WO2010116491A1 - Equipment design and manufacturing support system - Google Patents

Equipment design and manufacturing support system Download PDF

Info

Publication number
WO2010116491A1
WO2010116491A1 PCT/JP2009/057125 JP2009057125W WO2010116491A1 WO 2010116491 A1 WO2010116491 A1 WO 2010116491A1 JP 2009057125 W JP2009057125 W JP 2009057125W WO 2010116491 A1 WO2010116491 A1 WO 2010116491A1
Authority
WO
WIPO (PCT)
Prior art keywords
manufacturing
simulator
simulation
design
virtual
Prior art date
Application number
PCT/JP2009/057125
Other languages
French (fr)
Japanese (ja)
Inventor
立志 飯森
Original Assignee
株式会社システムブイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社システムブイ filed Critical 株式会社システムブイ
Priority to PCT/JP2009/057125 priority Critical patent/WO2010116491A1/en
Priority to JP2010532760A priority patent/JP5075987B2/en
Priority to PCT/JP2009/065519 priority patent/WO2010116547A1/en
Publication of WO2010116491A1 publication Critical patent/WO2010116491A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM]
    • G05B19/41885Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM] characterised by modeling, simulation of the manufacturing system
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/31From computer integrated manufacturing till monitoring
    • G05B2219/31343Design of factory, manufacturing system control
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/32Operator till task planning
    • G05B2219/32385What is simulated, manufacturing process and compare results with real process
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45031Manufacturing semiconductor wafers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the present invention relates to a device design / manufacturing support system that supports design / manufacturing of a manufacturing device.
  • the present invention relates to an apparatus design / manufacturing support system that supports design / manufacturing of a manufacturing apparatus controlled by a computer or PLC (Programmable Logic Controller) by using a two-dimensional or three-dimensional simulation.
  • PLC Programmable Logic Controller
  • Patent Document 1 there is a system that can reduce the labor of verification using an actual machine by using a control simulation system that performs a simulation.
  • Patent Document 1 it is possible to compare the operation of the actual machine and the animation, but the developer only visually confirms the operation of the actual machine and the animation display. It cannot be confirmed whether a difference (for example, processing time or processing timing) has occurred.
  • the present inventors have invented a device design / manufacturing support system that supports design / manufacturing of a manufacturing device controlled by a computer or PLC.
  • a first invention is a device design / manufacturing support system that supports design / manufacturing of a manufacturing device
  • the device design / manufacturing support system includes a device simulator, a device controller, and an EES.
  • the apparatus controller executes a process, and passes a control command for controlling a virtual manufacturing apparatus in the manufacturing apparatus and the apparatus simulator to the manufacturing apparatus and the apparatus simulator, and the EES is in the apparatus simulator. Simulation with virtual manufacturing equipment And the execution result of the emission process, execution result and the acquired respectively in the production apparatus, and displays to allow comparison of the execution result, a device design and fabrication support system.
  • EES Equipment Engineering System
  • a device design / manufacturing support system for supporting design / manufacturing of a manufacturing device, wherein the device design / manufacturing support system includes a device simulator, a device controller, and an EES, and the device simulator includes the manufacturing device.
  • CAD data including at least position information of parts of each layer constituting the structure
  • a modeling layout unit that receives input of operation parameters corresponding to the CAD data
  • device layout data including at least the CAD data and operation parameters
  • the simulation program corresponding to each level of the manufacturing device as a virtual manufacturing device Run simulation process
  • the display processing unit for displaying a simulation state in the simulation processing unit on a display device of the device simulator
  • the device controller performs an actual control mode for controlling the manufacturing device
  • switching to a simulation mode for controlling the virtual manufacturing apparatus in the apparatus simulator, and in the simulation mode, a control command is passed to the virtual manufacturing apparatus in the apparatus simulator, In the actual control mode, by passing a control command to the actually manufactured manufacturing apparatus, the manufacturing apparatus and the virtual manufacturing apparatus are controlled, and the EES is a virtual in the apparatus simulator.
  • Execution result of simulation process in manufacturing equipment Execution result and the acquired respectively in
  • the modeling layout unit of the apparatus simulator inputs the new operation parameter reflecting the result of comparison between the execution result of the virtual manufacturing apparatus and the execution result of the manufacturing apparatus in the EES.
  • the simulation processing unit performs the virtual manufacturing by a simulation program corresponding to each layer of the manufacturing apparatus based on the received new operation parameter and a control command from the apparatus controller.
  • a new operation parameter can be set by acquiring the execution result by the device simulator and the execution result by the actual machine with EES and comparing them.
  • the simulation accuracy can be further improved by performing the simulation process in the apparatus simulator again using the new operation parameters.
  • the device simulator in each of the above inventions can be configured as in the following invention. That is, a device simulator used in a device design / manufacturing support system that supports design / manufacturing of a manufacturing device, the device simulator including CAD data including at least position information of parts of each layer constituting the manufacturing device; A modeling layout unit that receives input of operation parameters corresponding to CAD data; a data storage unit that stores device layout data including at least the CAD data and operation parameters; and the device layout data stored in the data storage unit; Each level of the manufacturing apparatus based on the control command for the virtual manufacturing apparatus received from the apparatus controller capable of controlling both the actually manufactured manufacturing apparatus and the virtual manufacturing apparatus in the apparatus simulator
  • the simulation program corresponding to A device used in a device design and manufacturing support system comprising: a simulation processing unit that executes a simulation process as the virtual manufacturing device; and a display processing unit that displays a simulation status in the simulation processing unit on a display device of the device simulator It is a simulator.
  • the program for starting the device simulator can be configured as follows. That is, a device simulator used in a device design / manufacturing support system that supports design and manufacturing of a manufacturing device includes CAD data including at least position information of parts of each layer constituting the manufacturing device, and operation parameters corresponding to the CAD data.
  • the modeling layout unit that associates the CAD data with the operation parameters and stores them as device layout data in the predetermined storage device, the device layout data stored in the storage device, and the actual production Based on the control command for the virtual manufacturing apparatus received from the apparatus controller capable of controlling both the manufacturing apparatus and the virtual manufacturing apparatus in the apparatus simulator, the simulation program corresponding to each level of the manufacturing apparatus , A stain as the virtual manufacturing device Simulation processing unit for executing configuration process, the simulation conditions in the simulation processing unit, a display processing unit for displaying on the display device of the device simulator, a program device simulator used in device design and fabrication support system to function as a.
  • a device design / manufacturing support method for supporting design / manufacturing of a manufacturing device using a device simulator wherein CAD data including at least position information of parts of each layer constituting the manufacturing device is generated in CAD
  • the apparatus simulator reads the operation parameters corresponding to the CAD data
  • the apparatus simulator reads the operation parameters, and associates the operation parameters with the read CAD data.
  • a simulation process is executed as a virtual manufacturing apparatus, and an input of a new operation parameter is received based on the execution result of the simulation process. It is an apparatus design / manufacturing support method in which a simulation process is executed again using the virtual manufacturing apparatus in the apparatus simulator by reading into the simulator.
  • a device design / manufacturing support method for supporting design / manufacturing of a manufacturing device using a device simulator, a device controller, and EES, wherein CAD data including at least position information of parts of each layer constituting the manufacturing device is obtained.
  • the operation parameter corresponding to the CAD data is read into the device simulator, the operation parameter is associated with the read CAD data, and the CAD data and the operation parameter are At least the device layout data is stored, and in the device simulator, based on the stored device layout data and the control command received from the device controller, the simulation program corresponding to each level of the manufacturing device
  • the simulation process is executed as a manufacturing apparatus, the execution result of the simulation process in the virtual manufacturing apparatus in the apparatus simulator is received by the EES, the execution result in the manufacturing apparatus actually manufactured is received by the EES, The execution result in the virtual manufacturing apparatus and the execution result in the actually manufactured manufacturing apparatus are displayed so that they can be compared, and new operation parameters reflecting the comparison result are read into the apparatus simulator.
  • a device design / manufacturing support method in which a simulation process is executed again using the virtual manufacturing device in the device simulator.
  • the device design / manufacturing support system of the present invention can confirm whether the software functions properly before the actual manufacturing device is assembled. As a result, the period from the design to assembly of the manufacturing device (designated as “real device” in this specification) that is the object of design / manufacturing can be shortened. A margin can be secured.
  • simulation is possible even if there is no actual device.
  • the simulation is executed in accordance with a control command from a device controller that controls the actual device, a more accurate simulation is possible.
  • FIG. 1 shows an outline of each device constituting the device design and manufacturing support system 1 of the present invention.
  • the apparatus design / manufacturing support system 1 of the present invention is preferably used for designing / manufacturing a manufacturing apparatus such as a semiconductor manufacturing apparatus, a flat panel manufacturing apparatus, and a solar cell manufacturing apparatus, but is not limited thereto and is controlled by a computer or a PLC. Any manufacturing apparatus may be used.
  • the apparatus design / manufacturing support system 1 of the present invention includes an apparatus simulator 2, an apparatus controller 3, and an EES 4.
  • FIG. 2 schematically shows an example of a conceptual diagram of the apparatus simulator 2.
  • FIG. 3 schematically shows an example of an overall conceptual diagram of the software configuration of the apparatus design / manufacturing support system 1.
  • the device simulator 2, EES 4, and device controller 3 are realized by a computer or a predetermined arithmetic circuit.
  • FIG. 4 schematically shows an example of a hardware configuration of a computer that realizes the apparatus simulator 2, the EES 4, the apparatus controller 3, and the like.
  • the computer stores an arithmetic device 30 such as a CPU for executing arithmetic processing of a program, a storage device 31 such as a RAM and a hard disk for storing information, processing results of the arithmetic device 30 and information stored in the storage device 31 on the Internet or LAN. And at least a communication device 34 that transmits and receives via the network.
  • Each function (each unit) realized on the computer is executed when a unit (program, module, etc.) for executing the process is read into the arithmetic unit 30.
  • each function reads the corresponding information from the storage device 31 and uses the read information for the processing in the arithmetic device 30 as appropriate.
  • the computer may include an input device 33 such as a keyboard, a mouse, and a numeric keypad, and a display device 32 such as a monitor.
  • the means in the present invention are only logically distinguished from each other in function, and may be physically or virtually the same area. Each function, computer, etc. may be arbitrarily distributed and may be integrated into one.
  • the device simulator 2 accepts input of CAD data such as a machine drawing generated by the CAD 5. Also, input of operation parameters (described later) corresponding to the CAD data is received and stored as device layout data. And it is a computer which displays the simulation condition of a manufacturing apparatus based on apparatus layout data.
  • the apparatus simulator 2 includes a modeling layout unit 20, a data storage unit 21, a simulation processing unit 22, and a display processing unit 23.
  • the modeling layout unit 20 accepts input of CAD data of an actual device generated by the CAD 5 and stores it in the data storage unit 21 described later. For example, information indicating position information and size of each part of the manufacturing apparatus generated by two-dimensional CAD or three-dimensional CAD is stored as CAD data.
  • the modeling layout unit 20 receives input of initial setting of operation parameters indicating how and at what timing each of the above components is moved. In this case, a file in which the operation parameters of each component are set may be read, or input of the operation parameters of each component may be received from the input device 33.
  • the operation parameters input in this way are associated with the CAD data stored in the data storage unit 21, and the CAD data and the operation parameters are stored in the data storage unit 21 as device layout data.
  • This association may be handled as one (or related) device layout data by including the same identification information in each file, or integrated into one file as one device layout data. Also good.
  • the CAD data read by the modeling layout unit 20 may be information (position information, information indicating size, etc.) related to all parts constituting the manufacturing apparatus generated by the CAD 5, or the manufacturing apparatus Among the components to be configured, the information may be information that is unnecessary for simulation processing in the simulation processing unit 22 described later, that is, information excluding information about components that are not displayed when the manufacturing apparatus is observed from the outside (the manufacturing process). It may be information on a component displayed when the apparatus is observed from the outside). In the latter case, information relating to parts that cannot be observed from the outside is reduced from the CAD data and stored in the data storage unit 21. In this case, the amount of CAD data is reduced, and the speed is not reduced during simulation processing.
  • the device layout data in the modeling layout unit 20 will be described.
  • the modeling layout unit 20 first registers / sets parts (objects) of each layer constituting the actual apparatus with respect to the CAD data generated by the CAD 5. That is, the drawing of each part to be displayed in three dimensions is read and its layout is set. Then, the attribute of the object is set.
  • the object attributes set here include object position information, operation parameters such as operation time (initially design value data), device operation specification I / O map information (for example, the number of actuators, the number of sensors, I / O map).
  • operation parameters such as operation time (initially design value data)
  • I / O map information for example, the number of actuators, the number of sensors, I / O map.
  • the operation parameters can be set by performing this operation similarly for the devices, modules, and subsystems
  • device layout data including CAD data and operation parameters for the entire device can be generated.
  • the above-described processing may be performed as it is in two dimensions.
  • the data storage unit 21 stores various data such as device layout data, and necessary data is appropriately read out and used for the processing in the simulation processing unit 22 described later.
  • the simulation processing unit 22 uses the device layout data stored in the data storage unit 21 to execute a simulation process according to a simulation program that simulates a real device stored in advance.
  • the simulation program used at this time is a simulation program for an actual device that is designed and manufactured by the device design / manufacturing support system 1, and a control command (described later) from the device controller 3 during the simulation process.
  • the simulation process is executed according to the above.
  • control target is hierarchized in the same hierarchy as the actual real device. This is schematically shown in FIG.
  • the actual device is divided into four layers. That is, it is divided into an apparatus hierarchy, a module hierarchy, a subsystem hierarchy, and an I / O device hierarchy.
  • a hierarchy of materials to be manufactured by the actual device is provided. Therefore, the simulation program functioning in the simulation processing unit 22 performs control processing in a total of five layers. Note that each hierarchy is composed of a program for controlling the hierarchy, and each of the programs independently receives control based on a control command from the device controller 3 to execute simulation processing.
  • the device hierarchy is a layer that defines a space in which devices can be installed or objects (parts) below the module can be placed, and is composed of modules, subsystems, and I / O devices.
  • the module hierarchy is a hierarchy that defines replaceable components having functions for executing processes and carrying in the apparatus, and is composed of modules, subsystems, and I / O devices.
  • the subsystem hierarchy is a hierarchy that defines interchangeable components having specific functions within a module, and is composed of subsystems and I / O devices.
  • the I / O device hierarchy has a minimum control function for moving the apparatus, and is a hierarchy composed of various I / O devices such as sensors and actuators. For example, there are pumps, valves, robots, shutters, lifters, power supplies, etc.
  • the material hierarchy is a hierarchy indicating members supplied into the apparatus and conveyed in the apparatus. For example, there are FOUP (Front Opening Unified Unified Pod), wafer, substrate and the like.
  • the apparatus has position information called a material location, and the material location has information indicating whether or not a material actually exists.
  • Actual devices are actually composed of devices, modules, subsystems, and I / O devices, and the manufacturing process for materials is performed by these devices.
  • the four layers constituting the real device, so as to correspond to the configuration of the real device.
  • the device controller 3 can be linked in the same manner as when the actual device is actually operated. Then, the operation verification for each hierarchy is possible.
  • the display processing unit 23 displays the processing result in the simulation processing unit 22 on the display device 32 of the device simulator 2.
  • the device controller 3 is a controller (controller for passing a control command) for performing sequence control of an actual device or a virtual manufacturing device (a manufacturing device that realizes the operation of the actual device inside the computer) in the simulation processing unit 22. It is an on-board computer and can switch between at least two control modes: an actual control mode and an apparatus simulation mode. Further, the device controller 3 acquires the execution results from the real device and the virtual manufacturing device, and the acquired data is acquired by the EES 4 described later.
  • the actual control mode is a mode in which an actual device is operated by connecting to a sensor or an actuator in an actual manufacturing device and passing a control command to the actual device.
  • the execution is performed in the real device, the execution result is received from the real device.
  • the device simulation mode is a mode in which the device is virtually operated by passing a control command to the simulation processing unit 22 of the device simulator 2. Further, when execution is performed in the simulation processing unit 22 of the apparatus simulator 2, the execution result is received from the simulation processing unit 22.
  • the execution speed of the simulation processing can be executed at an arbitrary execution speed, such as the same speed as when controlling the actual apparatus (equal magnification), 2 times, 3 times, and the like. Thereby, the time required for confirmation can be shortened.
  • the device controller 3 has two cases: a case where the real device and the virtual manufacturing device are all controlled by a computer, and a case where the real device and the virtual manufacturing device are controlled by a PLC. Any of these may be used, but a control command for the used case is passed to the actual apparatus or the apparatus simulator 2.
  • control commands are information for controlling processing in each layer in the simulation processing unit 22 of the real device or the device simulator 2, and the control target is the real device and a virtual manufacturing device (device simulator). 2 (actual apparatus simulated by the two simulation processing units 22) is the same or substantially the same information (information having the same semantic content for control).
  • the control command includes instruction information for starting control and additional information indicating under what conditions control is performed on the simulation processing unit 22 of the actual device or the device simulator 2.
  • the device controller 3 receives the result of processing in each layer in the simulation processing unit 22 of the real device or the device simulator 2 with respect to the above control command as an execution result from the real device or the simulation processing unit 22.
  • the execution result is the same or substantially the same information (execution) Information with the same semantic content of the result).
  • the execution result includes information indicating that processing for the control command has been completed and incidental information indicating what state has been obtained as a result of execution from the simulation processing unit 22 of the actual device or the device simulator 2.
  • control commands and execution results are collectively referred to as control information.
  • Control information (control command and execution result) when the device controller 3 is a computer is device / sequence step control information
  • control information (control command and execution result) when the device controller 3 is a PLC is a device / sequence step IO. This is called a map (PLC control information).
  • the EES 4 (device engineering system) acquires detailed control information (control commands and execution results) of the virtual manufacturing device simulated by the simulation processing unit 22 of the real device or the device simulator 2 from the device controller 3 and analyzes the operation. (It may be obtained directly from the actual device or the device simulator 2 without using the device controller 3).
  • the data acquired here includes detailed device events, trace data, and context data (recipe, substrate ID, lot ID, etc.). That is, detailed device events, trace data, and context data become control commands and execution results. Therefore, EES4 has a function of collecting control commands and execution results of real devices or virtual manufacturing devices, a function of checking their operation time, and the like. Each of these functions is obtained by acquiring data (detailed device event data) indicating control information such as a control command or execution result from a virtual manufacturing device in the real device or simulation processing unit 22 controlled by the device controller 3. Yes.
  • the detailed device event data includes the operation of the device and its start / end time as incidental information in the control command and execution result, so that the operation time can be calculated from the difference.
  • the CAD 5 is a device that generates CAD data of a drawing of an actual device, and may be either a two-dimensional CAD that generates a two-dimensional drawing or a three-dimensional CAD that generates a three-dimensional drawing.
  • a case where three-dimensional CAD is used will be described, but any of two-dimensional CAD and three-dimensional CAD can be used, and the same technical effect can be obtained by the same processing.
  • FIG. 13 schematically shows a workflow of the device design / manufacturing support system 1.
  • mechanical design of the device is performed in the mechanical design phase
  • electrical design such as wiring is performed in the electrical design phase
  • software is designed in the software design phase (S100).
  • parts are ordered after design.
  • design is performed using the CAD 5
  • the CAD layout data is read by the modeling layout unit 20 of the apparatus simulator 2.
  • the read CAD data is stored in the data storage unit 21.
  • the CAD data stored in the data storage unit 21 may be deleted by accepting selection of unnecessary information, for example, information on components inside the actual device, as necessary. .
  • the modeling layout unit 20 reads (or accepts input) an operation parameter initial setting file indicating at what timing the objects constituting each layer of the actual apparatus are moved, and the data storage unit correlates with the CAD data. 21 is stored. CAD data and operation parameters are associated with each other and stored in the data storage unit 21 as device layout data (S110).
  • the software for each layer corresponding to the actual apparatus for operating the manufacturing apparatus designed in the software design phase is read into the simulation processing unit 22 of the apparatus simulator 2.
  • the device controller 3 When the device layout data including the operation parameters is stored in the data storage unit 21 in this way, the device controller 3 is switched to the simulation mode (the user may switch manually or automatically) Alternatively, a confirmation message for switching the mode may be displayed and switching may be performed when permission input is received from the user), and a control command is passed to the simulation processing unit 22 of the apparatus simulator 2.
  • the software read into the simulation processing unit 22 virtually causes the manufacturing device to function and execute the simulation (S120).
  • the display processing unit 23 may display the state on the display device 32. Further, when the control command is passed to the simulation processing unit 22, the EES 4 may acquire it as detailed device event data.
  • the modeling layout unit 20 of the device simulator 2 receives input of device layout data including operation parameters (S200).
  • the apparatus simulator 2 may accept input of CAD data from the CAD 5 via a network, or may accept input of CAD data via a magnetic disk, an optical disk, a magneto-optical disk, a semiconductor memory, or the like.
  • the modeling layout unit 20 also receives input of an initial setting file of device layout data corresponding to CAD data, and stores them in the data storage unit 21 as device layout data.
  • the device controller 3 and the device simulator 2 are connected to receive a control command from the device controller 3 (S210).
  • the connection may be such that data can be transmitted / received by physically connecting a network cable, or data can be logically transmitted / received by connecting each other to a network such as the Internet or a LAN. It may be in a state.
  • the device controller 3 may be automatically switched from the actual control mode to the simulation mode by connecting to the device simulator 2. Alternatively, the device controller 3 and the device simulator 2 may be connected by switching to the simulation mode.
  • a control command is transferred from the device controller 3 to the device simulator 2 and is acquired by the simulation processing unit 22 (S220). Further, the control command passed at this time is acquired by the EES 4 as detailed device event data.
  • control command acquired by the simulation processing unit 22 is a control command for the I / O device hierarchy program in the simulation processing unit 22 (S230)
  • the I / O device hierarchy program of the simulation processing unit 22 is activated.
  • the process according to the control command is executed based on the program. That is, the operation of the I / O device hierarchy of the virtual control device is started (S240).
  • the simulation processing unit 22 passes the execution result to the device controller 3 as an operation completion report (S270).
  • the operation completion report which is the execution result passed at this time, for example, the processing for the control command has been normally completed, the processing start time, the end time, the processing time, and what operation was performed (virtual)
  • Information on the state of the material as a result of the operation is included. Then, the information on the state of the material as a result of the control (supplementary information) becomes information in the material layer, and the execution result is passed from the simulation processing unit 22 of the device simulator 2 to the device controller 3. Will be.
  • the control command received from the device controller 3 in S220 is often a control command for the I / O device hierarchy, such as raising / lowering the lifter. However, it may be a control command for a layer higher than the I / O device layer, that is, a device layer, a module layer, or a subsystem layer. Even in that case (when it is not a control command for the I / O device hierarchy), similarly to the control command for the I / O device hierarchy, the program of the simulation processing unit 22 for the hierarchy in the control command operates. The process according to the control command is executed based on the program. That is, the operation of the virtual control device hierarchy corresponding to the control command is started (S280).
  • control command for which hierarchy is included in the incidental information in the control command includes information that can identify the control command for which hierarchy.
  • the incidental information is different for each hierarchy, and the target hierarchy may be determined according to the type of the control command or incidental information.
  • the operation of the hierarchy is virtually started when the processing by the program of the hierarchy is started, so that a timer (not shown) stored in the simulation processor 22 starts timing.
  • the simulation processing unit 22 passes the execution result to the device controller 3 as an operation completion report (S310).
  • the operation completion report that is the execution result passed at this time indicates that the processing for the control command has been completed normally, the processing start time, the end time, the processing time, Information (supplementary information) such as whether the operation has been performed (virtually) or what kind of state the material has become as a result of the operation is included. Then, the information on the state of the material as an operation result becomes information (supplementary information) in the material layer, and is passed from the simulation processing unit 22 of the device simulator 2 to the device controller 3. .
  • the simulation processing unit 22 receives the control command from the device controller 3, and sequentially executes the program of the hierarchy corresponding to the control command according to the control command, and the execution result is the operation completion. It will be returned to the device controller 3 as a report. While the process shown in FIG. 14 is controlled by the apparatus controller 3, the simulation processing unit 22 repeats the process, and the display processing unit 23 performs a process corresponding to the simulation on the display device 32 of the apparatus simulator 2. Is displayed.
  • the EES 4 acquires it as detailed device event data (S130). Then, by referring to the acquired execution result, it is possible to appropriately modify software or the like.
  • FIG. 6 schematically shows an example of display of detailed device event data acquired in this way.
  • time stamps and processing times at which processing for each wafer is started and completed are displayed as a list. Since the simulation is performed using the time for operating the apparatus as a set value before the manufacturing apparatus is completed, the tuning can be performed even before the manufacturing apparatus is completed by changing the set value.
  • the device controller 3 is switched to the actual control mode (the user may manually switch, the automatic switching may be performed, or the mode switching may be performed.
  • a confirmation message is displayed, and it may be configured to switch when a permission input is received from the user), and the control command is passed to the actual device that is the actual machine. Further, the control command passed at this time is acquired by the EES 4 as detailed device event data.
  • An actual device which is an actual machine, operates according to this control command.
  • FIG. 7 schematically shows an example of display of detailed device event data acquired in this way.
  • time stamps and processing times at which processing for each wafer is started and completed are displayed as a list. Since the simulation is performed with the time for operating the apparatus as a design value before the manufacturing apparatus is completed, the tuning can be performed even before the manufacturing apparatus is completed by changing the design value.
  • the device controller 3 passes the same or substantially the same control command in the simulation mode and the actual control mode. Therefore, in EES4, since the execution result in the simulation mode and the execution result in the actual control mode are respectively acquired, the simulation mode and the actual control mode can be easily compared by displaying them on the same screen, for example. It is also possible to make it.
  • the operation of the actual apparatus that is the actual apparatus is adjusted. (S150). That is, by comparing and displaying the execution results of the simulation mode and the actual control mode, the developer can verify the execution results. Then, by loading a new operation parameter (for example, operation time) reflecting the verification result into the modeling layout unit 20 of the apparatus simulator 2, it is possible to further verify in the simulation mode.
  • a new operation parameter for example, operation time
  • the execution result of the simulation mode is displayed on the display device 32 such as the device simulator 2, and the device layout data is based on the result.
  • the apparatus simulator 2 receives the correction input of the operation parameter (input of a new operation parameter)
  • the simulation processing in the simulation processing unit 22 may be executed again.
  • the device event data is acquired via a network or a storage device), and it is set as an operation parameter, and the simulation processing unit 22 of the device simulator 2 performs a simulation process, so that even if a developer is not on site, It is also possible to confirm the operation of an actual device that is an actual machine.
  • FIGS. 6 and 7 the time stamps and processing times at which the processing for each wafer is started / finished are displayed as a list, but may be displayed as a Gantt chart, for example, as shown in FIGS. .
  • FIG. 8 is a Gantt chart showing the time that the wafer exists in the manufacturing apparatus for processing.
  • FIG. 9 is a Gantt chart showing the time during which the sequence in the existing manufacturing apparatus is executed.
  • the apparatus design / manufacturing support system 1 of the present invention can confirm whether the software functions normally before the manufacturing apparatus which is an actual machine is assembled. That is, by using the apparatus design / manufacturing support system 1 of the present invention, the manufacturing apparatus can be designed / manufactured by a procedure as shown in FIG. As a result, the period from the design to the assembly of the manufacturing apparatus can be shortened, so that a sufficient time margin can be ensured even when a problem occurs.
  • simulation is possible even if no actual machine exists.
  • the simulation process can be executed in accordance with a control command from the device controller 3 that controls the actual device by enabling simulation processing corresponding to the same layer as that of the actual device that is the actual machine. More accurate simulation becomes possible.
  • Device design and manufacturing support system 2 Device simulator 3: Device controller 4: EES 5: CAD 20: Modeling layout unit 21: Data storage unit 22: Simulation processing unit 23: Display processing unit 30: Computing device 31: Storage device 32: Display device 33: Input device 34: Communication device

Abstract

Disclosed is an equipment design and manufacturing support system that supports the design and manufacture of manufacturing equipment controlled by a computer or a PLC. The equipment design and manufacturing support system has an equipment simulator, an equipment controller, and an EES. The equipment simulator accepts input of equipment layout data for manufacturing equipment and, based on the equipment layout data and control commands from the equipment controller, executes simulation processing as virtual manufacturing equipment with a simulation program corresponding to individual classes of the manufacturing equipment. The equipment controller sends control commands, for controlling the manufacturing equipment as well as the virtual manufacturing equipment in the equipment simulator, to the manufacturing equipment and the equipment simulator. The EES obtains both the execution results of the simulation processing by the virtual manufacturing equipment in the equipment simulator and the execution results in the manufacturing equipment, and displays the individual execution results to permit comparison.

Description

装置設計製造支援システムEquipment design and manufacturing support system
 本発明は、製造装置の設計製造を支援する装置設計製造支援システムに関する。好ましくは、2次元または3次元でのシミュレーションを利用することで、コンピュータやPLC(Programmable Logic Controler)によって制御される製造装置の、設計製造を支援する装置設計製造支援システムに関する。
The present invention relates to a device design / manufacturing support system that supports design / manufacturing of a manufacturing device. Preferably, the present invention relates to an apparatus design / manufacturing support system that supports design / manufacturing of a manufacturing apparatus controlled by a computer or PLC (Programmable Logic Controller) by using a two-dimensional or three-dimensional simulation.
 半導体製造装置、フラットパネル製造装置、太陽電池製造装置などに代表される各種の製造装置を製造するためには、従来は、まず最初に機械図面を作成し(機械設計フェーズ)、その次に電気図面を作成し(電気設計フェーズ)、最後にソフトウェア設計を行う(ソフトウェア設計フェーズ)手順であった。従来の製造装置の手順の概略図を図10に示す。 Conventionally, in order to manufacture various types of manufacturing equipment represented by semiconductor manufacturing equipment, flat panel manufacturing equipment, solar cell manufacturing equipment, etc., mechanical drawings are first created (mechanical design phase), and then electrical The procedure was to create a drawing (electrical design phase) and finally to perform software design (software design phase). A schematic diagram of the procedure of a conventional manufacturing apparatus is shown in FIG.
 つまり、機械設計、電気設計の各設計フェーズがそれぞれ終了した段階で、部品の発注を行い、それが納品された段階からそれぞれ組み立てを行い、そこにソフトウェアを導入し、製造装置が正常に機能するかの検証を行う。そして正常に機能する場合に、製造装置を制御する装置コントローラと接続させることで装置の動作が可能となっている。 In other words, after each design phase of mechanical design and electrical design has been completed, parts are ordered, assembled from the stage when they are delivered, software is introduced there, and the manufacturing equipment functions normally. Verify that. In the case of functioning normally, the apparatus can be operated by being connected to an apparatus controller that controls the manufacturing apparatus.
 従って、ソフトウェア設計フェーズで作成するソフトウェアが正常に機能するかは、実際に製造装置が組み立てられた後の検証段階(検査段階)でなければ確認をすることが出来なかった。また製造装置に対するコンセプトが機械、電気、ソフトウェアのそれぞれの設計者間で共有できないため設計ミスによる不具合が多発している。 Therefore, whether the software created in the software design phase functions normally could not be confirmed unless it was in the verification stage (inspection stage) after the manufacturing equipment was actually assembled. In addition, since the concept of manufacturing equipment cannot be shared among mechanical, electrical, and software designers, problems due to design errors frequently occur.
 また製造装置を組み立てた後、ソフトウェアを導入して検証を行っているので、仮に不具合があった場合に、もう一度、機械設計フェーズ、電気設計フェーズの最初から検証し直す必要があり、必然的に製造装置が出来あがるまでに期間を要してしまう。そのため、不具合が発生したことに対するリカバリを行う期間を十分に取れなくなってしまう。また製造装置の性能を検証する期間も十分に確保することが出来ない。 In addition, after assembling the manufacturing equipment, software is introduced and verified, so if there is a problem, it is necessary to verify again from the beginning of the mechanical design phase and electrical design phase. It takes a period of time to complete the manufacturing equipment. For this reason, it is not possible to take a sufficient period of time for recovery from the occurrence of a problem. In addition, it is not possible to secure a sufficient period for verifying the performance of the manufacturing apparatus.
 そこで、例えば下記特許文献1に示すように、シミュレーションを行う制御シミュレーションシステムを用いることで、実機を用いた検証の手間を軽減することの出来るシステムが存在する。 Therefore, for example, as shown in Patent Document 1 below, there is a system that can reduce the labor of verification using an actual machine by using a control simulation system that performs a simulation.
特開2008-100315号公報JP 2008-1000031 A
 上記特許文献1に記載のシミュレーションシステムを用いることによって、ロボットの制御を単体でシミュレーションし、その動作を観察することによって、検証の手間を軽減することは出来る。 By using the simulation system described in Patent Document 1 above, it is possible to reduce the labor of verification by simulating the robot control alone and observing its operation.
 しかし製造装置は複数の部品を組み込んでおり、製造装置全体に対して動作確認を行うことは出来ない。また、特許文献1の場合、実機であるロボットからの制御情報(例えば実環境における機器の状態を時系列的に示す情報など)を利用してシミュレーションを行っているので、実機であるロボットが存在しないことには制御シミュレーションを行うことが出来ない。従って、本発明のように、製造装置の設計製造支援に用いることが出来ない問題点がある。 However, since the manufacturing equipment incorporates multiple parts, it is not possible to confirm the operation of the entire manufacturing equipment. In the case of Patent Document 1, since simulation is performed using control information from a robot that is an actual machine (for example, information that indicates the state of a device in a real environment in time series), there is a robot that is an actual machine. Otherwise, a control simulation cannot be performed. Therefore, as in the present invention, there is a problem that it cannot be used for design / manufacturing support of the manufacturing apparatus.
 また特許文献1の場合、実機の動作とアニメーションとを比較することは可能であるが、それは実機の動作とアニメーション表示とを開発者が目視により確認するだけであって、客観的にどのような差異(例えば処理時間や処理のタイミングなど)が生じているのかを確認することは出来ない。 In the case of Patent Document 1, it is possible to compare the operation of the actual machine and the animation, but the developer only visually confirms the operation of the actual machine and the animation display. It cannot be confirmed whether a difference (for example, processing time or processing timing) has occurred.
 そこで本願発明者は上記課題に鑑み、コンピュータやPLCによって制御される製造装置の、設計製造を支援する装置設計製造支援システムを発明した。 Therefore, in view of the above problems, the present inventors have invented a device design / manufacturing support system that supports design / manufacturing of a manufacturing device controlled by a computer or PLC.
 第1の発明は、製造装置の設計、製造を支援する装置設計製造支援システムであって、前記装置設計製造支援システムは、装置シミュレータと装置コントローラとEESとを有しており、前記装置シミュレータは、前記製造装置の装置レイアウトデータの入力を受け付け、前記装置レイアウトデータと前記装置コントローラからの制御指令とに基づいて、前記製造装置の各階層に対応したシミュレーションプログラムにより、仮想的な製造装置としてシミュレーション処理を実行し、前記装置コントローラは、前記製造装置及び前記装置シミュレータにおける仮想的な製造装置を制御するための制御指令を、前記製造装置及び前記装置シミュレータに渡し、前記EESは、前記装置シミュレータにおける仮想的な製造装置でのシミュレーション処理の実行結果と、前記製造装置における実行結果とをそれぞれ取得し、各実行結果を比較可能なように表示する、装置設計製造支援システムである。 A first invention is a device design / manufacturing support system that supports design / manufacturing of a manufacturing device, and the device design / manufacturing support system includes a device simulator, a device controller, and an EES. , Accepting the input of the device layout data of the manufacturing device, and based on the device layout data and the control command from the device controller, simulation as a virtual manufacturing device by a simulation program corresponding to each hierarchy of the manufacturing device The apparatus controller executes a process, and passes a control command for controlling a virtual manufacturing apparatus in the manufacturing apparatus and the apparatus simulator to the manufacturing apparatus and the apparatus simulator, and the EES is in the apparatus simulator. Simulation with virtual manufacturing equipment And the execution result of the emission process, execution result and the acquired respectively in the production apparatus, and displays to allow comparison of the execution result, a device design and fabrication support system.
 本発明のように構成することで、実機である製造装置が組み立てられる前にソフトウェアなどの動作確認を行うことが可能となる。また実機である製造装置がなくてもシミュレーション処理が可能となる。そして実機の制御に用いる装置コントローラからの制御指令を、シミュレーション処理の際にも受け取ることによって、シミュレーション処理の場合と実機による処理の場合とで同一環境での処理を行うことが出来、EESで実行結果を比較することが可能となる。なおEES(Equipment Engineering System)とは装置エンジニアリングシステムのことを示し、その詳細は後述する。 By configuring as in the present invention, it is possible to check the operation of software or the like before the manufacturing apparatus which is an actual machine is assembled. Further, simulation processing can be performed without a manufacturing apparatus which is an actual machine. By receiving a control command from the device controller used for controlling the actual machine also during the simulation process, the process in the same environment can be performed in the case of the simulation process and the process by the actual machine, and executed by EES. The results can be compared. EES (Equipment Engineering System) indicates an apparatus engineering system, and details thereof will be described later.
 上述の発明は、以下のように構成することも可能である。すなわち、製造装置の設計、製造を支援する装置設計製造支援システムであって、前記装置設計製造支援システムは、装置シミュレータと装置コントローラとEESとを有しており、前記装置シミュレータは、前記製造装置を構成する各階層の部品の位置情報を少なくとも含むCADデータと、そのCADデータに対応する動作パラメータとの入力を受け付けるモデリングレイアウト部と、前記CADデータと動作パラメータとを少なくとも含む装置レイアウトデータを記憶するデータ記憶部と、前記データ記憶部で記憶した前記装置レイアウトデータと前記装置コントローラから受け取った制御指令とに基づいて、前記製造装置の各階層に対応したシミュレーションプログラムにより、仮想的な製造装置としてシミュレーション処理を実行するシミュレーション処理部と、前記シミュレーション処理部におけるシミュレーション状況を、前記装置シミュレータの表示装置に表示させる表示処理部と、を有しており、前記装置コントローラは、前記製造装置に対する制御を行う実制御モードと、前記装置シミュレータにおける前記仮想的な製造装置に対する制御を行うシミュレーションモードとの切替が可能であって、前記シミュレーションモードでは、前記装置シミュレータにおける前記仮想的な製造装置に対して制御指令を渡し、前記実制御モードでは、実際に製造された前記製造装置に対して制御指令を渡すことで、前記製造装置及び前記仮想的な製造装置の制御を行い、前記EESは、前記装置シミュレータにおける仮想的な製造装置でのシミュレーション処理の実行結果と、前記製造装置における実行結果とをそれぞれ取得し、各実行結果を比較可能なように表示する、装置設計製造支援システムである。 The above-described invention can also be configured as follows. That is, a device design / manufacturing support system for supporting design / manufacturing of a manufacturing device, wherein the device design / manufacturing support system includes a device simulator, a device controller, and an EES, and the device simulator includes the manufacturing device. Storing CAD data including at least position information of parts of each layer constituting the structure, a modeling layout unit that receives input of operation parameters corresponding to the CAD data, and device layout data including at least the CAD data and operation parameters Based on the data storage unit, the device layout data stored in the data storage unit, and the control command received from the device controller, the simulation program corresponding to each level of the manufacturing device as a virtual manufacturing device Run simulation process A simulation processing unit, and a display processing unit for displaying a simulation state in the simulation processing unit on a display device of the device simulator, and the device controller performs an actual control mode for controlling the manufacturing device And switching to a simulation mode for controlling the virtual manufacturing apparatus in the apparatus simulator, and in the simulation mode, a control command is passed to the virtual manufacturing apparatus in the apparatus simulator, In the actual control mode, by passing a control command to the actually manufactured manufacturing apparatus, the manufacturing apparatus and the virtual manufacturing apparatus are controlled, and the EES is a virtual in the apparatus simulator. Execution result of simulation process in manufacturing equipment , Execution result and the acquired respectively in the production apparatus, and displays to allow comparison of the execution result, a device design and fabrication support system.
 また上述の発明において、以下の構成を付加することも出来る。すなわち、前記装置シミュレータのモデリングレイアウト部は、前記EESにおける、前記仮想的な製造装置での実行結果と、前記製造装置における実行結果との比較の結果を反映した、新たな動作パラメータの入力を前記モデリングレイアウト部で受け付け、前記シミュレーション処理部は、前記受け付けた新たな動作パラメータと前記装置コントローラからの制御指令とに基づいて、前記製造装置の各階層に対応したシミュレーションプログラムにより、前記仮想的な製造装置としてのシミュレーション処理を、再度、実行する、装置設計製造支援システムである。 In the above-described invention, the following configuration can also be added. That is, the modeling layout unit of the apparatus simulator inputs the new operation parameter reflecting the result of comparison between the execution result of the virtual manufacturing apparatus and the execution result of the manufacturing apparatus in the EES. Accepted by the modeling layout unit, the simulation processing unit performs the virtual manufacturing by a simulation program corresponding to each layer of the manufacturing apparatus based on the received new operation parameter and a control command from the apparatus controller. This is a device design / manufacturing support system that again executes a simulation process as a device.
 装置シミュレータによる実行結果と、実機による実行結果とをEESで取得し、それぞれを比較することによって、修正した新たな動作パラメータを設定出来る。そして新たな動作パラメータを用いて、再度、装置シミュレータにおけるシミュレーション処理を行うことで、シミュレーションの精度を、より向上させることが可能となる。 A new operation parameter can be set by acquiring the execution result by the device simulator and the execution result by the actual machine with EES and comparing them. The simulation accuracy can be further improved by performing the simulation process in the apparatus simulator again using the new operation parameters.
 上述の各発明における装置シミュレータは、以下の発明のように構成することが出来る。すなわち、製造装置の設計、製造を支援する装置設計製造支援システムで用いる装置シミュレータであって、前記装置シミュレータは、前記製造装置を構成する各階層の部品の位置情報を少なくとも含むCADデータと、そのCADデータに対応する動作パラメータとの入力を受け付けるモデリングレイアウト部と、前記CADデータと動作パラメータとを少なくとも含む装置レイアウトデータを記憶するデータ記憶部と、前記データ記憶部で記憶した前記装置レイアウトデータと、実際に製造される製造装置と前記装置シミュレータにおける仮想的な製造装置との双方を制御可能な装置コントローラから受け取った前記仮想的な製造装置に対する制御指令とに基づいて、前記製造装置の各階層に対応したシミュレーションプログラムにより、前記仮想的な製造装置としてシミュレーション処理を実行するシミュレーション処理部と、前記シミュレーション処理部におけるシミュレーション状況を、前記装置シミュレータの表示装置に表示させる表示処理部と、を有する装置設計製造支援システムで用いる装置シミュレータである。 The device simulator in each of the above inventions can be configured as in the following invention. That is, a device simulator used in a device design / manufacturing support system that supports design / manufacturing of a manufacturing device, the device simulator including CAD data including at least position information of parts of each layer constituting the manufacturing device; A modeling layout unit that receives input of operation parameters corresponding to CAD data; a data storage unit that stores device layout data including at least the CAD data and operation parameters; and the device layout data stored in the data storage unit; Each level of the manufacturing apparatus based on the control command for the virtual manufacturing apparatus received from the apparatus controller capable of controlling both the actually manufactured manufacturing apparatus and the virtual manufacturing apparatus in the apparatus simulator By the simulation program corresponding to A device used in a device design and manufacturing support system comprising: a simulation processing unit that executes a simulation process as the virtual manufacturing device; and a display processing unit that displays a simulation status in the simulation processing unit on a display device of the device simulator It is a simulator.
 上述の装置シミュレータを起動させるプログラムを以下のように構成することも出来る。すなわち、製造装置の設計、製造を支援する装置設計製造支援システムで用いる装置シミュレータを、前記製造装置を構成する各階層の部品の位置情報を少なくとも含むCADデータと、そのCADデータに対応する動作パラメータとの入力を受け付け、前記CADデータと動作パラメータとを対応づけて、所定の記憶装置に装置レイアウトデータとして記憶させるモデリングレイアウト部、前記記憶装置で記憶した前記装置レイアウトデータと、実際に製造される製造装置と前記装置シミュレータにおける仮想的な製造装置との双方を制御可能な装置コントローラから受け取った前記仮想的な製造装置に対する制御指令とに基づいて、前記製造装置の各階層に対応したシミュレーションプログラムにより、前記仮想的な製造装置としてシミュレーション処理を実行するシミュレーション処理部、前記シミュレーション処理部におけるシミュレーション状況を、前記装置シミュレータの表示装置に表示させる表示処理部、として機能させる装置設計製造支援システムで用いる装置シミュレータのプログラムである。 The program for starting the device simulator can be configured as follows. That is, a device simulator used in a device design / manufacturing support system that supports design and manufacturing of a manufacturing device includes CAD data including at least position information of parts of each layer constituting the manufacturing device, and operation parameters corresponding to the CAD data. The modeling layout unit that associates the CAD data with the operation parameters and stores them as device layout data in the predetermined storage device, the device layout data stored in the storage device, and the actual production Based on the control command for the virtual manufacturing apparatus received from the apparatus controller capable of controlling both the manufacturing apparatus and the virtual manufacturing apparatus in the apparatus simulator, the simulation program corresponding to each level of the manufacturing apparatus , A stain as the virtual manufacturing device Simulation processing unit for executing configuration process, the simulation conditions in the simulation processing unit, a display processing unit for displaying on the display device of the device simulator, a program device simulator used in device design and fabrication support system to function as a.
 上述の装置シミュレータを用いて本発明の装置設計製造支援方法を採用することが可能となる。すなわち、装置シミュレータを用いて製造装置の設計、製造を支援する装置設計製造支援方法であって、前記製造装置を構成する各階層の部品の位置情報を少なくとも含むCADデータをCADにおいて生成して前記装置シミュレータに読み込ませ、前記CADデータに対応する動作パラメータを前記装置シミュレータに読み込ませ、前記読み込ませたCADデータに前記動作パラメータを対応づけ、そのCADデータと動作パラメータとを少なくとも含む装置レイアウトデータとして記憶させ、前記装置シミュレータにおいて、実際に製造される製造装置と前記装置シミュレータにおける仮想的な製造装置との双方を制御可能な装置コントローラから受け取った前記仮想的な製造装置に対する制御指令と前記記憶した装置レイアウトデータとに基づいて、前記製造装置の各階層に対応したシミュレーションプログラムにより、仮想的な製造装置としてシミュレーション処理を実行し、前記シミュレーション処理の実行結果に基づいて、新たな動作パラメータの入力を受け付けて前記装置シミュレータに読み込むことで、前記装置シミュレータにおける前記仮想的な製造装置を用いて、再度、シミュレーション処理を実行する、装置設計製造支援方法である。 It becomes possible to employ the apparatus design and manufacturing support method of the present invention using the apparatus simulator described above. That is, a device design / manufacturing support method for supporting design / manufacturing of a manufacturing device using a device simulator, wherein CAD data including at least position information of parts of each layer constituting the manufacturing device is generated in CAD As apparatus layout data including at least the CAD data and the operation parameters, the apparatus simulator reads the operation parameters corresponding to the CAD data, the apparatus simulator reads the operation parameters, and associates the operation parameters with the read CAD data. And storing the control command for the virtual manufacturing apparatus received from the apparatus controller capable of controlling both the actually manufactured manufacturing apparatus and the virtual manufacturing apparatus in the apparatus simulator in the apparatus simulator. Device layout data Based on the simulation program corresponding to each level of the manufacturing apparatus, a simulation process is executed as a virtual manufacturing apparatus, and an input of a new operation parameter is received based on the execution result of the simulation process. It is an apparatus design / manufacturing support method in which a simulation process is executed again using the virtual manufacturing apparatus in the apparatus simulator by reading into the simulator.
 製造装置の設計、製造については、さらに以下のような構成を採ることも出来る。すなわち、装置シミュレータと装置コントローラとEESとを用いて製造装置の設計、製造を支援する装置設計製造支援方法であって、前記製造装置を構成する各階層の部品の位置情報を少なくとも含むCADデータをCADにおいて生成して前記装置シミュレータに読み込ませ、前記CADデータに対応する動作パラメータを前記装置シミュレータに読み込ませ、前記読み込ませたCADデータに前記動作パラメータを対応づけ、そのCADデータと動作パラメータとを少なくとも含む装置レイアウトデータとして記憶させ、前記装置シミュレータにおいて、前記記憶した装置レイアウトデータと前記装置コントローラから受け取った制御指令とに基づいて、前記製造装置の各階層に対応したシミュレーションプログラムにより、仮想的な製造装置としてシミュレーション処理を実行し、前記装置シミュレータにおける仮想的な製造装置でのシミュレーション処理の実行結果を前記EESで受け取り、実際に製造される前記製造装置での実行結果を前記EESで受け取り、前記仮想的な製造装置での実行結果と前記実際に製造される製造装置での実行結果とを比較可能なように表示し、前記比較の結果を反映した新たな動作パラメータが前記装置シミュレータに読み込まれることで、前記装置シミュレータにおける前記仮想的な製造装置を用いて、再度、シミュレーション処理を実行する、装置設計製造支援方法である。 For the design and manufacture of manufacturing equipment, the following configurations can also be adopted. That is, a device design / manufacturing support method for supporting design / manufacturing of a manufacturing device using a device simulator, a device controller, and EES, wherein CAD data including at least position information of parts of each layer constituting the manufacturing device is obtained. Generated in the CAD and read into the device simulator, the operation parameter corresponding to the CAD data is read into the device simulator, the operation parameter is associated with the read CAD data, and the CAD data and the operation parameter are At least the device layout data is stored, and in the device simulator, based on the stored device layout data and the control command received from the device controller, the simulation program corresponding to each level of the manufacturing device The simulation process is executed as a manufacturing apparatus, the execution result of the simulation process in the virtual manufacturing apparatus in the apparatus simulator is received by the EES, the execution result in the manufacturing apparatus actually manufactured is received by the EES, The execution result in the virtual manufacturing apparatus and the execution result in the actually manufactured manufacturing apparatus are displayed so that they can be compared, and new operation parameters reflecting the comparison result are read into the apparatus simulator. Thus, there is provided a device design / manufacturing support method in which a simulation process is executed again using the virtual manufacturing device in the device simulator.
 本発明の装置設計製造支援システムによって、実機である製造装置が組み立てられる前に、ソフトウェアが正常に機能するかを確認出来る。これによって、設計・製造対象となっている製造装置(本明細書において「実装置」という)の設計から組み立てまでの期間を短縮することが出来るので、不具合が発生した場合にも十分な期間的余裕を確保することが出来る。 The device design / manufacturing support system of the present invention can confirm whether the software functions properly before the actual manufacturing device is assembled. As a result, the period from the design to assembly of the manufacturing device (designated as “real device” in this specification) that is the object of design / manufacturing can be shortened. A margin can be secured.
 また、シミュレーションを用いて設計を行うにあたり、実装置が存在しなくてもシミュレーションが可能となる。その一方、実装置を制御する装置コントローラからの制御指令によってシミュレーションを実行するので、より精度の高いシミュレーションが可能となる。 Also, when designing using simulation, simulation is possible even if there is no actual device. On the other hand, since the simulation is executed in accordance with a control command from a device controller that controls the actual device, a more accurate simulation is possible.
 そして、装置コントローラによる実行結果を、EES(Equipment Engineering System 装置エンジニアリングシステム)によって検証しているので、シミュレーションの場合、実装置の場合の各々において、客観的な実行結果に基づく検証が可能となる。
And since the execution result by the apparatus controller is verified by EES (Equipment Engineering System apparatus engineering system), verification based on an objective execution result is possible in each case of simulation and actual apparatus.
装置設計製造支援システムを構成する各装置の概略を模式的に示す図である。It is a figure which shows typically the outline of each apparatus which comprises an apparatus design manufacture support system. 装置シミュレータの概念図の一例を模式的に示す図である。It is a figure which shows typically an example of the conceptual diagram of an apparatus simulator. 装置設計製造支援システムのソフトウェア構成の全体の概念図の一例を模式的に示す図である。It is a figure which shows typically an example of the conceptual diagram of the whole software structure of an apparatus design manufacture support system. 装置シミュレータ、EES、装置コントローラなどを実現するコンピュータのハードウェア構成の一例を模式的に示す図である。It is a figure which shows typically an example of the hardware constitutions of the computer which implement | achieves an apparatus simulator, EES, an apparatus controller, etc. 処理の一例を模式的に示すフローチャートである。It is a flowchart which shows an example of a process typically. EESで取得した装置詳細イベントデータの一例を模式的に示す図である。It is a figure which shows typically an example of the apparatus detailed event data acquired by EES. EESで取得した装置詳細イベントデータの他の一例を模式的に示す図である。It is a figure which shows typically another example of the apparatus detailed event data acquired by EES. EESで取得した、シミュレーションモードと実制御モードの各々の装置詳細イベントデータをガントチャートで比較したことを模式的に示す図である。It is a figure which shows typically having compared the device detailed event data of each of the simulation mode and actual control mode acquired by EES with the Gantt chart. EESで取得した、シミュレーションモードと実制御モードの各々の装置詳細イベントデータをグラフ形式で比較したことを模式的に示す図である。It is a figure which shows typically having compared each apparatus detailed event data of each of the simulation mode and actual control mode acquired by EES in the graph format. 従来の製造装置の設計・製造の手順の概略図を模式的に示す図である。It is a figure which shows typically the schematic of the procedure of the design and manufacture of the conventional manufacturing apparatus. 本発明の装置設計製造支援システムを用いることによる製造装置の設計・製造の手順の概略図を模式的に示す図である。It is a figure which shows typically the schematic of the procedure of the design and manufacture of a manufacturing apparatus by using the apparatus design manufacturing support system of this invention. シミュレーション処理部を機能させるプログラムの階層化を模式的に示す図ある。It is a figure which shows typically hierarchization of the program which makes a simulation process part function. 装置設計製造支援システムのワークフローを模式的に示す図である。It is a figure which shows typically the workflow of an apparatus design manufacturing support system. シミュレーション処理部の処理を模式的に示すフローチャートの一例である。It is an example of the flowchart which shows the process of a simulation process part typically.
 本発明の装置設計製造支援システム1を構成する各装置の概略を図1に示す。なお本発明の装置設計製造支援システム1は、半導体製造装置、フラットパネル製造装置、太陽電池製造装置などの製造装置の設計・製造に用いることが好ましいが、それに限定されず、コンピュータ若しくはPLCによって制御される製造装置であれば如何なるものであっても良い。 FIG. 1 shows an outline of each device constituting the device design and manufacturing support system 1 of the present invention. The apparatus design / manufacturing support system 1 of the present invention is preferably used for designing / manufacturing a manufacturing apparatus such as a semiconductor manufacturing apparatus, a flat panel manufacturing apparatus, and a solar cell manufacturing apparatus, but is not limited thereto and is controlled by a computer or a PLC. Any manufacturing apparatus may be used.
 本発明の装置設計製造支援システム1は、装置シミュレータ2と装置コントローラ3とEES4とを有する。図2に装置シミュレータ2の概念図の一例を模式的に示す。また図3に、装置設計製造支援システム1のソフトウェア構成の全体の概念図の一例を模式的に示す。 The apparatus design / manufacturing support system 1 of the present invention includes an apparatus simulator 2, an apparatus controller 3, and an EES 4. FIG. 2 schematically shows an example of a conceptual diagram of the apparatus simulator 2. FIG. 3 schematically shows an example of an overall conceptual diagram of the software configuration of the apparatus design / manufacturing support system 1.
 なお装置シミュレータ2、EES4、装置コントローラ3はコンピュータや所定の演算回路などによって実現される。図4に装置シミュレータ2、EES4、装置コントローラ3などを実現するコンピュータのハードウェア構成の一例を模式的に示す。 The device simulator 2, EES 4, and device controller 3 are realized by a computer or a predetermined arithmetic circuit. FIG. 4 schematically shows an example of a hardware configuration of a computer that realizes the apparatus simulator 2, the EES 4, the apparatus controller 3, and the like.
 コンピュータは、プログラムの演算処理を実行するCPUなどの演算装置30と、情報を記憶するRAMやハードディスクなどの記憶装置31と、演算装置30の処理結果や記憶装置31に記憶する情報をインターネットやLANなどのネットワークを介して送受信する通信装置34とを少なくとも有している。コンピュータ上で実現する各機能(各手段)は、その処理を実行する手段(プログラムやモジュールなど)が演算装置30に読み込まれることでその処理が実行される。各機能は、記憶装置31に記憶した情報をその処理において使用する場合には、該当する情報を当該記憶装置31から読み出し、読み出した情報を適宜、演算装置30における処理に用いる。当該コンピュータには、キーボードやマウスやテンキーなどの入力装置33、モニターなどの表示装置32を有していても良い。 The computer stores an arithmetic device 30 such as a CPU for executing arithmetic processing of a program, a storage device 31 such as a RAM and a hard disk for storing information, processing results of the arithmetic device 30 and information stored in the storage device 31 on the Internet or LAN. And at least a communication device 34 that transmits and receives via the network. Each function (each unit) realized on the computer is executed when a unit (program, module, etc.) for executing the process is read into the arithmetic unit 30. When using the information stored in the storage device 31 in the processing, each function reads the corresponding information from the storage device 31 and uses the read information for the processing in the arithmetic device 30 as appropriate. The computer may include an input device 33 such as a keyboard, a mouse, and a numeric keypad, and a display device 32 such as a monitor.
 本発明における各手段は、その機能が論理的に区別されているのみであって、物理上あるいは事実上は同一の領域を為していても良い。またそれぞれの各機能やコンピュータなどは、任意に分散配置されていても良いし、あるいは一つに統合されていても良い。 The means in the present invention are only logically distinguished from each other in function, and may be physically or virtually the same area. Each function, computer, etc. may be arbitrarily distributed and may be integrated into one.
 装置シミュレータ2は、CAD5で生成した機械図面などのCADデータの入力を受け付ける。また、そのCADデータに対応する動作パラメータ(後述)の入力を受け付け、それらを装置レイアウトデータとして記憶する。そして装置レイアウトデータに基づいて、製造装置のシミュレーション状況を表示するコンピュータである。 The device simulator 2 accepts input of CAD data such as a machine drawing generated by the CAD 5. Also, input of operation parameters (described later) corresponding to the CAD data is received and stored as device layout data. And it is a computer which displays the simulation condition of a manufacturing apparatus based on apparatus layout data.
 装置シミュレータ2は、モデリングレイアウト部20とデータ記憶部21とシミュレーション処理部22と表示処理部23とを有する。 The apparatus simulator 2 includes a modeling layout unit 20, a data storage unit 21, a simulation processing unit 22, and a display processing unit 23.
 モデリングレイアウト部20は、CAD5で生成した、実装置のCADデータの入力を受け付け、後述するデータ記憶部21に記憶させる。例えば、2次元CADや3次元CADで生成した当該製造装置の各部品の位置情報や大きさを示す情報をCADデータとして記憶させる。また、モデリングレイアウト部20は、上記の各部品をどのようなタイミングでどのように動かすのかを示す動作パラメータの初期設定の入力を受け付ける。これは、各部品の動作パラメータを設定したファイルを読み込ませても良いし、入力装置33から各部品の動作パラメータの入力を受け付けても良い。 The modeling layout unit 20 accepts input of CAD data of an actual device generated by the CAD 5 and stores it in the data storage unit 21 described later. For example, information indicating position information and size of each part of the manufacturing apparatus generated by two-dimensional CAD or three-dimensional CAD is stored as CAD data. In addition, the modeling layout unit 20 receives input of initial setting of operation parameters indicating how and at what timing each of the above components is moved. In this case, a file in which the operation parameters of each component are set may be read, or input of the operation parameters of each component may be received from the input device 33.
 このようにして入力された動作パラメータを、データ記憶部21に記憶したCADデータに対応づけ、CADデータと動作パラメータとを装置レイアウトデータとしてデータ記憶部21に記憶させる。この対応付けは、同一の識別情報などをそれぞれのファイルに含ませることで、一つの(あるいは関連する)装置レイアウトデータとして取り扱っても良いし、一つの装置レイアウトデータとして一つのファイルに統合しても良い。 The operation parameters input in this way are associated with the CAD data stored in the data storage unit 21, and the CAD data and the operation parameters are stored in the data storage unit 21 as device layout data. This association may be handled as one (or related) device layout data by including the same identification information in each file, or integrated into one file as one device layout data. Also good.
 またモデリングレイアウト部20で読み込んだCADデータとしては、CAD5で生成した当該製造装置を構成するすべての部品に関する情報(位置情報や大きさを示す情報など)であっても良いし、当該製造装置を構成する部品のうち、後述するシミュレーション処理部22でのシミュレーション処理に不要な情報、すなわち、当該製造装置を外部から観察した場合に表示されない部品に関する情報を除いた情報であってもよい(当該製造装置を外部から観察した場合に表示される部品に関する情報であってもよい)。後者の場合、CADデータから、外部から観察できない部品に関する情報を減らした上で、データ記憶部21に記憶させる。この場合、CADデータのデータ量が少なくなり、シミュレーション処理の際にも速度の低下を招かない。 Further, the CAD data read by the modeling layout unit 20 may be information (position information, information indicating size, etc.) related to all parts constituting the manufacturing apparatus generated by the CAD 5, or the manufacturing apparatus Among the components to be configured, the information may be information that is unnecessary for simulation processing in the simulation processing unit 22 described later, that is, information excluding information about components that are not displayed when the manufacturing apparatus is observed from the outside (the manufacturing process). It may be information on a component displayed when the apparatus is observed from the outside). In the latter case, information relating to parts that cannot be observed from the outside is reduced from the CAD data and stored in the data storage unit 21. In this case, the amount of CAD data is reduced, and the speed is not reduced during simulation processing.
 モデリングレイアウト部20における装置レイアウトデータについて説明する。モデリングレイアウト部20では、CAD5で生成したCADデータについて、まず実装置を構成する各階層の部品(オブジェクト)の登録・設定が行われる。すなわち3次元で表示するための各部品の図面を読み込み、そのレイアウト設定が行われる。そして次にオブジェクトの属性が設定される。ここで設定されるオブジェクトの属性としては、オブジェクトの位置情報、動作時間(最初は設計値のデータである)などの動作パラメータ、デバイス動作仕様のI/Oマップ情報(例えばアクチュエータ数、センサ数、I/Oマップなど)がある。このようにオブジェクトの属性が設定されると、3次元でオブジェクトの配置が行われる。この作業を、装置、モジュール、サブシステムなどについても同様に行うことで動作パラメータの設定が行えるので、装置全体のCADデータと動作パラメータとを含む装置レイアウトデータが生成できる。なお2次元CADの場合には上述の処理を2次元でそのまま行えば良い。 The device layout data in the modeling layout unit 20 will be described. The modeling layout unit 20 first registers / sets parts (objects) of each layer constituting the actual apparatus with respect to the CAD data generated by the CAD 5. That is, the drawing of each part to be displayed in three dimensions is read and its layout is set. Then, the attribute of the object is set. The object attributes set here include object position information, operation parameters such as operation time (initially design value data), device operation specification I / O map information (for example, the number of actuators, the number of sensors, I / O map). When the attribute of the object is set in this way, the object is arranged in three dimensions. Since the operation parameters can be set by performing this operation similarly for the devices, modules, and subsystems, device layout data including CAD data and operation parameters for the entire device can be generated. In the case of two-dimensional CAD, the above-described processing may be performed as it is in two dimensions.
 データ記憶部21は、装置レイアウトデータなどの各種データを記憶しており、後述するシミュレーション処理部22における処理の際に、必要なデータが適宜、読み出されて、その処理に用いられる。 The data storage unit 21 stores various data such as device layout data, and necessary data is appropriately read out and used for the processing in the simulation processing unit 22 described later.
 シミュレーション処理部22は、データ記憶部21に記憶した装置レイアウトデータを用いて、予め記憶されている実装置をシミュレーションするシミュレーションプログラムに従って、シミュレーション処理を実行する。この際に用いられるシミュレーションプログラムは、装置設計製造支援システム1で設計・製造対象となっている実装置のシミュレーションプログラムであり、またシミュレーション処理の際には、装置コントローラ3からの制御指令(後述)に従ってシミュレーション処理が実行される。 The simulation processing unit 22 uses the device layout data stored in the data storage unit 21 to execute a simulation process according to a simulation program that simulates a real device stored in advance. The simulation program used at this time is a simulation program for an actual device that is designed and manufactured by the device design / manufacturing support system 1, and a control command (described later) from the device controller 3 during the simulation process. The simulation process is executed according to the above.
 なおシミュレーション処理部22で、実装置を仮想的にシミュレーションするためには、実際の実装置と同様の階層に制御対象を階層化して処理を行う。これを模式的に示すのが図12である。 In addition, in order to virtually simulate the real device by the simulation processing unit 22, the control target is hierarchized in the same hierarchy as the actual real device. This is schematically shown in FIG.
 まず実装置を4つの階層に分ける。すなわち、装置階層、モジュール階層、サブシステム階層、I/Oデバイス階層に分ける。また実装置が製造する対象となるマテリアルの階層を設ける。従って、シミュレーション処理部22で機能するシミュレーションプログラムは、合計5つの階層に分けて制御処理を行う。なお各階層では、その階層を制御するためのプログラムから構成されており、そのプログラムが各々独自に、装置コントローラ3の制御指令に基づく制御を受けることで、シミュレーション処理を実行する。 First, the actual device is divided into four layers. That is, it is divided into an apparatus hierarchy, a module hierarchy, a subsystem hierarchy, and an I / O device hierarchy. In addition, a hierarchy of materials to be manufactured by the actual device is provided. Therefore, the simulation program functioning in the simulation processing unit 22 performs control processing in a total of five layers. Note that each hierarchy is composed of a program for controlling the hierarchy, and each of the programs independently receives control based on a control command from the device controller 3 to execute simulation processing.
 装置階層は、装置を設置するもしくはモジュール以下のオブジェクト(部品)を配置可能とする空間を定義する階層であり、モジュール、サブシステム、I/Oデバイスから構成される。 The device hierarchy is a layer that defines a space in which devices can be installed or objects (parts) below the module can be placed, and is composed of modules, subsystems, and I / O devices.
 モジュール階層は、装置内でプロセスを実行したり、搬送を行うための機能をもつ交換可能な構成要素を定義する階層であり、モジュール、サブシステム、I/Oデバイスから構成される。 The module hierarchy is a hierarchy that defines replaceable components having functions for executing processes and carrying in the apparatus, and is composed of modules, subsystems, and I / O devices.
 サブシステム階層は、モジュール内で特定の機能を持つ交換可能な構成要素を定義する階層であり、サブシステム、I/Oデバイスから構成される。 The subsystem hierarchy is a hierarchy that defines interchangeable components having specific functions within a module, and is composed of subsystems and I / O devices.
 I/Oデバイス階層は、装置を動かすための最小の制御機能を有し、センサ・アクチュエータなどの各種のI/O装置から構成される階層である。例えばポンプ、バルブ、ロボット、シャッター、リフター、電源などがある。 The I / O device hierarchy has a minimum control function for moving the apparatus, and is a hierarchy composed of various I / O devices such as sensors and actuators. For example, there are pumps, valves, robots, shutters, lifters, power supplies, etc.
 マテリアル階層は、装置の中に供給される部材で、装置内に搬送されるものを示す階層である。例えばFOUP(Front Opening Unified Pod)、ウェーハ、基板などがある。装置内には、マテリアルロケーションと呼ばれる位置情報を持っており、マテリアルロケーションには実際にマテリアルが存在するかどうかを示す情報を持っている。 The material hierarchy is a hierarchy indicating members supplied into the apparatus and conveyed in the apparatus. For example, there are FOUP (Front Opening Unified Unified Pod), wafer, substrate and the like. The apparatus has position information called a material location, and the material location has information indicating whether or not a material actually exists.
 実装置は、実際に、装置、モジュール、サブシステム、I/Oデバイスから構成されており、これらによってマテリアルに対する製造処理が行われる。そしてシミュレーション処理部22での処理の際にも、実装置の構成に対応するように、実装置を構成する4つの階層(装置階層、モジュール階層、サブシステム階層、I/Oデバイス階層)と、製造される対象となるマテリアルの階層(マテリアル階層)とに分けて処理を行うことで、実装置を実際に稼働する場合と同様に、装置コントローラ3との連動を図ることが出来る。そして上記階層ごとの動作検証が可能となる。 Actual devices are actually composed of devices, modules, subsystems, and I / O devices, and the manufacturing process for materials is performed by these devices. In the processing by the simulation processing unit 22, the four layers (device layer, module layer, subsystem layer, I / O device layer) constituting the real device, so as to correspond to the configuration of the real device, By performing the process separately on the material hierarchy (material hierarchy) to be manufactured, the device controller 3 can be linked in the same manner as when the actual device is actually operated. Then, the operation verification for each hierarchy is possible.
 なお階層の分け方は、設計・製造対象となる製造装置の特性に応じて、任意に分けることが出来る。 Note that the hierarchy can be arbitrarily divided according to the characteristics of the manufacturing equipment to be designed and manufactured.
 表示処理部23は、シミュレーション処理部22における処理結果を、装置シミュレータ2の表示装置32で表示する。 The display processing unit 23 displays the processing result in the simulation processing unit 22 on the display device 32 of the device simulator 2.
 装置コントローラ3は、実装置あるいはシミュレーション処理部22における仮想的な製造装置(実装置の動作をコンピュータ内部で実現した製造装置)のシーケンス制御を行うためのコントローラ(制御指令を渡すためのコントローラ)を搭載したコンピュータであって、実制御モード、装置シミュレーションモードの少なくとも2つの制御モードの切り替えが可能である。また装置コントローラ3は、実装置、仮想的な製造装置から実行結果をそれぞれ取得しており、その取得したデータは後述するEES4が取得している。 The device controller 3 is a controller (controller for passing a control command) for performing sequence control of an actual device or a virtual manufacturing device (a manufacturing device that realizes the operation of the actual device inside the computer) in the simulation processing unit 22. It is an on-board computer and can switch between at least two control modes: an actual control mode and an apparatus simulation mode. Further, the device controller 3 acquires the execution results from the real device and the virtual manufacturing device, and the acquired data is acquired by the EES 4 described later.
 実制御モードとは、実際の製造装置におけるセンサやアクチュエータなどと接続し、制御指令を実装置に渡すことで、実装置を動作させるモードである。また、実装置において実行を行った場合、その実行結果を実装置から受け取る。 The actual control mode is a mode in which an actual device is operated by connecting to a sensor or an actuator in an actual manufacturing device and passing a control command to the actual device. When the execution is performed in the real device, the execution result is received from the real device.
 装置シミュレーションモードは、装置シミュレータ2のシミュレーション処理部22に制御指令を渡すことで、仮想的に装置を動作させるモードである。また、装置シミュレータ2のシミュレーション処理部22において実行を行った場合、その実行結果をシミュレーション処理部22から受け取る。なお装置シミュレーションモードでは、シミュレーション処理の実行速度を実装置の制御時と同じ(等倍)、2倍、3倍、といったように任意の実行速度で実行することも出来る。これによって、確認に要する時間を短縮することが出来る。 The device simulation mode is a mode in which the device is virtually operated by passing a control command to the simulation processing unit 22 of the device simulator 2. Further, when execution is performed in the simulation processing unit 22 of the apparatus simulator 2, the execution result is received from the simulation processing unit 22. In the apparatus simulation mode, the execution speed of the simulation processing can be executed at an arbitrary execution speed, such as the same speed as when controlling the actual apparatus (equal magnification), 2 times, 3 times, and the like. Thereby, the time required for confirmation can be shortened.
 なお装置コントローラ3には2つのケースがあり、実装置や仮想的な製造装置を、全てコンピュータで制御するケースと、実装置や仮想的な製造装置を、PLCで制御するケースがある。これらはいずれを用いても良いが、用いたケースの制御指令が実装置あるいは装置シミュレータ2に渡される。 The device controller 3 has two cases: a case where the real device and the virtual manufacturing device are all controlled by a computer, and a case where the real device and the virtual manufacturing device are controlled by a PLC. Any of these may be used, but a control command for the used case is passed to the actual apparatus or the apparatus simulator 2.
 また、これら2つの制御指令は、実装置や装置シミュレータ2のシミュレーション処理部22での各階層における処理を制御するための情報であって、制御対象が実装置と仮想的な製造装置(装置シミュレータ2のシミュレーション処理部22でシミュレーションされる実装置)のいずれであっても、同一または実質的に同一の情報(制御するための意味内容が同一である情報)である。制御指令には、実装置や装置シミュレータ2のシミュレーション処理部22に対して、制御を開始することの指示情報とどのような条件で制御を行うかを示す付帯情報とが含まれる。 These two control commands are information for controlling processing in each layer in the simulation processing unit 22 of the real device or the device simulator 2, and the control target is the real device and a virtual manufacturing device (device simulator). 2 (actual apparatus simulated by the two simulation processing units 22) is the same or substantially the same information (information having the same semantic content for control). The control command includes instruction information for starting control and additional information indicating under what conditions control is performed on the simulation processing unit 22 of the actual device or the device simulator 2.
 また上述の制御指令に対する、実装置や装置シミュレータ2のシミュレーション処理部22での各階層における処理の結果を、実装置やシミュレーション処理部22から実行結果として装置コントローラ3は受け取る。処理を実行したのが実装置と仮想的な製造装置(装置シミュレータ2のシミュレーション処理部22でシミュレーションされる実装置)のいずれであっても、実行結果は同一または実質的に同一の情報(実行結果の意味内容が同一である情報)である。実行結果には、実装置や装置シミュレータ2のシミュレーション処理部22から、制御指令に対する処理を終了したことの情報と実行したことによってどのような状態になったのかを示す付帯情報とが含まれる。 Further, the device controller 3 receives the result of processing in each layer in the simulation processing unit 22 of the real device or the device simulator 2 with respect to the above control command as an execution result from the real device or the simulation processing unit 22. Regardless of whether the process is executed by a real device or a virtual manufacturing device (a real device simulated by the simulation processing unit 22 of the device simulator 2), the execution result is the same or substantially the same information (execution) Information with the same semantic content of the result). The execution result includes information indicating that processing for the control command has been completed and incidental information indicating what state has been obtained as a result of execution from the simulation processing unit 22 of the actual device or the device simulator 2.
 また制御指令と実行結果とを総称して制御情報と呼ぶ。装置コントローラ3がコンピュータである場合の制御情報(制御指令と実行結果)をデバイス・シーケンスステップ制御情報、装置コントローラ3がPLCである場合の制御情報(制御指令と実行結果)をデバイス・シーケンスステップIOマップ(PLC制御情報)と呼ぶ。 Also, control commands and execution results are collectively referred to as control information. Control information (control command and execution result) when the device controller 3 is a computer is device / sequence step control information, and control information (control command and execution result) when the device controller 3 is a PLC is a device / sequence step IO. This is called a map (PLC control information).
 EES4(装置エンジニアリングシステム)は、実装置または装置シミュレータ2のシミュレーション処理部22でシミュレーションする仮想的な製造装置の詳細な制御情報(制御指令や実行結果)を装置コントローラ3から取得し、動作を解析するコンピュータである(なお装置コントローラ3を介さずに、実装置または装置シミュレータ2から直接、取得しても良い)。ここで取得するデータとしては、詳細装置イベント、トレースデータ、コンテキストデータ(レシピ、基板ID、ロットIDなど)がある。つまり詳細装置イベント、トレースデータ、コンテキストデータが制御指令や実行結果となる。従って、EES4では実装置あるいは仮想的な製造装置の制御指令や実行結果を収集する機能、それらの動作時間を確認する機能などを有している。これらの各機能は、装置コントローラ3で制御した実装置あるいはシミュレーション処理部22における仮想的な製造装置からの制御指令や実行結果などの制御情報を示すデータ(詳細装置イベントデータ)を取得することで行える。 The EES 4 (device engineering system) acquires detailed control information (control commands and execution results) of the virtual manufacturing device simulated by the simulation processing unit 22 of the real device or the device simulator 2 from the device controller 3 and analyzes the operation. (It may be obtained directly from the actual device or the device simulator 2 without using the device controller 3). The data acquired here includes detailed device events, trace data, and context data (recipe, substrate ID, lot ID, etc.). That is, detailed device events, trace data, and context data become control commands and execution results. Therefore, EES4 has a function of collecting control commands and execution results of real devices or virtual manufacturing devices, a function of checking their operation time, and the like. Each of these functions is obtained by acquiring data (detailed device event data) indicating control information such as a control command or execution result from a virtual manufacturing device in the real device or simulation processing unit 22 controlled by the device controller 3. Yes.
 詳細装置イベントデータでは、制御指令や実行結果における付帯情報として、デバイスの動作とその開始・終了時刻を含んでいるので、その差分によって動作時間を算出することが可能である。 The detailed device event data includes the operation of the device and its start / end time as incidental information in the control command and execution result, so that the operation time can be calculated from the difference.
 CAD5は、実装置の図面のCADデータを生成する装置であって、2次元図面を生成する2次元CADと、3次元図面を生成する3次元CADのいずれであっても良い。以下の説明では、3次元CADを用いた場合を説明するが、2次元CAD、3次元CADのいずれを用いることも出来、同様の処理で同様の技術的効果を得ることが出来る。 The CAD 5 is a device that generates CAD data of a drawing of an actual device, and may be either a two-dimensional CAD that generates a two-dimensional drawing or a three-dimensional CAD that generates a three-dimensional drawing. In the following description, a case where three-dimensional CAD is used will be described, but any of two-dimensional CAD and three-dimensional CAD can be used, and the same technical effect can be obtained by the same processing.
 なお、CAD5における実装置の設計は従来と同様である。 In addition, the design of the actual device in CAD5 is the same as the conventional one.
 本願発明の装置設計製造支援システム1の処理の一例を、図5のフローチャートを用いて説明する。また図13に装置設計製造支援システム1のワークフローを模式的に示す。 An example of processing of the device design and manufacturing support system 1 of the present invention will be described with reference to the flowchart of FIG. FIG. 13 schematically shows a workflow of the device design / manufacturing support system 1.
 従来と同様に機械設計フェーズでは装置の機械設計を行い、電気設計フェーズでは配線等の電気的な設計を行い、ソフトウェア設計フェーズではソフトウェアの設計を行う(S100)。そして機械設計及び電気設計では、設計後、それぞれ部品の発注を行う。なお機械設計フェーズ及び電気設計フェーズでは、それぞれCAD5を用いて設計を行っているので、それらのCADデータを装置シミュレータ2のモデリングレイアウト部20が読み込む。読み込まれたCADデータは、データ記憶部21に記憶される。なお、CADデータのうち、不要な情報、例えば実装置の内部の部品の情報など、の選択を必要に応じて受け付けることで、データ記憶部21に記憶するCADデータからそれを削除しても良い。 As before, mechanical design of the device is performed in the mechanical design phase, electrical design such as wiring is performed in the electrical design phase, and software is designed in the software design phase (S100). In mechanical design and electrical design, parts are ordered after design. In the mechanical design phase and the electrical design phase, design is performed using the CAD 5, and the CAD layout data is read by the modeling layout unit 20 of the apparatus simulator 2. The read CAD data is stored in the data storage unit 21. In addition, the CAD data stored in the data storage unit 21 may be deleted by accepting selection of unnecessary information, for example, information on components inside the actual device, as necessary. .
 また、実装置の各階層を構成するオブジェクトをどのようなタイミングで動かすかを示す動作パラメータの初期設定ファイルをモデリングレイアウト部20が読み込み(あるいは入力を受け付け)、CADデータと対応づけてデータ記憶部21に記憶させる。CADデータと動作パラメータとは対応づけられて、装置レイアウトデータとしてデータ記憶部21に記憶されていることとなる(S110)。 Further, the modeling layout unit 20 reads (or accepts input) an operation parameter initial setting file indicating at what timing the objects constituting each layer of the actual apparatus are moved, and the data storage unit correlates with the CAD data. 21 is stored. CAD data and operation parameters are associated with each other and stored in the data storage unit 21 as device layout data (S110).
 またソフトウェア設計フェーズで設計した製造装置を稼働させるための実装置に対応する階層毎のソフトウェアは、装置シミュレータ2のシミュレーション処理部22に読み込まれる。 Further, the software for each layer corresponding to the actual apparatus for operating the manufacturing apparatus designed in the software design phase is read into the simulation processing unit 22 of the apparatus simulator 2.
 このようにして、動作パラメータを含む装置レイアウトデータがデータ記憶部21に記憶されると、装置コントローラ3は、シミュレーションモードに切り替えられ(ユーザが手動で切り替えても良いし、自動的に切り替えても良いし、あるいはモードの切替の確認メッセージが表示され、ユーザから許可の入力を受け付けた場合に切り替えるように構成しても良い)、制御指令を装置シミュレータ2のシミュレーション処理部22に渡す。この制御指令と、データ記憶部21に記憶した、動作パラメータを含む装置レイアウトデータに従って、シミュレーション処理部22に読み込まれたソフトウェアが仮想的に当該製造装置を機能させ、シミュレーションを実行する(S120)。なおシミュレーションの実行中には、表示処理部23がその状態を表示装置32で表示させても良い。また、制御指令がシミュレーション処理部22に渡されたことによって、それをEES4が詳細装置イベントデータとして取得していても良い。 When the device layout data including the operation parameters is stored in the data storage unit 21 in this way, the device controller 3 is switched to the simulation mode (the user may switch manually or automatically) Alternatively, a confirmation message for switching the mode may be displayed and switching may be performed when permission input is received from the user), and a control command is passed to the simulation processing unit 22 of the apparatus simulator 2. In accordance with this control command and the device layout data including the operation parameters stored in the data storage unit 21, the software read into the simulation processing unit 22 virtually causes the manufacturing device to function and execute the simulation (S120). During the execution of the simulation, the display processing unit 23 may display the state on the display device 32. Further, when the control command is passed to the simulation processing unit 22, the EES 4 may acquire it as detailed device event data.
 S120におけるシミュレーション処理部22におけるシミュレーション処理を、図14のフローチャートを用いて説明する。 The simulation processing in the simulation processing unit 22 in S120 will be described with reference to the flowchart of FIG.
 まず装置シミュレータ2のモデリングレイアウト部20で、動作パラメータを含む装置レイアウトデータの入力を受け付ける(S200)。これはCAD5からネットワークなどを介して装置シミュレータ2がCADデータの入力を受け付けても良いし、磁気ディスク、光ディスク、光磁気ディスク、半導体メモリなどを介してCADデータの入力を受け付けても良い。またCADデータに対応する装置レイアウトデータの初期設定ファイルの入力もモデリングレイアウト部20で受け付け、それらを装置レイアウトデータとして、データ記憶部21に記憶する。 First, the modeling layout unit 20 of the device simulator 2 receives input of device layout data including operation parameters (S200). In this case, the apparatus simulator 2 may accept input of CAD data from the CAD 5 via a network, or may accept input of CAD data via a magnetic disk, an optical disk, a magneto-optical disk, a semiconductor memory, or the like. The modeling layout unit 20 also receives input of an initial setting file of device layout data corresponding to CAD data, and stores them in the data storage unit 21 as device layout data.
 装置シミュレータ2でシミュレーション処理を行う場合、装置コントローラ3からの制御指令を受け取るため、装置コントローラ3と装置シミュレータ2とが接続される(S210)。その接続は、物理的にネットワークケーブルが接続されることでデータの送受信が可能となっても良いし、インターネットやLANなどのネットワークにお互いが接続することで、論理的にデータの送受信が可能な状態となっても良い。また装置コントローラ3は装置シミュレータ2と接続することによって、そのモードが実制御モードからシミュレーションモードに自動的に切り替わっても良い。あるいはシミュレーションモードに切り替えることで、装置コントローラ3と装置シミュレータ2の接続が行われても良い。 When the simulation process is performed by the device simulator 2, the device controller 3 and the device simulator 2 are connected to receive a control command from the device controller 3 (S210). The connection may be such that data can be transmitted / received by physically connecting a network cable, or data can be logically transmitted / received by connecting each other to a network such as the Internet or a LAN. It may be in a state. The device controller 3 may be automatically switched from the actual control mode to the simulation mode by connecting to the device simulator 2. Alternatively, the device controller 3 and the device simulator 2 may be connected by switching to the simulation mode.
 このようにして装置コントローラ3と装置シミュレータ2とが接続すると、装置コントローラ3から制御指令が装置シミュレータ2に渡され、それをシミュレーション処理部22で取得する(S220)。また、このときに渡された制御指令をEES4が詳細装置イベントデータとして取得する。 When the device controller 3 and the device simulator 2 are thus connected, a control command is transferred from the device controller 3 to the device simulator 2 and is acquired by the simulation processing unit 22 (S220). Further, the control command passed at this time is acquired by the EES 4 as detailed device event data.
 シミュレーション処理部22で取得した、制御指令が、シミュレーション処理部22におけるI/Oデバイス階層のプログラムに対する制御指令の場合(S230)、シミュレーション処理部22のI/Oデバイス階層のプログラムが作動し、その制御指令に従った処理を当該プログラムに基づいて実行する。すなわち仮想的な制御装置のI/Oデバイス階層の動作が開始される(S240)。 When the control command acquired by the simulation processing unit 22 is a control command for the I / O device hierarchy program in the simulation processing unit 22 (S230), the I / O device hierarchy program of the simulation processing unit 22 is activated. The process according to the control command is executed based on the program. That is, the operation of the I / O device hierarchy of the virtual control device is started (S240).
 I/Oデバイス階層のプログラムによる処理が開始されたことで、I/Oデバイス階層の動作が仮想的に開始されるので、シミュレーション処理部22に記憶している計時部(図示せず)が計時を開始する。 Since the operation of the I / O device hierarchy program is started, the operation of the I / O device hierarchy is virtually started, so that a time measuring unit (not shown) stored in the simulation processing unit 22 measures the time. To start.
 そして当該制御指令に対する処理が終了するか、あるいは予め定められた処理時間を経過すると(S250)、I/Oデバイス階層のプログラムの処理を終了する。すなわち、I/Oデバイス階層の動作が仮想的に完了し、計時部の計時が終了する(S260)。 Then, when the processing for the control command ends or when a predetermined processing time elapses (S250), the processing of the I / O device hierarchy program ends. That is, the operation of the I / O device hierarchy is virtually completed, and the timing of the timing unit ends (S260).
 I/Oデバイス階層における仮想的な動作が終了後、シミュレーション処理部22は、実行結果を動作完了報告として装置コントローラ3に渡す(S270)。この際に渡される実行結果である動作完了報告には、例えば、制御指令に対する処理が正常に終了したこと、処理開始時刻、終了時刻、処理時間、どういった動作を(仮想的に)行ったか、その動作結果としてマテリアルがどのような状態になったのか、といった情報(付帯情報)が含まれている。そして、制御を行った結果としてマテリアルがどのような状態になったのかという情報(付帯情報)がマテリアル層における情報となり、実行結果が装置シミュレータ2のシミュレーション処理部22から装置コントローラ3に渡されていることとなる。 After the virtual operation in the I / O device hierarchy is completed, the simulation processing unit 22 passes the execution result to the device controller 3 as an operation completion report (S270). In the operation completion report, which is the execution result passed at this time, for example, the processing for the control command has been normally completed, the processing start time, the end time, the processing time, and what operation was performed (virtual) , Information on the state of the material as a result of the operation (accompanying information) is included. Then, the information on the state of the material as a result of the control (supplementary information) becomes information in the material layer, and the execution result is passed from the simulation processing unit 22 of the device simulator 2 to the device controller 3. Will be.
 またS220で装置コントローラ3から受け取る制御指令は、リフターを上げる・下げるなどのように、I/Oデバイス階層に対する制御指令であることが多い。しかしI/Oデバイス階層より上位の階層、すなわち装置層、モジュール層、サブシステム層に対する制御指令である場合もある。その場合(I/Oデバイス階層に対する制御指令ではない場合)にも、I/Oデバイス階層への制御指令の場合と同様に、当該制御指令における階層に対するシミュレーション処理部22のプログラムが作動し、その制御指令に従った処理を当該プログラムに基づいて実行する。すなわち制御指令に対応する、仮想的な制御装置の階層の動作が開始される(S280)。なお、どの階層に対する制御指令であるのかは、制御指令における付帯情報に、どの階層に対する制御指令であるのかが識別可能な情報が含まれていて、それにより判定しても良いし、制御指令や付帯情報が階層ごとに異なっており、その制御指令や付帯情報の種類によって、対象となる階層を判定しても良い。 Also, the control command received from the device controller 3 in S220 is often a control command for the I / O device hierarchy, such as raising / lowering the lifter. However, it may be a control command for a layer higher than the I / O device layer, that is, a device layer, a module layer, or a subsystem layer. Even in that case (when it is not a control command for the I / O device hierarchy), similarly to the control command for the I / O device hierarchy, the program of the simulation processing unit 22 for the hierarchy in the control command operates. The process according to the control command is executed based on the program. That is, the operation of the virtual control device hierarchy corresponding to the control command is started (S280). It should be noted that the control command for which hierarchy is included in the incidental information in the control command includes information that can identify the control command for which hierarchy. The incidental information is different for each hierarchy, and the target hierarchy may be determined according to the type of the control command or incidental information.
 当該階層のプログラムによる処理が開始されたことで、当該階層の動作が仮想的に開始されるので、シミュレーション処理部22に記憶している計時部(図示せず)が計時を開始する。 The operation of the hierarchy is virtually started when the processing by the program of the hierarchy is started, so that a timer (not shown) stored in the simulation processor 22 starts timing.
 そして当該制御指令に対する処理が終了するか、あるいは予め定められた処理時間を経過すると(S290)、当該階層のプログラムの処理を終了する。すなわち、当該階層の動作が仮想的に完了し、計時部の計時が終了する(S300)。 Then, when the processing for the control command ends or when a predetermined processing time elapses (S290), the processing of the program in the layer is ended. That is, the operation of the hierarchy is virtually completed, and the timing of the timing unit ends (S300).
 装置階層、モジュール階層、サブシステム階層のうち、対応する階層における仮想的な動作が終了後、シミュレーション処理部22は、その実行結果を動作完了報告として装置コントローラ3に渡す(S310)。この際に渡される実行結果である動作完了報告にも、I/Oデバイス階層の場合と同様に、例えば、制御指令に対する処理が正常に終了したこと、処理開始時刻、終了時刻、処理時間、どういった動作を(仮想的に)行ったか、その動作結果としてマテリアルがどのような状態になったのか、といった情報(付帯情報)が含まれている。そして、動作結果としてマテリアルがどのような状態になったのかという情報がマテリアル層における情報(付帯情報)となり、それが装置シミュレータ2のシミュレーション処理部22から装置コントローラ3に渡されていることとなる。 After the virtual operation in the corresponding layer among the device layer, the module layer, and the subsystem layer is completed, the simulation processing unit 22 passes the execution result to the device controller 3 as an operation completion report (S310). As in the case of the I / O device hierarchy, the operation completion report that is the execution result passed at this time, for example, indicates that the processing for the control command has been completed normally, the processing start time, the end time, the processing time, Information (supplementary information) such as whether the operation has been performed (virtually) or what kind of state the material has become as a result of the operation is included. Then, the information on the state of the material as an operation result becomes information (supplementary information) in the material layer, and is passed from the simulation processing unit 22 of the device simulator 2 to the device controller 3. .
 以上のように、シミュレーション処理部22では、装置コントローラ3から制御指令を受け取ることで、逐次、その制御指令に対応する階層のプログラムが、当該制御指令に従って仮想的に実行され、実行結果が動作完了報告として装置コントローラ3に返されることとなる。そして、図14に示す処理を装置コントローラ3から制御を受けている間、シミュレーション処理部22はそれを反復し、また表示処理部23は、そのシミュレーションに対応する処理を装置シミュレータ2の表示装置32に表示させている。 As described above, the simulation processing unit 22 receives the control command from the device controller 3, and sequentially executes the program of the hierarchy corresponding to the control command according to the control command, and the execution result is the operation completion. It will be returned to the device controller 3 as a report. While the process shown in FIG. 14 is controlled by the apparatus controller 3, the simulation processing unit 22 repeats the process, and the display processing unit 23 performs a process corresponding to the simulation on the display device 32 of the apparatus simulator 2. Is displayed.
 装置シミュレータ2のシミュレーション処理部22における実行結果は、装置コントローラ3に反映しているので、詳細装置イベントデータとしてEES4が取得する(S130)。そして取得した実行結果を参照することで、適宜、ソフトウェアなどの修正を行うことも可能となる。 Since the execution result in the simulation processing unit 22 of the device simulator 2 is reflected in the device controller 3, the EES 4 acquires it as detailed device event data (S130). Then, by referring to the acquired execution result, it is possible to appropriately modify software or the like.
 このようにして取得した詳細装置イベントデータの表示例の一例を図6に模式的に示す。図6では、ウェーハ1枚ごとの処理を開始・終了したタイムスタンプや処理時間をリストとして表示している。製造装置完成前では装置が動作するための時間を設定値としてシミュレーションを行っているので、その設定値を変更することで、製造装置完成前であってもそのチューニングを行うことが出来る。 FIG. 6 schematically shows an example of display of detailed device event data acquired in this way. In FIG. 6, time stamps and processing times at which processing for each wafer is started and completed are displayed as a list. Since the simulation is performed using the time for operating the apparatus as a set value before the manufacturing apparatus is completed, the tuning can be performed even before the manufacturing apparatus is completed by changing the set value.
 また実機である実装置が組み立てられた場合には、装置コントローラ3は、実制御モードに切り替えられ(ユーザが手動で切り替えても良いし、自動的に切り替えても良いし、あるいはモードの切替の確認メッセージが表示され、ユーザから許可の入力を受け付けた場合に切り替えるように構成しても良い)、制御指令が、実機である実装置に渡される。また、このときに渡された制御指令をEES4が詳細装置イベントデータとして取得する。実機である実装置は、この制御指令に従って稼働する。 In addition, when an actual device that is a real machine is assembled, the device controller 3 is switched to the actual control mode (the user may manually switch, the automatic switching may be performed, or the mode switching may be performed. A confirmation message is displayed, and it may be configured to switch when a permission input is received from the user), and the control command is passed to the actual device that is the actual machine. Further, the control command passed at this time is acquired by the EES 4 as detailed device event data. An actual device, which is an actual machine, operates according to this control command.
 この実行結果は、シミュレーションの場合と同様に、装置コントローラ3に反映しているので、詳細装置イベントデータとしてEES4が取得する(S140)。 Since this execution result is reflected in the apparatus controller 3 as in the case of the simulation, the EES 4 is acquired as detailed apparatus event data (S140).
 このようにして取得した詳細装置イベントデータの表示例の一例を図7に模式的に示す。図7では、ウェーハ1枚ごとの処理を開始・終了したタイムスタンプや処理時間をリストとして表示している。製造装置完成前では装置が動作するための時間を設計値としてシミュレーションを行っているので、その設計値を変更することで、製造装置完成前であってもそのチューニングを行うことが出来る。 FIG. 7 schematically shows an example of display of detailed device event data acquired in this way. In FIG. 7, time stamps and processing times at which processing for each wafer is started and completed are displayed as a list. Since the simulation is performed with the time for operating the apparatus as a design value before the manufacturing apparatus is completed, the tuning can be performed even before the manufacturing apparatus is completed by changing the design value.
 装置コントローラ3は、シミュレーションモードと実制御モードとで同一または実質的に同一の制御指令を渡している。従ってEES4では、シミュレーションモードにおける実行結果と、実制御モードにおける実行結果とをそれぞれ取得しているので、それを例えば同一画面で表示させることで、シミュレーションモードと実制御モードとの比較を容易に行わせることも可能となる。 The device controller 3 passes the same or substantially the same control command in the simulation mode and the actual control mode. Therefore, in EES4, since the execution result in the simulation mode and the execution result in the actual control mode are respectively acquired, the simulation mode and the actual control mode can be easily compared by displaying them on the same screen, for example. It is also possible to make it.
 例えば設計値で動いている装置シミュレータ2(シミュレーションモード)と、実機である実装置(実制御モード)とのリストにより、製造装置の処理性能を比較して実機である実装置の動作を調整することが出来る(S150)。すなわちシミュレーションモードと実制御モードとのそれぞれの実行結果を比較表示させることで、その実行の結果を開発担当者が検証することが可能となる。そしてこの検証結果が反映された新たな動作パラメータ(例えば動作時間など)を装置シミュレータ2のモデリングレイアウト部20に読み込ませることで、さらにシミュレーションモードで検証することが可能となる。 For example, by comparing the processing performance of the manufacturing apparatus with the list of the apparatus simulator 2 (simulation mode) operating at the design value and the actual apparatus (actual control mode) that is the actual apparatus, the operation of the actual apparatus that is the actual apparatus is adjusted. (S150). That is, by comparing and displaying the execution results of the simulation mode and the actual control mode, the developer can verify the execution results. Then, by loading a new operation parameter (for example, operation time) reflecting the verification result into the modeling layout unit 20 of the apparatus simulator 2, it is possible to further verify in the simulation mode.
 なおシミュレーションモードと実制御モードとの実行結果をEES4で取得して比較するのではなく、シミュレーションモードの実行結果を装置シミュレータ2などの表示装置32で表示させ、その結果に基づいて、装置レイアウトデータにおける動作パラメータの修正入力(新たな動作パラメータの入力)を装置シミュレータ2が受け付けることで、再度、シミュレーション処理部22におけるシミュレーション処理を実行しても良い。 Instead of acquiring and comparing the execution results of the simulation mode and the actual control mode with the EES 4, the execution result of the simulation mode is displayed on the display device 32 such as the device simulator 2, and the device layout data is based on the result. When the apparatus simulator 2 receives the correction input of the operation parameter (input of a new operation parameter), the simulation processing in the simulation processing unit 22 may be executed again.
 また、実機である実装置の動作に不具合がある場合、EES4で記憶している詳細装置イベントデータ(制御指令や実行結果を含む制御情報、あるいはそこに含まれる付帯情報)に基づいて(この詳細装置イベントデータはネットワークや記憶装置を介して取得する)、それを動作パラメータとして設定し、装置シミュレータ2のシミュレーション処理部22でシミュレーション処理を行うことで、現地に開発者が赴かなくても、実機である実装置の動作を確認することも可能となる。 Further, when there is a malfunction in the operation of the actual device that is a real machine, based on the detailed device event data (control information including control commands and execution results, or incidental information included therein) stored in EES4 (this detail) The device event data is acquired via a network or a storage device), and it is set as an operation parameter, and the simulation processing unit 22 of the device simulator 2 performs a simulation process, so that even if a developer is not on site, It is also possible to confirm the operation of an actual device that is an actual machine.
 図6及び図7では、ウェーハ1枚ごとの処理を開始・終了したタイムスタンプや処理時間をリストとして表示したが、例えば図8及び図9に示すように、ガントチャートとして表示を行っても良い。図8はウェーハが処理を行うために製造装置内に存在している時間をガントチャートで示した図である。図9は存在している製造装置内でのシーケンスが実行されている時間をガントチャートで示した図である。 In FIGS. 6 and 7, the time stamps and processing times at which the processing for each wafer is started / finished are displayed as a list, but may be displayed as a Gantt chart, for example, as shown in FIGS. . FIG. 8 is a Gantt chart showing the time that the wafer exists in the manufacturing apparatus for processing. FIG. 9 is a Gantt chart showing the time during which the sequence in the existing manufacturing apparatus is executed.
 本発明の装置設計製造支援システム1によって、実機である製造装置が組み立てられる前に、ソフトウェアが正常に機能するかを確認出来る。すなわち、本発明の装置設計製造支援システム1を用いることによって、図11に示すような手順で、製造装置の設計・製造が可能となる。これによって製造装置の設計から組み立てまでの期間を短縮することが出来るので、不具合が発生した場合にも十分な期間的余裕を確保することが出来る。 The apparatus design / manufacturing support system 1 of the present invention can confirm whether the software functions normally before the manufacturing apparatus which is an actual machine is assembled. That is, by using the apparatus design / manufacturing support system 1 of the present invention, the manufacturing apparatus can be designed / manufactured by a procedure as shown in FIG. As a result, the period from the design to the assembly of the manufacturing apparatus can be shortened, so that a sufficient time margin can be ensured even when a problem occurs.
 また、シミュレーション処理を行う際には、実機が存在していなくてもシミュレーションが可能となる。そしてシミュレーションの際には、実機である実装置の階層と同一の階層に対応するシミュレーション処理を可能とすることで、実装置を制御する装置コントローラ3からの制御指令によってシミュレーションを実行することが出来、より精度の高いシミュレーションが可能となる。 Also, when performing simulation processing, simulation is possible even if no actual machine exists. In the simulation, the simulation process can be executed in accordance with a control command from the device controller 3 that controls the actual device by enabling simulation processing corresponding to the same layer as that of the actual device that is the actual machine. More accurate simulation becomes possible.
 そして、装置コントローラ3による実行結果を、EES4(装置エンジニアリングシステム)によって検証しているので、シミュレーションの場合、実際の実装置の場合の各々において、客観的な実行結果に基づく検証が可能となる。
And since the execution result by the apparatus controller 3 is verified by EES4 (apparatus engineering system), in the case of simulation, verification based on an objective execution result is possible in each case of an actual real apparatus.
 1:装置設計製造支援システム
 2:装置シミュレータ
 3:装置コントローラ
 4:EES
 5:CAD
20:モデリングレイアウト部
21:データ記憶部
22:シミュレーション処理部
23:表示処理部
30:演算装置
31:記憶装置
32:表示装置
33:入力装置
34:通信装置
1: Device design and manufacturing support system 2: Device simulator 3: Device controller 4: EES
5: CAD
20: Modeling layout unit 21: Data storage unit 22: Simulation processing unit 23: Display processing unit 30: Computing device 31: Storage device 32: Display device 33: Input device 34: Communication device

Claims (7)

  1.  製造装置の設計、製造を支援する装置設計製造支援システムであって、
     前記装置設計製造支援システムは、装置シミュレータと装置コントローラとEESとを有しており、
     前記装置シミュレータは、
     前記製造装置の装置レイアウトデータの入力を受け付け、前記装置レイアウトデータと前記装置コントローラからの制御指令とに基づいて、前記製造装置の各階層に対応したシミュレーションプログラムにより、仮想的な製造装置としてシミュレーション処理を実行し、
     前記装置コントローラは、
     前記製造装置及び前記装置シミュレータにおける仮想的な製造装置を制御するための制御指令を、前記製造装置及び前記装置シミュレータに渡し、
     前記EESは、
     前記装置シミュレータにおける仮想的な製造装置でのシミュレーション処理の実行結果と、前記製造装置における実行結果とをそれぞれ取得し、各実行結果を比較可能なように表示する、
     ことを特徴とする装置設計製造支援システム。
    A device design / manufacturing support system for supporting design / manufacturing of a manufacturing device,
    The apparatus design / manufacturing support system includes an apparatus simulator, an apparatus controller, and an EES.
    The device simulator is
    Based on the device layout data and a control command from the device controller, a simulation process corresponding to each hierarchy of the manufacturing device is performed as a virtual manufacturing device based on the input of the device layout data of the manufacturing device. Run
    The device controller is
    A control command for controlling a virtual manufacturing apparatus in the manufacturing apparatus and the apparatus simulator is passed to the manufacturing apparatus and the apparatus simulator.
    The EES is
    The execution result of the simulation process in the virtual manufacturing apparatus in the apparatus simulator and the execution result in the manufacturing apparatus are respectively acquired and displayed so that the respective execution results can be compared.
    A device design and manufacturing support system characterized by that.
  2.  製造装置の設計、製造を支援する装置設計製造支援システムであって、
     前記装置設計製造支援システムは、装置シミュレータと装置コントローラとEESとを有しており、
     前記装置シミュレータは、
     前記製造装置を構成する各階層の部品の位置情報を少なくとも含むCADデータと、そのCADデータに対応する動作パラメータとの入力を受け付けるモデリングレイアウト部と、
     前記CADデータと動作パラメータとを少なくとも含む装置レイアウトデータを記憶するデータ記憶部と、
     前記データ記憶部で記憶した前記装置レイアウトデータと前記装置コントローラから受け取った制御指令とに基づいて、前記製造装置の各階層に対応したシミュレーションプログラムにより、仮想的な製造装置としてシミュレーション処理を実行するシミュレーション処理部と、
     前記シミュレーション処理部におけるシミュレーション状況を、前記装置シミュレータの表示装置に表示させる表示処理部と、を有しており、
     前記装置コントローラは、
     前記製造装置に対する制御を行う実制御モードと、前記装置シミュレータにおける前記仮想的な製造装置に対する制御を行うシミュレーションモードとの切替が可能であって、
     前記シミュレーションモードでは、前記装置シミュレータにおける前記仮想的な製造装置に対して制御指令を渡し、前記実制御モードでは、実際に製造された前記製造装置に対して制御指令を渡すことで、前記製造装置及び前記仮想的な製造装置の制御を行い、
     前記EESは、
     前記装置シミュレータにおける仮想的な製造装置でのシミュレーション処理の実行結果と、前記製造装置における実行結果とをそれぞれ取得し、各実行結果を比較可能なように表示する、
     ことを特徴とする装置設計製造支援システム。
    A device design / manufacturing support system for supporting design / manufacturing of a manufacturing device,
    The apparatus design / manufacturing support system includes an apparatus simulator, an apparatus controller, and an EES.
    The device simulator is
    A modeling layout unit that accepts input of CAD data including at least position information of parts of each layer constituting the manufacturing apparatus, and operation parameters corresponding to the CAD data;
    A data storage unit for storing device layout data including at least the CAD data and operation parameters;
    Simulation for executing a simulation process as a virtual manufacturing device by a simulation program corresponding to each layer of the manufacturing device based on the device layout data stored in the data storage unit and a control command received from the device controller A processing unit;
    A display processing unit for displaying a simulation status in the simulation processing unit on a display device of the device simulator,
    The device controller is
    It is possible to switch between an actual control mode for controlling the manufacturing apparatus and a simulation mode for controlling the virtual manufacturing apparatus in the apparatus simulator,
    In the simulation mode, a control command is passed to the virtual manufacturing device in the device simulator, and in the actual control mode, the control command is passed to the actually manufactured manufacturing device. And controlling the virtual manufacturing apparatus,
    The EES is
    The execution result of the simulation process in the virtual manufacturing apparatus in the apparatus simulator and the execution result in the manufacturing apparatus are respectively acquired and displayed so that the respective execution results can be compared.
    A device design and manufacturing support system characterized by that.
  3.  前記装置シミュレータのモデリングレイアウト部は、
     前記EESにおける、前記仮想的な製造装置での実行結果と、前記製造装置における実行結果との比較の結果を反映した、新たな動作パラメータの入力を前記モデリングレイアウト部で受け付け、
     前記シミュレーション処理部は、
     前記受け付けた新たな動作パラメータと前記装置コントローラからの制御指令とに基づいて、前記製造装置の各階層に対応したシミュレーションプログラムにより、前記仮想的な製造装置としてのシミュレーション処理を、再度、実行する、
     ことを特徴とする請求項2に記載の装置設計製造支援システム。
    The modeling layout part of the device simulator is
    In the EES, the modeling layout unit accepts an input of a new operation parameter that reflects the result of comparison between the execution result in the virtual manufacturing apparatus and the execution result in the manufacturing apparatus.
    The simulation processing unit
    Based on the received new operation parameter and the control command from the apparatus controller, the simulation program as the virtual manufacturing apparatus is executed again by the simulation program corresponding to each layer of the manufacturing apparatus.
    The apparatus design and manufacturing support system according to claim 2.
  4.  製造装置の設計、製造を支援する装置設計製造支援システムで用いる装置シミュレータであって、
     前記装置シミュレータは、
     前記製造装置を構成する各階層の部品の位置情報を少なくとも含むCADデータと、そのCADデータに対応する動作パラメータとの入力を受け付けるモデリングレイアウト部と、
     前記CADデータと動作パラメータとを少なくとも含む装置レイアウトデータを記憶するデータ記憶部と、
     前記データ記憶部で記憶した前記装置レイアウトデータと、実際に製造される製造装置と前記装置シミュレータにおける仮想的な製造装置との双方を制御可能な装置コントローラから受け取った前記仮想的な製造装置に対する制御指令とに基づいて、前記製造装置の各階層に対応したシミュレーションプログラムにより、前記仮想的な製造装置としてシミュレーション処理を実行するシミュレーション処理部と、
     前記シミュレーション処理部におけるシミュレーション状況を、前記装置シミュレータの表示装置に表示させる表示処理部と、
     を有することを特徴とする装置設計製造支援システムで用いる装置シミュレータ。
    A device simulator used in a device design / manufacturing support system that supports design / manufacturing of a manufacturing device,
    The device simulator is
    A modeling layout unit that accepts input of CAD data including at least position information of parts of each layer constituting the manufacturing apparatus, and operation parameters corresponding to the CAD data;
    A data storage unit for storing device layout data including at least the CAD data and operation parameters;
    Control for the virtual manufacturing apparatus received from the apparatus controller capable of controlling both the apparatus layout data stored in the data storage unit and the actually manufactured manufacturing apparatus and the virtual manufacturing apparatus in the apparatus simulator. A simulation processing unit that executes a simulation process as the virtual manufacturing device by a simulation program corresponding to each level of the manufacturing device based on the command;
    A display processing unit for displaying a simulation status in the simulation processing unit on a display device of the device simulator;
    A device simulator for use in a device design and manufacturing support system.
  5.  製造装置の設計、製造を支援する装置設計製造支援システムで用いる装置シミュレータを、
     前記製造装置を構成する各階層の部品の位置情報を少なくとも含むCADデータと、そのCADデータに対応する動作パラメータとの入力を受け付け、前記CADデータと動作パラメータとを対応づけて、所定の記憶装置に装置レイアウトデータとして記憶させるモデリングレイアウト部、
     前記記憶装置で記憶した前記装置レイアウトデータと、実際に製造される製造装置と前記装置シミュレータにおける仮想的な製造装置との双方を制御可能な装置コントローラから受け取った前記仮想的な製造装置に対する制御指令とに基づいて、前記製造装置の各階層に対応したシミュレーションプログラムにより、前記仮想的な製造装置としてシミュレーション処理を実行するシミュレーション処理部、
     前記シミュレーション処理部におけるシミュレーション状況を、前記装置シミュレータの表示装置に表示させる表示処理部、
     として機能させることを特徴とする装置設計製造支援システムで用いる装置シミュレータのプログラム。
    A device simulator for use in a device design / manufacturing support system that supports design / manufacturing
    A predetermined storage device that accepts input of CAD data including at least position information of components of each layer constituting the manufacturing apparatus and operation parameters corresponding to the CAD data, and associates the CAD data with the operation parameters. Modeling layout part to be stored as device layout data in
    Control instructions for the virtual manufacturing device received from the device controller capable of controlling both the device layout data stored in the storage device and the actually manufactured manufacturing device and the virtual manufacturing device in the device simulator And a simulation processing unit that executes a simulation process as the virtual manufacturing device by a simulation program corresponding to each level of the manufacturing device,
    A display processing unit for displaying a simulation status in the simulation processing unit on a display device of the device simulator;
    A device simulator program used in a device design and manufacturing support system, characterized in that the device simulator functions.
  6.  装置シミュレータを用いて製造装置の設計、製造を支援する装置設計製造支援方法であって、
     前記製造装置を構成する各階層の部品の位置情報を少なくとも含むCADデータをCADにおいて生成して前記装置シミュレータに読み込ませ、
     前記CADデータに対応する動作パラメータを前記装置シミュレータに読み込ませ、
     前記読み込ませたCADデータに前記動作パラメータを対応づけ、そのCADデータと動作パラメータとを少なくとも含む装置レイアウトデータとして記憶させ、
     前記装置シミュレータにおいて、実際に製造される製造装置と前記装置シミュレータにおける仮想的な製造装置との双方を制御可能な装置コントローラから受け取った前記仮想的な製造装置に対する制御指令と前記記憶した装置レイアウトデータとに基づいて、前記製造装置の各階層に対応したシミュレーションプログラムにより、仮想的な製造装置としてシミュレーション処理を実行し、
     前記シミュレーション処理の実行結果に基づいて、新たな動作パラメータの入力を受け付けて前記装置シミュレータに読み込むことで、前記装置シミュレータにおける前記仮想的な製造装置を用いて、再度、シミュレーション処理を実行する、
     ことを特徴とする装置設計製造支援方法。
    A device design and manufacturing support method for supporting design and manufacturing of a manufacturing device using a device simulator,
    CAD data including at least position information of parts of each layer constituting the manufacturing apparatus is generated in the CAD and read by the apparatus simulator;
    Causing the device simulator to read operation parameters corresponding to the CAD data;
    Associating the operation parameters with the read CAD data, and storing them as device layout data including at least the CAD data and the operation parameters,
    In the apparatus simulator, control commands for the virtual manufacturing apparatus and the stored apparatus layout data received from an apparatus controller capable of controlling both the actually manufactured manufacturing apparatus and the virtual manufacturing apparatus in the apparatus simulator. Based on the above, a simulation program corresponding to each level of the manufacturing apparatus performs a simulation process as a virtual manufacturing apparatus,
    Based on the execution result of the simulation process, by receiving an input of a new operation parameter and reading it into the apparatus simulator, the simulation process is executed again using the virtual manufacturing apparatus in the apparatus simulator.
    A device design / manufacturing support method.
  7.  装置シミュレータと装置コントローラとEESとを用いて製造装置の設計、製造を支援する装置設計製造支援方法であって、
     前記製造装置を構成する各階層の部品の位置情報を少なくとも含むCADデータをCADにおいて生成して前記装置シミュレータに読み込ませ、
     前記CADデータに対応する動作パラメータを前記装置シミュレータに読み込ませ、
     前記読み込ませたCADデータに前記動作パラメータを対応づけ、そのCADデータと動作パラメータとを少なくとも含む装置レイアウトデータとして記憶させ、
     前記装置シミュレータにおいて、前記記憶した装置レイアウトデータと前記装置コントローラから受け取った制御指令とに基づいて、前記製造装置の各階層に対応したシミュレーションプログラムにより、仮想的な製造装置としてシミュレーション処理を実行し、
     前記装置シミュレータにおける仮想的な製造装置でのシミュレーション処理の実行結果を前記EESで受け取り、
     実際に製造される前記製造装置での実行結果を前記EESで受け取り、
     前記仮想的な製造装置での実行結果と前記実際に製造される製造装置での実行結果とを比較可能なように表示し、
     前記比較の結果を反映した新たな動作パラメータが前記装置シミュレータに読み込まれることで、前記装置シミュレータにおける前記仮想的な製造装置を用いて、再度、シミュレーション処理を実行する、
     ことを特徴とする装置設計製造支援方法。
    A device design / manufacturing support method for supporting design / manufacturing of a manufacturing device using a device simulator, a device controller, and EES,
    CAD data including at least position information of parts of each layer constituting the manufacturing apparatus is generated in the CAD and read by the apparatus simulator;
    Causing the device simulator to read operation parameters corresponding to the CAD data;
    Associating the operation parameters with the read CAD data, and storing them as device layout data including at least the CAD data and the operation parameters,
    In the apparatus simulator, based on the stored apparatus layout data and the control command received from the apparatus controller, a simulation program corresponding to each level of the manufacturing apparatus executes a simulation process as a virtual manufacturing apparatus,
    The execution result of the simulation process in the virtual manufacturing apparatus in the apparatus simulator is received by the EES,
    The execution result in the manufacturing apparatus actually manufactured is received by the EES,
    The execution result in the virtual manufacturing apparatus and the execution result in the actually manufactured manufacturing apparatus are displayed so as to be comparable,
    A new operation parameter reflecting the result of the comparison is read into the device simulator, and the simulation process is executed again using the virtual manufacturing device in the device simulator.
    A device design / manufacturing support method.
PCT/JP2009/057125 2009-04-07 2009-04-07 Equipment design and manufacturing support system WO2010116491A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2009/057125 WO2010116491A1 (en) 2009-04-07 2009-04-07 Equipment design and manufacturing support system
JP2010532760A JP5075987B2 (en) 2009-04-07 2009-09-04 Equipment design and manufacturing support system
PCT/JP2009/065519 WO2010116547A1 (en) 2009-04-07 2009-09-04 System for supporting design/manufacturing of manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/057125 WO2010116491A1 (en) 2009-04-07 2009-04-07 Equipment design and manufacturing support system

Publications (1)

Publication Number Publication Date
WO2010116491A1 true WO2010116491A1 (en) 2010-10-14

Family

ID=42935800

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2009/057125 WO2010116491A1 (en) 2009-04-07 2009-04-07 Equipment design and manufacturing support system
PCT/JP2009/065519 WO2010116547A1 (en) 2009-04-07 2009-09-04 System for supporting design/manufacturing of manufacturing apparatus

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/065519 WO2010116547A1 (en) 2009-04-07 2009-09-04 System for supporting design/manufacturing of manufacturing apparatus

Country Status (1)

Country Link
WO (2) WO2010116491A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013009610A1 (en) * 2011-07-08 2013-01-17 Intelligrated Headquarters Llc Integrated simulation technology

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7131092B2 (en) * 2018-06-05 2022-09-06 オムロン株式会社 SIMULATION DEVICE, SIMULATION DEVICE CONTROL METHOD, AND SIMULATION DEVICE PROGRAM
WO2022009323A1 (en) * 2020-07-08 2022-01-13 Tdk株式会社 Film formation system, industrial plant system, and wafer film formation method
US11840757B2 (en) 2020-07-08 2023-12-12 Tdk Corporation Film deposition system, factory system, and method of depositing film on wafer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006059316A (en) * 2004-07-21 2006-03-02 Hitachi Kiden Kogyo Ltd Design support system of carrying device
JP2007133579A (en) * 2005-11-09 2007-05-31 Hitachi High-Technologies Corp Virtual simulation system and apparatus controller for industrial apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000056080A (en) * 1998-08-12 2000-02-25 Toshiba Corp Remote maintenance support system for plant

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006059316A (en) * 2004-07-21 2006-03-02 Hitachi Kiden Kogyo Ltd Design support system of carrying device
JP2007133579A (en) * 2005-11-09 2007-05-31 Hitachi High-Technologies Corp Virtual simulation system and apparatus controller for industrial apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013009610A1 (en) * 2011-07-08 2013-01-17 Intelligrated Headquarters Llc Integrated simulation technology
US8731722B2 (en) 2011-07-08 2014-05-20 Intelligrated Headquarters Llc Integrated simulation technology
US9280619B2 (en) 2011-07-08 2016-03-08 Intelligrated Headquarters, Llc Integrated simulation technology

Also Published As

Publication number Publication date
WO2010116547A1 (en) 2010-10-14

Similar Documents

Publication Publication Date Title
US11520571B2 (en) Software defined manufacturing/assembly system
US9501300B2 (en) Control system simulation system and method
JP4681082B1 (en) Device parameter setting support system
JP2006350549A (en) Integrated simulation system
US6173246B1 (en) Method and system for a unified process automation software system
EP2592506A2 (en) Chainable plug-ins
US20130144409A1 (en) Control program generation device, control program generation program, and control program generation method
US20230153486A1 (en) Method and device for simulation
US10437211B2 (en) Simulation system
JP2009265668A (en) Training simulator for engineering project
JP2007265238A (en) Simulation device and simulation method
WO2010116491A1 (en) Equipment design and manufacturing support system
US20090106002A1 (en) Process simulation framework
US9471295B2 (en) Method, device and computer program for the automatic installation or uninstallation of software modules on equipment on board an aircraft
JP5075987B2 (en) Equipment design and manufacturing support system
Brecher et al. Model-based control of a handling system with SysML
US20130238104A1 (en) System design device
Joo et al. Virtual control-a virtual cluster tool for testing and verifying a cluster tool controller and a scheduler
JP3598732B2 (en) Configuration management method for distributed control system and data used for the method
Ortloff et al. MEMS product engineering
JP4488231B2 (en) Program management device
JP2023151726A (en) Development device, development program, and development method
JP2019101757A (en) Production system verification method, production system verification device, and production system
TW202327831A (en) Simulation device for robot or machine tool
Sim et al. Full Stack Virtual Commissioning: Requirements Framework to Bridge Gaps in Current Virtual Commissioning Process

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09843001

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09843001

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP