WO2010118542A1 - Protection of bioanalytical sample chambers - Google Patents
Protection of bioanalytical sample chambers Download PDFInfo
- Publication number
- WO2010118542A1 WO2010118542A1 PCT/CH2010/000095 CH2010000095W WO2010118542A1 WO 2010118542 A1 WO2010118542 A1 WO 2010118542A1 CH 2010000095 W CH2010000095 W CH 2010000095W WO 2010118542 A1 WO2010118542 A1 WO 2010118542A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cartridge
- platform
- reaction device
- sample chamber
- housing
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L9/00—Supporting devices; Holding devices
- B01L9/52—Supports specially adapted for flat sample carriers, e.g. for plates, slides, chips
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L7/00—Heating or cooling apparatus; Heat insulating devices
- B01L7/52—Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/52—Use of compounds or compositions for colorimetric, spectrophotometric or fluorometric investigation, e.g. use of reagent paper and including single- and multilayer analytical elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/14—Process control and prevention of errors
- B01L2200/141—Preventing contamination, tampering
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/18—Transport of container or devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/04—Closures and closing means
- B01L2300/041—Connecting closures to device or container
Definitions
- This invention relates to apparatus for performing bioanalytic processing and analysis.
- the present invention relates to a bioanalytical reaction device and a cartridge thereof.
- the cartridge contains at least one sample chamber for storing biological samples, the bioanalytical reaction device can process and analyze.
- the polymerase chain reaction is a technique that permits amplification and detection of nucleic acid sequences. This technique has a wide variety of applications including DNA sequence analysis, detection of genetic mutations, diagnoses of viral infections, to name but a few. With the PCR a specific target sequence or strand of DNA can exponentially amplificated.
- the polymerase chain reaction comprises repeated cycles of target denaturation by heating the sample, primer annealing at a lower temperature and polymerase-mediated extension at a slight higher temperature. At the last step, the DNA polymerase synthesizes a new DNA strand complementary to the DNA template strand.
- Certain devices use cartridges for storing biological samples, so that the one or more biological samples in one cartridge can be temporarily stored, while the biological samples in another cartridge can be processed in the bioanalytical reaction device. An operator only needs to remove the one cartridge from the device and insert the other cartridge into the device.
- Such cartridges have various interfaces, such as one or more interfaces for heating a sample in the cartridge as well as one or more interfaces for optical reading out the result of the reaction, which is, for example, indicated by a certain color of the sample or by certain illuminating substances.
- the samples to be processed are stored in one or more chambers in the cartridge. In general, an interface is provided by a wall of one of the chambers through which the sample can be heated or analyzed. If an optical readout has to be performed, the chamber needs a transparent wall as interface.
- a cartridge for a bioanalytical reaction device comprising at least one sample chamber for a sample, the at least one sample chamber having a wall through which the sample can be processed or analyzed by the bioanalytical reaction device, wherein the cartridge comprises a housing and a platform, the platform comprising the at least one sample chamber, wherein the platform is movably connected to the housing, such that the platform is movable between a stowed position, in which the wall is protected by the housing, and an extended position, in which the wall is outside of the housing.
- Such a cartridge is protected from becoming damaged or polluted without unnecessarily complicating the structural design of the cartridge and the bioanalytical reaction device.
- a cartridge is used for every kind of device capable of being connected with a bioanalytical reaction device.
- a cartridge may be a holder, magazine, cassette or carrier.
- the at least one sample chamber is placed on a platform (or disc or carrier) that can be extended from the cartridge.
- the sample chamber In the stowed position, the sample chamber is inside the housing of the cartridge. Consequently, the chamber is protected from getting damaged or dirty.
- the platform is extended from the cartridge, e. g. for enabling it to interface with heaters and optical sensors of a bioanalytical reaction device.
- the wall of the at least one sample camber can be a heating interface or, if the wall is translucent (at least for some wavelength), an optical interface for interfacing with components of the bioanalytical reaction device, such as a heater or an optical sensor.
- a cartridge is provided, wherein the at least one sample chamber is connected to a channel for filling the at least one sample chamber, the channel ending in the vicinity of the actuation means.
- Vicinity may be understood as relating to a length of one of the following intervals: [0, 15mm], [0, 10mm], [0, 5mm].
- the at least one sample chamber is connected to a channel for filling and draining the at least one sample chamber with fluids, such as the solution in which the sample is dissolved.
- fluids such as the solution in which the sample is dissolved.
- every means adapted to conduct a fluid from one point to another such as a line, a pipe or a hose, can be used.
- One end of the channel can be connected to a line of the bioanalytical reaction device, which can pump fluids over the line into the sample chamber.
- the end of the channel is part a fluidal interface of the cartridge. Placing the end of the channel in the vicinity of the actuation means has the advantage that a mechanical connection for moving the platform and a fluidal connection can be integrated in one component of the cartridge.
- a cartridge wherein a part of the channel is located within the actuation means.
- the channel may be located in a shaft for rotating the platform or in a spindle for moving the platform. This is one possibility of integrating the mechanical and the fluidal connection of the cartridge.
- the at least one sample chamber may be filled independent of the position of the platform.
- a cartridge is provided, wherein the wall is arranged at a first side of the platform, wherein the platform has a second side opposite to the first side, and wherein the platform in the extended position is accessible from the first side and the second side by the bioanalytical reaction device for processing or analyzing the sample.
- the sample within the at least sample chamber may be processed or analyzed simultaneously from two sides of the platform.
- a cartridge is provided, wherein at least one dimension of the cartridge with the platform in the extended position is bigger than this dimension of the cartridge with the platform in the stowed position. Therefore, the cartridge with the platform in the stowed position can easily be stored.
- a cartridge is provided, wherein the platform is rotatably connected to the housing.
- the actuation means is a shaft and the platform is connected to the shaft for rotating the platform about a rotation axis. More preferably, the shaft extends up to an opening in the housing. In this way, the mechanical connection of an actuator of the bioanalytical reaction device to the cartridge for rotating the platform can easily be established. Further, the opening in the housing may provide a guidance for the shaft, and therefore for the platform.
- a cartridge is provided, wherein the platform is slidably connected to the housing.
- the actuation means may be a spindle for translatorily moving the platform from the stowed position to the extended position.
- a cartridge wherein the platform has the form of a plate, which, in the stowed position, is arranged between a first wall and a second wall of the housing.
- a platform in the form of a plate i. e. a component with one dimension much smaller than the two other dimensions in different directions, can be provided with more than one sample chamber and all of the sample chambers are easily accessible by a bioanalytical reaction device.
- a cartridge wherein the wall of the at least one sample chamber is thin.
- the wall may be thin and can for example be a foil with a high heat conductance.
- a thin wall is meant which has a thickness of about less than 200 ⁇ m.
- a thin wall may also optimize the transparence of the optical interface of the at least one sample chamber.
- a cartridge is provided, wherein the at least one sample chamber is formed by an opening in the platform which is covered by a foil or thin layer forming the thin wall.
- a bioanalytical reaction device having a slot or receptacle for receiving the cartridge, comprising an actuator for extending and stowing the platform of the cartridge.
- the actuator may be a step motor.
- a bioanalytical reaction device is provided, having a reservoir for filling the at least one sample chamber, wherein the reservoir is connectable with the at least one sample chamber over a line ending in a mechanical connection of the actuator with the actuation means for moving the platform.
- the mechanical connection there also may be the fluidal connection of the bioanalytical reaction device with the cartridge.
- the fluidal interface or fluidal connection of the bioanalytical reaction device and the mechanical connection are integrated in one component.
- a bioanalytical reaction device having a cartridge presence sensor for detecting the presence and/or the correct insertion of the cartridge in the slot. Only when a cartridge is present in the slot, the bioanalytical reaction device should operate the line for filling the sample chamber. Otherwise, fluids can polute the interior of the bioanalytical reaction device.
- a bioanalytical reaction device which is adapted to effect the actuator to move the platform in the extended position, when the cartridge presence sensor detects the presence of the cartridge in the slot.
- Fig. 1 shows a perspective view of a cartridge for a bioanalytical reaction device with a platform in the stowed position.
- Fig. 2 shows a perspective view of the cartridge of Fig. 1 with the platform in an extended position.
- Fig. 3 shows a schematic cross sectional view of parts of the platform of Fig. 2.
- Fig. 4 is a schematic topview on the platform of Fig. 2.
- Fig. 5 shows a schematical diagram of functional components of a bioanalytical reaction device.
- Fig. 1 shows a perspective view of a cartridge 10 for a bioanalytical reaction device.
- the cartridge 10 has a housing 12 with an upper cover or wall 14 and a lower cover or wall 16. It is to be understood that the wording "upper” and “lower” are used for reasons of simplicity and are not intended to be limiting.
- the cartridge 10 may be inserted into a bioanalytical reaction device not in the shown orientation but in an upstanding orientation.
- Fig. 1 shows the platform 30 in a stowed position.
- the platform 30 is rotatably connected with the housing 12 via a shaft 32 as actuation means.
- the shaft 32 is guided by the opening 33 in the upper cover 14.
- FIG. 2 shows a perspective view of the cartridge 10 with the platform 30 in an extended position.
- the platform 30 has exited the housing 12 through a slit 18 in the housing 12 between the upper cover 14 and the lower cover 16.
- the platform 30 can again be stowed in the housing 12. In the stowed position the platform 30 is protected from being damaged or getting dirty.
- the platform 30 In the extended position the platform 30 can be accessed by actuators like a heater or a sensor of a bioanalytical reaction device.
- the platform 30 comprises five sample chambers 34.
- Fig. 3 shows a schematic cross-sectional view of parts of the platform 30.
- the left-hand side of the drawing shows a cross-sectional view of a sample chamber 34
- the right-hand side of the drawing shows a cross-sectional view of the vicinity of the rotation axis A.
- Platform 30 comprises a plate 38 that may be made of plastics. For each sample chamber 34 there is an opening 36 in the plate 38. On one first side of the plate 38, a first or upper foil 40 is applied. For example, the upper foil 40 may be glued to the plate 38. In the shown embodiment, the upper foil 40 has a thickness of about 100 ⁇ m. In the region of the opening 36 the upper foil 40 forms a thin wall of the sample chamber, the thin wall being a heating interface 44 of the sample chamber 34. If a heating or cooling source is arranged outside of the sample chamber 34 in the region of the heating interface 44 heat may be transferred to the interior of the sample chamber 34 or may exit it.
- a second or lower foil 42 of a translucent material On the other second side of the plate 38, opposite to the first side, there is applied a second or lower foil 42 of a translucent material.
- the lower foil 42 may be glued or in some other way be connected to the plate 38.
- the lower foil 42 has a thickness of about 100 ⁇ m.
- the lower foil 42 forms an optical interface 46 of the sample chamber 34. In this region, light can penetrate the translucent lower foil 42. Light coming from the interior of the sample chamber can be detected by an optical sensor arranged near the optical interface 46 of the sample chamber 34.
- Fig. 3 shows a first channel 48 formed by a groove or notch in the surface of the plate 38 and covered by the upper foil 40.
- a second channel 50 is formed connecting the sample chamber 34 with a third channel 52 within the shaft 32.
- the platform 30 may be manufactured from two parts being mirror symmetric and having openings and grooves which form the sample chambers and the channels, when the two parts are connected with each other.
- the plate 30 may be provided with pits. With a foil or thin layer covering the pits sample chambers can be formed on the plate. In this case, such sample chambers would have only one interface.
- Fig. 4 being a schematic top view on the platform 30, it can be seen, that the sample chambers 34 are fluidly connected via channels 48, 50 with channels 52 formed in the shaft 32 in the vicinity of the rotation axis A. Over the channels 48 and 50 each sample chamber 34 can be filled with solutions, e.g. a solution containing DNA fragments to be analyzed or amplified. Also, the sample chambers 34 can be emptied by conducting a gas, e.g. air, or other solutions or liquids like water through the channels 48, 50 into the sample chamber 34.
- a gas e.g. air
- the shaft 32 with the channels 52 is a fluidal interface 54 of the platform 30. Since the fluidal interface 54 is in the vicinity of the rotation axis A, it can be accessed over the mechanical connection of the bioanalytical reaction device for rotating the platform 30. Therefore, the mechanical connection and the fluidic connection are combined and the number of connections between the cartridge 10 and a bioanalytical reaction device is reduced.
- Fig. 5 shows a schematical diagram of a bioanalytical reaction device 60.
- the bioanalytical reaction device 60 has a slot 62 for receiving the cartridge 10.
- an actuator 64 for example a step motor, which is rotatably connected with the shaft 32 the platform 30 can be extended from the cartridge 10 to an extended position and be returned in a stowed position.
- Fig. 5 shows the platform 30 in an extended position.
- the fluid lines 70 are connected with inlets and outlets combined with the mechanical connection 66. The inlets and outlets fit to their respective counterparts formed in the shaft 32.
- a pump and reservoir mechanism 68 can fill the sample chambers 34 in the platform 30.
- the bioanalytical reaction device has one or more heaters 72 for heating the samples within the sample chambers 34 from the first side of the platform 30 and one or more optical sensors 74 for analyzing the light emitted from the interior of the sample chambers 34 from the second side of the platform 30.
- the bioanalytical reaction device 60 can control the analysis and processing of the samples in the sample chambers in an automated way.
- the bioanalytical reaction device 60 can conduct the above mentioned PCR procedure.
- the bioanalytical reaction device 60 controls the extension and the stowing of the platform 30 in an automated way.
- a mechanical sensor 80 detects the presence of the cartridge 10.
- the detection can be done with an optical sensor.
- the controller 76 directs the actuator 64 to rotate the platform 30 in the extended position.
- several processings like filling the chambers with different solutions, heating the sample chambers 34 and analyzing the light from the sample chambers 34, can be performed by the controller 76.
- the controller 76 directs the actuator 64 to rotate the platform 30 back to the stowed position and an operator can remove the cartridge 10 from the bioanalytical reaction device 60.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Clinical Laboratory Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Molecular Biology (AREA)
- Engineering & Computer Science (AREA)
- Immunology (AREA)
- Hematology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Urology & Nephrology (AREA)
- Biomedical Technology (AREA)
- Cell Biology (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Automatic Analysis And Handling Materials Therefor (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
Description
Claims
Priority Applications (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2011146161/05A RU2522350C2 (en) | 2009-04-15 | 2010-04-09 | Protection of bioanalytical chambers for samples |
AU2010237533A AU2010237533B2 (en) | 2009-04-15 | 2010-04-09 | Protection of bioanalytical sample chambers |
CA2752823A CA2752823C (en) | 2009-04-15 | 2010-04-09 | Protection of bioanalytical sample chambers |
EP18160211.1A EP3357579A1 (en) | 2009-04-15 | 2010-04-09 | Cartridge for optical analysis by a bioanalytical reaction device |
CN201080009848.0A CN102341177B (en) | 2009-04-15 | 2010-04-09 | Protection of bioanalytical sample chambers |
EP10713296.1A EP2419220B1 (en) | 2009-04-15 | 2010-04-09 | Protection of bioanalytical sample chambers |
BRPI1013768A BRPI1013768A2 (en) | 2009-04-15 | 2010-04-09 | "protection of bioanalytical sample chambers." |
JP2012505018A JP5758877B2 (en) | 2009-04-15 | 2010-04-09 | Bioanalytical sample chamber protection |
ES10713296.1T ES2677010T3 (en) | 2009-04-15 | 2010-04-09 | Bioanalytical sample chamber protection |
ZA2011/05622A ZA201105622B (en) | 2009-04-15 | 2011-07-29 | Protection of bioanalytical sample chambers |
US13/273,533 US9079182B2 (en) | 2009-04-15 | 2011-10-14 | Protection of bioanalytical sample chambers |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09157972 | 2009-04-15 | ||
EP09157972.2 | 2009-04-15 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/273,533 Continuation US9079182B2 (en) | 2009-04-15 | 2011-10-14 | Protection of bioanalytical sample chambers |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010118542A1 true WO2010118542A1 (en) | 2010-10-21 |
Family
ID=42227766
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CH2010/000095 WO2010118542A1 (en) | 2009-04-15 | 2010-04-09 | Protection of bioanalytical sample chambers |
Country Status (13)
Country | Link |
---|---|
US (1) | US9079182B2 (en) |
EP (2) | EP2419220B1 (en) |
JP (1) | JP5758877B2 (en) |
KR (1) | KR20120030361A (en) |
CN (1) | CN102341177B (en) |
AU (1) | AU2010237533B2 (en) |
BR (1) | BRPI1013768A2 (en) |
CA (1) | CA2752823C (en) |
ES (1) | ES2677010T3 (en) |
RU (1) | RU2522350C2 (en) |
TR (1) | TR201809597T4 (en) |
WO (1) | WO2010118542A1 (en) |
ZA (1) | ZA201105622B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10434514B2 (en) | 2008-12-05 | 2019-10-08 | Biocartis S.A. | Thermal cycling system comprising transport heater |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102059004B1 (en) * | 2012-03-16 | 2019-12-24 | 스타트-다이아그노스티카 앤드 이노베이션, 에스.엘. | A test cartridge with integrated transfer module |
US11016007B2 (en) * | 2014-04-01 | 2021-05-25 | Bd Kiestra B.V. | System and method for the automated preparation of biological samples |
US10730687B2 (en) * | 2014-10-16 | 2020-08-04 | RxCap Inc. | Intelligent medicine dispenser |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1096725A (en) * | 1996-07-29 | 1998-04-14 | Hisamitsu Pharmaceut Co Inc | Insepecting device |
US5846487A (en) * | 1996-11-26 | 1998-12-08 | Bennett, Ii; Edward R. | Specimen cartridge |
Family Cites Families (83)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5622871A (en) | 1987-04-27 | 1997-04-22 | Unilever Patent Holdings B.V. | Capillary immunoassay and device therefor comprising mobilizable particulate labelled reagents |
GB938163A (en) | 1960-09-20 | 1963-10-02 | Boots Pure Drug Co Ltd | Improvements in or relating to particle size reduction or cellular disruption |
US3607134A (en) | 1968-10-02 | 1971-09-21 | Delbert D Mcintyre | Sample holder for maintaining blood samples at a preselected temperature |
US3633877A (en) | 1969-09-11 | 1972-01-11 | Albert G Bodine | Inductive cavitator |
US4256697A (en) | 1978-12-21 | 1981-03-17 | Fred Baldwin | Blood incubator device |
US4371498A (en) | 1981-06-19 | 1983-02-01 | Medical Laboratory Automation, Inc. | Coded cuvette for use in testing apparatus |
US4571087A (en) | 1983-03-22 | 1986-02-18 | Board Of Regents, University Of Texas System | Array sonicator apparatus for automated sample preparation |
FR2600775B1 (en) | 1986-06-26 | 1990-03-23 | Kis Photo Ind | BIOMEDICAL ANALYSIS DEVICE |
CH667599A5 (en) | 1986-12-11 | 1988-10-31 | Battelle Memorial Institute | ENCLOSURE FOR CONTAINING A LIQUID MEDIUM. |
US5004583A (en) | 1987-01-29 | 1991-04-02 | Medtest Systems, Inc. | Universal sensor cartridge for use with a universal analyzer for sensing components in a multicomponent fluid |
ES2034186T3 (en) | 1987-02-17 | 1993-04-01 | Cmb Foodcan Plc | ANALYTICAL TESTING DEVICE. |
US4849340A (en) | 1987-04-03 | 1989-07-18 | Cardiovascular Diagnostics, Inc. | Reaction system element and method for performing prothrombin time assay |
US4857453A (en) | 1987-04-07 | 1989-08-15 | Syntex (U.S.A.) Inc. | Immunoassay device |
US4943522A (en) | 1987-06-01 | 1990-07-24 | Quidel | Lateral flow, non-bibulous membrane assay protocols |
US4983523A (en) | 1988-04-08 | 1991-01-08 | Gene-Trak Systems | Methods for preparing sample nucleic acids for hybridization |
JP2671135B2 (en) | 1988-08-01 | 1997-10-29 | 東湘電機株式会社 | Ultrasonic disruption device for cells |
US5096669A (en) * | 1988-09-15 | 1992-03-17 | I-Stat Corporation | Disposable sensing device for real time fluid analysis |
US5147609A (en) | 1989-05-19 | 1992-09-15 | Pb Diagnostic Systems, Inc. | Assay element |
US5504007A (en) | 1989-05-19 | 1996-04-02 | Becton, Dickinson And Company | Rapid thermal cycle apparatus |
US5133937A (en) | 1989-06-01 | 1992-07-28 | Iniziative Marittime, 1991 S.R.L. | Analysis system having a removable reaction cartridge and temperature control |
EP0416588B1 (en) | 1989-09-08 | 1996-01-31 | Terumo Kabushiki Kaisha | Test instrument |
US5296374A (en) | 1989-10-20 | 1994-03-22 | University Of Strathclyde | Apparatus for assessing a particular property in a medium |
US5770029A (en) | 1996-07-30 | 1998-06-23 | Soane Biosciences | Integrated electrophoretic microdevices |
US5219526A (en) | 1990-04-27 | 1993-06-15 | Pb Diagnostic Systems Inc. | Assay cartridge |
US5994056A (en) | 1991-05-02 | 1999-11-30 | Roche Molecular Systems, Inc. | Homogeneous methods for nucleic acid amplification and detection |
JP3084877B2 (en) | 1992-01-21 | 2000-09-04 | 松下電器産業株式会社 | Manufacturing method of glucose sensor |
US5843680A (en) | 1992-01-31 | 1998-12-01 | Biometric Imaging, Inc. | Differential separation assay methods and test kits |
US5726026A (en) | 1992-05-01 | 1998-03-10 | Trustees Of The University Of Pennsylvania | Mesoscale sample preparation device and systems for determination and processing of analytes |
US5229580A (en) | 1992-06-09 | 1993-07-20 | Automated Biosystems, Inc. | Block for holding multiple sample tubes for automatic temperature control |
US5500187A (en) | 1992-12-08 | 1996-03-19 | Westinghouse Electric Corporation | Disposable optical agglutination assay device and method for use |
DE4326339A1 (en) | 1993-08-05 | 1995-02-09 | Boehringer Mannheim Gmbh | System for analysis of sample liquids |
EP0724725B1 (en) | 1993-10-21 | 2003-04-02 | Abbott Laboratories | Apparatus and method for detecting a target ligand |
ES2145034T3 (en) | 1993-11-12 | 2000-07-01 | Unilever Nv | ANALYTICAL DEVICES AND PROCEDURES FOR THE USE OF THEM. |
GB2289150B (en) | 1994-04-25 | 1998-07-15 | Univ Hertfordshire | Coded items for labelling objects |
JP2909216B2 (en) | 1994-04-29 | 1999-06-23 | パーキン‐エルマー コーポレイション | Real-time detection device for nucleic acid amplification products |
US6287850B1 (en) | 1995-06-07 | 2001-09-11 | Affymetrix, Inc. | Bioarray chip reaction apparatus and its manufacture |
EP0695941B1 (en) | 1994-06-08 | 2002-07-31 | Affymetrix, Inc. | Method and apparatus for packaging a chip |
DE4420732A1 (en) | 1994-06-15 | 1995-12-21 | Boehringer Mannheim Gmbh | Device for the treatment of nucleic acids from a sample |
US5948360A (en) | 1994-07-11 | 1999-09-07 | Tekmar Company | Autosampler with robot arm |
JP3512811B2 (en) | 1994-07-11 | 2004-03-31 | テクマー カンパニー | Modular vial automatic sampler |
US5627041A (en) | 1994-09-02 | 1997-05-06 | Biometric Imaging, Inc. | Disposable cartridge for an assay of a biological sample |
US5597532A (en) | 1994-10-20 | 1997-01-28 | Connolly; James | Apparatus for determining substances contained in a body fluid |
US5432098A (en) | 1994-10-31 | 1995-07-11 | Dynatech Precision Sampling Corporation | Apparatus, and process, for automatically sampling solids and semi-solids materials for analysis |
US6329139B1 (en) | 1995-04-25 | 2001-12-11 | Discovery Partners International | Automated sorting system for matrices with memory |
US6521181B1 (en) | 1995-06-20 | 2003-02-18 | The Regents Of The University Of Calfornia | Microfabricated electrochemiluminescence cell for chemical reaction detection |
US6524532B1 (en) | 1995-06-20 | 2003-02-25 | The Regents Of The University Of California | Microfabricated sleeve devices for chemical reactions |
US5589136A (en) | 1995-06-20 | 1996-12-31 | Regents Of The University Of California | Silicon-based sleeve devices for chemical reactions |
US5856174A (en) | 1995-06-29 | 1999-01-05 | Affymetrix, Inc. | Integrated nucleic acid diagnostic device |
US5609822A (en) | 1995-07-07 | 1997-03-11 | Ciba Corning Diagnostics Corp. | Reagent handling system and reagent pack for use therein |
US5882903A (en) | 1996-11-01 | 1999-03-16 | Sarnoff Corporation | Assay system and method for conducting assays |
US6210881B1 (en) | 1996-12-30 | 2001-04-03 | Becton, Dickinson And Company | Method for reducing inhibitors of nucleic acid hybridization |
EP2333520B1 (en) | 1997-02-28 | 2014-06-25 | Cepheid | Heat exchanging, optically interrogated chemical reaction assembly |
US20020084329A1 (en) | 1997-07-16 | 2002-07-04 | Kaye Paul H. | Coded items for labeling objects |
US6077669A (en) | 1997-11-04 | 2000-06-20 | Becton Dickinson And Company | Kit and method for fluorescence based detection assay |
CA2312102C (en) | 1997-12-24 | 2007-09-04 | Cepheid | Integrated fluid manipulation cartridge |
US6369893B1 (en) | 1998-05-19 | 2002-04-09 | Cepheid | Multi-channel optical detection system |
US7188001B2 (en) | 1998-03-23 | 2007-03-06 | Cepheid | System and method for temperature control |
DE19820466C2 (en) | 1998-05-07 | 2002-06-13 | Fraunhofer Ges Forschung | Device and method for the targeted exposure of a biological sample to sound waves |
US6100084A (en) | 1998-11-05 | 2000-08-08 | The Regents Of The University Of California | Micro-sonicator for spore lysis |
US7914994B2 (en) | 1998-12-24 | 2011-03-29 | Cepheid | Method for separating an analyte from a sample |
US6431476B1 (en) | 1999-12-21 | 2002-08-13 | Cepheid | Apparatus and method for rapid ultrasonic disruption of cells or viruses |
JP4495866B2 (en) | 1999-05-28 | 2010-07-07 | セフィード | Cartridge for controlling chemical reactions |
US6818185B1 (en) | 1999-05-28 | 2004-11-16 | Cepheid | Cartridge for conducting a chemical reaction |
US20040200909A1 (en) | 1999-05-28 | 2004-10-14 | Cepheid | Apparatus and method for cell disruption |
US8815521B2 (en) | 2000-05-30 | 2014-08-26 | Cepheid | Apparatus and method for cell disruption |
US9073053B2 (en) | 1999-05-28 | 2015-07-07 | Cepheid | Apparatus and method for cell disruption |
EP1208189B1 (en) | 1999-05-28 | 2004-10-06 | Cepheid | Device and method for analysing liquid samples |
US6664104B2 (en) | 1999-06-25 | 2003-12-16 | Cepheid | Device incorporating a microfluidic chip for separating analyte from a sample |
US6783934B1 (en) | 2000-05-01 | 2004-08-31 | Cepheid, Inc. | Methods for quantitative analysis of nucleic acid amplification reaction |
GB0110476D0 (en) | 2001-04-30 | 2001-06-20 | Secr Defence | Reagent delivery system |
EP2009633A1 (en) * | 2002-01-10 | 2008-12-31 | Panasonic Corporation | Disk Drive |
US20050221281A1 (en) * | 2003-01-08 | 2005-10-06 | Ho Winston Z | Self-contained microfluidic biochip and apparatus |
AU2003900780A0 (en) * | 2003-02-21 | 2003-03-13 | Vision Biosystems Limited | Analysis system and procedure |
EP1473085B1 (en) * | 2003-03-31 | 2015-07-22 | Canon Kabushiki Kaisha | Biochemical reaction cartridge |
GB2402481A (en) * | 2003-06-04 | 2004-12-08 | Genial Genetic Solutions Ltd | Multi-well rotatable analyser |
JP2005181143A (en) * | 2003-12-19 | 2005-07-07 | Hitachi High-Technologies Corp | Sample introduction device |
CA2560513A1 (en) * | 2004-04-08 | 2005-12-01 | Biomatrica, Inc. | Integration of sample storage and sample management for life science |
CN101203312B (en) | 2005-06-23 | 2011-08-17 | 拜欧卡蒂斯股份公司 | Cartridge, system and method for automated medical diagnostics |
JP4835311B2 (en) * | 2006-08-03 | 2011-12-14 | 横河電機株式会社 | Cartridge inspection device |
JP5032088B2 (en) * | 2006-10-10 | 2012-09-26 | シスメックス株式会社 | Analyzer and reagent container |
JP4441524B2 (en) * | 2006-12-06 | 2010-03-31 | キヤノン株式会社 | Biochemical reaction cartridge and biochemical processing system |
GB0715171D0 (en) * | 2007-08-03 | 2007-09-12 | Enigma Diagnostics Ltd | Sample processor |
EP3524354A1 (en) | 2008-12-05 | 2019-08-14 | Biocartis NV | Thermal cycling system comprising transport heater |
-
2010
- 2010-04-09 KR KR1020117027027A patent/KR20120030361A/en not_active Application Discontinuation
- 2010-04-09 AU AU2010237533A patent/AU2010237533B2/en active Active
- 2010-04-09 TR TR2018/09597T patent/TR201809597T4/en unknown
- 2010-04-09 RU RU2011146161/05A patent/RU2522350C2/en active
- 2010-04-09 EP EP10713296.1A patent/EP2419220B1/en active Active
- 2010-04-09 EP EP18160211.1A patent/EP3357579A1/en not_active Withdrawn
- 2010-04-09 CA CA2752823A patent/CA2752823C/en active Active
- 2010-04-09 CN CN201080009848.0A patent/CN102341177B/en active Active
- 2010-04-09 JP JP2012505018A patent/JP5758877B2/en active Active
- 2010-04-09 BR BRPI1013768A patent/BRPI1013768A2/en not_active IP Right Cessation
- 2010-04-09 WO PCT/CH2010/000095 patent/WO2010118542A1/en active Application Filing
- 2010-04-09 ES ES10713296.1T patent/ES2677010T3/en active Active
-
2011
- 2011-07-29 ZA ZA2011/05622A patent/ZA201105622B/en unknown
- 2011-10-14 US US13/273,533 patent/US9079182B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1096725A (en) * | 1996-07-29 | 1998-04-14 | Hisamitsu Pharmaceut Co Inc | Insepecting device |
US5846487A (en) * | 1996-11-26 | 1998-12-08 | Bennett, Ii; Edward R. | Specimen cartridge |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10434514B2 (en) | 2008-12-05 | 2019-10-08 | Biocartis S.A. | Thermal cycling system comprising transport heater |
Also Published As
Publication number | Publication date |
---|---|
CA2752823A1 (en) | 2010-10-21 |
ES2677010T3 (en) | 2018-07-27 |
ZA201105622B (en) | 2012-04-25 |
CN102341177A (en) | 2012-02-01 |
EP2419220B1 (en) | 2018-06-06 |
KR20120030361A (en) | 2012-03-28 |
AU2010237533A1 (en) | 2011-08-11 |
EP2419220A1 (en) | 2012-02-22 |
CA2752823C (en) | 2016-08-30 |
TR201809597T4 (en) | 2018-07-23 |
EP3357579A1 (en) | 2018-08-08 |
RU2522350C2 (en) | 2014-07-10 |
JP5758877B2 (en) | 2015-08-05 |
CN102341177B (en) | 2014-06-04 |
BRPI1013768A2 (en) | 2019-09-24 |
AU2010237533B2 (en) | 2014-09-25 |
JP2012524243A (en) | 2012-10-11 |
US9079182B2 (en) | 2015-07-14 |
US20120034687A1 (en) | 2012-02-09 |
RU2011146161A (en) | 2013-05-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2430177B1 (en) | Apparatus for performing amplicon rescue multiplex pcr | |
CN107847936B (en) | Sample carrier and assay system for carrying out a specified reaction | |
AU2017277331B2 (en) | Rapid thermal cycling for sample analyses and processing | |
CN105865880B (en) | Automated staining system and reaction chamber | |
CN108220155A (en) | For the system and method for molecule diagnosis | |
US9079182B2 (en) | Protection of bioanalytical sample chambers | |
EP2040839B1 (en) | Disposable for analyzing a liquid sample by nucleic acid amplification | |
CN103018089B (en) | Traceability for automated staining system | |
US11198122B2 (en) | Diagnostic test assembly, apparatus, method | |
EP2040838A1 (en) | Apparatus for performing nucleic acid analysis | |
EP3463668B1 (en) | Rapid thermal cycling for sample analyses and processing | |
KR101513273B1 (en) | A rotary type PCR machine and a PCR chip | |
JP2011528431A (en) | Test element for analyzing an analyte present in a body fluid sample, analysis system, and method for controlling movement of liquid contained in a channel of a test element | |
EP3368685B1 (en) | Fluidic card for analysis of biochips | |
US20230151416A1 (en) | Test plate and automated biological test system | |
EP1878494A1 (en) | Device with insert for analytical systems | |
US20130109080A1 (en) | Integrated systems and assemblies for sample processing | |
US20210291191A1 (en) | Immuno histo chemistry tissue processing system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080009848.0 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10713296 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010237533 Country of ref document: AU Ref document number: 2010713296 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 5675/DELNP/2011 Country of ref document: IN |
|
ENP | Entry into the national phase |
Ref document number: 2010237533 Country of ref document: AU Date of ref document: 20100409 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2752823 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012505018 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 20117027027 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2011146161 Country of ref document: RU Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: PI1013768 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: PI1013768 Country of ref document: BR Kind code of ref document: A2 Effective date: 20111013 |