WO2010116440A1 - Reactor - Google Patents
Reactor Download PDFInfo
- Publication number
- WO2010116440A1 WO2010116440A1 PCT/JP2009/056447 JP2009056447W WO2010116440A1 WO 2010116440 A1 WO2010116440 A1 WO 2010116440A1 JP 2009056447 W JP2009056447 W JP 2009056447W WO 2010116440 A1 WO2010116440 A1 WO 2010116440A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- brick layer
- main body
- outer cylinder
- brick
- layer
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/08—Compounds containing halogen
- C01B33/107—Halogenated silanes
- C01B33/1071—Tetrachloride, trichlorosilane or silicochloroform, dichlorosilane, monochlorosilane or mixtures thereof
- C01B33/10742—Tetrachloride, trichlorosilane or silicochloroform, dichlorosilane, monochlorosilane or mixtures thereof prepared by hydrochlorination of silicon or of a silicon-containing material
- C01B33/10757—Tetrachloride, trichlorosilane or silicochloroform, dichlorosilane, monochlorosilane or mixtures thereof prepared by hydrochlorination of silicon or of a silicon-containing material with the preferential formation of trichlorosilane
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/0006—Controlling or regulating processes
- B01J19/0013—Controlling the temperature of the process
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/0053—Details of the reactor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/02—Apparatus characterised by being constructed of material selected for its chemically-resistant properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00049—Controlling or regulating processes
- B01J2219/00051—Controlling the temperature
- B01J2219/00074—Controlling the temperature by indirect heating or cooling employing heat exchange fluids
- B01J2219/00087—Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
- B01J2219/00092—Tubes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00049—Controlling or regulating processes
- B01J2219/00051—Controlling the temperature
- B01J2219/00074—Controlling the temperature by indirect heating or cooling employing heat exchange fluids
- B01J2219/00087—Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
- B01J2219/00094—Jackets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00049—Controlling or regulating processes
- B01J2219/00051—Controlling the temperature
- B01J2219/0015—Controlling the temperature by thermal insulation means
- B01J2219/00155—Controlling the temperature by thermal insulation means using insulating materials or refractories
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/02—Apparatus characterised by their chemically-resistant properties
- B01J2219/025—Apparatus characterised by their chemically-resistant properties characterised by the construction materials of the reactor vessel proper
- B01J2219/0272—Graphite
Definitions
- the present invention relates to a reactor for performing a gas phase reaction under a high temperature condition.
- the present invention relates to a reactor for trichlorosilane that converts tetrachlorosilane and hydrogen into trichlorosilane.
- Trichlorosilane is expected to increase in demand as a raw material gas for high-purity silicon used in elements such as semiconductors and solar cells, and there has been a demand for efficient production of these.
- trichlorosilane used as a raw material for producing high-purity silicon (Si: silicon) is produced by reacting tetrachlorosilane (SiCl4: silicon tetrachloride) with hydrogen and converting it. To do.
- trichlorosilane is produced by a conversion reaction according to the following reaction formula (1).
- SiCl4 + H2 ⁇ SiHCl3 + HCl (1) This reaction is performed by heating a raw material gas composed of gasified tetrachlorosilane and hydrogen to about 800 ° C. to about 1300 ° C. in a reaction furnace.
- the trichlorosilane manufacturing apparatus is provided with a heat insulating structure for preventing heat transfer to the outside.
- Patent Documents 1 and 2 a reaction vessel in which a supply gas of tetrachlorosilane and hydrogen is supplied to the inside and a reaction product gas of trichlorosilane and hydrogen chloride is generated by a conversion reaction, and the periphery of the reaction vessel
- An apparatus for producing chlorosilane is disclosed.
- the heat insulating material is formed of carbon and attached to the inner wall surface of the cylindrical wall, the upper surface of the bottom plate portion, and the lower surface of the top plate portion so as to be attached inside the storage container, and heat is transferred to the outside of the storage container. The movement is restrained.
- the bottom of the reaction vessel is supported by a connecting pipe for gas supply and discharge.
- the reaction container is supported by the support pillar member installed in the container center part.
- a load due to the weight of the reaction vessel is locally applied to the tubular or columnar member and the bottom of the reaction vessel, which causes damage due to long-term use. It might be.
- the present invention has been made in view of the above circumstances, and provides a reactor having high heat insulating properties, capable of producing stable trichlorosilane, and excellent in durability.
- a substantially cylindrical outer cylinder container main body having a bottom plate, an outer cylinder container upper lid that hermetically seals the outer cylinder container main body, the outer cylinder container main body accommodated in the tetrachlorosilane,
- a reaction vessel in which a gas containing hydrogen is supplied and a gas containing trichlorosilane and hydrogen chloride is generated, an upper lid heat insulating layer that covers the inner surface of the upper cover of the outer cylinder, and an inner surface of the outer cylinder body
- a laminated structure in which a brick layer is laminated in the order of an outer brick layer with low thermal conductivity and an inner brick layer with high heat resistance from the inner surface of the outer cylinder container main body toward the center.
- a reaction furnace is provided.
- the outermost brick layer having low thermal conductivity means the outermost brick layer composed of bricks having lower thermal conductivity than the brick constituting the innermost brick layer.
- a high heat-resistant innermost brick layer means the innermost brick layer comprised by the brick whose highest use temperature is higher than the brick which comprises an outermost brick layer.
- the main body of the outer cylinder container is provided with a main body heat insulating layer and a brick layer, and the brick layer has a plurality of types of brick layers having different properties, i.e., the lowest thermal conductivity. Since it has the laminated structure laminated
- the reactor according to the present invention has high heat insulation, can produce stable trichlorosilane, and is excellent in durability.
- FIG. 1 is a schematic view of a reaction furnace according to the present invention. Sectional drawing of the main body heat insulation layer and brick layer (3 layer structure) provided inside the outer cylinder container main-body part which concerns on this invention. The front view of the stationary plate of the reaction container which concerns on this invention.
- the reaction furnace 101 includes a substantially cylindrical outer cylinder container main body 102 having a bottom plate (outer cylinder container bottom 103) and an outer cylinder container main body 102 in an airtight manner.
- a reaction in which a gas containing tetrachlorosilane and hydrogen is supplied to the inside, and a gas containing trichlorosilane and hydrogen chloride is generated by being accommodated in the outer cylinder container upper lid portion 104 and the outer cylinder container main body portion 102 that are sealed to each other.
- 2 is a reactor having a laminated structure in which an outermost brick layer (203 in FIG. 2) with low thermal conductivity and an innermost brick layer (205 in FIG. 2) with high heat resistance are laminated in this order from the inner surface to the center. .
- the reaction furnace 101 includes a main body heat insulating layer 107 that covers the inner surface of the outer cylindrical container main body 102, a gas introduction opening 110 for supplying gas into the reaction container 105, and a tricycle generated in the reaction container 105.
- a reaction product gas extraction opening 111 for exhausting the reaction product gas containing chlorosilane and a heater 112 for heating the reaction vessel are provided.
- the outer cylinder container main body 102 has a substantially cylindrical shape including a bottom plate (outer cylinder container bottom 103), and is made of metal such as aluminum, iron, and stainless steel. Although a heat load of 1100 ° C. to 1400 ° C. is applied to the innermost brick layer by the heater 112 for heating the reaction vessel 105, the main body heat insulating layer 107 and the brick layer provided on the inner side of the outer tube container main body 102. Accordingly, the surface temperature of the outer cylinder container main body 102 becomes about 70 to 90 ° C.
- the upper opening end of the outer cylinder container main body 102 is provided with a fastening means for attaching an outer cylinder container upper lid 104 described later.
- a fastening means will not be specifically limited if the inside of an outer cylinder container can be sealed airtightly.
- a gas introduction opening 110 for supplying gas into the reaction vessel 105 is provided on the bottom plate of the outer cylinder vessel main body portion 102, and the reaction vessel 105 inner wall is provided on the side wall of the outer cylinder vessel main body portion 102.
- a reaction product gas extraction opening 111 is provided for exhausting the reaction product gas containing trichlorosilane produced in (1).
- a main body heat insulating layer 107 is provided inside the outer tube container main body 102 so as to cover it.
- the main body heat insulating layer 107 is disposed so as not to transmit heat that could not be insulated by the brick layer 108 described later to the outside of the outer tube container main body portion 102. Therefore, the thermal load applied to the main body heat insulating layer 107 is It is small, about 800 ° C to 1200 ° C. Therefore, as a material constituting the main body heat insulating layer 107, the maximum use temperature may be low, but a material having more excellent heat insulating performance is preferable.
- the main body heat insulating layer 107 is preferably composed of a plate-shaped heat insulating material.
- a heat insulating material a heat insulating material mainly composed of alumina or silica can be cited, and the maximum use temperature is 1200 ° C. or higher. Some are preferably used.
- a heat insulating board made of Khao wool (registered trademark) manufactured by Thermal Ceramics or Isowool (registered trademark) manufactured by Isolite Kogyo Co., Ltd.
- a brick layer 108 formed by stacking a plurality of types of bricks having different properties is provided further inside the main body heat insulating layer 107.
- the brick layer 108 has a laminated structure in which an outermost brick layer, an intermediate brick layer, and an innermost brick layer are laminated in this order toward the center of the outer container body 102.
- the brick layer 108 preferably has a two-layer structure in which each of the outermost brick layer (203 in FIG. 2) and the innermost brick layer (205 in FIG. 2) is one type. Or as shown in FIG. 2, it is good also as a 3 layer structure made into 1 type about each layer of the outermost brick layer 203, the intermediate
- the number of layers constituting the brick layer is not particularly limited, and is appropriately set depending on the size of the reaction furnace and the reaction temperature.
- the shape of the brick may be a substantially rectangular parallelepiped, or may be formed so as to have a slight curvature in accordance with the shape of the outer cylinder container main body that is substantially cylindrical. Moreover, in order to laminate bricks, each member along the shape inside the side wall of the outer cylinder container main body 102 is used without using an adhesive or the like in order to avoid mixing the components in the adhesive into the reaction phase. Is preferably incorporated stably.
- each brick constituting the brick layer 108 is more preferably one that has been baked at 1800 ° C. to remove the binder and organic matter in order to avoid contamination by foreign matter in the reaction phase.
- Inner brick layer Since the innermost brick layer is disposed at a position closest to the reaction container among the heat insulating members of the outer cylinder container main body 102 and is exposed to a high temperature, a material having an excellent maximum use temperature is preferable.
- the brick used for the innermost brick layer closest to the heater is subjected to a thermal load of about 1100 ° C to 1400 ° C, so the maximum operating temperature of the innermost brick layer is 1500 ° C or higher. Is preferred. Furthermore, it is preferable that the highest use temperature of the brick of an innermost brick layer is 1600 degreeC or more.
- the innermost brick layer forms the inner wall surface of the outer cylinder container, it may come into contact with hydrogen, hydrogen chloride, or chlorosilanes leaked from the reaction container 105 and may be corroded by these substances. Therefore, it is preferably made of a material that does not react with these substances, has high erosion resistance to acidic and basic slugs, has high resistance to strong reducing gas such as H 2 gas, and has chemical resistance.
- the brick having such characteristics is preferably made of Al 2 O 3 , SiO 2 , Fe 2 O 3 and having an Al 2 O 3 content of 99% or more.
- Examples of such bricks include ISOLITE (registered trademark) BAL-99 manufactured by Isolite Industrial Co., Ltd., MB-G manufactured by AGC Ceramics Co., Ltd., and GM180H manufactured by Marukoshi Kogyo Co., Ltd.
- the outermost brick layer is disposed between the innermost brick layer and the main body heat insulating layer 107, and insulates heat that has not been insulated by the innermost brick layer.
- the maximum use temperature may be lower than the brick of the innermost brick layer, but it is preferable to use one having excellent heat insulation performance.
- a brick it is preferable to use a low thermal conductivity brick having a thermal conductivity defined by JIS R 2616 of 0.7 W / m ⁇ K or less.
- a low thermal conductivity brick having a thermal conductivity of 0.27 W / m ⁇ K or less.
- the brick having such characteristics is preferably made of Al 2 O 3 , SiO 2 , Fe 2 O 3 and having a content of Fe 2 O 3 of 1% or less.
- Examples of such low thermal conductivity bricks include ISOLITE (registered trademark) LBK-28 manufactured by Isolite Industry Co., Ltd. and GM-13 manufactured by Marukoshi Industry Co., Ltd.
- An intermediate brick layer may be provided between the innermost brick layer and the outermost brick layer.
- the intermediate brick layer is disposed between the innermost brick layer and the outermost brick layer, and insulates heat that is not insulated by the innermost brick layer.
- the thermal load applied to the intermediate brick layer is about 1000 ° C to 1350 ° C.
- the intermediate brick layer does not need to be resistant to these materials because it does not come into direct contact with hydrogen, hydrogen chloride, or chlorosilanes, but it uses bricks with better thermal insulation than the innermost brick layer. It is preferable.
- Such a brick is preferably made of Al 2 O 3 , SiO 2 , Fe 2 O 3 and having an Al 2 O 3 content of 90% or more.
- Examples of such bricks include ISOLITE (registered trademark) BAL-90 manufactured by Isolite Kogyo Co., Ltd. and GM-160 manufactured by Marukoshi Kogyo Co., Ltd.
- the brick layer 108 is laminated at the bottom of the outer cylinder container main body 102 so as to surround the fixing plate 109 described later. If it can sufficiently withstand the weight of 105, the brick layer 108 can be laminated on the portion that contacts the fixing plate 109.
- the outer cylinder container upper cover part 104 is a substantially disk-shaped member that hermetically seals the upper opening end of the outer cylinder container main body part 102 and is made of the same material as the outer cylinder container main body part 102.
- the outer cylinder container upper cover part 104 is also provided with fastening means corresponding to the fastening means provided at the upper opening end of the outer cylinder container main body part 102.
- An upper lid heat insulating layer 106 is provided on the inner side of the outer cylinder container upper lid portion 104 so as not to leak the heat in the outer cylinder container main body portion 102 to the outside.
- the upper lid heat insulating layer 106 is attached to the inside of the outer cylinder container upper lid portion 104, it cannot be configured by incorporating bricks like the innermost brick layer. Therefore, it is preferable to use a material that has a high maximum use temperature, is excellent in corrosion resistance, and does not require incorporation, such as brick.
- a heat insulating material include a heat insulating material made of alumina fiber, such as Denka Arsene (registered trademark) manufactured by Denki Kagaku Kogyo Co., Ltd., and Isowool (registered trademark) manufactured by Isolite Industrial Co., Ltd. Can be mentioned.
- the heat insulation efficiency can be improved by attaching a heat insulating material constituting the upper cover heat insulating layer. By setting it as such a structure, the heat leak from the terminal part of the heater 112 can be suppressed.
- the bottom surface of the reaction vessel 105 is preferably installed on the outer cylinder vessel bottom 103 by a fixed plate 109.
- the fixing plate 109 is arranged on the bottom plate (outer cylinder container bottom 103) of the outer cylinder container main body 102, receives and supports the total weight of the reaction container 105 described later, and fixes it. Therefore, it is necessary to use a member having excellent strength so as to withstand the weight of the reaction vessel 105 as a member constituting the fixing plate 109, and for example, graphite can be used.
- the fixing plate 109 corresponds to the gas introduction opening 110 provided in the outer cylinder container main body 102 so that the gas supply into the reaction container 105 is not hindered when arranged on the bottom plate of the outer cylinder container main body 102.
- An opening is provided at a position to be used. The opening serves to fix the reaction vessel 105 by fitting a tubular projecting portion of a gas introduction opening 110 provided at the bottom of the reaction vessel 105 described later.
- the fixed plate 109 has a plurality of holes penetrating in the thickness direction, that is, in the vertical direction when arranged between the bottom plate of the outer cylinder container main body 102 and the reaction vessel 105.
- an air layer is formed in the through hole portion. Since air has a lower thermal conductivity than materials such as graphite used for the fixed plate 109, the formation of an air layer by providing such a through hole suppresses the release of heat through the fixed plate 109. Insulation performance can be improved. In addition, since the contact area between the fixed plate 109 and the reaction vessel can be reduced, heat transfer from the reaction vessel 105 to the fixed plate 109 can be prevented, and the heat insulation performance can be improved.
- the number and shape of the holes provided in the fixing plate 109 are not particularly limited as long as sufficient strength can be secured to receive the total weight of the reaction vessel. Therefore, typically, as shown in FIG. 3, an opening for inserting the gas introduction opening 110 of the reaction vessel is provided at the center thereof, and a disk-like member having a plurality of through holes around the opening is provided. can do.
- a pedestal made of expanded graphite is further provided between the fixed plate 109 and the outer cylinder container main body 102 to further suppress heat transfer from the lower portion of the fixed plate 109 to the outer cylinder container main body 102.
- the reaction vessel 105 is a substantially cylindrical vessel for reacting tetrachlorosilane and hydrogen in a high temperature environment.
- the reaction vessel 105 includes a gas introduction opening 110 for taking in tetrachlorosilane as a raw material and hydrogen gas, and a reaction product gas extraction opening 111 for deriving a reaction product gas containing trichlorosilane and hydrogen chloride.
- the gas introduction opening 110 has a configuration in which the periphery of the opening extends vertically from the bottom to form a tubular protrusion, and is fitted into the opening provided in the center of the fixing plate. In this embodiment, as shown in FIG. 1, the gas introduction opening 110 is provided in the center of the bottom of the reaction furnace, and the reaction product gas extraction opening 111 is provided in the upper side wall of the reaction vessel 105. These positions are not limited to this.
- a plurality of heaters 112 are installed at a predetermined interval between the reaction vessel 105 and the outer cylinder vessel main body 102.
- the heater 112 is installed so as to be suspended from the outer cylinder container upper lid 104.
- the heater installation method is not limited to the hanging type, and for example, the outer cylinder container main body with the electrode on the lower side. You may install so that it may stand up from the bottom of a part.
- the inner side of the main body of the outer cylinder container includes a main body heat insulating layer and a brick layer, and the brick layer has a plurality of types of brick layers having different properties, that is, low thermal conductivity. Since it has the laminated structure laminated
- the thermal conductivity of the brick of the outermost brick layer is 0.7 W / m ⁇ K or less, and further the thermal conductivity of the brick of the outermost brick layer is 0.27 W / m ⁇ K or less, the reactor The heat insulation performance can be improved.
- the maximum use temperature of the innermost brick layer is 1500 ° C or higher, and the highest use temperature of the innermost brick layer brick is 1600 ° C or higher, it can be used for thermal loads reaching 1100 ° C to 1400 ° C. I can bear it. And the heat insulation and durability of a reaction furnace can be improved by using what was excellent in the corrosion resistance with respect to hydrogen, hydrogen chloride, and chlorosilanes for an innermost brick layer.
- the heat insulation performance can be further improved.
- the fixing plate which has a some hole penetrated to the up-down direction which is arrange
- the area which a reaction container and an outer cylinder container main-body part contact can be reduced, and it can prevent that heat transfers to the exterior.
- the reaction vessel is supported by a flat plate-like member, so that depending on the weight of the reaction vessel on the bottom of the reaction vessel or the member supporting the reaction vessel There is no local load.
- reaction vessel is supported by depositing its entire weight on a fixed plate, it is not necessary to contact the upper cover of the outer tube vessel. Therefore, the area where the reaction container and the outer cylinder container come into contact can be reduced, and the heat of the reaction container can be prevented from escaping to the outside.
- reaction vessel is supported only by the fixed plate, even if the reaction vessel expands due to heating, distortion and breakage due to thermal expansion are unlikely to occur in the outer cylinder vessel main body and the reaction vessel.
- the fixing plate is made of graphite, even if the number of holes is increased in order to improve the heat insulation performance, the graphite is excellent in strength, so that it has sufficient strength to support the reaction vessel. be able to.
- reaction furnace according to the present invention has been described above, the present invention is not limited to these.
- Example 1 The reaction furnace as shown in FIG. 1 was produced using the outer cylinder container main body part which has the following heat insulation structures, and the reaction vessel fixing plate.
- Outer cylinder container top cover Alumina fiber (manufactured by Denki Kagaku Kogyo Co., Ltd .: Arsen (registered trademark)) was filled inside the outer lid portion of the outer cylinder container as an upper lid heat insulating layer.
- Outer cylinder body A heat insulation board (Iso wool (registered trademark) manufactured by Isolite Industry Co., Ltd.) was pasted as a main body heat insulation layer on the inner surface of the outer cylinder container main body, and the following heat-resistant bricks were stacked as a brick layer inside.
- Inner brick layer BAL-99
- Outer brick layer LBK-28 (Fixing plate)
- a graphite disc-like plate material having an opening for fitting the tubular projection of the gas inlet of the reaction vessel at the center and a plurality of through holes around it is used. It was.
- the diameter of the through hole was 5% of the diameter of the fixed plate, and the through hole was formed so as to occupy an area of 30% of the fixed plate.
- the outer cylinder container main body and the outer cylinder container upper lid were made of iron, and the reaction vessel was formed by connecting a plurality of substantially cylindrical carbon cylinders made of isotropic graphite whose surface was treated with a silicon carbide coating. A thing was used.
- the temperature of the surface part and outer peripheral surface part of the innermost brick layer of the reactor was measured.
- the temperature of the surface portion of the innermost brick layer was 1100 ° C.
- the temperature of the outer peripheral surface portion was 150 ° C.
- the apparatus was disassembled and the inside of the outer cylinder container main body, the brick layer, the fixed plate, etc. were observed, and any member was found to be distorted or damaged. There wasn't.
- Example 2 the brick layer has a three-layer structure as shown in FIG. At this time, BAL-90 was used for the intermediate brick layer. Other than that, the same experiment as in Example 1 was performed using a reactor manufactured in the same manner as in Example 1.
- the temperature of the surface part and outer peripheral surface part of the innermost brick layer of the reactor was measured.
- the temperature of the surface portion of the innermost brick layer was 1100 ° C.
- the temperature of the outer peripheral surface portion was 80 ° C.
- Example 3 In Example 3, a reactor similar to Example 2 was prepared except that a pedestal made of expanded graphite was disposed between the fixed plate and the outer cylinder container main body, and an experiment similar to Example 2 was performed. .
- the temperatures of the bottom surface portion and the outer bottom surface portion of the innermost brick layer of the reactor were measured.
- the temperature of the bottom surface portion of the innermost brick layer of the reactor was 1100 ° C.
- the temperature of the outer bottom surface portion was 80 ° C.
- Example 1 A single-layer brick layer was formed using only LBK-28. And the reactor similar to Example 1 was produced, and the experiment similar to Example 1 was conducted.
- the temperature of the surface part and outer peripheral surface part of the innermost brick layer of the reactor was measured.
- the temperature of the surface portion of the innermost brick layer was 1100 ° C.
- the temperature of the outer peripheral surface portion was 250 ° C.
- the apparatus was disassembled and the inside of the outer cylinder container main body, the brick layer, the fixed plate, etc. were observed, the brick layer was corroded.
- the temperature of the outer peripheral surface of an outer cylinder container main-body part is clearly high compared with the case of Example 1, and the heat inside a reactor tends to leak outside.
- the reaction furnace according to the present invention has high heat insulating properties, and thus has an effect of suppressing the manufacturing cost.
- the reactor according to the present invention has high heat insulation, can produce stable trichlorosilane, and is excellent in durability.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Silicon Compounds (AREA)
- Furnace Housings, Linings, Walls, And Ceilings (AREA)
Abstract
Disclosed is a reactor having high heat insulation and excellent durability, which enables stable production of trichlorosilane. The reactor comprises a generally cylindrical outer-cylindrical-container main body having a bottom plate; an outer-cylindrical-container top cover for hermetically sealing the outer-cylindrical-container main body; a reaction chamber for producing a gas containing trichlorosilane and hydrogen chloride, which is contained in the outer-cylindrical-container main body and into which a gas containing tetrachlorosilane and hydrogen is supplied; a top-cover heat insulation layer covering the inner surface of the outer-cylindrical-container top cover, and a brick layer arranged on the inner surface of the outer-cylindrical-container main body. The brick layer has a multilayer structure wherein a low thermally conductive outermost brick layer and a highly heat-resistant innermost brick layer are arranged in this order from the inner surface of the outer-cylindrical-container main body toward the center thereof.
Description
本発明は、高温条件下で気相反応を行うための反応炉に関する。特に、テトラクロロシランと水素とを反応させてトリクロロシランに転換するトリクロロシランの反応炉に関する。
The present invention relates to a reactor for performing a gas phase reaction under a high temperature condition. In particular, the present invention relates to a reactor for trichlorosilane that converts tetrachlorosilane and hydrogen into trichlorosilane.
トリクロロシランは、半導体や太陽電池等の素子に使用される高純度シリコンの原料ガスとして益々需要の増加が見込まれており、従来からこれらを効率良く製造することが要望されている。
Trichlorosilane is expected to increase in demand as a raw material gas for high-purity silicon used in elements such as semiconductors and solar cells, and there has been a demand for efficient production of these.
一般的に、高純度のシリコン(Si:珪素)を製造するための原料として使用されるトリクロロシラン(SiHCl3)は、テトラクロロシラン(SiCl4:四塩化珪素)を水素と反応させて転換することで製造する。
Generally, trichlorosilane (SiHCl3) used as a raw material for producing high-purity silicon (Si: silicon) is produced by reacting tetrachlorosilane (SiCl4: silicon tetrachloride) with hydrogen and converting it. To do.
即ち、トリクロロシランは、以下の反応式(1)による転換反応によって生成される。
SiCl4+H2 → SiHCl3+HCl ・・・(1)
この反応は、ガス化したテトラクロロシランと水素からなる原料ガスを反応炉において約800℃~約1300℃に加熱して行われる。 That is, trichlorosilane is produced by a conversion reaction according to the following reaction formula (1).
SiCl4 + H2 → SiHCl3 + HCl (1)
This reaction is performed by heating a raw material gas composed of gasified tetrachlorosilane and hydrogen to about 800 ° C. to about 1300 ° C. in a reaction furnace.
SiCl4+H2 → SiHCl3+HCl ・・・(1)
この反応は、ガス化したテトラクロロシランと水素からなる原料ガスを反応炉において約800℃~約1300℃に加熱して行われる。 That is, trichlorosilane is produced by a conversion reaction according to the following reaction formula (1).
SiCl4 + H2 → SiHCl3 + HCl (1)
This reaction is performed by heating a raw material gas composed of gasified tetrachlorosilane and hydrogen to about 800 ° C. to about 1300 ° C. in a reaction furnace.
前記のようにトリクロロシランの生成は高温環境下で行われるため、トリクロロシラン製造装置には外部への熱の移動を防ぐための断熱構造が設けられている。
As described above, since the generation of trichlorosilane is performed in a high temperature environment, the trichlorosilane manufacturing apparatus is provided with a heat insulating structure for preventing heat transfer to the outside.
例えば、特許文献1及び2には、テトラクロロシランと水素との供給ガスが内部に供給されて、転換反応によりトリクロロシランと塩化水素との反応生成ガスが生成される反応容器と、反応容器の周囲に配され、反応容器を加熱する加熱機構と、反応容器及び加熱機構の周囲を覆うように配された断熱材と、反応容器、加熱機構及び断熱材を収納する収納容器とを主に備えるトリクロロシラン製造装置が開示されている。
前記断熱材は、カーボンで形成され、収納容器に内貼りされるように、その筒状壁の内壁面、底板部の上面、天板部の下面にそれぞれ取り付けられ、熱が収納容器の外部へ移動するのを抑えている。
特開2008-133168号公報
特開2008-133175号公報
For example, in Patent Documents 1 and 2, a reaction vessel in which a supply gas of tetrachlorosilane and hydrogen is supplied to the inside and a reaction product gas of trichlorosilane and hydrogen chloride is generated by a conversion reaction, and the periphery of the reaction vessel A heating mechanism for heating the reaction vessel, a heat insulating material arranged to cover the periphery of the reaction vessel and the heating mechanism, and a storage container for storing the reaction vessel, the heating mechanism, and the heat insulating material. An apparatus for producing chlorosilane is disclosed.
The heat insulating material is formed of carbon and attached to the inner wall surface of the cylindrical wall, the upper surface of the bottom plate portion, and the lower surface of the top plate portion so as to be attached inside the storage container, and heat is transferred to the outside of the storage container. The movement is restrained.
JP 2008-133168 A JP 2008-133175 A
前記断熱材は、カーボンで形成され、収納容器に内貼りされるように、その筒状壁の内壁面、底板部の上面、天板部の下面にそれぞれ取り付けられ、熱が収納容器の外部へ移動するのを抑えている。
The heat insulating material is formed of carbon and attached to the inner wall surface of the cylindrical wall, the upper surface of the bottom plate portion, and the lower surface of the top plate portion so as to be attached inside the storage container, and heat is transferred to the outside of the storage container. The movement is restrained.
効率的なトリクロロシランの生成のためには、一定の温度制御下で加熱を行うことが重要であり、そのためには、反応容器内部を所望の温度に維持できる断熱構造が必要となる。
しかし、特許文献1及び2のような断熱構造では、収納容器の内面に単一のカーボン製断熱材が内貼りされているに過ぎず、また、反応容器の天板が収納容器の天板と接触しているため、断熱性が不十分であるという問題がある。 In order to efficiently produce trichlorosilane, it is important to perform heating under constant temperature control, and for that purpose, a heat insulating structure capable of maintaining the inside of the reaction vessel at a desired temperature is required.
However, in the heat insulating structures such asPatent Documents 1 and 2, only a single carbon heat insulating material is attached to the inner surface of the storage container, and the top plate of the reaction container is connected to the top plate of the storage container. Since they are in contact with each other, there is a problem that heat insulation is insufficient.
しかし、特許文献1及び2のような断熱構造では、収納容器の内面に単一のカーボン製断熱材が内貼りされているに過ぎず、また、反応容器の天板が収納容器の天板と接触しているため、断熱性が不十分であるという問題がある。 In order to efficiently produce trichlorosilane, it is important to perform heating under constant temperature control, and for that purpose, a heat insulating structure capable of maintaining the inside of the reaction vessel at a desired temperature is required.
However, in the heat insulating structures such as
また、効率的なトリクロロシランの生成のためには、充分な転換反応を実現するための長いガス流路が必要となり、大型の反応容器が使用される。そのため、反応容器が大型のものになり重量が増すと、それを支持する部材には、断熱性能のみならず高い強度を有し、長寿命のものが要求される。
Also, in order to efficiently produce trichlorosilane, a long gas flow path for realizing a sufficient conversion reaction is required, and a large reaction vessel is used. For this reason, when the reaction vessel becomes large and its weight increases, a member that supports the reaction vessel is required to have not only heat insulation performance but also high strength and a long life.
特許文献1のトリクロロシラン製造装置では、ガスの供給及び排出用の連結管によって反応容器の底部が支えられている。また、特許文献2のトリクロロシラン製造装置では、容器中心部に設置された支持柱部材によって反応容器が支持されている。
しかし、このように反応容器を管状または柱状部材のみで支える構造では、反応容器の重さによる負荷が管状または柱状部材および反応容器底部に局所的に加わることになり、長期にわたる使用により破損を招きかねない。 In the trichlorosilane production apparatus ofPatent Document 1, the bottom of the reaction vessel is supported by a connecting pipe for gas supply and discharge. Moreover, in the trichlorosilane manufacturing apparatus of patent document 2, the reaction container is supported by the support pillar member installed in the container center part.
However, in such a structure in which the reaction vessel is supported only by the tubular or columnar member, a load due to the weight of the reaction vessel is locally applied to the tubular or columnar member and the bottom of the reaction vessel, which causes damage due to long-term use. It might be.
しかし、このように反応容器を管状または柱状部材のみで支える構造では、反応容器の重さによる負荷が管状または柱状部材および反応容器底部に局所的に加わることになり、長期にわたる使用により破損を招きかねない。 In the trichlorosilane production apparatus of
However, in such a structure in which the reaction vessel is supported only by the tubular or columnar member, a load due to the weight of the reaction vessel is locally applied to the tubular or columnar member and the bottom of the reaction vessel, which causes damage due to long-term use. It might be.
本発明は前記事情に鑑みてなされたものであり、高い断熱性を有し、安定したトリクロロシランの製造を行うことができ、かつ耐久性にも優れる反応炉を提供する。
The present invention has been made in view of the above circumstances, and provides a reactor having high heat insulating properties, capable of producing stable trichlorosilane, and excellent in durability.
本発明によれば、底板を有する略円筒状の外筒容器本体部と、外筒容器本体部を気密に封止する外筒容器上蓋部と、外筒容器本体部内に収容され、テトラクロロシランと水素とを含むガスが内部に供給されトリクロロシランと塩化水素とを含むガスが生成される反応容器と、外筒容器上蓋部の内面を覆う上蓋断熱層と、外筒容器本体部の内面に配置されたレンガ層とを備え、レンガ層が、外筒容器本体部の内面から中心に向かって低熱伝導性の最外レンガ層、高耐熱性の最内レンガ層の順で積層された積層構造を有する反応炉が提供される。
According to the present invention, a substantially cylindrical outer cylinder container main body having a bottom plate, an outer cylinder container upper lid that hermetically seals the outer cylinder container main body, the outer cylinder container main body accommodated in the tetrachlorosilane, A reaction vessel in which a gas containing hydrogen is supplied and a gas containing trichlorosilane and hydrogen chloride is generated, an upper lid heat insulating layer that covers the inner surface of the upper cover of the outer cylinder, and an inner surface of the outer cylinder body A laminated structure in which a brick layer is laminated in the order of an outer brick layer with low thermal conductivity and an inner brick layer with high heat resistance from the inner surface of the outer cylinder container main body toward the center. A reaction furnace is provided.
ここで、低熱伝導性の最外レンガ層とは、最内レンガ層を構成するレンガよりも熱伝導率の低いレンガによって構成される最外レンガ層を意味する。また、高耐熱性の最内レンガ層とは、最外レンガ層を構成するレンガよりも最高使用温度の高いレンガによって構成される最内レンガ層を意味する。
Here, the outermost brick layer having low thermal conductivity means the outermost brick layer composed of bricks having lower thermal conductivity than the brick constituting the innermost brick layer. Moreover, a high heat-resistant innermost brick layer means the innermost brick layer comprised by the brick whose highest use temperature is higher than the brick which comprises an outermost brick layer.
上記構成からなる反応炉によれば、外筒容器本体部の内側には、本体断熱層とレンガ層とを備え、当該レンガ層が、性質の異なる複数種のレンガ層、すなわち低熱伝導性の最外レンガ層、高耐熱性の最内レンガ層の順で積層された積層構造を有するため、単一の断熱材のみからなる場合と比べて著しく断熱性を向上させることができる。
According to the reactor having the above-described configuration, the main body of the outer cylinder container is provided with a main body heat insulating layer and a brick layer, and the brick layer has a plurality of types of brick layers having different properties, i.e., the lowest thermal conductivity. Since it has the laminated structure laminated | stacked in order of the outer brick layer and the innermost brick layer of high heat resistance, heat insulation can be improved remarkably compared with the case where it consists only of a single heat insulating material.
本発明に係る反応炉は、高い断熱性を有し、安定したトリクロロシランの製造を行うことができ、かつ耐久性にも優れている。
The reactor according to the present invention has high heat insulation, can produce stable trichlorosilane, and is excellent in durability.
101 :反応炉
102 :外筒容器本体部
103 :外筒容器底部
104 :外筒容器上蓋部
105 :反応容器
106 :上蓋断熱層
107、202 :本体断熱層
108 :レンガ層
109、300 :固定板
110 :ガス導入開口部
111 :反応生成ガス抜き出し開口部
112 :ヒーター
201 :外筒容器の側壁
203 :最外レンガ層
204 :中間レンガ層
205 :最内レンガ層 DESCRIPTION OF SYMBOLS 101: Reaction furnace 102: Outer cylinder container main-body part 103: Outer cylinder container bottom part 104: Outer cylinder container upper cover part 105: Reaction container 106: Upper cover heat insulation layer 107,202: Main body heat insulation layer 108:Brick layer 109, 300: Fixed plate 110: Gas introduction opening 111: Reaction product gas extraction opening 112: Heater 201: Side wall 203 of outer cylinder container: Outermost brick layer 204: Intermediate brick layer 205: Inner brick layer
102 :外筒容器本体部
103 :外筒容器底部
104 :外筒容器上蓋部
105 :反応容器
106 :上蓋断熱層
107、202 :本体断熱層
108 :レンガ層
109、300 :固定板
110 :ガス導入開口部
111 :反応生成ガス抜き出し開口部
112 :ヒーター
201 :外筒容器の側壁
203 :最外レンガ層
204 :中間レンガ層
205 :最内レンガ層 DESCRIPTION OF SYMBOLS 101: Reaction furnace 102: Outer cylinder container main-body part 103: Outer cylinder container bottom part 104: Outer cylinder container upper cover part 105: Reaction container 106: Upper cover heat insulation layer 107,202: Main body heat insulation layer 108:
以下、図面を参照しながら、本発明に係る反応炉の具体的な実施態様について説明する。
本実施形態に係る反応炉101は、図1及び図2に示すように、底板(外筒容器底部103)を有する略円筒状の外筒容器本体部102と、外筒容器本体部102を気密に封止する外筒容器上蓋部104と、外筒容器本体部102内に収容され、テトラクロロシランと水素とを含むガスが内部に供給されトリクロロシランと塩化水素とを含むガスが生成される反応容器105と、外筒容器上蓋部104の内面を覆う上蓋断熱層106と、外筒容器本体部102の内面に配置されたレンガ層108とを備え、レンガ層108が、外筒容器本体部102の内面から中心に向かって低熱伝導性の最外レンガ層(図2の203)、高耐熱性の最内レンガ層(図2の205)の順で積層された積層構造を有する反応炉である。 Hereinafter, specific embodiments of the reactor according to the present invention will be described with reference to the drawings.
As shown in FIGS. 1 and 2, thereaction furnace 101 according to the present embodiment includes a substantially cylindrical outer cylinder container main body 102 having a bottom plate (outer cylinder container bottom 103) and an outer cylinder container main body 102 in an airtight manner. A reaction in which a gas containing tetrachlorosilane and hydrogen is supplied to the inside, and a gas containing trichlorosilane and hydrogen chloride is generated by being accommodated in the outer cylinder container upper lid portion 104 and the outer cylinder container main body portion 102 that are sealed to each other. A container 105, an upper lid heat insulating layer 106 covering the inner surface of the outer cylinder container upper lid portion 104, and a brick layer 108 disposed on the inner surface of the outer cylinder container main body portion 102. 2 is a reactor having a laminated structure in which an outermost brick layer (203 in FIG. 2) with low thermal conductivity and an innermost brick layer (205 in FIG. 2) with high heat resistance are laminated in this order from the inner surface to the center. .
本実施形態に係る反応炉101は、図1及び図2に示すように、底板(外筒容器底部103)を有する略円筒状の外筒容器本体部102と、外筒容器本体部102を気密に封止する外筒容器上蓋部104と、外筒容器本体部102内に収容され、テトラクロロシランと水素とを含むガスが内部に供給されトリクロロシランと塩化水素とを含むガスが生成される反応容器105と、外筒容器上蓋部104の内面を覆う上蓋断熱層106と、外筒容器本体部102の内面に配置されたレンガ層108とを備え、レンガ層108が、外筒容器本体部102の内面から中心に向かって低熱伝導性の最外レンガ層(図2の203)、高耐熱性の最内レンガ層(図2の205)の順で積層された積層構造を有する反応炉である。 Hereinafter, specific embodiments of the reactor according to the present invention will be described with reference to the drawings.
As shown in FIGS. 1 and 2, the
また、上記反応炉101には、外筒容器本体部102の内面を覆う本体断熱層107、反応容器105内にガスを供給するためのガス導入開口部110、反応容器105内で生成されたトリクロロシランを含む反応生成ガスを排気するための反応生成ガス抜き出し開口部111、反応容器を加熱するためのヒーター112が設けられている。
The reaction furnace 101 includes a main body heat insulating layer 107 that covers the inner surface of the outer cylindrical container main body 102, a gas introduction opening 110 for supplying gas into the reaction container 105, and a tricycle generated in the reaction container 105. A reaction product gas extraction opening 111 for exhausting the reaction product gas containing chlorosilane and a heater 112 for heating the reaction vessel are provided.
[外筒容器本体部]
外筒容器本体部102は、底板(外筒容器底部103)を備える略円筒状であり、アルミニウム、鉄、ステンレス等の金属からなる。
反応容器105を加熱するためのヒーター112により、最内レンガ層には1100℃~1400℃もの熱的負荷がかかるが、外筒容器本体部102の内側に設けられた本体断熱層107及びレンガ層108により、外筒容器本体部102の表面温度は70~90℃程度となる。 [Outer cylinder body]
The outer cylinder containermain body 102 has a substantially cylindrical shape including a bottom plate (outer cylinder container bottom 103), and is made of metal such as aluminum, iron, and stainless steel.
Although a heat load of 1100 ° C. to 1400 ° C. is applied to the innermost brick layer by theheater 112 for heating the reaction vessel 105, the main body heat insulating layer 107 and the brick layer provided on the inner side of the outer tube container main body 102. Accordingly, the surface temperature of the outer cylinder container main body 102 becomes about 70 to 90 ° C.
外筒容器本体部102は、底板(外筒容器底部103)を備える略円筒状であり、アルミニウム、鉄、ステンレス等の金属からなる。
反応容器105を加熱するためのヒーター112により、最内レンガ層には1100℃~1400℃もの熱的負荷がかかるが、外筒容器本体部102の内側に設けられた本体断熱層107及びレンガ層108により、外筒容器本体部102の表面温度は70~90℃程度となる。 [Outer cylinder body]
The outer cylinder container
Although a heat load of 1100 ° C. to 1400 ° C. is applied to the innermost brick layer by the
外筒容器本体部102の上部開口端には、後述する外筒容器上蓋部104を取り付けるための締結手段が設けられている。締結手段は、外筒容器の内部を気密に封止できるものであれば特に限定されない。
The upper opening end of the outer cylinder container main body 102 is provided with a fastening means for attaching an outer cylinder container upper lid 104 described later. A fastening means will not be specifically limited if the inside of an outer cylinder container can be sealed airtightly.
また、外筒容器本体部102の底板には、反応容器105内にガスを供給するためのガス導入開口部110が設けられており、外筒容器本体部102の側壁には、反応容器105内で生成されたトリクロロシランを含む反応生成ガスを排気するための反応生成ガス抜き出し開口部111が設けられている。
In addition, a gas introduction opening 110 for supplying gas into the reaction vessel 105 is provided on the bottom plate of the outer cylinder vessel main body portion 102, and the reaction vessel 105 inner wall is provided on the side wall of the outer cylinder vessel main body portion 102. A reaction product gas extraction opening 111 is provided for exhausting the reaction product gas containing trichlorosilane produced in (1).
[本体断熱層]
外筒容器本体部102の内側には、これを覆うように本体断熱層107が設けられている。
本体断熱層107は、後述するレンガ層108によって断熱しきれなかった熱を外筒容器本体部102の外に伝達させないために配置されるものであるため、本体断熱層107にかかる熱的負荷は小さく、800℃~1200℃程度である。そのため、本体断熱層107を構成する材質としては、最高使用温度は低くてもよいが、より断熱性能に優れた材質が好ましい。 [Main body insulation layer]
A main bodyheat insulating layer 107 is provided inside the outer tube container main body 102 so as to cover it.
The main bodyheat insulating layer 107 is disposed so as not to transmit heat that could not be insulated by the brick layer 108 described later to the outside of the outer tube container main body portion 102. Therefore, the thermal load applied to the main body heat insulating layer 107 is It is small, about 800 ° C to 1200 ° C. Therefore, as a material constituting the main body heat insulating layer 107, the maximum use temperature may be low, but a material having more excellent heat insulating performance is preferable.
外筒容器本体部102の内側には、これを覆うように本体断熱層107が設けられている。
本体断熱層107は、後述するレンガ層108によって断熱しきれなかった熱を外筒容器本体部102の外に伝達させないために配置されるものであるため、本体断熱層107にかかる熱的負荷は小さく、800℃~1200℃程度である。そのため、本体断熱層107を構成する材質としては、最高使用温度は低くてもよいが、より断熱性能に優れた材質が好ましい。 [Main body insulation layer]
A main body
The main body
本体断熱層107は、板状の断熱材によって構成されることが好ましく、このような断熱材としては、アルミナやシリカを主成分とする断熱材を挙げることができ、最高使用温度が1200℃以上あるものが好ましく用いられる。
The main body heat insulating layer 107 is preferably composed of a plate-shaped heat insulating material. As such a heat insulating material, a heat insulating material mainly composed of alumina or silica can be cited, and the maximum use temperature is 1200 ° C. or higher. Some are preferably used.
例えば、好ましい断熱材としては、Thermal Ceramics社製のカオウール(登録商標)やイソライト工業株式会社製のイソウール(登録商標)等からなる断熱ボードを挙げることができる。
For example, as a preferable heat insulating material, there can be mentioned a heat insulating board made of Khao wool (registered trademark) manufactured by Thermal Ceramics or Isowool (registered trademark) manufactured by Isolite Kogyo Co., Ltd.
[レンガ層]
前記本体断熱層107のさらに内側には、性質の異なる複数種のレンガを積み上げて形成したレンガ層108が設けられている。該レンガ層108は、外筒容器本体部102の中心に向かって最外レンガ層、中間レンガ層、最内レンガ層の順で積層された積層構造となっている。 [Brick layer]
Abrick layer 108 formed by stacking a plurality of types of bricks having different properties is provided further inside the main body heat insulating layer 107. The brick layer 108 has a laminated structure in which an outermost brick layer, an intermediate brick layer, and an innermost brick layer are laminated in this order toward the center of the outer container body 102.
前記本体断熱層107のさらに内側には、性質の異なる複数種のレンガを積み上げて形成したレンガ層108が設けられている。該レンガ層108は、外筒容器本体部102の中心に向かって最外レンガ層、中間レンガ層、最内レンガ層の順で積層された積層構造となっている。 [Brick layer]
A
レンガ層108は、最外レンガ層(図2の203)、最内レンガ層(図2の205)の各層について1種ずつとした2層構造とすることが好ましい。あるいは、図2に示すように、最外レンガ層203、中間レンガ層204、最内レンガ層205の各層について1種ずつとした3層構造としてもよい。
レンガ層を構成する層の数は特に限定されず、反応炉の大きさや反応温度によって適宜設定される。 Thebrick layer 108 preferably has a two-layer structure in which each of the outermost brick layer (203 in FIG. 2) and the innermost brick layer (205 in FIG. 2) is one type. Or as shown in FIG. 2, it is good also as a 3 layer structure made into 1 type about each layer of the outermost brick layer 203, the intermediate | middle brick layer 204, and the innermost brick layer 205. As shown in FIG.
The number of layers constituting the brick layer is not particularly limited, and is appropriately set depending on the size of the reaction furnace and the reaction temperature.
レンガ層を構成する層の数は特に限定されず、反応炉の大きさや反応温度によって適宜設定される。 The
The number of layers constituting the brick layer is not particularly limited, and is appropriately set depending on the size of the reaction furnace and the reaction temperature.
レンガの形状は、略直方体であってもよいが、略円筒状である外筒容器本体部の形状に合わせて若干の曲率を有するように形成されたものであってもよい。
また、レンガを積層するには、接着剤中の成分が反応相に混入することを避けるために、接着剤等を用いずに、外筒容器本体部102の側壁内部の形状に沿って各部材を安定に組み込むことが好ましい。 The shape of the brick may be a substantially rectangular parallelepiped, or may be formed so as to have a slight curvature in accordance with the shape of the outer cylinder container main body that is substantially cylindrical.
Moreover, in order to laminate bricks, each member along the shape inside the side wall of the outer cylinder containermain body 102 is used without using an adhesive or the like in order to avoid mixing the components in the adhesive into the reaction phase. Is preferably incorporated stably.
また、レンガを積層するには、接着剤中の成分が反応相に混入することを避けるために、接着剤等を用いずに、外筒容器本体部102の側壁内部の形状に沿って各部材を安定に組み込むことが好ましい。 The shape of the brick may be a substantially rectangular parallelepiped, or may be formed so as to have a slight curvature in accordance with the shape of the outer cylinder container main body that is substantially cylindrical.
Moreover, in order to laminate bricks, each member along the shape inside the side wall of the outer cylinder container
また、レンガ層108を構成する各レンガについても、反応相への異物混入を避けるため、1800℃で焼成を行ってバインダや有機物を除去したものであればより好ましい。
Also, each brick constituting the brick layer 108 is more preferably one that has been baked at 1800 ° C. to remove the binder and organic matter in order to avoid contamination by foreign matter in the reaction phase.
[最内レンガ層]
最内レンガ層は、外筒容器本体部102の断熱部材の中でも最も反応容器に近い位置に配置され、高温に晒されるため、最高使用温度に優れた材質が好ましい。 [Inner brick layer]
Since the innermost brick layer is disposed at a position closest to the reaction container among the heat insulating members of the outer cylinder containermain body 102 and is exposed to a high temperature, a material having an excellent maximum use temperature is preferable.
最内レンガ層は、外筒容器本体部102の断熱部材の中でも最も反応容器に近い位置に配置され、高温に晒されるため、最高使用温度に優れた材質が好ましい。 [Inner brick layer]
Since the innermost brick layer is disposed at a position closest to the reaction container among the heat insulating members of the outer cylinder container
ヒーターに最も近い位置にある最内レンガ層に使用されるレンガには、1100℃~1400℃程度の熱的負荷がかかるため、最内レンガ層のレンガの最高使用温度は1500℃以上であることが好ましい。さらには、最内レンガ層のレンガの最高使用温度は1600℃以上であることが好ましい。
The brick used for the innermost brick layer closest to the heater is subjected to a thermal load of about 1100 ° C to 1400 ° C, so the maximum operating temperature of the innermost brick layer is 1500 ° C or higher. Is preferred. Furthermore, it is preferable that the highest use temperature of the brick of an innermost brick layer is 1600 degreeC or more.
また、最内レンガ層は外筒容器の内壁面を成すため、反応容器105から漏れ出した水素、塩化水素、クロロシラン類と接触して、これらの物質により腐食を受ける場合がある。そのため、これらの物質と反応しない材質からなり、酸性、塩基性スラッグに対する耐浸食性が大きく、H2ガス等の強還元性ガスに対する抵抗性が大きい、化学耐性を有するものが好ましい。
Further, since the innermost brick layer forms the inner wall surface of the outer cylinder container, it may come into contact with hydrogen, hydrogen chloride, or chlorosilanes leaked from the reaction container 105 and may be corroded by these substances. Therefore, it is preferably made of a material that does not react with these substances, has high erosion resistance to acidic and basic slugs, has high resistance to strong reducing gas such as H 2 gas, and has chemical resistance.
このような特性を有するレンガとしては、Al2O3、SiO2、Fe2O3からなり、Al2O3の含有量が99%以上のものが好ましい。
このようなレンガとしては、例えば、イソライト工業株式会社製のISOLITE(登録商標) BAL-99、AGCセラミックス株式会社のMB-G、丸越工業株式会社のGM180Hを挙げることができる。 The brick having such characteristics is preferably made of Al 2 O 3 , SiO 2 , Fe 2 O 3 and having an Al 2 O 3 content of 99% or more.
Examples of such bricks include ISOLITE (registered trademark) BAL-99 manufactured by Isolite Industrial Co., Ltd., MB-G manufactured by AGC Ceramics Co., Ltd., and GM180H manufactured by Marukoshi Kogyo Co., Ltd.
このようなレンガとしては、例えば、イソライト工業株式会社製のISOLITE(登録商標) BAL-99、AGCセラミックス株式会社のMB-G、丸越工業株式会社のGM180Hを挙げることができる。 The brick having such characteristics is preferably made of Al 2 O 3 , SiO 2 , Fe 2 O 3 and having an Al 2 O 3 content of 99% or more.
Examples of such bricks include ISOLITE (registered trademark) BAL-99 manufactured by Isolite Industrial Co., Ltd., MB-G manufactured by AGC Ceramics Co., Ltd., and GM180H manufactured by Marukoshi Kogyo Co., Ltd.
[最外レンガ層]
最外レンガ層は、最内レンガ層と上記本体断熱層107との間に配置され、最内レンガ層で断熱されなかった熱を断熱する。 [Outermost brick layer]
The outermost brick layer is disposed between the innermost brick layer and the main bodyheat insulating layer 107, and insulates heat that has not been insulated by the innermost brick layer.
最外レンガ層は、最内レンガ層と上記本体断熱層107との間に配置され、最内レンガ層で断熱されなかった熱を断熱する。 [Outermost brick layer]
The outermost brick layer is disposed between the innermost brick layer and the main body
最外レンガ層にかかる熱的負荷は800℃~1200℃程度であるため、最高使用温度は最内レンガ層のレンガより低くてよいが、断熱性能に優れたものを使用することが好ましい。
このようなレンガとしては、JIS R 2616で規定される熱伝導率が0.7W/m・K以下である低熱伝導率レンガを用いることが好ましい。さらには、熱伝導率が0.27W/m・K以下である低熱伝導率レンガを用いることが好ましい。 Since the thermal load applied to the outermost brick layer is about 800 ° C. to 1200 ° C., the maximum use temperature may be lower than the brick of the innermost brick layer, but it is preferable to use one having excellent heat insulation performance.
As such a brick, it is preferable to use a low thermal conductivity brick having a thermal conductivity defined by JIS R 2616 of 0.7 W / m · K or less. Furthermore, it is preferable to use a low thermal conductivity brick having a thermal conductivity of 0.27 W / m · K or less.
このようなレンガとしては、JIS R 2616で規定される熱伝導率が0.7W/m・K以下である低熱伝導率レンガを用いることが好ましい。さらには、熱伝導率が0.27W/m・K以下である低熱伝導率レンガを用いることが好ましい。 Since the thermal load applied to the outermost brick layer is about 800 ° C. to 1200 ° C., the maximum use temperature may be lower than the brick of the innermost brick layer, but it is preferable to use one having excellent heat insulation performance.
As such a brick, it is preferable to use a low thermal conductivity brick having a thermal conductivity defined by JIS R 2616 of 0.7 W / m · K or less. Furthermore, it is preferable to use a low thermal conductivity brick having a thermal conductivity of 0.27 W / m · K or less.
このような特性を有するレンガとしては、Al2O3、SiO2、Fe2O3からなり、Fe2O3の含有量が1%以下のものが好ましい。
このような低熱伝導率レンガとしては、イソライト工業株式会社製のISOLITE(登録商標) LBK-28、丸越工業株式会社のGM-13を挙げることができる。 The brick having such characteristics is preferably made of Al 2 O 3 , SiO 2 , Fe 2 O 3 and having a content of Fe 2 O 3 of 1% or less.
Examples of such low thermal conductivity bricks include ISOLITE (registered trademark) LBK-28 manufactured by Isolite Industry Co., Ltd. and GM-13 manufactured by Marukoshi Industry Co., Ltd.
このような低熱伝導率レンガとしては、イソライト工業株式会社製のISOLITE(登録商標) LBK-28、丸越工業株式会社のGM-13を挙げることができる。 The brick having such characteristics is preferably made of Al 2 O 3 , SiO 2 , Fe 2 O 3 and having a content of Fe 2 O 3 of 1% or less.
Examples of such low thermal conductivity bricks include ISOLITE (registered trademark) LBK-28 manufactured by Isolite Industry Co., Ltd. and GM-13 manufactured by Marukoshi Industry Co., Ltd.
[中間レンガ層]
また、最内レンガ層及び最外レンガ層の間に、中間レンガ層を設けてもよい。
中間レンガ層は、最内レンガ層と最外レンガ層との間に配置され、最内レンガ層によって断熱されなかった熱を断熱する。中間レンガ層にかかる熱的負荷は1000℃~1350℃程度である。 [Intermediate brick layer]
An intermediate brick layer may be provided between the innermost brick layer and the outermost brick layer.
The intermediate brick layer is disposed between the innermost brick layer and the outermost brick layer, and insulates heat that is not insulated by the innermost brick layer. The thermal load applied to the intermediate brick layer is about 1000 ° C to 1350 ° C.
また、最内レンガ層及び最外レンガ層の間に、中間レンガ層を設けてもよい。
中間レンガ層は、最内レンガ層と最外レンガ層との間に配置され、最内レンガ層によって断熱されなかった熱を断熱する。中間レンガ層にかかる熱的負荷は1000℃~1350℃程度である。 [Intermediate brick layer]
An intermediate brick layer may be provided between the innermost brick layer and the outermost brick layer.
The intermediate brick layer is disposed between the innermost brick layer and the outermost brick layer, and insulates heat that is not insulated by the innermost brick layer. The thermal load applied to the intermediate brick layer is about 1000 ° C to 1350 ° C.
中間レンガ層は、水素、塩化水素、クロロシラン類と直接接触することはないため、これらの物質に対する耐性を備えている必要はないが、最内レンガ層よりも断熱性に優れたレンガを使用することが好ましい。
The intermediate brick layer does not need to be resistant to these materials because it does not come into direct contact with hydrogen, hydrogen chloride, or chlorosilanes, but it uses bricks with better thermal insulation than the innermost brick layer. It is preferable.
このようなレンガとしては、Al2O3、SiO2、Fe2O3からなり、Al2O3の含有量が90%以上のものが好ましい。
このようなレンガとしては、イソライト工業株式会社製のISOLITE(登録商標) BAL-90や丸越工業株式会社のGM-160を挙げることができる。 Such a brick is preferably made of Al 2 O 3 , SiO 2 , Fe 2 O 3 and having an Al 2 O 3 content of 90% or more.
Examples of such bricks include ISOLITE (registered trademark) BAL-90 manufactured by Isolite Kogyo Co., Ltd. and GM-160 manufactured by Marukoshi Kogyo Co., Ltd.
このようなレンガとしては、イソライト工業株式会社製のISOLITE(登録商標) BAL-90や丸越工業株式会社のGM-160を挙げることができる。 Such a brick is preferably made of Al 2 O 3 , SiO 2 , Fe 2 O 3 and having an Al 2 O 3 content of 90% or more.
Examples of such bricks include ISOLITE (registered trademark) BAL-90 manufactured by Isolite Kogyo Co., Ltd. and GM-160 manufactured by Marukoshi Kogyo Co., Ltd.
本実施形態では、図1に示すように、外筒容器本体部102の底部においては、後述する固定板109の周囲を取り囲むようにレンガ層108を積層しているが、レンガ層108が反応容器105の重さに十分に耐えられるのであれば、固定板109と接触する部位にもレンガ層108を積層することができる。
In the present embodiment, as shown in FIG. 1, the brick layer 108 is laminated at the bottom of the outer cylinder container main body 102 so as to surround the fixing plate 109 described later. If it can sufficiently withstand the weight of 105, the brick layer 108 can be laminated on the portion that contacts the fixing plate 109.
[外筒容器上蓋部]
外筒容器上蓋部104は、外筒容器本体部102の上部開口端を気密に封止する略円盤状の部材であり、外筒容器本体部102と同様の材質からなる。
外筒容器上蓋部104にも、外筒容器本体部102の上部開口端に設けられた締結手段に対応した締結手段が設けられている。外筒容器上蓋部104の内側には、外筒容器本体部102内の熱を外部に漏らさないために上蓋断熱層106が設けられている。 [Outer tube container top cover]
The outer cylinder containerupper cover part 104 is a substantially disk-shaped member that hermetically seals the upper opening end of the outer cylinder container main body part 102 and is made of the same material as the outer cylinder container main body part 102.
The outer cylinder containerupper cover part 104 is also provided with fastening means corresponding to the fastening means provided at the upper opening end of the outer cylinder container main body part 102. An upper lid heat insulating layer 106 is provided on the inner side of the outer cylinder container upper lid portion 104 so as not to leak the heat in the outer cylinder container main body portion 102 to the outside.
外筒容器上蓋部104は、外筒容器本体部102の上部開口端を気密に封止する略円盤状の部材であり、外筒容器本体部102と同様の材質からなる。
外筒容器上蓋部104にも、外筒容器本体部102の上部開口端に設けられた締結手段に対応した締結手段が設けられている。外筒容器上蓋部104の内側には、外筒容器本体部102内の熱を外部に漏らさないために上蓋断熱層106が設けられている。 [Outer tube container top cover]
The outer cylinder container
The outer cylinder container
[上蓋断熱層]
上蓋断熱層106は外筒容器上蓋部104の内面を構成することから、最内レンガ層と同様に、その熱的負荷は1100℃~1400℃程度程度に達する。そのため、最高使用温度に優れ、しかも反応容器105から漏れ出すおそれのある水素、塩化水素、クロロシラン類に対する腐食耐性を備えた材質が好ましい。 [Top cover insulation layer]
Since the upper lidheat insulating layer 106 constitutes the inner surface of the upper lid portion 104 of the outer cylinder container, the thermal load reaches about 1100 ° C. to 1400 ° C. like the innermost brick layer. Therefore, a material having excellent corrosion resistance against hydrogen, hydrogen chloride, and chlorosilanes that are excellent in the maximum use temperature and may leak from the reaction vessel 105 is preferable.
上蓋断熱層106は外筒容器上蓋部104の内面を構成することから、最内レンガ層と同様に、その熱的負荷は1100℃~1400℃程度程度に達する。そのため、最高使用温度に優れ、しかも反応容器105から漏れ出すおそれのある水素、塩化水素、クロロシラン類に対する腐食耐性を備えた材質が好ましい。 [Top cover insulation layer]
Since the upper lid
しかし、上蓋断熱層106は、外筒容器上蓋部104の内側に取り付けられるため、最内レンガ層のようにレンガを組み込むことにより構成することはできない。従って、最高使用温度が高く、耐腐食性にも優れ、レンガのように組み込みを必要としない材質を使用することが好ましい。
このような断熱材としては、アルミナ繊維からなる断熱材を挙げることができ、例えば、電気化学工業株式会社製デンカアルセン(登録商標)、その他、イソライト工業株式会社製のイソウール(登録商標)等を挙げることができる。 However, since the upper lidheat insulating layer 106 is attached to the inside of the outer cylinder container upper lid portion 104, it cannot be configured by incorporating bricks like the innermost brick layer. Therefore, it is preferable to use a material that has a high maximum use temperature, is excellent in corrosion resistance, and does not require incorporation, such as brick.
Examples of such a heat insulating material include a heat insulating material made of alumina fiber, such as Denka Arsene (registered trademark) manufactured by Denki Kagaku Kogyo Co., Ltd., and Isowool (registered trademark) manufactured by Isolite Industrial Co., Ltd. Can be mentioned.
このような断熱材としては、アルミナ繊維からなる断熱材を挙げることができ、例えば、電気化学工業株式会社製デンカアルセン(登録商標)、その他、イソライト工業株式会社製のイソウール(登録商標)等を挙げることができる。 However, since the upper lid
Examples of such a heat insulating material include a heat insulating material made of alumina fiber, such as Denka Arsene (registered trademark) manufactured by Denki Kagaku Kogyo Co., Ltd., and Isowool (registered trademark) manufactured by Isolite Industrial Co., Ltd. Can be mentioned.
また、上蓋内に設けられているヒーター112の端子部(図示せず)についても、上蓋断熱層を構成する断熱材を取り付けることにより、断熱効率の向上を図ることができる。このような構成とすることにより、ヒーター112の端子部からの熱漏れを抑えることができる。
Also, with respect to the terminal portion (not shown) of the heater 112 provided in the upper lid, the heat insulation efficiency can be improved by attaching a heat insulating material constituting the upper cover heat insulating layer. By setting it as such a structure, the heat leak from the terminal part of the heater 112 can be suppressed.
[固定板]
また、図1に示すように、反応容器105の底面は、固定板109によって外筒容器底部103上に設置されていることが好ましい。
固定板109は、外筒容器本体部102の底板(外筒容器底部103)上に配置され、後述する反応容器105の全重量を受けて支え、これを固定する。そのため、固定板109を構成する部材としては、反応容器105の重みに耐えられるように強度が優れたものを使用する必要があり、例えば、グラファイトを挙げることができる。 [Fixed plate]
As shown in FIG. 1, the bottom surface of thereaction vessel 105 is preferably installed on the outer cylinder vessel bottom 103 by a fixed plate 109.
The fixingplate 109 is arranged on the bottom plate (outer cylinder container bottom 103) of the outer cylinder container main body 102, receives and supports the total weight of the reaction container 105 described later, and fixes it. Therefore, it is necessary to use a member having excellent strength so as to withstand the weight of the reaction vessel 105 as a member constituting the fixing plate 109, and for example, graphite can be used.
また、図1に示すように、反応容器105の底面は、固定板109によって外筒容器底部103上に設置されていることが好ましい。
固定板109は、外筒容器本体部102の底板(外筒容器底部103)上に配置され、後述する反応容器105の全重量を受けて支え、これを固定する。そのため、固定板109を構成する部材としては、反応容器105の重みに耐えられるように強度が優れたものを使用する必要があり、例えば、グラファイトを挙げることができる。 [Fixed plate]
As shown in FIG. 1, the bottom surface of the
The fixing
固定板109には、外筒容器本体部102の底板上に配置した際に反応容器105内へのガス供給を妨げないよう、外筒容器本体部102に設けられたガス導入開口部110と対応する位置に開口部が設けられている。当該開口部は、後述する反応容器105の底部に設けられたガス導入開口部110の管状突出部を嵌合させることで、反応容器105を固定する役割を果たす。
The fixing plate 109 corresponds to the gas introduction opening 110 provided in the outer cylinder container main body 102 so that the gas supply into the reaction container 105 is not hindered when arranged on the bottom plate of the outer cylinder container main body 102. An opening is provided at a position to be used. The opening serves to fix the reaction vessel 105 by fitting a tubular projecting portion of a gas introduction opening 110 provided at the bottom of the reaction vessel 105 described later.
さらに、固定板109は、その厚み方向、すなわち外筒容器本体部102の底板と反応容器105との間に配置したときの上下方向に貫通する複数の孔を有する。
Furthermore, the fixed plate 109 has a plurality of holes penetrating in the thickness direction, that is, in the vertical direction when arranged between the bottom plate of the outer cylinder container main body 102 and the reaction vessel 105.
固定板109に複数の貫通孔を設けることにより、貫通孔部分には、空気の層ができる。空気は固定板109に使用されるグラファイト等の材料に比べ熱伝導率が低いため、このような貫通孔を設けて空気の層を形成することにより、固定板109を介した熱の放出が抑制され、断熱性能を向上させることができる。
また、固定板109と反応容器との接触面積を減らすことができるため、反応容器105から固定板109へ熱が移動するのを防ぎ、断熱性能を向上させることができる。 By providing a plurality of through holes in the fixingplate 109, an air layer is formed in the through hole portion. Since air has a lower thermal conductivity than materials such as graphite used for the fixed plate 109, the formation of an air layer by providing such a through hole suppresses the release of heat through the fixed plate 109. Insulation performance can be improved.
In addition, since the contact area between thefixed plate 109 and the reaction vessel can be reduced, heat transfer from the reaction vessel 105 to the fixed plate 109 can be prevented, and the heat insulation performance can be improved.
また、固定板109と反応容器との接触面積を減らすことができるため、反応容器105から固定板109へ熱が移動するのを防ぎ、断熱性能を向上させることができる。 By providing a plurality of through holes in the fixing
In addition, since the contact area between the
固定板109に設けられる孔の個数や形状は、反応容器の全重量を受けとめるに充分な強度を確保できれば、特に限定されない。従って、典型的には、図3に示すように、その中心に反応容器のガス導入開口部110を挿通させるための開口部を備え、その周囲には複数の貫通孔を備えた円盤状部材とすることができる。
The number and shape of the holes provided in the fixing plate 109 are not particularly limited as long as sufficient strength can be secured to receive the total weight of the reaction vessel. Therefore, typically, as shown in FIG. 3, an opening for inserting the gas introduction opening 110 of the reaction vessel is provided at the center thereof, and a disk-like member having a plurality of through holes around the opening is provided. can do.
また、固定板109と外筒容器本体部102との間に膨張黒鉛からなる台座をさらに設け、固定板109の下部から外筒容器本体部102への熱の移動をさらに抑制することが好ましい。
Further, it is preferable that a pedestal made of expanded graphite is further provided between the fixed plate 109 and the outer cylinder container main body 102 to further suppress heat transfer from the lower portion of the fixed plate 109 to the outer cylinder container main body 102.
[反応容器]
反応容器105は、テトラクロロシランと水素とを高温環境下で反応させるための略円筒形状の容器である。この反応容器105は、原料となるテトラクロロシランと水素ガスを取り込むためのガス導入開口部110と、トリクロロシランと塩化水素とを含む反応生成ガスを導出するための反応生成ガス抜き出し開口部111とを有する。
ガス導入開口部110は、開口の周囲が底部から垂直に延伸して管状突出部を形成し、前記固定板の中央に設けられた開口部に嵌合する構成とされている。
なお、本実施形態では、図1に示すように、ガス導入開口部110を反応炉の底部中央に設け、反応生成ガス抜き出し開口部111を反応容器105の上方側壁に設けた構成としているが、これらの位置については、これに限定されるものではない。 [Reaction vessel]
Thereaction vessel 105 is a substantially cylindrical vessel for reacting tetrachlorosilane and hydrogen in a high temperature environment. The reaction vessel 105 includes a gas introduction opening 110 for taking in tetrachlorosilane as a raw material and hydrogen gas, and a reaction product gas extraction opening 111 for deriving a reaction product gas containing trichlorosilane and hydrogen chloride. Have.
The gas introduction opening 110 has a configuration in which the periphery of the opening extends vertically from the bottom to form a tubular protrusion, and is fitted into the opening provided in the center of the fixing plate.
In this embodiment, as shown in FIG. 1, the gas introduction opening 110 is provided in the center of the bottom of the reaction furnace, and the reaction productgas extraction opening 111 is provided in the upper side wall of the reaction vessel 105. These positions are not limited to this.
反応容器105は、テトラクロロシランと水素とを高温環境下で反応させるための略円筒形状の容器である。この反応容器105は、原料となるテトラクロロシランと水素ガスを取り込むためのガス導入開口部110と、トリクロロシランと塩化水素とを含む反応生成ガスを導出するための反応生成ガス抜き出し開口部111とを有する。
ガス導入開口部110は、開口の周囲が底部から垂直に延伸して管状突出部を形成し、前記固定板の中央に設けられた開口部に嵌合する構成とされている。
なお、本実施形態では、図1に示すように、ガス導入開口部110を反応炉の底部中央に設け、反応生成ガス抜き出し開口部111を反応容器105の上方側壁に設けた構成としているが、これらの位置については、これに限定されるものではない。 [Reaction vessel]
The
The gas introduction opening 110 has a configuration in which the periphery of the opening extends vertically from the bottom to form a tubular protrusion, and is fitted into the opening provided in the center of the fixing plate.
In this embodiment, as shown in FIG. 1, the gas introduction opening 110 is provided in the center of the bottom of the reaction furnace, and the reaction product
[ヒーター]
ヒーター112は、反応容器105と外筒容器本体部102との間に、所定の間隔をあけて複数設置される。本実施形態では、ヒーター112を外筒容器上蓋部104から吊り下げるように設置したが、ヒーターの設置方法は吊り下げ式に制限されるものではなく、例えば、電極を下側として外筒容器本体部の底部から立ち上がるように設置してもよい。 [heater]
A plurality ofheaters 112 are installed at a predetermined interval between the reaction vessel 105 and the outer cylinder vessel main body 102. In the present embodiment, the heater 112 is installed so as to be suspended from the outer cylinder container upper lid 104. However, the heater installation method is not limited to the hanging type, and for example, the outer cylinder container main body with the electrode on the lower side. You may install so that it may stand up from the bottom of a part.
ヒーター112は、反応容器105と外筒容器本体部102との間に、所定の間隔をあけて複数設置される。本実施形態では、ヒーター112を外筒容器上蓋部104から吊り下げるように設置したが、ヒーターの設置方法は吊り下げ式に制限されるものではなく、例えば、電極を下側として外筒容器本体部の底部から立ち上がるように設置してもよい。 [heater]
A plurality of
以下、本実施形態に係る反応炉の作用効果について説明する。
本実施形態に係る反応炉によれば、外筒容器本体部の内側には、本体断熱層とレンガ層とを備え、当該レンガ層が、性質の異なる複数種のレンガ層、すなわち低熱伝導性の最外レンガ層、高耐熱性の最内レンガ層の順で積層された積層構造を有するため、単一の断熱材のみからなる場合と比べて著しく断熱性を向上させることができる。 Hereinafter, the effect of the reactor according to the present embodiment will be described.
According to the reactor according to the present embodiment, the inner side of the main body of the outer cylinder container includes a main body heat insulating layer and a brick layer, and the brick layer has a plurality of types of brick layers having different properties, that is, low thermal conductivity. Since it has the laminated structure laminated | stacked in order of the outermost brick layer and the high heat resistant innermost brick layer, heat insulation can be improved remarkably compared with the case where it consists only of a single heat insulating material.
本実施形態に係る反応炉によれば、外筒容器本体部の内側には、本体断熱層とレンガ層とを備え、当該レンガ層が、性質の異なる複数種のレンガ層、すなわち低熱伝導性の最外レンガ層、高耐熱性の最内レンガ層の順で積層された積層構造を有するため、単一の断熱材のみからなる場合と比べて著しく断熱性を向上させることができる。 Hereinafter, the effect of the reactor according to the present embodiment will be described.
According to the reactor according to the present embodiment, the inner side of the main body of the outer cylinder container includes a main body heat insulating layer and a brick layer, and the brick layer has a plurality of types of brick layers having different properties, that is, low thermal conductivity. Since it has the laminated structure laminated | stacked in order of the outermost brick layer and the high heat resistant innermost brick layer, heat insulation can be improved remarkably compared with the case where it consists only of a single heat insulating material.
また、最外レンガ層のレンガの熱伝導率が0.7W/m・K以下、さらには最外レンガ層のレンガの熱伝導率が0.27W/m・K以下であることにより、反応炉の断熱性能を向上させることができる。
Further, the thermal conductivity of the brick of the outermost brick layer is 0.7 W / m · K or less, and further the thermal conductivity of the brick of the outermost brick layer is 0.27 W / m · K or less, the reactor The heat insulation performance can be improved.
また、最内レンガ層のレンガの最高使用温度が1500℃以上、さらには最内レンガ層のレンガの最高使用温度が1600℃以上であることにより、1100℃~1400℃に達する熱的負荷にも耐えられる。そして、最内レンガ層に水素、塩化水素、クロロシラン類に対する耐腐食性に優れたものを用いることにより、反応炉の断熱性および耐久性を向上させることができる。
In addition, because the maximum use temperature of the innermost brick layer is 1500 ° C or higher, and the highest use temperature of the innermost brick layer brick is 1600 ° C or higher, it can be used for thermal loads reaching 1100 ° C to 1400 ° C. I can bear it. And the heat insulation and durability of a reaction furnace can be improved by using what was excellent in the corrosion resistance with respect to hydrogen, hydrogen chloride, and chlorosilanes for an innermost brick layer.
また、最外レンガ層と最内レンガ層の間に、さらに中間レンガ層を設けることにより、より断熱性能を向上させることができる。
Also, by providing an intermediate brick layer between the outermost brick layer and the innermost brick layer, the heat insulation performance can be further improved.
そして、外筒容器本体部の底板と反応容器との間に配置されて反応容器を支持する、上下方向に貫通した複数の孔を有する固定板をさらに有することが好ましい。
これにより、反応容器と外筒容器本体部とが接触する面積を減らすことができ、熱が外部へ伝達してしまうのを防ぐことができる。その一方、反応容器の重さを管状または柱状部材のみで支える場合と比べて、反応容器を平板状の部材で支えるため、反応容器の底部または反応容器を支持する部材に反応容器の重さによる局所的な負荷をかけることがない。 And it is preferable to have further the fixing plate which has a some hole penetrated to the up-down direction which is arrange | positioned between the bottom plate of an outer cylinder container main-body part, and a reaction container, and supports a reaction container.
Thereby, the area which a reaction container and an outer cylinder container main-body part contact can be reduced, and it can prevent that heat transfers to the exterior. On the other hand, compared to the case where the weight of the reaction vessel is supported only by a tubular or columnar member, the reaction vessel is supported by a flat plate-like member, so that depending on the weight of the reaction vessel on the bottom of the reaction vessel or the member supporting the reaction vessel There is no local load.
これにより、反応容器と外筒容器本体部とが接触する面積を減らすことができ、熱が外部へ伝達してしまうのを防ぐことができる。その一方、反応容器の重さを管状または柱状部材のみで支える場合と比べて、反応容器を平板状の部材で支えるため、反応容器の底部または反応容器を支持する部材に反応容器の重さによる局所的な負荷をかけることがない。 And it is preferable to have further the fixing plate which has a some hole penetrated to the up-down direction which is arrange | positioned between the bottom plate of an outer cylinder container main-body part, and a reaction container, and supports a reaction container.
Thereby, the area which a reaction container and an outer cylinder container main-body part contact can be reduced, and it can prevent that heat transfers to the exterior. On the other hand, compared to the case where the weight of the reaction vessel is supported only by a tubular or columnar member, the reaction vessel is supported by a flat plate-like member, so that depending on the weight of the reaction vessel on the bottom of the reaction vessel or the member supporting the reaction vessel There is no local load.
さらに、反応容器は固定板の上にその全重量を預けることによって支えられているため、外筒容器上蓋部と接触させる必要がない。そのため、反応容器と外筒容器とが接触する面積を減らすことができ、反応容器の熱が外部に逃げることを抑えることができる。その上、反応容器が固定板のみで支持されているため、加熱によって反応容器が膨張したとしても、外筒容器本体部や反応容器に熱膨張による歪みや破損を生じにくい。
Furthermore, since the reaction vessel is supported by depositing its entire weight on a fixed plate, it is not necessary to contact the upper cover of the outer tube vessel. Therefore, the area where the reaction container and the outer cylinder container come into contact can be reduced, and the heat of the reaction container can be prevented from escaping to the outside. In addition, since the reaction vessel is supported only by the fixed plate, even if the reaction vessel expands due to heating, distortion and breakage due to thermal expansion are unlikely to occur in the outer cylinder vessel main body and the reaction vessel.
また、固定板が、グラファイトからなるものであれば、断熱性能を向上させるために孔の数を増加させても、グラファイトは強度に優れているため反応容器を支持するのに充分な強度を得ることができる。
Further, if the fixing plate is made of graphite, even if the number of holes is increased in order to improve the heat insulation performance, the graphite is excellent in strength, so that it has sufficient strength to support the reaction vessel. be able to.
また、固定板と外筒容器本体部の底板との間に、膨張黒鉛からなる台座をさらに設けた場合には、固定板の下部から外筒容器本体部への熱の移動を抑制することが可能となる。
In addition, when a pedestal made of expanded graphite is further provided between the fixed plate and the bottom plate of the outer cylinder container main body part, it is possible to suppress the movement of heat from the lower part of the fixed plate to the outer cylinder container main body part. It becomes possible.
以上、本発明に係る反応炉について説明したが、本発明はこれらに限定されるものではない。
Although the reaction furnace according to the present invention has been described above, the present invention is not limited to these.
[実施例1]
以下のような断熱構造を有する外筒容器本体部、及び反応容器の固定板を用いて、図1に示すような反応炉を作製した。
(外筒容器上蓋部)
外筒容器上蓋部の内側に上蓋断熱層としてアルミナファイバー(電気化学工業製:アルセン(登録商標))を充填した。
(外筒容器本体部)
外筒容器本体部の内側一面に、本体断熱層として断熱ボード(イソライト工業株式会社製のイソウール(登録商標))を貼り付け、さらにその内側にレンガ層として以下の耐熱性レンガを積み重ねた。
最内レンガ層:BAL-99
最外レンガ層:LBK-28
(固定板)
反応容器を支持するための固定板として、中央に反応容器のガス導入口の管状突出部を嵌合するための開口部とその周囲に複数の貫通孔とを有するグラファイト製の円盤状板材を用いた。
貫通孔の口径は固定板の直径の5%とし、貫通孔が固定板の30%の面積を占めるように形成した。 [Example 1]
The reaction furnace as shown in FIG. 1 was produced using the outer cylinder container main body part which has the following heat insulation structures, and the reaction vessel fixing plate.
(Outer cylinder container top cover)
Alumina fiber (manufactured by Denki Kagaku Kogyo Co., Ltd .: Arsen (registered trademark)) was filled inside the outer lid portion of the outer cylinder container as an upper lid heat insulating layer.
(Outer cylinder body)
A heat insulation board (Iso wool (registered trademark) manufactured by Isolite Industry Co., Ltd.) was pasted as a main body heat insulation layer on the inner surface of the outer cylinder container main body, and the following heat-resistant bricks were stacked as a brick layer inside.
Inner brick layer: BAL-99
Outer brick layer: LBK-28
(Fixing plate)
As a fixed plate for supporting the reaction vessel, a graphite disc-like plate material having an opening for fitting the tubular projection of the gas inlet of the reaction vessel at the center and a plurality of through holes around it is used. It was.
The diameter of the through hole was 5% of the diameter of the fixed plate, and the through hole was formed so as to occupy an area of 30% of the fixed plate.
以下のような断熱構造を有する外筒容器本体部、及び反応容器の固定板を用いて、図1に示すような反応炉を作製した。
(外筒容器上蓋部)
外筒容器上蓋部の内側に上蓋断熱層としてアルミナファイバー(電気化学工業製:アルセン(登録商標))を充填した。
(外筒容器本体部)
外筒容器本体部の内側一面に、本体断熱層として断熱ボード(イソライト工業株式会社製のイソウール(登録商標))を貼り付け、さらにその内側にレンガ層として以下の耐熱性レンガを積み重ねた。
最内レンガ層:BAL-99
最外レンガ層:LBK-28
(固定板)
反応容器を支持するための固定板として、中央に反応容器のガス導入口の管状突出部を嵌合するための開口部とその周囲に複数の貫通孔とを有するグラファイト製の円盤状板材を用いた。
貫通孔の口径は固定板の直径の5%とし、貫通孔が固定板の30%の面積を占めるように形成した。 [Example 1]
The reaction furnace as shown in FIG. 1 was produced using the outer cylinder container main body part which has the following heat insulation structures, and the reaction vessel fixing plate.
(Outer cylinder container top cover)
Alumina fiber (manufactured by Denki Kagaku Kogyo Co., Ltd .: Arsen (registered trademark)) was filled inside the outer lid portion of the outer cylinder container as an upper lid heat insulating layer.
(Outer cylinder body)
A heat insulation board (Iso wool (registered trademark) manufactured by Isolite Industry Co., Ltd.) was pasted as a main body heat insulation layer on the inner surface of the outer cylinder container main body, and the following heat-resistant bricks were stacked as a brick layer inside.
Inner brick layer: BAL-99
Outer brick layer: LBK-28
(Fixing plate)
As a fixed plate for supporting the reaction vessel, a graphite disc-like plate material having an opening for fitting the tubular projection of the gas inlet of the reaction vessel at the center and a plurality of through holes around it is used. It was.
The diameter of the through hole was 5% of the diameter of the fixed plate, and the through hole was formed so as to occupy an area of 30% of the fixed plate.
なお、外筒容器本体部および外筒容器上蓋部は鉄製のものを使用し、反応容器は表面を炭化ケイ素被膜処理した等方性黒鉛からなる直円筒状のカーボン製略円筒体を複数連結したものを用いた。
The outer cylinder container main body and the outer cylinder container upper lid were made of iron, and the reaction vessel was formed by connecting a plurality of substantially cylindrical carbon cylinders made of isotropic graphite whose surface was treated with a silicon carbide coating. A thing was used.
上記の反応炉を用いて、テトラクロロシランと水素(モル=1:1)の原料ガスを、常圧、反応温度1100℃にて反応させた。
Using the reaction furnace, tetrachlorosilane and hydrogen (mole = 1: 1) source gas were reacted at normal pressure and reaction temperature of 1100 ° C.
このとき、反応炉の最内レンガ層の表面部分と外周表面部分の温度を測定した。その結果、最内レンガ層の表面部分の温度が1100℃であるのに対して外周表面部分の温度は150℃となった。
また、この反応炉を連続的に2000時間運転した後、装置を解体して外筒容器本体部の内部、レンガ層、固定板等を観察したところ、いずれの部材にも歪みや破損は観察されなかった。 At this time, the temperature of the surface part and outer peripheral surface part of the innermost brick layer of the reactor was measured. As a result, the temperature of the surface portion of the innermost brick layer was 1100 ° C., whereas the temperature of the outer peripheral surface portion was 150 ° C.
In addition, after continuously operating this reactor for 2000 hours, the apparatus was disassembled and the inside of the outer cylinder container main body, the brick layer, the fixed plate, etc. were observed, and any member was found to be distorted or damaged. There wasn't.
また、この反応炉を連続的に2000時間運転した後、装置を解体して外筒容器本体部の内部、レンガ層、固定板等を観察したところ、いずれの部材にも歪みや破損は観察されなかった。 At this time, the temperature of the surface part and outer peripheral surface part of the innermost brick layer of the reactor was measured. As a result, the temperature of the surface portion of the innermost brick layer was 1100 ° C., whereas the temperature of the outer peripheral surface portion was 150 ° C.
In addition, after continuously operating this reactor for 2000 hours, the apparatus was disassembled and the inside of the outer cylinder container main body, the brick layer, the fixed plate, etc. were observed, and any member was found to be distorted or damaged. There wasn't.
[実施例2]
実施例2では、レンガ層を、図2に示すような3層構造にした。
このとき、中間レンガ層には、BAL-90を使用した。それ以外は実施例1と同様にして作製した反応炉を用いて、実施例1と同様の実験を行った。 [Example 2]
In Example 2, the brick layer has a three-layer structure as shown in FIG.
At this time, BAL-90 was used for the intermediate brick layer. Other than that, the same experiment as in Example 1 was performed using a reactor manufactured in the same manner as in Example 1.
実施例2では、レンガ層を、図2に示すような3層構造にした。
このとき、中間レンガ層には、BAL-90を使用した。それ以外は実施例1と同様にして作製した反応炉を用いて、実施例1と同様の実験を行った。 [Example 2]
In Example 2, the brick layer has a three-layer structure as shown in FIG.
At this time, BAL-90 was used for the intermediate brick layer. Other than that, the same experiment as in Example 1 was performed using a reactor manufactured in the same manner as in Example 1.
このとき、反応炉の最内レンガ層の表面部分と外周表面部分の温度を測定した。その結果、最内レンガ層の表面部分の温度が1100℃であるのに対して外周表面部分の温度は80℃となった。
装置を解体して外筒容器本体部の内部、レンガ層、固定板等を観察したところ、いずれの部材にも歪みや破損は観察されなかった。 At this time, the temperature of the surface part and outer peripheral surface part of the innermost brick layer of the reactor was measured. As a result, the temperature of the surface portion of the innermost brick layer was 1100 ° C., whereas the temperature of the outer peripheral surface portion was 80 ° C.
When the apparatus was disassembled and the inside of the outer cylinder container main body, the brick layer, the fixing plate, and the like were observed, no distortion or breakage was observed in any of the members.
装置を解体して外筒容器本体部の内部、レンガ層、固定板等を観察したところ、いずれの部材にも歪みや破損は観察されなかった。 At this time, the temperature of the surface part and outer peripheral surface part of the innermost brick layer of the reactor was measured. As a result, the temperature of the surface portion of the innermost brick layer was 1100 ° C., whereas the temperature of the outer peripheral surface portion was 80 ° C.
When the apparatus was disassembled and the inside of the outer cylinder container main body, the brick layer, the fixing plate, and the like were observed, no distortion or breakage was observed in any of the members.
[実施例3]
実施例3では、固定板と外筒容器本体部との間に膨張黒鉛からなる台座を配置したこと以外は実施例2と同様の反応炉を作製し、実施例2と同様の実験を行った。 [Example 3]
In Example 3, a reactor similar to Example 2 was prepared except that a pedestal made of expanded graphite was disposed between the fixed plate and the outer cylinder container main body, and an experiment similar to Example 2 was performed. .
実施例3では、固定板と外筒容器本体部との間に膨張黒鉛からなる台座を配置したこと以外は実施例2と同様の反応炉を作製し、実施例2と同様の実験を行った。 [Example 3]
In Example 3, a reactor similar to Example 2 was prepared except that a pedestal made of expanded graphite was disposed between the fixed plate and the outer cylinder container main body, and an experiment similar to Example 2 was performed. .
このとき、反応炉の最内レンガ層の底部表面部分と外側底部表面部分の温度を測定した。その結果、反応炉の最内レンガ層の底部表面部分の温度が1100℃であるのに対して外側底部表面部分の温度は80℃となった。
装置を解体して外筒容器本体部の内部、レンガ層、固定板等を観察したところ、いずれの部材にも歪みや破損は観察されなかった。 At this time, the temperatures of the bottom surface portion and the outer bottom surface portion of the innermost brick layer of the reactor were measured. As a result, the temperature of the bottom surface portion of the innermost brick layer of the reactor was 1100 ° C., whereas the temperature of the outer bottom surface portion was 80 ° C.
When the apparatus was disassembled and the inside of the outer cylinder container main body, the brick layer, the fixing plate, and the like were observed, no distortion or breakage was observed in any of the members.
装置を解体して外筒容器本体部の内部、レンガ層、固定板等を観察したところ、いずれの部材にも歪みや破損は観察されなかった。 At this time, the temperatures of the bottom surface portion and the outer bottom surface portion of the innermost brick layer of the reactor were measured. As a result, the temperature of the bottom surface portion of the innermost brick layer of the reactor was 1100 ° C., whereas the temperature of the outer bottom surface portion was 80 ° C.
When the apparatus was disassembled and the inside of the outer cylinder container main body, the brick layer, the fixing plate, and the like were observed, no distortion or breakage was observed in any of the members.
また特に、外筒容器本体部の底部表面の温度が、実施例1の場合と比べて70%も低く、反応炉内部の熱が外部に漏れにくいことが確認された。
In particular, it was confirmed that the temperature of the bottom surface of the main body of the outer cylinder container was 70% lower than that in Example 1, and the heat inside the reactor was hardly leaked to the outside.
[比較例1]
LBK-28のみを使用して、1層構造のレンガ層を形成した。
そして、実施例1と同様の反応炉を作製し、実施例1と同様の実験を行った。 [Comparative Example 1]
A single-layer brick layer was formed using only LBK-28.
And the reactor similar to Example 1 was produced, and the experiment similar to Example 1 was conducted.
LBK-28のみを使用して、1層構造のレンガ層を形成した。
そして、実施例1と同様の反応炉を作製し、実施例1と同様の実験を行った。 [Comparative Example 1]
A single-layer brick layer was formed using only LBK-28.
And the reactor similar to Example 1 was produced, and the experiment similar to Example 1 was conducted.
このとき、反応炉の最内レンガ層の表面部分と外周表面部分の温度を測定した。その結果、最内レンガ層の表面部分の温度が1100℃であるのに対して外周表面部分の温度は250℃となった。
装置を解体して外筒容器本体部の内部、レンガ層、固定板等を観察したところ、レンガ層に腐食が認められた。また、外筒容器本体部の外周表面の温度が、実施例1の場合と比べて明らかに高く、反応炉内部の熱が外部に漏れやすいことが確認された。 At this time, the temperature of the surface part and outer peripheral surface part of the innermost brick layer of the reactor was measured. As a result, the temperature of the surface portion of the innermost brick layer was 1100 ° C., whereas the temperature of the outer peripheral surface portion was 250 ° C.
When the apparatus was disassembled and the inside of the outer cylinder container main body, the brick layer, the fixed plate, etc. were observed, the brick layer was corroded. Moreover, it was confirmed that the temperature of the outer peripheral surface of an outer cylinder container main-body part is clearly high compared with the case of Example 1, and the heat inside a reactor tends to leak outside.
装置を解体して外筒容器本体部の内部、レンガ層、固定板等を観察したところ、レンガ層に腐食が認められた。また、外筒容器本体部の外周表面の温度が、実施例1の場合と比べて明らかに高く、反応炉内部の熱が外部に漏れやすいことが確認された。 At this time, the temperature of the surface part and outer peripheral surface part of the innermost brick layer of the reactor was measured. As a result, the temperature of the surface portion of the innermost brick layer was 1100 ° C., whereas the temperature of the outer peripheral surface portion was 250 ° C.
When the apparatus was disassembled and the inside of the outer cylinder container main body, the brick layer, the fixed plate, etc. were observed, the brick layer was corroded. Moreover, it was confirmed that the temperature of the outer peripheral surface of an outer cylinder container main-body part is clearly high compared with the case of Example 1, and the heat inside a reactor tends to leak outside.
〈考察〉
以上の結果から分かるように、実施例の反応炉では、反応容器内部の温度を1100℃になるように運転した場合でも、外筒容器本体部の温度が80℃~150℃であり、断熱性に優れていることが分かる。 <Discussion>
As can be seen from the above results, in the reactor of the example, even when the temperature inside the reaction vessel was operated to be 1100 ° C., the temperature of the outer cylinder vessel main body was 80 ° C. to 150 ° C. It turns out that it is excellent in.
以上の結果から分かるように、実施例の反応炉では、反応容器内部の温度を1100℃になるように運転した場合でも、外筒容器本体部の温度が80℃~150℃であり、断熱性に優れていることが分かる。 <Discussion>
As can be seen from the above results, in the reactor of the example, even when the temperature inside the reaction vessel was operated to be 1100 ° C., the temperature of the outer cylinder vessel main body was 80 ° C. to 150 ° C. It turns out that it is excellent in.
また、外筒容器本体部を解体して調べた場合にも、その内部に歪みや破損等が生じておらず、耐久性が高いことが分かる。
Also, when the outer cylinder container main body is disassembled and examined, it is found that there is no distortion or breakage in the interior, and the durability is high.
また、反応炉内を目的の温度(1100℃程度)にするためにヒーターに加える電力を測定したところ、比較例の反応炉に対して、実施例の反応炉では15%減少した。これより、本発明に係る反応炉は、高い断熱性を有するため、製造コストを抑制できるという効果も奏することが分かる。
Further, when the electric power applied to the heater was measured in order to bring the inside of the reaction furnace to the target temperature (about 1100 ° C.), it was reduced by 15% in the reaction furnace of the example with respect to the reaction furnace of the comparative example. Thus, it can be seen that the reaction furnace according to the present invention has high heat insulating properties, and thus has an effect of suppressing the manufacturing cost.
以上の実験結果に示されるとおり、本発明に係る反応炉は、高い断熱性を有し、安定したトリクロロシランの製造を行うことができ、かつ耐久性にも優れている。
As shown in the above experimental results, the reactor according to the present invention has high heat insulation, can produce stable trichlorosilane, and is excellent in durability.
以上、本発明を実施例に基づいて説明した。しかし、これらの実施例は本発明の例示であり、この他にも種々の変形例が可能なこと、また、その変形例も本発明の範囲にあることは当業者に理解されるところである。
In the above, this invention was demonstrated based on the Example. However, those embodiments are merely examples of the present invention, and it will be understood by those skilled in the art that other various modifications are possible and that these modifications are also within the scope of the present invention.
Claims (9)
- 底板を有する略円筒状の外筒容器本体部と、
外筒容器本体部を気密に封止する外筒容器上蓋部と、
外筒容器本体部内に収容され、テトラクロロシランと水素とを含むガスが内部に供給されトリクロロシランと塩化水素とを含むガスが生成される反応容器と、
外筒容器上蓋部の内面を覆う上蓋断熱層と、
外筒容器本体部の内面に配置されたレンガ層とを備え、
レンガ層が、外筒容器本体部の内面から中心に向かって低熱伝導性の最外レンガ層、高耐熱性の最内レンガ層の順で積層された積層構造を有する反応炉。 A substantially cylindrical outer container body having a bottom plate;
An outer cylinder container upper lid for hermetically sealing the outer cylinder container main body,
A reaction vessel that is housed in the outer cylinder main body, a gas containing tetrachlorosilane and hydrogen is supplied to the inside, and a gas containing trichlorosilane and hydrogen chloride is generated;
An upper lid heat insulating layer covering the inner surface of the outer cylinder container upper lid portion;
A brick layer disposed on the inner surface of the outer container body,
A reactor having a laminated structure in which brick layers are laminated in order of an outermost brick layer having a low thermal conductivity and an innermost brick layer having a high heat resistance from the inner surface of the outer cylindrical container main body toward the center. - 最外レンガ層のレンガの熱伝導率が0.7W/m・K以下である請求項1に記載の反応炉。 The reactor according to claim 1, wherein the bricks of the outermost brick layer have a thermal conductivity of 0.7 W / m · K or less.
- 最外レンガ層のレンガの熱伝導率が0.27W/m・K以下である請求項1に記載の反応炉。 The reactor according to claim 1, wherein the heat conductivity of the brick of the outermost brick layer is 0.27 W / m · K or less.
- 最内レンガ層のレンガの最高使用温度が1500℃以上である請求項1記載の反応炉。 The reactor according to claim 1, wherein the highest use temperature of the brick of the innermost brick layer is 1500 ° C. or higher.
- 最内レンガ層のレンガの最高使用温度が1600℃以上である請求項1記載の反応炉。 The reactor according to claim 1, wherein the highest use temperature of the brick of the innermost brick layer is 1600 ° C. or higher.
- 最外レンガ層と最内レンガ層の間に、さらに中間レンガ層が設けられている請求項1に記載の反応炉。 The reactor according to claim 1, wherein an intermediate brick layer is further provided between the outermost brick layer and the innermost brick layer.
- 外筒容器本体部の底板と反応容器との間に配置されて反応容器を支持する、上下方向に貫通した複数の孔を有する固定板をさらに有することを特徴とする請求項1に記載の反応炉。 2. The reaction according to claim 1, further comprising a fixing plate that is disposed between the bottom plate of the outer cylinder container main body and the reaction container and supports the reaction container and has a plurality of holes penetrating in the vertical direction. Furnace.
- 固定板が、グラファイトからなる請求項5に記載の反応炉。 The reactor according to claim 5, wherein the fixed plate is made of graphite.
- 固定板と外筒容器本体部の底板との間に、膨張黒鉛からなる台座をさらに設けた請求項5に記載の反応炉。 The reactor according to claim 5, further comprising a pedestal made of expanded graphite between the fixed plate and the bottom plate of the outer container body.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2009/056447 WO2010116440A1 (en) | 2009-03-30 | 2009-03-30 | Reactor |
JP2011508083A JP5539967B2 (en) | 2009-03-30 | 2009-03-30 | Reactor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2009/056447 WO2010116440A1 (en) | 2009-03-30 | 2009-03-30 | Reactor |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010116440A1 true WO2010116440A1 (en) | 2010-10-14 |
Family
ID=42935751
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/056447 WO2010116440A1 (en) | 2009-03-30 | 2009-03-30 | Reactor |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5539967B2 (en) |
WO (1) | WO2010116440A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012047658A1 (en) * | 2010-09-27 | 2012-04-12 | Gtat Corporation | Heater and related methods therefor |
US9217609B2 (en) | 2011-06-21 | 2015-12-22 | Gtat Corporation | Apparatus and methods for conversion of silicon tetrachloride to trichlorosilane |
WO2016006576A1 (en) * | 2014-07-07 | 2016-01-14 | 株式会社Ihi | Heat treatment apparatus |
US9308510B2 (en) | 2013-05-07 | 2016-04-12 | Bruce Hazeltine | Monolithic heat exchanger and apparatus and methods for hydrogenation of a halosilane |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114011348A (en) * | 2021-10-09 | 2022-02-08 | 周彤 | Temperature control type chemical reaction kettle |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60122714A (en) * | 1983-12-06 | 1985-07-01 | Denki Kagaku Kogyo Kk | Method and apparatus for manufacturing tetrachlorosilane |
JPS62123011A (en) * | 1985-11-25 | 1987-06-04 | Koujiyundo Silicon Kk | Method for producing trichlorosilane and apparatus therefor |
JPS63112410A (en) * | 1986-10-31 | 1988-05-17 | Nippon Steel Corp | Production of trichlorosilane |
-
2009
- 2009-03-30 WO PCT/JP2009/056447 patent/WO2010116440A1/en active Application Filing
- 2009-03-30 JP JP2011508083A patent/JP5539967B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60122714A (en) * | 1983-12-06 | 1985-07-01 | Denki Kagaku Kogyo Kk | Method and apparatus for manufacturing tetrachlorosilane |
JPS62123011A (en) * | 1985-11-25 | 1987-06-04 | Koujiyundo Silicon Kk | Method for producing trichlorosilane and apparatus therefor |
JPS63112410A (en) * | 1986-10-31 | 1988-05-17 | Nippon Steel Corp | Production of trichlorosilane |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012047658A1 (en) * | 2010-09-27 | 2012-04-12 | Gtat Corporation | Heater and related methods therefor |
US10315181B2 (en) | 2010-09-27 | 2019-06-11 | Gtat Corporation | Heater and related methods therefor |
US9217609B2 (en) | 2011-06-21 | 2015-12-22 | Gtat Corporation | Apparatus and methods for conversion of silicon tetrachloride to trichlorosilane |
US9308510B2 (en) | 2013-05-07 | 2016-04-12 | Bruce Hazeltine | Monolithic heat exchanger and apparatus and methods for hydrogenation of a halosilane |
WO2016006576A1 (en) * | 2014-07-07 | 2016-01-14 | 株式会社Ihi | Heat treatment apparatus |
JPWO2016006576A1 (en) * | 2014-07-07 | 2017-04-27 | 株式会社Ihi | Heat treatment equipment |
CN106662400A (en) * | 2014-07-07 | 2017-05-10 | 株式会社Ihi | Heat treatment apparatus |
CN106662400B (en) * | 2014-07-07 | 2019-09-13 | 株式会社Ihi | Annealing device |
Also Published As
Publication number | Publication date |
---|---|
JPWO2010116440A1 (en) | 2012-10-11 |
JP5539967B2 (en) | 2014-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7998428B2 (en) | Apparatus for producing trichlorosilane | |
US7964155B2 (en) | Apparatus for producing trichlorosilane | |
JP5539967B2 (en) | Reactor | |
KR101115697B1 (en) | Cvd reactor with energy efficient thermal-radiation shield | |
JP3763104B2 (en) | Hydrogenation of tetrachlorosilane | |
EP2014618A1 (en) | Trichlorosilane production apparatus | |
JP2008156212A (en) | Apparatus for producing trichlorosilane | |
JP4885166B2 (en) | Insulated container and assembled battery including the same | |
ES2543305T3 (en) | Procedure and device for the chemical conversion of silicon tetrachloride to trichlorosilane | |
US9493359B2 (en) | Apparatus for producing trichlorosilane | |
US20120135144A1 (en) | Coating device and coating method | |
JP2008150277A (en) | Heat-resistant and corrosion-resistant member, and apparatus for producing trichlorosilane | |
JP5436541B2 (en) | Reactor | |
JP5412447B2 (en) | Reactor provided with reaction vessel made of carbon-containing material, corrosion prevention method for the reactor, and method for producing chlorosilanes using the reactor | |
JP5017536B2 (en) | Insulation system for fuel cell | |
JP5553754B2 (en) | Carbon reaction vessel | |
JP5083004B2 (en) | Trichlorosilane production equipment | |
JP5511795B2 (en) | Gas phase reactor | |
JP2007335226A (en) | Fuel cell | |
KR20130064988A (en) | Fluidized bed reactor including reaction tube | |
US20140086816A1 (en) | Use of burners with a jet tube in reactors for conversion of chlorosilanes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09842950 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011508083 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09842950 Country of ref document: EP Kind code of ref document: A1 |