WO2010116993A1 - Structure having integrated circuit mounted therein - Google Patents

Structure having integrated circuit mounted therein Download PDF

Info

Publication number
WO2010116993A1
WO2010116993A1 PCT/JP2010/056230 JP2010056230W WO2010116993A1 WO 2010116993 A1 WO2010116993 A1 WO 2010116993A1 JP 2010056230 W JP2010056230 W JP 2010056230W WO 2010116993 A1 WO2010116993 A1 WO 2010116993A1
Authority
WO
WIPO (PCT)
Prior art keywords
integrated circuit
heat sink
wiring
mounting structure
heat
Prior art date
Application number
PCT/JP2010/056230
Other languages
French (fr)
Japanese (ja)
Inventor
洋 提坂
公則 大久保
英正 久保田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2010116993A1 publication Critical patent/WO2010116993A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0007Casings
    • H05K9/002Casings with localised screening
    • H05K9/0022Casings with localised screening of components mounted on printed circuit boards [PCB]
    • H05K9/0024Shield cases mounted on a PCB, e.g. cans or caps or conformal shields
    • H05K9/0032Shield cases mounted on a PCB, e.g. cans or caps or conformal shields having multiple parts, e.g. frames mating with lids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/552Protection against radiation, e.g. light or electromagnetic waves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/165Containers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/023Reduction of cross-talk, noise or electromagnetic interference using auxiliary mounted passive components or auxiliary substances
    • H05K1/0233Filters, inductors or a magnetic substance
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/023Reduction of cross-talk, noise or electromagnetic interference using auxiliary mounted passive components or auxiliary substances
    • H05K1/0234Resistors or by disposing resistive or lossy substances in or near power planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/08Magnetic details
    • H05K2201/083Magnetic materials
    • H05K2201/086Magnetic materials for inductive purposes, e.g. printed inductor with ferrite core
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10022Non-printed resistor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10613Details of electrical connections of non-printed components, e.g. special leads
    • H05K2201/10621Components characterised by their electrical contacts
    • H05K2201/10734Ball grid array [BGA]; Bump grid array

Definitions

  • the present invention relates to an integrated circuit mounting structure, and more particularly to an integrated circuit mounting structure capable of reducing radiation of electromagnetic waves.
  • a heat sink made of a material having a high thermal conductivity is brought into contact with the integrated circuit to efficiently dissipate heat generated by the integrated circuit during operation, thereby reducing the temperature.
  • a metal such as aluminum having high thermal conductivity is used as the material of the heat sink, and the heat sink is softly provided between the integrated circuit in order to secure a stable contact area with the integrated circuit.
  • a technique of inserting a sheet-like heat radiation sheet having high thermal conductivity is used.
  • a heat radiating sheet is used which is electrically insulative so that the element on the printed circuit board and the heat sink do not short-circuit.
  • EMI Electromagnetic Interference
  • EMI radiated from electronic devices may affect other electronic devices, such as malfunctions, regulatory values for EMI are set in each country. Since electronic device manufacturers cannot ship products unless the EMI generated from the products is kept below the regulation value, the importance of EMI countermeasures is increasing in product development.
  • Non-Patent Document 1 silicon in an integrated circuit is used.
  • RF radio frequency
  • Non-Patent Document 1 the heat sink is used as a common mode decoupling capacitor by conducting the heat sink with the ground plane of the printed circuit board, and the RF current is kept between the heat sink and the ground plane of the board. Measures to reduce EMI emissions into free space are described. In addition, this measure is described as effective up to the self-resonant frequency of the decoupling capacitor.
  • Non-Patent Document 1 regarding the conductive portion of the heat sink and the ground plane of the substrate, all four side surfaces are covered with a metal partition, and the portion where the partition and the printed circuit board are in contact is a ground pattern. And measures to be housed in a shield case made up of a heat sink and a metal partition.
  • Patent Document 1 describes the area around the integrated circuit in the gap between the printed circuit board and the heat sink. A method is described for converting RF energy radiated into free space into heat, which is prevented by an electromagnetic absorbing material.
  • Patent Document 1 furthermore, as an example of the electromagnetic wave absorbing material, a nonconductive silicone rubber filled with a conductive material and a semiconductor material, or a surface of a lossy material containing a magnetic compound such as ferrite can be satisfactorily used as an insulator. Covered sheet material is described.
  • the component cost of the electromagnetic wave absorbing material described in Patent Document 1 is about several times the price difference compared to the heat dissipation sheet inserted between the integrated circuit and the heat sink, and the price difference cannot be ignored in consumer electronic devices. It has become.
  • the heat generation amount of the integrated circuit is increased and the opposing area of the heat sink and the substrate is increased for the purpose of increasing the heat dissipation amount, more electromagnetic wave absorbing material is required, and the component cost increases.
  • the frequency band where the countermeasure is effective is a capacitor (in this case, the heat sink and the substrate Since it is up to the self-resonant frequency of the ground plane), it is not a sufficient measure for electronic devices using a high-frequency clock in recent years.
  • the present invention was invented in view of the above-described problems, and an object thereof is to realize a countermeasure for the EMI problem caused by a heat sink at low cost without using an electromagnetic wave absorbing material and a partition wall.
  • An integrated circuit mounting structure includes a substrate, an integrated circuit mounted on the substrate, a conductive heat dissipation element that contacts the integrated circuit, and a fixing portion that fixes the heat dissipation element to the substrate.
  • a circuit element having electrical loss is connected to the heat dissipation element and the conductor.
  • the resonance energy is converted into thermal energy by the circuit element.
  • the EMI problem can be solved.
  • the conductor is a wiring provided on the substrate.
  • the wiring is either a ground potential wiring or a power supply wiring.
  • the conductor is a shield member that covers the heat dissipation element.
  • the circuit element having electrical loss is any of a component including a resistor other than a 0 ⁇ resistor and a ferrite.
  • the resistance value of the circuit element having electrical loss is a characteristic impedance between the heat dissipation element and the ground of the substrate.
  • the heat dissipating element is a quadrangle, and the fixed part is disposed at a diagonal part of the heat dissipating element.
  • the heat sink structure for reducing unnecessary electromagnetic radiation and mounting on a printed circuit board can be realized at low cost without impairing the heat dissipation of the integrated circuit by the heat sink.
  • FIG. 1 It is sectional drawing which shows typically the printed circuit board which has a heat sink according to this invention. It is a top view which shows the printed circuit board used for the electromagnetic field analysis, and the heat sink provided on it. It is a figure which expands and shows the periphery of the heat sink 102 of FIG. It is the graph which showed the electric field strength value between the heat sink 102 and the printed circuit board 101 in each frequency computed as a result of the electromagnetic field analysis obtained by changing the kind of circuit element 1051,1052 which has electrical loss property. It is the graph which showed the electric field strength value between the heat sink 102 and the printed circuit board 101 in each frequency computed as a result of the electromagnetic field analysis obtained by changing the kind of circuit element 1051,1052 which has electrical loss property.
  • FIG. 1 is a cross-sectional view schematically showing a printed circuit board having a heat sink according to the present invention.
  • the printed circuit board 1 has a wiring pattern and a through hole constituting a circuit such as the first wiring 3 and the second wiring 4 on a base material made of a dielectric.
  • the printed board 1 is described as a multilayer board.
  • an integrated circuit package 7 and a circuit element 5 having electrical loss are mounted by solder or the like, and are electrically connected to a wiring pattern on the printed circuit board 1.
  • the integrated circuit package 7 and the heat sink 2 are in contact with the heat dissipation sheet 6 having high thermal conductivity, and the heat from the integrated circuit package 7 is efficiently radiated into the air by the heat sink 2.
  • the heat sink 2 as a heat dissipating element has heat dissipating fins 21 and contacts 22.
  • the contact 22 is electrically connected to the first pattern of the substrate using a method such as soldering.
  • the material of the heat sink 2 is made of a metal such as aluminum having high thermal conductivity in order to improve heat dissipation.
  • the contact 22 is made of metal for the purpose of conducting the heat sink 2 and the first wiring 3 with low impedance.
  • both the heat sink 2 and the contact 22 are made of aluminum, and the heat sink 2 is fixed to the printed circuit board 1 by the contact 22.
  • Other elements such as a heat pipe may be used as the heat dissipation element.
  • the first wiring 3 is a wiring for mounting the heat sink contact 22 on the printed circuit board.
  • the contact 22 and the first wiring 3 are electrically connected in the connection portion 32.
  • the contact 22 should just be provided in at least one place.
  • the second wiring 4 is electrically connected to the first wiring 3 through a circuit element 5 having electrical loss.
  • the second wiring 4 is set to a ground potential that occupies a large wiring area on the printed board 1.
  • circuit element 5 having electrical loss a circuit component using a resistor other than 0 ⁇ or a ferrite that converts electrical energy of a high frequency component into heat is used.
  • the circuit components described above are used for at least one circuit element 5 having electrical loss characteristics.
  • the heat radiating sheet 6 is used when it is necessary to lower the thermal resistance between the integrated circuit package 7 and the heat sink 2, and may be omitted if there is no problem in heat dissipation. Further, the material of the heat dissipation sheet 6 may not have the electromagnetic wave absorbing property described in Patent Document 1.
  • the integrated circuit package 7 includes a silicon die of an integrated circuit, an interposer substrate, and bonding wires that electrically connect the two.
  • the integrated circuit mounting structure 50 includes a printed circuit board 1 as a substrate, an integrated circuit package 7 as an integrated circuit placed on the printed substrate 1, and an integrated circuit package 7 A heat sink 2 as a conductive heat dissipation element, a connection portion 32 as a fixing portion for fixing the heat sink 2 to the printed circuit board 1, and an electromagnetic coupling with the heat sink 2 provided on the printed circuit board 1.
  • It has the 2nd wiring 4 as a conductor, and the circuit element 5 which has the electrical loss property electrically connected with the 2nd wiring 4 and the heat sink 2.
  • the heat sink 2 may be replaced by another conductive heat dissipating element such as a heat tube.
  • the presence or absence of electromagnetic coupling between the heat sink 2 and the second wiring 4 depends on whether the circuit element 5 having electrical loss is a 0 ⁇ resistor or when the circuit element 5 is removed and opened. Is determined by whether or not the electromagnetic field intensity distribution near, or the intensity of EMI changes. That is, when the nearby electromagnetic field intensity distribution or EMI intensity changes due to a change in the circuit element 5 that electrically connects the heat sink 2 and the second wiring 4, the heat sink 2 and the second wiring 4. Can be said to be electromagnetically coupled.
  • FIG. 2 is a plan view showing a printed circuit board used for electromagnetic field analysis and a heat sink provided thereon.
  • a heat sink 102 is provided on the printed circuit board 101.
  • FIG. 2 shows a top view of the heat sink 102 as viewed from the mounting surface.
  • the external dimensions of the heat sink 102 viewed from the upper surface direction were 58 mm ⁇ 36 mm, and the height of the heat sink 102 measured from the printed board 101 was 4 mm.
  • FIG. 3 is an enlarged view showing the periphery of the heat sink 102 of FIG.
  • a second wiring 104 and a first wiring 103 are provided on the printed circuit board 101.
  • the heat sink 102 is electrically connected to the first wiring 103 through a contact 1022.
  • the contacts 1022 are arranged at diagonal portions of the heat sink 102.
  • the second wiring 104 is a ground potential (ground potential) that is a reference potential of the printed circuit board 101.
  • the second wiring 104 actually has a slit for avoiding a short circuit with another signal line, but this is not described in FIGS. 2 and 3.
  • Example 1 an integrated circuit package (height 2 mm) made of a dielectric and a heat dissipation sheet (height 2 mm) also made of a dielectric are inserted into a region 106 (20 mm ⁇ 20 mm).
  • the relative dielectric constant of the integrated circuit package and the heat dissipation sheet are both 5.0.
  • Equation 1 shows an approximate value of the characteristic impedance value of the microstrip line.
  • W is the conductor width (in this embodiment, the short side length of the heat sink 102)
  • d is the height of the conductor (in this embodiment, the distance between the second wiring 104 and the bottom surface of the heat sink 102)
  • ⁇ r is a relative dielectric constant (in this embodiment, the relative dielectric constant of air).
  • Equation 1 when the characteristic impedance between the second wiring 104 of the printed circuit board 101 and the heat sink 102 is obtained for the cross-sectional shape parallel to the short side between the heat sinks 102, it is about 31 ⁇ . Since an integrated circuit package having a relative dielectric constant of 1 or more and a heat radiation sheet are inserted between the heat sink 102 and the second wiring 104, the effective value of the characteristic impedance is considered to be smaller than 31 ⁇ .
  • the resistance value is lower than 31 ⁇ , and 22 ⁇ is used as the resistance value given in the E6 series of JIS C 5063.
  • a small dipole antenna is installed in the specific unit 107 in the integrated circuit package, and a Gaussian pulse is used to simulate a broadband noise component. And analyzed in the time domain.
  • the electromagnetic field analysis uses a time domain finite difference method (Finite Difference Time Domain Method, FDTD method).
  • FIG. 4 is a graph showing the electric field strength value between the heat sink 102 and the printed circuit board 101 at each frequency, calculated as a result of electromagnetic field analysis obtained by changing the types of circuit elements 1051 and 1052 having electrical loss characteristics. It is.
  • the three components are as follows: (1) The heat dissipation plate described in Non-Patent Document 1 is short-circuited to the ground of the substrate, and the resistance of the circuit elements 1051 and 1052 having electrical loss is set to 0 ⁇ . It is shown with a solid line. (2) As an example of the present invention, the case where the resistance of the circuit elements 1051 and 1052 having electrical loss is 22 ⁇ is shown by a thick solid line. (3) The case where a noise countermeasure chip component using ferrite is used for the circuit elements 1051 and 1052 having electrical loss is shown by dotted lines. Here, FBMJ2125HM210NT manufactured by Taiyo Yuden Co., Ltd. was used as a noise countermeasure chip component using the ferrite of (3).
  • the FBMJ2125HM210NT is a circuit component having an upper limit of DC resistance of 0.004 ⁇ and an impedance of 21 ⁇ at 100 MHz.
  • An equivalent circuit diagram of the FBMJ2125HM210NT used for the electromagnetic field analysis is shown in FIG.
  • the conventional technology has a resonance component at about 830 MHz. This corresponds to the self-resonant frequency of the capacitor by the heat sink in Non-Patent Document 1, and the EMI generated from the device becomes a problem when the operating frequency of the integrated circuit and its harmonic components are close to the self-resonant frequency.
  • FIG. 5 is a graph showing the electric field strength value between the heat sink 102 and the printed circuit board 101 at each frequency, calculated as a result of electromagnetic field analysis obtained by changing the types of circuit elements 1051 and 1052 having electrical loss characteristics. It is.
  • FIG. 5 is a graph showing the electric field strength value between the heat sink 102 and the printed circuit board 101 converted into the frequency domain based on the analysis result performed for verifying the resistance value in the present invention, as in FIG.
  • the three components are indicated by thick solid lines in the case where (4) the resistance value of the circuit elements 1051 and 1052 having electrical loss is 1 ⁇ .
  • a dotted line indicates a case where the resistance value of the circuit elements 1051 and 1052 having electrical loss is 1 k ⁇ .
  • the case where the circuit elements 1051 and 1052 having electrical loss are opened is indicated by a thin solid line.
  • the electric field strength value at the self-resonance (850 MHz) of the capacitor of the heat sink is reduced by about 30 dB.
  • the self-resonant energy is consumed by the resistance, so that the peak value of the electric field strength is lowered. Can be reduced.
  • the self-resonant frequency has shifted to 820 MHz as in the case of opening (6), but the peak at resonance is reduced compared to (1) and (6).
  • EMI can be reduced.
  • the RF energy at the time of resonance is consumed by the resistance, so that the EMI is lower than that at the time of opening of (6). It can be seen that it has been reduced.
  • FIG. 6 is a graph showing the electric field strength value between the heat sink 102 and the printed circuit board 101 at each frequency, calculated as a result of electromagnetic field analysis obtained by changing the types of circuit elements 1051 and 1052 having electrical loss characteristics. It is.
  • FIG. 6 is a diagram in which the electric field strength value between the printed circuit board 101 and the printed circuit board 101 is converted into the frequency domain and plotted with a dotted line in the graph together with the analysis results in the cases (1) and (2).
  • FIG. 8 is a diagram for explaining an integrated circuit mounting structure according to the second embodiment of the present invention.
  • the integrated circuit mounting structure according to the second embodiment of the present invention is different from the structure according to the first embodiment in that shield member 60 is provided so as to cover heat sink 2. Different. Between the shield member 60 having conductivity and the heat sink 2, the circuit element 5 having electrical loss is interposed.
  • the shield member 60 and the heat sink 2 are connected to each other with the first wiring 3 and the second wiring 4 interposed therebetween, and an electrical loss is caused between the shield member 60 and the heat sink 2 without interposing these wirings.
  • the circuit element 5 which has property may be provided. Further, the shield member 60 and the heat sink 2 may be connected via the first wiring 3, the second wiring 4, and the chassis ground.
  • the shield member 60 is capacitively coupled to the heat sink 2.
  • the shield member 60 is made of a material having high conductivity, such as an aluminum alloy.
  • the integrated circuit mounting structure according to the second embodiment configured as described above has the same effect as that of the first embodiment.
  • the structure according to the present invention can be applied to all electronic devices including digital devices such as a personal computer, a DVD, a Blu-ray recorder, and a navigation system.
  • the present invention can be applied to a printed circuit board of an electronic device having a heat sink.

Abstract

Provided is a structure having an integrated circuit mounted therein, by which EMI in an electronic apparatus having the integrated circuit mounted on a printed board is reduced. A heat sink (2) is provided in contact with an integrated circuit package (7). A circuit element (5) having electric loss is provided between the heat sink (2) and second wiring (4).

Description

集積回路の搭載構造Integrated circuit mounting structure
 この発明は、集積回路の搭載構造に関し、より特定的には、電磁波の輻射を低減することが可能な集積回路の搭載構造に関するものである。 The present invention relates to an integrated circuit mounting structure, and more particularly to an integrated circuit mounting structure capable of reducing radiation of electromagnetic waves.
 近年、電子機器の高機能化に伴い、プリント基板上に実装される集積回路の消費電力が増大し、動作時に集積回路の仕様で規定されている動作温度の上限を超えてしまう問題が生じている。 In recent years, with the increase in functionality of electronic devices, the power consumption of integrated circuits mounted on printed circuit boards has increased, and there has been a problem of exceeding the upper limit of the operating temperature defined in the integrated circuit specifications during operation. Yes.
 これに対し、熱伝導率の高い材料からなるヒートシンクを集積回路と接触させ、動作時の集積回路の発熱を効率よく放熱して温度を低下させる対策が行なわれている。この場合、放熱効果を高めるために、ヒートシンクの材質に熱伝導率の高いアルミニウムなどの金属を用いるとともに、集積回路との接触面積を安定して確保する目的で、ヒートシンクと集積回路間に、柔らかく、熱伝導率の高いシート状の放熱シートを挿入する技術が用いられている。放熱シートは、一般的に、プリント基板上の素子とヒートシンクが短絡しないように電気的に絶縁性を有するものが使用されている。 In response to this, a heat sink made of a material having a high thermal conductivity is brought into contact with the integrated circuit to efficiently dissipate heat generated by the integrated circuit during operation, thereby reducing the temperature. In this case, in order to enhance the heat radiation effect, a metal such as aluminum having high thermal conductivity is used as the material of the heat sink, and the heat sink is softly provided between the integrated circuit in order to secure a stable contact area with the integrated circuit. A technique of inserting a sheet-like heat radiation sheet having high thermal conductivity is used. In general, a heat radiating sheet is used which is electrically insulative so that the element on the printed circuit board and the heat sink do not short-circuit.
 上記の金属製ヒートシンクによる集積回路の発熱対策は、一方で、不要な電磁波輻射(以下、EMI(Electromagnetic Interference)と記載する)の問題を発生させる要因となっている。 On the other hand, the above-described countermeasure against heat generation of the integrated circuit by the metal heat sink is a factor that causes a problem of unnecessary electromagnetic radiation (hereinafter referred to as EMI (Electromagnetic Interference)).
 電子機器から放射されるEMIは、他の電子機器に誤動作等の影響を及ぼすおそれがあるため、各国でEMIに対する規制値が定められている。電子機器メーカーは製品から発生するEMIを規制値以下に抑えないと製品を出荷することができなくなるため、製品開発において、EMI対策の重要性が高まっている。 Since EMI radiated from electronic devices may affect other electronic devices, such as malfunctions, regulatory values for EMI are set in each country. Since electronic device manufacturers cannot ship products unless the EMI generated from the products is kept below the regulation value, the importance of EMI countermeasures is increasing in product development.
 金属製のヒートシンクを用いた場合に発生するEMIに関して、「プリント回路のEMC設計(平成9年第1版第1刷発行)」(非特許文献1)の8.3章では集積回路内のシリコンダイとヒートシンク間にコモンモードの無線周波数(以下、RF)成分が発生し、自由空間にRFエネルギが放射されるメカニズムが記載されている。 Regarding EMI generated when a metal heat sink is used, in Chapter 8.3 of “EMC design of printed circuit (issued in 1st edition, 1st edition in 1997)” (Non-Patent Document 1), silicon in an integrated circuit is used. A mechanism is described in which a common mode radio frequency (hereinafter referred to as RF) component is generated between a die and a heat sink, and RF energy is radiated into free space.
 これに対して、非特許文献1では、ヒートシンクをプリント基板のグラウンドプレーンと導通させることによって、ヒートシンクをコモンモードのデカップリングコンデンサとして使用し、RF電流をヒートシンクと基板のグラウンドプレーン間に留めて、自由空間へのEMI放射を低減する対策が記載されている。併せて、この対策は、デカップリングコンデンサの自己共振周波数まで有効と記載されている。 In contrast, in Non-Patent Document 1, the heat sink is used as a common mode decoupling capacitor by conducting the heat sink with the ground plane of the printed circuit board, and the RF current is kept between the heat sink and the ground plane of the board. Measures to reduce EMI emissions into free space are described. In addition, this measure is described as effective up to the self-resonant frequency of the decoupling capacitor.
 さらに、非特許文献1では、ヒートシンクと基板のグラウンドプレーンの導通部に関して、4側面のすべてを金属製の隔壁で覆い、隔壁とプリント基板が接する部分をグラウンドパターンとして、集積回路を基板のグラウンドプレーンとヒートシンクと金属製の隔壁からなるシールドケースに収納する対策が記載されている。 Further, in Non-Patent Document 1, regarding the conductive portion of the heat sink and the ground plane of the substrate, all four side surfaces are covered with a metal partition, and the portion where the partition and the printed circuit board are in contact is a ground pattern. And measures to be housed in a shield case made up of a heat sink and a metal partition.
 他にも、金属製のヒートシンクを用いた場合に発生するEMIの対策方法として、特開2008-283225号公報(特許文献1)では、プリント基板とヒートシンク間の隙間のうち、集積回路の周囲を電磁吸収性材料で防ぎ、自由空間に放射されるRFエネルギを熱に変える方法について記載されている。特許文献1では、さらに、電磁波吸収性材料の例として、非導電シリコーンゴムに導電体材料と半導体材料を充填したものや、フェライトなどの磁気化合物を含む損失性材料の表面を良好に絶縁体で覆ったシート材などが記載されている。 In addition, as a countermeasure against EMI generated when a metal heat sink is used, Japanese Patent Laid-Open No. 2008-283225 (Patent Document 1) describes the area around the integrated circuit in the gap between the printed circuit board and the heat sink. A method is described for converting RF energy radiated into free space into heat, which is prevented by an electromagnetic absorbing material. In Patent Document 1, furthermore, as an example of the electromagnetic wave absorbing material, a nonconductive silicone rubber filled with a conductive material and a semiconductor material, or a surface of a lossy material containing a magnetic compound such as ferrite can be satisfactorily used as an insulator. Covered sheet material is described.
特開2008-283225号公報JP 2008-283225 A
 特許文献1に記載の電磁波吸収材料の部品コストは、集積回路とヒートシンク間に挿入する放熱シートと比較すると、数倍程度の価格差となっており、コンシューマー向けの電子機器においては無視できない価格差となっている。集積回路の発熱量が増加し、放熱量を高める目的でヒートシンクと基板の対向面積を増大させた場合、より多くの電磁波吸収性材料を必要とするため、部品コストが増大する。 The component cost of the electromagnetic wave absorbing material described in Patent Document 1 is about several times the price difference compared to the heat dissipation sheet inserted between the integrated circuit and the heat sink, and the price difference cannot be ignored in consumer electronic devices. It has become. When the heat generation amount of the integrated circuit is increased and the opposing area of the heat sink and the substrate is increased for the purpose of increasing the heat dissipation amount, more electromagnetic wave absorbing material is required, and the component cost increases.
 一方、非特許文献1に記載の金属製の隔壁で囲った場合は、隔壁の部品コスト増大と生産時の組立工数増加となる。また、集積回路を搭載する面の配線層を有効に使用できないため、プリント基板配線設計時に制約が生じるだけでなく、プリント基板の配線層数を増加させる必要が生じた場合に、部品コストが大幅に増大する。 On the other hand, when surrounded by the metal partition walls described in Non-Patent Document 1, the partition part cost increases and the assembly man-hours during production increase. In addition, since the wiring layer on the surface on which the integrated circuit is mounted cannot be used effectively, not only will there be restrictions when designing the printed circuit board wiring, but if the number of wiring layers on the printed circuit board needs to be increased, the component cost will increase significantly. To increase.
 また、非特許文献1に記載のヒートシンクと基板のグラウンドプレーンを導通させ、ヒートシンクをコモンモードのデカップリングコンデンサとして使用する方法では、対策が有効となる周波数帯域がコンデンサ(この場合はヒートシンクと基板のグラウンドプレーン)の自己共振周波数までとなるため、近年の高周波クロックを用いる電子機器については、十分な対策とならない。 Also, in the method of conducting the heat sink and the ground plane of the substrate described in Non-Patent Document 1 and using the heat sink as a common mode decoupling capacitor, the frequency band where the countermeasure is effective is a capacitor (in this case, the heat sink and the substrate Since it is up to the self-resonant frequency of the ground plane), it is not a sufficient measure for electronic devices using a high-frequency clock in recent years.
 本発明は上述の問題を鑑みて発明されたものであり、ヒートシンクに起因するEMI問題の対策を、電磁波吸収材料および隔壁を用いずに、安価に実現することを目的とする。 The present invention was invented in view of the above-described problems, and an object thereof is to realize a countermeasure for the EMI problem caused by a heat sink at low cost without using an electromagnetic wave absorbing material and a partition wall.
 この発明に従った集積回路の搭載構造は、基板と、基板上に載置される集積回路と、集積回路と当接する、導電性を有する放熱素子と、放熱素子を基板に固定する固定部と、放熱素子と電磁気的に結合する導電体と、放熱素子と導電体とに電気的に接続される、電気的損失性を有する回路素子とを備える。 An integrated circuit mounting structure according to the present invention includes a substrate, an integrated circuit mounted on the substrate, a conductive heat dissipation element that contacts the integrated circuit, and a fixing portion that fixes the heat dissipation element to the substrate. A conductor that is electromagnetically coupled to the heat dissipating element, and a circuit element having an electrical loss property that is electrically connected to the heat dissipating element and the conductor.
 このように構成された集積回路の搭載構造では、放熱素子と導電体とには、電気的損失性を有する回路素子が接続される。その結果、放熱素子と導電体との間で電磁気的な共振が起こったとしても、その共振エネルギが回路素子により熱エネルギに変換される。その結果EMI問題を解決することができる。 In the integrated circuit mounting structure configured as described above, a circuit element having electrical loss is connected to the heat dissipation element and the conductor. As a result, even if electromagnetic resonance occurs between the heat dissipation element and the conductor, the resonance energy is converted into thermal energy by the circuit element. As a result, the EMI problem can be solved.
 好ましくは、導電体は基板上に設けられる配線である。
 好ましくは、その配線はグラウンド電位の配線および電源配線のいずれかである。
Preferably, the conductor is a wiring provided on the substrate.
Preferably, the wiring is either a ground potential wiring or a power supply wiring.
 好ましくは、導電体は放熱素子を覆うシールド部材である。
 好ましくは、電気的損失を有する回路素子として、0Ω抵抗以外の抵抗器およびフェライトを含む部品のいずれかである。
Preferably, the conductor is a shield member that covers the heat dissipation element.
Preferably, the circuit element having electrical loss is any of a component including a resistor other than a 0Ω resistor and a ferrite.
 好ましくは、電気的損失を有する回路素子の抵抗値は、放熱素子と基板のグラウンド間の特性インピーダンスである。 Preferably, the resistance value of the circuit element having electrical loss is a characteristic impedance between the heat dissipation element and the ground of the substrate.
 好ましくは、放熱素子は四角形であり、固定部は放熱素子の対角部に配置される。 Preferably, the heat dissipating element is a quadrangle, and the fixed part is disposed at a diagonal part of the heat dissipating element.
 本発明を用いることにより、ヒートシンクによる集積回路の放熱性を損ねることなく、不要な電磁波輻射を低減するためのヒートシンクの構造、およびプリント基板への実装を安価に実現可能となる。 By using the present invention, the heat sink structure for reducing unnecessary electromagnetic radiation and mounting on a printed circuit board can be realized at low cost without impairing the heat dissipation of the integrated circuit by the heat sink.
この発明に従ったヒートシンクを有するプリント基板を模式的に示す断面図である。It is sectional drawing which shows typically the printed circuit board which has a heat sink according to this invention. 電磁界解析に用いたプリント基板とその上に設けられたヒートシンクとを示す平面図である。It is a top view which shows the printed circuit board used for the electromagnetic field analysis, and the heat sink provided on it. 図2のヒートシンク102の周辺を拡大して示す図である。It is a figure which expands and shows the periphery of the heat sink 102 of FIG. 電気的損失性を有する回路素子1051,1052の種類を変更して得た電磁界解析の結果算出された、各周波数におけるヒートシンク102とプリント基板101間の電界強度値を示したグラフである。It is the graph which showed the electric field strength value between the heat sink 102 and the printed circuit board 101 in each frequency computed as a result of the electromagnetic field analysis obtained by changing the kind of circuit element 1051,1052 which has electrical loss property. 電気的損失性を有する回路素子1051,1052の種類を変更して得た電磁界解析の結果算出された、各周波数におけるヒートシンク102とプリント基板101間の電界強度値を示したグラフである。It is the graph which showed the electric field strength value between the heat sink 102 and the printed circuit board 101 in each frequency computed as a result of the electromagnetic field analysis obtained by changing the kind of circuit element 1051,1052 which has electrical loss property. 電気的損失性を有する回路素子1051,1052の種類を変更して得た電磁界解析の結果算出された、各周波数におけるヒートシンク102とプリント基板101間の電界強度値を示したグラフである。It is the graph which showed the electric field strength value between the heat sink 102 and the printed circuit board 101 in each frequency computed as a result of the electromagnetic field analysis obtained by changing the kind of circuit element 1051,1052 which has electrical loss property. 電磁界解析に用いた、FBMJ2125HM210NTの等価回路図である。It is an equivalent circuit diagram of FBMJ2125HM210NT used for electromagnetic field analysis. この発明の実施の形態2に従った集積回路の搭載構造を説明するための図である。It is a figure for demonstrating the mounting structure of the integrated circuit according to Embodiment 2 of this invention.
 以下、この発明の実施の形態について、図面を参照して説明する。なお、以下の実施の形態では同一または相当する部分については同一の参照符号を付し、その説明については繰返さない。また、各実施の形態を組合せることも可能である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following embodiments, the same or corresponding parts are denoted by the same reference numerals, and description thereof will not be repeated. In addition, the embodiments can be combined.
 (実施の形態1)
 図1は、この発明に従ったヒートシンクを有するプリント基板を模式的に示す断面図である。プリント基板1は誘電体からなる基材に、第1配線3と第2配線4などの回路を構成する配線パターンおよびスルーホールを有している。この実施の形態では、プリント基板1を多層基板として記載している。
(Embodiment 1)
FIG. 1 is a cross-sectional view schematically showing a printed circuit board having a heat sink according to the present invention. The printed circuit board 1 has a wiring pattern and a through hole constituting a circuit such as the first wiring 3 and the second wiring 4 on a base material made of a dielectric. In this embodiment, the printed board 1 is described as a multilayer board.
 プリント基板1には、集積回路パッケージ7および電気的損失を有する回路素子5が半田等により実装されており、プリント基板1上の配線パターンと電気的に接続されている。 On the printed circuit board 1, an integrated circuit package 7 and a circuit element 5 having electrical loss are mounted by solder or the like, and are electrically connected to a wiring pattern on the printed circuit board 1.
 集積回路パッケージ7とヒートシンク2は、熱伝導率の高い放熱シート6に接触しており、集積回路パッケージ7からの熱は、ヒートシンク2により空気中に効率よく放熱されることとなる。 The integrated circuit package 7 and the heat sink 2 are in contact with the heat dissipation sheet 6 having high thermal conductivity, and the heat from the integrated circuit package 7 is efficiently radiated into the air by the heat sink 2.
 放熱素子としてのヒートシンク2は、放熱フィン21およびコンタクト22を有する。コンタクト22は、基板の第1パターンに半田等の方法を用いて、電気的に接続される。ヒートシンク2の材質は、放熱性を高めるため熱伝導率の高いアルミニウムなどの金属で構成されている。コンタクト22は、ヒートシンク2と第1の配線3を低インピーダンスで導通させる目的で、金属を用いることとする。この実施の形態では、ヒートシンク2とコンタクト22の両方の材料をアルミニウムとし、ヒートシンク2はコンタクト22によってプリント基板1に固定されている。放熱素子として、ヒートパイプなどの他の素子を用いてもよい。 The heat sink 2 as a heat dissipating element has heat dissipating fins 21 and contacts 22. The contact 22 is electrically connected to the first pattern of the substrate using a method such as soldering. The material of the heat sink 2 is made of a metal such as aluminum having high thermal conductivity in order to improve heat dissipation. The contact 22 is made of metal for the purpose of conducting the heat sink 2 and the first wiring 3 with low impedance. In this embodiment, both the heat sink 2 and the contact 22 are made of aluminum, and the heat sink 2 is fixed to the printed circuit board 1 by the contact 22. Other elements such as a heat pipe may be used as the heat dissipation element.
 第1の配線3はヒートシンクのコンタクト22をプリント基板上に実装するための配線であり、この実施の形態では、接続部32において、コンタクト22と第1の配線3が導通する。コンタクト22は、少なくとも一箇所に設けられていればよい。 The first wiring 3 is a wiring for mounting the heat sink contact 22 on the printed circuit board. In this embodiment, the contact 22 and the first wiring 3 are electrically connected in the connection portion 32. The contact 22 should just be provided in at least one place.
 第2の配線4は、第1の配線3と電気的損失性を有する回路素子5を介して、電気的に接続されている。第2の配線4とヒートシンク2間のインピーダンスを低くする目的で、この実施の形態では、第2の配線4をプリント基板1上で多くの配線面積を占めるグラウンド電位としている。 The second wiring 4 is electrically connected to the first wiring 3 through a circuit element 5 having electrical loss. In this embodiment, for the purpose of reducing the impedance between the second wiring 4 and the heat sink 2, the second wiring 4 is set to a ground potential that occupies a large wiring area on the printed board 1.
 電気的損失性を有する回路素子5は、0Ω以外の抵抗器、または、高周波成分の電気的エネルギを熱に変換するフェライトとを用いた回路部品を用いる。コンタクト22および電気的損失性を有する回路素子5が複数存在する場合には、少なくとも、1つの電気的損失性を有する回路素子5に、上記の回路部品を用いることとする。 As the circuit element 5 having electrical loss, a circuit component using a resistor other than 0Ω or a ferrite that converts electrical energy of a high frequency component into heat is used. When there are a plurality of contacts 22 and circuit elements 5 having electrical loss characteristics, the circuit components described above are used for at least one circuit element 5 having electrical loss characteristics.
 放熱シート6は、集積回路パッケージ7とヒートシンク2の間の熱抵抗を下げる必要がある場合に用いることとし、放熱性に問題がない場合は、使用しなくてもよい。また、放熱シート6の材質は、特許文献1に記載されている電磁波吸収性の性質を有さなくてもよい。 The heat radiating sheet 6 is used when it is necessary to lower the thermal resistance between the integrated circuit package 7 and the heat sink 2, and may be omitted if there is no problem in heat dissipation. Further, the material of the heat dissipation sheet 6 may not have the electromagnetic wave absorbing property described in Patent Document 1.
 集積回路パッケージ7は、集積回路のシリコンダイ、インターポーザ基板および両者を電気的に接続するボンディングワイヤ等で構成される。 The integrated circuit package 7 includes a silicon die of an integrated circuit, an interposer substrate, and bonding wires that electrically connect the two.
 すなわち、この発明の実施の形態に従った集積回路の搭載構造50は、基板としてのプリント基板1と、プリント基板1上に載置される集積回路としての集積回路パッケージ7と、集積回路パッケージ7と当接する、導電性を有する放熱素子としてのヒートシンク2と、ヒートシンク2をプリント基板1に固定する固定部としての接続部32と、プリント基板1上に設けられてヒートシンク2と電磁気的に結合する導電体としての第2の配線4と、第2の配線4とヒートシンク2と電気的に接続される、電気的損失性を有する回路素子5とを有する。ヒートシンク2はヒートチューブなどの他の導電性の放熱素子により置き換えられてもよい。 That is, the integrated circuit mounting structure 50 according to the embodiment of the present invention includes a printed circuit board 1 as a substrate, an integrated circuit package 7 as an integrated circuit placed on the printed substrate 1, and an integrated circuit package 7 A heat sink 2 as a conductive heat dissipation element, a connection portion 32 as a fixing portion for fixing the heat sink 2 to the printed circuit board 1, and an electromagnetic coupling with the heat sink 2 provided on the printed circuit board 1. It has the 2nd wiring 4 as a conductor, and the circuit element 5 which has the electrical loss property electrically connected with the 2nd wiring 4 and the heat sink 2. FIG. The heat sink 2 may be replaced by another conductive heat dissipating element such as a heat tube.
 ヒートシンク2と第2の配線4との電磁気的な結合の有無は、電気的損失性を有する回路素子5を0Ω抵抗とするか、あるいは、回路素子5を取り外して開放とした場合に、ヒートシンク2の近傍の電磁界強度分布、または、EMIの強度が変化するか否かで判断される。すなわち、ヒートシンク2と第2の配線4を電気的に接続する回路素子5の変化によって、近傍の電磁界強度分布、または、EMIの強度が変化した場合には、ヒートシンク2と第2の配線4とは電磁気的に結合しているといえる。 The presence or absence of electromagnetic coupling between the heat sink 2 and the second wiring 4 depends on whether the circuit element 5 having electrical loss is a 0Ω resistor or when the circuit element 5 is removed and opened. Is determined by whether or not the electromagnetic field intensity distribution near, or the intensity of EMI changes. That is, when the nearby electromagnetic field intensity distribution or EMI intensity changes due to a change in the circuit element 5 that electrically connects the heat sink 2 and the second wiring 4, the heat sink 2 and the second wiring 4. Can be said to be electromagnetically coupled.
 続いて、本発明の効果を電磁界解析にて検証した例を説明する。図2は、電磁界解析に用いたプリント基板とその上に設けられたヒートシンクとを示す平面図である。プリント基板101上にヒートシンク102が設けられている。図2は、ヒートシンク102の実装面から見た上面図を示している。ヒートシンク102の上面方向から見た外形寸法は58mm×36mm、プリント基板101から測定したヒートシンク102の高さを4mmとした。 Subsequently, an example in which the effect of the present invention is verified by electromagnetic field analysis will be described. FIG. 2 is a plan view showing a printed circuit board used for electromagnetic field analysis and a heat sink provided thereon. A heat sink 102 is provided on the printed circuit board 101. FIG. 2 shows a top view of the heat sink 102 as viewed from the mounting surface. The external dimensions of the heat sink 102 viewed from the upper surface direction were 58 mm × 36 mm, and the height of the heat sink 102 measured from the printed board 101 was 4 mm.
 図3は、図2のヒートシンク102の周辺を拡大して示す図である。プリント基板101には、第2の配線104と、第1の配線103とが設けられている。ヒートシンク102はコンタクト1022を介して第1の配線103と電気的に接続されている。コンタクト1022は、ヒートシンク102の対角部に配置されている。第2の配線104はプリント基板101の基準電位であるグラウンド電位(接地電位)である。第2の配線104は、実際は、他の信号線との短絡を回避するためのスリットを有しているが、図2および図3ではこれを記載していない。実施例1では、領域106(20mm×20mm)に、誘電体からなる集積回路パッケージ(高さ2mm)と、同じく誘電体からなる放熱シート(高さ2mm)を挿入している。集積回路パッケージと放熱シートの比誘電率はともに5.0としている。 FIG. 3 is an enlarged view showing the periphery of the heat sink 102 of FIG. A second wiring 104 and a first wiring 103 are provided on the printed circuit board 101. The heat sink 102 is electrically connected to the first wiring 103 through a contact 1022. The contacts 1022 are arranged at diagonal portions of the heat sink 102. The second wiring 104 is a ground potential (ground potential) that is a reference potential of the printed circuit board 101. The second wiring 104 actually has a slit for avoiding a short circuit with another signal line, but this is not described in FIGS. 2 and 3. In Example 1, an integrated circuit package (height 2 mm) made of a dielectric and a heat dissipation sheet (height 2 mm) also made of a dielectric are inserted into a region 106 (20 mm × 20 mm). The relative dielectric constant of the integrated circuit package and the heat dissipation sheet are both 5.0.
 第1の配線103と第2の配線104は、電気的損失性を有する回路素子1051,1052を介して電気的に接続されている。ここで、回路素子の抵抗値と、プリント基板の接地電位である第2の配線104と、ヒートシンク102からなる特性インピーダンスとの関係について説明する。数1に、マイクロストリップ線路の特性インピーダンス値の近似値を示す。なお、数1中のWは導体幅(この実施例ではヒートシンク102の短辺長)、dは導体の高さ(この実施例では第2の配線104とヒートシンク102の底面間の距離)、εrは比誘電率(この実施例では空気の比誘電率)としている。 The first wiring 103 and the second wiring 104 are electrically connected via circuit elements 1051 and 1052 having electrical loss characteristics. Here, the relationship between the resistance value of the circuit element, the second wiring 104 which is the ground potential of the printed circuit board, and the characteristic impedance formed by the heat sink 102 will be described. Equation 1 shows an approximate value of the characteristic impedance value of the microstrip line. In Equation 1, W is the conductor width (in this embodiment, the short side length of the heat sink 102), d is the height of the conductor (in this embodiment, the distance between the second wiring 104 and the bottom surface of the heat sink 102), and ε r is a relative dielectric constant (in this embodiment, the relative dielectric constant of air).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 数1により、ヒートシンク102間の短辺に平行な断面形状に対して、プリント基板101の第2の配線104とヒートシンク102間の特性インピーダンスを求めると、約31Ωとなる。ヒートシンク102と第2の配線104との間には、比誘電率が1以上の集積回路パッケージと放熱シートが挿入されているので、特性インピーダンスの実効値は、31Ωよりも小さくなると考えられる。 According to Equation 1, when the characteristic impedance between the second wiring 104 of the printed circuit board 101 and the heat sink 102 is obtained for the cross-sectional shape parallel to the short side between the heat sinks 102, it is about 31Ω. Since an integrated circuit package having a relative dielectric constant of 1 or more and a heat radiation sheet are inserted between the heat sink 102 and the second wiring 104, the effective value of the characteristic impedance is considered to be smaller than 31Ω.
 上記より、本実施例では、抵抗値に31Ωより低く、かつ、JIS C 5063のE6系列で与えられる抵抗値として、22Ωを用いることとする。 From the above, in this embodiment, the resistance value is lower than 31Ω, and 22Ω is used as the resistance value given in the E6 series of JIS C 5063.
 この実施例で行なった電磁界解析は、集積回路パッケージから発生するノイズ源として、微小ダイポールアンテナを集積回路パッケージ内の特定部107に設置し、広帯域のノイズ成分を模すためにガウシアンパルスを用いて励振して、時間領域で解析を行なった。電磁界解析は時間領域有限差分法(Finite Difference Time Domain Method,FDTD法)を用いている。 In the electromagnetic field analysis performed in this embodiment, as a noise source generated from the integrated circuit package, a small dipole antenna is installed in the specific unit 107 in the integrated circuit package, and a Gaussian pulse is used to simulate a broadband noise component. And analyzed in the time domain. The electromagnetic field analysis uses a time domain finite difference method (Finite Difference Time Domain Method, FDTD method).
 図4は、電気的損失性を有する回路素子1051,1052の種類を変更して得た電磁界解析の結果算出された、各周波数におけるヒートシンク102とプリント基板101間の電界強度値を示したグラフである。 FIG. 4 is a graph showing the electric field strength value between the heat sink 102 and the printed circuit board 101 at each frequency, calculated as a result of electromagnetic field analysis obtained by changing the types of circuit elements 1051 and 1052 having electrical loss characteristics. It is.
 3つの成分は、それぞれ(1)非特許文献1に記載されている放熱板を基板のグラウンドに短絡したものとして、電気的損失性を有する回路素子1051,1052の抵抗を0Ωとした場合を細い実線で示している。(2)本発明の実施例として、電気的損失性を有する回路素子1051,1052の抵抗を22Ωとした場合を太い実線で示している。(3)電気的損失性を有する回路素子1051,1052にフェライトを用いたノイズ対策用チップ部品を用いた場合を点線で示している。ここで(3)のフェライトを用いたノイズ対策用チップ部品として、太陽誘電株式会社製のFBMJ2125HM210NTを用いた。FBMJ2125HM210NTは、直流抵抗の上限が0.004Ω、100MHzにおいて21Ωのインピーダンスを持つ回路部品である。電磁界解析に用いた、FBMJ2125HM210NTの等価回路図を図7に示す。 The three components are as follows: (1) The heat dissipation plate described in Non-Patent Document 1 is short-circuited to the ground of the substrate, and the resistance of the circuit elements 1051 and 1052 having electrical loss is set to 0Ω. It is shown with a solid line. (2) As an example of the present invention, the case where the resistance of the circuit elements 1051 and 1052 having electrical loss is 22Ω is shown by a thick solid line. (3) The case where a noise countermeasure chip component using ferrite is used for the circuit elements 1051 and 1052 having electrical loss is shown by dotted lines. Here, FBMJ2125HM210NT manufactured by Taiyo Yuden Co., Ltd. was used as a noise countermeasure chip component using the ferrite of (3). The FBMJ2125HM210NT is a circuit component having an upper limit of DC resistance of 0.004Ω and an impedance of 21Ω at 100 MHz. An equivalent circuit diagram of the FBMJ2125HM210NT used for the electromagnetic field analysis is shown in FIG.
 (1)の従来技術では、約830MHzにおいて共振成分を持つ。これは、非特許文献1におけるヒートシンクによるコンデンサの自己共振周波数に当たり、集積回路の動作周波数、および、その高調波成分が、この自己共振周波数と近接した場合に機器から発生するEMIが問題となる。 (1) The conventional technology has a resonance component at about 830 MHz. This corresponds to the self-resonant frequency of the capacitor by the heat sink in Non-Patent Document 1, and the EMI generated from the device becomes a problem when the operating frequency of the integrated circuit and its harmonic components are close to the self-resonant frequency.
 一方、本発明の実施例である(2)および(3)の場合は、1GHz以下の周波数帯において、顕著な共振成分を持たない。これによって、ヒートシンクのコンデンサの自己共振によるEMIを低減することが可能となる。 On the other hand, in the case of (2) and (3) which are the embodiments of the present invention, there is no significant resonance component in the frequency band of 1 GHz or less. As a result, it is possible to reduce EMI due to self-resonance of the capacitor of the heat sink.
 図5は、電気的損失性を有する回路素子1051,1052の種類を変更して得た電磁界解析の結果算出された、各周波数におけるヒートシンク102とプリント基板101間の電界強度値を示したグラフである。図5は、図4と同様に、本発明における抵抗値を検証するために行なった解析結果から、ヒートシンク102とプリント基板101間の電界強度値を周波数領域に変換し、示したグラフである。3つの成分は、それぞれ、(4)電気的損失性を有する回路素子1051,1052の抵抗値を1Ωとした場合を太い実線で示している。(5)電気的損失性を有する回路素子1051,1052の抵抗値を1kΩとした場合を点線で示している。(6)電気的損失性を有する回路素子1051,1052を開放とした場合を細い実線で示している。 FIG. 5 is a graph showing the electric field strength value between the heat sink 102 and the printed circuit board 101 at each frequency, calculated as a result of electromagnetic field analysis obtained by changing the types of circuit elements 1051 and 1052 having electrical loss characteristics. It is. FIG. 5 is a graph showing the electric field strength value between the heat sink 102 and the printed circuit board 101 converted into the frequency domain based on the analysis result performed for verifying the resistance value in the present invention, as in FIG. The three components are indicated by thick solid lines in the case where (4) the resistance value of the circuit elements 1051 and 1052 having electrical loss is 1Ω. (5) A dotted line indicates a case where the resistance value of the circuit elements 1051 and 1052 having electrical loss is 1 kΩ. (6) The case where the circuit elements 1051 and 1052 having electrical loss are opened is indicated by a thin solid line.
 (1)と(4)とを比較すると、ヒートシンクのコンデンサの自己共振(850MHz)における電界強度値では、約30dB程度低減される。同様に、電気的損失性を有する回路素子1051,1052に1Ω以下の抵抗値を挿入した場合も、抵抗で自己共振のエネルギが消費されるため、電界強度のピーク値を下げることになり、EMIを低減することが可能となる。 When comparing (1) and (4), the electric field strength value at the self-resonance (850 MHz) of the capacitor of the heat sink is reduced by about 30 dB. Similarly, when a resistance value of 1Ω or less is inserted into the circuit elements 1051 and 1052 having electrical loss characteristics, the self-resonant energy is consumed by the resistance, so that the peak value of the electric field strength is lowered. Can be reduced.
 一方、(5)については、自己共振周波数が(6)の開放と同じく、820MHzに移行しているが、共振時のピークは(1)および(6)と比較して低減されていることから、EMIを低減することが可能となる。同様に、電気的損失性を有する回路素子1051,1052に1kΩ以上の抵抗値を用いた場合には、抵抗で共振時のRFエネルギが消費されるため、(6)の開放時よりもEMIが低減されていることがわかる。 On the other hand, as for (5), the self-resonant frequency has shifted to 820 MHz as in the case of opening (6), but the peak at resonance is reduced compared to (1) and (6). EMI can be reduced. Similarly, when a resistance value of 1 kΩ or more is used for the circuit elements 1051 and 1052 having electrical loss characteristics, the RF energy at the time of resonance is consumed by the resistance, so that the EMI is lower than that at the time of opening of (6). It can be seen that it has been reduced.
 図6は、電気的損失性を有する回路素子1051,1052の種類を変更して得た電磁界解析の結果算出された、各周波数におけるヒートシンク102とプリント基板101間の電界強度値を示したグラフである。 FIG. 6 is a graph showing the electric field strength value between the heat sink 102 and the printed circuit board 101 at each frequency, calculated as a result of electromagnetic field analysis obtained by changing the types of circuit elements 1051 and 1052 having electrical loss characteristics. It is.
 すなわち、条件(7)として電気的損失性を有する回路素子として電気的損失性を有する回路素子1051の抵抗値を22Ωとし、電気的損失性を有する回路素子1052を短絡した解析結果から、ヒートシンク102とプリント基板101間の電界強度値を周波数領域に変換し、上記の(1)の場合と、(2)との場合の解析結果とともにグラフに点線でプロットした図が図6である。(7)を(1)および(2)の解析結果と比較すると、300MHz~1GHzの帯域で(2)の場合よりも電界強度が増加するものの、(1)のように、ヒートシンクのコンデンサによる自己共振周波数を1GHz以下の帯域で持たないため、機器から発生するEMIを低減することが可能となる。これにより、コンタクトおよび第1の配線を複数有し、少なくとも1ヶ所、電気的損失を有する回路素子で接続した場合に、EMI低減効果があることが確認された。 That is, as a condition (7), as a circuit element having electrical loss, the resistance value of the circuit element 1051 having electrical loss is set to 22Ω, and from the analysis result in which the circuit element 1052 having electrical loss is short-circuited, FIG. 6 is a diagram in which the electric field strength value between the printed circuit board 101 and the printed circuit board 101 is converted into the frequency domain and plotted with a dotted line in the graph together with the analysis results in the cases (1) and (2). When (7) is compared with the analysis results of (1) and (2), the electric field strength increases in the band of 300 MHz to 1 GHz as compared with the case of (2), but as shown in (1), the self Since the resonance frequency is not in a band of 1 GHz or less, EMI generated from the device can be reduced. Thus, it was confirmed that when there are a plurality of contacts and first wirings and at least one circuit element is connected by a circuit element having electrical loss, there is an EMI reduction effect.
 (実施の形態2)
 図8は、この発明の実施の形態2に従った集積回路の搭載構造を説明するための図である。図8を参照して、この発明の実施の形態2に従った集積回路の搭載構造では、ヒートシンク2を覆うようにシールド部材60が設けられている点で、実施の形態1に従った構造と異なる。導電性を有するシールド部材60と、ヒートシンク2との間には電気的損失性を有する回路素子5が介在している。
(Embodiment 2)
FIG. 8 is a diagram for explaining an integrated circuit mounting structure according to the second embodiment of the present invention. Referring to FIG. 8, the integrated circuit mounting structure according to the second embodiment of the present invention is different from the structure according to the first embodiment in that shield member 60 is provided so as to cover heat sink 2. Different. Between the shield member 60 having conductivity and the heat sink 2, the circuit element 5 having electrical loss is interposed.
 シールド部材60とヒートシンク2とは、第1の配線3および第2の配線4を介在させて接続されている、これらの配線を介在させずにシールド部材60とヒートシンク2との間に電気的損失性を有する回路素子5が設けられていてもよい。さらに、シールド部材60とヒートシンク2とが、第1の配線3、第2の配線4、およびシャーシグランドを介在させて接続されていてもよい。 The shield member 60 and the heat sink 2 are connected to each other with the first wiring 3 and the second wiring 4 interposed therebetween, and an electrical loss is caused between the shield member 60 and the heat sink 2 without interposing these wirings. The circuit element 5 which has property may be provided. Further, the shield member 60 and the heat sink 2 may be connected via the first wiring 3, the second wiring 4, and the chassis ground.
 シールド部材60はヒートシンク2と容量結合をしている。シールド部材60は、例えばアルミニウム合金のように、高い導電性を有する材料で構成される。
 このように構成された、実施の形態2に従った集積回路の搭載構造においても、実施の形態1と同様の効果がある。
The shield member 60 is capacitively coupled to the heat sink 2. The shield member 60 is made of a material having high conductivity, such as an aluminum alloy.
The integrated circuit mounting structure according to the second embodiment configured as described above has the same effect as that of the first embodiment.
 以上,この発明の実施の形態について説明したが、ここで示した実施の形態はさまざまに変形することが可能である。本発明に従った構造は、パソコン、DVD、ブルーレイレコーダ、ナビゲーションシステムなどのデジタル機器をはじめ、あらゆる電子機器に適用することが可能である。 Although the embodiments of the present invention have been described above, the embodiments shown here can be variously modified. The structure according to the present invention can be applied to all electronic devices including digital devices such as a personal computer, a DVD, a Blu-ray recorder, and a navigation system.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 本発明は、ヒートシンクを有する電子機器のプリント基板に適用可能である。 The present invention can be applied to a printed circuit board of an electronic device having a heat sink.
 1,101 プリント基板、2,102 ヒートシンク、3,103 第1の配線、4,104 第2の配線、5,1051,1052 電気的損失性を有する回路素子、6 放熱シート、7 集積回路パッケージ、21 放熱フィン、22,1022 コンタクト、32 接続部、50 搭載構造、60 シールド部材。 1,101 printed circuit board, 2,102 heat sink, 3,103 first wiring, 4,104 second wiring, 5,1051,1052 circuit elements having electrical loss, 6 heat dissipation sheet, 7 integrated circuit package, 21 heat radiation fins, 22,1022 contacts, 32 connections, 50 mounting structure, 60 shield members.

Claims (7)

  1.  基板(1)と、
     前記基板上に載置される集積回路(7)と、
     前記集積回路と当接する、導電性を有する放熱素子(2)と、
     前記放熱素子を基板に固定する固定部(32)と、
     前記放熱素子と電磁気的に結合する導電体(4)と、
     前記放熱素子と前記導電体と電気的に接続される、電気的損失性を有する回路素子(5)とを備えた、集積回路の搭載構造。
    A substrate (1);
    An integrated circuit (7) mounted on the substrate;
    A conductive heat dissipating element (2) in contact with the integrated circuit;
    A fixing part (32) for fixing the heat dissipating element to the substrate;
    A conductor (4) electromagnetically coupled to the heat dissipation element;
    An integrated circuit mounting structure comprising: the heat dissipation element and a circuit element (5) having an electrical loss property, which is electrically connected to the conductor.
  2.  前記導電体は前記基板上に設けられる配線である、請求の範囲第1項に記載の集積回路の搭載構造。 2. The integrated circuit mounting structure according to claim 1, wherein the conductor is a wiring provided on the substrate.
  3.  前記配線はグラウンド電位の配線および電源配線のいずれかである、請求の範囲第2項に記載の集積回路の搭載構造。 The integrated circuit mounting structure according to claim 2, wherein the wiring is one of a ground potential wiring and a power supply wiring.
  4.  前記導電体は前記放熱素子を覆うシールド部材である、請求の範囲第1項に記載の集積回路の搭載構造。 2. The integrated circuit mounting structure according to claim 1, wherein the conductor is a shield member that covers the heat dissipation element.
  5.  前記電気的損失を有する回路素子は、0Ω抵抗以外の抵抗器およびフェライトを含む部品である、請求の範囲第1項に記載の集積回路の搭載構造。 2. The integrated circuit mounting structure according to claim 1, wherein the circuit element having electrical loss is a component including a resistor other than a 0Ω resistor and a ferrite.
  6.  前記電気的損失を有する回路素子の抵抗値は、前記放熱素子と前記基板のグラウンド電位間の特性インピーダンスである、請求の範囲第1項に記載の集積回路の搭載構造。 2. The integrated circuit mounting structure according to claim 1, wherein the resistance value of the circuit element having electrical loss is a characteristic impedance between the heat dissipation element and the ground potential of the substrate.
  7.  前記放熱素子は四角形であり、前記固定部は前記放熱素子の対角部に配置される、請求の範囲第1項に記載の集積回路の搭載構造。 2. The integrated circuit mounting structure according to claim 1, wherein the heat dissipating element is a quadrangle, and the fixing portion is disposed at a diagonal portion of the heat dissipating element.
PCT/JP2010/056230 2009-04-07 2010-04-06 Structure having integrated circuit mounted therein WO2010116993A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-093192 2009-04-07
JP2009093192A JP4958189B2 (en) 2009-04-07 2009-04-07 Integrated circuit mounting structure

Publications (1)

Publication Number Publication Date
WO2010116993A1 true WO2010116993A1 (en) 2010-10-14

Family

ID=42936276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/056230 WO2010116993A1 (en) 2009-04-07 2010-04-06 Structure having integrated circuit mounted therein

Country Status (2)

Country Link
JP (1) JP4958189B2 (en)
WO (1) WO2010116993A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6127429B2 (en) * 2012-09-28 2017-05-17 富士通株式会社 Cooling device and electronic device
JP6045427B2 (en) * 2013-04-08 2016-12-14 三菱電機株式会社 Electromagnetic shielding structure and high frequency module structure
JP7069866B2 (en) * 2017-09-29 2022-05-18 株式会社アイシン Chip heat dissipation system
JP6905016B2 (en) * 2019-09-10 2021-07-21 Necプラットフォームズ株式会社 Mounting board structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06252282A (en) * 1993-02-24 1994-09-09 Nec Corp Shield structure of package
JPH11261181A (en) * 1998-03-16 1999-09-24 Nec Corp Printed circuit board
JPH11259172A (en) * 1998-03-06 1999-09-24 Canon Inc Electronic instrument
JP2000115086A (en) * 1998-09-30 2000-04-21 Em Techno:Kk Electromagnetic shielded electronic circuit board

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0730280A (en) * 1993-07-09 1995-01-31 Sony Corp Shield case
JP2853618B2 (en) * 1995-11-15 1999-02-03 日本電気株式会社 Heat dissipation structure of electronic device
JP3012867B2 (en) * 1998-01-22 2000-02-28 インターナショナル・ビジネス・マシーンズ・コーポレイション Heat sink device for computer
JP2000133986A (en) * 1998-10-27 2000-05-12 Murata Mfg Co Ltd Mounting structure of radiation noise suppressing part
JP4914678B2 (en) * 2006-08-31 2012-04-11 任天堂株式会社 Electronics

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06252282A (en) * 1993-02-24 1994-09-09 Nec Corp Shield structure of package
JPH11259172A (en) * 1998-03-06 1999-09-24 Canon Inc Electronic instrument
JPH11261181A (en) * 1998-03-16 1999-09-24 Nec Corp Printed circuit board
JP2000115086A (en) * 1998-09-30 2000-04-21 Em Techno:Kk Electromagnetic shielded electronic circuit board

Also Published As

Publication number Publication date
JP2010245342A (en) 2010-10-28
JP4958189B2 (en) 2012-06-20

Similar Documents

Publication Publication Date Title
JP5914717B2 (en) Heat sink including a base plate structure having a periodic pattern, and related apparatus and method (heat sink including a base plate structure having a periodic pattern)
EP0663142B1 (en) Electromagnetic radiation reduction technique using grounded conductive traces circumscribing internal planes of printed circuit boards
US20140091826A1 (en) Fine pitch interface for probe card
WO2017022221A1 (en) Heat dissipating structure and electronic apparatus
KR101999509B1 (en) Circuit board
JP4998900B2 (en) Electronic device-equipped equipment and its noise suppression method
JP2012084599A (en) Heat sink connection body
JP2007129176A (en) Package device having electromagnetic wave shield
US9621196B2 (en) High-frequency module and microwave transceiver
US6944025B2 (en) EMI shielding apparatus
JP4958189B2 (en) Integrated circuit mounting structure
US20180301799A1 (en) Wireless module and image display device
JP2005026263A (en) Hybrid integrated circuit
EP2849227A1 (en) Chip package and packaging method
JP4454388B2 (en) Semiconductor module
JP6582717B2 (en) Electronic electrical equipment
KR101053296B1 (en) Electronic device with electromagnetic shielding
CN113711160B (en) Electronic device
JP6202112B2 (en) Electronic components for noise reduction
JPWO2008035540A1 (en) Electronic device-equipped equipment and its resonance suppression method
JP4433882B2 (en) Noise emission suppression memory module
CN113711705B (en) Electronic control device
KR101940295B1 (en) Board structure with radio frequency wave shield
JP2011249374A (en) Electronic apparatus
JP2004214534A (en) Shield box and electronic equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10761692

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10761692

Country of ref document: EP

Kind code of ref document: A1