WO2010116635A1 - Protection sheet for solar cell module and solar cell module including same - Google Patents
Protection sheet for solar cell module and solar cell module including same Download PDFInfo
- Publication number
- WO2010116635A1 WO2010116635A1 PCT/JP2010/002077 JP2010002077W WO2010116635A1 WO 2010116635 A1 WO2010116635 A1 WO 2010116635A1 JP 2010002077 W JP2010002077 W JP 2010002077W WO 2010116635 A1 WO2010116635 A1 WO 2010116635A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sheet
- solar cell
- cell module
- syndiotactic polystyrene
- polystyrene resin
- Prior art date
Links
- 229920005989 resin Polymers 0.000 claims abstract description 71
- 239000011347 resin Substances 0.000 claims abstract description 71
- 229920010524 Syndiotactic polystyrene Polymers 0.000 claims abstract description 60
- 230000001681 protective effect Effects 0.000 claims description 82
- 238000010030 laminating Methods 0.000 claims description 7
- 229920000642 polymer Polymers 0.000 description 27
- 239000000853 adhesive Substances 0.000 description 22
- 239000010410 layer Substances 0.000 description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 20
- 230000000694 effects Effects 0.000 description 19
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 18
- 230000001070 adhesive effect Effects 0.000 description 17
- -1 polyethylene terephthalate Polymers 0.000 description 17
- 230000004888 barrier function Effects 0.000 description 16
- 238000011156 evaluation Methods 0.000 description 15
- 229910052731 fluorine Inorganic materials 0.000 description 14
- 239000003973 paint Substances 0.000 description 14
- 239000003566 sealing material Substances 0.000 description 14
- 239000012790 adhesive layer Substances 0.000 description 13
- 238000012360 testing method Methods 0.000 description 13
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 12
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 12
- 229910052782 aluminium Inorganic materials 0.000 description 12
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 12
- 239000011737 fluorine Substances 0.000 description 12
- 239000011248 coating agent Substances 0.000 description 11
- 238000000576 coating method Methods 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 10
- 229910000640 Fe alloy Inorganic materials 0.000 description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 8
- CYUOWZRAOZFACA-UHFFFAOYSA-N aluminum iron Chemical compound [Al].[Fe] CYUOWZRAOZFACA-UHFFFAOYSA-N 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 239000000049 pigment Substances 0.000 description 8
- 229920006267 polyester film Polymers 0.000 description 8
- 239000000377 silicon dioxide Substances 0.000 description 8
- 239000002904 solvent Substances 0.000 description 8
- 230000001771 impaired effect Effects 0.000 description 7
- 239000003431 cross linking reagent Substances 0.000 description 6
- 238000010292 electrical insulation Methods 0.000 description 6
- 239000005038 ethylene vinyl acetate Substances 0.000 description 6
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 6
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 5
- 229920000139 polyethylene terephthalate Polymers 0.000 description 5
- 239000005020 polyethylene terephthalate Substances 0.000 description 5
- 230000001133 acceleration Effects 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 4
- UUAGAQFQZIEFAH-UHFFFAOYSA-N chlorotrifluoroethylene Chemical group FC(F)=C(F)Cl UUAGAQFQZIEFAH-UHFFFAOYSA-N 0.000 description 4
- 229920001577 copolymer Polymers 0.000 description 4
- 238000004132 cross linking Methods 0.000 description 4
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 239000012948 isocyanate Substances 0.000 description 4
- 239000000178 monomer Substances 0.000 description 4
- 229920000728 polyester Polymers 0.000 description 4
- 229920002620 polyvinyl fluoride Polymers 0.000 description 4
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 3
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 3
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 229920000840 ethylene tetrafluoroethylene copolymer Polymers 0.000 description 3
- 230000007062 hydrolysis Effects 0.000 description 3
- 238000006460 hydrolysis reaction Methods 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 3
- 229920005990 polystyrene resin Polymers 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000004408 titanium dioxide Substances 0.000 description 3
- UZKWTJUDCOPSNM-UHFFFAOYSA-N 1-ethenoxybutane Chemical compound CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 2
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- SDEJOFWFZCMBFX-UHFFFAOYSA-N C(CCCCCCCCCCC)(=O)OCCCCCCCC.C(CCCCCCCCCCC)(=O)OCCCCCCCC.[Sn] Chemical compound C(CCCCCCCCCCC)(=O)OCCCCCCCC.C(CCCCCCCCCCC)(=O)OCCCCCCCC.[Sn] SDEJOFWFZCMBFX-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 229920001780 ECTFE Polymers 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- 239000004840 adhesive resin Substances 0.000 description 2
- 229920006223 adhesive resin Polymers 0.000 description 2
- 229910021417 amorphous silicon Inorganic materials 0.000 description 2
- DKPFZGUDAPQIHT-UHFFFAOYSA-N butyl acetate Chemical compound CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 2
- XUPYJHCZDLZNFP-UHFFFAOYSA-N butyl butanoate Chemical compound CCCCOC(=O)CCC XUPYJHCZDLZNFP-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 229910021419 crystalline silicon Inorganic materials 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- FJKIXWOMBXYWOQ-UHFFFAOYSA-N ethenoxyethane Chemical compound CCOC=C FJKIXWOMBXYWOQ-UHFFFAOYSA-N 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 125000001153 fluoro group Chemical group F* 0.000 description 2
- 125000003709 fluoroalkyl group Chemical group 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 150000002513 isocyanates Chemical class 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000000615 nonconductor Substances 0.000 description 2
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- 229920001707 polybutylene terephthalate Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 238000005019 vapor deposition process Methods 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- FBOUIAKEJMZPQG-AWNIVKPZSA-N (1E)-1-(2,4-dichlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)pent-1-en-3-ol Chemical compound C1=NC=NN1/C(C(O)C(C)(C)C)=C/C1=CC=C(Cl)C=C1Cl FBOUIAKEJMZPQG-AWNIVKPZSA-N 0.000 description 1
- SKYXLDSRLNRAPS-UHFFFAOYSA-N 1,2,4-trifluoro-5-methoxybenzene Chemical compound COC1=CC(F)=C(F)C=C1F SKYXLDSRLNRAPS-UHFFFAOYSA-N 0.000 description 1
- RTTZISZSHSCFRH-UHFFFAOYSA-N 1,3-bis(isocyanatomethyl)benzene Chemical compound O=C=NCC1=CC=CC(CN=C=O)=C1 RTTZISZSHSCFRH-UHFFFAOYSA-N 0.000 description 1
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 1
- YCGKJPVUGMBDDS-UHFFFAOYSA-N 3-(6-azabicyclo[3.1.1]hepta-1(7),2,4-triene-6-carbonyl)benzamide Chemical compound NC(=O)C1=CC=CC(C(=O)N2C=3C=C2C=CC=3)=C1 YCGKJPVUGMBDDS-UHFFFAOYSA-N 0.000 description 1
- HMBNQNDUEFFFNZ-UHFFFAOYSA-N 4-ethenoxybutan-1-ol Chemical compound OCCCCOC=C HMBNQNDUEFFFNZ-UHFFFAOYSA-N 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920000298 Cellophane Polymers 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229920007925 Ethylene chlorotrifluoroethylene (ECTFE) Polymers 0.000 description 1
- 229920006358 Fluon Polymers 0.000 description 1
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical group CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 229920002292 Nylon 6 Polymers 0.000 description 1
- 229920002302 Nylon 6,6 Polymers 0.000 description 1
- 229930040373 Paraformaldehyde Natural products 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- QYKIQEUNHZKYBP-UHFFFAOYSA-N Vinyl ether Chemical compound C=COC=C QYKIQEUNHZKYBP-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- UKLDJPRMSDWDSL-UHFFFAOYSA-L [dibutyl(dodecanoyloxy)stannyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)O[Sn](CCCC)(CCCC)OC(=O)CCCCCCCCCCC UKLDJPRMSDWDSL-UHFFFAOYSA-L 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229920006125 amorphous polymer Polymers 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000003851 corona treatment Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 229920006332 epoxy adhesive Polymers 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- QHSJIZLJUFMIFP-UHFFFAOYSA-N ethene;1,1,2,2-tetrafluoroethene Chemical group C=C.FC(F)=C(F)F QHSJIZLJUFMIFP-UHFFFAOYSA-N 0.000 description 1
- HDERJYVLTPVNRI-UHFFFAOYSA-N ethene;ethenyl acetate Chemical group C=C.CC(=O)OC=C HDERJYVLTPVNRI-UHFFFAOYSA-N 0.000 description 1
- YCUBDDIKWLELPD-UHFFFAOYSA-N ethenyl 2,2-dimethylpropanoate Chemical compound CC(C)(C)C(=O)OC=C YCUBDDIKWLELPD-UHFFFAOYSA-N 0.000 description 1
- WNMORWGTPVWAIB-UHFFFAOYSA-N ethenyl 2-methylpropanoate Chemical compound CC(C)C(=O)OC=C WNMORWGTPVWAIB-UHFFFAOYSA-N 0.000 description 1
- JZRGFKQYQJKGAK-UHFFFAOYSA-N ethenyl cyclohexanecarboxylate Chemical compound C=COC(=O)C1CCCCC1 JZRGFKQYQJKGAK-UHFFFAOYSA-N 0.000 description 1
- GLVVKKSPKXTQRB-UHFFFAOYSA-N ethenyl dodecanoate Chemical compound CCCCCCCCCCCC(=O)OC=C GLVVKKSPKXTQRB-UHFFFAOYSA-N 0.000 description 1
- LZWYWAIOTBEZFN-UHFFFAOYSA-N ethenyl hexanoate Chemical compound CCCCCC(=O)OC=C LZWYWAIOTBEZFN-UHFFFAOYSA-N 0.000 description 1
- AFSIMBWBBOJPJG-UHFFFAOYSA-N ethenyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC=C AFSIMBWBBOJPJG-UHFFFAOYSA-N 0.000 description 1
- UIWXSTHGICQLQT-UHFFFAOYSA-N ethenyl propanoate Chemical compound CCC(=O)OC=C UIWXSTHGICQLQT-UHFFFAOYSA-N 0.000 description 1
- 229920001038 ethylene copolymer Polymers 0.000 description 1
- 229920005648 ethylene methacrylic acid copolymer Polymers 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 229920000554 ionomer Polymers 0.000 description 1
- JMMWKPVZQRWMSS-UHFFFAOYSA-N isopropanol acetate Natural products CC(C)OC(C)=O JMMWKPVZQRWMSS-UHFFFAOYSA-N 0.000 description 1
- 229940011051 isopropyl acetate Drugs 0.000 description 1
- GWYFCOCPABKNJV-UHFFFAOYSA-N isovaleric acid Chemical compound CC(C)CC(O)=O GWYFCOCPABKNJV-UHFFFAOYSA-N 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000007974 melamines Chemical class 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- XJRBAMWJDBPFIM-UHFFFAOYSA-N methyl vinyl ether Chemical compound COC=C XJRBAMWJDBPFIM-UHFFFAOYSA-N 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 238000001225 nuclear magnetic resonance method Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920006380 polyphenylene oxide Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000000565 sealant Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 150000004756 silanes Chemical class 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000013464 silicone adhesive Substances 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 230000003685 thermal hair damage Effects 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 1
- KOZCZZVUFDCZGG-UHFFFAOYSA-N vinyl benzoate Chemical compound C=COC(=O)C1=CC=CC=C1 KOZCZZVUFDCZGG-UHFFFAOYSA-N 0.000 description 1
- 229920001567 vinyl ester resin Polymers 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/08—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
- B32B27/302—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
- B32B27/304—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/32—Layered products comprising a layer of synthetic resin comprising polyolefins
- B32B27/322—Layered products comprising a layer of synthetic resin comprising polyolefins comprising halogenated polyolefins, e.g. PTFE
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/042—PV modules or arrays of single PV cells
- H01L31/048—Encapsulation of modules
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/042—PV modules or arrays of single PV cells
- H01L31/048—Encapsulation of modules
- H01L31/049—Protective back sheets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2250/00—Layers arrangement
- B32B2250/24—All layers being polymeric
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/712—Weather resistant
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2457/00—Electrical equipment
- B32B2457/12—Photovoltaic modules
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Definitions
- the present invention relates to a protective sheet for a solar cell module used as a surface protective sheet or a back surface protective sheet of a solar cell module. Furthermore, this invention relates to a solar cell module provided with the said protection sheet for solar cell modules.
- FIG. 4 is a schematic cross-sectional view showing an example of a general solar cell module.
- the solar battery module 100 includes a solar battery cell 104 made of crystalline silicon, amorphous silicon, etc., a sealing material (filling layer) 103 made of an electrical insulator that seals the solar battery cell 104, and the surface of the sealing material 103.
- stacked on the back surface of the sealing material 103 are roughly comprised.
- the front sheet 101 may be a glass plate as a base material.
- the surface protection sheet (front sheet) 101 and the back surface protection sheet (back sheet) 102 are collectively referred to as “protection sheet”.
- the solar cell 104 and the sealing material 103 are protected from wind, rain, moisture, dust, mechanical impact, etc. It is necessary to keep the inside of the solar cell module sealed from the outside air. For this reason, it is calculated
- a protective sheet for a solar cell module a protective sheet for a solar cell module using a polyester film such as polyethylene terephthalate having excellent electrical insulation has been developed, and weather resistance and durability mentioned as disadvantages using the polyester film Film containing an ultraviolet absorber (see Patent Document 1), a film defining the amount of cyclic oligomer in polyester (see Patent Documents 2 and 3), and a film defining the molecular weight of polyester (Patent Document 4)
- Patent Document 1 A protective sheet using the reference is disclosed.
- the solar cell module protective sheet disclosed in the prior art is improved in weather resistance and durability as compared with a protective sheet using polyethylene terephthalate, but a polyester film as a base sheet. Therefore, there has always been a problem of deterioration due to hydrolysis of the base sheet.
- the present invention has been made in view of the above circumstances, and has a high weather resistance and durability, and a solar cell module protective sheet that can be used stably for a long period of time, and the solar cell module It aims at providing the solar cell module which uses a protection sheet.
- the protective sheet for a solar cell module of the present invention is a laminate including a syndiotactic polystyrene resin sheet.
- the solar cell module protective sheet of the present invention is preferably configured by laminating a fluororesin layer on at least one surface of a syndiotactic polystyrene resin sheet.
- the solar cell module protective sheet of the present invention is preferably configured by laminating a support sheet on at least one surface of a syndiotactic polystyrene resin sheet.
- the protective sheet for a solar cell module of the present invention is configured by laminating a fluororesin layer on one surface of a syndiotactic polystyrene resin sheet and laminating a support sheet on the other surface of the syndiotactic polystyrene resin sheet. It is preferable that
- this invention provides a solar cell module provided with the said protection sheet for solar cell modules.
- the protective sheet for a solar cell module of the present invention is a laminate including a syndiotactic polystyrene resin sheet, the solar cell does not deteriorate due to hydrolysis of the resin sheet itself, and is extremely excellent in weather resistance and durability.
- a protective sheet for modules can be provided.
- the solar cell module of the present invention is constructed by adhering the solar cell module protective sheet to one or both of the front surface and the back surface, the solar cell module has excellent weather resistance and durability, and stable long-term solar cells. Can be used.
- FIG. 1 is a schematic sectional drawing which shows 1st embodiment of the protection sheet for solar cell modules of this invention, and the protection sheet for solar cell modules of Example 1.
- FIG. is a schematic sectional drawing which shows 2nd embodiment of the protection sheet for solar cell modules of this invention.
- It is a schematic sectional drawing which shows 3rd embodiment of the protection sheet for solar cell modules of this invention.
- 3 is a schematic cross-sectional view showing a solar cell module protective sheet of Example 2.
- the protective sheet for a solar cell module of the present invention is a laminate including a syndiotactic polystyrene resin sheet.
- the syndiotactic polystyrene resin sheet in the present invention is not particularly limited as long as it is a sheet or film made of a polystyrene resin having a syndiotactic structure (may be abbreviated as “SPS” in the present specification).
- the syndiotactic structure is a three-dimensional structure in which the three-dimensional structure is a syndiotactic structure, that is, a phenyl group or a substituted phenyl group that is a side chain with respect to the main chain formed from a carbon-carbon bond is alternately located in the opposite direction.
- the tacticity is quantified by a nuclear magnetic resonance method ( 13 C-NMR method) using isotope carbon.
- the tacticity measured by 13 C-NMR method is the abundance ratio of a plurality of consecutive structural units, for example, 2 dyads (2 doublings), 3 cases triads (3 doublings), 5 In the case of individual, it can be indicated by pentad (pentad), but as the polystyrene resin having a syndiotactic structure in the present invention, it is 75 mol% or more with racemic dyad, or 30 mol% or more with racemic pentad. Polystyrene resins having a syndiotacticity of
- the molecular weight of the SPS is not particularly limited, but the weight average molecular weight is preferably 10,000 or more and 1,500,000 or less, more preferably 50,000 or more and 500,000 or less. Furthermore, the molecular weight distribution is not particularly limited in its width, and SPS having various molecular weight distributions can be used.
- the glass transition temperature (Tg) of the SPS is not particularly limited, but is preferably 80 to 120 ° C. from the viewpoint of film forming properties.
- the melting point (Tm) of the SPS is not particularly limited, but is preferably 230 to 350 ° C., more preferably 240 to 330 ° C., and further preferably 250 to 320 ° C. from the viewpoint of film forming properties.
- the thickness of the syndiotactic polystyrene resin sheet in the present invention may be adjusted based on the electrical insulation required by the solar cell system, and the thickness of the sheet is usually in the range of 10 to 300 ⁇ m.
- the thickness is preferably in the range of 20 to 200 ⁇ m from the viewpoint of light weight and electrical insulation.
- syndiotactic polystyrene resin sheet in the present invention examples include, for example, XAREC (trade name) manufactured by Idemitsu Kosan Co., Ltd.
- the syndiotactic polystyrene resin sheet in the present invention can be subjected to a surface modification treatment for improving weather resistance, moisture resistance and the like.
- a surface modification treatment for improving weather resistance, moisture resistance and the like.
- silica (SiO 2 ), aluminum (Al), alumina (Al 2 O 3 ), etc. on a syndiotactic polystyrene resin sheet
- the weather resistance, moisture resistance, etc. of the solar cell module protection sheet Can be increased.
- the vapor deposition process of the said silica, aluminum, an alumina, etc. may be performed on both surfaces of a syndiotactic polystyrene-type resin sheet, and may be performed only on any one surface.
- the protective sheet for a solar cell module of the present invention is a laminate including the syndiotactic polystyrene resin sheet.
- first embodiment, the second embodiment, and the third embodiment will be described in order to specifically describe the configuration of the protective sheet for a solar cell module of the present invention. This embodiment is specifically described for better understanding of the gist of the invention and does not limit the present invention unless otherwise specified.
- FIG. 1 is a schematic sectional drawing which shows 1st embodiment of the protection sheet for solar cell modules of this invention.
- the solar cell module protective sheet 10 of this embodiment forms a laminated structure in which a fluororesin layer 21 is laminated on a syndiotactic polystyrene resin sheet 22.
- examples of the syndiotactic polystyrene resin sheet 22 include the same as those mentioned in the syndiotactic polystyrene resin sheet in the present invention.
- the fluororesin layer 21 is not particularly limited as long as it does not impair the effects of the present invention and contains a fluorine atom.
- seat which has a fluorine-containing polymer may be sufficient
- coated the coating material which has a fluorine-containing polymer may be sufficient. From the viewpoint of making the fluororesin layer thinner in order to reduce the weight of the protective sheet for solar cell module, a coating film coated with a paint having a fluorine-containing polymer is preferable.
- the sheet having the fluorine-containing polymer for example, a sheet obtained by processing a polymer mainly composed of polyvinyl fluoride (PVF), ethylene chlorotrifluoroethylene (ECTFE), or ethylene tetrafluoroethylene (ETFE) into a sheet shape is preferable.
- PVF polyvinyl fluoride
- ECTFE ethylene chlorotrifluoroethylene
- ETFE ethylene tetrafluoroethylene
- the thickness of the sheet having a fluorine-containing polymer is generally preferably in the range of 5 to 200 ⁇ m, more preferably in the range of 10 to 100 ⁇ m, and most preferably in the range of 10 to 50 ⁇ m from the viewpoint of weather resistance and weight reduction.
- the paint having a fluorine-containing polymer is not particularly limited as long as it can be applied by being dissolved in a solvent or dispersed in water.
- the fluorine-containing polymer which may be contained in the paint is not particularly limited as long as it is a polymer containing a fluorine atom without impairing the effects of the present invention.
- the fluorine-containing polymer is soluble in the paint solvent (organic solvent or water). Those that can be crosslinked are preferred.
- fluorine-containing polymer examples include chlorotrifluoroethylene (CTFE) such as LUMIFLON (trade name) manufactured by Asahi Glass Co., Ltd., CEFLAR COAT (trade name) manufactured by Central Glass Co., Ltd., and FLUONATE (trade name) manufactured by DIC Corporation.
- CTFE chlorotrifluoroethylene
- TFE tetrafluoroethylene
- ZEFFLE trade name
- Zonyl trade name
- DuPont Unidine manufactured by Daikin Industries, Ltd.
- examples thereof include polymers having a fluoroalkyl group such as (trade name) and polymers having a fluoroalkyl unit as a main component.
- a polymer containing CTFE as a main component and a polymer containing TFE as a main component are more preferable.
- the LUMIFLON (trade name) and the ZEFFLE (trade name) are preferable. Most preferred.
- the LUMIFLON (trade name) is an amorphous polymer containing CTFE and several kinds of specific alkyl vinyl ethers and hydroxyalkyl vinyl ethers as main structural units.
- a polymer having a monomer unit of hydroxyalkyl vinyl ether, such as LUMIFLON (trade name) is preferable because it is excellent in solvent solubility, crosslinking reactivity, substrate adhesion, pigment dispersibility, hardness, and flexibility.
- the ZEFFLE (trade name) is a copolymer of TFE and an organic solvent-soluble hydrocarbon olefin. Among them, the copolymer having a hydrocarbon olefin having a highly reactive hydroxyl group is a solvent-soluble, cross-linking reaction. This is preferable because of its excellent properties, substrate adhesion, and pigment dispersibility.
- fluorine-containing polymer examples include fluoroolefin polymers having a curable functional group. Specific examples include TFE, isobutylene, vinylidene fluoride (VdF), and hydroxybutyl. Preferred examples include copolymers composed of vinyl ether and other monomers, and copolymers composed of TFE, VdF, hydroxybutyl vinyl ether and other monomers.
- Examples of the copolymerizable monomer in the fluorine-containing polymer that may be contained in the paint include, for example, vinyl acetate, vinyl propionate, butyl butyrate, vinyl isobutyrate, vinyl pivalate, vinyl caproate, vinyl versatate, Examples include vinyl esters of carboxylic acids such as vinyl laurate, vinyl stearate, vinyl cyclohexylcarboxylate, and vinyl benzoate, and alkyl vinyl ethers such as methyl vinyl ether, ethyl vinyl ether, butyl vinyl ether, and cyclohexyl vinyl ether.
- the coating material may contain a crosslinking agent, a catalyst, and a solvent, and may further contain an inorganic compound such as a pigment and a filler, if necessary.
- the solvent contained in the paint is not particularly limited as long as it does not impair the effects of the present invention.
- methyl ethyl ketone (MEK), cyclohexanone, acetone, methyl isobutyl ketone (MIBK), toluene, xylene, methanol, isopropanol, ethanol , Heptane, ethyl acetate, isopropyl acetate, n-butyl acetate, or n-butyl alcohol can be preferably used.
- the said solvent has any 1 or more types among MIBK or MEK from a soluble viewpoint of the component contained in a coating material.
- the pigment that may be contained in the paint is not particularly limited as long as the effect of the present invention is not impaired.
- titanium dioxide, carbon black, silica and the like can be mentioned.
- Ti-Pure R105 (trade name; manufactured by DuPont), which is a rutile type titanium dioxide that has been coated and surface-treated in order to impart durability, and the surface treatment of dimethylsilicone to form hydroxyl groups on the silica surface.
- a preferable example is CAB-O-SIL TS 720 (trade name; manufactured by Cabot), which is a modified hydrophobic silica.
- the coating film is preferably cured with a crosslinking agent in order to improve weather resistance and scratch resistance.
- the crosslinking agent is not particularly limited as long as it does not impair the effects of the present invention, and examples thereof preferably include metal chelates, silanes, isocyanates, and melamines. When it is assumed that the solar cell module protective sheet is used outdoors for 30 years or more, aliphatic isocyanates are preferable as the cross-linking agent from the viewpoint of weather resistance.
- the composition of the paint is not particularly limited as long as the effects of the present invention are not impaired.
- LUMIFLON trade name
- a pigment a crosslinking agent, a solvent, and a catalyst are mixed.
- LUMIFLON trade name
- the composition ratio when the entire coating is 100 mass%, LUMIFLON (trade name) is preferably 3 to 80 mass%, more preferably about 10 to 60 mass%, and the pigment and filler are 5 to 60 mass%.
- % By mass is preferable, and about 10 to 40% by mass is more preferable, and the organic solvent is preferably 20 to 80% by mass.
- Examples of the organic solvent include a mixed solvent of MEK, xylene, and cyclohexanone.
- examples of the catalyst include tin dibutyl dilaurate and tin dioctyl dilaurate, which are used to promote crosslinking between LUMIFLON (trade name) and isocyanate.
- the paint As a method of applying the paint to one or the other surface of the syndiotactic polystyrene resin sheet 22, it can be performed by a known method, and for example, it may be applied so as to have a desired film thickness with a rod coater.
- the film thickness of the fluororesin layer 21 formed by curing the paint is not particularly limited, and may be, for example, a film thickness of 5 ⁇ m or more. From the viewpoint of water vapor barrier properties, weather resistance, and light weight, the thickness of the fluororesin layer 21 is preferably 5 to 100 ⁇ m, more preferably 8 to 50 ⁇ m, and even more preferably 10 to 30 ⁇ m.
- the temperature in the drying process of the applied paint may be any temperature that does not impair the effects of the present invention, and promotes crosslinking of the paint forming the fluororesin layer 21 and causes thermal damage to the syndiotactic polystyrene resin sheet 22. From the viewpoint of reduction, it is preferably in the range of about 50 to 150 ° C.
- the fluororesin layer 21 is laminated on the syndiotactic polystyrene resin sheet 22. Furthermore, durability and weather resistance can be improved.
- FIG. 2 is a schematic cross-sectional view showing a second embodiment of the solar cell module protective sheet of the present invention.
- the same components as those of the solar cell module protection sheet 10 shown in FIG. 2 are identical components as those of the solar cell module protection sheet 10 shown in FIG.
- the solar cell module protective sheet 20 of this embodiment forms a laminated structure in which a support sheet 24 is laminated on a syndiotactic polystyrene resin sheet 22.
- the method for laminating the syndiotactic polystyrene resin sheet 22 and the support sheet 24 is not particularly limited as long as the effects of the present invention are not impaired. As shown in FIG. 2, the syndiotactic polystyrene resin sheet is used.
- An adhesive layer 23 is further provided between the support sheet 24 and the support sheet 24, and the syndiotactic polystyrene resin sheet 22 and the support sheet 24 can be laminated via the adhesive layer 23.
- the adhesive layer 23 preferably includes an adhesive having adhesiveness to the syndiotactic polystyrene resin sheet 22 and the support sheet 24.
- the adhesive is not particularly limited as long as it does not impair the effects of the present invention, and examples thereof include acrylic adhesives, urethane adhesives, epoxy adhesives, ester adhesives, and silicone adhesives. . Of these, urethane adhesives are preferable from the viewpoint of adhesiveness.
- the surface of the syndiotactic polystyrene resin sheet 22 and the support sheet 24 on the adhesive layer 23 side may be subjected to corona treatment and / or chemical treatment.
- Examples of the support sheet 24 in the solar cell module protective sheet 20 of the present invention include a thermal adhesive sheet, a resin sheet, and an aluminum sheet.
- the solar cell module protective sheet 20 is not used as the front sheet 101 and is used as the back sheet 102 because it does not have optical transparency.
- thermal adhesive sheet is not particularly limited as long as it is a resin sheet having thermal adhesiveness without impairing the effects of the present invention.
- thermal adhesiveness is a property that develops adhesiveness by heat treatment.
- the temperature in the heat treatment is usually in the range of 50 to 200 ° C.
- the heat-adhesive sheet for example, a resin sheet made of a polymer mainly composed of ethylene vinyl acetate (EVA), polyvinyl butyral (PVB), ethylene methacrylic acid copolymer or polyolefin is preferable. More preferably, it is a resin sheet.
- the sealing material 103 is often a resin made of EVA, and in that case, the thermal adhesive sheet is a resin sheet made of a polymer mainly composed of EVA, so that the sealing material 103 and the heat Compatibility with the adhesive sheet and adhesion can be improved.
- the thickness of the heat-adhesive sheet may be appropriately adjusted depending on the type of the heat-adhesive sheet, and is preferably in the range of 5 to 200 ⁇ m. More specifically, when the thermal adhesive sheet is a sheet made of EVA, the thickness of the EVA sheet is preferably in the range of 10 to 200 ⁇ m from the viewpoints of light weight and electrical insulation. The range of 50 to 150 ⁇ m is more preferable, and the range of 80 to 120 ⁇ m is most preferable.
- the method for laminating the heat-adhesive sheet on the syndiotactic polystyrene resin sheet 22 is not particularly limited as long as the effect of the present invention is not impaired, and the heat-adhesive resin is dissolved in a solvent or dispersed in water. May be applied to the syndiotactic polystyrene resin sheet 22 to form a coating film. As shown in FIG. 2, a sheet of heat adhesive resin and a syndiotactic polystyrene resin sheet 22 may be used. Further, an adhesive layer 23 may be further provided, and the thermal adhesive sheet and the syndiotactic polystyrene resin sheet 22 may be laminated via the adhesive layer 23.
- resin sheet used for the support sheet 24 those generally used as a resin sheet in a protective sheet for a solar cell module can be used.
- resin sheets include polyethylene, polypropylene, non-syndiotactic polystyrene, polymethyl methacrylate, polyamide (nylon 6, nylon 66), polyacrylonitrile, polyvinyl chloride, polyethylene terephthalate (PET), polybutylene terephthalate.
- PET polyethylene terephthalate
- PET polybutylene terephthalate
- sheets made of polymers such as (PBT), polyethylene naphthalate (PEN), polyoxymethylene, polycarbonate, polyphenylene oxide, polyester urethane, poly m-phenylene isophthalamide, poly p-phenylene terephthalamide.
- the thickness of the resin sheet may be adjusted based on the electrical insulation required by the solar cell system, and the thickness of the sheet is usually preferably in the range of 10 to 300 ⁇ m.
- the resin sheet can be subjected to a surface modification treatment for improving weather resistance, moisture resistance and the like.
- a surface modification treatment for improving weather resistance, moisture resistance and the like.
- silica (SiO 2 ), aluminum (Al), alumina (Al 2 O 3 ), and the like on the PET sheet the weather resistance, moisture resistance, and the like of the solar cell module protection sheet can be improved.
- the vapor deposition process of the said silica, aluminum, an alumina, etc. may be performed on both surfaces of a resin sheet, and may be performed only on either one surface.
- the aluminum sheet used for the support sheet 24 is not particularly limited as long as it does not impair the effects of the present invention, but an aluminum-iron alloy containing iron in the range of 0.7 to 5.0% by mass is made into a sheet form. Those are preferred. Specific examples include those classified into alloy number 8021 defined in JIS H4160. For example, PACAL21 (trade name) manufactured by Nihon Foil Co., Ltd. can be preferably used as the aluminum-iron alloy in the form of a sheet. Also, BESPA (trade name) manufactured by Sumi Light Aluminum Foil Co., Ltd. can be preferably used.
- the water vapor barrier property and lightness of the solar cell module protective sheet 20 when used as a back sheet can be achieved rather than using a pure aluminum sheet. Can be increased.
- an aluminum-iron alloy containing iron within the above range is generally superior in rolling processability compared to pure aluminum, and therefore, even when processed into a sheet having a thickness of 20 ⁇ m or less, pinholes are less likely to occur. It is considered that the gas flow through the pinhole can be suppressed, and as a result, the water vapor barrier property of the solar cell module protective sheet 20 when used as a back sheet can be enhanced.
- it since it is excellent in rolling processability, it can be processed into a sheet thinner than a pure aluminum sheet while maintaining the water vapor barrier property. As a result, the back sheet using the aluminum-iron alloy sheet is lightweight. Can be increased.
- the aluminum-iron alloy sheet may contain an element other than iron as long as the effects of the present invention are not impaired.
- an element other than iron for example, magnesium, manganese, copper, silicon, zinc, titanium, etc. are mentioned. These elements may be inevitably contained in the production process of the aluminum-iron alloy, but generally it is considered that the effect of the present invention is not impaired if the content is very small.
- a trace amount content the case where each element is 0.5 mass% or less respectively, More preferably, it is the case where it is 0.3 mass% or less.
- the thickness of the aluminum-iron alloy sheet is not particularly limited as long as the effects of the present invention are not impaired. From the viewpoint of low pinhole occurrence frequency (high water vapor barrier property), light weight, etc., preferably It is 30 ⁇ m or less, more preferably 20 ⁇ m or less, and most preferably 5 to 10 ⁇ m.
- the solar cell module protective sheet 20 can be easily thermally bonded to the sealing material 103 constituting the solar cell module. it can.
- the support sheet 24 in the solar cell module protective sheet 20 is an aluminum sheet, weather resistance and water vapor barrier properties as a back sheet of the solar cell module protective sheet 20 can be improved.
- the support sheet 24 in the solar cell module protective sheet 20 is a resin sheet, the electrical insulation of the solar cell module protective sheet 20 can be further improved.
- the support sheet 24 is laminated on the syndiotactic polystyrene resin sheet 22, so that in addition to the effects of the syndiotactic polystyrene resin sheet 22, further The effect of the support sheet 24 can be imparted.
- FIG. 3 is a schematic cross-sectional view showing a third embodiment of the solar cell module protective sheet of the present invention.
- the solar cell module protective sheet 30 of the present embodiment includes a surface of the syndiotactic polystyrene resin sheet 22 on which the support sheet 24 is laminated. Forms a laminated structure in which the fluororesin layer 21 is laminated on the opposite surface (back surface).
- the same effects as those of the solar cell module protective sheet 20 of the second embodiment described above can be obtained, and further, the fluororesin layer 21 is laminated. , Durability and weather resistance can be improved.
- the support sheet 24 is preferably a thermal adhesive sheet.
- the protective sheet for a solar cell module of the present invention can be used as a solar cell module by combining conventionally known materials for forming a solar cell module.
- the solar cell module of the present invention includes a solar cell 104 made of crystalline silicon, amorphous silicon, and the like, and a sealing material (filling layer) made of an electrical insulator that seals the solar cell 104. ) 103, a surface protection sheet (front sheet) 101 laminated on the surface of the sealing material 103, and a back surface protection sheet (back sheet) 102 laminated on the back surface of the sealing material 103.
- the sealing material 103 is mainly composed of a transparent resin such as vinyl acetate-ethylene copolymer (EVA), polyvinyl butyral, silicone resin, epoxy resin, fluorinated polyimide resin, acrylic resin, polyester resin, and ionomer resin. Resin can be used.
- a transparent resin such as vinyl acetate-ethylene copolymer (EVA), polyvinyl butyral, silicone resin, epoxy resin, fluorinated polyimide resin, acrylic resin, polyester resin, and ionomer resin. Resin can be used.
- the solar cell module protective sheets 10, 20 and 30 according to the present invention are used as the front sheet 101 and / or the back sheet 102 in FIG.
- the solar battery cell 104 and the sealing material 103 in the solar battery module are protected from wind and rain, moisture, dust, mechanical shock, etc. Can be kept sealed from the outside air.
- the protective sheet for a solar cell module of the present invention is laminated on the sealing surface (the front surface and / or the back surface of the sealing material), a known method can be applied.
- a protective sheet for a solar cell module in which 0 to 1 layers of syndiotactic polystyrene resin sheet 22, fluororesin layer 21, support sheet 24, and adhesive layer 23 are laminated is illustrated.
- the protective sheet for a solar cell module of the present invention is not limited to this.
- the protective sheet for a solar cell module of the present invention may have a structure in which a plurality of syndiotactic polystyrene resin sheets, support sheets, adhesive layers and / or fluororesin layers are laminated.
- Fluororesin coating solution 1 by mixing 10 parts by weight, 0.0001 part by weight tin dioctyl dilaurate as a catalyst, and 30 parts by weight Taipure R-105 (trade name; manufactured by DuPont) which is titanium dioxide as a pigment Was prepared.
- Example 1 1 is a schematic cross-sectional view showing a protective sheet 10 for a solar cell module of Example 1.
- FIG. The above fluororesin coating solution 1 is applied on a XAREC-C122 (trade name; manufactured by Idemitsu Kosan Co., Ltd., thickness 30 ⁇ m) as a syndiotactic polystyrene resin sheet 22 with a rod coater and dried at 120 ° C. for 1 minute.
- a fluororesin layer 21 having a thickness of 15 ⁇ m was formed, and thus the solar cell module protective sheet 10 was produced.
- FIG. 5 is a schematic cross-sectional view showing the solar cell module protective sheet 40 of Example 2.
- the above-mentioned adhesive 1 was coated on a XAREC-C122 (trade name; Idemitsu Kosan Co., Ltd., thickness 30 ⁇ m) as a first syndiotactic polystyrene resin sheet 22 with a rod coater and dried at 80 ° C. for 1 minute.
- an adhesive layer 23 having a thickness of 10 ⁇ m was formed.
- the formed adhesive layer 23 and a silica vapor-deposited surface of Tech Barrier LX (trade name; manufactured by Mitsubishi Plastics, Inc., 12 ⁇ m thick), which is a silica vapor-deposited polyester film, are laminated at normal temperature as a support sheet 24 to produce syndiotactic polystyrene. / A silica-deposited polyester film laminate was produced. Further, the adhesive 1 was applied on a XAREC-C122 (trade name; manufactured by Idemitsu Kosan Co., Ltd., thickness 30 ⁇ m) as a second syndiotactic polystyrene resin sheet 22 with a rod coater, and then at 80 ° C. for 1 minute.
- XAREC-C122 (trade name; manufactured by Idemitsu Kosan Co., Ltd., thickness 30 ⁇ m) as a second syndiotactic polystyrene resin sheet 22 with a rod coater, and then at 80 ° C. for 1 minute.
- the adhesive layer 23 having a thickness of 10 ⁇ m was formed by drying.
- the formed adhesive layer surface and the polyester surface of the syndiotactic polystyrene / silica vapor-deposited polyester film laminate prepared above were laminated at room temperature to prepare a protective sheet 40 for a solar cell module.
- Comparative Example 1 Except that the syndiotactic polystyrene resin sheet XAREC-C122 (trade name; manufactured by Idemitsu Kosan Co., Ltd., thickness 30 ⁇ m) was changed to a polyester film, Melinex S (trade name; manufactured by Teijin DuPont Films, Inc., thickness 50 ⁇ m). A protective sheet for a solar cell module was prepared in the same manner as in Example 1.
- Comparative Example 2 Except for changing the syndiotactic polystyrene resin sheet XAREC-C122 (trade name; manufactured by Idemitsu Kosan Co., Ltd., thickness 30 ⁇ m) to the polyester film Melinex S (trade name; manufactured by Teijin DuPont Films Co., Ltd., thickness 50 ⁇ m), A protective sheet for a solar cell module was prepared in the same manner as in Example 2.
- Adhesion evaluation In accordance with JIS K5600-5-6, 10 ⁇ 10 squares of 1 mm square grids were produced on the fluororesin layer of the back protective sheet for solar cell modules produced in Example 1 and Comparative Example 1, and cellophane tape (Nichiban Co., Ltd.). Made; CT24) was attached, and the degree of peeling of the fluororesin layer when the tape was peeled off was evaluated. Judgment is represented by the number of squares that do not peel out of 100 squares. The result of this adhesion evaluation is shown in Table 1 as “0 hours” of adhesion.
- the protective sheet for solar cell module produced in Example 2 and Comparative Example 2 was cut into 90 mm ⁇ 90 mm, and this test piece was used with a water vapor transmission rate measuring device (manufactured by MOCON; trade name: PERMATRAN-W3 / 33).
- the water vapor barrier property of the solar cell module protective sheet was evaluated under the conditions of 40 ° C. and 90% RH. The result of this water vapor barrier property evaluation is shown in Table 1 as “0 hour” of the water vapor barrier property.
- the solar cell module protective sheets prepared in Examples 1 and 2 and Comparative Examples 1 and 2 were cut into 15 mm ⁇ 150 mm, and in accordance with JIS K7127-1999, at a test speed of 200 mm / min, 23 ° C., 50% RH.
- the strength (breaking strength) at the breaking point of the protective sheet for a solar cell module before the acceleration test was conducted: A (0) (N / 15 mm) was measured.
- the solar cell module protective sheets produced in Examples 1 and 2 and Comparative Examples 1 and 2 were subjected to an accelerated test for 48 hours under the same conditions as in the durability test 1, and the breaking strength: A ( In the same manner as in (0), the breaking strength after the acceleration test is measured: A (1) (N / 15 mm), and the maintenance ratio of the breaking strength before and after the acceleration test is performed (A (1) / A (0) ⁇ 100 (%)) was calculated and shown in Table 1. The closer the fracture strength maintenance rate is to 100%, the better the durability.
- Examples 1 and 2 relating to the protective sheet for solar cell module of the present invention have better adhesion and water vapor barrier even after the accelerated test which is hot and humid as compared with Comparative Examples 1 and 2. It was confirmed that the strength maintenance rate at the breaking point was high. From this result, it is clear that the protective sheet for a solar cell module of the present invention has excellent weather resistance and durability.
- the protective sheet for a solar cell module of the present invention is a laminate including a syndiotactic polystyrene resin sheet, the solar cell does not deteriorate due to hydrolysis of the resin sheet itself, and is extremely excellent in weather resistance and durability.
- a protective sheet for modules can be provided.
- the solar cell module of the present invention is provided with the solar cell module protective sheet adhered to one or both of the front surface and the back surface, so that it has excellent weather resistance and durability, and stable long-term solar cells. Can be used.
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Photovoltaic Devices (AREA)
- Laminated Bodies (AREA)
Abstract
Disclosed is a protection sheet for a solar cell module, which comprises a laminate containing a syndiotactic polystyrene resin sheet. The protection sheet for a solar cell module preferably comprises a laminate composed of a syndiotactic polystyrene resin sheet and a fluororesin layer arranged on at least one surface of the syndiotactic polystyrene resin sheet. The protection sheet for a solar cell module preferably comprises a laminate composed of a syndiotactic polystyrene resin sheet and a support sheet arranged on at least one surface of the syndiotactic polystyrene resin sheet.
Description
本発明は、太陽電池モジュールの表面保護シートまたは裏面保護シートとして用いられる太陽電池モジュール用保護シートに関する。さらに本発明は、前記太陽電池モジュール用保護シートを備える太陽電池モジュールに関する。
本願は、2009年3月30日に、日本に出願された特願2009-081038号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to a protective sheet for a solar cell module used as a surface protective sheet or a back surface protective sheet of a solar cell module. Furthermore, this invention relates to a solar cell module provided with the said protection sheet for solar cell modules.
This application claims priority on March 30, 2009 based on Japanese Patent Application No. 2009-081038 filed in Japan, the contents of which are incorporated herein by reference.
本願は、2009年3月30日に、日本に出願された特願2009-081038号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to a protective sheet for a solar cell module used as a surface protective sheet or a back surface protective sheet of a solar cell module. Furthermore, this invention relates to a solar cell module provided with the said protection sheet for solar cell modules.
This application claims priority on March 30, 2009 based on Japanese Patent Application No. 2009-081038 filed in Japan, the contents of which are incorporated herein by reference.
太陽の光エネルギーを電気エネルギーに変換する装置である太陽電池モジュールは、二酸化炭素を排出せずに発電できるシステムとして注目されている。
図4は、一般的な太陽電池モジュールの一例を示す概略断面図である。
この太陽電池モジュール100は、結晶シリコン、アモルファスシリコンなどからなる太陽電池セル104と、太陽電池セル104を封止する電気絶縁体からなる封止材(充填層)103と、封止材103の表面に積層された表面保護シート(フロントシート)101と、封止材103の裏面に積層された裏面保護シート(バックシート)102とから概略構成されている。なお、フロントシート101は、基材がガラス板である場合もある。
本明細書および特許請求の範囲においては、表面保護シート(フロントシート)101および裏面保護シート(バックシート)102を総称して、「保護シート」という。 A solar cell module, which is a device that converts solar light energy into electrical energy, has attracted attention as a system that can generate power without discharging carbon dioxide.
FIG. 4 is a schematic cross-sectional view showing an example of a general solar cell module.
Thesolar battery module 100 includes a solar battery cell 104 made of crystalline silicon, amorphous silicon, etc., a sealing material (filling layer) 103 made of an electrical insulator that seals the solar battery cell 104, and the surface of the sealing material 103. The surface protection sheet (front sheet) 101 laminated | stacked on this and the back surface protection sheet (back sheet | seat) 102 laminated | stacked on the back surface of the sealing material 103 are roughly comprised. The front sheet 101 may be a glass plate as a base material.
In the present specification and claims, the surface protection sheet (front sheet) 101 and the back surface protection sheet (back sheet) 102 are collectively referred to as “protection sheet”.
図4は、一般的な太陽電池モジュールの一例を示す概略断面図である。
この太陽電池モジュール100は、結晶シリコン、アモルファスシリコンなどからなる太陽電池セル104と、太陽電池セル104を封止する電気絶縁体からなる封止材(充填層)103と、封止材103の表面に積層された表面保護シート(フロントシート)101と、封止材103の裏面に積層された裏面保護シート(バックシート)102とから概略構成されている。なお、フロントシート101は、基材がガラス板である場合もある。
本明細書および特許請求の範囲においては、表面保護シート(フロントシート)101および裏面保護シート(バックシート)102を総称して、「保護シート」という。 A solar cell module, which is a device that converts solar light energy into electrical energy, has attracted attention as a system that can generate power without discharging carbon dioxide.
FIG. 4 is a schematic cross-sectional view showing an example of a general solar cell module.
The
In the present specification and claims, the surface protection sheet (front sheet) 101 and the back surface protection sheet (back sheet) 102 are collectively referred to as “protection sheet”.
屋外および屋内において長期間の使用に耐えうる耐候性および耐久性を太陽電池モジュールにもたせるためには、太陽電池セル104および封止材103を風雨、湿気、砂埃、機械的な衝撃などから守り、太陽電池モジュールの内部を外気から遮断して密閉した状態に保つことが必要である。このため、太陽電池モジュール用保護シート101、102には、耐候性、耐久性、耐湿熱性に優れることが求められる。
In order to give the solar cell module the weather resistance and durability that can withstand long-term use outdoors and indoors, the solar cell 104 and the sealing material 103 are protected from wind, rain, moisture, dust, mechanical impact, etc. It is necessary to keep the inside of the solar cell module sealed from the outside air. For this reason, it is calculated | required that the protection sheet 101,102 for solar cell modules is excellent in a weather resistance, durability, and heat-and-moisture resistance.
従来、太陽電池モジュール用保護シートとしては、電気絶縁性に優れるポリエチレンテレフタレートなどのポリエステルフィルムを用いた太陽電池モジュール用保護シートが開発されており、ポリエステルフィルムを用いるデメリットとして挙げられる耐候性および耐久性を改善させるべく、紫外線吸収剤を配合したフィルム(特許文献1参照)、ポリエステル中の環状オリゴマーの量を規定したフィルム(特許文献2、3参照)、ポリエステルの分子量を規定したフィルム(特許文献4参照)などを用いた保護シートが開示されている。
Conventionally, as a protective sheet for a solar cell module, a protective sheet for a solar cell module using a polyester film such as polyethylene terephthalate having excellent electrical insulation has been developed, and weather resistance and durability mentioned as disadvantages using the polyester film Film containing an ultraviolet absorber (see Patent Document 1), a film defining the amount of cyclic oligomer in polyester (see Patent Documents 2 and 3), and a film defining the molecular weight of polyester (Patent Document 4) A protective sheet using the reference is disclosed.
しかしながら、前記従来技術に開示されている太陽電池モジュール用保護シートは、ポリエチレンテレフタレートを用いた保護シートに比べると、耐候性および耐久性は向上してはいるものの、基材シートとしてポリエステル系のフィルムを用いているため、前記基材シートの加水分解による劣化の問題を常に抱えていた。
However, the solar cell module protective sheet disclosed in the prior art is improved in weather resistance and durability as compared with a protective sheet using polyethylene terephthalate, but a polyester film as a base sheet. Therefore, there has always been a problem of deterioration due to hydrolysis of the base sheet.
本発明は、上記事情に鑑みてなされたものであって、耐候性、耐久性が高く、太陽電池セルの安定した長期間使用が可能な太陽電池モジュール用保護シート、および、該太陽電池モジュール用保護シートを用いてなる太陽電池モジュールを提供することを目的とする。
The present invention has been made in view of the above circumstances, and has a high weather resistance and durability, and a solar cell module protective sheet that can be used stably for a long period of time, and the solar cell module It aims at providing the solar cell module which uses a protection sheet.
本発明者らは、上記の問題点を考慮し解決すべく鋭意研究を重ねた結果、本発明に至った。すなわち本発明の太陽電池モジュール用保護シートは、シンジオタクチックポリスチレン系樹脂シートを含む積層体である。
As a result of intensive studies to solve the above problems in consideration of the above problems, the present inventors have reached the present invention. That is, the protective sheet for a solar cell module of the present invention is a laminate including a syndiotactic polystyrene resin sheet.
本発明の太陽電池モジュール用保護シートは、シンジオタクチックポリスチレン系樹脂シートの少なくとも一方の面にフッ素樹脂層が積層されて構成されていることが好ましい。
The solar cell module protective sheet of the present invention is preferably configured by laminating a fluororesin layer on at least one surface of a syndiotactic polystyrene resin sheet.
本発明の太陽電池モジュール用保護シートは、シンジオタクチックポリスチレン系樹脂シートの少なくとも一方の面に支持シートが積層されて構成されていることが好ましい。
The solar cell module protective sheet of the present invention is preferably configured by laminating a support sheet on at least one surface of a syndiotactic polystyrene resin sheet.
本発明の太陽電池モジュール用保護シートは、シンジオタクチックポリスチレン系樹脂シートの一方の面にフッ素樹脂層が積層され、該シンジオタクチックポリスチレン系樹脂シートの他方の面に支持シートが積層されて構成されていることが好ましい。
The protective sheet for a solar cell module of the present invention is configured by laminating a fluororesin layer on one surface of a syndiotactic polystyrene resin sheet and laminating a support sheet on the other surface of the syndiotactic polystyrene resin sheet. It is preferable that
また、本発明は、前記太陽電池モジュール用保護シートを備える太陽電池モジュールを提供する。
Moreover, this invention provides a solar cell module provided with the said protection sheet for solar cell modules.
本発明の太陽電池モジュール用保護シートは、シンジオタクチックポリスチレン系樹脂シートを含む積層体であるため、樹脂シート自体の加水分解による劣化が起こらず、耐候性および耐久性に非常に優れた太陽電池モジュール用保護シートを提供することができる。さらに、本発明の太陽電池モジュールは、前記太陽電池モジュール用保護シートが表面と裏面の一方または両方に接着されて構成されているため、耐候性および耐久性に優れ、太陽電池セルの安定した長期使用が可能となる。
Since the protective sheet for a solar cell module of the present invention is a laminate including a syndiotactic polystyrene resin sheet, the solar cell does not deteriorate due to hydrolysis of the resin sheet itself, and is extremely excellent in weather resistance and durability. A protective sheet for modules can be provided. Furthermore, since the solar cell module of the present invention is constructed by adhering the solar cell module protective sheet to one or both of the front surface and the back surface, the solar cell module has excellent weather resistance and durability, and stable long-term solar cells. Can be used.
本発明の太陽電池モジュール用保護シートは、シンジオタクチックポリスチレン系樹脂シートを含む積層体である。
The protective sheet for a solar cell module of the present invention is a laminate including a syndiotactic polystyrene resin sheet.
本発明におけるシンジオタクチックポリスチレン系樹脂シートは、シンジオタクチック構造を有するポリスチレン系樹脂(本明細書においては「SPS」と略すことがある。)からなるシートまたはフィルムであれば特に限定されない。シンジオタクチック構造とは、立体構造がシンジオタクチック構造、すなわち炭素-炭素結合から形成される主鎖に対して側鎖であるフェニル基や置換フェニル基が交互に反対方向に位置する立体構造を有するものであり、そのタクティシティーは同位体炭素による核磁気共鳴法(13C-NMR法)により定量される。13C-NMR法により測定されるタクティシティーは、連続する複数個の構成単位の存在割合、例えば2個の場合はダイアッド(2連子)、3個の場合はトリアッド(3連子)、5個の場合はペンタッド(5連子)によって示すことができるが、本発明におけるシンジオタクチック構造を有するポリスチレン系樹脂としては、ラセミダイアッドで75モル%以上、もしくはラセミペンタッドで30モル%以上のシンジオタクティシティーを有するポリスチレン系樹脂が好ましい。
The syndiotactic polystyrene resin sheet in the present invention is not particularly limited as long as it is a sheet or film made of a polystyrene resin having a syndiotactic structure (may be abbreviated as “SPS” in the present specification). The syndiotactic structure is a three-dimensional structure in which the three-dimensional structure is a syndiotactic structure, that is, a phenyl group or a substituted phenyl group that is a side chain with respect to the main chain formed from a carbon-carbon bond is alternately located in the opposite direction. The tacticity is quantified by a nuclear magnetic resonance method ( 13 C-NMR method) using isotope carbon. The tacticity measured by 13 C-NMR method is the abundance ratio of a plurality of consecutive structural units, for example, 2 dyads (2 doublings), 3 cases triads (3 doublings), 5 In the case of individual, it can be indicated by pentad (pentad), but as the polystyrene resin having a syndiotactic structure in the present invention, it is 75 mol% or more with racemic dyad, or 30 mol% or more with racemic pentad. Polystyrene resins having a syndiotacticity of
上記SPSの分子量は特に制限はないが、重量平均分子量が好ましくは10000以上1,500,000以下、より好ましくは50000以上500,000以下である。さらに、分子量分布についてもその広狭は特に制限されず、様々な分子量分布のSPSを用いることができる。
The molecular weight of the SPS is not particularly limited, but the weight average molecular weight is preferably 10,000 or more and 1,500,000 or less, more preferably 50,000 or more and 500,000 or less. Furthermore, the molecular weight distribution is not particularly limited in its width, and SPS having various molecular weight distributions can be used.
上記SPSのガラス転移温度(Tg)は特に限定されないが、製膜性の観点より80~120℃が好ましい。
The glass transition temperature (Tg) of the SPS is not particularly limited, but is preferably 80 to 120 ° C. from the viewpoint of film forming properties.
上記SPSの融点(Tm)は特に限定されないが、製膜性の観点から230~350℃が好ましく、240~330℃がより好ましく、250~320℃がさらに好ましい。
The melting point (Tm) of the SPS is not particularly limited, but is preferably 230 to 350 ° C., more preferably 240 to 330 ° C., and further preferably 250 to 320 ° C. from the viewpoint of film forming properties.
本発明におけるシンジオタクチックポリスチレン系樹脂シートの厚さとしては、太陽電池システムが要求する電気絶縁性に基づいて調節すればよく、通常、当該シートの厚さは10~300μmの範囲であることが好ましく、軽量性および電気絶縁性の観点から20~200μmの範囲であることがより好ましい。
The thickness of the syndiotactic polystyrene resin sheet in the present invention may be adjusted based on the electrical insulation required by the solar cell system, and the thickness of the sheet is usually in the range of 10 to 300 μm. The thickness is preferably in the range of 20 to 200 μm from the viewpoint of light weight and electrical insulation.
本発明におけるシンジオタクチックポリスチレン系樹脂シートの好ましい例としては、例えば、出光興産社製のXAREC(商品名)が挙げられる。
Preferred examples of the syndiotactic polystyrene resin sheet in the present invention include, for example, XAREC (trade name) manufactured by Idemitsu Kosan Co., Ltd.
また、本発明におけるシンジオタクチックポリスチレン系樹脂シートには、耐候性、耐湿性等を高めるための表面改質処理を施すこともできる。例えば、シンジオタクチックポリスチレン系樹脂シートにシリカ(SiO2)、アルミニウム(Al)およびアルミナ(Al2O3)などを蒸着させることにより、当該太陽電池モジュール用保護シートの耐候性、耐湿性等を高めることができる。なお、当該シリカ、アルミニウムおよびアルミナなどの蒸着処理は、シンジオタクチックポリスチレン系樹脂シートの両面に行ってもよく、いずれか一方の面にのみ行ってもよい。
In addition, the syndiotactic polystyrene resin sheet in the present invention can be subjected to a surface modification treatment for improving weather resistance, moisture resistance and the like. For example, by evaporating silica (SiO 2 ), aluminum (Al), alumina (Al 2 O 3 ), etc. on a syndiotactic polystyrene resin sheet, the weather resistance, moisture resistance, etc. of the solar cell module protection sheet Can be increased. In addition, the vapor deposition process of the said silica, aluminum, an alumina, etc. may be performed on both surfaces of a syndiotactic polystyrene-type resin sheet, and may be performed only on any one surface.
本発明の太陽電池モジュール用保護シートは、上記シンジオタクチックポリスチレン系樹脂シートを含む積層体である。以下、本発明の太陽電池モジュール用保護シートの構成を具体的に説明するために、第一の実施形態、第二の実施形態および第三の実施形態について説明する。
なお、この形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。 The protective sheet for a solar cell module of the present invention is a laminate including the syndiotactic polystyrene resin sheet. Hereinafter, the first embodiment, the second embodiment, and the third embodiment will be described in order to specifically describe the configuration of the protective sheet for a solar cell module of the present invention.
This embodiment is specifically described for better understanding of the gist of the invention and does not limit the present invention unless otherwise specified.
なお、この形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。 The protective sheet for a solar cell module of the present invention is a laminate including the syndiotactic polystyrene resin sheet. Hereinafter, the first embodiment, the second embodiment, and the third embodiment will be described in order to specifically describe the configuration of the protective sheet for a solar cell module of the present invention.
This embodiment is specifically described for better understanding of the gist of the invention and does not limit the present invention unless otherwise specified.
(1)第一の実施形態
図1は、本発明の太陽電池モジュール用保護シートの第一の実施形態を示す概略断面図である。
この実施形態の太陽電池モジュール用保護シート10は、シンジオタクチックポリスチレン系樹脂シート22にフッ素樹脂層21が積層された積層構造を形成している。 (1) 1st embodiment FIG. 1: is a schematic sectional drawing which shows 1st embodiment of the protection sheet for solar cell modules of this invention.
The solar cell moduleprotective sheet 10 of this embodiment forms a laminated structure in which a fluororesin layer 21 is laminated on a syndiotactic polystyrene resin sheet 22.
図1は、本発明の太陽電池モジュール用保護シートの第一の実施形態を示す概略断面図である。
この実施形態の太陽電池モジュール用保護シート10は、シンジオタクチックポリスチレン系樹脂シート22にフッ素樹脂層21が積層された積層構造を形成している。 (1) 1st embodiment FIG. 1: is a schematic sectional drawing which shows 1st embodiment of the protection sheet for solar cell modules of this invention.
The solar cell module
本発明の太陽電池モジュール用保護シート10において、シンジオタクチックポリスチレン系樹脂シート22としては、上記本発明におけるシンジオタクチックポリスチレン系樹脂シートにおいて挙げたものと同じものが挙げられる。
In the protective sheet 10 for a solar cell module of the present invention, examples of the syndiotactic polystyrene resin sheet 22 include the same as those mentioned in the syndiotactic polystyrene resin sheet in the present invention.
本発明の太陽電池モジュール用保護シート10において、フッ素樹脂層21は、本発明の効果を損なわず、フッ素原子を含む層であれば特に制限されない。例えばフッ素含有ポリマーを有するシートであってもよく、フッ素含有ポリマーを有する塗料を塗布した塗膜であってもよい。太陽電池モジュール用保護シートの軽量化のために前記フッ素樹脂層をより薄くする観点から、フッ素含有ポリマーを有する塗料を塗布した塗膜であることが好ましい。
In the solar cell module protective sheet 10 of the present invention, the fluororesin layer 21 is not particularly limited as long as it does not impair the effects of the present invention and contains a fluorine atom. For example, the sheet | seat which has a fluorine-containing polymer may be sufficient, and the coating film which apply | coated the coating material which has a fluorine-containing polymer may be sufficient. From the viewpoint of making the fluororesin layer thinner in order to reduce the weight of the protective sheet for solar cell module, a coating film coated with a paint having a fluorine-containing polymer is preferable.
前記フッ素含有ポリマーを有するシートとしては、例えばポリフッ化ビニル(PVF)、エチレンクロロトリフルオロエチレン(ECTFE)またはエチレンテトラフルオロエチレン(ETFE)を主成分とするポリマーをシート状に加工したものが好ましいものとして挙げられる。前記PVFを主成分とするポリマーとしてはデュポン社製のTedlar(商品名)を用いることができる。また、前記ECTFEを主成分とするポリマーとしてはSolvay Solexis社製のHalar(商品名)を用いることができる。前記ETFEを主成分とするポリマーとしては旭硝子社製のFluon(商品名)を用いることができる。
前記フッ素含有ポリマーを有するシートの厚さとしては、耐候性および軽量化の観点から、一般に5~200μmの範囲が好ましく、10~100μmの範囲がより好ましく、10~50μmの範囲が最も好ましい。 As the sheet having the fluorine-containing polymer, for example, a sheet obtained by processing a polymer mainly composed of polyvinyl fluoride (PVF), ethylene chlorotrifluoroethylene (ECTFE), or ethylene tetrafluoroethylene (ETFE) into a sheet shape is preferable. As mentioned. As the polymer containing PVF as a main component, Tedlar (trade name) manufactured by DuPont can be used. Moreover, as a polymer having ECTFE as a main component, Halar (trade name) manufactured by Solvay Solexis can be used. As the polymer containing ETFE as a main component, Fluon (trade name) manufactured by Asahi Glass Co., Ltd. can be used.
The thickness of the sheet having a fluorine-containing polymer is generally preferably in the range of 5 to 200 μm, more preferably in the range of 10 to 100 μm, and most preferably in the range of 10 to 50 μm from the viewpoint of weather resistance and weight reduction.
前記フッ素含有ポリマーを有するシートの厚さとしては、耐候性および軽量化の観点から、一般に5~200μmの範囲が好ましく、10~100μmの範囲がより好ましく、10~50μmの範囲が最も好ましい。 As the sheet having the fluorine-containing polymer, for example, a sheet obtained by processing a polymer mainly composed of polyvinyl fluoride (PVF), ethylene chlorotrifluoroethylene (ECTFE), or ethylene tetrafluoroethylene (ETFE) into a sheet shape is preferable. As mentioned. As the polymer containing PVF as a main component, Tedlar (trade name) manufactured by DuPont can be used. Moreover, as a polymer having ECTFE as a main component, Halar (trade name) manufactured by Solvay Solexis can be used. As the polymer containing ETFE as a main component, Fluon (trade name) manufactured by Asahi Glass Co., Ltd. can be used.
The thickness of the sheet having a fluorine-containing polymer is generally preferably in the range of 5 to 200 μm, more preferably in the range of 10 to 100 μm, and most preferably in the range of 10 to 50 μm from the viewpoint of weather resistance and weight reduction.
前記フッ素含有ポリマーを有する塗料としては、溶剤に溶解又は水に分散されたもので塗布可能なものであれば特に限定されない。
前記塗料に含まれていてもよいフッ素含有ポリマーとしては、本発明の効果を損なわず、フッ素原子を含有するポリマーであれば特に限定されないが、前記塗料の溶媒(有機溶媒または水)に溶解し、架橋可能であるものが好ましい。該フッ素含有ポリマーの好ましい例としては、旭硝子社製のLUMIFLON(商品名)、セントラル硝子社製のCEFRAL COAT(商品名)、DIC社製のFLUONATE(商品名)等のクロロトリフルオロエチレン(CTFE)を主成分としたポリマー類;ダイキン工業社製のZEFFLE(商品名)等のテトラフルオロエチレン(TFE)を主成分としたポリマー類;デュポン社製のZonyl(商品名)、ダイキン工業社製のUnidyne(商品名)等のフルオロアルキル基を有するポリマー、およびフルオロアルキル単位を主成分としたポリマー類が挙げられる。これらの中でも、耐候性および顔料分散性等の観点から、CTFEを主成分としたポリマーおよびTFEを主成分としたポリマーがより好ましく、なかでも前記LUMIFLON(商品名)および前記ZEFFLE(商品名)が最も好ましい。 The paint having a fluorine-containing polymer is not particularly limited as long as it can be applied by being dissolved in a solvent or dispersed in water.
The fluorine-containing polymer which may be contained in the paint is not particularly limited as long as it is a polymer containing a fluorine atom without impairing the effects of the present invention. However, the fluorine-containing polymer is soluble in the paint solvent (organic solvent or water). Those that can be crosslinked are preferred. Preferable examples of the fluorine-containing polymer include chlorotrifluoroethylene (CTFE) such as LUMIFLON (trade name) manufactured by Asahi Glass Co., Ltd., CEFLAR COAT (trade name) manufactured by Central Glass Co., Ltd., and FLUONATE (trade name) manufactured by DIC Corporation. Polymers based on tetrafluoroethylene (TFE) such as ZEFFLE (trade name) manufactured by Daikin Industries, Ltd .; Zonyl (trade name) manufactured by DuPont, Unidine manufactured by Daikin Industries, Ltd. Examples thereof include polymers having a fluoroalkyl group such as (trade name) and polymers having a fluoroalkyl unit as a main component. Among these, from the viewpoint of weather resistance, pigment dispersibility, and the like, a polymer containing CTFE as a main component and a polymer containing TFE as a main component are more preferable. Among them, the LUMIFLON (trade name) and the ZEFFLE (trade name) are preferable. Most preferred.
前記塗料に含まれていてもよいフッ素含有ポリマーとしては、本発明の効果を損なわず、フッ素原子を含有するポリマーであれば特に限定されないが、前記塗料の溶媒(有機溶媒または水)に溶解し、架橋可能であるものが好ましい。該フッ素含有ポリマーの好ましい例としては、旭硝子社製のLUMIFLON(商品名)、セントラル硝子社製のCEFRAL COAT(商品名)、DIC社製のFLUONATE(商品名)等のクロロトリフルオロエチレン(CTFE)を主成分としたポリマー類;ダイキン工業社製のZEFFLE(商品名)等のテトラフルオロエチレン(TFE)を主成分としたポリマー類;デュポン社製のZonyl(商品名)、ダイキン工業社製のUnidyne(商品名)等のフルオロアルキル基を有するポリマー、およびフルオロアルキル単位を主成分としたポリマー類が挙げられる。これらの中でも、耐候性および顔料分散性等の観点から、CTFEを主成分としたポリマーおよびTFEを主成分としたポリマーがより好ましく、なかでも前記LUMIFLON(商品名)および前記ZEFFLE(商品名)が最も好ましい。 The paint having a fluorine-containing polymer is not particularly limited as long as it can be applied by being dissolved in a solvent or dispersed in water.
The fluorine-containing polymer which may be contained in the paint is not particularly limited as long as it is a polymer containing a fluorine atom without impairing the effects of the present invention. However, the fluorine-containing polymer is soluble in the paint solvent (organic solvent or water). Those that can be crosslinked are preferred. Preferable examples of the fluorine-containing polymer include chlorotrifluoroethylene (CTFE) such as LUMIFLON (trade name) manufactured by Asahi Glass Co., Ltd., CEFLAR COAT (trade name) manufactured by Central Glass Co., Ltd., and FLUONATE (trade name) manufactured by DIC Corporation. Polymers based on tetrafluoroethylene (TFE) such as ZEFFLE (trade name) manufactured by Daikin Industries, Ltd .; Zonyl (trade name) manufactured by DuPont, Unidine manufactured by Daikin Industries, Ltd. Examples thereof include polymers having a fluoroalkyl group such as (trade name) and polymers having a fluoroalkyl unit as a main component. Among these, from the viewpoint of weather resistance, pigment dispersibility, and the like, a polymer containing CTFE as a main component and a polymer containing TFE as a main component are more preferable. Among them, the LUMIFLON (trade name) and the ZEFFLE (trade name) are preferable. Most preferred.
前記LUMIFLON(商品名)は、CTFEと数種類の特定のアルキルビニルエーテル、ヒドロキシアルキルビニルエーテルとを主な構成単位として含む非結晶性のポリマーである。該LUMIFLON(商品名)のように、ヒドロキシアルキルビニルエーテルのモノマー単位を有するポリマーは、溶剤可溶性、架橋反応性、基材密着性、顔料分散性、硬さ、および柔軟性に優れるので好ましい。
前記ZEFFLE(商品名)は、TFEと有機溶媒可溶性の炭化水素オレフィンとの共重合体であり、なかでも反応性の高い水酸基を備えた炭化水素オレフィンを有する共重合体は、溶剤可溶性、架橋反応性、基材密着性、および顔料分散性に優れるので好ましい。 The LUMIFLON (trade name) is an amorphous polymer containing CTFE and several kinds of specific alkyl vinyl ethers and hydroxyalkyl vinyl ethers as main structural units. A polymer having a monomer unit of hydroxyalkyl vinyl ether, such as LUMIFLON (trade name), is preferable because it is excellent in solvent solubility, crosslinking reactivity, substrate adhesion, pigment dispersibility, hardness, and flexibility.
The ZEFFLE (trade name) is a copolymer of TFE and an organic solvent-soluble hydrocarbon olefin. Among them, the copolymer having a hydrocarbon olefin having a highly reactive hydroxyl group is a solvent-soluble, cross-linking reaction. This is preferable because of its excellent properties, substrate adhesion, and pigment dispersibility.
前記ZEFFLE(商品名)は、TFEと有機溶媒可溶性の炭化水素オレフィンとの共重合体であり、なかでも反応性の高い水酸基を備えた炭化水素オレフィンを有する共重合体は、溶剤可溶性、架橋反応性、基材密着性、および顔料分散性に優れるので好ましい。 The LUMIFLON (trade name) is an amorphous polymer containing CTFE and several kinds of specific alkyl vinyl ethers and hydroxyalkyl vinyl ethers as main structural units. A polymer having a monomer unit of hydroxyalkyl vinyl ether, such as LUMIFLON (trade name), is preferable because it is excellent in solvent solubility, crosslinking reactivity, substrate adhesion, pigment dispersibility, hardness, and flexibility.
The ZEFFLE (trade name) is a copolymer of TFE and an organic solvent-soluble hydrocarbon olefin. Among them, the copolymer having a hydrocarbon olefin having a highly reactive hydroxyl group is a solvent-soluble, cross-linking reaction. This is preferable because of its excellent properties, substrate adhesion, and pigment dispersibility.
また、前記塗料に含まれていてもよいフッ素含有ポリマーの例として、硬化性官能基を有するフルオロオレフィンのポリマーが挙げられ、具体例としては、TFE、イソブチレン、フッ化ビニリデン(VdF)、ヒドロキシブチルビニルエーテルおよびその他のモノマーからなる共重合体、ならびにTFE、VdF、ヒドロキシブチルビニルエーテルおよびその他のモノマーからなる共重合体が好ましいものとして挙げられる。
Examples of the fluorine-containing polymer that may be contained in the paint include fluoroolefin polymers having a curable functional group. Specific examples include TFE, isobutylene, vinylidene fluoride (VdF), and hydroxybutyl. Preferred examples include copolymers composed of vinyl ether and other monomers, and copolymers composed of TFE, VdF, hydroxybutyl vinyl ether and other monomers.
また、前記塗料に含まれていてもよいフッ素含有ポリマーにおける共重合可能なモノマーとしては、例えば酢酸ビニル、プロピオン酸ビニル、酪酸ブチル、イソ酪酸ビニル、ピバル酸ビニル、カプロン酸ビニル、バーサチック酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、シクロヘキシルカルボン酸ビニル、および安息香酸ビニル等のカルボン酸のビニルエステル類や、メチルビニルエーテル、エチルビニルエーテル、ブチルビニルエーテルおよびシクロヘキシルビニルエーテル等のアルキルビニルエーテル類が挙げられる。
Examples of the copolymerizable monomer in the fluorine-containing polymer that may be contained in the paint include, for example, vinyl acetate, vinyl propionate, butyl butyrate, vinyl isobutyrate, vinyl pivalate, vinyl caproate, vinyl versatate, Examples include vinyl esters of carboxylic acids such as vinyl laurate, vinyl stearate, vinyl cyclohexylcarboxylate, and vinyl benzoate, and alkyl vinyl ethers such as methyl vinyl ether, ethyl vinyl ether, butyl vinyl ether, and cyclohexyl vinyl ether.
前記塗料としては、前記フッ素含有ポリマーの他に、架橋剤、触媒、および溶媒を含むことができ、さらに必要であれば、顔料および充填剤などの無機化合物を含むこともできる。
In addition to the fluorine-containing polymer, the coating material may contain a crosslinking agent, a catalyst, and a solvent, and may further contain an inorganic compound such as a pigment and a filler, if necessary.
前記塗料に含まれる溶媒としては、本発明の効果を損なうものでなければ特に限定されず、例えばメチルエチルケトン(MEK)、シクロヘキサノン、アセトン、メチルイソブチルケトン(MIBK)、トルエン、キシレン、メタノール、イソプロパノール、エタノール、ヘプタン、酢酸エチル、酢酸イソプロピル、酢酸n-ブチル、またはn-ブチルアルコールのうち、いずれか1種以上を有する溶媒を好ましく用いることができる。なかでも、塗料中の含有成分の溶解性の観点から、前記溶媒はMIBKまたはMEKのうち、いずれか1種以上を有するものであることがより好ましい。
The solvent contained in the paint is not particularly limited as long as it does not impair the effects of the present invention. For example, methyl ethyl ketone (MEK), cyclohexanone, acetone, methyl isobutyl ketone (MIBK), toluene, xylene, methanol, isopropanol, ethanol , Heptane, ethyl acetate, isopropyl acetate, n-butyl acetate, or n-butyl alcohol can be preferably used. Especially, it is more preferable that the said solvent has any 1 or more types among MIBK or MEK from a soluble viewpoint of the component contained in a coating material.
前記塗料に含んでいてもよい顔料としては、本発明の効果を損なうものでなければ特に限定されない。例えば、二酸化チタン、カーボンブラック、シリカ等が挙げられる。より具体的には、耐久性を付与するために被覆及び表面処理されたルチル型二酸化チタンであるTi-Pure R105(商品名;デュポン社製)、およびジメチルシリコーンの表面処理によってシリカ表面の水酸基を修飾した疎水性シリカであるCAB-O-SIL TS 720(商品名;Cabot社製)が好ましいものとして例示できる。
The pigment that may be contained in the paint is not particularly limited as long as the effect of the present invention is not impaired. For example, titanium dioxide, carbon black, silica and the like can be mentioned. More specifically, Ti-Pure R105 (trade name; manufactured by DuPont), which is a rutile type titanium dioxide that has been coated and surface-treated in order to impart durability, and the surface treatment of dimethylsilicone to form hydroxyl groups on the silica surface. A preferable example is CAB-O-SIL TS 720 (trade name; manufactured by Cabot), which is a modified hydrophobic silica.
前記塗膜は耐候性、耐擦傷性を向上させるため、架橋剤により硬化していることが好ましい。該架橋剤としては、本発明の効果を損なうものでなければ特に限定されず、金属キレート類、シラン類、イソシアネート類、およびメラミン類が好ましく用いられるものとして挙げられる。当該太陽電池モジュール用保護シートを屋外において30年以上使用することを想定した場合、耐候性の観点からは、前記架橋剤として、脂肪族のイソシアネート類が好ましい。
The coating film is preferably cured with a crosslinking agent in order to improve weather resistance and scratch resistance. The crosslinking agent is not particularly limited as long as it does not impair the effects of the present invention, and examples thereof preferably include metal chelates, silanes, isocyanates, and melamines. When it is assumed that the solar cell module protective sheet is used outdoors for 30 years or more, aliphatic isocyanates are preferable as the cross-linking agent from the viewpoint of weather resistance.
前記塗料の組成としては、本発明の効果を損なわなければ特に限定されず、例えば前記ルミフロンをベースとした塗料の組成物として、LUMIFLON(商品名)、顔料、架橋剤、溶媒および触媒を混合してなるものが挙げられる。該組成比としては、該塗料全体を100質量%としたときに、LUMIFLON(商品名)は3~80質量%が好ましく、10~60質量%程度がより好ましく、顔料および充填剤は5~60質量%が好ましく、10~40質量%程度がより好ましく、有機溶媒は20~80質量%が好ましい。
前記有機溶媒としては、MEKとキシレンとシクロヘキサノンとの混合溶媒が例示できる。また、前記触媒としては、ジブチルジラウリン酸スズ、ジオクチルジラウリン酸スズを例示でき、LUMIFLON(商品名)とイソシアネートとの架橋を促進するために用いられる。 The composition of the paint is not particularly limited as long as the effects of the present invention are not impaired. For example, as the composition of the paint based on Lumiflon, LUMIFLON (trade name), a pigment, a crosslinking agent, a solvent, and a catalyst are mixed. The thing which becomes. As for the composition ratio, when the entire coating is 100 mass%, LUMIFLON (trade name) is preferably 3 to 80 mass%, more preferably about 10 to 60 mass%, and the pigment and filler are 5 to 60 mass%. % By mass is preferable, and about 10 to 40% by mass is more preferable, and the organic solvent is preferably 20 to 80% by mass.
Examples of the organic solvent include a mixed solvent of MEK, xylene, and cyclohexanone. Examples of the catalyst include tin dibutyl dilaurate and tin dioctyl dilaurate, which are used to promote crosslinking between LUMIFLON (trade name) and isocyanate.
前記有機溶媒としては、MEKとキシレンとシクロヘキサノンとの混合溶媒が例示できる。また、前記触媒としては、ジブチルジラウリン酸スズ、ジオクチルジラウリン酸スズを例示でき、LUMIFLON(商品名)とイソシアネートとの架橋を促進するために用いられる。 The composition of the paint is not particularly limited as long as the effects of the present invention are not impaired. For example, as the composition of the paint based on Lumiflon, LUMIFLON (trade name), a pigment, a crosslinking agent, a solvent, and a catalyst are mixed. The thing which becomes. As for the composition ratio, when the entire coating is 100 mass%, LUMIFLON (trade name) is preferably 3 to 80 mass%, more preferably about 10 to 60 mass%, and the pigment and filler are 5 to 60 mass%. % By mass is preferable, and about 10 to 40% by mass is more preferable, and the organic solvent is preferably 20 to 80% by mass.
Examples of the organic solvent include a mixed solvent of MEK, xylene, and cyclohexanone. Examples of the catalyst include tin dibutyl dilaurate and tin dioctyl dilaurate, which are used to promote crosslinking between LUMIFLON (trade name) and isocyanate.
前記塗料をシンジオタクチックポリスチレン系樹脂シート22の一方または他方の面に塗布する方法としては、公知の方法で行うことができ、例えばロッドコーターで所望の膜厚になるように塗布すればよい。
前記塗料が硬化することにより形成されるフッ素樹脂層21の膜厚としては特に限定されず、例えば5μm以上の膜厚とすればよい。水蒸気バリア性、耐候性および軽量性の観点から、フッ素樹脂層21の膜厚としては、5~100μmが好ましく、8~50μmがより好ましく、10~30μmがさらに好ましい。
前記塗布した塗料の乾燥プロセスにおける温度は、本発明の効果を損なわない温度であればよく、フッ素樹脂層21を形成する該塗料の架橋促進及びシンジオタクチックポリスチレン系樹脂シート22への熱損傷を低減する観点から、50~150℃程度の範囲であることが好ましい。 As a method of applying the paint to one or the other surface of the syndiotacticpolystyrene resin sheet 22, it can be performed by a known method, and for example, it may be applied so as to have a desired film thickness with a rod coater.
The film thickness of thefluororesin layer 21 formed by curing the paint is not particularly limited, and may be, for example, a film thickness of 5 μm or more. From the viewpoint of water vapor barrier properties, weather resistance, and light weight, the thickness of the fluororesin layer 21 is preferably 5 to 100 μm, more preferably 8 to 50 μm, and even more preferably 10 to 30 μm.
The temperature in the drying process of the applied paint may be any temperature that does not impair the effects of the present invention, and promotes crosslinking of the paint forming thefluororesin layer 21 and causes thermal damage to the syndiotactic polystyrene resin sheet 22. From the viewpoint of reduction, it is preferably in the range of about 50 to 150 ° C.
前記塗料が硬化することにより形成されるフッ素樹脂層21の膜厚としては特に限定されず、例えば5μm以上の膜厚とすればよい。水蒸気バリア性、耐候性および軽量性の観点から、フッ素樹脂層21の膜厚としては、5~100μmが好ましく、8~50μmがより好ましく、10~30μmがさらに好ましい。
前記塗布した塗料の乾燥プロセスにおける温度は、本発明の効果を損なわない温度であればよく、フッ素樹脂層21を形成する該塗料の架橋促進及びシンジオタクチックポリスチレン系樹脂シート22への熱損傷を低減する観点から、50~150℃程度の範囲であることが好ましい。 As a method of applying the paint to one or the other surface of the syndiotactic
The film thickness of the
The temperature in the drying process of the applied paint may be any temperature that does not impair the effects of the present invention, and promotes crosslinking of the paint forming the
本実施形態の太陽電池モジュール用保護シート10によれば、シンジオタクチックポリスチレン系樹脂シート22にフッ素樹脂層21が積層されていることにより、シンジオタクチックポリスチレン系樹脂シート22の効果に加えて、さらに耐久性および耐候性を向上させることができる。
According to the solar cell module protective sheet 10 of the present embodiment, in addition to the effect of the syndiotactic polystyrene resin sheet 22, the fluororesin layer 21 is laminated on the syndiotactic polystyrene resin sheet 22. Furthermore, durability and weather resistance can be improved.
(2)第二の実施形態
図2は、本発明の太陽電池モジュール用保護シートの第二の実施形態を示す概略断面図である。
図2において、図1に示した太陽電池モジュール用保護シート10と同じ構成要素には同一の符号を付して説明を省略する。 (2) Second Embodiment FIG. 2 is a schematic cross-sectional view showing a second embodiment of the solar cell module protective sheet of the present invention.
In FIG. 2, the same components as those of the solar cellmodule protection sheet 10 shown in FIG.
図2は、本発明の太陽電池モジュール用保護シートの第二の実施形態を示す概略断面図である。
図2において、図1に示した太陽電池モジュール用保護シート10と同じ構成要素には同一の符号を付して説明を省略する。 (2) Second Embodiment FIG. 2 is a schematic cross-sectional view showing a second embodiment of the solar cell module protective sheet of the present invention.
In FIG. 2, the same components as those of the solar cell
本実施形態の太陽電池モジュール用保護シート20は、シンジオタクチックポリスチレン系樹脂シート22に支持シート24が積層された積層構造を形成している。
シンジオタクチックポリスチレン系樹脂シート22と支持シート24とを積層する方法としては、本発明の効果を損なわないものであれば特に限定されず、図2に示すように、シンジオタクチックポリスチレン系樹脂シート22と支持シート24との間に、さらに接着層23を設けて、接着層23を介してシンジオタクチックポリスチレン系樹脂シート22と支持シート24を積層させることができる。 The solar cell moduleprotective sheet 20 of this embodiment forms a laminated structure in which a support sheet 24 is laminated on a syndiotactic polystyrene resin sheet 22.
The method for laminating the syndiotacticpolystyrene resin sheet 22 and the support sheet 24 is not particularly limited as long as the effects of the present invention are not impaired. As shown in FIG. 2, the syndiotactic polystyrene resin sheet is used. An adhesive layer 23 is further provided between the support sheet 24 and the support sheet 24, and the syndiotactic polystyrene resin sheet 22 and the support sheet 24 can be laminated via the adhesive layer 23.
シンジオタクチックポリスチレン系樹脂シート22と支持シート24とを積層する方法としては、本発明の効果を損なわないものであれば特に限定されず、図2に示すように、シンジオタクチックポリスチレン系樹脂シート22と支持シート24との間に、さらに接着層23を設けて、接着層23を介してシンジオタクチックポリスチレン系樹脂シート22と支持シート24を積層させることができる。 The solar cell module
The method for laminating the syndiotactic
接着層23としては、シンジオタクチックポリスチレン系樹脂シート22および支持シート24に対して接着性を有する接着剤を含むものであることが好ましい。
The adhesive layer 23 preferably includes an adhesive having adhesiveness to the syndiotactic polystyrene resin sheet 22 and the support sheet 24.
接着剤としては、本発明の効果を損なわないものであれば特に制限されず、例えばアクリル系接着剤、ウレタン系接着剤、エポキシ系接着剤、エステル系接着剤、シリコーン系接着剤などが挙げられる。なかでも、接着性の観点からウレタン系接着剤が好ましい。その接着性を向上させるために、シンジオタクチックポリスチレン系樹脂シート22および支持シート24の接着層23側の面をコロナ処理および/または化学薬品処理してもよい。
The adhesive is not particularly limited as long as it does not impair the effects of the present invention, and examples thereof include acrylic adhesives, urethane adhesives, epoxy adhesives, ester adhesives, and silicone adhesives. . Of these, urethane adhesives are preferable from the viewpoint of adhesiveness. In order to improve the adhesion, the surface of the syndiotactic polystyrene resin sheet 22 and the support sheet 24 on the adhesive layer 23 side may be subjected to corona treatment and / or chemical treatment.
本発明の太陽電池モジュール用保護シート20における支持シート24としては、熱接着性シート、樹脂シート、アルミニウムシート等が挙げられる。
ただし、アルミニウムシートを支持シート24として用いた場合は、太陽電池モジュール用保護シート20は光透過性を有さないので、フロントシート101としては用いられず、バックシート102として用いられる。 Examples of thesupport sheet 24 in the solar cell module protective sheet 20 of the present invention include a thermal adhesive sheet, a resin sheet, and an aluminum sheet.
However, when an aluminum sheet is used as thesupport sheet 24, the solar cell module protective sheet 20 is not used as the front sheet 101 and is used as the back sheet 102 because it does not have optical transparency.
ただし、アルミニウムシートを支持シート24として用いた場合は、太陽電池モジュール用保護シート20は光透過性を有さないので、フロントシート101としては用いられず、バックシート102として用いられる。 Examples of the
However, when an aluminum sheet is used as the
熱接着性シートとしては、本発明の効果を損なわず、熱接着性を有する樹脂シートであれば特に限定されない。ここで、熱接着性とは、加熱処理によって接着性を発現する性質のことである。該加熱処理における温度としては、通常50~200℃の範囲である。
The thermal adhesive sheet is not particularly limited as long as it is a resin sheet having thermal adhesiveness without impairing the effects of the present invention. Here, thermal adhesiveness is a property that develops adhesiveness by heat treatment. The temperature in the heat treatment is usually in the range of 50 to 200 ° C.
熱接着性シートとしては、例えばエチレン酢酸ビニル(EVA)、ポリビニルブチラール(PVB)、エチレンメタクリル酸共重合体やポリオレフィンを主成分とするポリマーからなる樹脂シートが好ましく、EVAを主成分とするポリマーからなる樹脂シートであることがより好ましい。一般に、封止材103がEVAからなる樹脂であることが多く、その場合において、前記熱接着性シートがEVAを主成分とするポリマーからなる樹脂シートであることにより、封止材103と前記熱接着性シートとの適合性および接着性を向上させることができる。
As the heat-adhesive sheet, for example, a resin sheet made of a polymer mainly composed of ethylene vinyl acetate (EVA), polyvinyl butyral (PVB), ethylene methacrylic acid copolymer or polyolefin is preferable. More preferably, it is a resin sheet. In general, the sealing material 103 is often a resin made of EVA, and in that case, the thermal adhesive sheet is a resin sheet made of a polymer mainly composed of EVA, so that the sealing material 103 and the heat Compatibility with the adhesive sheet and adhesion can be improved.
熱接着性シートの厚さとしては、熱接着性シートの種類によって適宜調節すればよく、5~200μmの範囲であることが好ましい。より具体的には、熱接着性シートがEVAからなるシートである場合には、軽量性および電気絶縁性等の観点から、当該EVAシートの厚さは、10~200μmの範囲であることが好ましく、50~150μmの範囲であることがより好ましく、80~120μmの範囲であることが最も好ましい。
The thickness of the heat-adhesive sheet may be appropriately adjusted depending on the type of the heat-adhesive sheet, and is preferably in the range of 5 to 200 μm. More specifically, when the thermal adhesive sheet is a sheet made of EVA, the thickness of the EVA sheet is preferably in the range of 10 to 200 μm from the viewpoints of light weight and electrical insulation. The range of 50 to 150 μm is more preferable, and the range of 80 to 120 μm is most preferable.
熱接着性シートをシンジオタクチックポリスチレン系樹脂シート22に積層する方法としては、本発明の効果を損なわないものであれば特に限定されず、熱接着性樹脂を溶剤に溶解または水に分散したものをシンジオタクチックポリスチレン系樹脂シート22に塗布して塗膜を形成させてもよいし、図2に示すように、熱接着性樹脂をシート状にしたものとシンジオタクチックポリスチレン系樹脂シート22との間に、さらに接着層23を設けて、接着層23を介して熱接着性シートとシンジオタクチックポリスチレン系樹脂シート22とを積層させてもよい。
The method for laminating the heat-adhesive sheet on the syndiotactic polystyrene resin sheet 22 is not particularly limited as long as the effect of the present invention is not impaired, and the heat-adhesive resin is dissolved in a solvent or dispersed in water. May be applied to the syndiotactic polystyrene resin sheet 22 to form a coating film. As shown in FIG. 2, a sheet of heat adhesive resin and a syndiotactic polystyrene resin sheet 22 may be used. Further, an adhesive layer 23 may be further provided, and the thermal adhesive sheet and the syndiotactic polystyrene resin sheet 22 may be laminated via the adhesive layer 23.
支持シート24に用いられる樹脂シートとしては、太陽電池モジュール用保護シートにおける樹脂シートとして一般に用いられるものが使用できる。このような樹脂シートとしては、例えば、ポリエチレン、ポリプロピレン、非シンジオタクチックポリスチレン、ポリメタクリル酸メチル、ポリアミド(ナイロン6、ナイロン66)、ポリアクリロニトリル、ポリ塩化ビニル、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)、ポリオキシメチレン、ポリカーボネート、ポリフェニレンオキシド、ポリエステルウレタン、ポリm-フェニレンイソフタルアミド、ポリp-フェニレンテレフタルアミド等のポリマーからなるシートが挙げられる。
As the resin sheet used for the support sheet 24, those generally used as a resin sheet in a protective sheet for a solar cell module can be used. Examples of such resin sheets include polyethylene, polypropylene, non-syndiotactic polystyrene, polymethyl methacrylate, polyamide (nylon 6, nylon 66), polyacrylonitrile, polyvinyl chloride, polyethylene terephthalate (PET), polybutylene terephthalate. Examples thereof include sheets made of polymers such as (PBT), polyethylene naphthalate (PEN), polyoxymethylene, polycarbonate, polyphenylene oxide, polyester urethane, poly m-phenylene isophthalamide, poly p-phenylene terephthalamide.
樹脂シートの厚さとしては、太陽電池システムが要求する電気絶縁性に基づいて調節すればよく、通常、当該シートの厚さは10~300μmの範囲であることが好ましい。
The thickness of the resin sheet may be adjusted based on the electrical insulation required by the solar cell system, and the thickness of the sheet is usually preferably in the range of 10 to 300 μm.
また、樹脂シートには、耐候性、耐湿性等を高めるための表面改質処理を施すこともできる。例えばPETシートにシリカ(SiO2)、アルミニウム(Al)およびアルミナ(Al2O3)などを蒸着させることにより、当該太陽電池モジュール用保護シートの耐候性、耐湿性等を高めることができる。なお、当該シリカ、アルミニウムおよびアルミナなどの蒸着処理は、樹脂シートの両面に行ってもよく、いずれか一方の面にのみ行ってもよい。
Further, the resin sheet can be subjected to a surface modification treatment for improving weather resistance, moisture resistance and the like. For example, by vapor-depositing silica (SiO 2 ), aluminum (Al), alumina (Al 2 O 3 ), and the like on the PET sheet, the weather resistance, moisture resistance, and the like of the solar cell module protection sheet can be improved. In addition, the vapor deposition process of the said silica, aluminum, an alumina, etc. may be performed on both surfaces of a resin sheet, and may be performed only on either one surface.
支持シート24に用いられるアルミニウムシートとしては、本発明の効果を損なうものでなければ特に制限されないが、鉄を0.7~5.0質量%の範囲で含むアルミニウム-鉄合金をシート状にしたものが好ましい。具体的には、JIS H4160に規定される合金番号8021に区分されるものが挙げられる。該アルミニウム-鉄合金をシート状にしたものとしては、例えば日本製箔株式会社製のPACAL21(商品名)を好ましく用いることができる。また、住軽アルミ箔株式会社製のBESPA(商品名)も同様に好ましく用いることができる。
The aluminum sheet used for the support sheet 24 is not particularly limited as long as it does not impair the effects of the present invention, but an aluminum-iron alloy containing iron in the range of 0.7 to 5.0% by mass is made into a sheet form. Those are preferred. Specific examples include those classified into alloy number 8021 defined in JIS H4160. For example, PACAL21 (trade name) manufactured by Nihon Foil Co., Ltd. can be preferably used as the aluminum-iron alloy in the form of a sheet. Also, BESPA (trade name) manufactured by Sumi Light Aluminum Foil Co., Ltd. can be preferably used.
鉄を前記範囲内で含むアルミニウム-鉄合金シートを用いることによって、純アルミニウム製のシートを用いるよりも、バックシートとして使用した場合の太陽電池モジュール用保護シート20の水蒸気バリア性、および軽量性を高めることができる。その理由としては、鉄を前記範囲内で含むアルミニウム-鉄合金は、一般に純アルミニウムと比べて圧延加工性に優れるため、厚みが20μm以下のシートに加工した場合でもピンホールの発生が少なく、該ピンホールを介した気体の流通を抑制することができ、その結果、バックシートとして使用した場合の太陽電池モジュール用保護シート20の水蒸気バリア性を高めることができると考えられる。また、圧延加工性に優れるため、水蒸気バリア性を維持したままで純アルミニウムのシートよりもより薄いシートに加工することができ、その結果として該アルミニウム-鉄合金シートを用いたバックシートは軽量性を高めることができる。
By using an aluminum-iron alloy sheet containing iron within the above range, the water vapor barrier property and lightness of the solar cell module protective sheet 20 when used as a back sheet can be achieved rather than using a pure aluminum sheet. Can be increased. The reason for this is that an aluminum-iron alloy containing iron within the above range is generally superior in rolling processability compared to pure aluminum, and therefore, even when processed into a sheet having a thickness of 20 μm or less, pinholes are less likely to occur. It is considered that the gas flow through the pinhole can be suppressed, and as a result, the water vapor barrier property of the solar cell module protective sheet 20 when used as a back sheet can be enhanced. In addition, since it is excellent in rolling processability, it can be processed into a sheet thinner than a pure aluminum sheet while maintaining the water vapor barrier property. As a result, the back sheet using the aluminum-iron alloy sheet is lightweight. Can be increased.
アルミニウム-鉄合金シートは、本発明の効果を損なわない限り、鉄以外の元素を含んでいてもよい。例えば、マグネシウム、マンガン、銅、ケイ素、亜鉛、チタン等が挙げられる。これらの元素は、アルミニウム-鉄合金の製造過程において不可避的に含まれることもあるが、一般に微量の含有量であれば、本発明の効果を損なわないと考えられる。ここで、微量の含有量としては、各元素がそれぞれ0.5質量%以下である場合、より好ましくは0.3質量%以下である場合をいう。
The aluminum-iron alloy sheet may contain an element other than iron as long as the effects of the present invention are not impaired. For example, magnesium, manganese, copper, silicon, zinc, titanium, etc. are mentioned. These elements may be inevitably contained in the production process of the aluminum-iron alloy, but generally it is considered that the effect of the present invention is not impaired if the content is very small. Here, as a trace amount content, the case where each element is 0.5 mass% or less respectively, More preferably, it is the case where it is 0.3 mass% or less.
アルミニウム-鉄合金シートの厚さとしては、本発明の効果を損なわない限り特に制限されず、ピンホール発生頻度の低さ(水蒸気バリア性の高さ)、および軽量性等の観点から、好ましくは30μm以下、より好ましくは20μm以下、最も好ましくは5~10μmの範囲である。
The thickness of the aluminum-iron alloy sheet is not particularly limited as long as the effects of the present invention are not impaired. From the viewpoint of low pinhole occurrence frequency (high water vapor barrier property), light weight, etc., preferably It is 30 μm or less, more preferably 20 μm or less, and most preferably 5 to 10 μm.
太陽電池モジュール用保護シート20における支持シート24が熱接着性シートである場合、太陽電池モジュールを構成する封止材103に対して、当該太陽電池モジュール用保護シート20を容易に熱接着することができる。
When the support sheet 24 in the solar cell module protective sheet 20 is a heat-adhesive sheet, the solar cell module protective sheet 20 can be easily thermally bonded to the sealing material 103 constituting the solar cell module. it can.
太陽電池モジュール用保護シート20における支持シート24がアルミニウムシートである場合、太陽電池モジュール用保護シート20のバックシートとしての耐候性、水蒸気バリア性を向上させることができる。
When the support sheet 24 in the solar cell module protective sheet 20 is an aluminum sheet, weather resistance and water vapor barrier properties as a back sheet of the solar cell module protective sheet 20 can be improved.
太陽電池モジュール用保護シート20における支持シート24が樹脂シートである場合、太陽電池モジュール用保護シート20の電気絶縁性をさらに向上させることができる。
When the support sheet 24 in the solar cell module protective sheet 20 is a resin sheet, the electrical insulation of the solar cell module protective sheet 20 can be further improved.
本実施形態の太陽電池モジュール用保護シート20によれば、シンジオタクチックポリスチレン系樹脂シート22に支持シート24が積層されていることにより、シンジオタクチックポリスチレン系樹脂シート22の効果に加えて、さらに支持シート24の効果を付与することができる。
According to the solar cell module protective sheet 20 of the present embodiment, the support sheet 24 is laminated on the syndiotactic polystyrene resin sheet 22, so that in addition to the effects of the syndiotactic polystyrene resin sheet 22, further The effect of the support sheet 24 can be imparted.
(3)第三の実施形態
図3は、本発明の太陽電池モジュール用保護シートの第三の実施形態を示す概略断面図である。
図3において、図1に示した太陽電池モジュール用保護シート10、および図2に示した太陽電池モジュール用保護シート20と同じ構成要素には同一の符号を付して説明を省略する。 (3) Third Embodiment FIG. 3 is a schematic cross-sectional view showing a third embodiment of the solar cell module protective sheet of the present invention.
In FIG. 3, the same components as those of the solar cellmodule protection sheet 10 shown in FIG. 1 and the solar cell module protection sheet 20 shown in FIG.
図3は、本発明の太陽電池モジュール用保護シートの第三の実施形態を示す概略断面図である。
図3において、図1に示した太陽電池モジュール用保護シート10、および図2に示した太陽電池モジュール用保護シート20と同じ構成要素には同一の符号を付して説明を省略する。 (3) Third Embodiment FIG. 3 is a schematic cross-sectional view showing a third embodiment of the solar cell module protective sheet of the present invention.
In FIG. 3, the same components as those of the solar cell
本実施形態の太陽電池モジュール用保護シート30は、第二の実施形態の太陽電池モジュール用保護シート20の構成に加えて、シンジオタクチックポリスチレン系樹脂シート22の、支持シート24が積層する面とは反対の面(うら面)に、フッ素樹脂層21が積層された積層構造を形成している。
In addition to the configuration of the solar cell module protective sheet 20 of the second embodiment, the solar cell module protective sheet 30 of the present embodiment includes a surface of the syndiotactic polystyrene resin sheet 22 on which the support sheet 24 is laminated. Forms a laminated structure in which the fluororesin layer 21 is laminated on the opposite surface (back surface).
本実施形態の太陽電池モジュール用保護シート30によれば、前述した第二の実施形態の太陽電池モジュール用保護シート20と同様の効果を得ることができ、さらにフッ素樹脂層21を積層したことにより、耐久性および耐候性を向上させることができる。
尚、第三の実施形態の場合、支持シート24としては熱接着性シートであることが好ましい。 According to the solar cell moduleprotective sheet 30 of the present embodiment, the same effects as those of the solar cell module protective sheet 20 of the second embodiment described above can be obtained, and further, the fluororesin layer 21 is laminated. , Durability and weather resistance can be improved.
In the case of the third embodiment, thesupport sheet 24 is preferably a thermal adhesive sheet.
尚、第三の実施形態の場合、支持シート24としては熱接着性シートであることが好ましい。 According to the solar cell module
In the case of the third embodiment, the
本発明の太陽電池モジュール用保護シートは、太陽電池モジュール形成用の従来公知の材料を組み合わせて、太陽電池モジュールとして使用することができる。
本発明の太陽電池モジュールは、例えば、図4に示すように、結晶シリコン、アモルファスシリコンなどからなる太陽電池セル104と、太陽電池セル104を封止する電気絶縁体からなる封止材(充填層)103と、封止材103の表面に積層された表面保護シート(フロントシート)101と、封止材103の裏面に積層された裏面保護シート(バックシート)102とから構成されている。
封止材103としては、酢酸ビニル―エチレン共重合体(EVA)、ポリビニルブチラール、シリコーン樹脂、エポキシ樹脂、フッ素化ポリイミド樹脂、アクリル樹脂、ポリエステル樹脂、アイオノマー樹脂などの透明な樹脂を主成分とする樹脂を使用することができる。 The protective sheet for a solar cell module of the present invention can be used as a solar cell module by combining conventionally known materials for forming a solar cell module.
For example, as shown in FIG. 4, the solar cell module of the present invention includes asolar cell 104 made of crystalline silicon, amorphous silicon, and the like, and a sealing material (filling layer) made of an electrical insulator that seals the solar cell 104. ) 103, a surface protection sheet (front sheet) 101 laminated on the surface of the sealing material 103, and a back surface protection sheet (back sheet) 102 laminated on the back surface of the sealing material 103.
The sealingmaterial 103 is mainly composed of a transparent resin such as vinyl acetate-ethylene copolymer (EVA), polyvinyl butyral, silicone resin, epoxy resin, fluorinated polyimide resin, acrylic resin, polyester resin, and ionomer resin. Resin can be used.
本発明の太陽電池モジュールは、例えば、図4に示すように、結晶シリコン、アモルファスシリコンなどからなる太陽電池セル104と、太陽電池セル104を封止する電気絶縁体からなる封止材(充填層)103と、封止材103の表面に積層された表面保護シート(フロントシート)101と、封止材103の裏面に積層された裏面保護シート(バックシート)102とから構成されている。
封止材103としては、酢酸ビニル―エチレン共重合体(EVA)、ポリビニルブチラール、シリコーン樹脂、エポキシ樹脂、フッ素化ポリイミド樹脂、アクリル樹脂、ポリエステル樹脂、アイオノマー樹脂などの透明な樹脂を主成分とする樹脂を使用することができる。 The protective sheet for a solar cell module of the present invention can be used as a solar cell module by combining conventionally known materials for forming a solar cell module.
For example, as shown in FIG. 4, the solar cell module of the present invention includes a
The sealing
本発明にかかる太陽電池モジュール用保護シート10、20および30を、図4におけるフロントシート101および/またはバックシート102として使用し、太陽電池セル104を内包する封止材103からなる封止面(封止材の表面および/または裏面)に積層させることにより、当該太陽電池モジュール内の太陽電池セル104および封止材103を風雨、湿気、砂埃、機械的な衝撃などから守り、当該太陽電池モジュールの内部を外気から遮断して密閉した状態に保つことができる。
本発明の太陽電池モジュール用保護シートを封止面(封止材の表面および/または裏面)に積層させる場合は、公知の方法を適用することができる。 The solar cell module protective sheets 10, 20 and 30 according to the present invention are used as the front sheet 101 and / or the back sheet 102 in FIG. By stacking on the front surface and / or the back surface of the sealing material, the solar battery cell 104 and the sealing material 103 in the solar battery module are protected from wind and rain, moisture, dust, mechanical shock, etc. Can be kept sealed from the outside air.
When the protective sheet for a solar cell module of the present invention is laminated on the sealing surface (the front surface and / or the back surface of the sealing material), a known method can be applied.
本発明の太陽電池モジュール用保護シートを封止面(封止材の表面および/または裏面)に積層させる場合は、公知の方法を適用することができる。 The solar cell module
When the protective sheet for a solar cell module of the present invention is laminated on the sealing surface (the front surface and / or the back surface of the sealing material), a known method can be applied.
前記第一~第三の実施形態においては、シンジオタクチックポリスチレン系樹脂シート22、フッ素樹脂層21、支持シート24および接着層23がそれぞれ0乃至1層積層された太陽電池モジュール用保護シートを例示したが、本発明の太陽電池モジュール用保護シートはこれに限定されない。本発明の太陽電池モジュール用保護シートにあっては、シンジオタクチックポリスチレン系樹脂シート、支持シート、接着層および/またはフッ素樹脂層が複数積層した構造であってもよい。
In the first to third embodiments, a protective sheet for a solar cell module in which 0 to 1 layers of syndiotactic polystyrene resin sheet 22, fluororesin layer 21, support sheet 24, and adhesive layer 23 are laminated is illustrated. However, the protective sheet for a solar cell module of the present invention is not limited to this. The protective sheet for a solar cell module of the present invention may have a structure in which a plurality of syndiotactic polystyrene resin sheets, support sheets, adhesive layers and / or fluororesin layers are laminated.
以下、実施例を示して本発明をさらに詳細に説明するが、本発明は以下の実施例に限定されるものではない。
Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.
(フッ素樹脂塗工液1の調製)
ルミフロンLF-200(商品名;旭硝子社製、固形分濃度60質量%)100重量部、脂肪族イソシアネート系架橋剤としてスミジュールN3300(商品名;住化バイエルウレタン社製、固形分濃度100質量%)10重量部、触媒としてジオクチルジラウリル酸スズ0.0001重量部、顔料として二酸化チタンであるタイピュアR-105(商品名;デュポン社製)30重量部を混合することによりフッ素樹脂塗工液1を調製した。 (Preparation of fluororesin coating solution 1)
Lumiflon LF-200 (trade name; manufactured by Asahi Glass Co., Ltd., solid content concentration: 60% by mass), Sumijoule N3300 (trade name; manufactured by Sumika Bayer Urethane Co., Ltd., solid content concentration: 100% by mass) as an aliphatic isocyanate-based crosslinking agent ) Fluororesin coating solution 1 by mixing 10 parts by weight, 0.0001 part by weight tin dioctyl dilaurate as a catalyst, and 30 parts by weight Taipure R-105 (trade name; manufactured by DuPont) which is titanium dioxide as a pigment Was prepared.
ルミフロンLF-200(商品名;旭硝子社製、固形分濃度60質量%)100重量部、脂肪族イソシアネート系架橋剤としてスミジュールN3300(商品名;住化バイエルウレタン社製、固形分濃度100質量%)10重量部、触媒としてジオクチルジラウリル酸スズ0.0001重量部、顔料として二酸化チタンであるタイピュアR-105(商品名;デュポン社製)30重量部を混合することによりフッ素樹脂塗工液1を調製した。 (Preparation of fluororesin coating solution 1)
Lumiflon LF-200 (trade name; manufactured by Asahi Glass Co., Ltd., solid content concentration: 60% by mass), Sumijoule N3300 (trade name; manufactured by Sumika Bayer Urethane Co., Ltd., solid content concentration: 100% by mass) as an aliphatic isocyanate-based crosslinking agent ) Fluororesin coating solution 1 by mixing 10 parts by weight, 0.0001 part by weight tin dioctyl dilaurate as a catalyst, and 30 parts by weight Taipure R-105 (trade name; manufactured by DuPont) which is titanium dioxide as a pigment Was prepared.
(接着剤1の調製)
タケラックA-515(商品名;三井化学社製)と、タケネートA-3(商品名;三井化学社製)とを9:1の割合(重量比)で混合することにより、ポリウレタン系の接着剤1を調製した。 (Preparation of adhesive 1)
By mixing Takelac A-515 (trade name; manufactured by Mitsui Chemicals) and Takenate A-3 (trade name; manufactured by Mitsui Chemicals) at a ratio (weight ratio) of 9: 1, a polyurethane-based adhesive 1 was prepared.
タケラックA-515(商品名;三井化学社製)と、タケネートA-3(商品名;三井化学社製)とを9:1の割合(重量比)で混合することにより、ポリウレタン系の接着剤1を調製した。 (Preparation of adhesive 1)
By mixing Takelac A-515 (trade name; manufactured by Mitsui Chemicals) and Takenate A-3 (trade name; manufactured by Mitsui Chemicals) at a ratio (weight ratio) of 9: 1, a polyurethane-based adhesive 1 was prepared.
実施例1
図1は実施例1の太陽電池モジュール用保護シート10を示す概略断面図である。
シンジオタクチックポリスチレン系樹脂シート22としてXAREC-C122(商品名;出光興産社製、厚さ30μm)上に、上記フッ素樹脂塗工液1をロッドコーターで塗工し、120℃で1分間乾燥させることにより厚さ15μmのフッ素樹脂層21を形成させて、太陽電池モジュール用保護シート10を作成した。 Example 1
1 is a schematic cross-sectional view showing aprotective sheet 10 for a solar cell module of Example 1. FIG.
The above fluororesin coating solution 1 is applied on a XAREC-C122 (trade name; manufactured by Idemitsu Kosan Co., Ltd.,thickness 30 μm) as a syndiotactic polystyrene resin sheet 22 with a rod coater and dried at 120 ° C. for 1 minute. Thus, a fluororesin layer 21 having a thickness of 15 μm was formed, and thus the solar cell module protective sheet 10 was produced.
図1は実施例1の太陽電池モジュール用保護シート10を示す概略断面図である。
シンジオタクチックポリスチレン系樹脂シート22としてXAREC-C122(商品名;出光興産社製、厚さ30μm)上に、上記フッ素樹脂塗工液1をロッドコーターで塗工し、120℃で1分間乾燥させることにより厚さ15μmのフッ素樹脂層21を形成させて、太陽電池モジュール用保護シート10を作成した。 Example 1
1 is a schematic cross-sectional view showing a
The above fluororesin coating solution 1 is applied on a XAREC-C122 (trade name; manufactured by Idemitsu Kosan Co., Ltd.,
実施例2
図5は実施例2の太陽電池モジュール用保護シート40を示す概略断面図である。
第1のシンジオタクチックポリスチレン系樹脂シート22としてXAREC-C122(商品名;出光興産社製、厚さ30μm)上に、上記接着剤1をロッドコーターで塗工し、80℃で1分間乾燥して厚さ10μmの接着層23を形成した。次いで、形成した接着層23と、支持シート24としてシリカ蒸着ポリエステルフィルムであるテックバリアLX(商品名;三菱樹脂社製、厚さ12μm)のシリカ蒸着面を常温でラミネートして、シンジオタクチックポリスチレン/シリカ蒸着ポリエステルフィルム積層体を作製した。さらに、第2のシンジオタクチックポリスチレン系樹脂シート22としてXAREC-C122(商品名;出光興産社製、厚さ30μm)上に、上記接着剤1をロッドコーターで塗工し、80℃で1分間乾燥して厚さ10μmの接着層23を形成した。この形成した接着層面と、上記で作製したシンジオタクチックポリスチレン/シリカ蒸着ポリエステルフィルム積層体のポリエステル面とを常温でラミネートして、太陽電池モジュール用保護シート40を作成した。 Example 2
FIG. 5 is a schematic cross-sectional view showing the solar cell moduleprotective sheet 40 of Example 2.
The above-mentioned adhesive 1 was coated on a XAREC-C122 (trade name; Idemitsu Kosan Co., Ltd.,thickness 30 μm) as a first syndiotactic polystyrene resin sheet 22 with a rod coater and dried at 80 ° C. for 1 minute. Thus, an adhesive layer 23 having a thickness of 10 μm was formed. Next, the formed adhesive layer 23 and a silica vapor-deposited surface of Tech Barrier LX (trade name; manufactured by Mitsubishi Plastics, Inc., 12 μm thick), which is a silica vapor-deposited polyester film, are laminated at normal temperature as a support sheet 24 to produce syndiotactic polystyrene. / A silica-deposited polyester film laminate was produced. Further, the adhesive 1 was applied on a XAREC-C122 (trade name; manufactured by Idemitsu Kosan Co., Ltd., thickness 30 μm) as a second syndiotactic polystyrene resin sheet 22 with a rod coater, and then at 80 ° C. for 1 minute. The adhesive layer 23 having a thickness of 10 μm was formed by drying. The formed adhesive layer surface and the polyester surface of the syndiotactic polystyrene / silica vapor-deposited polyester film laminate prepared above were laminated at room temperature to prepare a protective sheet 40 for a solar cell module.
図5は実施例2の太陽電池モジュール用保護シート40を示す概略断面図である。
第1のシンジオタクチックポリスチレン系樹脂シート22としてXAREC-C122(商品名;出光興産社製、厚さ30μm)上に、上記接着剤1をロッドコーターで塗工し、80℃で1分間乾燥して厚さ10μmの接着層23を形成した。次いで、形成した接着層23と、支持シート24としてシリカ蒸着ポリエステルフィルムであるテックバリアLX(商品名;三菱樹脂社製、厚さ12μm)のシリカ蒸着面を常温でラミネートして、シンジオタクチックポリスチレン/シリカ蒸着ポリエステルフィルム積層体を作製した。さらに、第2のシンジオタクチックポリスチレン系樹脂シート22としてXAREC-C122(商品名;出光興産社製、厚さ30μm)上に、上記接着剤1をロッドコーターで塗工し、80℃で1分間乾燥して厚さ10μmの接着層23を形成した。この形成した接着層面と、上記で作製したシンジオタクチックポリスチレン/シリカ蒸着ポリエステルフィルム積層体のポリエステル面とを常温でラミネートして、太陽電池モジュール用保護シート40を作成した。 Example 2
FIG. 5 is a schematic cross-sectional view showing the solar cell module
The above-mentioned adhesive 1 was coated on a XAREC-C122 (trade name; Idemitsu Kosan Co., Ltd.,
比較例1
シンジオタクチックポリスチレン系樹脂シートXAREC-C122(商品名;出光興産社製、厚さ30μm)をポリエステルフィルムであるメリネックスS(商品名;帝人デュポンフィルム社製、厚さ50μm)に変更したこと以外は、実施例1と同様にして太陽電池モジュール用保護シートを作成した。 Comparative Example 1
Except that the syndiotactic polystyrene resin sheet XAREC-C122 (trade name; manufactured by Idemitsu Kosan Co., Ltd.,thickness 30 μm) was changed to a polyester film, Melinex S (trade name; manufactured by Teijin DuPont Films, Inc., thickness 50 μm). A protective sheet for a solar cell module was prepared in the same manner as in Example 1.
シンジオタクチックポリスチレン系樹脂シートXAREC-C122(商品名;出光興産社製、厚さ30μm)をポリエステルフィルムであるメリネックスS(商品名;帝人デュポンフィルム社製、厚さ50μm)に変更したこと以外は、実施例1と同様にして太陽電池モジュール用保護シートを作成した。 Comparative Example 1
Except that the syndiotactic polystyrene resin sheet XAREC-C122 (trade name; manufactured by Idemitsu Kosan Co., Ltd.,
比較例2
シンジオタクチックポリスチレン系樹脂シートXAREC-C122(商品名;出光興産社製、厚さ30μm)をポリエステルフィルムであるメリネックスS(商品名;帝人デュポンフィルム社製、厚さ50μm)に変更した以外は、実施例2と同様にして太陽電池モジュール用保護シートを作成した。 Comparative Example 2
Except for changing the syndiotactic polystyrene resin sheet XAREC-C122 (trade name; manufactured by Idemitsu Kosan Co., Ltd.,thickness 30 μm) to the polyester film Melinex S (trade name; manufactured by Teijin DuPont Films Co., Ltd., thickness 50 μm), A protective sheet for a solar cell module was prepared in the same manner as in Example 2.
シンジオタクチックポリスチレン系樹脂シートXAREC-C122(商品名;出光興産社製、厚さ30μm)をポリエステルフィルムであるメリネックスS(商品名;帝人デュポンフィルム社製、厚さ50μm)に変更した以外は、実施例2と同様にして太陽電池モジュール用保護シートを作成した。 Comparative Example 2
Except for changing the syndiotactic polystyrene resin sheet XAREC-C122 (trade name; manufactured by Idemitsu Kosan Co., Ltd.,
前記のようにして作製した実施例1~2および比較例1~2のそれぞれの太陽電池モジュール用保護シートに対して、以下の評価方法により、密着性評価、耐久性評価、水蒸気バリア性評価を行った。結果を表1に示した。
For the protective sheets for solar cell modules of Examples 1 and 2 and Comparative Examples 1 and 2 produced as described above, adhesion evaluation, durability evaluation, and water vapor barrier evaluation were performed by the following evaluation methods. went. The results are shown in Table 1.
(密着性評価)
JIS K5600-5-6に準拠し、実施例1および比較例1で作製した太陽電池モジュール用裏面保護シートのフッ素樹脂層に1mm角の碁盤目を10×10マス作製し、セロハンテープ(ニチバン社製;CT24)を貼着し、該テープを剥がした際のフッ素樹脂層の剥離度合いで評価した。判定は100マスの内、剥離しないマス目の数で表した。この密着性評価の結果は表1において、密着性の「0時間」として記す。 (Adhesion evaluation)
In accordance with JIS K5600-5-6, 10 × 10 squares of 1 mm square grids were produced on the fluororesin layer of the back protective sheet for solar cell modules produced in Example 1 and Comparative Example 1, and cellophane tape (Nichiban Co., Ltd.). Made; CT24) was attached, and the degree of peeling of the fluororesin layer when the tape was peeled off was evaluated. Judgment is represented by the number of squares that do not peel out of 100 squares. The result of this adhesion evaluation is shown in Table 1 as “0 hours” of adhesion.
JIS K5600-5-6に準拠し、実施例1および比較例1で作製した太陽電池モジュール用裏面保護シートのフッ素樹脂層に1mm角の碁盤目を10×10マス作製し、セロハンテープ(ニチバン社製;CT24)を貼着し、該テープを剥がした際のフッ素樹脂層の剥離度合いで評価した。判定は100マスの内、剥離しないマス目の数で表した。この密着性評価の結果は表1において、密着性の「0時間」として記す。 (Adhesion evaluation)
In accordance with JIS K5600-5-6, 10 × 10 squares of 1 mm square grids were produced on the fluororesin layer of the back protective sheet for solar cell modules produced in Example 1 and Comparative Example 1, and cellophane tape (Nichiban Co., Ltd.). Made; CT24) was attached, and the degree of peeling of the fluororesin layer when the tape was peeled off was evaluated. Judgment is represented by the number of squares that do not peel out of 100 squares. The result of this adhesion evaluation is shown in Table 1 as “0 hours” of adhesion.
(耐久性評価1)
実施例1および比較例1で作製した太陽電池モジュール用保護シートに対して、促進試験IEC 60068-2-66(Environmental testing-Part2:Test methods-Test Cx: Damp heat、steady state(unsaturated pressurized vapour))に準じて、121℃100%RH(2atm)の条件下で48時間促進試験を行い、その後23℃50%RH環境下で太陽電池保護シートを24時間静置した後、前記(密着性評価)と同様の手法で太陽電池モジュール用保護シートの密着性を評価した。この耐久性評価1の結果は、表1において密着性の「48時間」として記す。「0時間」と「48時間」における密着性の変化が小さいほど、耐久性が良好であることを示す。 (Durability evaluation 1)
Acceleration test IEC 60068-2-66 (Environmental testing-Part 2: Test methods-Test Cx: Damp heat, steady state (unsaturated pressurized) for the solar cell module protective sheets prepared in Example 1 and Comparative Example 1. ), The accelerated test was conducted for 48 hours under the condition of 121 ° C. and 100% RH (2 atm), and then the solar cell protective sheet was allowed to stand for 24 hours in a 23 ° C. and 50% RH environment. ) Was evaluated for the adhesion of the protective sheet for solar cell module. The result of durability evaluation 1 is described as “48 hours” of adhesion in Table 1. The smaller the change in adhesion between “0 hour” and “48 hours”, the better the durability.
実施例1および比較例1で作製した太陽電池モジュール用保護シートに対して、促進試験IEC 60068-2-66(Environmental testing-Part2:Test methods-Test Cx: Damp heat、steady state(unsaturated pressurized vapour))に準じて、121℃100%RH(2atm)の条件下で48時間促進試験を行い、その後23℃50%RH環境下で太陽電池保護シートを24時間静置した後、前記(密着性評価)と同様の手法で太陽電池モジュール用保護シートの密着性を評価した。この耐久性評価1の結果は、表1において密着性の「48時間」として記す。「0時間」と「48時間」における密着性の変化が小さいほど、耐久性が良好であることを示す。 (Durability evaluation 1)
Acceleration test IEC 60068-2-66 (Environmental testing-Part 2: Test methods-Test Cx: Damp heat, steady state (unsaturated pressurized) for the solar cell module protective sheets prepared in Example 1 and Comparative Example 1. ), The accelerated test was conducted for 48 hours under the condition of 121 ° C. and 100% RH (2 atm), and then the solar cell protective sheet was allowed to stand for 24 hours in a 23 ° C. and 50% RH environment. ) Was evaluated for the adhesion of the protective sheet for solar cell module. The result of durability evaluation 1 is described as “48 hours” of adhesion in Table 1. The smaller the change in adhesion between “0 hour” and “48 hours”, the better the durability.
(水蒸気バリア性評価)
実施例2および比較例2で作製した太陽電池モジュール用保護シートを90mm×90mmに切断し、この試験片を水蒸気透過率測定装置(MOCON社製;商品名;PERMATRAN-W3/33)を用いて、40℃、90%RHの条件で太陽電池モジュール用保護シートの水蒸気バリア性を評価した。この水蒸気バリア性評価の結果は表1において水蒸気バリア性の「0時間」として記す。 (Evaluation of water vapor barrier properties)
The protective sheet for solar cell module produced in Example 2 and Comparative Example 2 was cut into 90 mm × 90 mm, and this test piece was used with a water vapor transmission rate measuring device (manufactured by MOCON; trade name: PERMATRAN-W3 / 33). The water vapor barrier property of the solar cell module protective sheet was evaluated under the conditions of 40 ° C. and 90% RH. The result of this water vapor barrier property evaluation is shown in Table 1 as “0 hour” of the water vapor barrier property.
実施例2および比較例2で作製した太陽電池モジュール用保護シートを90mm×90mmに切断し、この試験片を水蒸気透過率測定装置(MOCON社製;商品名;PERMATRAN-W3/33)を用いて、40℃、90%RHの条件で太陽電池モジュール用保護シートの水蒸気バリア性を評価した。この水蒸気バリア性評価の結果は表1において水蒸気バリア性の「0時間」として記す。 (Evaluation of water vapor barrier properties)
The protective sheet for solar cell module produced in Example 2 and Comparative Example 2 was cut into 90 mm × 90 mm, and this test piece was used with a water vapor transmission rate measuring device (manufactured by MOCON; trade name: PERMATRAN-W3 / 33). The water vapor barrier property of the solar cell module protective sheet was evaluated under the conditions of 40 ° C. and 90% RH. The result of this water vapor barrier property evaluation is shown in Table 1 as “0 hour” of the water vapor barrier property.
(耐久性評価2)
実施例2および比較例2で作製した太陽電池モジュール用保護シートに対して、前記耐久性評価1と同様の条件下で48時間促進試験を行い、前記(水蒸気バリア性評価)と同様の手法で太陽電池モジュール用保護シートの水蒸気バリア性を評価した。この耐久性評価2の結果は、表1において水蒸気バリア性の「48時間」として記す。「0時間」と「48時間」における水蒸気バリア性の変化が小さいほど、耐久性が良好であることを示す。 (Durability evaluation 2)
The 48-hour accelerated test was performed on the protective sheets for solar cell modules produced in Example 2 and Comparative Example 2 under the same conditions as in the durability evaluation 1, and the same method as in the above (water vapor barrier property evaluation). The water vapor barrier property of the protective sheet for solar cell module was evaluated. The result of durability evaluation 2 is shown as “48 hours” of the water vapor barrier property in Table 1. It shows that durability is so favorable that the change of the water vapor | steam barrier property in "0 hours" and "48 hours" is small.
実施例2および比較例2で作製した太陽電池モジュール用保護シートに対して、前記耐久性評価1と同様の条件下で48時間促進試験を行い、前記(水蒸気バリア性評価)と同様の手法で太陽電池モジュール用保護シートの水蒸気バリア性を評価した。この耐久性評価2の結果は、表1において水蒸気バリア性の「48時間」として記す。「0時間」と「48時間」における水蒸気バリア性の変化が小さいほど、耐久性が良好であることを示す。 (Durability evaluation 2)
The 48-hour accelerated test was performed on the protective sheets for solar cell modules produced in Example 2 and Comparative Example 2 under the same conditions as in the durability evaluation 1, and the same method as in the above (water vapor barrier property evaluation). The water vapor barrier property of the protective sheet for solar cell module was evaluated. The result of durability evaluation 2 is shown as “48 hours” of the water vapor barrier property in Table 1. It shows that durability is so favorable that the change of the water vapor | steam barrier property in "0 hours" and "48 hours" is small.
(耐久性評価3)
実施例1~2および比較例1~2で作製した太陽電池モジュール用保護シートを15mm×150mmに切断し、JIS K7127-1999に準じて、試験速度200mm/min、23℃、50%RHにて、促進試験実施前の太陽電池モジュール用保護シートの破断点における強度(破断強度):A(0)(N/15mm)を測定した。
さらに、実施例1~2および比較例1~2で作製した太陽電池モジュール用保護シートに対して、前記耐久性試験1と同様の条件下で48時間促進試験を行い、前記破断強度:A(0)と同様の手法で、促進試験実施後の破断強度:A(1)(N/15mm)を測定し、促進試験実施前後における破断強度の維持率(A(1)/A(0)×100(%))を計算し、表1に示した。破断強度の維持率が100%に近いほど、耐久性が良好であることを示す。 (Durability evaluation 3)
The solar cell module protective sheets prepared in Examples 1 and 2 and Comparative Examples 1 and 2 were cut into 15 mm × 150 mm, and in accordance with JIS K7127-1999, at a test speed of 200 mm / min, 23 ° C., 50% RH. The strength (breaking strength) at the breaking point of the protective sheet for a solar cell module before the acceleration test was conducted: A (0) (N / 15 mm) was measured.
Further, the solar cell module protective sheets produced in Examples 1 and 2 and Comparative Examples 1 and 2 were subjected to an accelerated test for 48 hours under the same conditions as in the durability test 1, and the breaking strength: A ( In the same manner as in (0), the breaking strength after the acceleration test is measured: A (1) (N / 15 mm), and the maintenance ratio of the breaking strength before and after the acceleration test is performed (A (1) / A (0) × 100 (%)) was calculated and shown in Table 1. The closer the fracture strength maintenance rate is to 100%, the better the durability.
実施例1~2および比較例1~2で作製した太陽電池モジュール用保護シートを15mm×150mmに切断し、JIS K7127-1999に準じて、試験速度200mm/min、23℃、50%RHにて、促進試験実施前の太陽電池モジュール用保護シートの破断点における強度(破断強度):A(0)(N/15mm)を測定した。
さらに、実施例1~2および比較例1~2で作製した太陽電池モジュール用保護シートに対して、前記耐久性試験1と同様の条件下で48時間促進試験を行い、前記破断強度:A(0)と同様の手法で、促進試験実施後の破断強度:A(1)(N/15mm)を測定し、促進試験実施前後における破断強度の維持率(A(1)/A(0)×100(%))を計算し、表1に示した。破断強度の維持率が100%に近いほど、耐久性が良好であることを示す。 (Durability evaluation 3)
The solar cell module protective sheets prepared in Examples 1 and 2 and Comparative Examples 1 and 2 were cut into 15 mm × 150 mm, and in accordance with JIS K7127-1999, at a test speed of 200 mm / min, 23 ° C., 50% RH. The strength (breaking strength) at the breaking point of the protective sheet for a solar cell module before the acceleration test was conducted: A (0) (N / 15 mm) was measured.
Further, the solar cell module protective sheets produced in Examples 1 and 2 and Comparative Examples 1 and 2 were subjected to an accelerated test for 48 hours under the same conditions as in the durability test 1, and the breaking strength: A ( In the same manner as in (0), the breaking strength after the acceleration test is measured: A (1) (N / 15 mm), and the maintenance ratio of the breaking strength before and after the acceleration test is performed (A (1) / A (0) × 100 (%)) was calculated and shown in Table 1. The closer the fracture strength maintenance rate is to 100%, the better the durability.
表1の結果から、本発明の太陽電池モジュール用保護シートにかかる実施例1~2は、比較例1~2に比べて、高温多湿である促進試験実施後も、良好な密着性、水蒸気バリア性を示し、破断点における強度の維持率も高いことが確認された。この結果より、本発明の太陽電池モジュール用保護シートは、優れた耐候性および耐久性を有することが明らかである。
From the results shown in Table 1, Examples 1 and 2 relating to the protective sheet for solar cell module of the present invention have better adhesion and water vapor barrier even after the accelerated test which is hot and humid as compared with Comparative Examples 1 and 2. It was confirmed that the strength maintenance rate at the breaking point was high. From this result, it is clear that the protective sheet for a solar cell module of the present invention has excellent weather resistance and durability.
本発明の太陽電池モジュール用保護シートは、シンジオタクチックポリスチレン系樹脂シートを含む積層体であるため、樹脂シート自体の加水分解による劣化が起こらず、耐候性および耐久性に非常に優れた太陽電池モジュール用保護シートを提供することができる。さらに、本発明の太陽電池モジュールは、前記太陽電池モジュール用保護シートが表面と裏面の一方または両方に接着されて設置されているため、耐候性および耐久性に優れ、太陽電池セルの安定した長期使用が可能となる。
Since the protective sheet for a solar cell module of the present invention is a laminate including a syndiotactic polystyrene resin sheet, the solar cell does not deteriorate due to hydrolysis of the resin sheet itself, and is extremely excellent in weather resistance and durability. A protective sheet for modules can be provided. Furthermore, the solar cell module of the present invention is provided with the solar cell module protective sheet adhered to one or both of the front surface and the back surface, so that it has excellent weather resistance and durability, and stable long-term solar cells. Can be used.
10、20、30、40 太陽電池モジュール用保護シート
21 フッ素樹脂層
22 シンジオタクチックポリスチレン系樹脂シート
23 接着層
24 支持シート
100 太陽電池モジュール
101 表面保護シート(フロントシート)
102 裏面保護シート(バックシート)
103 封止材
104 太陽電池セル 10, 20, 30, 40 Solar cell moduleprotective sheet 21 Fluororesin layer 22 Syndiotactic polystyrene resin sheet 23 Adhesive layer 24 Support sheet 100 Solar cell module 101 Surface protective sheet (front sheet)
102 Back protection sheet (back sheet)
103 Sealant 104 Solar Cell
21 フッ素樹脂層
22 シンジオタクチックポリスチレン系樹脂シート
23 接着層
24 支持シート
100 太陽電池モジュール
101 表面保護シート(フロントシート)
102 裏面保護シート(バックシート)
103 封止材
104 太陽電池セル 10, 20, 30, 40 Solar cell module
102 Back protection sheet (back sheet)
Claims (5)
- シンジオタクチックポリスチレン系樹脂シートを含む積層体である太陽電池モジュール用保護シート。 A protective sheet for a solar cell module, which is a laminate including a syndiotactic polystyrene resin sheet.
- シンジオタクチックポリスチレン系樹脂シートの少なくとも一方の面にフッ素樹脂層が積層されて構成された請求項1に記載の太陽電池モジュール用保護シート。 The protective sheet for a solar cell module according to claim 1, wherein the protective sheet is formed by laminating a fluororesin layer on at least one surface of a syndiotactic polystyrene resin sheet.
- シンジオタクチックポリスチレン系樹脂シートの少なくとも一方の面に支持シートが積層されて構成された請求項1に記載の太陽電池モジュール用保護シート。 The protective sheet for a solar cell module according to claim 1, wherein a support sheet is laminated on at least one surface of the syndiotactic polystyrene resin sheet.
- シンジオタクチックポリスチレン系樹脂シートの一方の面にフッ素樹脂層が積層され、該シンジオタクチックポリスチレン系樹脂シートの他方の面に支持シートが積層されて構成された請求項1に記載の太陽電池モジュール用保護シート。 The solar cell module according to claim 1, wherein a fluororesin layer is laminated on one side of the syndiotactic polystyrene resin sheet, and a support sheet is laminated on the other side of the syndiotactic polystyrene resin sheet. Protective sheet.
- 請求項1~4のいずれか一項に記載の太陽電池モジュール用保護シートを備える太陽電池モジュール。 A solar cell module comprising the protective sheet for a solar cell module according to any one of claims 1 to 4.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009081038A JP2010232589A (en) | 2009-03-30 | 2009-03-30 | Protective sheet for solar cell module, and solar cell module constituted using the same |
JP2009-081038 | 2009-03-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010116635A1 true WO2010116635A1 (en) | 2010-10-14 |
Family
ID=42935936
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/002077 WO2010116635A1 (en) | 2009-03-30 | 2010-03-24 | Protection sheet for solar cell module and solar cell module including same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2010232589A (en) |
WO (1) | WO2010116635A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8507029B2 (en) | 2007-02-16 | 2013-08-13 | Madico, Inc. | Backing sheet for photovoltaic modules |
JP5783384B2 (en) * | 2010-12-02 | 2015-09-24 | 日産化学工業株式会社 | Film forming material |
US9735298B2 (en) | 2007-02-16 | 2017-08-15 | Madico, Inc. | Backing sheet for photovoltaic modules |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102022108483A1 (en) | 2022-04-07 | 2023-10-12 | Schott Ag | Front substrate for a solar module |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004281976A (en) * | 2003-03-19 | 2004-10-07 | Dainippon Printing Co Ltd | Transparent cover film |
JP2004288693A (en) * | 2003-03-19 | 2004-10-14 | Dainippon Printing Co Ltd | Transparent substrate film |
-
2009
- 2009-03-30 JP JP2009081038A patent/JP2010232589A/en active Pending
-
2010
- 2010-03-24 WO PCT/JP2010/002077 patent/WO2010116635A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004281976A (en) * | 2003-03-19 | 2004-10-07 | Dainippon Printing Co Ltd | Transparent cover film |
JP2004288693A (en) * | 2003-03-19 | 2004-10-14 | Dainippon Printing Co Ltd | Transparent substrate film |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8507029B2 (en) | 2007-02-16 | 2013-08-13 | Madico, Inc. | Backing sheet for photovoltaic modules |
US9735298B2 (en) | 2007-02-16 | 2017-08-15 | Madico, Inc. | Backing sheet for photovoltaic modules |
JP5783384B2 (en) * | 2010-12-02 | 2015-09-24 | 日産化学工業株式会社 | Film forming material |
Also Published As
Publication number | Publication date |
---|---|
JP2010232589A (en) | 2010-10-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010073735A1 (en) | Protective sheet for back surface of solar cell module | |
WO2010116627A1 (en) | Protective sheet for the rear surface of a solar cell module, and solar cell module provided therewith | |
KR101271497B1 (en) | Protective sheet for solar cell modules, manufacturing method therefor, and solar cell module | |
JP5538364B2 (en) | Back surface protection sheet for solar cell module, manufacturing method thereof, and solar cell module | |
WO2010100943A1 (en) | Protective sheet for solar cell module, and solar cell module using same | |
WO2011004872A1 (en) | Protective sheet for solar cell module | |
KR101796140B1 (en) | Protective Sheet for Solar Cell, Manufacturing Method Thereof, and Solar Cell Module | |
US20120006388A1 (en) | Back protective sheet for solar cell module and solar cell module | |
WO2010109896A1 (en) | Protective sheet for solar cell module and solar cell module comprising the same | |
JP2010238790A (en) | Protection sheet for solar cell module, and solar cell module using the same | |
JP2011124428A (en) | Protective sheet for solar cell module, and solar cell module | |
JP2011181671A (en) | Protective sheet for solar cell module and solar cell module | |
WO2010116635A1 (en) | Protection sheet for solar cell module and solar cell module including same | |
JP2010232513A (en) | Back protective sheet for solar cell module, and solar cell module | |
JP2010219196A (en) | Back surface protection sheet for solar cell module and solar cell module | |
WO2012026414A1 (en) | Transparent protective sheet and solar cell module using same | |
JP5484762B2 (en) | Method for producing protective sheet for solar cell module | |
JP5335496B2 (en) | Protection sheet for solar cell module | |
JP2011204880A (en) | Protective sheet for solar cell module and the solar cell module | |
JP2010232441A (en) | Protective sheet for solar cell module, and solar cell module | |
JP5280262B2 (en) | Protection sheet for solar cell module | |
JP2012015264A (en) | Protective sheet for solar cell module, and solar cell module | |
JP2010206010A (en) | Protection sheet for solar cell module | |
JP2012089632A (en) | Protective sheet for solar cells, manufacturing method of the same, and solar cell module | |
JP2012089631A (en) | Protective sheet for solar cells, manufacturing method of the same, and solar cell module |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10761343 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10761343 Country of ref document: EP Kind code of ref document: A1 |