4と同手法にて、表皮ブドウ球菌に対するアビエチン酸、デヒドロアビエチン酸及びロジンのバイオフィルム形成阻害作用を確認した。
(Example 5) Confirmation of biofilm formation inhibitory action of rosin (2)
In the same manner as in Example 4 except that Staphylococcus epidermidis (clinical isolate) was used instead of Staphylococcus aureus, the biofilm formation inhibitory action of abietic acid, dehydroabietic acid and rosin on Staphylococcus epidermidis was confirmed. did.
 上記の結果、ロジンは表皮ブドウ球菌においても黄色ブドウ球菌と同様に、バイオフィルム形成阻害効果が認めた。 As a result of the above, rosin was found to inhibit biofilm formation in Staphylococcus epidermidis as well as Staphylococcus aureus.
 表皮ブドウ球菌は殆どのヒトの表皮や鼻腔に常在し、病原性の殆どない菌である。しかしながら、皮膚に常在する表皮ブドウ球菌が体内異物装着時に易感染患者に感染した場合には重症感染症を起こすことがある。表皮ブドウ球菌は、黄色ブドウ球菌と同様に体内に留置されるカテーテル等への付着性が高くバイオフィルムを形成しやすい。カテーテル関連血流感染症の起因菌としては黄色ブドウ球菌より表皮ブドウ球菌の方が、割合が高い。 Staphylococcus epidermidis is a bacterium that is resident in most human epidermis and nasal cavity and has almost no pathogenicity. However, severe infection may occur if Staphylococcus epidermidis resident on the skin infects an easily infected patient when wearing a foreign body. Staphylococcus epidermidis is highly adherent to a catheter or the like placed in the body like S. aureus, and easily forms a biofilm. As a causative bacterium of catheter-related bloodstream infection, Staphylococcus epidermidis has a higher ratio than Staphylococcus aureus.
 以上詳述したように、本発明のバイオフィルム形成阻害剤により、臨床上問題となる黄色ブドウ球菌(MRSAを含む)由来のバイオフィルム形成を阻害することができる。該バイオフィルム形成阻害剤は抗菌剤と異なり、菌を殺すことなくバイオフィルムの形成のみを阻害しうる。この性質は1.皮膚を始め各部位での常在細菌叢を乱さない、2.薬剤耐性菌を誘導しないという2つの利点を持っている。抗菌物質(抗菌薬や銀)を浸み込ませたカテーテルはすでに臨床応用されているが、いずれも抗菌性を目的としたもので、バイオフィルム形成阻害を目的としたものはできていない。 As described above in detail, the biofilm formation inhibitor of the present invention can inhibit biofilm formation derived from Staphylococcus aureus (including MRSA), which is a clinical problem. Unlike an antibacterial agent, the biofilm formation inhibitor can inhibit only biofilm formation without killing bacteria. This property is 1. Does not disturb the normal bacterial flora at each site including the skin. It has two advantages of not inducing drug-resistant bacteria. Catheters that have been impregnated with antibacterial substances (antibacterial drugs and silver) have already been clinically applied, but none of them are intended for antibacterial properties, and none have been designed to inhibit biofilm formation.
 本発明のジテルペノイド化合物を有効成分として含有するバイオフィルム形成阻害剤を、カテーテルをはじめとする各種医療用デバイスにコーティングしたり浸透させて用いる方法は、カテーテルなどの医療用デバイスに関連する感染症の新たな予防法になり得る。さらに、一般家庭を含む各施設の水周りにおいても、本発明のバイオフィルム形成阻害剤で処理することにより、効果的にバイオフィルムの形成を阻害しうる。 The method of using the biofilm formation inhibitor containing the diterpenoid compound of the present invention as an active ingredient by coating or infiltrating various medical devices such as catheters is used for infectious diseases related to medical devices such as catheters. It can be a new prevention method. Furthermore, the formation of biofilms can be effectively inhibited by treating with the biofilm formation inhibitor of the present invention even around water in each facility including general households.
 また、アビエチン酸を主成分として含むロジンは、黄色ブドウ球菌や表皮ブドウ球菌に対してアビエチン酸と同様のバイオフィルム抑制効果が認められたことから、ロジンを含む本発明のバイオフィルム形成阻害剤は、絆創膏の粘着付与剤や軟膏の基材、滑り止め、セッケンに混ぜるなど、用途は広い。表皮ブドウ球菌は、黄色ブドウ球菌と同様に体内に留置されるカテーテル等への付着性が高くバイオフィルムを形成しやすい。カテーテル関連血流感染症の起因菌としては黄色ブドウ球菌より表皮ブドウ球菌の方が、割合が高い。これらのことから、本発明のバイオフィルム形成阻害剤を各種医療用デバイスにコーティングしたり浸透させて用いることで、バイオフィルムの形成が抑制された、安全性の高い医療用デバイスを提供することができる。 In addition, the rosin containing abietic acid as a main component has the same biofilm inhibitory effect as abietic acid against Staphylococcus aureus and Staphylococcus epidermidis, so the biofilm formation inhibitor of the present invention containing rosin is It can be used in a wide range of applications, including adhesives for adhesive bandages and base materials for ointments, anti-slip materials, and soaps. Staphylococcus epidermidis is highly adherent to a catheter or the like placed in the body like S. aureus, and easily forms a biofilm. As a causative bacterium of catheter-related bloodstream infection, Staphylococcus epidermidis has a higher ratio than Staphylococcus aureus. From these things, it is possible to provide a highly safe medical device in which the formation of biofilm is suppressed by coating or infiltrating various medical devices with the biofilm formation inhibitor of the present invention. it can.

Claims (13)

  1. ジテルペノイド化合物を有効成分として含有するバイオフィルム形成阻害剤。 A biofilm formation inhibitor comprising a diterpenoid compound as an active ingredient.
  2. ジテルペノイド化合物が、環状ジテルペノイド化合物である、請求項1に記載のバイオフィルム形成阻害剤。 The biofilm formation inhibitor according to claim 1, wherein the diterpenoid compound is a cyclic diterpenoid compound.
  3. 環状ジテルペノイド化合物が、アビエタン系ジテルペノイド化合物である請求項2に記載のバイオフィルム形成阻害剤。 The biofilm formation inhibitor according to claim 2, wherein the cyclic diterpenoid compound is an abietane diterpenoid compound.
  4. アビエタン系ジテルペノイド化合物が、アビエチン酸、デヒドロアビエチン酸、ネオアビエチン酸、ピマル酸、パラストリン酸、レボピマル酸及びこれらの薬理学上許容可能な誘導体のいずれか1種又は2種以上である請求項3に記載のバイオフィルム形成阻害剤。 4. The abietane diterpenoid compound is any one or more of abietic acid, dehydroabietic acid, neoabietic acid, pimaric acid, parastrinic acid, levopimaric acid and pharmacologically acceptable derivatives thereof. The biofilm formation inhibitor as described.
  5. バイオフィルム形成阻害剤が、ロジンを含む、請求項1~4のいずれかに記載のバイオフィルム形成阻害剤。 The biofilm formation inhibitor according to any one of claims 1 to 4, wherein the biofilm formation inhibitor comprises rosin.
  6. バイオフィルムが、ブドウ球菌属に属するグラム陽性球菌由来である請求項1~7のいずれか1に記載のバイオフィルム形成阻害剤。 The biofilm formation inhibitor according to any one of claims 1 to 7, wherein the biofilm is derived from gram-positive cocci belonging to the genus Staphylococcus.
  7. ブドウ球菌属に属するグラム陽性球菌が、黄色ブドウ球菌、表皮ブドウ球菌及び腐性ブドウ球菌から選択されるいずれかである請求項6に記載のバイオフィルム形成阻害剤。 The biofilm formation inhibitor according to claim 6, wherein the Gram-positive cocci belonging to the genus Staphylococcus is any one selected from Staphylococcus aureus, S. epidermidis and rot staphylococci.
  8. 黄色ブドウ球菌が、メチシリン耐性黄色ブドウ球菌(MRSA)又はバンコマイシン耐性黄色ブドウ球菌(VRSA)である請求項7に記載のバイオフィルム形成阻害剤。 The biofilm formation inhibitor according to claim 7, wherein the Staphylococcus aureus is methicillin-resistant Staphylococcus aureus (MRSA) or vancomycin-resistant Staphylococcus aureus (VRSA).
  9. 請求項1~8のいずれか1に記載のバイオフィルム形成阻害剤で処理されてなる医療用用具。 A medical device treated with the biofilm formation inhibitor according to any one of claims 1 to 8.
  10. バイオフィルム形成阻害剤で処理されてなる医療用用具が、当該医療用用具の表面をバイオフィルム形成阻害剤でコーティングされているか、又は当該医療用用具にバイオフィルム形成阻害剤が浸透しているものである請求項9に記載の医療用用具。 The medical device processed with the biofilm formation inhibitor is coated with the biofilm formation inhibitor on the surface of the medical device, or the biofilm formation inhibitor penetrates the medical device. The medical device according to claim 9.
  11. 請求項1~8のいずれか1に記載のバイオフィルム形成阻害剤を用いて処理する工程を含むバイオフィルム形成阻害方法。 A biofilm formation inhibiting method comprising a step of treating with the biofilm formation inhibitor according to any one of claims 1 to 8.
  12. バイオフィルム形成阻害剤を用いて処理する対象物が医療用用具である、請求項11に記載のバイオフィルム形成阻害方法。 The biofilm formation inhibition method of Claim 11 whose target object processed using a biofilm formation inhibitor is a medical device.
  13. バイオフィルム形成阻害剤を用いて処理する対象物が排水処理設備である、請求項11に記載のバイオフィルム形成阻害方法。 The biofilm formation inhibition method of Claim 11 whose target object processed using a biofilm formation inhibitor is a wastewater treatment facility.
PCT/JP2010/002477 2009-04-13 2010-04-05 Biofilm formation inhibitor WO2010119638A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011509196A JPWO2010119638A1 (en) 2009-04-13 2010-04-05 Biofilm formation inhibitor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-097207 2009-04-13
JP2009097207 2009-04-13

Publications (1)

Publication Number Publication Date
WO2010119638A1 true WO2010119638A1 (en) 2010-10-21

Family

ID=42982313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/002477 WO2010119638A1 (en) 2009-04-13 2010-04-05 Biofilm formation inhibitor

Country Status (2)

Country Link
JP (1) JPWO2010119638A1 (en)
WO (1) WO2010119638A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016051013A1 (en) 2014-10-02 2016-04-07 University Of Helsinki Abietane-type diterpenoids
JP2020523468A (en) * 2017-06-14 2020-08-06 プレミックス・オサケユフティオPremix Oy Antibacterial polymer composition
JP2021524847A (en) * 2018-05-16 2021-09-16 ノルディック バイオテック グループ オサケ ユキチュアNordic Biotech Group Oy Antimicrobial composition
WO2021246086A1 (en) * 2020-06-05 2021-12-09 株式会社エナジーフロント Porous film and antibacterial fabric using same
CN114569588A (en) * 2022-02-16 2022-06-03 湖南大学 Chlorhexidine-vancomycin cooperative targeting antibacterial application
CN115260046A (en) * 2022-08-22 2022-11-01 贵州大学 Abietate compound and preparation method and application thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6191155A (en) * 1984-10-08 1986-05-09 Mitsubishi Chem Ind Ltd Pisiferic acid derivative
JPS6256422A (en) * 1985-09-04 1987-03-12 Mitsubishi Chem Ind Ltd Antibacterial agent
JPH01311018A (en) * 1988-06-10 1989-12-15 Shiseido Co Ltd Antibacterial agent for gram-positive anaerobic bacterium, external preparation of skin and composition for oral cavity using the same agent
US5929124A (en) * 1997-08-22 1999-07-27 Hostettmann; Kurt Antimicrobial diterpenes
JP2002080419A (en) * 2000-09-01 2002-03-19 Japan Science & Technology Corp Antibacterial compound resistant to vre and/or mrsa
JP2003267910A (en) * 2002-03-11 2003-09-25 Japan Science & Technology Corp Antibacterial compound against vre and/or mrsa

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6191155A (en) * 1984-10-08 1986-05-09 Mitsubishi Chem Ind Ltd Pisiferic acid derivative
JPS6256422A (en) * 1985-09-04 1987-03-12 Mitsubishi Chem Ind Ltd Antibacterial agent
JPH01311018A (en) * 1988-06-10 1989-12-15 Shiseido Co Ltd Antibacterial agent for gram-positive anaerobic bacterium, external preparation of skin and composition for oral cavity using the same agent
US5929124A (en) * 1997-08-22 1999-07-27 Hostettmann; Kurt Antimicrobial diterpenes
JP2002080419A (en) * 2000-09-01 2002-03-19 Japan Science & Technology Corp Antibacterial compound resistant to vre and/or mrsa
JP2003267910A (en) * 2002-03-11 2003-09-25 Japan Science & Technology Corp Antibacterial compound against vre and/or mrsa

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BALAN, K.V ET AL.: "Antimicrobial activity of diterpenoids from hairy roots of Salvia sclarea L.: Salvipisone as a potential anti-biofilm agent active against antibiotic resistant Staphylococci", PHYTOMEDICINE, vol. 14, no. ISS.1, 2007, pages 31 - 35 *
SCILLACI, D. ET AL.: "In vitro anti-biofilm activity of Boswellia spp. oleogum resin essential oils", LETTERS IN APPLIED MICROBIOLOGY, vol. 47, no. IS.5, 2008, pages 433 - 438 *
TADA, M. ET AL.: "Efficient ortho-Oxidation of Phenol and Synthesis of Anti-MRSA and Anti-VRE Compound Abietaquinone Methide from Dehydroabietic Acid", CHEM. PHARM. BULL., vol. 54, no. 10, 2006, pages 1412 - 1417 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016051013A1 (en) 2014-10-02 2016-04-07 University Of Helsinki Abietane-type diterpenoids
JP2020523468A (en) * 2017-06-14 2020-08-06 プレミックス・オサケユフティオPremix Oy Antibacterial polymer composition
US11771094B2 (en) 2017-06-14 2023-10-03 Premix Oy Antimicrobial polymer composition
JP2021524847A (en) * 2018-05-16 2021-09-16 ノルディック バイオテック グループ オサケ ユキチュアNordic Biotech Group Oy Antimicrobial composition
WO2021246086A1 (en) * 2020-06-05 2021-12-09 株式会社エナジーフロント Porous film and antibacterial fabric using same
TWI823083B (en) * 2020-06-05 2023-11-21 日商能源前沿公司 Antibacterial porous membrane and antibacterial coating material using the same
JP7412692B2 (en) 2020-06-05 2024-01-15 株式会社エナジーフロント Antibacterial porous membrane and antibacterial coating material using it
CN114569588A (en) * 2022-02-16 2022-06-03 湖南大学 Chlorhexidine-vancomycin cooperative targeting antibacterial application
CN114569588B (en) * 2022-02-16 2023-09-26 湖南大学 Chlorhexidine-vancomycin synergic targeting antibacterial application
CN115260046A (en) * 2022-08-22 2022-11-01 贵州大学 Abietate compound and preparation method and application thereof
CN115260046B (en) * 2022-08-22 2023-06-27 贵州大学 Rosin acid ester compound and preparation method and application thereof

Also Published As

Publication number Publication date
JPWO2010119638A1 (en) 2012-10-22

Similar Documents

Publication Publication Date Title
Barreto et al. Addressing the challenges in antisepsis: focus on povidone iodine
WO2010119638A1 (en) Biofilm formation inhibitor
Sardi et al. Antibacterial activity of diacetylcurcumin against Staphylococcus aureus results in decreased biofilm and cellular adhesion
AU2012219321B2 (en) Compositions comprising peroxy alpha-ketocarboxylic acid and methods for producing and using the same
Ramage et al. The clinical importance of fungal biofilms
Slobodníková et al. Rosmarinic acid interaction with planktonic and biofilm Staphylococcus aureus
AU2017324655B2 (en) New use of triazolo(4,5-d)pyrimidine derivatives for prevention and treatment of bacterial infection
US20060068044A1 (en) Antimicrobial compositions and applications therefore
Harfouch et al. Antibacterial activity of Syrian propolis extract against several strains of bacteria in vitro
Evans et al. Honey: a guide for healthcare professionals
Camacho et al. The effect of chlorhexidine and gentian violet on the adherence of Candida spp. to urinary catheters
Alarjani et al. Antimicrobial resistance profile of Staphylococcus aureus and its in-vitro potential inhibition efficiency
Miari et al. Natural products and polysorbates: Potential Inhibitors of biofilm formation in Pseudomonas aeruginosa
CA2807362C (en) Antimicrobial hydrochloric acid catheter lock solution and method of use
Bowen et al. Biofilm management in chronic wounds and diabetic foot ulcers
Suleman et al. Healthcare-associated infections and biofilms
Kaur et al. Anti-biofilm potential of aqueous Eucalyptus leaf extract against nosocomial pathogens: Staphylococcus and Pseudomonas aeruginosa
US20130123715A1 (en) Indwelling catheter probe incorporating proanthocyanidines
KR101995394B1 (en) Antimicrobial composition against pet turtle-borne pathogenic bacteria containing lavender essential oil as effective component
CN111956636A (en) Application of 2-substituted anthraquinone derivative in preparation of medicines for treating candida albicans infection
Roberts Antimicrobial agents used in wound care
JP2006111577A (en) Germicidal agent containing vegetable essential oil component and method for preventing infectious disease by using the germicidal agent
Bakhtiari et al. Investigating the Effects of Zataria Multiflora Essential Oil and Silver Nanoparticles on the Expression of abaI and pil Genes and Biofilm Formation in Acinetobacter baumannii
Dehbashi et al. The healing effect of Pseudomonas Quinolone Signal (PQS) with co-infection of Staphylococcus aureus and Pseudomonas aeruginosa: A preclinical animal co-infection model
de Moraes Alves et al. Antimicrobial activity and cytotoxic assessment of gallic and ellagic acids

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10764225

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011509196

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10764225

Country of ref document: EP

Kind code of ref document: A1